diff --git a/experiments/toy_exp/data_loader.py b/experiments/toy_exp/data_loader.py
index ae87d76..57929d3 100644
--- a/experiments/toy_exp/data_loader.py
+++ b/experiments/toy_exp/data_loader.py
@@ -1,308 +1,309 @@
 #!/usr/bin/env python
 # Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ).
 #
 # Licensed under the Apache License, Version 2.0 (the "License");
 # you may not use this file except in compliance with the License.
 # You may obtain a copy of the License at
 #
 #     http://www.apache.org/licenses/LICENSE-2.0
 #
 # Unless required by applicable law or agreed to in writing, software
 # distributed under the License is distributed on an "AS IS" BASIS,
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 # See the License for the specific language governing permissions and
 # limitations under the License.
 # ==============================================================================
 
 import numpy as np
 import os
 from collections import OrderedDict
 import pandas as pd
 import pickle
 import time
 import subprocess
 import utils.dataloader_utils as dutils
 
 # batch generator tools from https://github.com/MIC-DKFZ/batchgenerators
 from batchgenerators.dataloading.data_loader import SlimDataLoaderBase
 from batchgenerators.transforms.spatial_transforms import MirrorTransform as Mirror
 from batchgenerators.transforms.abstract_transforms import Compose
 from batchgenerators.dataloading.multi_threaded_augmenter import MultiThreadedAugmenter
 from batchgenerators.dataloading import SingleThreadedAugmenter
 from batchgenerators.transforms.spatial_transforms import SpatialTransform
 from batchgenerators.transforms.crop_and_pad_transforms import CenterCropTransform
 from batchgenerators.transforms.utility_transforms import ConvertSegToBoundingBoxCoordinates
 
 
 
 def get_train_generators(cf, logger):
     """
     wrapper function for creating the training batch generator pipeline. returns the train/val generators.
     selects patients according to cv folds (generated by first run/fold of experiment):
     splits the data into n-folds, where 1 split is used for val, 1 split for testing and the rest for training. (inner loop test set)
     If cf.hold_out_test_set is True, adds the test split to the training data.
     """
     all_data = load_dataset(cf, logger)
     all_pids_list = np.unique([v['pid'] for (k, v) in all_data.items()])
 
     assert cf.n_train_val_data <= len(all_pids_list), \
         "requested {} train val samples, but dataset only has {} train val samples.".format(
             cf.n_train_val_data, len(all_pids_list))
     train_pids = all_pids_list[:int(2 * cf.n_train_val_data // 3)]
     val_pids = all_pids_list[int(np.ceil(2 * cf.n_train_val_data // 3)):cf.n_train_val_data]
 
     train_data = {k: v for (k, v) in all_data.items() if any(p == v['pid'] for p in train_pids)}
     val_data = {k: v for (k, v) in all_data.items() if any(p == v['pid'] for p in val_pids)}
 
     logger.info("data set loaded with: {} train / {} val patients".format(len(train_pids), len(val_pids)))
     batch_gen = {}
     batch_gen['train'] = create_data_gen_pipeline(train_data, cf=cf, do_aug=False)
     batch_gen['val_sampling'] = create_data_gen_pipeline(val_data, cf=cf, do_aug=False)
     if cf.val_mode == 'val_patient':
         batch_gen['val_patient'] = PatientBatchIterator(val_data, cf=cf)
         batch_gen['n_val'] = len(val_pids) if cf.max_val_patients is None else min(len(val_pids), cf.max_val_patients)
     else:
         batch_gen['n_val'] = cf.num_val_batches
 
     return batch_gen
 
 
 def get_test_generator(cf, logger):
     """
     wrapper function for creating the test batch generator pipeline.
     selects patients according to cv folds (generated by first run/fold of experiment)
     If cf.hold_out_test_set is True, gets the data from an external folder instead.
     """
     if cf.hold_out_test_set:
         pp_name = cf.pp_test_name
         test_ix = None
     else:
         pp_name = None
         with open(os.path.join(cf.exp_dir, 'fold_ids.pickle'), 'rb') as handle:
             fold_list = pickle.load(handle)
         _, _, test_ix, _ = fold_list[cf.fold]
         # warnings.warn('WARNING: using validation set for testing!!!')
 
