diff --git a/tests/testthat/test-aggregateThenRank.R b/tests/testthat/test-aggregateThenRank.R index 13ec73c..786d5bb 100644 --- a/tests/testthat/test-aggregateThenRank.R +++ b/tests/testthat/test-aggregateThenRank.R @@ -1,364 +1,364 @@ # Copyright (c) German Cancer Research Center (DKFZ) # All rights reserved. # # This file is part of challengeR. # # challengeR is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # challengeR is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with challengeR. If not, see <https://www.gnu.org/licenses/>. test_that("aggregate-then-rank by mean works with two algorithms for one case, small values are better", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.8, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%aggregateThenRank(FUN = mean) expectedRanking <- rbind( "A1" = data.frame(value_mean = 0.6, rank = 1), "A2" = data.frame(value_mean = 0.8, rank = 2)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("aggregate-then-rank by mean works with two algorithms (reverse order) for one case, small values are better", { data <- rbind( data.frame(algo = "A2", value = 0.8, case = "C1"), data.frame(algo = "A1", value = 0.6, case = "C1")) challenge <- as.challenge(data, taskName="T1", algorithm = "algo", case = "case", value = "value", smallBetter = TRUE) ranking <- challenge%>%aggregateThenRank(FUN = mean) expectedRanking <- rbind("A2" = data.frame(value_mean = 0.8, rank = 2), "A1" = data.frame(value_mean = 0.6, rank = 1)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("aggregate-then-rank by mean works with two algorithms for one case, large values are better", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.8, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = FALSE) ranking <- challenge%>%aggregateThenRank(FUN = mean) expectedRanking <- rbind( "A1" = data.frame(value_mean = 0.6, rank = 2), "A2" = data.frame(value_mean = 0.8, rank = 1)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("aggregate-then-rank by mean works with two algorithms (reverse order) for one case, large values are better", { data <- rbind( data.frame(algo = "A2", value = 0.8, case = "C1"), data.frame(algo = "A1", value = 0.6, case = "C1")) challenge <- as.challenge(data, taskName="T1", algorithm = "algo", case = "case", value = "value", smallBetter = FALSE) ranking <- challenge%>%aggregateThenRank(FUN = mean) expectedRanking <- rbind("A2" = data.frame(value_mean = 0.8, rank = 1), "A1" = data.frame(value_mean = 0.6, rank = 2)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("aggregate-then-rank raises error for invalid aggregation function", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.6, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) expect_error(challenge%>%aggregateThenRank(FUN = meanx), "object 'meanx' not found", fixed = TRUE) }) test_that("aggregate-then-rank by mean works with two algorithms for one case and 'min' as ties method", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.6, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%aggregateThenRank(FUN = mean, ties.method = "min") expectedRanking <- rbind( "A1" = data.frame(value_mean = 0.6, rank = 1), "A2" = data.frame(value_mean = 0.6, rank = 1)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("aggregate-then-rank by mean works with two algorithms for one case and 'max' as ties method", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.6, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%aggregateThenRank(FUN = mean, ties.method = "max") expectedRanking <- rbind( "A1" = data.frame(value_mean = 0.6, rank = 2), "A2" = data.frame(value_mean = 0.6, rank = 2)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("aggregate-then-rank raises error for invalid ties method", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.6, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) expect_error(challenge%>%aggregateThenRank(FUN = mean, ties.method = "maxx"), - "'arg' should