diff --git a/experiments/toy_exp/configs.py b/experiments/toy_exp/configs.py index 95f0853..6d4774a 100644 --- a/experiments/toy_exp/configs.py +++ b/experiments/toy_exp/configs.py @@ -1,350 +1,350 @@ #!/usr/bin/env python # Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import sys import os sys.path.append(os.path.dirname(os.path.realpath(__file__))) import numpy as np from default_configs import DefaultConfigs class configs(DefaultConfigs): def __init__(self, server_env=None): ######################### # Preprocessing # ######################### self.root_dir = '/home/gregor/datasets/toy_mdt' ######################### # I/O # ######################### # one out of [2, 3]. dimension the model operates in. self.dim = 2 # one out of ['mrcnn', 'retina_net', 'retina_unet', 'detection_unet', 'ufrcnn']. self.model = 'detection_unet' DefaultConfigs.__init__(self, self.model, server_env, self.dim) # int [0 < dataset_size]. select n patients from dataset for prototyping. self.select_prototype_subset = None self.hold_out_test_set = True self.n_train_data = 2500 # choose one of the 3 toy experiments described in https://arxiv.org/pdf/1811.08661.pdf # one of ['donuts_shape', 'donuts_pattern', 'circles_scale']. toy_mode = 'donuts_shape_noise' # path to preprocessed data. self.input_df_name = 'info_df.pickle' self.pp_name = os.path.join(toy_mode, 'train') self.pp_data_path = os.path.join(self.root_dir, self.pp_name) self.pp_test_name = os.path.join(toy_mode, 'test') self.pp_test_data_path = os.path.join(self.root_dir, self.pp_test_name) # settings for deployment in cloud. if server_env: # path to preprocessed data. pp_root_dir = '/datasets/datasets_ramien/toy_exp/data' self.pp_name = os.path.join(toy_mode, 'train') self.pp_data_path = os.path.join(pp_root_dir, self.pp_name) self.pp_test_name = os.path.join(toy_mode, 'test') self.pp_test_data_path = os.path.join(pp_root_dir, self.pp_test_name) self.select_prototype_subset = None ######################### # Data Loader # ######################### # select modalities from preprocessed data self.channels = [0] self.n_channels = len(self.channels) # patch_size to be used for training. pre_crop_size is the patch_size before data augmentation. self.pre_crop_size_2D = [320, 320] self.patch_size_2D = [320, 320] self.patch_size = self.patch_size_2D if self.dim == 2 else self.patch_size_3D self.pre_crop_size = self.pre_crop_size_2D if self.dim == 2 else self.pre_crop_size_3D # ratio of free sampled batch elements before class balancing is triggered # (>0 to include "empty"/background patches.) self.batch_sample_slack = 0.2 # set 2D network to operate in 3D images. self.merge_2D_to_3D_preds = False # feed +/- n neighbouring slices into channel dimension. set to None for no context. self.n_3D_context = None if self.n_3D_context is not None and self.dim == 2: self.n_channels *= (self.n_3D_context * 2 + 1) ######################### # Architecture # ######################### self.start_filts = 48 if self.dim == 2 else 18 self.end_filts = self.start_filts * 4 if self.dim == 2 else self.start_filts * 2 self.res_architecture = 'resnet50' # 'resnet101' , 'resnet50' self.norm = None # one of None, 'instance_norm', 'batch_norm' - self.weight_decay = 1e-5 + self.weight_decay = 0 # one of 'xavier_uniform', 'xavier_normal', or 'kaiming_normal', None (=default = 'kaiming_uniform') self.weight_init = None ######################### # Schedule / Selection # ######################### - self.num_epochs = 20 + self.num_epochs = 24 self.num_train_batches = 100 if self.dim == 2 else 200 self.batch_size = 20 if self.dim == 2 else 8 self.do_validation = True # decide whether to validate on entire patient volumes (like testing) or sampled patches (like training) # the former is morge accurate, while the latter is faster (depending on volume size) self.val_mode = 'val_patient' # one of 'val_sampling' , 'val_patient' if self.val_mode == 'val_patient': self.max_val_patients = None # if 'None' iterates over entire val_set once. if self.val_mode == 'val_sampling': self.num_val_batches = 50 # set dynamic_lr_scheduling to True to apply LR scheduling with below settings. self.dynamic_lr_scheduling = True self.lr_decay_factor = 0.5 self.scheduling_patience = int(self.num_train_batches * self.batch_size / 2400) self.scheduling_criterion = 'malignant_ap' self.scheduling_mode = 'min' if "loss" in self.scheduling_criterion else 'max' ######################### # Testing / Plotting # ######################### # set the top-n-epochs to be saved for temporal averaging in testing. self.save_n_models = 5 self.test_n_epochs = 5 # set a minimum epoch number for saving in case of instabilities in the first phase of training. self.min_save_thresh = 0 if self.dim == 2 else 0 self.report_score_level = ['patient', 'rois'] # choose list from 'patient', 'rois' self.class_dict = {1: 'benign', 2: 'malignant'} # 0 is background. self.patient_class_of_interest = 2 # patient metrics are only plotted for one class. self.ap_match_ious = [0.1] # list of ious to be evaluated for ap-scoring. self.model_selection_criteria = ['benign_ap', 'malignant_ap'] # criteria to average over for saving epochs. self.min_det_thresh = 0.1 # minimum confidence value to select predictions for evaluation. # threshold for clustering predictions together (wcs = weighted cluster scoring). # needs to be >= the expected overlap of predictions coming from one model (typically NMS threshold). # if too high, preds of the same object are separate clusters. self.wcs_iou = 1e-5 self.plot_prediction_histograms = True self.plot_stat_curves = False ######################### # Data Augmentation # ######################### self.da_kwargs={ 'do_elastic_deform': True, 'alpha':(0., 1500.), 'sigma':(30., 50.), 'do_rotation':True, 'angle_x': (0., 2 * np.pi), 'angle_y': (0., 0), 'angle_z': (0., 0), 'do_scale': True, 'scale':(0.8, 1.1), 'random_crop':False, 'rand_crop_dist': (self.patch_size[0] / 2. - 3, self.patch_size[1] / 2. - 3), 'border_mode_data': 'constant', 'border_cval_data': 0, 'order_data': 1 } if self.dim == 3: self.da_kwargs['do_elastic_deform'] = False self.da_kwargs['angle_x'] = (0, 0.0) self.da_kwargs['angle_y'] = (0, 0.0) #must be 0!! self.da_kwargs['angle_z'] = (0., 2 * np.pi) ######################### # Add model specifics # ######################### {'detection_unet': self.add_det_unet_configs, 'mrcnn': self.add_mrcnn_configs, 'ufrcnn': self.add_mrcnn_configs, 'ufrcnn_surrounding': self.add_mrcnn_configs, 'retina_net': self.add_mrcnn_configs, 'retina_unet': self.add_mrcnn_configs, 'prob_detector': self.add_mrcnn_configs, }[self.model]() def add_det_unet_configs(self): self.learning_rate = [1e-4] * self.num_epochs # aggregation from pixel perdiction to object scores (connected component). One of ['max', 'median'] self.aggregation_operation = 'max' # max number of roi candidates to identify per image (slice in 2D, volume in 3D) self.n_roi_candidates = 3 if self.dim == 2 else 8 # loss mode: either weighted cross entropy ('wce'), batch-wise dice loss ('dice), or the sum of both ('dice_wce') self.seg_loss_mode = 'dice_wce' # if <1, false positive predictions in foreground are penalized less. self.fp_dice_weight = 1 if self.dim == 2 else 1 self.wce_weights = [1, 1, 1] self.detection_min_confidence = self.min_det_thresh # if 'True', loss distinguishes all classes, else only foreground vs. background (class agnostic). self.class_specific_seg_flag = True self.num_seg_classes = 3 if self.class_specific_seg_flag else 2 self.head_classes = self.num_seg_classes def add_mrcnn_configs(self): # learning rate is a list