     test_data = load_dataset(cf, logger, test_ix, pp_data_path=cf.pp_test_data_path, pp_name=pp_name)
     logger.info("data set loaded with: {} test patients from {}".format(len(test_data.keys()), cf.pp_test_data_path))
     batch_gen = {}
     batch_gen['test'] = PatientBatchIterator(test_data, cf=cf)
     batch_gen['n_test'] = len(test_data.keys()) if cf.max_test_patients=="all" else \
         min(cf.max_test_patients, len(test_data.keys()))
 
     return batch_gen
 
 
 
 def load_dataset(cf, logger, subset_ixs=None, pp_data_path=None, pp_name=None):
     """
     loads the dataset. if deployed in cloud also copies and unpacks the data to the working directory.
     :param subset_ixs: subset indices to be loaded from the dataset. used e.g. for testing to only load the test folds.
     :return: data: dictionary with one entry per patient (in this case per patient-breast, since they are treated as
     individual images for training) each entry is a dictionary containing respective meta-info as well as paths to the preprocessed
     numpy arrays to be loaded during batch-generation
     """
     if pp_data_path is None:
         pp_data_path = cf.pp_data_path
     if pp_name is None:
         pp_name = cf.pp_name
     if cf.server_env:
         copy_data = True
         target_dir = os.path.join(cf.data_dest, pp_name)
         if not os.path.exists(target_dir):
             cf.data_source_dir = pp_data_path
             os.makedirs(target_dir)
             subprocess.call('rsync -av {} {}'.format(
                 os.path.join(cf.data_source_dir, cf.input_df_name), os.path.join(target_dir, cf.input_df_name)), shell=True)
             logger.info('created target dir and info df at {}'.format(os.path.join(target_dir, cf.input_df_name)))
 
         elif subset_ixs is None:
             copy_data = False
 
         pp_data_path = target_dir
 
 
     p_df = pd.read_pickle(os.path.join(pp_data_path, cf.input_df_name))
 
 
     if subset_ixs is not None:
         subset_pids = [np.unique(p_df.pid.tolist())[ix] for ix in subset_ixs]
         p_df = p_df[p_df.pid.isin(subset_pids)]
         logger.info('subset: selected {} instances from df'.format(len(p_df)))
 
     if cf.server_env:
         if copy_data:
             copy_and_unpack_data(logger, p_df.pid.tolist(), cf.fold_dir, cf.data_source_dir, target_dir)
 
     class_targets = p_df['class_id'].tolist()
     pids = p_df.pid.tolist()
     imgs = [os.path.join(pp_data_path, '{}.npy'.format(pid)) for pid in pids]
     segs = [os.path.join(pp_data_path,'{}.npy'.format(pid)) for pid in pids]
 
     data = OrderedDict()
     for ix, pid in enumerate(pids):
 
         data[pid] = {'data': imgs[ix], 'seg': segs[ix], 'pid': pid, 'class_target': [class_targets[ix]]}
 
     return data
 
 
 
 def create_data_gen_pipeline(patient_data, cf, do_aug=True):
     """
     create mutli-threaded train/val/test batch generation and augmentation pipeline.
     :param patient_data: dictionary containing one dictionary per patient in the train/test subset.
     :param is_training: (optional) whether to perform data augmentation (training) or not (validation/testing)
     :return: multithreaded_generator
     """
 
     # create instance of batch generator as first element in pipeline.
     data_gen = BatchGenerator(patient_data, batch_size=cf.batch_size, cf=cf)
 
     # add transformations to pipeline.
     my_transforms = []
     if do_aug:
         mirror_transform = Mirror(axes=np.arange(2, cf.dim+2, 1))
         my_transforms.append(mirror_transform)
         spatial_transform = SpatialTransform(patch_size=cf.patch_size[:cf.dim],
                                              patch_center_dist_from_border=cf.da_kwargs['rand_crop_dist'],
                                              do_elastic_deform=cf.da_kwargs['do_elastic_deform'],
                                              alpha=cf.da_kwargs['alpha'], sigma=cf.da_kwargs['sigma'],
                                              do_rotation=cf.da_kwargs['do_rotation'], angle_x=cf.da_kwargs['angle_x'],
                                              angle_y=cf.da_kwargs['angle_y'], angle_z=cf.da_kwargs['angle_z'],
                                              do_scale=cf.da_kwargs['do_scale'], scale=cf.da_kwargs['scale'],
                                              random_crop=cf.da_kwargs['random_crop'])
 
         my_transforms.append(spatial_transform)
     else:
         my_transforms.append(CenterCropTransform(crop_size=cf.patch_size[:cf.dim]))
 
     my_transforms.append(ConvertSegToBoundingBoxCoordinates(cf.dim, get_rois_from_seg_flag=False, class_specific_seg_flag=cf.class_specific_seg_flag))
     all_transforms = Compose(my_transforms)
     # multithreaded_generator = SingleThreadedAugmenter(data_gen, all_transforms)
     multithreaded_generator = MultiThreadedAugmenter(data_gen, all_transforms, num_processes=cf.n_workers, seeds=range(cf.n_workers))
     return multithreaded_generator
 
 
 class BatchGenerator(SlimDataLoaderBase):
     """
     creates the training/validation batch generator. Samples n_batch_size patients (draws a slice from each patient if 2D)
     from the data set while maintaining foreground-class balance. Returned patches are cropped/padded to pre_crop_size.
     Actual patch_size is obtained after data augmentation.
     :param data: data dictionary as provided by 'load_dataset'.
     :param batch_size: number of patients to sample for the batch
     :return dictionary containing the batch data (b, c, x, y, (z)) / seg (b, 1, x, y, (z)) / pids / class_target
     """
     def __init__(self, data, batch_size, cf):
         super(BatchGenerator, self).__init__(data, batch_size)
 
         self.cf = cf
 
     def generate_train_batch(self):
 
         batch_data, batch_segs, batch_pids, batch_targets = [], [], [], []
         class_targets_list =  [v['class_target'] for (k, v) in self._data.items()]
 
