diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorReconstructionWithEigenvalueCorrectionFilter.h b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorReconstructionWithEigenvalueCorrectionFilter.h index b9259e967c..fcaf9ddbee 100644 --- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorReconstructionWithEigenvalueCorrectionFilter.h +++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorReconstructionWithEigenvalueCorrectionFilter.h @@ -1,209 +1,209 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _itk_TensorReconstructionWithEigenvalueCorrectionFilter_h_ #define _itk_TensorReconstructionWithEigenvalueCorrectionFilter_h_ #include "itkImageToImageFilter.h" #include #include #include #include #include namespace itk { template class TensorReconstructionWithEigenvalueCorrectionFilter : public ImageToImageFilter< itk::Image< TDiffusionPixelType, 3 >, itk::Image,3> > { public: typedef itk::VectorImage ImageType; typedef TensorReconstructionWithEigenvalueCorrectionFilter Self; typedef SmartPointer Pointer; typedef SmartPointer ConstPointer; typedef ImageToImageFilter< Image< TDiffusionPixelType, 3>, Image< DiffusionTensor3D< TTensorPixelType >, 3 > > Superclass; /** Method for creation through the object factory. */ itkNewMacro(Self) /** Runtime information support. */ itkTypeMacro(TensorReconstructionWithEigenvalueCorrectionFilter, ImageToImageFilter) typedef TDiffusionPixelType ReferencePixelType; typedef TDiffusionPixelType GradientPixelType; typedef DiffusionTensor3D< TTensorPixelType > TensorPixelType; typedef Image< TensorPixelType, 3 > TensorImageType; typedef TensorImageType OutputImageType; typedef typename Superclass::OutputImageRegionType OutputImageRegionType; /** An alternative typedef defining one (of the many) gradient images. * It will be assumed that the vectorImage has the same dimension as the * Reference image and a vector length parameter of \c n (number of * gradient directions) */ typedef VectorImage< GradientPixelType, 3 > GradientImagesType; typedef typename GradientImagesType::PixelType GradientVectorType; /** Holds each magnetic field gradient used to acquire one DWImage */ typedef vnl_vector_fixed< double, 3 > GradientDirectionType; /** Container to hold gradient directions of the 'n' DW measurements */ typedef VectorContainer< unsigned int, GradientDirectionType > GradientDirectionContainerType; /** Another set method to add a gradient directions and its corresponding * image. The image here is a VectorImage. The user is expected to pass the * gradient directions in a container. The ith element of the container * corresponds to the gradient direction of the ith component image the * VectorImage. For the baseline image, a vector of all zeros * should be set. */ void SetGradientImage( GradientDirectionContainerType *, const GradientImagesType *image); itkSetMacro( BValue, TTensorPixelType) itkSetMacro( B0Threshold, float) itkGetMacro(PseudoInverse, vnl_matrix) itkGetMacro(H, vnl_matrix) itkGetMacro(BVec, vnl_vector) itkGetMacro(B0Mask, vnl_vector) ImageType::Pointer GetCorrectedDiffusionVolumes() { return m_CorrectedDiffusionVolumes; } itk::Image::Pointer GetMask() { return m_MaskImage; } protected: TensorReconstructionWithEigenvalueCorrectionFilter(); ~TensorReconstructionWithEigenvalueCorrectionFilter() {} void GenerateData(); typedef enum { GradientIsInASingleImage = 1, GradientIsInManyImages, Else } GradientImageTypeEnumeration; private: double CheckNeighbours(int x, int y, int z,int f, itk::Size<3> size, itk::Image ::Pointer mask,itk::VectorImage::Pointer