diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Fiberfox/Fiberfox.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Fiberfox/Fiberfox.cpp index 43dd584645..3b9f9c10d4 100755 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Fiberfox/Fiberfox.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Fiberfox/Fiberfox.cpp @@ -1,253 +1,267 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include #include using namespace mitk; /*! * \brief Command line interface to Fiberfox. * Simulate a diffusion-weighted image from a tractogram using the specified parameter file. */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Fiberfox"); parser.setCategory("Diffusion Simulation Tools"); parser.setContributor("MIC"); parser.setDescription("Command line interface to Fiberfox." " Simulate a diffusion-weighted image from a tractogram using the specified parameter file."); parser.setArgumentPrefix("--", "-"); parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output root:", "output root", us::Any(), false); parser.addArgument("", "i", mitkCommandLineParser::String, "Input:", "Input tractogram or diffusion-weighted image.", us::Any(), false); parser.addArgument("parameters", "p", mitkCommandLineParser::InputFile, "Parameter file:", "fiberfox parameter file (.ffp)", us::Any(), false); parser.addArgument("template", "t", mitkCommandLineParser::String, "Template image:", "Use parameters of the template diffusion-weighted image.", us::Any()); parser.addArgument("verbose", "v", mitkCommandLineParser::Bool, "Output additional images:", "output volume fraction images etc.", us::Any()); + parser.addArgument("dont_apply_direction_matrix", "", mitkCommandLineParser::Bool, "Don't apply direction matrix:", "Don't rotate gradients by image direction matrix.", us::Any()); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) { return EXIT_FAILURE; } std::string outName = us::any_cast(parsedArgs["o"]); std::string paramName = us::any_cast(parsedArgs["parameters"]); std::string input=""; if (parsedArgs.count("i")) input = us::any_cast(parsedArgs["i"]); bool verbose = false; if (parsedArgs.count("verbose")) verbose = us::any_cast(parsedArgs["verbose"]); + bool apply_direction_matrix = true; + if (parsedArgs.count("dont_apply_direction_matrix")) + apply_direction_matrix = false; + FiberfoxParameters parameters; parameters.LoadParameters(paramName); // Test if /path/dir is an existing directory: std::string file_extension = ""; if( itksys::SystemTools::FileIsDirectory( outName ) ) { while( *(--(outName.cend())) == '/') { outName.pop_back(); } outName = outName + '/'; parameters.m_Misc.m_OutputPath = outName; outName = outName + parameters.m_Misc.m_OutputPrefix; // using default m_OutputPrefix as initialized. } else { // outName is NOT an existing directory, so we need to remove all trailing slashes: while( *(--(outName.cend())) == '/') { outName.pop_back(); } // now split up the given outName into directory and (prefix of) filename: if( ! itksys::SystemTools::GetFilenamePath( outName ).empty() && itksys::SystemTools::FileIsDirectory(itksys::SystemTools::GetFilenamePath( outName ) ) ) { parameters.m_Misc.m_OutputPath = itksys::SystemTools::GetFilenamePath( outName ) + '/'; } else { parameters.m_Misc.m_OutputPath = itksys::SystemTools::GetCurrentWorkingDirectory() + '/'; } file_extension = itksys::SystemTools::GetFilenameExtension(outName); if( ! itksys::SystemTools::GetFilenameWithoutExtension( outName ).empty() ) { parameters.m_Misc.m_OutputPrefix = itksys::SystemTools::GetFilenameWithoutExtension( outName ); } else { parameters.m_Misc.m_OutputPrefix = "fiberfox"; } outName = parameters.m_Misc.m_OutputPath + parameters.m_Misc.m_OutputPrefix; } // check if log file already exists and avoid overwriting existing files: std::string NameTest = outName; int c = 0; while( itksys::SystemTools::FileExists( outName + ".log" ) && c <= std::numeric_limits::max() ) { outName = NameTest + "_" + boost::lexical_cast(c); ++c; } mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Diffusion Weighted Images", "Fiberbundles"}, {}); mitk::BaseData::Pointer inputData = mitk::IOUtil::Load(input, &functor)[0]; itk::TractsToDWIImageFilter< short >::Pointer tractsToDwiFilter = itk::TractsToDWIImageFilter< short >::New(); if ( dynamic_cast(inputData.GetPointer()) ) // simulate dataset from fibers { tractsToDwiFilter->SetFiberBundle(dynamic_cast(inputData.GetPointer())); if (parsedArgs.count("template")) { MITK_INFO << "Loading template image"; typedef itk::VectorImage< short, 3 > ItkDwiType; typedef itk::Image< short, 3 > ItkImageType; mitk::BaseData::Pointer templateData = mitk::IOUtil::Load(us::any_cast(parsedArgs["template"]), &functor)[0]; mitk::Image::Pointer template_image = dynamic_cast(templateData.GetPointer()); if (mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(template_image)) { ItkDwiType::Pointer itkVectorImagePointer = mitk::DiffusionPropertyHelper::GetItkVectorImage(template_image); parameters.m_SignalGen.m_ImageRegion = itkVectorImagePointer->GetLargestPossibleRegion(); parameters.m_SignalGen.m_ImageSpacing = itkVectorImagePointer->GetSpacing(); parameters.m_SignalGen.m_ImageOrigin = itkVectorImagePointer->GetOrigin(); parameters.m_SignalGen.m_ImageDirection = itkVectorImagePointer->GetDirection(); parameters.SetBvalue(mitk::DiffusionPropertyHelper::GetReferenceBValue(template_image)); - parameters.SetGradienDirections(mitk::DiffusionPropertyHelper::GetGradientContainer(template_image)); + parameters.SetGradienDirections(mitk::DiffusionPropertyHelper::GetOriginalGradientContainer(template_image)); } else { ItkImageType::Pointer itkImagePointer = ItkImageType::New(); mitk::CastToItkImage(template_image, itkImagePointer); parameters.m_SignalGen.m_ImageRegion = itkImagePointer->GetLargestPossibleRegion(); parameters.m_SignalGen.m_ImageSpacing = itkImagePointer->GetSpacing(); parameters.m_SignalGen.m_ImageOrigin = itkImagePointer->GetOrigin(); parameters.m_SignalGen.m_ImageDirection = itkImagePointer->GetDirection(); } } } else if ( dynamic_cast(inputData.GetPointer()) ) // add artifacts to existing image { typedef itk::VectorImage< short, 3 > ItkDwiType; mitk::Image::Pointer diffImg = dynamic_cast(inputData.GetPointer()); ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(diffImg, itkVectorImagePointer); parameters.m_SignalGen.m_SignalScale = 1; parameters.m_SignalGen.m_ImageRegion = itkVectorImagePointer->GetLargestPossibleRegion(); parameters.m_SignalGen.m_ImageSpacing = itkVectorImagePointer->GetSpacing(); parameters.m_SignalGen.m_ImageOrigin = itkVectorImagePointer->GetOrigin(); parameters.m_SignalGen.m_ImageDirection = itkVectorImagePointer->GetDirection(); parameters.SetBvalue(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); - parameters.SetGradienDirections(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg)); + parameters.SetGradienDirections(mitk::DiffusionPropertyHelper::GetOriginalGradientContainer(diffImg)); tractsToDwiFilter->SetInputImage(itkVectorImagePointer); } if (verbose) { MITK_DEBUG << outName << ".ffp"; parameters.SaveParameters(outName+".ffp"); } + + if (apply_direction_matrix) + { + MITK_INFO << "Applying direction matrix to gradient directions."; + parameters.ApplyDirectionMatrix(); + } tractsToDwiFilter->SetParameters(parameters); tractsToDwiFilter->Update(); mitk::Image::Pointer image = mitk::GrabItkImageMemory(tractsToDwiFilter->GetOutput()); - mitk::DiffusionPropertyHelper::SetOriginalGradientContainer(image, parameters.m_SignalGen.GetItkGradientContainer()); + if (apply_direction_matrix) + mitk::DiffusionPropertyHelper::SetGradientContainer(image, parameters.m_SignalGen.GetItkGradientContainer()); + else + mitk::DiffusionPropertyHelper::SetOriginalGradientContainer(image, parameters.m_SignalGen.GetItkGradientContainer()); mitk::DiffusionPropertyHelper::SetReferenceBValue(image, parameters.m_SignalGen.GetBvalue()); mitk::DiffusionPropertyHelper::InitializeImage(image); if (file_extension=="") mitk::IOUtil::Save(image, "DWI_NIFTI", outName+".nii.gz"); else if (file_extension==".nii" || file_extension==".nii.gz") mitk::IOUtil::Save(image, "DWI_NIFTI", outName+file_extension); else mitk::IOUtil::Save(image, outName+file_extension); if (verbose) { std::vector< itk::TractsToDWIImageFilter< short >::ItkDoubleImgType::Pointer > volumeFractions = tractsToDwiFilter->GetVolumeFractions(); for (unsigned int k=0; kInitializeByItk(volumeFractions.at(k).GetPointer()); image->SetVolume(volumeFractions.at(k)->GetBufferPointer()); mitk::IOUtil::Save(image, outName+"_Compartment"+boost::lexical_cast(k+1)+".nii.gz"); } if (tractsToDwiFilter->GetPhaseImage().IsNotNull()) { mitk::Image::Pointer image = mitk::Image::New(); itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer itkPhase = tractsToDwiFilter->GetPhaseImage(); image = mitk::GrabItkImageMemory( itkPhase.GetPointer() ); mitk::IOUtil::Save(image, outName+"_Phase.nii.gz"); } if (tractsToDwiFilter->GetKspaceImage().IsNotNull()) { mitk::Image::Pointer image = mitk::Image::New(); itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer itkImage = tractsToDwiFilter->GetKspaceImage(); image = mitk::GrabItkImageMemory( itkImage.GetPointer() ); mitk::IOUtil::Save(image, outName+"_kSpace.nii.gz"); } int c = 1; std::vector< itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer > output_real = tractsToDwiFilter->GetOutputImagesReal(); for (auto real : output_real) { mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(real.GetPointer()); image->SetVolume(real->GetBufferPointer()); mitk::IOUtil::Save(image, outName+"_Coil-"+boost::lexical_cast(c)+"-real.nii.gz"); ++c; } c = 1; std::vector< itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer > output_imag = tractsToDwiFilter->GetOutputImagesImag(); for (auto imag : output_imag) { mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(imag.GetPointer()); image->SetVolume(imag->GetBufferPointer()); mitk::IOUtil::Save(image, outName+"_Coil-"+boost::lexical_cast(c)+"-imag.nii.gz"); ++c; } } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/FiberTracking/IODataStructures/mitkFiberfoxParameters.cpp b/Modules/DiffusionImaging/FiberTracking/IODataStructures/mitkFiberfoxParameters.cpp index 0790febc01..a0d157612d 100644 --- a/Modules/DiffusionImaging/FiberTracking/IODataStructures/mitkFiberfoxParameters.cpp +++ b/Modules/DiffusionImaging/FiberTracking/IODataStructures/mitkFiberfoxParameters.cpp @@ -1,1044 +1,1068 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #define RAPIDXML_NO_EXCEPTIONS #include #include #include #include #include #include #include #include #include mitk::FiberfoxParameters::FiberfoxParameters() : m_NoiseModel(nullptr) { mitk::StickModel* model_aniso = new mitk::StickModel(); model_aniso->m_CompartmentId = 1; m_FiberModelList.push_back(model_aniso); mitk::BallModel* model_iso = new mitk::BallModel(); model_iso->m_CompartmentId = 3; m_NonFiberModelList.push_back(model_iso); } mitk::FiberfoxParameters::FiberfoxParameters(const mitk::FiberfoxParameters& params) : m_NoiseModel(nullptr) { m_FiberGen = params.m_FiberGen; m_SignalGen = params.m_SignalGen; m_Misc = params.m_Misc; if (params.m_NoiseModel!