diff --git a/exec.py b/exec.py
index e3feb99..d3dd2c3 100644
--- a/exec.py
+++ b/exec.py
@@ -1,240 +1,242 @@
 #!/usr/bin/env python
 # Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ).
 #
 # Licensed under the Apache License, Version 2.0 (the "License");
 # you may not use this file except in compliance with the License.
 # You may obtain a copy of the License at
 #
 #     http://www.apache.org/licenses/LICENSE-2.0
 #
 # Unless required by applicable law or agreed to in writing, software
 # distributed under the License is distributed on an "AS IS" BASIS,
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 # See the License for the specific language governing permissions and
 # limitations under the License.
 # ==============================================================================
 
 """execution script."""
 
 import argparse
 import os
 import time
 import torch
 
 import utils.exp_utils as utils
 from evaluator import Evaluator
 from predictor import Predictor
 from plotting import plot_batch_prediction
 
 
 def train(logger):
     """
     perform the training routine for a given fold. saves plots and selected parameters to the experiment dir
     specified in the configs.
     """
     logger.info('performing training in {}D over fold {} on experiment {} with model {}'.format(
         cf.dim, cf.fold, cf.exp_dir, cf.model))
 
     net = model.net(cf, logger).cuda()
     optimizer = torch.optim.Adam(net.parameters(), lr=cf.learning_rate[0], weight_decay=cf.weight_decay)
     model_selector = utils.ModelSelector(cf, logger)
     train_evaluator = Evaluator(cf, logger, mode='train')
     val_evaluator = Evaluator(cf, logger, mode=cf.val_mode)
 
     starting_epoch = 1
 
     # prepare monitoring
     monitor_metrics, TrainingPlot = utils.prepare_monitoring(cf)
 
     if cf.resume_to_checkpoint:
         starting_epoch, monitor_metrics = utils.load_checkpoint(cf.resume_to_checkpoint, net, optimizer)
         logger.info('resumed to checkpoint {} at epoch {}'.format(cf.resume_to_checkpoint, starting_epoch))
 
     logger.info('loading dataset and initializing batch generators...')
     batch_gen = data_loader.get_train_generators(cf, logger)
 
     for epoch in range(starting_epoch, cf.num_epochs + 1):
 
         logger.info('starting training epoch {}'.format(epoch))
         for param_group in optimizer.param_groups:
             param_group['lr'] = cf.learning_rate[epoch - 1]
 
         start_time = time.time()
 
         net.train()
         train_results_list = []
 
         for bix in range(cf.num_train_batches):
             batch = next(batch_gen['train'])
             tic_fw = time.time()
             results_dict = net.train_forward(batch)
             tic_bw = time.time()
             optimizer.zero_grad()
             results_dict['torch_loss'].backward()
             optimizer.step()
             logger.info('tr. batch {0}/{1} (ep. {2}) fw {3:.3f}s / bw {4:.3f}s / total {5:.3f}s || '
                         .format(bix + 1, cf.num_train_batches, epoch, tic_bw - tic_fw,
                                 time.time() - tic_bw, time.time() - tic_fw) + results_dict['logger_string'])
             train_results_list.append([results_dict['boxes'], batch['pid']])
             monitor_metrics['train']['monitor_values'][epoch].append(results_dict['monitor_values'])
 
         _, monitor_metrics['train'] = train_evaluator.evaluate_predictions(train_results_list, monitor_metrics['train'])
         train_time = time.time() - start_time
 
         logger.info('starting validation in mode {}.'.format(cf.val_mode))
         with torch.no_grad():
             net.eval()
             if cf.do_validation:
                 val_results_list = []
                 val_predictor = Predictor(cf, net, logger, mode='val')
                 for _ in range(batch_gen['n_val']):
                     batch = next(batch_gen[cf.val_mode])
                     if cf.val_mode == 'val_patient':
                         results_dict = val_predictor.predict_patient(batch)
                     elif cf.val_mode == 'val_sampling':
                         results_dict = net.train_forward(batch, is_validation=True)
                     val_results_list.append([results_dict['boxes'], batch['pid']])
                     monitor_metrics['val']['monitor_values'][epoch].append(results_dict['monitor_values'])
 