corrected_diffusion_temp); void CalculateAttenuation(vnl_vector org_data, vnl_vector &atten,int nof,int numberb0); //void CalculateTensor(vnl_vector atten, vnl_vector &tensor,int nof,int numberb0); - void CorrectDiffusionImage(int nof,int numberb0,itk::Size<3> size,itk::VectorImage::Pointer corrected_diffusion_temp,itk::VectorImage::Pointer corrected_diffusion,itk::Image::Pointer mask,vnl_vector< double> pixel_max,vnl_vector< double> pixel_min); + void CorrectDiffusionImage(int nof,int numberb0,itk::Size<3> size,itk::VectorImage::Pointer corrected_diffusion,itk::Image::Pointer mask,vnl_vector< double> pixel_max,vnl_vector< double> pixel_min); void GenerateTensorImage(int nof,int numberb0,itk::Size<3> size,itk::VectorImage::Pointer corrected_diffusion,itk::Image::Pointer mask,double what_mask,itk::Image< itk::DiffusionTensor3D, 3 >::Pointer tensorImg ); void DeepCopyTensorImage(itk::Image< itk::DiffusionTensor3D, 3 >::Pointer tensorImg, itk::Image< itk::DiffusionTensor3D, 3 >::Pointer temp_tensorImg); void DeepCopyDiffusionImage(itk::VectorImage::Pointer corrected_diffusion, itk::VectorImage::Pointer corrected_diffusion_temp,int nof); void TurnMask( itk::Size<3> size, itk::Image::Pointer mask, double previous_mask, double set_mask); double CheckNegatives ( itk::Size<3> size, itk::Image::Pointer mask, itk::Image< itk::DiffusionTensor3D, 3 >::Pointer tensorImg ); /** Gradient image was specified in a single image or in multiple images */ GradientImageTypeEnumeration m_GradientImageTypeEnumeration; /** Number of gradient measurements */ unsigned int m_NumberOfGradientDirections; /** container to hold gradient directions */ GradientDirectionContainerType::Pointer m_GradientDirectionContainer; /** b-value */ TTensorPixelType m_BValue; /** Number of baseline images */ unsigned int m_NumberOfBaselineImages; ImageType::Pointer m_CorrectedDiffusionVolumes; float m_B0Threshold; itk::Image::Pointer m_MaskImage; vnl_matrix m_PseudoInverse; vnl_matrix m_H; vnl_vector m_BVec; /** m_B0Mask indicates whether a volume identified by an index is B0-weighted or not */ vnl_vector m_B0Mask; typename GradientImagesType::Pointer m_GradientImagePointer; }; } // end of namespace #ifndef ITK_MANUAL_INSTANTIATION #include "itkTensorReconstructionWithEigenvalueCorrectionFilter.txx" #endif #endif diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorReconstructionWithEigenvalueCorrectionFilter.txx b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorReconstructionWithEigenvalueCorrectionFilter.txx index 45f7c987fe..e4fea36144 100644 --- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorReconstructionWithEigenvalueCorrectionFilter.txx +++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorReconstructionWithEigenvalueCorrectionFilter.txx @@ -1,965 +1,990 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _itk_TensorReconstructionWithEigenvalueCorrectionFilter_txx_ #define _itk_TensorReconstructionWithEigenvalueCorrectioFiltern_txx_ #endif #include "itkImageRegionConstIterator.h" #include #include #include "itkImageFileWriter.h" #include "itkImage.h" #include "itkImageRegionIterator.h" namespace itk { template TensorReconstructionWithEigenvalueCorrectionFilter ::TensorReconstructionWithEigenvalueCorrectionFilter() { m_B0Threshold = 50.0; } template void TensorReconstructionWithEigenvalueCorrectionFilter ::GenerateData () { // GradientImagesType input m_GradientImagePointer = static_cast< GradientImagesType * >( this->ProcessObject::GetInput(0) ); typename GradientImagesType::SizeType size = m_GradientImagePointer->GetLargestPossibleRegion().GetSize(); // number