=nullptr) { if (dynamic_cast*>(params.m_NoiseModel.get())) m_NoiseModel = std::make_shared< mitk::RicianNoiseModel<> >(); else if (dynamic_cast*>(params.m_NoiseModel.get())) m_NoiseModel = std::make_shared< mitk::ChiSquareNoiseModel<> >(); m_NoiseModel->SetNoiseVariance(params.m_NoiseModel->GetNoiseVariance()); } for (unsigned int i=0; i* outModel = nullptr; mitk::DiffusionSignalModel<>* signalModel = nullptr; if (i*>(signalModel)) outModel = new mitk::StickModel<>(dynamic_cast*>(signalModel)); else if (dynamic_cast*>(signalModel)) outModel = new mitk::TensorModel<>(dynamic_cast*>(signalModel)); else if (dynamic_cast*>(signalModel)) outModel = new mitk::RawShModel<>(dynamic_cast*>(signalModel)); else if (dynamic_cast*>(signalModel)) outModel = new mitk::BallModel<>(dynamic_cast*>(signalModel)); else if (dynamic_cast*>(signalModel)) outModel = new mitk::AstroStickModel<>(dynamic_cast*>(signalModel)); else if (dynamic_cast*>(signalModel)) outModel = new mitk::DotModel<>(dynamic_cast*>(signalModel)); if (i theta; theta.set_size(NPoints); vnl_vector phi; phi.set_size(NPoints); double C = sqrt(4*itk::Math::pi); phi(0) = 0.0; phi(NPoints-1) = 0.0; for(int i=0; i0 && i mitk::SignalGenerationParameters::GetBaselineIndices() { std::vector< int > result; for( unsigned int i=0; im_GradientDirections.size(); i++) if (m_GradientDirections.at(i).GetNorm()<0.0001) result.push_back(i); return result; } unsigned int mitk::SignalGenerationParameters::GetFirstBaselineIndex() { for( unsigned int i=0; im_GradientDirections.size(); i++) if (m_GradientDirections.at(i).GetNorm()<0.0001) return i; return -1; } bool mitk::SignalGenerationParameters::IsBaselineIndex(unsigned int idx) { if (m_GradientDirections.size()>idx && m_GradientDirections.at(idx).GetNorm()<0.0001) return true; return false; } unsigned int mitk::SignalGenerationParameters::GetNumWeightedVolumes() { return m_NumGradients; } unsigned int mitk::SignalGenerationParameters::GetNumBaselineVolumes() { return m_NumBaseline; } unsigned int mitk::SignalGenerationParameters::GetNumVolumes() { return m_GradientDirections.size(); } mitk::SignalGenerationParameters::GradientListType mitk::SignalGenerationParameters::GetGradientDirections() { return m_GradientDirections; } mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer mitk::SignalGenerationParameters::GetItkGradientContainer() { int c = 0; mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer out = mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::New(); for (auto g : m_GradientDirections) { mitk::DiffusionPropertyHelper::GradientDirectionType vnl_dir; vnl_dir[0] = g[0]; vnl_dir[1] = g[1]; vnl_dir[2] = g[2]; out->InsertElement(c, vnl_dir); ++c; } return out; } mitk::SignalGenerationParameters::GradientType mitk::SignalGenerationParameters::GetGradientDirection(unsigned int i) { return m_GradientDirections.at(i); } void mitk::SignalGenerationParameters::SetNumWeightedVolumes(int numGradients) { m_NumGradients = numGradients; GenerateGradientHalfShell(); } std::vector< int > mitk::SignalGenerationParameters::GetBvalues() { std::vector< int > bVals; for( GradientType g : m_GradientDirections) { float norm = g.GetNorm(); int bVal = std::round(norm*norm*m_Bvalue); if ( std::find(bVals.begin(), bVals.end(), bVal) == bVals.end() ) bVals.push_back(bVal); } return bVals; } double mitk::SignalGenerationParameters::GetBvalue() { return m_Bvalue; } void mitk::SignalGenerationParameters::SetGradienDirections(GradientListType gradientList) { m_GradientDirections = gradientList; m_NumGradients = 0; m_NumBaseline = 0; for( unsigned int i=0; im_GradientDirections.size(); i++) { float norm = m_GradientDirections.at(i).GetNorm(); if (norm>0.0001) m_NumGradients++; else m_NumBaseline++; } } void mitk::SignalGenerationParameters::SetGradienDirections(mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer gradientList) { m_NumGradients = 0; m_NumBaseline = 0; m_GradientDirections.clear(); for( unsigned int i=0; iSize(); i++) { GradientType g; g[0] = gradientList->at(i)[0]; g[1] = gradientList->at(i)[1]; g[2] = gradientList->at(i)[2]; m_GradientDirections.push_back(g); float norm = m_GradientDirections.at(i).GetNorm(); if (norm>0.0001) m_NumGradients++; else m_NumBaseline++; } } +void mitk::SignalGenerationParameters::ApplyDirectionMatrix() +{ + auto imageRotationMatrix = m_ImageDirection.GetVnlMatrix(); + + GradientListType rotated_gradients; + for(auto g : m_GradientDirections) + { + vnl_vector vec = g.GetVnlVector(); + vec = vec.pre_multiply(imageRotationMatrix); + + GradientType g2; + g2[0] = vec[0]; + g2[1] = vec[1]; + g2[2] = vec[2]; + rotated_gradients.push_back(g2); + } + m_GradientDirections = rotated_gradients; +} + +void mitk::FiberfoxParameters::ApplyDirectionMatrix() +{ + m_SignalGen.ApplyDirectionMatrix(); + UpdateSignalModels(); +} void mitk::FiberfoxParameters::SaveParameters(std::string filename) { if(filename.empty()) return; if(".ffp"!=filename.substr(filename.size()-4, 4)) filename += ".ffp"; const std::string& locale = "C"; const std::string& currLocale = setlocale( LC_ALL, nullptr ); if ( locale.compare(currLocale)!=0 ) { try { setlocale(LC_ALL, locale.c_str()); } catch(...) { MITK_INFO << "Could not set locale " << locale; } } boost::property_tree::ptree parameters; // fiber generation parameters parameters.put("fiberfox.fibers.distribution", m_FiberGen.m_Distribution); parameters.put("fiberfox.fibers.variance", m_FiberGen.m_Variance); parameters.put("fiberfox.fibers.density", m_FiberGen.m_Density); parameters.put("fiberfox.fibers.spline.sampling", m_FiberGen.m_Sampling); parameters.put("fiberfox.fibers.spline.tension", m_FiberGen.m_Tension); parameters.put("fiberfox.fibers.spline.continuity", m_FiberGen.m_Continuity); parameters.put("fiberfox.fibers.spline.bias", m_FiberGen.m_Bias); parameters.put("fiberfox.fibers.rotation.x", m_FiberGen.m_Rotation[0]); parameters.put("fiberfox.fibers.rotation.y", m_FiberGen.m_Rotation[1]); parameters.put("fiberfox.fibers.rotation.z", m_FiberGen.m_Rotation[2]); parameters.put("fiberfox.fibers.translation.x", m_FiberGen.m_Translation[0]); parameters.put("fiberfox.fibers.translation.y", m_FiberGen.m_Translation[1]); parameters.put("fiberfox.fibers.translation.z", m_FiberGen.m_Translation[2]); parameters.put("fiberfox.fibers.scale.x", m_FiberGen.m_Scale[0]); parameters.put("fiberfox.fibers.scale.y", m_FiberGen.m_Scale[1]); parameters.put("fiberfox.fibers.scale.z", m_FiberGen.m_Scale[2]); // image generation parameters parameters.put("fiberfox.image.basic.size.x", m_SignalGen.m_ImageRegion.GetSize(0)); parameters.put("fiberfox.image.basic.size.y", m_SignalGen.m_ImageRegion.GetSize(1)); parameters.put("fiberfox.image.basic.size.z", m_SignalGen.m_ImageRegion.GetSize(2)); parameters.put("fiberfox.image.basic.spacing.x", m_SignalGen.m_ImageSpacing[0]); parameters.put("fiberfox.image.basic.spacing.y", m_SignalGen.m_ImageSpacing[1]); parameters.put("fiberfox.image.basic.spacing.z", m_SignalGen.m_ImageSpacing[2]); parameters.put("fiberfox.image.basic.origin.x", m_SignalGen.m_ImageOrigin[0]); parameters.put("fiberfox.image.basic.origin.y", m_SignalGen.m_ImageOrigin[1]); parameters.put("fiberfox.image.basic.origin.z", m_SignalGen.m_ImageOrigin[2]); parameters.put("fiberfox.image.basic.direction.d1", m_SignalGen.m_ImageDirection[0][0]); parameters.put("fiberfox.image.basic.direction.d2", m_SignalGen.m_ImageDirection[0][1]); parameters.put("fiberfox.image.basic.direction.d3", m_SignalGen.m_ImageDirection[0][2]); parameters.put("fiberfox.image.basic.direction.d4", m_SignalGen.m_ImageDirection[1][0]); parameters.put("fiberfox.image.basic.direction.d5", m_SignalGen.m_ImageDirection[1][1]); parameters.put("fiberfox.image.basic.direction.d6", m_SignalGen.m_ImageDirection[1][2]); parameters.put("fiberfox.image.basic.direction.d7", m_SignalGen.m_ImageDirection[2][0]); parameters.put("fiberfox.image.basic.direction.d8", m_SignalGen.m_ImageDirection[2][1]); parameters.put("fiberfox.image.basic.direction.d9", m_SignalGen.m_ImageDirection[2][2]); mitk::gradients::WriteBvalsBvecs(filename+".bvals", filename+".bvecs", m_SignalGen.GetItkGradientContainer(), m_SignalGen.m_Bvalue); parameters.put("fiberfox.image.acquisitiontype", m_SignalGen.m_AcquisitionType); parameters.put("fiberfox.image.coilsensitivityprofile", m_SignalGen.m_CoilSensitivityProfile); parameters.put("fiberfox.image.numberofcoils", m_SignalGen.m_NumberOfCoils); parameters.put("fiberfox.image.reversephase", m_SignalGen.m_ReversePhase); parameters.put("fiberfox.image.partialfourier", m_SignalGen.m_PartialFourier); parameters.put("fiberfox.image.noisevariance", m_SignalGen.m_NoiseVariance); parameters.put("fiberfox.image.trep", m_SignalGen.m_tRep); parameters.put("fiberfox.image.signalScale", m_SignalGen.m_SignalScale); parameters.put("fiberfox.image.tEcho", m_SignalGen.m_tEcho); parameters.put("fiberfox.image.tLine", m_SignalGen.m_tLine); parameters.put("fiberfox.image.tInhom", m_SignalGen.m_tInhom); parameters.put("fiberfox.image.simulatekspace