Packaging MITK
What (not) to package?
· Modules
· Standard modules/libraries, nothing fancy
· Dependencies to other modules
· Dependencies to external projects
· Command line apps
· Executables that a logically part of a module
· NOT test drivers, though
· Classification apps call MITK_INSTALL_TARGETS() manually
· Auto-load modules
· Loaded during run-time, no link-time dependencies, so basically “plugins”
· Located in a subfolder named after the module that is supposed to load it
· Can be queried by target properties (both dependers and dependees)
· MatchPointRegistration also has algorithm plugins
· IGT has STL files
· Plugins
· Dependencies to modules (including auto-load modules)
· Dependencies to external projects
· No dependencies to other plugins?
· DICOM plugins needs storescp helper app
· XNAT plugin installs SSL
· Applications
· BlueBerry applications, not modules executables
· Provisioning and ini files list plugins to load at run-time
· External projects
· CppMicroServices is disguised as module but is external project
· Most external projects should be collected by BundleUtilities
· There are also macOS frameworks like Python or Qt
· Resource executables are not resolved by BundleUtilities
· Qt is complex and comes with own deploy helper apps
· Found blog article on how to integrate these helper apps in packaging
· CTK has subprojects like PythonQt
· Some external projects are not pre-installed to ep folder
· MatchPoint has plugins
When to package?
· Package script should be assembled only late at configure time when all other dependencies are set up (otherwise plugin dependencies may not be completely established)
· Probably work with GLOBAL and TARGET properties that can be queried after everything is set up
How to package?
· Currently restricted to…
· Windows: ZIP archive, NSIS 2 installer
· Linux: Tarball
· macOS: dmg
· Choose modern alternatives if they exist
· Windows and Linux package “everything” into a single package
· macOS packages each BlueBerry application separately or everything else if no application is enabled
And then there is…
· PluginGenerator
· ProjectTemplate
· Using MITK as toolkit
Where is the current install/package code?
· CMake/mitkInstallRules.cmake
· mitk.ico and mitk.bmp
· New: Auto-load dependencies of executables
· Executables
· PythonQt
· Qt
· SQL drivers
· Image formats
· Icon engines
· Platform plugins
· Styles
· QtWebEngine including locales
· MatchPoint utilities and algorithms
· MITK_INSTALL_TARGETS(EXECUTABLES)
· CMake/mitkFunctionCreateBlueBerryApplication.cmake
· Modules/Classification/CLMiniApps/CMakeLists.txt
· MITK_INSTALL(TARGETS)
· CMake/mitkFunctionCreateMatchPointDeployedAlgorithm.cmake
· MITK_INSTALL(FILES)
· CMake/mitkFunctionInstallProvisioningFiles.cmake
· CMake/MITKIGTHardware.cmake (SDKs)
· CMake/mitkToFHardwareInstallRules.cmake (SDKs)
· Modules/IGT/CMakeLists.txt (STL files)
· Plugins/org.mitk.gui.qt.xnat/CMakeLists.txt (SSL)
· MITK_INSTALL_HELPER_APP(EXECUTABLES)
· Plugins/org.mit.gui.qt.dicom/CMakeLists.txt (storescp)


Install functions and macros
mitkFunctionInstallAutoloadModules(<destination> <plugins…>)
Called in mitkFunctionCreateBlueBerryApplication() via BlueBerryApplicationInstallHook(). Uses the MITK_AUTOLOAD_TARGETS target property of the passed plugins to install auto-load dependencies in the corresponding subfolder.
mitkFunctionInstallCTKPlugin([plugins])
Called in mitkFunctionInstallThirdPartyCTKPlugins(). See below.
mitkFunctionInstallThirdPartyCTKPlugins([plugins…])
Install given plugins (or all if no plugins given) into all macOS bundles (MACOSX_BUNDLE_NAMES) or bin/plugins in Linux and Windows. Includes ctkMacroGetAllNonProjectTargetLibraries(). Actual installation is done in mitkFunctionInstallCTKPlugin().
mitkFunctionInstallExternalCMakeProject(<ep_name>)
Not used for packaging. Invokes <BINARY_DIR>/cmake_install.cmake of an external project during installation (via install(SCRIPT)).
mitkFunctionInstallProvisioningFiles(<files...>)
Called in mitkFunctionCreateBlueBerryApplication(). For each provisioning file (filled with mitkFunctionCreateProvisioningFile()) call MITK_INSTALL() for the .provisioning.install variant and remove the .install extension at the destination. The paths in the .provisioning.install file are relative to the BlueBerry application executable (@EXECUTABLE_DIR/plugins/…).
mitkMacroInstall(…)
Wrapper for install() that determines DESTINATION. On macOS call install() for each bundle (MACOSX_BUNDLE_NAMES) to install into <bundle>.app/Contents/MacOS. Install into bin on other platforms. A subfolder can be set with set(_install_DESTINATION …).
mitkMacroInstallHelperApp(<targets>)
[bookmark: _GoBack]Basically a wrapper around install(PROGRAMS) and install(CODE) to call file(RPATH_REMOVE) on Linux for each helper app. Also, _fixup_target() is called for each target and a qt.conf file is written just like in mitkMacroInstallTargets() (see below).
mitkMacroInstallTargets([executables])
For each executable call install(TARGETS … [BUNDLE|RUNTIME]) for each bundle and install a qt.conf with install(CODE) that set the Prefix in the Paths section to either “.” or “./MacOS” on macOS. _fixup_target() is also called for each target.
FixupBundle
_fixup_target()
Defined in CMake/mitkMacroInstall.cmake. 
