diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorReconstructionWithEigenvalueCorrectionFilter.txx b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorReconstructionWithEigenvalueCorrectionFilter.txx index 06f1fb1858..1b0a316089 100644 --- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorReconstructionWithEigenvalueCorrectionFilter.txx +++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorReconstructionWithEigenvalueCorrectionFilter.txx @@ -1,1087 +1,1074 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ /*========================================================================= Program: Tensor ToolKit - TTK Module: $URL: svn://scm.gforge.inria.fr/svn/ttk/trunk/Algorithms/itkTensorImageToDiffusionImageFilter.txx $ Language: C++ Date: $Date: 2010-06-07 13:39:13 +0200 (Mo, 07 Jun 2010) $ Version: $Revision: 68 $ Copyright (c) INRIA 2010. All rights reserved. See LICENSE.txt for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #ifndef _itk_TensorReconstructionWithEigenvalueCorrectionFilter_txx_ #define _itk_TensorReconstructionWithEigenvalueCorrectioFiltern_txx_ #endif #include "itkImageRegionConstIterator.h" #include #include #include "itkImageFileWriter.h" #include "itkImage.h" #include "itkImageRegionIterator.h" namespace itk { template TensorReconstructionWithEigenvalueCorrectionFilter ::TensorReconstructionWithEigenvalueCorrectionFilter() { m_B0Threshold = 50.0; } template void TensorReconstructionWithEigenvalueCorrectionFilter ::GenerateData () { m_GradientImagePointer = static_cast< GradientImagesType * >( this->ProcessObject::GetInput(0) ); itk::Index<3> testIx; testIx[0] = 48; testIx[0] = 41; testIx[0] = 31; GradientVectorType data_vec = m_GradientImagePointer->GetPixel(testIx); short data_vec1 = data_vec[0]; short data_vec2 = data_vec[1]; short data_vec3 = data_vec[2]; short data_vec4 = data_vec[3]; short data_vec5 = data_vec[4]; short data_vec6 = data_vec[5]; short data_vec7 = data_vec[6]; typename GradientImagesType::SizeType size = m_GradientImagePointer->GetLargestPossibleRegion().GetSize(); int nof = m_GradientDirectionContainer->Size(); int numberb0=0; int cnt=0; for(int i=0; i vec = m_GradientDirectionContainer->ElementAt(i); if(vec[0]<0.0001 && vec[1]<0.0001 && vec[2]<0.0001 && vec[0]>-0.0001&& vec[1]>-0.0001 && vec[2]>-0.0001) { numberb0++; } } itk::Vector spacing_term = m_GradientImagePointer->GetSpacing(); itk::Matrix direction_term = m_GradientImagePointer->GetDirection(); vnl_vector spacing_vnl(3); vnl_matrix dir_vnl (3,3); for (int i=0;i<3;i++) { spacing_vnl[i]=spacing_term[i]; for(int j=0;j<3;j++) { dir_vnl[i][j]=direction_term[i][j]; } } vnl_matrix vox_dim_step (3,3); for (int i=0;i<3;i++) { for(int j=0;j<3;j++) { vox_dim_step[i][j]=spacing_vnl[i]*dir_vnl[i][j]; } } vnl_symmetric_eigensystem eigen_spacing(vox_dim_step); vnl_vector vox_dim (3); vox_dim[0]=eigen_spacing.get_eigenvalue(0); vox_dim[1]=eigen_spacing.get_eigenvalue(1); vox_dim[2]=eigen_spacing.get_eigenvalue(2); vox_dim=vox_dim/(vox_dim.min_value()); vnl_matrix directions(nof-numberb0,3); m_B0Mask.set_size(nof); std::cout<<"logarithm test start"< vec = m_GradientDirectionContainer->ElementAt(i); if(vec[0]<0.0001 && vec[1]<0.0001 && vec[2]<0.0001 && vec[0]>-0.001&& vec[1]>-0.001 && vec[2]>-0.001) { m_B0Mask[i]=1; } else { m_B0Mask[i]=0; directions[cnt][0] = vec[0]; directions[cnt][1] = vec[1]; directions[cnt][2] = vec[2]; cnt++; } } vnl_matrix dirsTimesDirsTrans = directions*directions.transpose(); vnl_vector< double> diagonal(nof-numberb0); vnl_vector< double> b_vec(nof-numberb0); vnl_vector< double> temporary(3); for (int i=0;i H(nof-numberb0, 6); vnl_matrix H_org(nof-numberb0, 6); vnl_vector pre_tensor(9); int etbt[6] = { 0, 4, 8, 1, 5, 2 }; for (int i = 0; i < nof-numberb0; i++) { for (int j = 0; j < 3; j++) { temporary[j] = -directions[i][j]; } for (int j = 0; j < 3; j++) { for (int k = 0; k < 3; k++) { pre_tensor[k + 3 * j] = temporary[k] * directions[i][j]; } } for (int j = 0; j < 6; j++) { H[i][j] = pre_tensor[etbt[j]]; } for (int j = 0; j < 3; j++) { H[i][3 + j] *= 2.0; } } H_org=H; vnl_matrix inputtopseudoinverse=H.transpose()*H; vnl_symmetric_eigensystem eig( inputtopseudoinverse); vnl_matrix pseudoInverse = eig.pinverse()*H.transpose(); itk::Index<3> ix; ImageType::Pointer corrected_diffusion = ImageType::New(); corrected_diffusion->SetRegions(size); corrected_diffusion->SetSpacing(m_GradientImagePointer->GetSpacing()); corrected_diffusion->SetOrigin(m_GradientImagePointer->GetOrigin()); corrected_diffusion->SetVectorLength(nof); corrected_diffusion->Allocate(); ImageType::Pointer corrected_diffusion_temp = ImageType::New(); /*corrected_diffusion_temp->SetRegions(size); corrected_diffusion_temp->SetSpacing(m_GradientImagePointer->GetSpacing()); corrected_diffusion_temp->SetOrigin(m_GradientImagePointer->GetOrigin()); corrected_diffusion_temp->SetVectorLength(nof); corrected_diffusion_temp->Allocate();*/ DeepCopyDiffusionImage(corrected_diffusion,corrected_diffusion_temp,nof); typedef itk::VariableLengthVector VariableVectorType; VariableVectorType variableLengthVector; variableLengthVector.SetSize(nof); typedef itk::VariableLengthVector VariableVectorType; VariableVectorType corrected_single; corrected_single.SetSize(nof-1); typedef itk::Image MaskImageType; MaskImageType::Pointer mask = MaskImageType::New(); mask->SetRegions(m_GradientImagePointer->GetLargestPossibleRegion().GetSize()); mask->SetSpacing(m_GradientImagePointer->GetSpacing()); mask->SetOrigin(m_GradientImagePointer->GetOrigin()); mask->Allocate(); double mean_b=0.0; double pixel=0.0; vnl_vector tensor (6); int mask_cnt=0; for(int x=0;xGetPixel(ix); for (int i=0;i m_B0Threshold) { mask->SetPixel(ix, 1); mask_cnt++; } else { mask->SetPixel(ix, 0); } } } } //Sometimes the gradient voxels may contain negative values ( even if B0 voxel is > = 50 ). This must be corrected double mask_val=0.0; vnl_vector org_vec(nof-numberb0); int counter_corrected =0; for ( int x=0;xGetPixel(ix); GradientVectorType pixel2 = m_GradientImagePointer->GetPixel(ix); for (int i=0;i0)// we are dooing this only if the voxels are in the mask { for( int f=0;fSetPixel(ix, pixel2); //counter_corrected++; } } } } std::cout << "Number of voxels in mask: " << mask_cnt << std::endl; std::cout << "Number of voxels corrected: " << counter_corrected << std::endl; typedef itk::Image< itk::DiffusionTensor3D, 3 > TensorImageType; TensorImageType::Pointer tensorImg = TensorImageType::New(); tensorImg->SetRegions(m_GradientImagePointer->GetLargestPossibleRegion().GetSize()); tensorImg->SetSpacing(m_GradientImagePointer->GetSpacing()); tensorImg->SetOrigin(m_GradientImagePointer->GetOrigin()); tensorImg->Allocate(); TensorImageType::Pointer temp_tensorImg = TensorImageType::New(); /*temp_tensorImg->SetRegions(m_GradientImagePointer->GetLargestPossibleRegion().GetSize()); temp_tensorImg->SetSpacing(m_GradientImagePointer->GetSpacing()); temp_tensorImg->SetOrigin(m_GradientImagePointer->GetOrigin()); temp_tensorImg->Allocate();*/ DeepCopyTensorImage(tensorImg,temp_tensorImg); vnl_vector< double> pixel_max(nof-numberb0); vnl_vector< double> pixel_min(nof-numberb0); for (int i=0;iSetNthOutput(0, tensorImg); old_number_negative_eigs = CheckNegatives (size,mask,tensorImg);// checking how many tensors has problems, this is working only for mask =2 std::cout << "good now how many bads there are"<< std::endl; while (stil_correcting == true) { std::cout << "Number of negative eigenvalues: " << old_number_negative_eigs << std::endl;// info for Thomas: Debug stuff - to be removed CorrectDiffusionImage(nof,numberb0,size,corrected_diffusion_temp,corrected_diffusion,mask,pixel_max,pixel_min); GenerateTensorImage(nof,numberb0,size,corrected_diffusion_temp,mask,what_mask,temp_tensorImg); new_number_negative_eigs = CheckNegatives (size,mask, temp_tensorImg); /*typedef itk::ImageFileWriter< MaskImageType > WriterType; WriterType::Pointer writer = WriterType::New(); writer->SetFileName("/Users/macbook_fb/Desktop/franksecondfound.nrrd"); writer->SetInput(mask); writer->Update();*/ if(new_number_negative_eigsSetNthOutput(0, tensorImg); m_VectorImage = corrected_diffusion; m_MaskImage = mask; m_Voxdim = vox_dim; - - - data_vec = m_GradientImagePointer->GetPixel(testIx); - - short data_vec1 = data_vec[0]; - short data_vec2 = data_vec[1]; - short data_vec3 = data_vec[2]; - short data_vec4 = data_vec[3]; - short data_vec5 = data_vec[4]; - short data_vec6 = data_vec[5]; - short data_vec7 = data_vec[6]; - - } template void TensorReconstructionWithEigenvalueCorrectionFilter ::SetGradientImage( GradientDirectionContainerType *gradientDirection, const GradientImagesType *gradientImage ) { // Make sure crazy users did not call both AddGradientImage and // SetGradientImage if( m_GradientImageTypeEnumeration == GradientIsInManyImages ) { itkExceptionMacro( << "Cannot call both methods:" << "AddGradientImage and SetGradientImage. Please call only one of them."); } this->m_GradientDirectionContainer = gradientDirection; unsigned int numImages = gradientDirection->Size(); this->m_NumberOfBaselineImages = 0; this->m_NumberOfGradientDirections = numImages - this->m_NumberOfBaselineImages; // ensure that the gradient image we received has as many components as // the number of gradient directions if( gradientImage->GetVectorLength() != this->m_NumberOfBaselineImages + this->m_NumberOfGradientDirections ) { itkExceptionMacro( << this->m_NumberOfGradientDirections << " gradients + " << this->m_NumberOfBaselineImages << "baselines = " << this->m_NumberOfGradientDirections + this->m_NumberOfBaselineImages << " directions specified but image has " << gradientImage->GetVectorLength() << " components."); } this->ProcessObject::SetNthInput( 0, const_cast< GradientImagesType* >(gradientImage) ); m_GradientImageTypeEnumeration = GradientIsInASingleImage; } template double TensorReconstructionWithEigenvalueCorrectionFilter ::CheckNeighbours(int x, int y, int z,int f, itk::Size<3> size, itk::Image::Pointer mask) { double back_x=std::max(0,x-1); double back_y=std::max(0,y-1); double back_z=std::max(0,z-1); int x_max=size[0];int y_max=size[1];int z_max=size[2];// converting short to int double forth_x=std::min((x+1),x_max); double forth_y=std::min((y+1),y_max); double forth_z=std::min((z+1),z_max);// setting constraints for neigborhood double tempsum=0; itk::Index<3> ix; double temp_number=0; double temp_mask=0;// declaration of variables double one =1.0; for(int i=back_x; iGetPixel(ix); if(temp_mask > 0 && temp_mask < 2 ) { GradientVectorType p = m_GradientImagePointer->GetPixel(ix); double test= p[f]; if (test > 0.0 )// hmm this must be here