", m_SignalGen.m_SimulateKspaceAcquisition); parameters.put("fiberfox.image.axonRadius", m_SignalGen.m_AxonRadius); parameters.put("fiberfox.image.doSimulateRelaxation", m_SignalGen.m_DoSimulateRelaxation); parameters.put("fiberfox.image.doDisablePartialVolume", m_SignalGen.m_DoDisablePartialVolume); parameters.put("fiberfox.image.artifacts.spikesnum", m_SignalGen.m_Spikes); parameters.put("fiberfox.image.artifacts.spikesscale", m_SignalGen.m_SpikeAmplitude); parameters.put("fiberfox.image.artifacts.kspaceLineOffset", m_SignalGen.m_KspaceLineOffset); parameters.put("fiberfox.image.artifacts.eddyStrength", m_SignalGen.m_EddyStrength); parameters.put("fiberfox.image.artifacts.eddyTau", m_SignalGen.m_Tau); parameters.put("fiberfox.image.artifacts.aliasingfactor", m_SignalGen.m_CroppingFactor); parameters.put("fiberfox.image.artifacts.drift", m_SignalGen.m_Drift); parameters.put("fiberfox.image.artifacts.doAddMotion", m_SignalGen.m_DoAddMotion); parameters.put("fiberfox.image.artifacts.randomMotion", m_SignalGen.m_DoRandomizeMotion); parameters.put("fiberfox.image.artifacts.translation0", m_SignalGen.m_Translation[0]); parameters.put("fiberfox.image.artifacts.translation1", m_SignalGen.m_Translation[1]); parameters.put("fiberfox.image.artifacts.translation2", m_SignalGen.m_Translation[2]); parameters.put("fiberfox.image.artifacts.rotation0", m_SignalGen.m_Rotation[0]); parameters.put("fiberfox.image.artifacts.rotation1", m_SignalGen.m_Rotation[1]); parameters.put("fiberfox.image.artifacts.rotation2", m_SignalGen.m_Rotation[2]); parameters.put("fiberfox.image.artifacts.motionvolumes", m_Misc.m_MotionVolumesBox); parameters.put("fiberfox.image.artifacts.addringing", m_SignalGen.m_DoAddGibbsRinging); parameters.put("fiberfox.image.artifacts.addnoise", m_Misc.m_DoAddNoise); parameters.put("fiberfox.image.artifacts.addghosts", m_Misc.m_DoAddGhosts); parameters.put("fiberfox.image.artifacts.addaliasing", m_Misc.m_DoAddAliasing); parameters.put("fiberfox.image.artifacts.addspikes", m_Misc.m_DoAddSpikes); parameters.put("fiberfox.image.artifacts.addeddycurrents", m_Misc.m_DoAddEddyCurrents); parameters.put("fiberfox.image.artifacts.doAddDistortions", m_Misc.m_DoAddDistortions); parameters.put("fiberfox.image.artifacts.doAddDrift", m_SignalGen.m_DoAddDrift); parameters.put("fiberfox.image.outputvolumefractions", m_Misc.m_CheckOutputVolumeFractionsBox); parameters.put("fiberfox.image.showadvanced", m_Misc.m_CheckAdvancedSignalOptionsBox); parameters.put("fiberfox.image.signalmodelstring", m_Misc.m_SignalModelString); parameters.put("fiberfox.image.artifactmodelstring", m_Misc.m_ArtifactModelString); parameters.put("fiberfox.image.outpath", m_Misc.m_OutputPath); parameters.put("fiberfox.fibers.realtime", m_Misc.m_CheckRealTimeFibersBox); parameters.put("fiberfox.fibers.showadvanced", m_Misc.m_CheckAdvancedFiberOptionsBox); parameters.put("fiberfox.fibers.constantradius", m_Misc.m_CheckConstantRadiusBox); parameters.put("fiberfox.fibers.includeFiducials", m_Misc.m_CheckIncludeFiducialsBox); if (m_NoiseModel!=nullptr) { parameters.put("fiberfox.image.artifacts.noisevariance", m_NoiseModel->GetNoiseVariance()); if (dynamic_cast*>(m_NoiseModel.get())) parameters.put("fiberfox.image.artifacts.noisetype", "rice"); else if (dynamic_cast*>(m_NoiseModel.get())) parameters.put("fiberfox.image.artifacts.noisetype", "chisquare"); } for (std::size_t i=0; i* signalModel = nullptr; if (i(i)+".type", "fiber"); } else { signalModel = m_NonFiberModelList.at(i-m_FiberModelList.size()); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".type", "non-fiber"); } if (dynamic_cast*>(signalModel)) { mitk::StickModel<>* model = dynamic_cast*>(signalModel); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".model", "stick"); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".d", model->GetDiffusivity()); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".t2", model->GetT2()); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".t1", model->GetT1()); } else if (dynamic_cast*>(signalModel)) { mitk::TensorModel<>* model = dynamic_cast*>(signalModel); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".model", "tensor"); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".d1", model->GetDiffusivity1()); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".d2", model->GetDiffusivity2()); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".d3", model->GetDiffusivity3()); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".t2", model->GetT2()); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".t1", model->GetT1()); } else if (dynamic_cast*>(signalModel)) { mitk::RawShModel<>* model = dynamic_cast*>(signalModel); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".model", "prototype"); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".minFA", model->GetFaRange().first); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".maxFA", model->GetFaRange().second); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".minADC", model->GetAdcRange().first); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".maxADC", model->GetAdcRange().second); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".maxNumSamples", model->GetMaxNumKernels()); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".numSamples", model->GetNumberOfKernels()); int shOrder = model->GetShOrder(); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".numCoeffs", (shOrder*shOrder + shOrder + 2)/2 + shOrder); for (unsigned int j=0; jGetNumberOfKernels(); j++) { vnl_vector< double > coeffs = model->GetCoefficients(j); for (unsigned int k=0; k(i)+".kernels."+boost::lexical_cast(j)+".coeffs."+boost::lexical_cast(k), coeffs[k]); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".kernels."+boost::lexical_cast(j)+".B0", model->GetBaselineSignal(j)); } } else if (dynamic_cast*>(signalModel)) { mitk::BallModel<>* model = dynamic_cast*>(signalModel); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".model", "ball"); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".d", model->GetDiffusivity()); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".t2", model->GetT2()); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".t1", model->GetT1()); } else if (dynamic_cast*>(signalModel)) { mitk::AstroStickModel<>* model = dynamic_cast*>(signalModel); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".model", "astrosticks"); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".d", model->GetDiffusivity()); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".t2", model->GetT2()); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".t1", model->GetT1()); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".randomize", model->GetRandomizeSticks()); } else if (dynamic_cast*>(signalModel)) { mitk::DotModel<>* model = dynamic_cast*>(signalModel); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".model", "dot"); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".t2", model->GetT2()); parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".t1", model->GetT1()); } if (signalModel!=nullptr) { parameters.put("fiberfox.image.compartments.c"+boost::lexical_cast(i)+".ID", signalModel->m_CompartmentId); if (signalModel->GetVolumeFractionImage().IsNotNull()) { try{ itk::ImageFileWriter::Pointer writer = itk::ImageFileWriter::New(); writer->SetFileName(filename+"_VOLUME"+boost::lexical_cast(signalModel->m_CompartmentId)+".nii.gz"); writer->SetInput(signalModel->GetVolumeFractionImage()); writer->Update(); MITK_INFO << "Volume fraction image for compartment "+boost::lexical_cast(signalModel->m_CompartmentId)+" saved."; } catch(...) { } } } } boost::property_tree::xml_writer_settings writerSettings(' ', 2); boost::property_tree::xml_parser::write_xml(filename, parameters, std::locale(), writerSettings); try{ itk::ImageFileWriter::Pointer writer = itk::ImageFileWriter::New(); writer->SetFileName(filename+"_FMAP.nii.gz"); writer->SetInput(m_SignalGen.m_FrequencyMap); writer->Update(); } catch(...) { MITK_INFO << "No frequency map saved."; } try{ itk::ImageFileWriter::Pointer writer = itk::ImageFileWriter::New(); writer->SetFileName(filename+"_MASK.nii.gz"); writer->SetInput(m_SignalGen.m_MaskImage); writer->Update(); } catch(...) { MITK_INFO << "No mask image saved."; } setlocale(LC_ALL, currLocale.c_str()); } template< class ParameterType > ParameterType mitk::FiberfoxParameters::ReadVal(boost::property_tree::ptree::value_type const& v, std::string tag, ParameterType defaultValue, bool essential) { try { return v.second.get(tag); } catch (...) { if (essential) { mitkThrow() << "Parameter file corrupted. Essential tag is missing: '" << tag << "'"; } if (tag!="artifacts.noisetype") { MITK_INFO << "Tag '" << tag << "' not found. Using default value '" << defaultValue << "'."; m_MissingTags += "\n- "; m_MissingTags += tag; } return defaultValue; } } void mitk::FiberfoxParameters::UpdateSignalModels() { for (mitk::DiffusionSignalModel<>* m : m_FiberModelList) { m->SetGradientList(m_SignalGen.m_GradientDirections); m->SetBvalue(m_SignalGen.m_Bvalue); } for (mitk::DiffusionSignalModel<>* m : m_NonFiberModelList) { m->SetGradientList(m_SignalGen.m_GradientDirections); m->SetBvalue(m_SignalGen.m_Bvalue); } } void mitk::FiberfoxParameters::SetNumWeightedVolumes(int numGradients) { m_SignalGen.SetNumWeightedVolumes(numGradients); UpdateSignalModels(); } void mitk::FiberfoxParameters::SetGradienDirections(mitk::SignalGenerationParameters::GradientListType gradientList) { m_SignalGen.SetGradienDirections(gradientList); UpdateSignalModels(); } void mitk::FiberfoxParameters::SetGradienDirections(mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer gradientList) { m_SignalGen.SetGradienDirections(gradientList); UpdateSignalModels(); } void mitk::FiberfoxParameters::SetBvalue(double Bvalue) { m_SignalGen.m_Bvalue = Bvalue; UpdateSignalModels(); } void mitk::FiberfoxParameters::GenerateGradientHalfShell() { m_SignalGen.GenerateGradientHalfShell(); UpdateSignalModels(); } void mitk::FiberfoxParameters::LoadParameters(std::string filename) { srand(time(0)); m_MissingTags = ""; if(filename.empty()) { return; } const std::string& locale = "C"; const std::string& currLocale = setlocale( LC_ALL, nullptr ); if ( locale.compare(currLocale)!