                 _, monitor_metrics['val'] = val_evaluator.evaluate_predictions(val_results_list, monitor_metrics['val'])
                 model_selector.run_model_selection(net, optimizer, monitor_metrics, epoch)
 
             # update monitoring and prediction plots
             TrainingPlot.update_and_save(monitor_metrics, epoch)
             epoch_time = time.time() - start_time
             logger.info('trained epoch {}: took {} sec. ({} train / {} val)'.format(
                 epoch, epoch_time, train_time, epoch_time-train_time))
             batch = next(batch_gen['val_sampling'])
             results_dict = net.train_forward(batch, is_validation=True)
             logger.info('plotting predictions from validation sampling.')
             plot_batch_prediction(batch, results_dict, cf)
 
 
 def test(logger):
     """
     perform testing for a given fold (or hold out set). save stats in evaluator.
     """
     logger.info('starting testing model of fold {} in exp {}'.format(cf.fold, cf.exp_dir))
     net = model.net(cf, logger).cuda()
     test_predictor = Predictor(cf, net, logger, mode='test')
     test_evaluator = Evaluator(cf, logger, mode='test')
     batch_gen = data_loader.get_test_generator(cf, logger)
     test_results_list = test_predictor.predict_test_set(batch_gen, return_results=True)
     test_evaluator.evaluate_predictions(test_results_list)
     test_evaluator.score_test_df()
 
 
 if __name__ == '__main__':
 
     parser = argparse.ArgumentParser()
     parser.add_argument('-m', '--mode', type=str,  default='train_test',
                         help='one out of: train / test / train_test / analysis / create_exp')
     parser.add_argument('-f','--folds', nargs='+', type=int, default=None,
                         help='None runs over all folds in CV. otherwise specify list of folds.')
     parser.add_argument('--exp_dir', type=str, default='/path/to/experiment/directory',
                         help='path to experiment dir. will be created if non existent.')
     parser.add_argument('--server_env', default=False, action='store_true',
                         help='change IO settings to deploy models on a cluster.')
     parser.add_argument('--slurm_job_id', type=str, default=None, help='job scheduler info')
     parser.add_argument('--use_stored_settings', default=False, action='store_true',
                         help='load configs from existing exp_dir instead of source dir. always done for testing, '
                              'but can be set to true to do the same for training. useful in job scheduler environment, '
                              'where source code might change before the job actually runs.')
     parser.add_argument('--resume_to_checkpoint', type=str, default=None,
                         help='if resuming to checkpoint, the desired fold still needs to be parsed via --folds.')
     parser.add_argument('--exp_source', type=str, default='experiments/toy_exp',
                         help='specifies, from which source experiment to load configs and data_loader.')
     parser.add_argument('-d', '--dev', default=False, action='store_true', help="development mode: shorten everything")
 
     args = parser.parse_args()
     folds = args.folds
     resume_to_checkpoint = args.resume_to_checkpoint
 
     if args.mode == 'train' or args.mode == 'train_test':
 
         cf = utils.prep_exp(args.exp_source, args.exp_dir, args.server_env, args.use_stored_settings)
         if args.dev:
             folds = [0,1]
             cf.batch_size, cf.num_epochs, cf.min_save_thresh, cf.save_n_models = 3 if cf.dim==2 else 1, 1, 0, 1
             cf.num_train_batches, cf.num_val_batches, cf.max_val_patients = 5, 1, 1
             cf.test_n_epochs =  cf.save_n_models
             cf.max_test_patients = 1
 
         cf.slurm_job_id = args.slurm_job_id
-        model = utils.import_module('model', cf.model_path)
         data_loader = utils.import_module('dl', os.path.join(args.exp_source, 'data_loader.py'))
+        model = utils.import_module('model', cf.model_path)
+        print("loaded model from {}".format(cf.model_path))
         if folds is None:
             folds = range(cf.n_cv_splits)
 