with one entry per epoch. self.learning_rate = [1e-4] * self.num_epochs # disable mask head loss. (e.g. if no pixelwise annotations available) self.frcnn_mode = False # disable the re-sampling of mask proposals to original size for speed-up. # since evaluation is detection-driven (box-matching) and not instance segmentation-driven (iou-matching), # mask-outputs are optional. self.return_masks_in_val = True self.return_masks_in_test = False # set number of proposal boxes to plot after each epoch. self.n_plot_rpn_props = 0 if self.dim == 2 else 0 # number of classes for head networks: n_foreground_classes + 1 (background) self.head_classes = 3 # seg_classes hier refers to the first stage classifier (RPN) self.num_seg_classes = 2 # foreground vs. background # feature map strides per pyramid level are inferred from architecture. self.backbone_strides = {'xy': [4, 8, 16, 32], 'z': [1, 2, 4, 8]} # anchor scales are chosen according to expected object sizes in data set. Default uses only one anchor scale # per pyramid level. (outer list are pyramid levels (corresponding to BACKBONE_STRIDES), inner list are scales per level.) self.rpn_anchor_scales = {'xy': [[8], [16], [32], [64]], 'z': [[2], [4], [8], [16]]} # choose which pyramid levels to extract features from: P2: 0, P3: 1, P4: 2, P5: 3. self.pyramid_levels = [0, 1, 2, 3] # number of feature maps in rpn. typically lowered in 3D to save gpu-memory. self.n_rpn_features = 512 if self.dim == 2 else 128 # anchor ratios and strides per position in feature maps. self.rpn_anchor_ratios = [0.5, 1., 2.] self.rpn_anchor_stride = 1 # Threshold for first stage (RPN) non-maximum suppression (NMS): LOWER == HARDER SELECTION self.rpn_nms_threshold = 0.7 if self.dim == 2 else 0.7 # loss sampling settings. self.rpn_train_anchors_per_image = 2 #per batch element self.train_rois_per_image = 2 #per batch element self.roi_positive_ratio = 0.5 self.anchor_matching_iou = 0.7 # factor of top-k candidates to draw from per negative sample (stochastic-hard-example-mining). # poolsize to draw top-k candidates from will be shem_poolsize * n_negative_samples. self.shem_poolsize = 10 self.pool_size = (7, 7) if self.dim == 2 else (7, 7, 3) self.mask_pool_size = (14, 14) if self.dim == 2 else (14, 14, 5) self.mask_shape = (28, 28) if self.dim == 2 else (28, 28, 10) self.rpn_bbox_std_dev = np.array([0.1, 0.1, 0.1, 0.2, 0.2, 0.2]) self.bbox_std_dev = np.array([0.1, 0.1, 0.1, 0.2, 0.2, 0.2]) self.window = np.array([0, 0, self.patch_size[0], self.patch_size[1]]) self.scale = np.array([self.patch_size[0], self.patch_size[1], self.patch_size[0], self.patch_size[1]]) if self.dim == 2: self.rpn_bbox_std_dev = self.rpn_bbox_std_dev[:4] self.bbox_std_dev = self.bbox_std_dev[:4] self.window = self.window[:4] self.scale = self.scale[:4] # pre-selection in proposal-layer (stage 1) for NMS-speedup. applied per batch element. self.pre_nms_limit = 3000 if self.dim == 2 else 6000 # n_proposals to be selected after NMS per batch element. too high numbers blow up memory if "detect_while_training" is True, # since proposals of the entire batch are forwarded through second stage in as one "batch". self.roi_chunk_size = 800 if self.dim == 2 else 600 self.post_nms_rois_training = 500 if self.dim == 2 else 75 self.post_nms_rois_inference = 500 # Final selection of detections (refine_detections) self.model_max_instances_per_batch_element = 10 if self.dim == 2 else 30 # per batch element and class. self.detection_nms_threshold = 1e-5 # needs to be > 0, otherwise all predictions are one cluster. self.model_min_confidence = 0.1 if self.dim == 2: self.backbone_shapes = np.array( [[int(np.ceil(self.patch_size[0] / stride)), int(np.ceil(self.patch_size[1] / stride))] for stride in self.backbone_strides['xy']]) else: self.backbone_shapes = np.array( [[int(np.ceil(self.patch_size[0] / stride)), int(np.ceil(self.patch_size[1] / stride)), int(np.ceil(self.patch_size[2] / stride_z))] for stride, stride_z in zip(self.backbone_strides['xy'], self.backbone_strides['z'] )]) if self.model == 'ufrcnn': self.operate_stride1 = True self.class_specific_seg_flag = True self.num_seg_classes = 3 if self.class_specific_seg_flag else 2 self.frcnn_mode = True if self.model == 'retina_net' or self.model == 'retina_unet' or self.model == 'prob_detector': # implement extra anchor-scales according to retina-net publication. self.rpn_anchor_scales['xy'] = [[ii[0], ii[0] * (2 ** (1 / 3)), ii[0] * (2 ** (2 / 3))] for ii in self.rpn_anchor_scales['xy']] self.rpn_anchor_scales['z'] = [[ii[0], ii[0] * (2 ** (1 / 3)), ii[0] * (2 ** (2 / 3))] for ii in self.rpn_anchor_scales['z']] self.n_anchors_per_pos = len(self.rpn_anchor_ratios) * 3 self.n_rpn_features = 256 if self.dim == 2 else 64 # pre-selection of detections for NMS-speedup. per entire batch. self.pre_nms_limit = 10000 if self.dim == 2 else 50000 # anchor matching iou is lower than in Mask R-CNN according to https://arxiv.org/abs/1708.02002 self.anchor_matching_iou = 0.5 # if 'True', seg loss distinguishes all classes, else only foreground vs. background (class agnostic). self.num_seg_classes = 3 if self.class_specific_seg_flag else 2 if self.model == 'retina_unet': self.operate_stride1 = True diff --git a/unittests.py b/unittests.py index 18f9258..f2cff15 100644 --- a/unittests.py +++ b/unittests.py @@ -1,274 +1,301 @@ #!/usr/bin/env python # Copyright 2019 Division of Medical Image Computing, German Cancer Research Center (DKFZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import unittest import os import pickle import time from multiprocessing import Pool import subprocess import numpy as np import pandas as pd import torch import torchvision as tv import tqdm import utils.exp_utils as utils import utils.model_utils as mutils """ Note on unittests: run this file either in the way intended for unittests by starting the script with python -m unittest unittests.py or start it as a normal python file as python unittests.py. You can selective run single tests by calling python -m unittest unittests.TestClassOfYourChoice, where TestClassOfYourChoice is the name of the test defined below, e.g., CompareFoldSplits. """ def inspect_info_df(pp_dir): """ use your debugger to look into the info df of a pp dir. :param pp_dir: preprocessed-data directory """ info_df = pd.read_pickle(os.path.join(pp_dir, "info_df.pickle")) return def generate_boxes(count, dim=2, h=100, w=100, d=20, normalize=False, on_grid=False, seed=0): """ generate boxes of format [y1, x1, y2, x2, (z1, z2)]. :param count: nr of boxes :param dim: dimension of boxes (2 or 3) :return: boxes in format (n_boxes, 4 or 6), scores """ np.random.seed(seed) if on_grid: lower_y = np.random.randint(0, h // 2, (count,)) lower_x = np.random.randint(0, w // 2, (count,)) upper_y = np.random.randint(h // 2, h, (count,)) upper_x = np.random.randint(w // 2, w, (count,)) if dim == 3: lower_z = np.random.randint(0, d // 2, (count,)) upper_z = np.random.randint(d // 2, d, (count,)) else: lower_y = np.random.rand(count) * h / 2. lower_x = np.random.rand(count) * w / 2. upper_y = (np.random.rand(count) + 1.) * h / 2. upper_x = (np.random.rand(count) + 1.) * w / 2. if dim == 3: lower_z = np.random.rand(count) * d / 2. upper_z = (np.random.rand(count) + 1.) * d / 2. if dim == 3: boxes = np.array(list(zip(lower_y, lower_x, upper_y, upper_x, lower_z, upper_z))) # add an extreme box that tests the boundaries boxes = np.concatenate((boxes, np.array([[0., 0., h, w, 0, d]]))) else: boxes = np.array(list(zip(lower_y, lower_x, upper_y, upper_x))) boxes = np.concatenate((boxes, np.array([[0., 0., h, w]]))) scores = np.random.rand(count + 1) if normalize: divisor = np.array([h, w, h, w, d, d]) if dim == 3 else np.array([h, w, h, w]) boxes = boxes / divisor return boxes, scores # -------- check own nms CUDA implement against own numpy implement ------ class CheckNMSImplementation(unittest.TestCase): @staticmethod def assert_res_equality(keep_ics1, keep_ics2, boxes, scores, tolerance=0, names=("res1", "res2")): """ :param keep_ics1: keep indices (results), torch.Tensor of shape (n_ics,) :param keep_ics2: :return: """ keep_ics1, keep_ics2 = keep_ics1.cpu().numpy(), keep_ics2.cpu().numpy() discrepancies = np.setdiff1d(keep_ics1, keep_ics2) try: checks = np.array([ len(discrepancies) <= tolerance ]) except: checks = np.zeros((1,)).astype("bool") msgs = np.array([ """{}: {} \n{}: {} \nboxes: {}\n {}\n""".format(names[0], keep_ics1, names[1], keep_ics2, boxes, scores) ]) assert np.all(checks), "NMS: results mismatch: " + "\n".join(msgs[~checks]) def single_case(self, count=20, dim=3, threshold=0.2, seed=0): boxes, scores = generate_boxes(count, dim, seed=seed, h=320, w=280, d=30) keep_numpy = torch.tensor(mutils.nms_numpy(boxes, scores, threshold)) # for some reason torchvision nms requires box coords as floats. boxes = torch.from_numpy(boxes).type(torch.float32) scores = torch.from_numpy(scores).type(torch.float32) if dim == 2: """need to wait until next pytorch release where they fixed nms on cpu (currently they have >= where it - needs to be >. + needs to be >.) """ # keep_ops = tv.ops.nms(boxes, scores, threshold) # self.assert_res_equality(keep_numpy, keep_ops, boxes, scores, tolerance=0, names=["np", "ops"]) pass boxes = boxes.cuda() scores = scores.cuda() keep = self.nms_ext.nms(boxes, scores, threshold) self.assert_res_equality(keep_numpy, keep, boxes, scores, tolerance=0, names=["np", "cuda"]) + def manual_example(self): + """ + 100 x 221 (y, x) image. 5 overlapping boxes, 4 of the same class, 3 of them overlapping above threshold. + + """ + threshold = 0.3 + boxes = torch.tensor([ + [20, 30, 80, 130], #0 reference (needs to have highest score) + [30, 40, 70, 120], #1 IoU 0.35 + [10, 50, 90, 80], #2 IoU 0.11 + [40, 20, 75, 135], #3 IoU 0.34 + [30, 40, 70, 120], #4 IoU 0.35 again but with lower score + ]).cuda().float() + + scores = torch.tensor([0.71, 0.94, 1.0, 0.82, 0.11]).cuda() + + # expected: keep == [1, 2] + keep = self.nms_ext.nms(boxes, scores, threshold) + + diff = np.setdiff1d(keep.cpu().numpy(), [1,2]) + assert len(diff) == 0, "expected: {}, received: {}.".format([1,2], keep) + + + def test(self, n_cases=200, box_count=30, threshold=0.5): # dynamically import module so that it doesn't affect other tests if import fails self.nms_ext = utils.import_module("nms_ext", 'custom_extensions/nms/nms.py') + + self.manual_example() + # change seed to something fix if you want exactly reproducible test seed0 = np.random.randint(50) print("NMS test progress (done/total box configurations) 2D:", end="\n") for i in tqdm.tqdm(range(n_cases)): self.single_case(count=box_count, dim=2, threshold=threshold, seed=seed0+i) print("NMS test progress (done/total box configurations) 3D:", end="\n") for i in tqdm.tqdm(range(n_cases)): self.single_case(count=box_count, dim=3, threshold=threshold, seed=seed0+i) return class CheckRoIAlignImplementation(unittest.TestCase): def prepare(self, dim=2): b, c, h, w = 1, 3, 50, 50 # feature map, (b, c, h, w(, z)) if dim == 2: fmap = torch.rand(b, c, h, w).cuda() # rois = torch.tensor([[ # [0.1, 0.1, 0.3, 0.3], # [0.2, 0.2, 0.4, 0.7], # [0.5, 0.7, 0.7, 0.9], # ]]).cuda() pool_size = (7, 7) rois = generate_boxes(5, dim=dim, h=h, w=w, on_grid=True, seed=np.random.randint(50))[0] elif dim == 3: d = 20 fmap = torch.rand(b, c, h, w, d).cuda() # rois = torch.tensor([[ # [0.1, 0.1, 0.3, 0.3, 0.1, 0.1], # [0.2, 