becaus the method is used in multiple ocasions. Sometiems we may deal with negative values { tempsum=tempsum+p[f];// sum for calculation of mean temp_number++;// number for calculation of mean }//end of pf>0 }//end of mask condition } } }// end of size ix[0] = x;ix[1] = y;ix[2] = z; if (temp_number <= 0.0) { tempsum=0; mask->SetPixel(ix,0); } else { tempsum=tempsum/temp_number; } double ret = tempsum; return ret; } template void TensorReconstructionWithEigenvalueCorrectionFilter ::CalculateAttenuation(vnl_vector org_data,vnl_vector &atten,int nof, int numberb0) { double mean_b=0.0; for (int i=0;i0) { double o_d=org_data[i]; mean_b=mean_b+org_data[i]; } } mean_b=mean_b/numberb0; int cnt=0; for (int i=0;i void TensorReconstructionWithEigenvalueCorrectionFilter ::CalculateTensor(vnl_vector atten,vnl_vector &tensor, int nof,int numberb0) { for (int i=0;i double TensorReconstructionWithEigenvalueCorrectionFilter ::CheckNegatives ( itk::Size<3> size, itk::Image::Pointer mask, itk::Image< itk::DiffusionTensor3D, 3 >::Pointer tensorImg ) { // The method was created to simplif the flow of negative eigenvalue correction process. The method itself just return the number // of voxels (tensors) with negative eigenvalues. Then if the voxel was previously bad ( mask=2 ) but it is not bad anymore mask is //changed to 1. double badvoxels=0; double pixel=0; itk::Index<3> ix; itk::DiffusionTensor3D ten; vnl_matrix temp_tensor(3,3); vnl_vector eigen_vals(3);// declaration of important structures and variables vnl_vector tensor (6); for (int x=0;xGetPixel(ix); if(pixel == 2.0) {// but only if previously marked as bad or potentially bad one ten = tensorImg->GetPixel(ix); tensor[0] = ten(0,0); tensor[3] = ten(0,1); tensor[5] = ten(0,2); tensor[1] = ten(1,1); tensor[4] = ten(1,2); tensor[2] = ten(2,2); temp_tensor[0][0]= tensor[0]; temp_tensor[1][0]= tensor[3]; temp_tensor[2][0]= tensor[5]; temp_tensor[0][1]= tensor[3]; temp_tensor[1][1]= tensor[1]; temp_tensor[2][1]= tensor[4]; temp_tensor[0][2]= tensor[5]; temp_tensor[1][2]= tensor[4]; temp_tensor[2][2]= tensor[2]; vnl_symmetric_eigensystem eigen_tensor(temp_tensor);//creating an eigensystem out of 3x3 symmetric tensor matrix eigen_vals[0]=eigen_tensor.get_eigenvalue(0); eigen_vals[1]=eigen_tensor.get_eigenvalue(1); eigen_vals[2]=eigen_tensor.get_eigenvalue(2);// calculating eigenvalues for current tensor if( eigen_vals[0]>0.01 && eigen_vals[1]>0.01 && eigen_vals[2]>0.01) { mask->SetPixel(ix,1); } else { badvoxels++;// increasing a number of detected bad } } } } } double ret = badvoxels;//returning just the number of bad voxels return ret; }// end of void check negativity template void TensorReconstructionWithEigenvalueCorrectionFilter ::CorrectDiffusionImage(int nof,int numberb0,itk::Size<3> size,itk::VectorImage::Pointer corrected_diffusion_temp,itk::VectorImage::Pointer corrected_diffusion,itk::Image::Pointer mask,vnl_vector< double> pixel_max,vnl_vector< double> pixel_min) { // in this method the diffusion image temporray is corrected with use of information from updated mask. The diffusion image is tempora //-ry while we can't use corrected voxel to correct other voxel in the same iteration. itk::Index<3> ix; vnl_vector org_data(nof-numberb0); vnl_vector atten(nof-numberb0); double cnt_atten=0;// declaration of important variables for (int x=0;xGetPixel(ix) > 1.0) { GradientVectorType pt = corrected_diffusion->GetPixel(ix); for (int i=0;i0) { mean_b=mean_b+org_data[i]; } } mean_b=mean_b/numberb0; int cnt=0; for (int i=0;i 0.99) //{ org_data[f] = CheckNeighbours(x,y,z,f,size,mask); //} cnt_atten++; } }//end for for (int i=0;iSetPixel(ix, pt); } else { GradientVectorType pt = corrected_diffusion->GetPixel(ix); corrected_diffusion_temp->SetPixel(ix, pt); } } } } std::cout << "break point"; } template void TensorReconstructionWithEigenvalueCorrectionFilter ::GenerateTensorImage(int nof,int numberb0,itk::Size<3> size,itk::VectorImage::Pointer corrected_diffusion,itk::Image::Pointer mask,double what_mask,itk::Image< itk::DiffusionTensor3D, 3 >::Pointer tensorImg) { // in this method the whole tensor image is updated with a tensors for defined voxels ( defined by a value of mask); itk::Index<3> ix; vnl_vector org_data(nof-numberb0); vnl_vector atten(nof-numberb0); vnl_vector tensor(6); itk::DiffusionTensor3D ten; double mask_val=0; for (int x=0;xGetPixel(ix); if( mask_val > 0.0 ) { GradientVectorType pt = corrected_diffusion->GetPixel(ix); for (int i=0;i0) { double o_d=org_data[i]; mean_b=mean_b+org_data[i]; } } mean_b=mean_b/numberb0; int cnt=0; for (int i=0;iSetPixel(ix, ten); } else if (mask_val < 1.0) { ten(0,0) = 0; ten(0,1) = 0; ten(0,2) = 0; ten(1,1) = 0; ten(1,2) = 0; ten(2,2) = 0; tensorImg->SetPixel(ix, ten); } } } } }// end of Generate Tensor template void TensorReconstructionWithEigenvalueCorrectionFilter ::TurnMask( itk::Size<3> size, itk::Image::Pointer mask, double previous_mask, double set_mask) { // in this method voxels in the mask that poses a certain value are substituded by other value. It is connected to the //idea in the algorithm. It is called more tna once so separate method spares some lines of code. itk::Index<3> ix; double temp_mask_value=0; for(int x=0;xGetPixel(ix); if(temp_mask_value>previous_mask) { mask->SetPixel(ix,set_mask); } } } } }//end of turn mas template void TensorReconstructionWithEigenvalueCorrectionFilter ::DeepCopyDiffusionImage(itk::VectorImage::Pointer corrected_diffusion, itk::VectorImage::Pointer corrected_diffusion_temp,int nof) { corrected_diffusion_temp->SetSpacing(corrected_diffusion->GetSpacing()); corrected_diffusion_temp->SetOrigin(corrected_diffusion->GetOrigin()); corrected_diffusion_temp->SetVectorLength(nof); corrected_diffusion_temp->SetRegions(corrected_diffusion->GetLargestPossibleRegion()); corrected_diffusion_temp->Allocate(); itk::ImageRegionConstIterator inputIterator(corrected_diffusion, corrected_diffusion->GetLargestPossibleRegion()); itk::ImageRegionIterator outputIterator(corrected_diffusion_temp, corrected_diffusion_temp->GetLargestPossibleRegion()); //inputIterator.begin(); //outputIterator.begin(); while(!inputIterator.IsAtEnd()) { outputIterator.Set(inputIterator.Get()); ++inputIterator; ++outputIterator; } } template void TensorReconstructionWithEigenvalueCorrectionFilter ::DeepCopyTensorImage(itk::Image< itk::DiffusionTensor3D, 3 >::Pointer tensorImg, itk::Image< itk::DiffusionTensor3D, 3 >::Pointer temp_tensorImg) { temp_tensorImg->SetSpacing(tensorImg->GetSpacing()); temp_tensorImg->SetOrigin(tensorImg->GetOrigin()); temp_tensorImg->SetRegions(tensorImg->GetLargestPossibleRegion()); temp_tensorImg->Allocate(); itk::ImageRegionConstIterator inputIterator(tensorImg, tensorImg->GetLargestPossibleRegion()); itk::ImageRegionIterator outputIterator(temp_tensorImg, temp_tensorImg->GetLargestPossibleRegion()); //inputIterator.begin(); //outputIterator.begin(); while(!inputIterator.IsAtEnd()) { outputIterator.Set(inputIterator.Get()); ++inputIterator; ++outputIterator; } } // info for Thomas ( to be removed) : end of "lots of new code" } // end of namespace