         for fold in folds:
             cf.fold_dir = os.path.join(cf.exp_dir, 'fold_{}'.format(fold))
             cf.fold = fold
             cf.resume_to_checkpoint = resume_to_checkpoint
             if not os.path.exists(cf.fold_dir):
                 os.mkdir(cf.fold_dir)
             logger = utils.get_logger(cf.fold_dir)
             train(logger)
             cf.resume_to_checkpoint = None
             if args.mode == 'train_test':
                 test(logger)
 
             for hdlr in logger.handlers:
                 hdlr.close()
             logger.handlers = []
 
     elif args.mode == 'test':
 
         cf = utils.prep_exp(args.exp_source, args.exp_dir, args.server_env, is_training=False, use_stored_settings=True)
         if args.dev:
             folds = [0,1]
             cf.test_n_epochs =  1; cf.max_test_patients = 1
 
         cf.slurm_job_id = args.slurm_job_id
-        model = utils.import_module('model', cf.model_path)
         data_loader = utils.import_module('dl', os.path.join(args.exp_source, 'data_loader.py'))
+        model = utils.import_module('model', cf.model_path)
+        print("loaded model from {}".format(cf.model_path))
         if folds is None:
             folds = range(cf.n_cv_splits)
 
         for fold in folds:
             cf.fold_dir = os.path.join(cf.exp_dir, 'fold_{}'.format(fold))
             logger = utils.get_logger(cf.fold_dir)
             cf.fold = fold
             test(logger)
 
             for hdlr in logger.handlers:
                 hdlr.close()
             logger.handlers = []
 
     # load raw predictions saved by predictor during testing, run aggregation algorithms and evaluation.
     elif args.mode == 'analysis':
         cf = utils.prep_exp(args.exp_source, args.exp_dir, args.server_env, is_training=False, use_stored_settings=True)
         logger = utils.get_logger(cf.exp_dir)
 
         if cf.hold_out_test_set:
             cf.folds = args.folds
             predictor = Predictor(cf, net=None, logger=logger, mode='analysis')
             results_list = predictor.load_saved_predictions(apply_wbc=True)
             utils.create_csv_output(results_list, cf, logger)
 
         else:
             if folds is None:
                 folds = range(cf.n_cv_splits)
             for fold in folds:
                 cf.fold_dir = os.path.join(cf.exp_dir, 'fold_{}'.format(fold))
                 cf.fold = fold
                 predictor = Predictor(cf, net=None, logger=logger, mode='analysis')
                 results_list = predictor.load_saved_predictions(apply_wbc=True)
                 logger.info('starting evaluation...')
                 evaluator = Evaluator(cf, logger, mode='test')
                 evaluator.evaluate_predictions(results_list)
                 evaluator.score_test_df()
 
     # create experiment folder and copy scripts without starting job.
     # useful for cloud deployment where configs might change before job actually runs.
     elif args.mode == 'create_exp':
         cf = utils.prep_exp(args.exp_source, args.exp_dir, args.server_env, use_stored_settings=True)
         logger = utils.get_logger(cf.exp_dir)
         logger.info('created experiment directory at {}'.format(args.exp_dir))
 
     else:
         raise RuntimeError('mode specified in args is not implemented...')
diff --git a/utils/exp_utils.py b/utils/exp_utils.py
index 3c7bf41..f6cadf3 100644
--- a/utils/exp_utils.py
+++ b/utils/exp_utils.py
@@ -1,346 +1,338 @@
 #!/usr/bin/env python
 # Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ).
 #
 # Licensed under the Apache License, Version 2.0 (the "License");
 # you may not use this file except in compliance with the License.
 # You may obtain a copy of the License at
 #
 #     http://www.apache.org/licenses/LICENSE-2.0
 #
 # Unless required by applicable law or agreed to in writing, software
 # distributed under the License is distributed on an "AS IS" BASIS,
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 # See the License for the specific language governing permissions and
 # limitations under the License.
 # ==============================================================================
 
 import numpy as np
 import logging
 import subprocess
 import os
 import torch
 from collections import OrderedDict
 import plotting
 import sys
 import importlib.util
 import pandas as pd
 import pickle
 