of volumes int nof = m_GradientDirectionContainer->Size(); // determine the number of b-zero values int numberb0=0; for(int i=0; i vec = m_GradientDirectionContainer->ElementAt(i); // due to roundings, the values are not always exactly zero if(vec[0]<0.0001 && vec[1]<0.0001 && vec[2]<0.0001 && vec[0]>-0.0001&& vec[1]>-0.0001 && vec[2]>-0.0001) { numberb0++; } } - // Matrix to store al diffusion encoding gradients + // Matrix to store all diffusion encoding gradients vnl_matrix directions(nof-numberb0,3); m_B0Mask.set_size(nof); int cnt=0; for(int i=0; i vec = m_GradientDirectionContainer->ElementAt(i); if(vec[0]<0.0001 && vec[1]<0.0001 && vec[2]<0.0001 && vec[0]>-0.001&& vec[1]>-0.001 && vec[2]>-0.001) { // the diffusion encoding gradient is approximately zero, wo we are dealing with a non-diffusion weighted volume m_B0Mask[i]=1; } else { // dealing with a diffusion weighted volume m_B0Mask[i]=0; // set the diffusion encoding gradient to the directions matrix directions[cnt][0] = vec[0]; directions[cnt][1] = vec[1]; directions[cnt][2] = vec[2]; cnt++; } } + // looking for maximal norm among gradients. + // The norm is calculated with use of spectral radius theorem- based on determination of eigenvalue. + vnl_matrix dirsTimesDirsTrans = directions*directions.transpose(); vnl_vector< double> diagonal(nof-numberb0); vnl_vector< double> b_vec(nof-numberb0); vnl_vector< double> temporary(3); + for (int i=0;i H(nof-numberb0, 6); vnl_matrix H_org(nof-numberb0, 6); vnl_vector pre_tensor(9); - int etbt[6] = { 0, 4, 8, 1, 5, 2 }; + //H is matrix that containes covariances for directions. It is stored twice because its original value is needed later + // while H is changed + + int etbt[6] = { 0, 4, 8, 1, 5, 2 };// tensor order for (int i = 0; i < nof-numberb0; i++) { for (int j = 0; j < 3; j++) { temporary[j] = -directions[i][j]; } for (int j = 0; j < 3; j++) { for (int k = 0; k < 3; k++) { pre_tensor[k + 3 * j] = temporary[k] * directions[i][j]; } } for (int j = 0; j < 6; j++) { H[i][j] = pre_tensor[etbt[j]]; } for (int j = 0; j < 3; j++) { H[i][3 + j] *= 2.0; } } H_org=H; + // calculation of inverse matrix by means of pseudoinverse + vnl_matrix inputtopseudoinverse=H.transpose()*H; vnl_symmetric_eigensystem eig( inputtopseudoinverse); vnl_matrix pseudoInverse = eig.pinverse()*H.transpose(); - - - - ImageType::Pointer corrected_diffusion_temp = ImageType::New(); typedef itk::VariableLengthVector VariableVectorType; VariableVectorType variableLengthVector; variableLengthVector.SetSize(nof); typedef itk::VariableLengthVector VariableVectorType; VariableVectorType corrected_single; corrected_single.SetSize(nof-1); typedef itk::Image MaskImageType; MaskImageType::Pointer mask = MaskImageType::New(); mask->SetRegions(m_GradientImagePointer->GetLargestPossibleRegion().GetSize()); mask->SetSpacing(m_GradientImagePointer->GetSpacing()); mask->SetOrigin(m_GradientImagePointer->GetOrigin()); mask->Allocate(); + // Image thresholding: For every voxel mean B0 image is calculated and then voxels of mean B0 less than assumed + //treshold are excluded from the dataset with use of defined mask image. 