http://docs.mitk.org/nightly/RESTModule.html 

REST Module 
Table of Contents
· Description
· Technical background
· How to use the REST Module
· Use from a Server perspective
· Use from a Client perspective
Description
The MITK REST Module is able to manage REST requests. The main class is the RESTManager. It is a MicroServices, which can be accessed via 
auto *context = us::GetModuleContext();
auto managerRef = context->GetServiceReference<IRESTManager>();
if (managerRef)
{
auto managerService = context->GetService(managerRef);
if (managerService)
{
//call the function you need from the service
}
}
Technical background
The module uses the Microsoft C++ REST SDK for REST mechanisms, as well as JSON convertsion and asynchronicasynchronous programming.
How to use the REST Module
You can use the REST module from two different perspectives in MITK:
1. The Server view (receive requests from clients) 
2. The Client view (send requests to servers) 
The following sections will give you an introduction on how to use which of those roles.:
Use from a Server perspective
To act as a server, you need to implement the IRESTObserver, which has a Notify() method that has to be implemented. In this Notify() method you specify how you want to react to incoming requests and with which data you want to respond to the requests.
You can then start listening for requests from clients as shown below:
auto *context = us::GetModuleContext();
auto managerRef = context->GetServiceReference<IRESTManager>();
if (managerRef)
{
auto managerService = context->GetService(managerRef);
if (managerService)
{
managerService->ReceiveRequests(uri /*specify your uri which you want to receive requests for*/, this);
}
}
If a client sends a request, the Notify method is called and a response is sent. By now, only GET-requests from clients are supported.
If you want to stop listening for requestsrequests, you can do this by calling
auto *context = us::GetModuleContext();
auto managerRef = context->GetServiceReference<IRESTManager>();
if (managerRef)
{
auto managerService = context->GetService(managerRef);
if (managerService)
{
managerService->HandleDeleteObserver(this, uri);
}
}
You do noton't have to specify a URIuri in the HandleDeleteObserver method, if you only call managerService->HandleDeleteObserver(this);,. Aall URIuris you receive requests for are deleted and you are notn't listening to any requests anymore.	Comment by Shuhan Xiao: URI?
Use from a Client perspective
The following example shows how to send requests from a client perspective:
//Get the microservice
auto *context = us::ModuleRegistry::GetModule(1)->GetModuleContext();
auto managerRef = context->GetServiceReference<mitk::IRESTManager>();
if (managerRef)
{
auto managerService = context->GetService(managerRef);
if (managerService)
{
//Call the send request method which starts the actual request
managerService
->SendRequest(U("https://jsonplaceholder.typicode.com/posts/1"))
.then([=](pplx::task<web::json::value> resultTask)/*It is important to use task-based continuation*/ {
try
{
//Get the result of the request
//This will throw an exception if the ascendent task threw an exception (e.g. invalid URI)
web::json::value result = resultTask.get();
//Do something with the result (e.g. convert it to a QString to update an UI element)
utility::string_t stringT = result.to_string();
std::string stringStd(stringT.begin(), stringT.end());
QString stringQ = QString::fromStdString(stringStd);
//Note: if you want to update your UI, do this by using signals and slots.
//The UI can't be updated from a Thread different to the Qt main thread
emit UpdateLabel(stringQ);
}
catch (const mitk::Exception &exception)
{
//Exceptions from ascendent tasks are catched here	Comment by Shuhan Xiao: “caught”?
MITK_ERROR << exception.what();
return;
}
});
}
}
The steps you need to make are the following: 
1. Get the microservice. You can get the microservice via the module context. If you want to use the microservice within a plug-in, you need to get the module context from the us::ModuleRegistry. 
2. Call the SendRequest method. This will start the request itself and is performed asynchronously. As soon as the response is sent by the server, the .then(...) block is executed. 
3. Choose parameters for .then(...) block. For exception handling, it is important to choose pplx::task<web::json::value> . This is a task-based continuation. For more information, visit https://docs.microsoft.com/en-us/cpp/parallel/concrt/exception-handling-in-the-concurrency-runtime?view=vs-2017. 
4. Get the result of the request. You can get the JSON-value of the result by callintg .get(). At this point, an exception is thrown if something in the previous tasks threw an exception. 	Comment by Shuhan Xiao: Has already thrown
5. Do something with the result. 
Note
If you want to modify GUI elements within the .then(...) block, you need to do this by using signals and slots because GUI elements can only be modified by the Qt Main Thread. For more information, visit https://doc.qt.io/Qt-5/thread-basics.html#gui-thread-and-worker-thread 
6. Exception handling. Here you can define the behaviour if an exception is thrown, exceptions from ascendaent tasks are also catched caught here. 	Comment by Shuhan Xiao: “Caught”?
The Ccode , whichthat is followed by this code block shown above will be performed asynchronously while waiting for the result. Besides Get-Requests, you can also perform Put or Post requests by specifying a RequestType in the SendRequest method.
The following example shows, how you can perform multiple tasks, encapsulated to one joined task. The steps are based on the example for one request and only the specific steps for encapsulation are described.
//Get the microservice
//Get microservice
auto *context = us::ModuleRegistry::GetModule(1)->GetModuleContext();
auto managerRef = context->GetServiceReference<mitk::IRESTManager>();
if (managerRef)
{
auto managerService = context->GetService(managerRef);
if (managerService)
{
//Create multiple tasks e.g. as shown below
std::vector<pplx::task<void>> tasks;
for (int i = 0; i < 20; i++)
{
pplx::task<void> singleTask = managerService->SendRequest(L"https://jsonplaceholder.typicode.com/posts/1")
.then([=](pplx::task<web::json::value> resultTask) {
//Do something when a single task is done
try
{
resultTask.get();
emit UpdateProgressBar();
}
catch (const mitk::Exception &exception)
{
MITK_ERROR << exception.what();
return;
}
});
tasks.emplace_back(singleTask);
}
//Create a joinTask which includes all tasks you've created
auto joinTask = pplx::when_all(begin(tasks), end(tasks));
//Run asynchonously
joinTask.then([=](pplx::task<void> resultTask) {
//Do something when all tasks are finished
try
{
resultTask.get();
emit UpdateLabel("All tasks finished");
}
catch (const mitk::Exception &exception)
{
MITK_ERROR << exception.what();
return;
}
});
}
The steps you need to make are the following: 
1. Get the microservice. See the example above. 
2. Create multiple tasks. In this example, 20 identical tasks are created and are saved into a vector. In general, it is possible to place any tasks in that vector. 
3. Do something when a single task is done. Here, an action is performed if a single task s is finished. In this example, a progress bar is loaded by a specific number of percent. 
4. Create a joinTask. Here, all small tasks are encapsulated in one big task. 
5. Run joinTask asynchonouslyasynchronously. The then(...) of the joinTask is performed when all single tasks are finished. 
6. Do something when all tasks are finished. The handling of the end of a joinTask is equivalent to the end of a single tasks. 

