diff --git a/Modules/Segmentation/Algorithms/mitkCreateDistanceImageFromSurfaceFilter.cpp b/Modules/Segmentation/Algorithms/mitkCreateDistanceImageFromSurfaceFilter.cpp index 3f3de2c39a..33e5a77d04 100644 --- a/Modules/Segmentation/Algorithms/mitkCreateDistanceImageFromSurfaceFilter.cpp +++ b/Modules/Segmentation/Algorithms/mitkCreateDistanceImageFromSurfaceFilter.cpp @@ -1,524 +1,588 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkCreateDistanceImageFromSurfaceFilter.h" mitk::CreateDistanceImageFromSurfaceFilter::CreateDistanceImageFromSurfaceFilter() { m_DistanceImageVolume = 50000; this->m_UseProgressBar = false; this->m_ProgressStepSize = 5; mitk::Image::Pointer output = mitk::Image::New(); this->SetNthOutput(0, output.GetPointer()); } mitk::CreateDistanceImageFromSurfaceFilter::~CreateDistanceImageFromSurfaceFilter() { } void mitk::CreateDistanceImageFromSurfaceFilter::GenerateData() { //First of all we have to build the equation-system from the existing contour-edge-points this->CreateSolutionMatrixAndFunctionValues(); //Then we solve the equation-system via QR - decomposition. The interpolation weights are obtained in that way vnl_qr solver (m_SolutionMatrix); m_Weights = solver.solve(m_FunctionValues); //Setting progressbar if (this->m_UseProgressBar) mitk::ProgressBar::GetInstance()->Progress(2); //The last step is to create the distance map with the interpolated distance function this->CreateDistanceImage(); m_Centers.clear(); m_FunctionValues.clear(); m_Normals.clear(); m_Weights.clear(); m_SolutionMatrix.clear(); //Setting progressbar if (this->m_UseProgressBar) mitk::ProgressBar::GetInstance()->Progress(3); } void mitk::CreateDistanceImageFromSurfaceFilter::CreateSolutionMatrixAndFunctionValues() { unsigned int numberOfInputs = this->GetNumberOfIndexedInputs(); if (numberOfInputs == 0) { MITK_ERROR << "mitk::CreateDistanceImageFromSurfaceFilter: No input available. Please set an input!" << std::endl; itkExceptionMacro("mitk::CreateDistanceImageFromSurfaceFilter: No input available. Please set an input!"); return; } //First of all we have to extract the nomals and the surface points. //Duplicated points can be eliminated Surface* currentSurface; vtkSmartPointer polyData; vtkSmartPointer currentCellNormals; vtkSmartPointer existingPolys; vtkSmartPointer existingPoints; double p[3]; PointType currentPoint; PointType normal; for (unsigned int i = 0; i < numberOfInputs; i++) { currentSurface = const_cast( this->GetInput(i) ); polyData = currentSurface->GetVtkPolyData(); if (polyData->GetNumberOfPolys() == 0) { MITK_INFO << "mitk::CreateDistanceImageFromSurfaceFilter: No input-polygons available. Please be sure the input surface consists of polygons!" << std::endl; } currentCellNormals = vtkDoubleArray::SafeDownCast(polyData->GetCellData()->GetNormals()); existingPolys = polyData->GetPolys(); existingPoints = polyData->GetPoints(); existingPolys->InitTraversal(); vtkIdType* cell (NULL); vtkIdType cellSize (0); for( existingPolys->InitTraversal(); existingPolys->GetNextCell(cellSize, cell);) { for ( unsigned int j = 0; j < cellSize; j++ ) { existingPoints->GetPoint(cell[j], p); currentPoint.copy_in(p); int count = std::count(m_Centers.begin() ,m_Centers.end(),currentPoint); if (count == 0) { double currentNormal[3]; currentCellNormals->GetTuple(cell[j], currentNormal); normal.copy_in(currentNormal); m_Normals.push_back(normal); m_Centers.push_back(currentPoint); } }//end for all points }//end for all cells }//end for all outputs //For we can now calculate the exact size of the centers