1 in mask voxel has mean B0 > assumed treshold. int mask_cnt=0; for(int x=0;x ix = {{x,y,z}}; GradientVectorType pixel = m_GradientImagePointer->GetPixel(ix); for (int i=0;i m_B0Threshold) { mask->SetPixel(ix, 1); mask_cnt++; } else { mask->SetPixel(ix, 0); } } } } - //create a copy of the original image + //create a copy of the original image- it is then used in pre-processing methods + m_CorrectedDiffusionVolumes = ImageType::New(); m_CorrectedDiffusionVolumes->SetRegions(size); m_CorrectedDiffusionVolumes->SetSpacing(m_GradientImagePointer->GetSpacing()); m_CorrectedDiffusionVolumes->SetOrigin(m_GradientImagePointer->GetOrigin()); m_CorrectedDiffusionVolumes->SetVectorLength(nof); m_CorrectedDiffusionVolumes->Allocate(); for ( int x=0;x ix = {{x,y,z}}; GradientVectorType p = m_GradientImagePointer->GetPixel(ix); m_CorrectedDiffusionVolumes->SetPixel(ix,p); } } } - //Sometimes the gradient voxels may contain negative values ( even if B0 voxel is > = 50 ). This must be corrected + //Sometimes the gradient voxels may contain negative values ( even if B0 voxel is > = 50 ). This must be corrected by smoothing DWI + //Smoothing is done by aproximation of negative voxel value by its correct ( positive) 27-th neighborhood. double mask_val=0.0; vnl_vector org_vec(nof-numberb0); int counter_corrected =0; for ( int x=0;x ix = {{x,y,z}}; mask_val = mask->GetPixel(ix); GradientVectorType pixel2 = m_CorrectedDiffusionVolumes->GetPixel(ix); for (int i=0;i0) // we are dooing this only if the voxels are in the mask { for( int f=0;fSetPixel(ix, pixel2); } } } } - + //Declaration of tensor image that is used for estimation of free water map typedef itk::Image< itk::DiffusionTensor3D, 3 > TensorImageType; TensorImageType::Pointer tensorImg = TensorImageType::New(); tensorImg->SetRegions(m_GradientImagePointer->GetLargestPossibleRegion().GetSize()); tensorImg->SetSpacing(m_GradientImagePointer->GetSpacing()); tensorImg->SetOrigin(m_GradientImagePointer->GetOrigin()); tensorImg->Allocate(); TensorImageType::Pointer temp_tensorImg = TensorImageType::New(); + //Deep copy into memmory tensor image. It is done because temporary tensor image is needed for the pre-processing methods. DeepCopyTensorImage(tensorImg,temp_tensorImg); - vnl_vector< double> pixel_max(nof-numberb0); - vnl_vector< double> pixel_min(nof-numberb0); + //Declaration of vectors that contains values of toohigh and toolow atenuation for each gradient. Attenuation is only calculated for + //non B0 images so nof-numberb0. + + vnl_vector< double> pixel_max(nof-numberb0);// to high attenuation + vnl_vector< double> pixel_min(nof-numberb0);//to low attenuation + + // to high and to low attenuation is calculated with use of highest allowed =5 and lowest allowed =0.01 diffusion coefficient for (int i=0;iSetNthOutput(0, tensorImg); } template void TensorReconstructionWithEigenvalueCorrectionFilter ::SetGradientImage( GradientDirectionContainerType *gradientDirection, const GradientImagesType *gradientImage ) { - // Make sure crazy users did not call both AddGradientImage and - // SetGradientImage + if( m_GradientImageTypeEnumeration == GradientIsInManyImages ) { itkExceptionMacro( << "Cannot call both methods:" << "AddGradientImage and SetGradientImage. Please call only one of them."); } this->m_GradientDirectionContainer = gradientDirection; unsigned int numImages = gradientDirection->Size(); this->m_NumberOfBaselineImages = 0; this->m_NumberOfGradientDirections = numImages - this->m_NumberOfBaselineImages; // ensure that the gradient image we received has as many components as // the number of gradient directions if( gradientImage->GetVectorLength() != this->m_NumberOfBaselineImages + this->m_NumberOfGradientDirections ) { itkExceptionMacro( << this->m_NumberOfGradientDirections << " gradients + " << this->m_NumberOfBaselineImages << "baselines = " << this->m_NumberOfGradientDirections + this->m_NumberOfBaselineImages << " directions specified but image has " << gradientImage->GetVectorLength() << " components."); } this->ProcessObject::SetNthInput( 0, const_cast< GradientImagesType* >(gradientImage) ); m_GradientImageTypeEnumeration = GradientIsInASingleImage; } template double TensorReconstructionWithEigenvalueCorrectionFilter ::CheckNeighbours(int x, int y, int z,int f, itk::Size<3> size, itk::Image::Pointer mask, itk::VectorImage::Pointer corrected_diffusion_temp) { + // method is used for finding a new value for the voxel with use of its 27 neighborhood. To perform such a smoothing correct voxels are + // counted an arithmetical mean is calculated and stored as a new value for the voxel. If there is no proper neigborhood voxel is turned + // to the value of 0. // Definition of neighbourhood avoiding crossing the image boundaries int x_max=size[0]; int y_max=size[1]; int z_max=size[2]; double back_x=std::max(0,x-1); double back_y=std::max(0,y-1); double back_z=std::max(0,z-1); double forth_x=std::min((x+1),x_max); double forth_y=std::min((y+1),y_max); double forth_z=std::min((z+1),z_max); double tempsum=0; itk::Index<3> ix; double temp_number=0; double temp_mask=0; for(int i=back_x; i<=forth_x; i++) { for (int j=back_y; j<=forth_y; j++) { for (int k=back_z; k<=forth_z; k++) { ix[0] = i; ix[1] = j; ix[2] = k; temp_mask=mask->GetPixel(ix); - //if(temp_mask > 0 && temp_mask < 2 ) - //{ - //GradientVectorType p = m_GradientImagePointer->GetPixel(ix); + GradientVectorType p = corrected_diffusion_temp->GetPixel(ix); double test= p[f]; - if (test > 0.0 )// hmm this must be here becaus the method is used in multiple ocasions. Sometiems we may deal with negative values + if (test > 0.0 )// taking only positive values and counting them { if(!(i==x && j==y && k== z)) { - tempsum=tempsum+p[f];// sum for calculation of mean - temp_number++;// number for calculation of mean + tempsum=tempsum+p[f]; + temp_number++; } } } } - }// end of size - + }// end of jumping through 27th neighbours + //getting back to the original position of the voxel ix[0] = x;ix[1] = y;ix[2] = z; if (temp_number <= 0.0) { - //ix[0] = x;ix[1] = y;ix[2] = z; - //GradientVectorType p = m_GradientImagePointer->GetPixel(ix); - //tempsum=p[f]; tempsum=0; mask->SetPixel(ix,0); } else { tempsum=tempsum/temp_number; } - return tempsum; + return tempsum;// smoothed value of voxel } template void TensorReconstructionWithEigenvalueCorrectionFilter ::CalculateAttenuation(vnl_vector org_data,vnl_vector &atten,int nof, int numberb0) { double mean_b=0.0; for (int i=0;i0) { double o_d=org_data[i]; mean_b=mean_b+org_data[i]; } } mean_b=mean_b/numberb0; int cnt=0; for (int i=0;i - void - TensorReconstructionWithEigenvalueCorrectionFilter - ::CalculateTensor(vnl_vector atten,vnl_vector &tensor, int nof,int numberb0) - { - for (int i=0;i double TensorReconstructionWithEigenvalueCorrectionFilter ::CheckNegatives ( itk::Size<3> size, itk::Image::Pointer mask, itk::Image< itk::DiffusionTensor3D, 3 >::Pointer tensorImg ) { // The method was created to simplif the flow of negative eigenvalue correction process. The method itself just return the number // of voxels (tensors) with negative eigenvalues. Then if the voxel was previously bad ( mask=2 ) but it is not bad anymore mask is //changed to 1. + // declaration of important structures and variables double badvoxels=0; double pixel=0; itk::Index<3> ix; itk::DiffusionTensor3D ten; vnl_matrix temp_tensor(3,3); - vnl_vector eigen_vals(3);// declaration of important structures and variables + vnl_vector eigen_vals(3); vnl_vector tensor (6); - + // for every pixel from the image for (int x=0;xGetPixel(ix); + // but