 
 
 def get_logger(exp_dir):
     """
     creates logger instance. writing out info to file and to terminal.
     :param exp_dir: experiment directory, where exec.log file is stored.
     :return: logger instance.
     """
 
     logger = logging.getLogger('medicaldetectiontoolkit')
     logger.setLevel(logging.DEBUG)
     log_file = exp_dir + '/exec.log'
     hdlr = logging.FileHandler(log_file)
     print('Logging to {}'.format(log_file))
     logger.addHandler(hdlr)
     logger.addHandler(ColorHandler())
     logger.propagate = False
     return logger
 
 
 
 def prep_exp(dataset_path, exp_path, server_env, use_stored_settings=True, is_training=True):
     """
     I/O handling, creating of experiment folder structure. Also creates a snapshot of configs/model scripts and copies them to the exp_dir.
     This way the exp_dir contains all info needed to conduct an experiment, independent to changes in actual source code. Thus, training/inference of this experiment can be started at anytime. Therefore, the model script is copied back to the source code dir as tmp_model (tmp_backbone).
     Provides robust structure for cloud deployment.
     :param dataset_path: path to source code for specific data set. (e.g. medicaldetectiontoolkit/lidc_exp)
     :param exp_path: path to experiment directory.
     :param server_env: boolean flag. pass to configs script for cloud deployment.
     :param use_stored_settings: boolean flag. When starting training: If True, starts training from snapshot in existing experiment directory, else creates experiment directory on the fly using configs/model scripts from source code.
     :param is_training: boolean flag. distinguishes train vs. inference mode.
     :return:
     """
 
     if is_training:
-
-        # the first process of an experiment creates the directories and copies the config to exp_path.
-        if not os.path.exists(exp_path):
-            os.mkdir(exp_path)
-            os.mkdir(os.path.join(exp_path, 'plots'))
-            subprocess.call('cp {} {}'.format(os.path.join(dataset_path, 'configs.py'), os.path.join(exp_path, 'configs.py')), shell=True)
-            subprocess.call('cp {} {}'.format('default_configs.py', os.path.join(exp_path, 'default_configs.py')), shell=True)
-
-
         if use_stored_settings:
-            subprocess.call('cp {} {}'.format('default_configs.py', os.path.join(exp_path, 'default_configs.py')), shell=True)
-            cf_file = import_module('cf', os.path.join(exp_path, 'configs.py'))
+            cf_file = import_module('cf_file', os.path.join(exp_path, 'configs.py'))
             cf = cf_file.configs(server_env)
-            # only the first process copies the model selcted in configs to exp_path.
-            if not os.path.isfile(os.path.join(exp_path, 'model.py')):
-                subprocess.call('cp {} {}'.format(cf.model_path, os.path.join(exp_path, 'model.py')), shell=True)
-                subprocess.call('cp {} {}'.format(os.path.join(cf.backbone_path), os.path.join(exp_path, 'backbone.py')), shell=True)
-
-            # copy the snapshot model scripts from exp_dir back to the source_dir as tmp_model / tmp_backbone.
-            tmp_model_path = os.path.join(cf.source_dir, 'models', 'tmp_model.py')
-            tmp_backbone_path = os.path.join(cf.source_dir, 'models', 'tmp_backbone.py')
-            subprocess.call('cp {} {}'.format(os.path.join(exp_path, 'model.py'), tmp_model_path), shell=True)
-            subprocess.call('cp {} {}'.format(os.path.join(exp_path, 'backbone.py'), tmp_backbone_path), shell=True)
-            cf.model_path = tmp_model_path
-            cf.backbone_path = tmp_backbone_path
-
+            # in this mode, previously saved model and backbone need to be found in exp dir.
+            if not os.path.isfile(os.path.join(exp_path, 'model.py')) or \
+                    not os.path.isfile(os.path.join(exp_path, 'backbone.py')):
+                raise Exception(
+                    "Selected use_stored_settings option but no model and/or backbone source files exist in exp dir.")
+            cf.model_path = os.path.join(exp_path, 'model.py')
+            cf.backbone_path = os.path.join(exp_path, 'backbone.py')
         else:
+            # this case overwrites settings files in exp dir, i.e., default_configs, configs, backbone, model
+            os.makedirs(exp_path, exist_ok=True)
             # run training with source code info and copy snapshot of model to exp_dir for later testing (overwrite scripts if exp_dir already exists.)
-            cf_file = import_module('cf', os.path.join(dataset_path, 'configs.py'))
+            subprocess.call('cp {} {}'.format('default_configs.py', os.path.join(exp_path, 'default_configs.py')),
+                            shell=True)
+            subprocess.call(
+                'cp {} {}'.format(os.path.join(dataset_path, 'configs.py'), os.path.join(exp_path, 'configs.py')),
+                shell=True)
+            cf_file = import_module('cf_file', os.path.join(dataset_path, 'configs.py'))
             cf = cf_file.configs(server_env)
             subprocess.call('cp {} {}'.format(cf.model_path, os.path.join(exp_path, 'model.py')), shell=True)
             subprocess.call('cp {} {}'.format(cf.backbone_path, os.path.join(exp_path, 'backbone.py')), shell=True)
-            subprocess.call('cp {} {}'.format('default_configs.py', os.path.join(exp_path, 'default_configs.py')), shell=True)
-            subprocess.call('cp {} {}'.format(os.path.join(dataset_path, 'configs.py'), os.path.join(exp_path, 'configs.py')), shell=True)
+            if os.path.isfile(os.path.join(exp_path, "fold_ids.pickle")):
+                subprocess.call('rm {}'.format(os.path.join(exp_path, "fold_ids.pickle")), shell=True)
 