we initialize the data structures unsigned int numberOfCenters = m_Centers.size(); m_Centers.reserve(numberOfCenters*3); m_FunctionValues.set_size(numberOfCenters*3); m_FunctionValues.fill(0); //Create inner points for (unsigned int i = 0; i < numberOfCenters; i++) { currentPoint = m_Centers.at(i); normal = m_Normals.at(i); currentPoint[0] = currentPoint[0] - normal[0]; currentPoint[1] = currentPoint[1] - normal[1]; currentPoint[2] = currentPoint[2] - normal[2]; m_Centers.push_back(currentPoint); m_FunctionValues.put(numberOfCenters+i, -1); } //Create outer points for (unsigned int i = 0; i < numberOfCenters; i++) { currentPoint = m_Centers.at(i); normal = m_Normals.at(i); currentPoint[0] = currentPoint[0] + normal[0]; currentPoint[1] = currentPoint[1] + normal[1]; currentPoint[2] = currentPoint[2] + normal[2]; m_Centers.push_back(currentPoint); m_FunctionValues.put(numberOfCenters*2+i, 1); } //Now we have created all centers and all function values. Next step is to create the solution matrix numberOfCenters = m_Centers.size(); m_SolutionMatrix.set_size(numberOfCenters, numberOfCenters); m_Weights.set_size(numberOfCenters); PointType p1; PointType p2; double norm; for (unsigned int i = 0; i < numberOfCenters; i++) { for (unsigned int j = 0; j < numberOfCenters; j++) { //Calculate the RBF value. Currently using Phi(r) = r with r is the euclidian distance between two points p1 = m_Centers.at(i); p2 = m_Centers.at(j); p1 = p1 - p2; norm = p1.two_norm(); m_SolutionMatrix(i,j) = norm; } } } void mitk::CreateDistanceImageFromSurfaceFilter::CreateDistanceImage() { - typedef itk::Image DistanceImageType; - typedef itk::ImageRegionIteratorWithIndex ImageIterator; - typedef itk::NeighborhoodIterator NeighborhoodImageIterator; - DistanceImageType::Pointer distanceImg = DistanceImageType::New(); //Determin the bounding box of the delineated contours double xmin = m_Centers.at(0)[0]; double ymin = m_Centers.at(0)[1]; double zmin = m_Centers.at(0)[2]; double xmax = m_Centers.at(0)[0]; double ymax = m_Centers.at(0)[1]; double zmax = m_Centers.at(0)[2]; for (unsigned int i = 1; i < m_Centers.size(); i++) { if (xmin > m_Centers.at(i)[0]) { xmin = m_Centers.at(i)[0]; } if (ymin > m_Centers.at(i)[1]) { ymin = m_Centers.at(i)[1]; } if (zmin > m_Centers.at(i)[2]) { zmin = m_Centers.at(i)[2]; } if (xmax < m_Centers.at(i)[0]) { xmax = m_Centers.at(i)[0]; } if (ymax < m_Centers.at(i)[1]) { ymax = m_Centers.at(i)[1]; } if (zmax < m_Centers.at(i)[2]) { zmax = m_Centers.at(i)[2]; } } Vector3D extentMM; extentMM[0] = xmax - xmin + 5; extentMM[1] = ymax - ymin + 5; extentMM[2] = zmax - zmin + 5; //Shifting the distance image's offest to achieve an exact distance calculation xmin = xmin - 5; ymin = ymin - 5; zmin = zmin - 5; /* Now create an empty distance image. The create image will always have the same size, independent from the original image (e.g. always consists of 500000 pixels) and will have an isotropic spacing. The spacing is calculated like the following: The image's volume = 500000 Pixels = extentX*spacing*extentY*spacing*extentZ*spacing So the spacing is: spacing = ( 500000 / extentX*extentY*extentZ )^(1/3) */ double basis = (extentMM[0]*extentMM[1]*extentMM[2]) / m_DistanceImageVolume; double exponent = 1.0/3.0; double distImgSpacing = pow(basis, exponent); int tempSpacing = (distImgSpacing+0.05)*10; m_DistanceImageSpacing = (double)tempSpacing/10.0; unsigned int numberOfXPixel = extentMM[0] / m_DistanceImageSpacing; unsigned int numberOfYPixel = extentMM[1] / m_DistanceImageSpacing; unsigned int numberOfZPixel = extentMM[2] / m_DistanceImageSpacing; DistanceImageType::SizeType size; //Increase the distance image's size a little bit to achieve an exact distance calculation size[0] = numberOfXPixel + 5; size[1] = numberOfYPixel + 5; size[2] = numberOfZPixel + 5; DistanceImageType::IndexType start; start[0] = 0; start[1] = 0; start[2] = 0; DistanceImageType::RegionType lpRegion; lpRegion.SetSize(size); lpRegion.SetIndex(start); distanceImg->SetRegions( lpRegion ); distanceImg->SetSpacing( m_DistanceImageSpacing ); distanceImg->Allocate(); //First of all the image is initialized with the value 10 for each pixel distanceImg->FillBuffer(10); /* Now we must caculate the distance for each pixel. But instead of calculating the distance value for all of the image's pixels we proceed similar to the region growing algorithm: 1. Take the first pixel from the narrowband_point_list and calculate the distance for each neighbor (6er) 2. If the current index's distance value is below a certain threshold push it into the list 3. Next iteration take the next index from the list and start with 1. again This is done until the narrowband_point_list is empty. */ std::queue narrowbandPoints; PointType currentPoint = m_Centers.at(0); double distance = this->CalculateDistanceValue(currentPoint); DistanceImageType::IndexType currentIndex; currentIndex[0] = ( currentPoint[0]-xmin ) / m_DistanceImageSpacing; currentIndex[1] = ( currentPoint[1]-ymin ) / m_DistanceImageSpacing; currentIndex[2] = ( currentPoint[2]-zmin ) / m_DistanceImageSpacing; narrowbandPoints.push(currentIndex); distanceImg->SetPixel(currentIndex, distance); NeighborhoodImageIterator::RadiusType radius; radius.Fill(1); NeighborhoodImageIterator nIt(radius, distanceImg, distanceImg->GetLargestPossibleRegion()); unsigned int relativeNbIdx[] = {4, 10, 12, 14, 16, 22}; bool isInBounds = false; while ( !narrowbandPoints.empty() ) { nIt.SetLocation(narrowbandPoints.front()); narrowbandPoints.pop(); for (int i = 0; i < 6; i++) { nIt.GetPixel(relativeNbIdx[i], isInBounds); if( isInBounds && nIt.GetPixel(relativeNbIdx[i]) == 10) { currentIndex = nIt.GetIndex(relativeNbIdx[i]); currentPoint[0] = currentIndex[0]*m_DistanceImageSpacing + xmin; currentPoint[1] = currentIndex[1]*m_DistanceImageSpacing + ymin; currentPoint[2] = currentIndex[2]*m_DistanceImageSpacing + zmin; distance = this->CalculateDistanceValue(currentPoint); if ( abs(distance) <= m_DistanceImageSpacing ) { nIt.SetPixel(relativeNbIdx[i], distance); narrowbandPoints.push(currentIndex); } } } } ImageIterator imgRegionIterator (distanceImg, distanceImg->GetLargestPossibleRegion()); imgRegionIterator.GoToBegin(); - double prevPixelVal = 1; + // Fist we set the border slices of the image to value 1000 so that we can perform a + // region growing afterwards starting from the middle of the image - unsigned int _size[3] = { (unsigned int)(size[0] - 1), (unsigned int)(size[1] - 1), (unsigned int)(size[2] - 1) }; + DistanceImageType::SizeType reqSize; - //Set every pixel inside the surface to -10 except the edge point (so that the received surface is closed) - while (!imgRegionIterator.IsAtEnd()) { + reqSize[0] = distanceImg->GetLargestPossibleRegion().GetSize()[0]; + reqSize[1] = distanceImg->GetLargestPossibleRegion().GetSize()[1]; + reqSize[2] = 1; - if ( imgRegionIterator.Get() == 10 && prevPixelVal < 0 ) - { + DistanceImageType::IndexType reqStart; + reqStart[0] = 0; + reqStart[1] = 0; + reqStart[2] = 0; - while (imgRegionIterator.Get() == 10) - { - if (imgRegionIterator.GetIndex()[0] == _size[0] || imgRegionIterator.GetIndex()[1] == _size[1] || imgRegionIterator.GetIndex()[2] == _size[2] - || imgRegionIterator.GetIndex()[0] == 0U || imgRegionIterator.GetIndex()[1] == 0U || imgRegionIterator.GetIndex()[2] == 0U ) - { - imgRegionIterator.Set(10); - prevPixelVal = 10; - ++imgRegionIterator; - break; - } - else - { - imgRegionIterator.Set(-10); - ++imgRegionIterator; - prevPixelVal = -10; - } + DistanceImageType::RegionType reqRegion; - } + reqRegion.SetSize(reqSize); + reqRegion.SetIndex(reqStart); - } - else if (imgRegionIterator.GetIndex()[0] == _size[0] || imgRegionIterator.GetIndex()[1] == _size[1] || imgRegionIterator.GetIndex()[2] == _size[2] - || imgRegionIterator.GetIndex()[0] == 0U || imgRegionIterator.GetIndex()[1] == 0U || imgRegionIterator.GetIndex()[2] == 0U) + this->FillImageRegion(reqRegion, 1000, distanceImg); + + reqStart[0] = 0; + reqStart[1] = 0; + reqStart[2] = distanceImg->GetLargestPossibleRegion().GetSize()[2]-1; + + reqRegion.SetIndex(reqStart); + + this->FillImageRegion(reqRegion, 1000, distanceImg); + + reqSize[0] = 1; + reqSize[1] = distanceImg->GetLargestPossibleRegion().GetSize()[1]; + reqSize[2] = distanceImg->GetLargestPossibleRegion().GetSize()[2];; + + reqStart[0] = 0; + reqStart[1] = 0; + reqStart[2] = 0; + + reqRegion.SetSize(reqSize); + reqRegion.SetIndex(reqStart); + + this->FillImageRegion(reqRegion, 1000, distanceImg); + + reqStart[0] = distanceImg->GetLargestPossibleRegion().GetSize()[0]-1; + reqStart[1] = 0; + reqStart[2] = 0; + + reqRegion.SetIndex(reqStart); + + this->FillImageRegion(reqRegion, 1000, distanceImg); + + reqSize[0] = distanceImg->GetLargestPossibleRegion().GetSize()[0]; + reqSize[1] = 1; + reqSize[2] = distanceImg->GetLargestPossibleRegion().GetSize()[2];; + + reqStart[0] = 0; + reqStart[1] = 0; + reqStart[2] = 0; + + reqRegion.SetSize(reqSize); + reqRegion.SetIndex(reqStart); + + this->FillImageRegion(reqRegion, 1000, distanceImg); + + reqStart[0] = 0; + reqStart[1] = distanceImg->GetLargestPossibleRegion().GetSize()[1]-1; + reqStart[2] = 0; + + reqRegion.SetIndex(reqStart); + + this->FillImageRegion(reqRegion, 1000, distanceImg); + + // Now we make some kind of region growing from the middle of the image to set all + // inner pixels to -10. In this way we assure to extract a valid surface + NeighborhoodImageIterator nIt2(radius, distanceImg, distanceImg->GetLargestPossibleRegion()); + + currentIndex[0] = distanceImg->GetLargestPossibleRegion().GetSize()[0]*0.5; + currentIndex[1] = distanceImg->GetLargestPossibleRegion().GetSize()[1]*0.5; + currentIndex[2] = distanceImg->GetLargestPossibleRegion().GetSize()[2]*0.5; + + narrowbandPoints.push(currentIndex); + distanceImg->SetPixel(currentIndex, -10); + + while ( !narrowbandPoints.empty() ) + { + + nIt2.SetLocation(narrowbandPoints.front()); + narrowbandPoints.pop(); + + for (int i = 0; i < 6; i++) { - imgRegionIterator.Set(10); - prevPixelVal = 10; - ++imgRegionIterator; - } - else { - prevPixelVal = imgRegionIterator.Get(); - ++imgRegionIterator; + if( nIt2.GetPixel(relativeNbIdx[i]) == 10) + { + currentIndex = nIt2.GetIndex(relativeNbIdx[i]); + nIt2.SetPixel(relativeNbIdx[i], -10); + narrowbandPoints.push(currentIndex); + } } - } Image::Pointer resultImage = this->GetOutput(); Point3D origin; origin[0] = xmin; origin[1] = ymin; origin[2] = zmin; CastToMitkImage(distanceImg, resultImage); resultImage->GetGeometry()->SetOrigin(origin); } +void mitk::CreateDistanceImageFromSurfaceFilter::FillImageRegion(DistanceImageType::RegionType reqRegion, + DistanceImageType::PixelType pixelValue, DistanceImageType::Pointer