=0 ) { try { setlocale(LC_ALL, locale.c_str()); } catch(...) { MITK_INFO << "Could not set locale " << locale; } } boost::property_tree::ptree parameterTree; boost::property_tree::xml_parser::read_xml( filename, parameterTree ); m_FiberModelList.clear(); m_NonFiberModelList.clear(); if (m_NoiseModel) { m_NoiseModel = nullptr; } BOOST_FOREACH( boost::property_tree::ptree::value_type const& v1, parameterTree.get_child("fiberfox") ) { if( v1.first == "fibers" ) { m_Misc.m_CheckRealTimeFibersBox = ReadVal(v1,"realtime", m_Misc.m_CheckRealTimeFibersBox); m_Misc.m_CheckAdvancedFiberOptionsBox = ReadVal(v1,"showadvanced", m_Misc.m_CheckAdvancedFiberOptionsBox); m_Misc.m_CheckConstantRadiusBox = ReadVal(v1,"constantradius", m_Misc.m_CheckConstantRadiusBox); m_Misc.m_CheckIncludeFiducialsBox = ReadVal(v1,"includeFiducials", m_Misc.m_CheckIncludeFiducialsBox); switch (ReadVal(v1,"distribution", 0)) { case 0: m_FiberGen.m_Distribution = FiberGenerationParameters::DISTRIBUTE_UNIFORM; break; case 1: m_FiberGen.m_Distribution = FiberGenerationParameters::DISTRIBUTE_GAUSSIAN; break; default: m_FiberGen.m_Distribution = FiberGenerationParameters::DISTRIBUTE_UNIFORM; } m_FiberGen.m_Variance = ReadVal(v1,"variance", m_FiberGen.m_Variance); m_FiberGen.m_Density = ReadVal(v1,"density", m_FiberGen.m_Density); m_FiberGen.m_Sampling = ReadVal(v1,"spline.sampling", m_FiberGen.m_Sampling); m_FiberGen.m_Tension = ReadVal(v1,"spline.tension", m_FiberGen.m_Tension); m_FiberGen.m_Continuity = ReadVal(v1,"spline.continuity", m_FiberGen.m_Continuity); m_FiberGen.m_Bias = ReadVal(v1,"spline.bias", m_FiberGen.m_Bias); m_FiberGen.m_Rotation[0] = ReadVal(v1,"rotation.x", m_FiberGen.m_Rotation[0]); m_FiberGen.m_Rotation[1] = ReadVal(v1,"rotation.y", m_FiberGen.m_Rotation[1]); m_FiberGen.m_Rotation[2] = ReadVal(v1,"rotation.z", m_FiberGen.m_Rotation[2]); m_FiberGen.m_Translation[0] = ReadVal(v1,"translation.x", m_FiberGen.m_Translation[0]); m_FiberGen.m_Translation[1] = ReadVal(v1,"translation.y", m_FiberGen.m_Translation[1]); m_FiberGen.m_Translation[2] = ReadVal(v1,"translation.z", m_FiberGen.m_Translation[2]); m_FiberGen.m_Scale[0] = ReadVal(v1,"scale.x", m_FiberGen.m_Scale[0]); m_FiberGen.m_Scale[1] = ReadVal(v1,"scale.y", m_FiberGen.m_Scale[1]); m_FiberGen.m_Scale[2] = ReadVal(v1,"scale.z", m_FiberGen.m_Scale[2]); } else if ( v1.first == "image" ) { m_Misc.m_SignalModelString = ReadVal(v1,"signalmodelstring", m_Misc.m_SignalModelString); m_Misc.m_ArtifactModelString = ReadVal(v1,"artifactmodelstring", m_Misc.m_ArtifactModelString); m_Misc.m_OutputPath = ReadVal(v1,"outpath", m_Misc.m_OutputPath); m_Misc.m_CheckOutputVolumeFractionsBox = ReadVal(v1,"outputvolumefractions", m_Misc.m_CheckOutputVolumeFractionsBox); m_Misc.m_CheckAdvancedSignalOptionsBox = ReadVal(v1,"showadvanced", m_Misc.m_CheckAdvancedSignalOptionsBox); m_Misc.m_DoAddDistortions = ReadVal(v1,"artifacts.doAddDistortions", m_Misc.m_DoAddDistortions); m_Misc.m_DoAddNoise = ReadVal(v1,"artifacts.addnoise", m_Misc.m_DoAddNoise); m_Misc.m_DoAddGhosts = ReadVal(v1,"artifacts.addghosts", m_Misc.m_DoAddGhosts); m_Misc.m_DoAddAliasing = ReadVal(v1,"artifacts.addaliasing", m_Misc.m_DoAddAliasing); m_Misc.m_DoAddSpikes = ReadVal(v1,"artifacts.addspikes", m_Misc.m_DoAddSpikes); m_Misc.m_DoAddEddyCurrents = ReadVal(v1,"artifacts.addeddycurrents", m_Misc.m_DoAddEddyCurrents); m_SignalGen.m_ImageRegion.SetSize(0, ReadVal(v1,"basic.size.x",m_SignalGen.m_ImageRegion.GetSize(0))); m_SignalGen.m_ImageRegion.SetSize(1, ReadVal(v1,"basic.size.y",m_SignalGen.m_ImageRegion.GetSize(1))); m_SignalGen.m_ImageRegion.SetSize(2, ReadVal(v1,"basic.size.z",m_SignalGen.m_ImageRegion.GetSize(2))); m_SignalGen.m_ImageSpacing[0] = ReadVal(v1,"basic.spacing.x",m_SignalGen.m_ImageSpacing[0]); m_SignalGen.m_ImageSpacing[1] = ReadVal(v1,"basic.spacing.y",m_SignalGen.m_ImageSpacing[1]); m_SignalGen.m_ImageSpacing[2] = ReadVal(v1,"basic.spacing.z",m_SignalGen.m_ImageSpacing[2]); m_SignalGen.m_ImageOrigin[0] = ReadVal(v1,"basic.origin.x",m_SignalGen.m_ImageOrigin[0]); m_SignalGen.m_ImageOrigin[1] = ReadVal(v1,"basic.origin.y",m_SignalGen.m_ImageOrigin[1]); m_SignalGen.m_ImageOrigin[2] = ReadVal(v1,"basic.origin.z",m_SignalGen.m_ImageOrigin[2]); int i = 0; int j = 0; for(auto v : v1.second.get_child("basic.direction")) { m_SignalGen.m_ImageDirection[i][j] = boost::lexical_cast(v.second.data()); ++j; if (j==3) { j = 0; ++i; } } m_SignalGen.m_AcquisitionType = (SignalGenerationParameters::AcquisitionType)ReadVal(v1,"acquisitiontype", m_SignalGen.m_AcquisitionType); m_SignalGen.m_CoilSensitivityProfile = (SignalGenerationParameters::CoilSensitivityProfile)ReadVal(v1,"coilsensitivityprofile", m_SignalGen.m_CoilSensitivityProfile); m_SignalGen.m_NumberOfCoils = ReadVal(v1,"numberofcoils", m_SignalGen.m_NumberOfCoils); m_SignalGen.m_ReversePhase = ReadVal(v1,"reversephase", m_SignalGen.m_ReversePhase); m_SignalGen.m_PartialFourier = ReadVal(v1,"partialfourier", m_SignalGen.m_PartialFourier); m_SignalGen.m_NoiseVariance = ReadVal(v1,"noisevariance", m_SignalGen.m_NoiseVariance); m_SignalGen.m_tRep = ReadVal(v1,"trep", m_SignalGen.m_tRep); m_SignalGen.m_SignalScale = ReadVal(v1,"signalScale", m_SignalGen.m_SignalScale); m_SignalGen.m_tEcho = ReadVal(v1,"tEcho", m_SignalGen.m_tEcho); m_SignalGen.m_tLine = ReadVal(v1,"tLine", m_SignalGen.m_tLine); m_SignalGen.m_tInhom = ReadVal(v1,"tInhom", m_SignalGen.m_tInhom); m_SignalGen.m_SimulateKspaceAcquisition = ReadVal(v1,"simulatekspace", m_SignalGen.m_SimulateKspaceAcquisition); m_SignalGen.m_AxonRadius = ReadVal(v1,"axonRadius", m_SignalGen.m_AxonRadius); m_SignalGen.m_Spikes = ReadVal(v1,"artifacts.spikesnum", m_SignalGen.m_Spikes); m_SignalGen.m_SpikeAmplitude = ReadVal(v1,"artifacts.spikesscale", m_SignalGen.m_SpikeAmplitude); m_SignalGen.m_KspaceLineOffset = ReadVal(v1,"artifacts.kspaceLineOffset", m_SignalGen.m_KspaceLineOffset); m_SignalGen.m_EddyStrength = ReadVal(v1,"artifacts.eddyStrength", m_SignalGen.m_EddyStrength); m_SignalGen.m_Tau = ReadVal(v1,"artifacts.eddyTau", m_SignalGen.m_Tau); m_SignalGen.m_CroppingFactor = ReadVal(v1,"artifacts.aliasingfactor", m_SignalGen.m_CroppingFactor); m_SignalGen.m_Drift = ReadVal(v1,"artifacts.drift", m_SignalGen.m_Drift); m_SignalGen.m_DoAddGibbsRinging = ReadVal(v1,"artifacts.addringing", m_SignalGen.m_DoAddGibbsRinging); m_SignalGen.m_DoSimulateRelaxation = ReadVal(v1,"doSimulateRelaxation", m_SignalGen.m_DoSimulateRelaxation); m_SignalGen.m_DoDisablePartialVolume = ReadVal(v1,"doDisablePartialVolume", m_SignalGen.m_DoDisablePartialVolume); m_SignalGen.m_DoAddMotion = ReadVal(v1,"artifacts.doAddMotion", m_SignalGen.m_DoAddMotion); m_SignalGen.m_DoRandomizeMotion = ReadVal(v1,"artifacts.randomMotion", m_SignalGen.m_DoRandomizeMotion); m_SignalGen.m_DoAddDrift = ReadVal(v1,"artifacts.doAddDrift", m_SignalGen.m_DoAddDrift); m_SignalGen.m_Translation[0] = ReadVal(v1,"artifacts.translation0", m_SignalGen.m_Translation[0]); m_SignalGen.m_Translation[1] = ReadVal(v1,"artifacts.translation1", m_SignalGen.m_Translation[1]); m_SignalGen.m_Translation[2] = ReadVal(v1,"artifacts.translation2", m_SignalGen.m_Translation[2]); m_SignalGen.m_Rotation[0] = ReadVal(v1,"artifacts.rotation0", m_SignalGen.m_Rotation[0]); m_SignalGen.m_Rotation[1] = ReadVal(v1,"artifacts.rotation1", m_SignalGen.m_Rotation[1]); m_SignalGen.m_Rotation[2] = ReadVal(v1,"artifacts.rotation2", m_SignalGen.m_Rotation[2]); if (itksys::SystemTools::FileExists(filename+".bvals") && itksys::SystemTools::FileExists(filename+".bvecs")) { m_Misc.m_BvalsFile = filename+".bvals"; m_Misc.m_BvecsFile = filename+".bvecs"; m_SignalGen.SetGradienDirections( mitk::gradients::ReadBvalsBvecs(m_Misc.m_BvalsFile, m_Misc.m_BvecsFile, m_SignalGen.m_Bvalue) ); } else { m_SignalGen.m_Bvalue = ReadVal(v1,"bvalue", m_SignalGen.m_Bvalue); SignalGenerationParameters::GradientListType gradients; try { BOOST_FOREACH( boost::property_tree::ptree::value_type const& v2, v1.second.get_child("gradients") ) { SignalGenerationParameters::GradientType g; g[0] = ReadVal(v2,"x",0); g[1] = ReadVal(v2,"y",0); g[2] = ReadVal(v2,"z",0); gradients.push_back(g); } } catch(...) { MITK_INFO << "WARNING: Fiberfox parameters without any gradient directions loaded."; } m_SignalGen.SetGradienDirections(gradients); } m_Misc.m_MotionVolumesBox = ReadVal(v1,"artifacts.motionvolumes", m_Misc.m_MotionVolumesBox); m_SignalGen.m_MotionVolumes.clear(); if ( m_Misc.m_MotionVolumesBox == "random" ) { m_SignalGen.m_MotionVolumes.push_back(0); for ( size_t i=1; i < m_SignalGen.GetNumVolumes(); ++i ) { m_SignalGen.m_MotionVolumes.push_back( bool( rand()%2 ) ); } MITK_DEBUG << "mitkFiberfoxParameters.cpp: Case m_Misc.m_MotionVolumesBox == \"random\"."; } else if ( ! m_Misc.m_MotionVolumesBox.empty() ) { std::stringstream stream( m_Misc.m_MotionVolumesBox ); std::vector numbers; int nummer = std::numeric_limits::max(); while( stream >> nummer ) { if( nummer < std::numeric_limits::max() ) { numbers.push_back( nummer ); } } // If a list of negative numbers is given: if( *(std::min_element( numbers.begin(), numbers.end() )) < 0 && *(std::max_element( numbers.begin(), numbers.end() )) <= 0 ) // cave: -0 == +0 { for ( size_t i=0; i(m_SignalGen.GetNumVolumes()) && -number >= 0 ) m_SignalGen.m_MotionVolumes.at(-number) = false; } MITK_DEBUG << "mitkFiberfoxParameters.cpp: Case list of negative numbers."; } // If a list of positive numbers is given: else if( *(std::min_element( numbers.begin(), numbers.end() )) >= 0 && *(std::max_element( numbers.begin(), numbers.end() )) >= 0 ) { for ( size_t i=0; i(m_SignalGen.GetNumVolumes()) && number >= 0) m_SignalGen.m_MotionVolumes.at(number) = true; } MITK_DEBUG << "mitkFiberfoxParameters.cpp: Case list of positive numbers."; } else { MITK_WARN << "mitkFiberfoxParameters.cpp: Inconsistent list of numbers in m_MotionVolumesBox."; break; } } else { MITK_WARN << "mitkFiberfoxParameters.cpp: Cannot make sense of string in m_MotionVolumesBox."; break; } try { if (ReadVal(v1,"artifacts.noisetype","")=="rice") { m_NoiseModel = std::make_shared< mitk::RicianNoiseModel<> >(); m_NoiseModel->SetNoiseVariance(ReadVal(v1,"artifacts.noisevariance",m_NoiseModel->GetNoiseVariance())); } } catch(...) { MITK_DEBUG << "mitkFiberfoxParameters.cpp: caught some error while trying m_NoiseModel->SetNoiseVariance()"; // throw; } try { if (ReadVal(v1,"artifacts.noisetype","")=="chisquare") { m_NoiseModel = std::make_shared< mitk::ChiSquareNoiseModel<> >(); m_NoiseModel->SetNoiseVariance(ReadVal(v1,"artifacts.noisevariance",m_NoiseModel->GetNoiseVariance())); } } catch(...) { MITK_DEBUG << "mitkFiberfoxParameters.cpp: caught some error while trying m_NoiseModel->SetNoiseVariance()"; // throw; } BOOST_FOREACH( boost::property_tree::ptree::value_type const& v2, v1.second.get_child("compartments") ) { mitk::DiffusionSignalModel<>* signalModel = nullptr; std::string model = ReadVal(v2,"model","",true); if (model=="stick") { mitk::StickModel<>* model = new mitk::StickModel<>(); model->SetDiffusivity(ReadVal(v2,"d",model->GetDiffusivity())); model->SetT2(ReadVal(v2,"t2",model->GetT2())); model->SetT1(ReadVal(v2,"t1",model->GetT1())); model->SetBvalue(m_SignalGen.m_Bvalue); model->m_CompartmentId = ReadVal(v2,"ID",0,true); if (ReadVal(v2,"type","",true)=="fiber") m_FiberModelList.push_back(model); else if (ReadVal(v2,"type","",true)=="non-fiber") m_NonFiberModelList.push_back(model); signalModel = model; } else if (model=="tensor") { mitk::TensorModel<>* model = new mitk::TensorModel<>(); model->SetDiffusivity1(ReadVal(v2,"d1",model->GetDiffusivity1())); model->SetDiffusivity2(ReadVal(v2,"d2",model->GetDiffusivity2())); model->SetDiffusivity3(ReadVal(v2,"d3",model->GetDiffusivity3())); model->SetT2(ReadVal(v2,"t2",model->GetT2())); model->SetT1(ReadVal(v2,"t1",model->GetT1())); model->SetBvalue(m_SignalGen.m_Bvalue); model->m_CompartmentId = ReadVal(v2,"ID",0,true); if (ReadVal(v2,"type","",true)=="fiber") m_FiberModelList.push_back(model); else if (ReadVal(v2,"type","",true)=="non-fiber") m_NonFiberModelList.push_back(model); signalModel = model; } else if (model=="ball") { mitk::BallModel<>* model = new mitk::BallModel<>(); model->SetDiffusivity(ReadVal(v2,"d",model->GetDiffusivity())); model->SetT2(ReadVal(v2,"t2",model->GetT2())); model->SetT1(ReadVal(v2,"t1",model->GetT1())); model->SetBvalue(m_SignalGen.m_Bvalue); model->m_CompartmentId = ReadVal(v2,"ID",0,true); if (ReadVal(v2,"type","",true)=="fiber") m_FiberModelList.push_back(model); else if (ReadVal(v2,"type","",true)=="non-fiber") m_NonFiberModelList.push_back(model); signalModel = model; } else if (model=="astrosticks") { mitk::AstroStickModel<>* model = new AstroStickModel<>(); model->SetDiffusivity(ReadVal(v2,"d",model->GetDiffusivity())); model->SetT2(ReadVal(v2,"t2",model->GetT2())); model->SetT1(ReadVal(v2,"t1",model->GetT1())); model->SetBvalue(m_SignalGen.m_Bvalue); model->SetRandomizeSticks(ReadVal(v2,"randomize",model->GetRandomizeSticks())); model->m_CompartmentId = ReadVal(v2,"ID",0,true); if (ReadVal(v2,"type","",true)=="fiber") m_FiberModelList.push_back(model); else if (ReadVal(v2,"type","",true)=="non-fiber") m_NonFiberModelList.push_back(model); signalModel = model; } else if (model=="dot") { mitk::DotModel<>* model = new mitk::DotModel<>(); model->SetT2(ReadVal(v2,"t2",model->GetT2())); model->SetT1(ReadVal(v2,"t1",model->GetT1())); model->m_CompartmentId = ReadVal(v2,"ID",0,true); if (ReadVal(v2,"type","",true)=="fiber") m_FiberModelList.push_back(model); else if (ReadVal(v2,"type","",true)=="non-fiber") m_NonFiberModelList.push_back(model); signalModel = model; } else if (model=="prototype") { mitk::RawShModel<>* model = new mitk::RawShModel<>(); model->SetMaxNumKernels(ReadVal(v2,"maxNumSamples",model->GetMaxNumKernels())); model->SetFaRange(ReadVal(v2,"minFA",model->GetFaRange().first), ReadVal(v2,"maxFA",model->GetFaRange().second)); model->SetAdcRange(ReadVal(v2,"minADC",model->GetAdcRange().first), ReadVal(v2,"maxADC",model->GetAdcRange().second)); model->m_CompartmentId = ReadVal(v2,"ID",0,true); unsigned int numCoeffs = ReadVal(v2,"numCoeffs",0,true); unsigned int numSamples = ReadVal(v2,"numSamples",0,true); for (unsigned int j=0; j coeffs(numCoeffs); for (unsigned int k=0; k(v2,"kernels."+boost::lexical_cast(j)+".coeffs."+boost::lexical_cast(k),0,true); } model->SetShCoefficients( coeffs, ReadVal(v2,"kernels."+boost::lexical_cast(j)+".B0",0,true) ); } if (ReadVal(v2,"type","",true)=="fiber") { m_FiberModelList.push_back(model); } else if (ReadVal(v2,"type","",true)=="non-fiber") { m_NonFiberModelList.push_back(model); } // else ? signalModel = model; } if (signalModel!=nullptr) { try { itk::ImageFileReader::Pointer reader = itk::ImageFileReader::New(); if ( itksys::SystemTools::FileExists(filename+"_VOLUME"+ReadVal(v2,"ID","")+".nii.gz") ) reader->SetFileName(filename+"_VOLUME"+ReadVal(v2,"ID","")+".nii.gz"); else if ( itksys::SystemTools::FileExists(filename+"_VOLUME"+ReadVal(v2,"ID","")+".nii") ) reader->SetFileName(filename+"_VOLUME"+ReadVal(v2,"ID","")+".nii"); else reader->SetFileName(filename+"_VOLUME"+ReadVal(v2,"ID","")+".nrrd"); reader->Update(); signalModel->SetVolumeFractionImage(reader->GetOutput()); MITK_INFO << "Volume fraction image loaded for compartment " << signalModel->m_CompartmentId; } catch(...) { MITK_INFO << "No volume fraction image found for compartment " << signalModel->m_CompartmentId; } } } } else { } } UpdateSignalModels(); try { itk::ImageFileReader::Pointer reader = itk::ImageFileReader::New(); reader->SetFileName(filename+"_FMAP.nrrd"); if ( itksys::SystemTools::FileExists(filename+"_FMAP.nii.gz") ) reader->SetFileName(filename+"_FMAP.nii.gz"); else if ( itksys::SystemTools::FileExists(filename+"_FMAP.nii") ) reader->SetFileName(filename+"_FMAP.nii"); else reader->SetFileName(filename+"_FMAP.nrrd"); reader->Update(); m_SignalGen.m_FrequencyMap = reader->GetOutput(); MITK_INFO << "Frequency map loaded."; } catch(...) { MITK_INFO << "No frequency map found."; } try { itk::ImageFileReader::Pointer reader = itk::ImageFileReader::New(); if ( itksys::SystemTools::FileExists(filename+"_MASK.nii.gz") ) reader->SetFileName(filename+"_MASK.nii.gz"); else if ( itksys::SystemTools::FileExists(filename+"_MASK.nii") ) reader->SetFileName(filename+"_MASK.nii"); else reader->SetFileName(filename+"_MASK.nrrd"); reader->Update(); m_SignalGen.m_MaskImage = reader->GetOutput(); m_SignalGen.m_ImageRegion = m_SignalGen.m_MaskImage->GetLargestPossibleRegion(); m_SignalGen.m_ImageSpacing = m_SignalGen.m_MaskImage->GetSpacing(); m_SignalGen.m_ImageOrigin = m_SignalGen.m_MaskImage->GetOrigin(); m_SignalGen.m_ImageDirection = m_SignalGen.m_MaskImage->GetDirection(); MITK_INFO << "Mask image loaded."; } catch(...) { MITK_INFO << "No mask image found."; } setlocale(LC_ALL, currLocale.c_str()); } void mitk::FiberfoxParameters::PrintSelf() { MITK_INFO << "Not implemented :("; } diff --git a/Modules/DiffusionImaging/FiberTracking/IODataStructures/mitkFiberfoxParameters.h b/Modules/DiffusionImaging/FiberTracking/IODataStructures/mitkFiberfoxParameters.h index 2ca404962e..5ea3d0b7f0 100644 --- a/Modules/DiffusionImaging/FiberTracking/IODataStructures/mitkFiberfoxParameters.h +++ b/Modules/DiffusionImaging/FiberTracking/IODataStructures/mitkFiberfoxParameters.h @@ -1,326 +1,328 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _MITK_FiberfoxParameters_H #define _MITK_FiberfoxParameters_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace mitk { class MITKFIBERTRACKING_EXPORT FiberfoxParameters; /** Signal generation */ class MITKFIBERTRACKING_EXPORT SignalGenerationParameters { friend FiberfoxParameters; public: typedef itk::Image ItkFloatImgType; typedef itk::Image ItkUcharImgType; typedef itk::Vector GradientType; typedef std::vector GradientListType; enum CoilSensitivityProfile : int { COIL_CONSTANT, COIL_LINEAR, COIL_EXPONENTIAL }; enum AcquisitionType : int { SingleShotEpi, SpinEcho }; SignalGenerationParameters() : m_AcquisitionType(SignalGenerationParameters::SingleShotEpi) , m_SignalScale(100) , m_tEcho(100) , m_tRep(4000) , m_tLine(1) , m_tInhom(50) , m_ReversePhase(false) , m_PartialFourier(1.0) , m_NoiseVariance(0.001) , m_NumberOfCoils(1) , m_CoilSensitivityProfile(SignalGenerationParameters::COIL_CONSTANT) , m_SimulateKspaceAcquisition(false) , m_AxonRadius(0) , m_DoDisablePartialVolume(false) , m_Spikes(0) , m_SpikeAmplitude(1) , m_KspaceLineOffset(0) , m_EddyStrength(300) , m_Tau(70) , m_CroppingFactor(1) , m_Drift(0.06) , m_DoAddGibbsRinging(false) , m_DoSimulateRelaxation(true) , m_DoAddMotion(false) , m_DoRandomizeMotion(true) , m_DoAddDrift(false) , m_FrequencyMap(nullptr) , m_MaskImage(nullptr) , m_Bvalue(1000) { m_ImageRegion.SetSize(0, 12); m_ImageRegion.SetSize(1, 12); m_ImageRegion.SetSize(2, 3); m_ImageSpacing.Fill(2.0); m_ImageOrigin.Fill(0.0); m_ImageDirection.SetIdentity(); m_Translation.Fill(0.0); m_Rotation.Fill(0.0); SetNumWeightedVolumes(6); } /** input/output image specifications */ itk::ImageRegion<3> m_CroppedRegion; ///< Image size with reduced FOV. itk::ImageRegion<3> m_ImageRegion; ///< Image size. itk::Vector m_ImageSpacing; ///< Image voxel size. itk::Point m_ImageOrigin; ///< Image origin. itk::Matrix m_ImageDirection; ///< Image rotation matrix. /** Other acquisitions parameters */ AcquisitionType m_AcquisitionType; ///< determines k-space trajectory and maximum echo position(s) float m_SignalScale; ///< Scaling factor for output signal (before noise is added). float m_tEcho; ///< Echo time TE. float m_tRep; ///< Echo time TR. float m_tLine; ///< k-space line readout time (dwell time). float m_tInhom; ///< T2' bool m_ReversePhase; ///< If true, the phase readout direction will be inverted (-y instead of y) float m_PartialFourier; ///< Partial fourier factor (0.5-1) float m_NoiseVariance; ///< Variance of complex gaussian noise int m_NumberOfCoils; ///< Number of coils in multi-coil acquisition CoilSensitivityProfile m_CoilSensitivityProfile; ///< Choose