be one of \"average\", \"first\", \"last\", \"random\", \"max\", \"min\"", fixed = TRUE) + "'arg' should be one of", fixed = TRUE) }) test_that("aggregate-then-rank raises error for invalid ties method even when no ties present", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.8, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) expect_error(challenge%>%aggregateThenRank(FUN = mean, ties.method = "maxx"), - "'arg' should be one of \"average\", \"first\", \"last\", \"random\", \"max\", \"min\"", fixed = TRUE) + "'arg' should be one of", fixed = TRUE) }) test_that("aggregate-then-rank by mean works with two algorithms for two cases", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A1", value=0.4, case="C2"), data.frame(algo="A2", value=0.8, case="C1"), data.frame(algo="A2", value=1.0, case="C2")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%aggregateThenRank(FUN = mean) expectedRanking <- rbind( "A1" = data.frame(value_mean = 0.5, rank = 1), "A2" = data.frame(value_mean = 0.9, rank = 2)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("aggregate-then-rank by median works with two algorithms for two cases", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A1", value=0.4, case="C2"), data.frame(algo="A2", value=0.8, case="C1"), data.frame(algo="A2", value=1.0, case="C2")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%aggregateThenRank(FUN = median) expectedRanking <- rbind( "A1" = data.frame(value_median = 0.5, rank = 1), "A2" = data.frame(value_median = 0.9, rank = 2)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("aggregate-then-rank by mean works with one algorithm for one case", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%aggregateThenRank(FUN = mean) expectedRanking <- rbind( "A1" = data.frame(value_mean = 0.6, rank = 1)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("aggregate-then-rank raises error when no NA treatment specified but NAs are contained", { data <- rbind( data.frame(algo="A1", value=NA, case="C1"), data.frame(algo="A2", value=0.8, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = FALSE) expect_error(challenge%>%aggregateThenRank(FUN = mean), "argument \"na.treat\" is missing, with no default", fixed = TRUE) }) test_that("aggregate-then-rank raises error when invalid NA treatment specified and NAs are contained", { data <- rbind( data.frame(algo="A1", value=NA, case="C1"), data.frame(algo="A2", value=0.8, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = FALSE) expect_error(challenge%>%aggregateThenRank(FUN = mean, na.treat = "na.rmx"), "Argument 'na.treat' is invalid. It can be 'na.rm', numeric value or function.", fixed = TRUE) }) test_that("specified NA treatment does not influence ranking when no NAs are contained", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.8, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = FALSE) ranking <- challenge%>%aggregateThenRank(FUN = mean, na.treat = 0) expectedRanking <- rbind( "A1" = data.frame(value_mean = 0.6, rank = 2), "A2" = data.frame(value_mean = 0.8, rank = 1)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("NAs are replaced by numeric value", { data <- rbind( data.frame(algo="A1", value=NA, case="C1"), data.frame(algo="A2", value=0.8, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = FALSE) ranking <- challenge%>%aggregateThenRank(FUN = mean, na.treat = 0) expectedRanking <- rbind( "A1" = data.frame(value_mean = 0.0, rank = 2), "A2" = data.frame(value_mean = 0.8, rank = 1)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("NAs are replaced by function value", { data <- rbind( data.frame(algo="A1", value=NA, case="C1"), data.frame(algo="A2", value=0.8, case="C1")) replacementFunction <- function(x) { -1 } challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = FALSE) ranking <- challenge%>%aggregateThenRank(FUN = mean, na.treat = replacementFunction) expectedRanking <- rbind( "A1" = data.frame(value_mean = -1.0, rank = 