diff --git a/R/Bootstrap.R b/R/Bootstrap.R index 59144bd..64a1969 100644 --- a/R/Bootstrap.R +++ b/R/Bootstrap.R @@ -1,210 +1,210 @@ # Copyright (c) German Cancer Research Center (DKFZ) # All rights reserved. # # This file is part of challengeR. # # challengeR is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # challengeR is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with challengeR. If not, see <https://www.gnu.org/licenses/>. bootstrap <- function(object,...) UseMethod("bootstrap") bootstrap.default <- function(object, ...) stop("not implemented for this class") #' Performs bootstrapping #' #' Performs bootstrapping on a ranked assessment data set and applies the ranking method to each bootstrap sample. One bootstrap sample of #' a task with \code{n} cases consists of \code{n} cases randomly drawn with replacement from this task. #' A total of \code{nboot} of these bootstrap samples are drawn. #' #' @param object The ranked assessment data set. #' @param nboot The number of bootstrap samples. #' @param parallel A boolean specifying whether parallel processing should be enabled. #' @param progress A string specifying the type of progress indication. #' @param ... Further arguments passed to or from other functions. #' #' @return An S3 object of class "bootstrap.list" to represent a bootstrapped, ranked assessment data set. #' #' @examples #' #' \dontrun{ #' # perform bootstrapping with 1000 bootstrap samples using one CPU #' set.seed(1) #' ranking_bootstrapped <- bootstrap(ranking, nboot = 1000) #' } #' #' \dontrun{ #' # perform bootstrapping using multiple CPUs (here: 8 CPUs) #' library(doParallel) #' registerDoParallel(cores=8) #' set.seed(1) #' ranking_bootstrapped <- bootstrap(ranking, nboot = 1000, parallel = TRUE, progress = "none") #' stopImplicitCluster() #' } #' #' @export bootstrap.ranked.list=function(object, nboot, parallel=FALSE, progress="text", ...){ algorithm=attr(object$data,"algorithm") by=attr(object$data,"case") - # exclude if only 1 data set or less than 3 algorithms + # exclude if only 1 test case or only 1 algorithm tidy.data.id=sapply(object$data, function(data.subset) { - ifelse((length(unique(data.subset[[by]]))==1 | length(unique(data.subset[[algorithm]]))<=2 ), + ifelse((length(unique(data.subset[[by]]))==1 | length(unique(data.subset[[algorithm]]))<=1 ), yes=FALSE, no=TRUE) }) tidy.data=object$data[tidy.data.id] tidy.matlist=object$matlist[tidy.data.id] res= llply(1:nboot, function(it){ # draw 1 sample for each task bootDatalist = lapply(tidy.data, function(data.subset) { index = unique(data.subset[[by]]) # bootIndex=sample(index,size=length(index),replace=TRUE) # bootData=bind_rows(lapply(bootIndex,function(zz) data.subset[data.subset[[by]]==zz,])) # faster: bootIndex = data.frame(sample(index, size = length(index), replace = TRUE)) colnames(bootIndex) = by bootData = merge(bootIndex, data.subset, by = by) bootData }) attr(bootDatalist, "inverseOrder") = attr(object$data, "inverseOrder") attr(bootDatalist, "algorithm") = attr(object$data, "algorithm") attr(bootDatalist, "case") = attr(object$data, "case") attr(bootDatalist, "check") = FALSE object$FUN(bootDatalist)$mat }, .parallel = parallel, .progress = progress) rankmatlist = lapply(res[[1]], function(z) z[, "rank", drop = F] ) for (j in 2:length(res)) { rankmatlist = quickmerge.list(rankmatlist, lapply(res[[j]], function(z) z[, "rank", drop = F])) } aggmatlist = lapply(res[[1]], function(z) z[, -2, drop = F]) for (j in 2:length(res)) { aggmatlist = quickmerge.list(aggmatlist, lapply(res[[j]], function(z) z[, -2, drop = F])) } final=list(bootsrappedRanks=rankmatlist, bootsrappedAggregate=aggmatlist, data=object$data, matlist=tidy.matlist, FUN=object$FUN, FUN.list=object$FUN.list) class(final)=c("bootstrap.list") final } #################################################################################################### # deprecate following functions? rankFrequencies <- function(object,...) UseMethod("rankFrequencies") rankFrequencies.default <- function(object, ...) stop("not implemented for this class") rankFrequencies.bootstrap=function(object, who,...){ if (is.data.frame(who)) who=rownames(who) if (length(who)==1){ res=table(t(object$bootsrappedRanks[rownames(object$bootsrappedRanks)==who,])) cat("\n",who,"\n") print(res) } else { res=lapply(who, function(w){ rr=table(t(object$bootsrappedRanks[rownames(object$bootsrappedRanks)==w,])) cat(w,"\n") print(rr) cat("\n") rr }) } res=c(list(rankFrequencies=res),object) invisible(res) } rankFrequencies.bootstrap.list=function(object, who,...){ if (is.data.frame(who)) who=rownames(who) res=lapply(object$bootsrappedRanks,function(bootMat){ if (length(who)==1){ res=table(t(bootMat[rownames(bootMat)==who,])) cat("\n",who,"\n") print(res) } else { res=lapply(who, function(w){ rr=table(t(bootMat[rownames(bootMat)==w,])) cat(w,"\n") print(rr) cat("\n") rr }) } res }) res=c(list(rankFrequencies=res),object) invisible(res) } winnerFrequencies <- function(object,...) UseMethod("winnerFrequencies") winnerFrequencies.default <- function(object, ...) stop("not implemented for this class") # Achtung: bester rank muss ==1 sein und nicht z.B. 1.5 winnerFrequencies.bootstrap=function(object,...){ rankings_dicho=ifelse(object$bootsrappedRanks==1,1,0) winnerFrequencies=data.frame(winnerFrequency=rowSums(rankings_dicho),row.names = rownames(object$bootsrappedRanks)) res=merge(object$mat,winnerFrequencies,by="row.names",...) rownames(res)=res[,1] res=res[,-1] # res=c(res=res,object) # class(res)="bootstrapResults" res } winnerFrequencies.bootstrap.list=function(object,...){ res=lapply(1:length(object$bootsrappedRanks),function(id){ rankings_dicho=ifelse(object$bootsrappedRanks[[id]]==1,1,0) winnerFrequencies=data.frame(winnerFrequency=rowSums(rankings_dicho),row.names = rownames(object$bootsrappedRanks[[id]])) res=merge(object$matlist[[id]],winnerFrequencies,by="row.names",...) rownames(res)=res[,1] res=res[,-1] res }) names(res)=names(object$bootsrappedRanks) res }