between constant, linear or exponential sensitivity profile of the used coils bool m_SimulateKspaceAcquisition;///< Flag to enable/disable k-space acquisition simulation double m_AxonRadius; ///< Determines compartment volume fractions (0 == automatic axon radius estimation) bool m_DoDisablePartialVolume; ///< Disable partial volume effects. Each voxel is either all fiber or all non-fiber. /** Artifacts and other effects */ unsigned int m_Spikes; ///< Number of spikes randomly appearing in the image float m_SpikeAmplitude; ///< amplitude of spikes relative to the largest signal intensity (magnitude of complex) float m_KspaceLineOffset; ///< Causes N/2 ghosts. Larger offset means stronger ghost. float m_EddyStrength; ///< Strength of eddy current induced gradients in mT/m. float m_Tau; ///< Eddy current decay constant (in ms) float m_CroppingFactor; ///< FOV size in y-direction is multiplied by this factor. Causes aliasing artifacts. float m_Drift; ///< Global signal decrease by the end of the acquisition. bool m_DoAddGibbsRinging; ///< Add Gibbs ringing artifact bool m_DoSimulateRelaxation; ///< Add T2 relaxation effects bool m_DoAddMotion; ///< Enable motion artifacts. bool m_DoRandomizeMotion; ///< Toggles between random and linear motion. bool m_DoAddDrift; ///< Add quadratic signal drift. std::vector< bool > m_MotionVolumes; ///< Indicates the image volumes that are affected by motion ///< with positive numbers, inverted logic with negative numbers. itk::Vector m_Translation; ///< Maximum translational motion. itk::Vector m_Rotation; ///< Maximum rotational motion. ItkFloatImgType::Pointer m_FrequencyMap; ///< If != nullptr, distortions are added to the image using this frequency map. ItkUcharImgType::Pointer m_MaskImage; ///< Signal is only genrated inside of the mask image. std::vector< int > GetBaselineIndices(); ///< Returns list of nun-diffusion-weighted image volume indices unsigned int GetFirstBaselineIndex(); ///< Returns index of first non-diffusion-weighted image volume bool IsBaselineIndex(unsigned int idx); ///< Checks if image volume with given index is non-diffusion-weighted volume or not. unsigned int GetNumWeightedVolumes(); ///< Get number of diffusion-weighted image volumes unsigned int GetNumBaselineVolumes(); ///< Get number of non-diffusion-weighted image volumes unsigned int GetNumVolumes(); ///< Get number of baseline and diffusion-weighted image volumes GradientListType GetGradientDirections(); ///< Return gradient direction container mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer GetItkGradientContainer(); GradientType GetGradientDirection(unsigned int i); std::vector< int > GetBvalues(); ///< Returns a vector with all unique b-values (determined by the gradient magnitudes) double GetBvalue(); + void ApplyDirectionMatrix(); protected: unsigned int m_NumGradients; ///< Number of diffusion-weighted image volumes. unsigned int m_NumBaseline; ///< Number of non-diffusion-weighted image volumes. GradientListType m_GradientDirections; ///< Total number of image volumes. double m_Bvalue; ///< Acquisition b-value void SetNumWeightedVolumes(int numGradients); ///< Automaticall calls GenerateGradientHalfShell() afterwards. void SetGradienDirections(GradientListType gradientList); void SetGradienDirections(mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer gradientList); void GenerateGradientHalfShell(); ///< Generates half shell of gradient directions (with m_NumGradients non-zero directions) }; /** Fiber generation */ class MITKFIBERTRACKING_EXPORT FiberGenerationParameters { public: enum FiberDistribution { DISTRIBUTE_UNIFORM, // distribute fibers uniformly in the ROIs DISTRIBUTE_GAUSSIAN // distribute fibers using a 2D gaussian }; typedef std::vector< std::vector< mitk::PlanarEllipse::Pointer > > FiducialListType; typedef std::vector< std::vector< unsigned int > > FlipListType; FiberGenerationParameters() : m_Distribution(DISTRIBUTE_UNIFORM) , m_Density(100) , m_Variance(100) , m_Sampling(1) , m_Tension(0) , m_Continuity(0) , m_Bias(0) { m_Rotation.Fill(0.0); m_Translation.Fill(0.0); m_Scale.Fill(1.0); } FiberDistribution m_Distribution; unsigned int m_Density; double m_Variance; double m_Sampling; double m_Tension; double m_Continuity; double m_Bias; mitk::Vector3D m_Rotation; mitk::Vector3D m_Translation; mitk::Vector3D m_Scale; FlipListType m_FlipList; ///< contains flags indicating a flip of the 2D fiber x-coordinates (needed to resolve some unwanted fiber twisting) FiducialListType m_Fiducials; ///< container of the planar ellipses used as fiducials for the fiber generation process }; /** GUI persistence, input, output, ... */ class MITKFIBERTRACKING_EXPORT MiscFiberfoxParameters { public: MiscFiberfoxParameters() : m_ResultNode(DataNode::New()) , m_ParentNode(nullptr) , m_SignalModelString("") , m_ArtifactModelString("") , m_OutputPath("/tmp/") , m_OutputPrefix("fiberfox") , m_AfterSimulationMessage("") , m_BvalsFile("") , m_BvecsFile("") , m_CheckOutputVolumeFractionsBox(false) , m_CheckAdvancedSignalOptionsBox(false) , m_DoAddNoise(false) , m_DoAddGhosts(false) , m_DoAddAliasing(false) , m_DoAddSpikes(false) , m_DoAddEddyCurrents(false) , m_DoAddDistortions(false) , m_MotionVolumesBox("random") , m_CheckRealTimeFibersBox(true) , m_CheckAdvancedFiberOptionsBox(false) , m_CheckConstantRadiusBox(false) , m_CheckIncludeFiducialsBox(true) {} DataNode::Pointer m_ResultNode; ///< Stores resulting image. DataNode::Pointer m_ParentNode; ///< Parent node of result node. std::string m_SignalModelString; ///< Appendet to the name of the result node std::string m_ArtifactModelString; ///< Appendet to the name of the result node std::string m_OutputPath; ///< Image is automatically saved to the specified folder after simulation is finished. std::string m_OutputPrefix; /** Prefix for filename of output files and logfile. */ std::string m_AfterSimulationMessage; ///< Store messages that are displayed after the simulation has finished (e.g. warnings, automatic parameter adjustments etc.) std::string m_BvalsFile; std::string m_BvecsFile; /** member variables that store the check-state of GUI checkboxes */ // image generation bool m_CheckOutputVolumeFractionsBox; bool m_CheckAdvancedSignalOptionsBox; bool m_DoAddNoise; bool m_DoAddGhosts; bool m_DoAddAliasing; bool m_DoAddSpikes; bool m_DoAddEddyCurrents; bool m_DoAddDistortions; std::string m_MotionVolumesBox; // fiber generation bool m_CheckRealTimeFibersBox; bool m_CheckAdvancedFiberOptionsBox; bool m_CheckConstantRadiusBox; bool m_CheckIncludeFiducialsBox; }; /** * \brief Datastructure to manage the Fiberfox signal generation parameters. * */ class MITKFIBERTRACKING_EXPORT FiberfoxParameters { public: typedef itk::Image ItkFloatImgType; typedef itk::Image ItkDoubleImgType; typedef itk::Image ItkUcharImgType; typedef DiffusionSignalModel DiffusionModelType; typedef std::vector< DiffusionModelType* > DiffusionModelListType; typedef DiffusionNoiseModel NoiseModelType; FiberfoxParameters(); FiberfoxParameters(const FiberfoxParameters ¶ms); ~FiberfoxParameters(); /** Not templated parameters */ FiberGenerationParameters m_FiberGen; ///< Fiber generation parameters SignalGenerationParameters m_SignalGen; ///< Signal generation parameters MiscFiberfoxParameters m_Misc; ///< GUI realted and I/O parameters /** Templated parameters */ DiffusionModelListType m_FiberModelList; ///< Intra- and inter-axonal compartments. DiffusionModelListType m_NonFiberModelList; ///< Extra-axonal compartments. std::shared_ptr< NoiseModelType > m_NoiseModel; ///< If != nullptr, noise is added to the image. void GenerateGradientHalfShell(); void SetNumWeightedVolumes(int numGradients); ///< Automaticall calls GenerateGradientHalfShell() afterwards. void SetGradienDirections(mitk::SignalGenerationParameters::GradientListType gradientList); void SetGradienDirections(mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer gradientList); void SetBvalue(double Bvalue); void UpdateSignalModels(); void ClearFiberParameters(); void ClearSignalParameters(); + void ApplyDirectionMatrix(); void PrintSelf(); ///< Print parameters to stdout. void SaveParameters(std::string filename); ///< Save image generation parameters to .ffp file. void LoadParameters(std::string filename); ///< Load image generation parameters from .ffp file. template< class ParameterType > ParameterType ReadVal(boost::property_tree::ptree::value_type const& v, std::string tag, ParameterType defaultValue, bool essential=false); std::string m_MissingTags; }; } #endif diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.fiberfox/src/internal/QmitkFiberfoxView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging.fiberfox/src/internal/QmitkFiberfoxView.cpp index 0ee9195b1f..b5bde54f56 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.fiberfox/src/internal/QmitkFiberfoxView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.fiberfox/src/internal/QmitkFiberfoxView.cpp @@ -1,2125 +1,2127 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Blueberry #include #include // Qmitk #include "QmitkFiberfoxView.h" // MITK #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RAPIDXML_NO_EXCEPTIONS #include #include #include #include #include "usModuleRegistry.h" #include #include #include #include #include #include #include #include #include #include "mitkNodePredicateDataType.h" #include #include #include #include #define _USE_MATH_DEFINES #include QmitkFiberfoxWorker::QmitkFiberfoxWorker(QmitkFiberfoxView* view) : m_View(view) { } void QmitkFiberfoxWorker::run() { try{ m_View->m_TractsToDwiFilter->Update(); } catch( ... ) { } m_View->m_Thread.quit(); } const std::string QmitkFiberfoxView::VIEW_ID = "org.mitk.views.fiberfoxview"; QmitkFiberfoxView::QmitkFiberfoxView() : QmitkAbstractView() , m_Controls( 0 ) , m_SelectedImageNode( nullptr ) , m_Worker(this) , m_ThreadIsRunning(false) { m_Worker.moveToThread(&m_Thread); connect(&m_Thread, SIGNAL(started()), this, SLOT(BeforeThread())); connect(&m_Thread, SIGNAL(started()), &m_Worker, SLOT(run())); connect(&m_Thread, SIGNAL(finished()), this, SLOT(AfterThread())); // connect(&m_Thread, SIGNAL(terminated()), this, SLOT(AfterThread())); m_SimulationTimer = new QTimer(this); } void QmitkFiberfoxView::KillThread() { MITK_INFO << "Aborting DWI simulation."; m_TractsToDwiFilter->SetAbortGenerateData(true); m_Controls->m_AbortSimulationButton->setEnabled(false); m_Controls->m_AbortSimulationButton->setText("Aborting simulation ..."); } void QmitkFiberfoxView::BeforeThread() { m_SimulationTime = QTime::currentTime(); m_SimulationTimer->start(100); m_Controls->m_AbortSimulationButton->setVisible(true); m_Controls->m_GenerateImageButton->setVisible(false); m_Controls->m_SimulationStatusText->setVisible(true); m_ThreadIsRunning = true; } void QmitkFiberfoxView::AfterThread() { UpdateSimulationStatus(); m_SimulationTimer->stop(); m_Controls->m_AbortSimulationButton->setVisible(false); m_Controls->m_AbortSimulationButton->setEnabled(true); m_Controls->m_AbortSimulationButton->setText("Abort simulation"); m_Controls->m_GenerateImageButton->setVisible(true); m_ThreadIsRunning = false; QString statusText; FiberfoxParameters parameters; mitk::Image::Pointer mitkImage = mitk::Image::New(); statusText = QString(m_TractsToDwiFilter->GetStatusText().c_str()); if (m_TractsToDwiFilter->GetAbortGenerateData()) { MITK_INFO << "Simulation aborted."; return; } parameters = m_TractsToDwiFilter->GetParameters(); mitkImage = mitk::GrabItkImageMemory( m_TractsToDwiFilter->GetOutput() ); - mitk::DiffusionPropertyHelper::SetOriginalGradientContainer(mitkImage, parameters.m_SignalGen.GetItkGradientContainer()); + mitk::DiffusionPropertyHelper::SetGradientContainer(mitkImage, parameters.m_SignalGen.GetItkGradientContainer()); mitk::DiffusionPropertyHelper::SetReferenceBValue(mitkImage, parameters.m_SignalGen.GetBvalue()); mitk::DiffusionPropertyHelper::InitializeImage( mitkImage ); parameters.m_Misc.m_ResultNode->SetData( mitkImage ); GetDataStorage()->Add(parameters.m_Misc.m_ResultNode, parameters.m_Misc.m_ParentNode); parameters.m_Misc.m_ResultNode->SetProperty( "levelwindow", mitk::LevelWindowProperty::New(m_TractsToDwiFilter->GetLevelWindow()) ); if (m_Controls->m_VolumeFractionsBox->isChecked()) { if (m_TractsToDwiFilter->GetPhaseImage().IsNotNull()) { mitk::Image::Pointer phaseImage = mitk::Image::New(); itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer itkPhase = m_TractsToDwiFilter->GetPhaseImage(); phaseImage = mitk::GrabItkImageMemory( itkPhase.GetPointer() ); mitk::DataNode::Pointer phaseNode = mitk::DataNode::New(); phaseNode->SetData( phaseImage ); phaseNode->SetName("Phase Image"); GetDataStorage()->Add(phaseNode, parameters.m_Misc.m_ResultNode); } if (m_TractsToDwiFilter->GetKspaceImage().IsNotNull()) { mitk::Image::Pointer image = mitk::Image::New(); itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer itkImage = m_TractsToDwiFilter->GetKspaceImage(); image = mitk::GrabItkImageMemory( itkImage.GetPointer() ); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("k-Space"); GetDataStorage()->Add(node, parameters.m_Misc.m_ResultNode); } { mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData(m_TractsToDwiFilter->GetCoilPointset()); node->SetName("Coil Positions"); node->SetProperty("pointsize", mitk::FloatProperty::New(parameters.m_SignalGen.m_ImageSpacing[0]/4)); node->SetProperty("color", mitk::ColorProperty::New(0, 1, 0)); GetDataStorage()->Add(node, parameters.m_Misc.m_ResultNode); } int c = 1; std::vector< itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer > output_real = m_TractsToDwiFilter->GetOutputImagesReal(); for (auto real : output_real) { mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(real.GetPointer()); image->SetVolume(real->GetBufferPointer()); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("Coil-"+QString::number(c).toStdString()+"-real"); GetDataStorage()->Add(node, parameters.m_Misc.m_ResultNode); ++c; } c = 1; std::vector< itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer > output_imag = m_TractsToDwiFilter->GetOutputImagesImag(); for (auto imag : output_imag) { mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(imag.GetPointer()); image->SetVolume(imag->GetBufferPointer()); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("Coil-"+QString::number(c).toStdString()+"-imag"); GetDataStorage()->Add(node, parameters.m_Misc.m_ResultNode); ++c; } std::vector< itk::TractsToDWIImageFilter< short >::ItkDoubleImgType::Pointer > volumeFractions = m_TractsToDwiFilter->GetVolumeFractions(); for (unsigned int k=0; kInitializeByItk(volumeFractions.at(k).GetPointer()); image->SetVolume(volumeFractions.at(k)->GetBufferPointer()); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("CompartmentVolume-"+QString::number(k).toStdString()); GetDataStorage()->Add(node, parameters.m_Misc.m_ResultNode); } } m_TractsToDwiFilter = nullptr; if (parameters.m_Misc.m_AfterSimulationMessage.size()>0) QMessageBox::information( nullptr, "Warning", parameters.m_Misc.m_AfterSimulationMessage.c_str()); mitk::BaseData::Pointer basedata = parameters.m_Misc.m_ResultNode->GetData(); if (basedata.IsNotNull()) { mitk::RenderingManager::GetInstance()->InitializeViews( basedata->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } if (!parameters.m_Misc.m_OutputPath.empty()) { try{ QString outputFileName(parameters.m_Misc.m_OutputPath.c_str()); outputFileName += parameters.m_Misc.m_ResultNode->GetName().c_str(); outputFileName.replace(QString("."), QString("_")); SaveParameters(outputFileName+".ffp"); outputFileName += ".dwi"; QString status("Saving output image to "); status += outputFileName; m_Controls->m_SimulationStatusText->append(status); mitk::IOUtil::Save(mitkImage, outputFileName.toStdString()); m_Controls->m_SimulationStatusText->append("File saved successfully."); } catch (itk::ExceptionObject &e) { QString status("Exception during DWI writing: "); status += e.GetDescription(); m_Controls->m_SimulationStatusText->append(status); } catch (...) { m_Controls->m_SimulationStatusText->append("Unknown exception during DWI writing!"); } } parameters.m_SignalGen.m_FrequencyMap = nullptr; } void QmitkFiberfoxView::UpdateSimulationStatus() { QString statusText = QString(m_TractsToDwiFilter->GetStatusText().c_str()); if (QString::compare(m_SimulationStatusText,statusText)!=0) { m_Controls->m_SimulationStatusText->clear(); m_Controls->m_SimulationStatusText->setText(statusText); QScrollBar *vScrollBar = m_Controls->m_SimulationStatusText->verticalScrollBar(); vScrollBar->triggerAction(QScrollBar::SliderToMaximum); } } // Destructor QmitkFiberfoxView::~QmitkFiberfoxView() { delete m_SimulationTimer; } void QmitkFiberfoxView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkFiberfoxViewControls; m_Controls->setupUi( parent ); m_Controls->m_StickWidget1->setVisible(true); m_Controls->m_StickWidget2->setVisible(false); m_Controls->m_ZeppelinWidget1->setVisible(false); m_Controls->m_ZeppelinWidget2->setVisible(false); m_Controls->m_TensorWidget1->setVisible(false); m_Controls->m_TensorWidget2->setVisible(false); m_Controls->m_BallWidget1->setVisible(true); m_Controls->m_BallWidget2->setVisible(false); m_Controls->m_BallWidget2->SetT1(4500); m_Controls->m_AstrosticksWidget1->setVisible(false); m_Controls->m_AstrosticksWidget2->setVisible(false); m_Controls->m_AstrosticksWidget2->SetT1(4500); m_Controls->m_DotWidget1->setVisible(false); m_Controls->m_DotWidget2->setVisible(false); m_Controls->m_DotWidget2->SetT1(4500); m_Controls->m_PrototypeWidget1->setVisible(false); m_Controls->m_PrototypeWidget2->setVisible(false); m_Controls->m_PrototypeWidget3->setVisible(false); m_Controls->m_PrototypeWidget4->setVisible(false); m_Controls->m_PrototypeWidget3->SetMinFa(0.0); m_Controls->m_PrototypeWidget3->SetMaxFa(0.15); m_Controls->m_PrototypeWidget4->SetMinFa(0.0); m_Controls->m_PrototypeWidget4->SetMaxFa(0.15); m_Controls->m_PrototypeWidget3->SetMinAdc(0.0); m_Controls->m_PrototypeWidget3->SetMaxAdc(0.001); m_Controls->m_PrototypeWidget4->SetMinAdc(0.003); m_Controls->m_PrototypeWidget4->SetMaxAdc(0.004); m_Controls->m_Comp2FractionFrame->setVisible(false); m_Controls->m_Comp4FractionFrame->setVisible(false); m_Controls->m_DiffusionPropsMessage->setVisible(false); m_Controls->m_GeometryMessage->setVisible(false); m_Controls->m_AdvancedSignalOptionsFrame->setVisible(false); m_Controls->m_NoiseFrame->setVisible(false); m_Controls->m_GhostFrame->setVisible(false); m_Controls->m_DistortionsFrame->setVisible(false); m_Controls->m_EddyFrame->setVisible(false); m_Controls->m_SpikeFrame->setVisible(false); m_Controls->m_AliasingFrame->setVisible(false); m_Controls->m_MotionArtifactFrame->setVisible(false); m_Controls->m_DriftFrame->setVisible(false); m_ParameterFile = QDir::currentPath()+"/param.ffp"; m_Controls->m_AbortSimulationButton->setVisible(false); m_Controls->m_SimulationStatusText->setVisible(false); m_Controls->m_FrequencyMapBox->SetDataStorage(this->GetDataStorage()); m_Controls->m_Comp1VolumeFraction->SetDataStorage(this->GetDataStorage()); m_Controls->m_Comp2VolumeFraction->SetDataStorage(this->GetDataStorage()); m_Controls->m_Comp3VolumeFraction->SetDataStorage(this->GetDataStorage()); m_Controls->m_Comp4VolumeFraction->SetDataStorage(this->GetDataStorage()); m_Controls->m_MaskComboBox->SetDataStorage(this->GetDataStorage()); m_Controls->m_TemplateComboBox->SetDataStorage(this->GetDataStorage()); m_Controls->m_FiberBundleComboBox->SetDataStorage(this->GetDataStorage()); mitk::TNodePredicateDataType::Pointer isFiberBundle = mitk::TNodePredicateDataType::New(); mitk::TNodePredicateDataType::Pointer isMitkImage = mitk::TNodePredicateDataType::New(); mitk::NodePredicateIsDWI::Pointer isDwi = mitk::NodePredicateIsDWI::New( ); mitk::NodePredicateDataType::Pointer isDti = mitk::NodePredicateDataType::New("TensorImage"); mitk::NodePredicateDataType::Pointer isOdf = mitk::NodePredicateDataType::New("Odfmage"); mitk::NodePredicateOr::Pointer isDiffusionImage = mitk::NodePredicateOr::New(isDwi, isDti); isDiffusionImage = mitk::NodePredicateOr::New(isDiffusionImage, isOdf); mitk::NodePredicateNot::Pointer