2), "A2" = data.frame(value_mean = 0.8, rank = 1)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("NAs are removed", { data <- rbind( data.frame(algo="A1", value=NA, case="C1"), data.frame(algo="A2", value=0.8, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = FALSE) ranking <- challenge%>%aggregateThenRank(FUN = mean, na.treat = "na.rm") expectedRanking <- rbind( "A2" = data.frame(value_mean = 0.8, rank = 1)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("aggregate-then-rank by mean works for multi-task challenge (2 tasks in data set), no missing data", { dataTask1 <- cbind(task="T1", rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.8, case="C1") )) dataTask2 <- cbind(task="T2", rbind( data.frame(algo="A1", value=0.5, case="C1"), data.frame(algo="A2", value=0.4, case="C1") )) data <- rbind(dataTask1, dataTask2) challenge <- as.challenge(data, by="task", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%aggregateThenRank(FUN = mean) expectedRankingTask1 <- rbind( "A1" = data.frame(value_mean = 0.6, rank = 1), "A2" = data.frame(value_mean = 0.8, rank = 2)) expectedRankingTask2 <- rbind( "A1" = data.frame(value_mean = 0.5, rank = 2), "A2" = data.frame(value_mean = 0.4, rank = 1)) expect_equal(ranking$matlist$T1, expectedRankingTask1) expect_equal(ranking$matlist$T2, expectedRankingTask2) }) test_that("NAs are replaced by numeric value in multi-task challenge (2 tasks in data set)", { dataTask1 <- cbind(task="T1", rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.8, case="C1") )) dataTask2 <- cbind(task="T2", rbind( data.frame(algo="A1", value=NA, case="C1"), data.frame(algo="A2", value=0.4, case="C1") )) data <- rbind(dataTask1, dataTask2) challenge <- as.challenge(data, by="task", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%aggregateThenRank(FUN = mean, na.treat = 100) expectedRankingTask1 <- rbind( "A1" = data.frame(value_mean = 0.6, rank = 1), "A2" = data.frame(value_mean = 0.8, rank = 2)) expectedRankingTask2 <- rbind( "A1" = data.frame(value_mean = 100.0, rank = 2), "A2" = data.frame(value_mean = 0.4, rank = 1)) expect_equal(ranking$matlist$T1, expectedRankingTask1) expect_equal(ranking$matlist$T2, expectedRankingTask2) }) test_that("aggregate-then-rank raises error when no NA treatment specified but NAs are contained in multi-task challenge (2 tasks in data set)", { dataTask1 <- cbind(task="T1", rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.8, case="C1") )) dataTask2 <- cbind(task="T2", rbind( data.frame(algo="A1", value=NA, case="C1"), data.frame(algo="A2", value=0.4, case="C1") )) data <- rbind(dataTask1, dataTask2) challenge <- as.challenge(data, by="task", algorithm="algo", case="case", value="value", smallBetter = TRUE) expect_error(challenge%>%aggregateThenRank(FUN = mean), "argument \"na.treat\" is missing, with no default", fixed = TRUE) }) diff --git a/tests/testthat/test-rankThenAggregate.R b/tests/testthat/test-rankThenAggregate.R index b9e572a..9ffd471 100644 --- a/tests/testthat/test-rankThenAggregate.R +++ b/tests/testthat/test-rankThenAggregate.R @@ -1,304 +1,304 @@ # Copyright (c) German Cancer Research Center (DKFZ) # All rights reserved. # # This file is part of challengeR. # # challengeR is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # challengeR is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with challengeR. If not, see <https://www.gnu.org/licenses/>. test_that("rank-then-aggregate by mean works with two algorithms for one case, small values are better", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.8, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%rankThenAggregate(FUN = mean) expectedRanking <- rbind( "A1" = data.frame(rank_mean = 1, rank = 1), "A2" = data.frame(rank_mean = 2, rank = 2)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("rank-then-aggregate by mean works with two algorithms (reverse order) for one case, small values are better", { data <- rbind( data.frame(algo = "A2", value = 0.8, case = "C1"), data.frame(algo = "A1", value = 0.6, case = "C1")) challenge <- as.challenge(data, taskName="T1", algorithm = "algo", case = "case", value = "value", smallBetter = TRUE) ranking <- challenge%>%rankThenAggregate(FUN = mean) expectedRanking <- rbind("A2" = data.frame(rank_mean = 2, rank = 2), "A1" = data.frame(rank_mean = 1, rank = 1)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("rank-then-aggregate by mean works with two algorithms for one case, large values are better", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.8, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = FALSE) ranking <- challenge%>%rankThenAggregate(FUN = mean) expectedRanking <- rbind( "A1" = data.frame(rank_mean = 2, rank = 2), "A2" = data.frame(rank_mean = 1, rank = 1)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("rank-then-aggregate by mean works with two algorithms (reverse order) for one case, large values are better", { data <- rbind( data.frame(algo = "A2", value = 0.8, case = "C1"), data.frame(algo = "A1", value = 0.6, case = "C1")) challenge <- as.challenge(data, taskName="T1", algorithm = "algo", case = "case", value = "value", smallBetter = FALSE) ranking <- challenge%>%rankThenAggregate(FUN = mean) expectedRanking <- rbind("A2" = data.frame(rank_mean = 1, rank = 1), "A1" = data.frame(rank_mean = 2, rank = 2)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("rank-then-aggregate raises error for invalid aggregation function", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.6, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) expect_error(challenge%>%rankThenAggregate(FUN = meanx), "object 'meanx' not found", fixed = TRUE) }) test_that("rank-then-aggregate by mean works with two algorithms for one case and 'min' as ties method", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.6, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%rankThenAggregate(FUN = mean, ties.method = "min") expectedRanking <- rbind( "A1" = data.frame(rank_mean = 1, rank = 1), "A2" = data.frame(rank_mean = 1, rank = 1)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("rank-then-aggregate by mean works with two algorithms for one case and 'max' as ties method", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.6, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%rankThenAggregate(FUN = mean, ties.method = "max") expectedRanking <- rbind( "A1" = data.frame(rank_mean = 2, rank = 2), "A2" = data.frame(rank_mean = 2, rank = 2)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("rank-then-aggregate raises error for invalid ties method", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.6, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) expect_error(challenge%>%rankThenAggregate(FUN = mean, ties.method = "maxx"), - "'arg' should be one of \"average\", \"first\", \"last\", \"random\", \"max\", \"min\"", fixed = TRUE) + "'arg' should be one of", fixed = TRUE) }) test_that("rank-then-aggregate raises error for invalid ties method even when no ties present", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.8, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) expect_error(challenge%>%rankThenAggregate(FUN = mean, ties.method = "maxx"), - "'arg' should be one of \"average\", \"first\", \"last\", \"random\", \"max\", \"min\"", fixed = TRUE) + "'arg' should be one of", fixed = TRUE) }) test_that("rank-then-aggregate by mean works with two algorithms for two cases", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A1", value=0.4, case="C2"), data.frame(algo="A2", value=0.8, case="C1"), data.frame(algo="A2", value=1.0, case="C2")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%rankThenAggregate(FUN = mean) expectedRanking <- rbind( "A1" = data.frame(rank_mean = 1, rank = 1), "A2" = data.frame(rank_mean = 2, rank = 2)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("rank-then-aggregate by median works with two algorithms for two