0.2, 0.4, 0.7, 0.2, 0.4], # [0.5, 0.0, 0.7, 1.0, 0.4, 0.5], # [0.0, 0.0, 0.9, 1.0, 0.0, 1.0], # ]]).cuda() pool_size = (7, 7, 3) rois = generate_boxes(5, dim=dim, h=h, w=w, d=d, on_grid=True, seed=np.random.randint(50), normalize=False)[0] else: raise ValueError("dim needs to be 2 or 3") rois = [torch.from_numpy(rois).type(dtype=torch.float32).cuda(), ] fmap.requires_grad_(True) return fmap, rois, pool_size def check_2d(self): """ check vs torchvision ops not possible as on purpose different approach. :return: """ raise NotImplementedError # fmap, rois, pool_size = self.prepare(dim=2) # ra_object = self.ra_ext.RoIAlign(output_size=pool_size, spatial_scale=1., sampling_ratio=-1) # align_ext = ra_object(fmap, rois) # loss_ext = align_ext.sum() # loss_ext.backward() # # rois_swapped = [rois[0][:, [1,3,0,2]]] # align_ops = tv.ops.roi_align(fmap, rois_swapped, pool_size) # loss_ops = align_ops.sum() # loss_ops.backward() # # assert (loss_ops == loss_ext), "sum of roialign ops and extension 2D diverges" # assert (align_ops == align_ext).all(), "ROIAlign failed 2D test" def check_3d(self): fmap, rois, pool_size = self.prepare(dim=3) ra_object = self.ra_ext.RoIAlign(output_size=pool_size, spatial_scale=1., sampling_ratio=-1) align_ext = ra_object(fmap, rois) loss_ext = align_ext.sum() loss_ext.backward() align_np = mutils.roi_align_3d_numpy(fmap.cpu().detach().numpy(), [roi.cpu().numpy() for roi in rois], pool_size) align_np = np.squeeze(align_np) # remove singleton batch dim align_ext = align_ext.cpu().detach().numpy() assert np.allclose(align_np, align_ext, rtol=1e-5, atol=1e-8), "RoIAlign differences in numpy and CUDA implement" def specific_example_check(self): # dummy input self.ra_ext = utils.import_module("ra_ext", 'custom_extensions/roi_align/roi_align.py') exp = 6 pool_size = (2,2) fmap = torch.arange(exp**2).view(exp,exp).unsqueeze(0).unsqueeze(0).cuda().type(dtype=torch.float32) boxes = torch.tensor([[1., 1., 5., 5.]]).cuda()/exp ind = torch.tensor([0.]*len(boxes)).cuda().type(torch.float32) y_exp, x_exp = fmap.shape[2:] # exp = expansion boxes.mul_(torch.tensor([y_exp, x_exp, y_exp, x_exp], dtype=torch.float32).cuda()) boxes = torch.cat((ind.unsqueeze(1), boxes), dim=1) aligned_tv = tv.ops.roi_align(fmap, boxes, output_size=pool_size, sampling_ratio=-1) aligned = self.ra_ext.roi_align_2d(fmap, boxes, output_size=pool_size, sampling_ratio=-1) boxes_3d = torch.cat((boxes, torch.tensor([[-1.,1.]]*len(boxes)).cuda()), dim=1) fmap_3d = fmap.unsqueeze(dim=-1) pool_size = (*pool_size,1) ra_object = self.ra_ext.RoIAlign(output_size=pool_size, spatial_scale=1.,) aligned_3d = ra_object(fmap_3d, boxes_3d) # expected_res = torch.tensor([[[[10.5000, 12.5000], # this would be with an alternative grid-point setting # [22.5000, 24.5000]]]]).cuda() expected_res = torch.tensor([[[[14., 16.], [26., 28.]]]]).cuda() expected_res_3d = torch.tensor([[[[[14.],[16.]], [[26.],[28.]]]]]).cuda() assert torch.all(aligned==expected_res), "2D RoIAlign check vs. specific example failed. res: {}\n expected: {}\n".format(aligned, expected_res) assert torch.all(aligned_3d==expected_res_3d), "3D RoIAlign check vs. specific example failed. res: {}\n expected: {}\n".format(aligned_3d, expected_res_3d) def test(self): # dynamically import module so that it doesn't affect other tests if import fails self.ra_ext = utils.import_module("ra_ext", 'custom_extensions/roi_align/roi_align.py') self.specific_example_check() # 2d test #self.check_2d() # 3d test self.check_3d() return if __name__=="__main__": stime = time.time() unittest.main() mins, secs = divmod((time.time() - stime), 60) h, mins = divmod(mins, 60) t = "{:d}h:{:02d}m:{:02d}s".format(int(h), int(mins), int(secs)) print("{} total runtime: {}".format(os.path.split(__file__)[1], t)) \ No newline at end of file