     else:
-        # for testing, copy the snapshot model scripts from exp_dir back to the source_dir as tmp_model / tmp_backbone.
-        cf_file = import_module('cf', os.path.join(exp_path, 'configs.py'))
+        # testing, use model and backbone stored in exp dir.
+        cf_file = import_module('cf_file', os.path.join(exp_path, 'configs.py'))
         cf = cf_file.configs(server_env)
-        tmp_model_path = os.path.join(cf.source_dir, 'models', 'tmp_model.py')
-        tmp_backbone_path = os.path.join(cf.source_dir, 'models', 'tmp_backbone.py')
-        subprocess.call('cp {} {}'.format(os.path.join(exp_path, 'model.py'), tmp_model_path), shell=True)
-        subprocess.call('cp {} {}'.format(os.path.join(exp_path, 'backbone.py'), tmp_backbone_path), shell=True)
-        cf.model_path = tmp_model_path
-        cf.backbone_path = tmp_backbone_path
+        cf.model_path = os.path.join(exp_path, 'model.py')
+        cf.backbone_path = os.path.join(exp_path, 'backbone.py')
+
 
     cf.exp_dir = exp_path
     cf.test_dir = os.path.join(cf.exp_dir, 'test')
     cf.plot_dir = os.path.join(cf.exp_dir, 'plots')
+    if not os.path.exists(cf.test_dir):
+        os.mkdir(cf.test_dir)
+    if not os.path.exists(cf.plot_dir):
+        os.mkdir(cf.plot_dir)
     cf.experiment_name = exp_path.split("/")[-1]
     cf.server_env = server_env
     cf.created_fold_id_pickle = False
 
     return cf
 
 
 
 def import_module(name, path):
     """
     correct way of importing a module dynamically in python 3.
     :param name: name given to module instance.
     :param path: path to module.
     :return: module: returned module instance.
     """
     spec = importlib.util.spec_from_file_location(name, path)
     module = importlib.util.module_from_spec(spec)
     spec.loader.exec_module(module)
     return module
 
 
 
 class ModelSelector:
     '''
     saves a checkpoint after each epoch as 'last_state' (can be loaded to continue interrupted training).
     saves the top-k (k=cf.save_n_models) ranked epochs. In inference, predictions of multiple epochs can be ensembled to improve performance.
     '''
 
     def __init__(self, cf, logger):
 
         self.cf = cf
         self.saved_epochs = [-1] * cf.save_n_models
         self.logger = logger
 
     def run_model_selection(self, net, optimizer, monitor_metrics, epoch):
 