         #samples patients towards equilibrium of foreground classes on a roi-level (after randomly sampling the ratio "batch_sample_slack).
         batch_ixs = dutils.get_class_balanced_patients(
             class_targets_list, self.batch_size, self.cf.head_classes - 1, slack_factor=self.cf.batch_sample_slack)
         patients = list(self._data.items())
 
         for b in batch_ixs:
 
             patient = patients[b][1]
             all_data = np.load(patient['data'], mmap_mode='r')
             data = all_data[0]
             seg = all_data[1].astype('uint8')
             batch_pids.append(patient['pid'])
             batch_targets.append(patient['class_target'])
             batch_data.append(data[np.newaxis])
             batch_segs.append(seg[np.newaxis])
 
         data = np.array(batch_data)
         seg = np.array(batch_segs).astype(np.uint8)
         class_target = np.array(batch_targets)
         return {'data': data, 'seg': seg, 'pid': batch_pids, 'class_target': class_target}
 
 
 
 class PatientBatchIterator(SlimDataLoaderBase):
     """
     creates a test generator that iterates over entire given dataset returning 1 patient per batch.
     Can be used for monitoring if cf.val_mode = 'patient_val' for a monitoring closer to actualy evaluation (done in 3D),
     if willing to accept speed-loss during training.
     :return: out_batch: dictionary containing one patient with batch_size = n_3D_patches in 3D or
     batch_size = n_2D_patches in 2D .
     """
     def __init__(self, data, cf): #threads in augmenter
         super(PatientBatchIterator, self).__init__(data, 0)
         self.cf = cf
         self.patient_ix = 0
         self.dataset_pids = [v['pid'] for (k, v) in data.items()]
         self.patch_size = cf.patch_size
         if len(self.patch_size) == 2:
             self.patch_size = self.patch_size + [1]
 
 
     def generate_train_batch(self):
 
         pid = self.dataset_pids[self.patient_ix]
         patient = self._data[pid]
         all_data = np.load(patient['data'], mmap_mode='r')
         data = all_data[0]
         seg = all_data[1].astype('uint8')
         batch_class_targets = np.array([patient['class_target']])
 
         out_data = data[None, None]
         out_seg = seg[None, None]
 
         print('check patient data loader', out_data.shape, out_seg.shape)
         batch_2D = {'data': out_data, 'seg': out_seg, 'class_target': batch_class_targets, 'pid': pid}
         converter = ConvertSegToBoundingBoxCoordinates(dim=2, get_rois_from_seg_flag=False, class_specific_seg_flag=self.cf.class_specific_seg_flag)
         batch_2D = converter(**batch_2D)
 
         batch_2D.update({'patient_bb_target': batch_2D['bb_target'],
                          'patient_roi_labels': batch_2D['roi_labels'],
                          'original_img_shape': out_data.shape})
 
         self.patient_ix += 1
         if self.patient_ix == len(self.dataset_pids):
             self.patient_ix = 0
 
         return batch_2D
 
 
 
 def copy_and_unpack_data(logger, pids, fold_dir, source_dir, target_dir):
 
 
     start_time = time.time()
     with open(os.path.join(fold_dir, 'file_list.txt'), 'w') as handle:
         for pid in pids:
             handle.write('{}.npy\n'.format(pid))
 
     subprocess.call('rsync -av --files-from {} {} {}'.format(os.path.join(fold_dir, 'file_list.txt'),
         source_dir, target_dir), shell=True)
     # dutils.unpack_dataset(target_dir)
     copied_files = os.listdir(target_dir)
     logger.info("copying and unpacking data set finsihed : {} files in target dir: {}. took {} sec".format(
         len(copied_files), target_dir, np.round(time.time() - start_time, 0)))
 
 if __name__=="__main__":
     import utils.exp_utils as utils
-    from .configs import Configs
+    cf_file = utils.import_module("cf", "configs.py")
 
     total_stime = time.time()
 
 
-    cf = Configs()
-    logger = utils.get_logger(0)
+    cf = cf_file.configs(server_env=False)
+    cf.server_env = False
+    logger = utils.get_logger(".")
     batch_gen = get_train_generators(cf, logger)
 
     train_batch = next(batch_gen["train"])
 
 
     mins, secs = divmod((time.time() - total_stime), 60)
     h, mins = divmod(mins, 60)
     t = "{:d}h:{:02d}m:{:02d}s".format(int(h), int(mins), int(secs))
     print("{} total runtime: {}".format(os.path.split(__file__)[1], t))
\ No newline at end of file