image) +{ + image->SetRequestedRegion(reqRegion); + ImageIterator it (image, image->GetRequestedRegion()); + while (!it.IsAtEnd()) + { + it.Set(pixelValue); + ++it; + } + +} + double mitk::CreateDistanceImageFromSurfaceFilter::CalculateDistanceValue(PointType p) { double distanceValue (0); PointType p1; PointType p2; double norm; for (unsigned int i = 0; i < m_Centers.size(); i++) { p1 = m_Centers.at(i); p2 = p-p1; norm = p2.two_norm(); distanceValue = distanceValue + norm*m_Weights.get(i); } return distanceValue; } void mitk::CreateDistanceImageFromSurfaceFilter::GenerateOutputInformation() { } void mitk::CreateDistanceImageFromSurfaceFilter::PrintEquationSystem() { std::ofstream esfile; esfile.open("C:/Users/fetzer/Desktop/equationSystem/es.txt"); esfile<<"Nummber of rows: "<SetInput( 0, const_cast( surface ) ); } void mitk::CreateDistanceImageFromSurfaceFilter::SetInput( unsigned int idx, const mitk::Surface* surface ) { if ( this->GetInput(idx) != surface ) { this->SetNthInput( idx, const_cast( surface ) ); this->Modified(); } } const mitk::Surface* mitk::CreateDistanceImageFromSurfaceFilter::GetInput() { if (this->GetNumberOfIndexedInputs() < 1) return NULL; return static_cast(this->ProcessObject::GetInput(0)); } const mitk::Surface* mitk::CreateDistanceImageFromSurfaceFilter::GetInput( unsigned int idx) { if (this->GetNumberOfIndexedInputs() < 1) return NULL; return static_cast(this->ProcessObject::GetInput(idx)); } void mitk::CreateDistanceImageFromSurfaceFilter::RemoveInputs(mitk::Surface* input) { DataObjectPointerArraySizeType nb = this->GetNumberOfIndexedInputs(); for(DataObjectPointerArraySizeType i = 0; i < nb; i++) { if( this->GetInput(i) == input ) { this->RemoveInput(i); return; } } } void mitk::CreateDistanceImageFromSurfaceFilter::Reset() { for (unsigned int i = 0; i < this->GetNumberOfIndexedInputs(); i++) { this->PopBackInput(); } this->SetNumberOfIndexedInputs(0); this->SetNumberOfIndexedOutputs(1); mitk::Image::Pointer output = mitk::Image::New(); this->SetNthOutput(0, output.GetPointer()); } void mitk::CreateDistanceImageFromSurfaceFilter::SetUseProgressBar(bool status) { this->m_UseProgressBar = status; } void mitk::CreateDistanceImageFromSurfaceFilter::SetProgressStepSize(unsigned int stepSize) { this->m_ProgressStepSize = stepSize; } diff --git a/Modules/Segmentation/Algorithms/mitkCreateDistanceImageFromSurfaceFilter.h b/Modules/Segmentation/Algorithms/mitkCreateDistanceImageFromSurfaceFilter.h index a822411cbf..76acb4e829 100644 --- a/Modules/Segmentation/Algorithms/mitkCreateDistanceImageFromSurfaceFilter.h +++ b/Modules/Segmentation/Algorithms/mitkCreateDistanceImageFromSurfaceFilter.h @@ -1,161 +1,167 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkCreateDistanceImageFromSurfaceFilter_h_Included #define mitkCreateDistanceImageFromSurfaceFilter_h_Included #include "SegmentationExports.h" #include "mitkImageSource.h" #include "mitkSurface.h" #include "mitkProgressBar.h" #include "vtkSmartPointer.h" #include "vtkDoubleArray.h" #include "vtkCellArray.h" #include "vtkCellData.h" #include "vtkPolyData.h" #include "vnl/vnl_matrix.h" #include "vnl/vnl_vector.h" #include "vnl/vnl_vector_fixed.h" #include "vnl/algo/vnl_qr.h" #include "itkImage.h" #include "itkImageRegionIteratorWithIndex.h" #include "itkNeighborhoodIterator.h" #include namespace mitk { /** \brief This filter interpolates the 3D surface for a segmented area. The basis for the interpolation are the edge-points of contours that are drawn into an image. The interpolation itself is performed via Radial