         # take the mean over all selection criteria in each epoch
         non_nan_scores = np.mean(np.array([[0 if ii is None else ii for ii in monitor_metrics['val'][sc]] for sc in self.cf.model_selection_criteria]), 0)
         epochs_scores = [ii for ii in non_nan_scores[1:]]
         # ranking of epochs according to model_selection_criterion
         epoch_ranking = np.argsort(epochs_scores)[::-1] + 1 #epochs start at 1
         # if set in configs, epochs < min_save_thresh are discarded from saving process.
         epoch_ranking = epoch_ranking[epoch_ranking >= self.cf.min_save_thresh]
 
         # check if current epoch is among the top-k epchs.
         if epoch in epoch_ranking[:self.cf.save_n_models]:
 
             save_dir = os.path.join(self.cf.fold_dir, '{}_best_checkpoint'.format(epoch))
             if not os.path.exists(save_dir):
                 os.mkdir(save_dir)
 
             torch.save(net.state_dict(), os.path.join(save_dir, 'params.pth'))
             with open(os.path.join(save_dir, 'monitor_metrics.pickle'), 'wb') as handle:
                 pickle.dump(monitor_metrics, handle)
             # save epoch_ranking to keep info for inference.
             np.save(os.path.join(self.cf.fold_dir, 'epoch_ranking'), epoch_ranking[:self.cf.save_n_models])
             np.save(os.path.join(save_dir, 'epoch_ranking'), epoch_ranking[:self.cf.save_n_models])
 
             self.logger.info(
                 "saving current epoch {} at rank {}".format(epoch, np.argwhere(epoch_ranking == epoch)))
             # delete params of the epoch that just fell out of the top-k epochs.
             for se in [int(ii.split('_')[0]) for ii in os.listdir(self.cf.fold_dir) if 'best_checkpoint' in ii]:
                 if se in epoch_ranking[self.cf.save_n_models:]:
                     subprocess.call('rm -rf {}'.format(os.path.join(self.cf.fold_dir, '{}_best_checkpoint'.format(se))), shell=True)
                     self.logger.info('deleting epoch {} at rank {}'.format(se, np.argwhere(epoch_ranking == se)))
 
         state = {
             'epoch': epoch,
             'state_dict': net.state_dict(),
             'optimizer': optimizer.state_dict(),
         }
 
         # save checkpoint of current epoch.
         save_dir = os.path.join(self.cf.fold_dir, 'last_checkpoint'.format(epoch))
         if not os.path.exists(save_dir):
             os.mkdir(save_dir)
         torch.save(state, os.path.join(save_dir, 'params.pth'))
         np.save(os.path.join(save_dir, 'epoch_ranking'), epoch_ranking[:self.cf.save_n_models])
         with open(os.path.join(save_dir, 'monitor_metrics.pickle'), 'wb') as handle:
             pickle.dump(monitor_metrics, handle)
 
 
 
 def load_checkpoint(checkpoint_path, net, optimizer):
 
     checkpoint_params = torch.load(os.path.join(checkpoint_path, 'params.pth'))
     net.load_state_dict(checkpoint_params['state_dict'])
     optimizer.load_state_dict(checkpoint_params['optimizer'])
     with open(os.path.join(checkpoint_path, 'monitor_metrics.pickle'), 'rb') as handle:
         monitor_metrics = pickle.load(handle)
     starting_epoch = checkpoint_params['epoch'] + 1
     return starting_epoch, monitor_metrics
 
 
 
 def prepare_monitoring(cf):
     """
     creates dictionaries, where train/val metrics are stored.
     """
     metrics = {}
     # first entry for loss dict accounts for epoch starting at 1.
     metrics['train'] = OrderedDict()
     metrics['val'] = OrderedDict()
     metric_classes = []
     if 'rois' in cf.report_score_level:
         metric_classes.extend([v for k, v in cf.class_dict.items()])
     if 'patient' in cf.report_score_level:
         metric_classes.extend(['patient'])
     for cl in metric_classes:
         metrics['train'][cl + '_ap'] = [None]
         metrics['val'][cl + '_ap'] = [None]
         if cl == 'patient':
             metrics['train'][cl + '_auc'] = [None]
             metrics['val'][cl + '_auc'] = [None]
 
     metrics['train']['monitor_values'] = [[] for _ in range(cf.num_epochs + 1)]
     metrics['val']['monitor_values'] = [[] for _ in range(cf.num_epochs + 1)]
 