cases", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A1", value=0.4, case="C2"), data.frame(algo="A2", value=0.8, case="C1"), data.frame(algo="A2", value=1.0, case="C2")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%rankThenAggregate(FUN = median) expectedRanking <- rbind( "A1" = data.frame(rank_median = 1, rank = 1), "A2" = data.frame(rank_median = 2, rank = 2)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("rank-then-aggregate by mean works with one algorithm for one case", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%rankThenAggregate(FUN = mean) expectedRanking <- rbind( "A1" = data.frame(rank_mean = 1, rank = 1)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("rank-then-aggregate assigns worst rank for NA", { data <- rbind( data.frame(algo="A1", value=NA, case="C1"), data.frame(algo="A2", value=0.8, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = FALSE) ranking <- challenge%>%rankThenAggregate(FUN = mean) expectedRanking <- rbind( "A1" = data.frame(rank_mean = 2, rank = 2), "A2" = data.frame(rank_mean = 1, rank = 1)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("rank-then-aggregate raises error for unused NA treatment argument", { data <- rbind( data.frame(algo="A1", value=NA, case="C1"), data.frame(algo="A2", value=0.8, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = FALSE) expect_error(challenge%>%rankThenAggregate(FUN = mean, na.treat = 0), "unused argument (na.treat = 0)", fixed = TRUE) }) test_that("rank-then-aggregate by mean works for multi-task challenge (2 tasks in data set), no missing data", { dataTask1 <- cbind(task="T1", rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.8, case="C1") )) dataTask2 <- cbind(task="T2", rbind( data.frame(algo="A1", value=0.5, case="C1"), data.frame(algo="A2", value=0.4, case="C1") )) data <- rbind(dataTask1, dataTask2) challenge <- as.challenge(data, by="task", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%rankThenAggregate(FUN = mean) expectedRankingTask1 <- rbind( "A1" = data.frame(rank_mean = 1, rank = 1), "A2" = data.frame(rank_mean = 2, rank = 2)) expectedRankingTask2 <- rbind( "A1" = data.frame(rank_mean = 2, rank = 2), "A2" = data.frame(rank_mean = 1, rank = 1)) expect_equal(ranking$matlist$T1, expectedRankingTask1) expect_equal(ranking$matlist$T2, expectedRankingTask2) }) test_that("rank-then-aggregate assigns worst rank for NA in multi-task challenge (2 tasks in data set)", { dataTask1 <- cbind(task="T1", rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.8, case="C1") )) dataTask2 <- cbind(task="T2", rbind( data.frame(algo="A1", value=NA, case="C1"), data.frame(algo="A2", value=0.4, case="C1") )) data <- rbind(dataTask1, dataTask2) challenge <- as.challenge(data, by="task", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%rankThenAggregate(FUN = mean) expectedRankingTask1 <- rbind( "A1" = data.frame(rank_mean = 1, rank = 1), "A2" = data.frame(rank_mean = 2, rank = 2)) expectedRankingTask2 <- rbind( "A1" = data.frame(rank_mean = 2, rank = 2), "A2" = data.frame(rank_mean = 1, rank = 1)) expect_equal(ranking$matlist$T1, expectedRankingTask1) expect_equal(ranking$matlist$T2, expectedRankingTask2) }) test_that("rank-then-aggregate raises error for unused NA treatment argument in multi-task challenge (2 tasks in data set)", { dataTask1 <- cbind(task="T1", rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.8, case="C1") )) dataTask2 <- cbind(task="T2", rbind( data.frame(algo="A1", value=NA, case="C1"), data.frame(algo="A2", value=0.4, case="C1") )) data <- rbind(dataTask1, dataTask2) challenge <- as.challenge(data, by="task", algorithm="algo", case="case", value="value", smallBetter = TRUE) expect_error(challenge%>%rankThenAggregate(FUN = mean, na.treat = "na.rm"), "unused argument (na.treat = \"na.rm\")", fixed = TRUE) }) diff --git a/tests/testthat/test-testThenRank.R b/tests/testthat/test-testThenRank.R index 2b0866e..c2a037f 100644 --- a/tests/testthat/test-testThenRank.R +++ b/tests/testthat/test-testThenRank.R @@ -1,364 +1,364 @@ # Copyright (c) German Cancer Research Center (DKFZ) # All rights reserved. # # This file is part of challengeR. # # challengeR is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # challengeR is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with challengeR. If not, see <https://www.gnu.org/licenses/>. test_that("test-then-rank raises warning for one case", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A2", value=0.8, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) expect_warning(ranking <- challenge%>%testThenRank(), "Only one case in task.", fixed = TRUE) expectedRanking <- rbind( "A1" = data.frame(prop_significance = 0, rank = 1), "A2" = data.frame(prop_significance = 0, rank = 1)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("test-then-rank raises warning for one algorithm", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) expect_warning(ranking <- challenge%>%testThenRank(), "Only one algorithm available in task 'T1'.", fixed = TRUE) }) test_that("test-then-rank works with two algorithms, small values are better", { data <- rbind( data.frame(algo="A1", value=0.2, case="C1"), data.frame(algo="A1", value=0.2, case="C2"), data.frame(algo="A1", value=0.2, case="C3"), data.frame(algo="A1", value=0.2, case="C4"), data.frame(algo="A2", value=1.0, case="C1"), data.frame(algo="A2", value=1.0, case="C2"), data.frame(algo="A2", value=1.0, case="C3"), data.frame(algo="A2", value=1.0, case="C4")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%testThenRank() expectedRanking <- rbind( "A1" = data.frame(prop_significance = 1, rank = 1), "A2" = data.frame(prop_significance = 0, rank = 2)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("test-then-rank works with two algorithms, large values are better", { data <- rbind( data.frame(algo="A1", value=0.2, case="C1"), data.frame(algo="A1", value=0.2, case="C2"), data.frame(algo="A1", value=0.2, case="C3"), data.frame(algo="A1", value=0.2, case="C4"), data.frame(algo="A2", value=1.0, case="C1"), data.frame(algo="A2", value=1.0, case="C2"), data.frame(algo="A2", value=1.0, case="C3"), data.frame(algo="A2", value=1.0, case="C4")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = FALSE) ranking <- challenge%>%testThenRank() expectedRanking <- rbind( "A1" = data.frame(prop_significance = 0, rank = 2), "A2" = data.frame(prop_significance = 1, rank = 1)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("test-then-rank works for ties method 'max'", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A1", value=0.6, case="C2"), data.frame(algo="A2", value=0.8, case="C1"), data.frame(algo="A2", value=0.8, case="C2")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%testThenRank(ties.method = "max") expectedRanking <- rbind( "A1" = data.frame(prop_significance = 0, rank = 2), "A2" = data.frame(prop_significance = 0, rank = 2)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("test-then-rank raises error for invalid ties method", { data <- rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A1", value=0.6, case="C2"), data.frame(algo="A2", value=0.8, case="C1"), data.frame(algo="A2", value=0.8, case="C2")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) expect_error(challenge%>%testThenRank(ties.method = "maxx"), - "'arg' should be one of \"average\", \"first\", \"last\", \"random\", \"max\", \"min\"", fixed = TRUE) + "'arg' should be one of", fixed = TRUE) }) test_that("test-then-rank raises error for invalid ties method even when no ties present", { data <- rbind( data.frame(algo="A1", value=0.2, case="C1"), data.frame(algo="A1", value=0.2, case="C2"), data.frame(algo="A1", value=0.2, case="C3"), data.frame(algo="A1", value=0.2, case="C4"), data.frame(algo="A2", value=1.0, case="C1"), data.frame(algo="A2", value=1.0, case="C2"), data.frame(algo="A2", value=1.0, case="C3"), data.frame(algo="A2", value=1.0, case="C4")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) expect_error(challenge%>%testThenRank(ties.method = "maxx"), - "'arg' should be one of \"average\", \"first\", \"last\", \"random\", \"max\", \"min\"", fixed = TRUE) + "'arg' should be one of", fixed = TRUE) }) test_that("test-then-rank raises error when no NA treatment specified but NAs are contained", { data <- rbind( data.frame(algo="A1", value=NA, case="C1"), data.frame(algo="A1", value=0.2, case="C2"), data.frame(algo="A1", value=0.2, case="C3"), data.frame(algo="A1", value=0.2, case="C4"), data.frame(algo="A2", value=1.0, case="C1"), data.frame(algo="A2", value=1.0, case="C2"), data.frame(algo="A2", value=1.0, case="C3"), data.frame(algo="A2", value=1.0, case="C4")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) expect_error(challenge%>%testThenRank(), "argument \"na.treat\" is missing, with no default", fixed = TRUE) }) test_that("test-then-rank raises error when invalid NA treatment specified and NAs are contained", { data <- rbind( data.frame(algo="A1", value=NA, case="C1"), data.frame(algo="A1", value=0.2, case="C2"), data.frame(algo="A1", value=0.2, case="C3"), data.frame(algo="A1", value=0.2, case="C4"), data.frame(algo="A2", value=1.0, case="C1"), data.frame(algo="A2", value=1.0, case="C2"), data.frame(algo="A2", value=1.0, case="C3"), data.frame(algo="A2", value=1.0, case="C4")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) expect_error(challenge%>%testThenRank(na.treat = "na.rmx"), "Argument 'na.treat' is invalid. It can be 'na.rm', numeric value or function.", fixed = TRUE) }) test_that("specified NA treatment does not influence ranking when no NAs are contained", { data <- rbind( data.frame(algo="A1", value=0.2, case="C1"), data.frame(algo="A1", value=0.2, case="C2"), data.frame(algo="A1", value=0.2, case="C3"), data.frame(algo="A1", value=0.2, case="C4"), data.frame(algo="A2", value=1.0, case="C1"), data.frame(algo="A2", value=1.0, case="C2"), data.frame(algo="A2", value=1.0, case="C3"), data.frame(algo="A2", value=1.0, case="C4")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%testThenRank(na.treat = 0) expectedRanking <- rbind( "A1" = data.frame(prop_significance = 1, rank = 1), "A2" = data.frame(prop_significance = 0, rank = 2)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("NAs are replaced by numeric value", { data <- rbind( data.frame(algo="A1", value=NA, case="C1"), data.frame(algo="A1", value=0.2, case="C2"), data.frame(algo="A1", value=0.2, case="C3"), data.frame(algo="A1", value=0.2, case="C4"), data.frame(algo="A2", value=1.0, case="C1"), data.frame(algo="A2", value=1.0, case="C2"), data.frame(algo="A2", value=1.0, case="C3"), data.frame(algo="A2", value=1.0, case="C4")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%testThenRank(na.treat = 100.0) expectedRanking <- rbind( "A1" = data.frame(prop_significance = 0, rank = 1), "A2" = data.frame(prop_significance = 0, rank = 1)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("NAs are replaced by function value", { data <- rbind( data.frame(algo="A1", value=NA, case="C1"), data.frame(algo="A1", value=0.2, case="C2"), data.frame(algo="A1", value=0.2, case="C3"), data.frame(algo="A1", value=0.2, case="C4"), data.frame(algo="A2", value=1.0, case="C1"), data.frame(algo="A2", value=1.0, case="C2"), data.frame(algo="A2", value=1.0, case="C3"), data.frame(algo="A2", value=1.0, case="C4")) replacementFunction <- function(x) { 0.0 } challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%testThenRank(na.treat = replacementFunction) expectedRanking <- rbind( "A1" = data.frame(prop_significance = 1, rank = 1), "A2" = data.frame(prop_significance = 0, rank = 2)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("NAs are removed", { data <- rbind( data.frame(algo="A1", value=NA, case="C1"), data.frame(algo="A1", value=0.2, case="C2"), data.frame(algo="A1", value=0.2, case="C3"), data.frame(algo="A1", value=0.2, case="C4"), data.frame(algo="A2", value=1.0, case="C1"), data.frame(algo="A2", value=1.0, case="C2"), data.frame(algo="A2", value=1.0, case="C3"), data.frame(algo="A2", value=1.0, case="C4")) challenge <- as.challenge(data, taskName="T1", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%testThenRank(na.treat = "na.rm") expectedRanking <- rbind( "A1" = data.frame(prop_significance = 0, rank = 1), "A2" = data.frame(prop_significance = 0, rank = 1)) expect_equal(ranking$matlist$T1, expectedRanking) }) test_that("test-then-rank works for multi-task data set with no missing data", { dataTask1 <- cbind(task="T1", rbind( data.frame(algo="A1", value=0.2, case="C1"), data.frame(algo="A1", value=0.2, case="C2"), data.frame(algo="A1", value=0.2, case="C3"), data.frame(algo="A1", value=0.2, case="C4"), data.frame(algo="A2", value=1.0, case="C1"), data.frame(algo="A2", value=1.0, case="C2"), data.frame(algo="A2", value=1.0, case="C3"), data.frame(algo="A2", value=1.0, case="C4") )) dataTask2 <- cbind(task="T2", rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A1", value=0.6, case="C2"), data.frame(algo="A2", value=0.8, case="C1"), data.frame(algo="A2", value=0.8, case="C2") )) data <- rbind(dataTask1, dataTask2) challenge <- as.challenge(data, by="task", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%testThenRank() expectedRankingTask1 <- rbind( "A1" = data.frame(prop_significance = 1, rank = 1), "A2" = data.frame(prop_significance = 0, rank = 2)) expectedRankingTask2 <- rbind( "A1" = data.frame(prop_significance = 0, rank = 1), "A2" = data.frame(prop_significance = 0, rank = 1)) expect_equal(ranking$matlist$T1, expectedRankingTask1) expect_equal(ranking$matlist$T2, expectedRankingTask2) }) test_that("NAs are replaced by numeric value in multi-task data set", { dataTask1 <- cbind(task="T1", rbind( data.frame(algo="A1", value=NA, case="C1"), data.frame(algo="A1", value=0.2, case="C2"), data.frame(algo="A1", value=0.2, case="C3"), data.frame(algo="A1", value=0.2, case="C4"), data.frame(algo="A2", value=1.0, case="C1"), data.frame(algo="A2", value=1.0, case="C2"), data.frame(algo="A2", value=1.0, case="C3"), data.frame(algo="A2", value=1.0, case="C4") )) dataTask2 <- cbind(task="T2", rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A1", value=0.6, case="C2"), data.frame(algo="A2", value=0.8, case="C1"), data.frame(algo="A2", value=0.8, case="C2") )) data <- rbind(dataTask1, dataTask2) challenge <- as.challenge(data, by="task", algorithm="algo", case="case", value="value", smallBetter = TRUE) ranking <- challenge%>%testThenRank(na.treat = 0) expectedRankingTask1 <- rbind( "A1" = data.frame(prop_significance = 1, rank = 1), "A2" = data.frame(prop_significance = 0, rank = 2)) expectedRankingTask2 <- rbind( "A1" = data.frame(prop_significance = 0, rank = 1), "A2" = data.frame(prop_significance = 0, rank = 1)) expect_equal(ranking$matlist$T1, expectedRankingTask1) expect_equal(ranking$matlist$T2, expectedRankingTask2) }) test_that("test-then-rank raises error when no NA treatment specified but NAs are contained in multi-task data set", { dataTask1 <- cbind(task="T1", rbind( data.frame(algo="A1", value=0.2, case="C1"), data.frame(algo="A1", value=0.2, case="C2"), data.frame(algo="A1", value=0.2, case="C3"), data.frame(algo="A1", value=0.2, case="C4"), data.frame(algo="A2", value=1.0, case="C1"), data.frame(algo="A2", value=1.0, case="C2"), data.frame(algo="A2", value=1.0, case="C3"), data.frame(algo="A2", value=1.0, case="C4") )) dataTask2 <- cbind(task="T2", rbind( data.frame(algo="A1", value=0.6, case="C1"), data.frame(algo="A1", value=0.6, case="C2"), data.frame(algo="A2", value=NA, case="C1"), data.frame(algo="A2", value=0.8, case="C2") )) data <- rbind(dataTask1, dataTask2) challenge <- as.challenge(data, by="task", algorithm="algo", case="case", value="value", smallBetter = TRUE) expect_error(challenge%>%testThenRank(), "argument \"na.treat\" is missing, with no default", fixed = TRUE) })