diff --git a/R/stability.R b/R/stability.R index c2d8b16..983ccde 100644 --- a/R/stability.R +++ b/R/stability.R @@ -1,416 +1,416 @@ # Copyright (c) German Cancer Research Center (DKFZ) # All rights reserved. # # This file is part of challengeR. # # challengeR is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # challengeR is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with challengeR. If not, see <https://www.gnu.org/licenses/>. #' @export stability <- function(x,...) UseMethod("stability") #' @export stability.default <- function(x, ...) stop("not implemented for this class") #' @export stabilityByAlgorithm <- function(x,...) UseMethod("stabilityByAlgorithm") #' @export stabilityByAlgorithm.default <- function(x, ...) stop("not implemented for this class") #' @export stabilityByTask <- function(x,...) UseMethod("stabilityByTask") #' @export stabilityByTask.default <- function(x, ...) stop("not implemented for this class") #' Creates a blob plot across tasks #' #' Creates a blob plots visualizing the ranking variability across tasks. #' #' @param x The ranked asssessment data set. #' @param ordering #' @param probs #' @param max_size #' @param freq #' @param shape #' @param ... Further arguments passed to or from other functions. #' #' @return #' #' @examples #' #' @seealso `browseVignettes("challengeR")` #' #' @family functions to visualize cross-task insights #' @export stability.ranked.list=function(x, ordering, probs=c(.025,.975), max_size=6, freq=FALSE, shape=4,...) { if (length(x$data) < 2) { stop("The stability of rankings across tasks cannot be computed for less than two tasks.") } dd=melt(x, measure.vars="rank", value.name="rank") %>% dplyr::rename(task="L1") if (!missing(ordering)) { if (is.numeric(ordering) & !is.null(names(ordering)) ){ ordering <- names(ordering)[order(ordering)] } else if (!is.character(ordering)){ stop("Argument ordering has to be a named vector of ranks or a vector of algorithm names in the ranking order.") } dd=dd%>%mutate(algorithm=factor(.data$algorithm, levels=ordering)) } else dd=dd%>%mutate(algorithm=factor(.data$algorithm)) if (!freq) { p = ggplot(dd)+ geom_count(aes(algorithm, rank, color=algorithm, size = stat(prop*100))) } else { p=ggplot(dd)+ geom_count(aes(algorithm, rank, color=algorithm )) } p+scale_size_area(max_size = max_size)+ stat_summary(aes(algorithm, rank), geom="point", shape=shape, fun.data=function(x) data.frame(y=median(x)),...)+ stat_summary(aes(algorithm, rank), geom="linerange", fun.data=function(x) data.frame(ymin=quantile(x,probs[1]), ymax=quantile(x,probs[2])))+ geom_abline(slope=1, color="gray", linetype="dotted")+ theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))+ guides(size = guide_legend(title="%"))+ scale_y_continuous(minor_breaks=NULL, limits=c(1,max(5,max(dd$rank))), breaks=c(1,seq(5,max(5,max(dd$rank)),by=5)))+ xlab("Algorithm")+ ylab("Rank") } rankdist.bootstrap.list=function(x,...){ rankDist=melt(lapply(x$bootsrappedRanks,t), value.name="rank") %>% dplyr::rename(algorithm="Var2",task="L1") rankDist } #' Creates blob plots or stacked frequency plots stratified by algorithm #' #' Creates blob plots (\code{stacked = FALSE}) or stacked frequency plots (\code{stacked = TRUE}) for each algorithm #' from a bootstrapped, ranked assessment data set. #' #' @param x The bootstrapped, ranked assessment data set. #' @param ordering #' @param stacked A boolean specifying whether a stacked frequency plot (\code{stacked = TRUE}) or blob plot (\code{stacked = FALSE}) should be created. #' @param probs #' @param max_size #' @param shape #' @param freq #' @param single #' @param ... Further arguments passed to or from other functions. #' #' @return #' #' @examples #' #' @seealso `browseVignettes("challengeR")` #' #' @family functions to visualize cross-task insights #' @export stabilityByAlgorithm.bootstrap.list=function(x, ordering, stacked = FALSE, probs=c(.025,.975),#only for !stacked max_size=3,#only for !stacked shape=4,#only for !stacked freq=FALSE, #only for stacked single=FALSE,...) { if (length(x$data) < 2) { stop("The stability of rankings by algorithm cannot be computed for less than two tasks.") } rankDist=rankdist.bootstrap.list(x) if (!missing(ordering)) { if (is.numeric(ordering) & !is.null(names(ordering)) ){ ordering <- names(ordering)[order(ordering)] } else if (!is.character(ordering)){ stop("Argument ordering has to be a named vector of ranks or a vector of algorithm names in the ranking order.") } rankDist=rankDist%>%mutate(algorithm=factor(.data$algorithm, levels=ordering)) } if (!stacked){ if (single==FALSE){ pl <- ggplot(rankDist)+ geom_count(aes(task , rank, color=algorithm, size = stat(prop*100), group = task ))+ scale_size_area(max_size = max_size)+ stat_summary(aes(task ,rank ), geom="point", shape=shape, fun.data=function(x) data.frame(y=median(x)),...)+ stat_summary(aes(task ,rank ), geom="linerange", fun.data=function(x) data.frame(ymin=quantile(x,probs[1]), ymax=quantile(x,probs[2])))+ facet_wrap(vars(algorithm))+ theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))+ guides(size = guide_legend(title="%"))+ scale_y_continuous(minor_breaks=NULL, limits=c(1,max(5,max(rankDist$rank))), breaks=c(1,seq(5,max(5,max(rankDist$rank)),by=5)))+ xlab("Task")+ ylab("Rank") } else { pl=list() for (alg in ordering){ rankDist.alg=subset(rankDist, rankDist$algorithm==alg) pl[[alg]]=ggplot(rankDist.alg)+ geom_count(aes(task , rank, color=algorithm, size = stat(prop*100), group = task ))+ scale_size_area(max_size = max_size)+ stat_summary(aes(task , rank ), geom="point", shape=shape, fun.data=function(x) data.frame(y=median(x)),...)+ stat_summary(aes(task ,rank ), geom="linerange", fun.data=function(x) data.frame(ymin=quantile(x,probs[1]), ymax=quantile(x,probs[2])))+ facet_wrap(vars(algorithm))+ theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))+ guides(size = guide_legend(title="%"))+ scale_y_continuous(minor_breaks=NULL, limits=c(1,max(5,max(rankDist$rank))), breaks=c(1,seq(5,max(5,max(rankDist$rank)),by=5)))+ xlab("Task")+ ylab("Rank") } - names(pl) = names(x$matlist) + names(pl) = ordering class(pl) <- "ggList" } } else { #stacked rankDist=rankDist%>% group_by(task)%>% dplyr::count(.data$algorithm, .data$rank)%>% group_by(.data$algorithm)%>% mutate(prop=.data$n/sum(.data$n)*100)%>% ungroup%>% data.frame%>% mutate(rank=as.factor(.data$rank)) results= melt.ranked.list(x, measure.vars="rank", value.name="rank") %>% dplyr::select(-.data$variable) colnames(results)[3]="task" if (!missing(ordering)) { if (is.numeric(ordering) & !is.null(names(ordering)) ){ ordering <- names(ordering)[order(ordering)] } else if (!is.character(ordering)){ stop("Argument ordering has to be a named vector of ranks or a vector of algorithm names in the ranking order.") } results=results%>%mutate(algorithm=factor(.data$algorithm, levels=ordering)) } if (single==FALSE){ pl<- ggplot(rankDist) + facet_wrap(vars(algorithm))+ theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) if (freq){ pl <- pl + geom_bar(aes(rank, n, fill=task ), position = "stack", stat = "identity") + ylab("Frequency") } else { pl <- pl + geom_bar(aes(rank, prop, fill=task ), position = "stack", stat = "identity")+ ylab("Proportion (%)") } pl <- pl + geom_vline(aes(xintercept=rank, color=task), size=.4, linetype="dotted", data=results) + xlab("Rank") } else { pl=list() for (alg in ordering){ rankDist.alg=subset(rankDist, rankDist$algorithm==alg) results.alg=subset(results, results$algorithm==alg) pl[[alg]]=ggplot(rankDist.alg)+ facet_wrap(vars(algorithm))+ theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) if (freq){ pl[[alg]] <- pl[[alg]] + geom_bar(aes(rank, n, fill=task ), position = "stack", stat = "identity") + ylab("Frequency") } else { pl[[alg]] <- pl[[alg]] + geom_bar(aes(rank, prop, fill=task ), position = "stack", stat = "identity")+ ylab("Proportion (%)") } pl[[alg]] <- pl[[alg]] + geom_vline(aes(xintercept=rank, color=task), size=.4, linetype="dotted", data=results.alg) + xlab("Rank") } - names(pl) = names(x$matlist) + names(pl) = ordering class(pl) <- "ggList" } } pl } #' Creates blob plots stratified by task #' #' Creates blob plots for each task from a bootstrapped, ranked assessment data set. #' #' @param x The bootstrapped, ranked assessment data set. #' @param ordering #' @param probs #' @param max_size #' @param size.ranks #' @param shape #' @param showLabelForSingleTask A boolean specifying whether the task name should be used as title for a single-task data set. #' @param ... Further arguments passed to or from other functions. #' #' @return #' #' @examples #' #' @seealso `browseVignettes("challengeR")` #' #' @family functions to visualize ranking stability #' @family functions to visualize cross-task insights #' @export stabilityByTask.bootstrap.list=function(x, ordering, probs=c(.025,.975), max_size=3, size.ranks=.3*theme_get()$text$size, shape=4, showLabelForSingleTask=FALSE,...){ rankDist=rankdist.bootstrap.list(x) ranks=melt.ranked.list(x, measure.vars="rank", value.name = "full.rank") colnames(ranks)[4]="task" if (!missing(ordering)) { if (is.numeric(ordering) & !is.null(names(ordering)) ){ ordering <- names(ordering)[order(ordering)] } else if (!is.character(ordering)){ stop("Argument ordering has to be a named vector of ranks or a vector of algorithm names in the ranking order.") } ranks$algorithm=factor(ranks$algorithm, levels=ordering) rankDist=rankDist%>%mutate(algorithm=factor(.data$algorithm, levels=ordering)) } blobPlot <- ggplot(rankDist)+ geom_count(aes(algorithm , rank, color=algorithm, size = stat(prop*100), group = algorithm ))+ scale_size_area(max_size = max_size)+ geom_abline(slope=1, color="gray", linetype="dotted")+ stat_summary(aes(algorithm ,rank ), geom="point", shape=shape, fun.data=function(x) data.frame(y=median(x)),...)+ stat_summary(aes(algorithm ,rank ), geom="linerange", fun.data=function(x) data.frame(ymin=quantile(x,probs[1]), ymax=quantile(x,probs[2])))+ geom_text(aes(x=algorithm,y=1,label=full.rank), nudge_y=-.6, vjust = 0, size=size.ranks, fontface="plain", family="sans", data=ranks) + coord_cartesian(clip = 'off')+ theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))+ guides(size = guide_legend(title="%"))+ scale_y_continuous(minor_breaks=NULL, limits=c(.4,max(5,max(rankDist$rank))), breaks=c(1,seq(5,max(5,max(rankDist$rank)),by=5)))+ xlab("Algorithm")+ ylab("Rank") # Create multi-panel plot with task names as labels for multi-task data set or single-task data set when explicitly specified if (length(x$data) > 1 || showLabelForSingleTask == TRUE) { blobPlot <- blobPlot + facet_wrap(vars(task)) } return(blobPlot) }