only if previously marked as bad one-negative eigen value + if(pixel > 1) - {// but only if previously marked as bad or potentially bad one + { ten = tensorImg->GetPixel(ix); + // changing order from tensor structure in MITK into vnl structure 3x3 symmetric tensor matrix + tensor[0] = ten(0,0); tensor[3] = ten(0,1); tensor[5] = ten(0,2); tensor[1] = ten(1,1); tensor[4] = ten(1,2); tensor[2] = ten(2,2); temp_tensor[0][0]= tensor[0]; temp_tensor[1][0]= tensor[3]; temp_tensor[2][0]= tensor[5]; temp_tensor[0][1]= tensor[3]; temp_tensor[1][1]= tensor[1]; temp_tensor[2][1]= tensor[4]; temp_tensor[0][2]= tensor[5]; temp_tensor[1][2]= tensor[4]; temp_tensor[2][2]= tensor[2]; + //checking negativity of tensor eigenvalues - vnl_symmetric_eigensystem eigen_tensor(temp_tensor);//creating an eigensystem out of 3x3 symmetric tensor matrix + vnl_symmetric_eigensystem eigen_tensor(temp_tensor); eigen_vals[0]=eigen_tensor.get_eigenvalue(0); eigen_vals[1]=eigen_tensor.get_eigenvalue(1); - eigen_vals[2]=eigen_tensor.get_eigenvalue(2);// calculating eigenvalues for current tensor + eigen_vals[2]=eigen_tensor.get_eigenvalue(2); + + //comparison to 0.01 instead of 0 was proposed by O.Pasternak if( eigen_vals[0]>0.01 && eigen_vals[1]>0.01 && eigen_vals[2]>0.01) { mask->SetPixel(ix,1); } else { - badvoxels++;// increasing a number of detected bad + badvoxels++; } } } } } - double ret = badvoxels;//returning just the number of bad voxels + double ret = badvoxels; return ret; - }// end of void check negativity + } template void TensorReconstructionWithEigenvalueCorrectionFilter - ::CorrectDiffusionImage(int nof,int numberb0,itk::Size<3> size,itk::VectorImage::Pointer corrected_diffusion_temp,itk::VectorImage::Pointer corrected_diffusion,itk::Image::Pointer mask,vnl_vector< double> pixel_max,vnl_vector< double> pixel_min) + ::CorrectDiffusionImage(int nof,int numberb0,itk::Size<3> size,itk::VectorImage::Pointer corrected_diffusion,itk::Image::Pointer mask,vnl_vector< double> pixel_max,vnl_vector< double> pixel_min) { - // in this method the diffusion image temporray is corrected with use of information from updated mask. The diffusion image is tempora - //-ry while we can't use corrected voxel to correct other voxel in the same iteration. + // in this method the voxels that has tensor negative eigenvalues are smoothed. Smoothing is done on DWI image.For the voxel + //detected as bad one, B0 image is smoothed obligatory. All other gradient images are smoothed only when value of attenuation + //is out of declared bounds for too high or too low attenuation. + // declaration of important variables itk::Index<3> ix; vnl_vector org_data(nof-numberb0); vnl_vector atten(nof-numberb0); - double cnt_atten=0;// declaration of important variables + double cnt_atten=0; for (int z=0;zGetPixel(ix) > 1.0) { GradientVectorType pt = corrected_diffusion->GetPixel(ix); for (int i=0;i0) { mean_b=mean_b+org_data[i]; } } mean_b=mean_b/numberb0; int cnt=0; for (int i=0;i pixel_max[cnt_atten]) { - org_data[f] = CheckNeighbours(x,y,z,f,size,mask,corrected_diffusion_temp); + org_data[f] = CheckNeighbours(x,y,z,f,size,mask,corrected_diffusion); } cnt_atten++; } + //smoothing B0 if(m_B0Mask[f]==1) { - - org_data[f] = CheckNeighbours(x,y,z,f,size,mask,corrected_diffusion_temp); - + org_data[f] = CheckNeighbours(x,y,z,f,size,mask,corrected_diffusion); } - }//end for - - + } for (int i=0;iSetPixel(ix, pt); } else { GradientVectorType pt = corrected_diffusion->GetPixel(ix); - corrected_diffusion_temp->SetPixel(ix, pt); + corrected_diffusion->SetPixel(ix, pt); } } } } - std::cout << "break point"; + } template void TensorReconstructionWithEigenvalueCorrectionFilter ::GenerateTensorImage(int nof,int numberb0,itk::Size<3> size,itk::VectorImage::Pointer corrected_diffusion,itk::Image::Pointer mask,double what_mask,itk::Image< itk::DiffusionTensor3D, 3 >::Pointer tensorImg) { // in this method the whole tensor image is updated with a tensors for defined voxels ( defined by a value of mask); itk::Index<3> ix; vnl_vector org_data(nof-numberb0); vnl_vector atten(nof-numberb0); vnl_vector tensor(6); itk::DiffusionTensor3D ten; double mask_val=0; for (int x=0;xGetPixel(ix); + //Tensors are calculated only for voxels above theshold for B0 image. + if( mask_val > 0.0 ) { + + // calculation of attenuation with use of gradient image and and mean B0 image GradientVectorType pt = corrected_diffusion->GetPixel(ix); for (int i=0;i0) { double o_d=org_data[i]; mean_b=mean_b+org_data[i]; } } mean_b=mean_b/numberb0; int cnt=0; for (int i=0;iSetPixel(ix, ten); } + // for voxels with mask value 0 - tensor is simply 0 ( outside brain value) else if (mask_val < 1.0) { ten(0,0) = 0; ten(0,1) = 0; ten(0,2) = 0; ten(1,1) = 0; ten(1,2) = 0; ten(2,2) = 0; tensorImg->SetPixel(ix, ten); } - - - } } } }// end of Generate Tensor template void TensorReconstructionWithEigenvalueCorrectionFilter ::TurnMask( itk::Size<3> size, itk::Image::Pointer mask, double previous_mask, double set_mask) { - // in this method voxels in the mask that poses a certain value are substituded by other value.// in this method voxels in the mask that poses a certain value are substituded by other value. + // The method changes voxels in the mask that poses a certain value with other value. + itk::Index<3> ix; double temp_mask_value=0; for(int x=0;xGetPixel(ix); if(temp_mask_value>previous_mask) { mask->SetPixel(ix,set_mask); } } } } } template void TensorReconstructionWithEigenvalueCorrectionFilter ::DeepCopyDiffusionImage(itk::VectorImage::Pointer corrected_diffusion, itk::VectorImage::Pointer corrected_diffusion_temp,int nof) { corrected_diffusion_temp->SetSpacing(corrected_diffusion->GetSpacing()); corrected_diffusion_temp->SetOrigin(corrected_diffusion->GetOrigin()); corrected_diffusion_temp->SetVectorLength(nof); corrected_diffusion_temp->SetRegions(corrected_diffusion->GetLargestPossibleRegion()); corrected_diffusion_temp->Allocate(); itk::ImageRegionConstIterator inputIterator(corrected_diffusion, corrected_diffusion->GetLargestPossibleRegion()); itk::ImageRegionIterator outputIterator(corrected_diffusion_temp, corrected_diffusion_temp->GetLargestPossibleRegion()); inputIterator.GoToBegin(); outputIterator.GoToBegin(); while(!inputIterator.IsAtEnd()) { outputIterator.Set(inputIterator.Get()); ++inputIterator; ++outputIterator; } } template void TensorReconstructionWithEigenvalueCorrectionFilter ::DeepCopyTensorImage(itk::Image< itk::DiffusionTensor3D, 3 >::Pointer tensorImg, itk::Image< itk::DiffusionTensor3D, 3 >::Pointer temp_tensorImg) { temp_tensorImg->SetSpacing(tensorImg->GetSpacing()); temp_tensorImg->SetOrigin(tensorImg->GetOrigin()); temp_tensorImg->SetRegions(tensorImg->GetLargestPossibleRegion()); temp_tensorImg->Allocate(); itk::ImageRegionConstIterator inputIterator(tensorImg, tensorImg->GetLargestPossibleRegion()); itk::ImageRegionIterator outputIterator(temp_tensorImg, temp_tensorImg->GetLargestPossibleRegion()); inputIterator.GoToBegin(); outputIterator.GoToBegin(); while(!inputIterator.IsAtEnd()) { outputIterator.Set(inputIterator.Get()); ++inputIterator; ++outputIterator; } } } // end of namespace