Basis Function Interpolation. ATTENTION: This filter needs beside the edge points of the delineated contours additionally the normals for each edge point. \sa mitkSurfaceInterpolationController Based on the contour edge points and their normal this filter calculates a distance function with the following properties: - Putting a point into the distance function that lies inside the considered surface gives a negativ scalar value - Putting a point into the distance function that lies outside the considered surface gives a positive scalar value - Putting a point into the distance function that lies exactly on the considered surface gives the value zero With this interpolated distance function a distance image will be created. The desired surface can then be extract e.g. with the marching cubes algorithm. (Within the distance image the surface goes exactly where the pixelvalues are zero) Note that the obtained distance image has always an isotropig spacing. The size (in this case volume) of the image can be adjusted by calling SetDistanceImageVolume(unsigned int volume) which specifies the number ob pixels enclosed by the image. \ingroup Process $Author: fetzer$ */ class Segmentation_EXPORT CreateDistanceImageFromSurfaceFilter : public ImageSource { public: typedef vnl_vector_fixed PointType; typedef std::vector< PointType > NormalList; typedef std::vector< PointType > CenterList; typedef vnl_matrix SolutionMatrix; typedef vnl_vector FunctionValues; typedef vnl_vector InterpolationWeights; typedef std::vector SurfaceList; + typedef itk::Image DistanceImageType; + typedef itk::ImageRegionIteratorWithIndex ImageIterator; + typedef itk::NeighborhoodIterator NeighborhoodImageIterator; + mitkClassMacro(CreateDistanceImageFromSurfaceFilter,ImageSource); itkNewMacro(Self); //Methods copied from mitkSurfaceToSurfaceFilter virtual void SetInput( const mitk::Surface* surface ); virtual void SetInput( unsigned int idx, const mitk::Surface* surface ); virtual const mitk::Surface* GetInput(); virtual const mitk::Surface* GetInput( unsigned int idx ); virtual void RemoveInputs(mitk::Surface* input); /** \brief Set the size of the output distance image. The size is specified by the image's volume (i.e. in this case how many pixels are enclosed by the image) If non is set, the volume will be 500000 pixels. */ itkSetMacro(DistanceImageVolume, unsigned int); void PrintEquationSystem(); //Resets the filter, i.e. removes all inputs and outputs void Reset(); /** \brief Set whether the mitkProgressBar should be used \a Parameter true for using the progress bar, false otherwise */ void SetUseProgressBar(bool); /** \brief Set the stepsize which the progress bar should proceed \a Parameter The stepsize for progressing */ void SetProgressStepSize(unsigned int stepSize); protected: CreateDistanceImageFromSurfaceFilter(); virtual ~CreateDistanceImageFromSurfaceFilter(); virtual void GenerateData(); virtual void GenerateOutputInformation(); private: void CreateSolutionMatrixAndFunctionValues(); double CalculateDistanceValue(PointType p); void CreateDistanceImage (); + void FillImageRegion(DistanceImageType::RegionType reqRegion, DistanceImageType::PixelType pixelValue, DistanceImageType::Pointer image); + //Datastructures for the interpolation CenterList m_Centers; NormalList m_Normals; FunctionValues m_FunctionValues; InterpolationWeights m_Weights; SolutionMatrix m_SolutionMatrix; double m_DistanceImageSpacing; unsigned int m_DistanceImageVolume; bool m_UseProgressBar; unsigned int m_ProgressStepSize; }; }//namespace #endif