     # generate isntance of monitor plot class.
     TrainingPlot = plotting.TrainingPlot_2Panel(cf)
 
     return metrics, TrainingPlot
 
 
 
 def create_csv_output(results_list, cf, logger):
     """
     Write out test set predictions to .csv file. output format is one line per prediction:
     PatientID | PredictionID | [y1 x1 y2 x2 (z1) (z2)] | score | pred_classID
     Note, that prediction coordinates correspond to images as loaded for training/testing and need to be adapted when
     plotted over raw data (before preprocessing/resampling).
     :param results_list: [[patient_results, patient_id], [patient_results, patient_id], ...]
     """
 
     logger.info('creating csv output file at {}'.format(os.path.join(cf.exp_dir, 'results.csv')))
     predictions_df = pd.DataFrame(columns = ['patientID', 'predictionID', 'coords', 'score', 'pred_classID'])
     for r in results_list:
 
         pid = r[1]
 
         #optionally load resampling info from preprocessing to match output predictions with raw data.
         #with open(os.path.join(cf.exp_dir, 'test_resampling_info', pid), 'rb') as handle:
         #    resampling_info = pickle.load(handle)
 
         for bix, box in enumerate(r[0][0]):
             assert box['box_type'] == 'det', box['box_type']
             coords = box['box_coords']
             score = box['box_score']
             pred_class_id = box['box_pred_class_id']
             out_coords = []
             if score >= cf.min_det_thresh:
                 out_coords.append(coords[0]) #* resampling_info['scale'][0])
                 out_coords.append(coords[1]) #* resampling_info['scale'][1])
                 out_coords.append(coords[2]) #* resampling_info['scale'][0])
                 out_coords.append(coords[3]) #* resampling_info['scale'][1])
                 if len(coords) > 4:
                     out_coords.append(coords[4]) #* resampling_info['scale'][2] + resampling_info['z_crop'])
                     out_coords.append(coords[5]) #* resampling_info['scale'][2] + resampling_info['z_crop'])
 
                 predictions_df.loc[len(predictions_df)] = [pid, bix, out_coords, score, pred_class_id]
     try:
         fold = cf.fold
     except:
         fold = 'hold_out'
     predictions_df.to_csv(os.path.join(cf.exp_dir, 'results_{}.csv'.format(fold)), index=False)
 
 
 
 class _AnsiColorizer(object):
     """
     A colorizer is an object that loosely wraps around a stream, allowing
     callers to write text to the stream in a particular color.
 
     Colorizer classes must implement C{supported()} and C{write(text, color)}.
     """
     _colors = dict(black=30, red=31, green=32, yellow=33,
                    blue=34, magenta=35, cyan=36, white=37, default=39)
 
     def __init__(self, stream):
         self.stream = stream
 
     @classmethod
     def supported(cls, stream=sys.stdout):
         """
         A class method that returns True if the current platform supports
         coloring terminal output using this method. Returns False otherwise.
         """
         if not stream.isatty():
             return False  # auto color only on TTYs
         try:
             import curses
         except ImportError:
             return False
         else:
             try:
                 try:
                     return curses.tigetnum("colors") > 2
                 except curses.error:
                     curses.setupterm()
                     return curses.tigetnum("colors") > 2
             except:
                 raise
                 # guess false in case of error
                 return False
 
     def write(self, text, color):
         """
         Write the given text to the stream in the given color.
 
         @param text: Text to be written to the stream.
 
         @param color: A string label for a color. e.g. 'red', 'white'.
         """
         color = self._colors[color]
         self.stream.write('\x1b[%sm%s\x1b[0m' % (color, text))
 
 
 
 class ColorHandler(logging.StreamHandler):
 
 
     def __init__(self, stream=sys.stdout):
         super(ColorHandler, self).__init__(_AnsiColorizer(stream))
 
     def emit(self, record):
         msg_colors = {
             logging.DEBUG: "green",
             logging.INFO: "default",
             logging.WARNING: "red",
             logging.ERROR: "red"
         }
         color = msg_colors.get(record.levelno, "blue")
         self.stream.write(record.msg + "\n", color)