noDiffusionImage = mitk::NodePredicateNot::New(isDiffusionImage); mitk::NodePredicateAnd::Pointer isNonDiffMitkImage = mitk::NodePredicateAnd::New(isMitkImage, noDiffusionImage); mitk::NodePredicateProperty::Pointer isBinaryPredicate = mitk::NodePredicateProperty::New("binary", mitk::BoolProperty::New(true)); mitk::NodePredicateAnd::Pointer isBinaryMitkImage = mitk::NodePredicateAnd::New( isNonDiffMitkImage, isBinaryPredicate ); m_Controls->m_FrequencyMapBox->SetPredicate(isNonDiffMitkImage); m_Controls->m_Comp1VolumeFraction->SetPredicate(isNonDiffMitkImage); m_Controls->m_Comp1VolumeFraction->SetZeroEntryText("--"); m_Controls->m_Comp2VolumeFraction->SetPredicate(isNonDiffMitkImage); m_Controls->m_Comp2VolumeFraction->SetZeroEntryText("--"); m_Controls->m_Comp3VolumeFraction->SetPredicate(isNonDiffMitkImage); m_Controls->m_Comp3VolumeFraction->SetZeroEntryText("--"); m_Controls->m_Comp4VolumeFraction->SetPredicate(isNonDiffMitkImage); m_Controls->m_Comp4VolumeFraction->SetZeroEntryText("--"); m_Controls->m_MaskComboBox->SetPredicate(isBinaryMitkImage); m_Controls->m_MaskComboBox->SetZeroEntryText("--"); m_Controls->m_TemplateComboBox->SetPredicate(isMitkImage); m_Controls->m_TemplateComboBox->SetZeroEntryText("--"); m_Controls->m_FiberBundleComboBox->SetPredicate(isFiberBundle); m_Controls->m_FiberBundleComboBox->SetZeroEntryText("--"); QFont font; font.setFamily("Courier"); font.setStyleHint(QFont::Monospace); font.setFixedPitch(true); font.setPointSize(7); m_Controls->m_SimulationStatusText->setFont(font); connect( m_SimulationTimer, SIGNAL(timeout()), this, SLOT(UpdateSimulationStatus()) ); connect((QObject*) m_Controls->m_AbortSimulationButton, SIGNAL(clicked()), (QObject*) this, SLOT(KillThread())); connect((QObject*) m_Controls->m_GenerateImageButton, SIGNAL(clicked()), (QObject*) this, SLOT(GenerateImage())); connect((QObject*) m_Controls->m_AddNoise, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddNoise(int))); connect((QObject*) m_Controls->m_AddGhosts, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddGhosts(int))); connect((QObject*) m_Controls->m_AddDistortions, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddDistortions(int))); connect((QObject*) m_Controls->m_AddEddy, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddEddy(int))); connect((QObject*) m_Controls->m_AddSpikes, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddSpikes(int))); connect((QObject*) m_Controls->m_AddAliasing, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddAliasing(int))); connect((QObject*) m_Controls->m_AddMotion, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddMotion(int))); connect((QObject*) m_Controls->m_AddDrift, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddDrift(int))); connect((QObject*) m_Controls->m_Compartment1Box, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(Comp1ModelFrameVisibility(int))); connect((QObject*) m_Controls->m_Compartment2Box, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(Comp2ModelFrameVisibility(int))); connect((QObject*) m_Controls->m_Compartment3Box, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(Comp3ModelFrameVisibility(int))); connect((QObject*) m_Controls->m_Compartment4Box, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(Comp4ModelFrameVisibility(int))); connect((QObject*) m_Controls->m_AdvancedOptionsBox_2, SIGNAL( stateChanged(int)), (QObject*) this, SLOT(ShowAdvancedOptions(int))); connect((QObject*) m_Controls->m_UseBvalsBvecsBox, SIGNAL( stateChanged(int)), (QObject*) this, SLOT(OnBvalsBvecsCheck(int))); connect((QObject*) m_Controls->m_SaveParametersButton, SIGNAL(clicked()), (QObject*) this, SLOT(SaveParameters())); connect((QObject*) m_Controls->m_LoadParametersButton, SIGNAL(clicked()), (QObject*) this, SLOT(LoadParameters())); connect((QObject*) m_Controls->m_OutputPathButton, SIGNAL(clicked()), (QObject*) this, SLOT(SetOutputPath())); connect((QObject*) m_Controls->m_LoadBvalsButton, SIGNAL(clicked()), (QObject*) this, SLOT(SetBvalsEdit())); connect((QObject*) m_Controls->m_LoadBvecsButton, SIGNAL(clicked()), (QObject*) this, SLOT(SetBvecsEdit())); connect((QObject*) m_Controls->m_MaskComboBox, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(OnMaskSelected(int))); connect((QObject*) m_Controls->m_TemplateComboBox, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(OnTemplateSelected(int))); connect((QObject*) m_Controls->m_FiberBundleComboBox, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(OnFibSelected(int))); } UpdateGui(); } void QmitkFiberfoxView::OnMaskSelected(int ) { UpdateGui(); } void QmitkFiberfoxView::OnTemplateSelected(int ) { UpdateGui(); } void QmitkFiberfoxView::OnFibSelected(int ) { UpdateGui(); } void QmitkFiberfoxView::OnBvalsBvecsCheck(int ) { UpdateGui(); } void QmitkFiberfoxView::UpdateParametersFromGui() { m_Parameters.ClearSignalParameters(); m_Parameters.m_Misc.m_CheckAdvancedSignalOptionsBox = m_Controls->m_AdvancedOptionsBox_2->isChecked(); m_Parameters.m_Misc.m_CheckOutputVolumeFractionsBox = m_Controls->m_VolumeFractionsBox->isChecked(); std::string outputPath = m_Controls->m_SavePathEdit->text().toStdString(); if (outputPath.compare("-")!=0) { m_Parameters.m_Misc.m_OutputPath = outputPath; m_Parameters.m_Misc.m_OutputPath += "/"; } if (m_Controls->m_MaskComboBox->GetSelectedNode().IsNotNull()) { mitk::Image::Pointer mitkMaskImage = dynamic_cast(m_Controls->m_MaskComboBox->GetSelectedNode()->GetData()); mitk::CastToItkImage(mitkMaskImage, m_Parameters.m_SignalGen.m_MaskImage); itk::ImageDuplicator::Pointer duplicator = itk::ImageDuplicator::New(); duplicator->SetInputImage(m_Parameters.m_SignalGen.m_MaskImage); duplicator->Update(); m_Parameters.m_SignalGen.m_MaskImage = duplicator->GetOutput(); } if (m_Controls->m_TemplateComboBox->GetSelectedNode().IsNotNull() && mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( m_Controls->m_TemplateComboBox->GetSelectedNode())) // use parameters of selected DWI { mitk::Image::Pointer dwi = dynamic_cast(m_Controls->m_TemplateComboBox->GetSelectedNode()->GetData()); ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(dwi, itkVectorImagePointer); m_Parameters.m_SignalGen.m_ImageRegion = itkVectorImagePointer->GetLargestPossibleRegion(); m_Parameters.m_SignalGen.m_ImageSpacing = itkVectorImagePointer->GetSpacing(); m_Parameters.m_SignalGen.m_ImageOrigin = itkVectorImagePointer->GetOrigin(); m_Parameters.m_SignalGen.m_ImageDirection = itkVectorImagePointer->GetDirection(); m_Parameters.SetBvalue(mitk::DiffusionPropertyHelper::GetReferenceBValue(dwi)); m_Parameters.SetGradienDirections(mitk::DiffusionPropertyHelper::GetOriginalGradientContainer(dwi)); } else if (m_Controls->m_TemplateComboBox->GetSelectedNode().IsNotNull()) // use geometry of selected image { mitk::Image::Pointer img = dynamic_cast(m_Controls->m_TemplateComboBox->GetSelectedNode()->GetData()); itk::Image< float, 3 >::Pointer itkImg = itk::Image< float, 3 >::New(); CastToItkImage< itk::Image< float, 3 > >(img, itkImg); m_Parameters.m_SignalGen.m_ImageRegion = itkImg->GetLargestPossibleRegion(); m_Parameters.m_SignalGen.m_ImageSpacing = itkImg->GetSpacing(); m_Parameters.m_SignalGen.m_ImageOrigin = itkImg->GetOrigin(); m_Parameters.m_SignalGen.m_ImageDirection = itkImg->GetDirection(); if (m_Controls->m_UseBvalsBvecsBox->isChecked()) { double bval; m_Parameters.SetGradienDirections( mitk::gradients::ReadBvalsBvecs(m_Controls->m_LoadBvalsEdit->text().toStdString(), m_Controls->m_LoadBvecsEdit->text().toStdString(), bval) ); m_Parameters.SetBvalue(bval); } else { m_Parameters.SetNumWeightedVolumes(m_Controls->m_NumGradientsBox->value()); m_Parameters.SetBvalue(m_Controls->m_BvalueBox->value()); m_Parameters.GenerateGradientHalfShell(); } } else if (m_Parameters.m_SignalGen.m_MaskImage.IsNotNull()) // use geometry of mask image { ItkUcharImgType::Pointer itkImg = m_Parameters.m_SignalGen.m_MaskImage; m_Parameters.m_SignalGen.m_ImageRegion = itkImg->GetLargestPossibleRegion(); m_Parameters.m_SignalGen.m_ImageSpacing = itkImg->GetSpacing(); m_Parameters.m_SignalGen.m_ImageOrigin = itkImg->GetOrigin(); m_Parameters.m_SignalGen.m_ImageDirection = itkImg->GetDirection(); if (m_Controls->m_UseBvalsBvecsBox->isChecked()) { double bval; m_Parameters.SetGradienDirections( mitk::gradients::ReadBvalsBvecs(m_Controls->m_LoadBvalsEdit->text().toStdString(), m_Controls->m_LoadBvecsEdit->text().toStdString(), bval) ); m_Parameters.SetBvalue(bval); } else { m_Parameters.SetNumWeightedVolumes(m_Controls->m_NumGradientsBox->value()); m_Parameters.SetBvalue(m_Controls->m_BvalueBox->value()); m_Parameters.GenerateGradientHalfShell(); } } else // use GUI parameters { m_Parameters.m_SignalGen.m_ImageRegion.SetSize(0, m_Controls->m_SizeX->value()); m_Parameters.m_SignalGen.m_ImageRegion.SetSize(1, m_Controls->m_SizeY->value()); m_Parameters.m_SignalGen.m_ImageRegion.SetSize(2, m_Controls->m_SizeZ->value()); m_Parameters.m_SignalGen.m_ImageSpacing[0] = m_Controls->m_SpacingX->value(); m_Parameters.m_SignalGen.m_ImageSpacing[1] = m_Controls->m_SpacingY->value(); m_Parameters.m_SignalGen.m_ImageSpacing[2] = m_Controls->m_SpacingZ->value(); m_Parameters.m_SignalGen.m_ImageOrigin[0] = m_Parameters.m_SignalGen.m_ImageSpacing[0]/2; m_Parameters.m_SignalGen.m_ImageOrigin[1] = m_Parameters.m_SignalGen.m_ImageSpacing[1]/2; m_Parameters.m_SignalGen.m_ImageOrigin[2] = m_Parameters.m_SignalGen.m_ImageSpacing[2]/2; m_Parameters.m_SignalGen.m_ImageDirection.SetIdentity(); if (m_Controls->m_UseBvalsBvecsBox->isChecked()) { double bval; m_Parameters.SetGradienDirections( mitk::gradients::ReadBvalsBvecs(m_Controls->m_LoadBvalsEdit->text().toStdString(), m_Controls->m_LoadBvecsEdit->text().toStdString(), bval) ); m_Parameters.SetBvalue(bval); } else { m_Parameters.SetNumWeightedVolumes(m_Controls->m_NumGradientsBox->value()); m_Parameters.SetBvalue(m_Controls->m_BvalueBox->value()); m_Parameters.GenerateGradientHalfShell(); } } // signal relaxation m_Parameters.m_SignalGen.m_DoSimulateRelaxation = false; if (m_Controls->m_RelaxationBox->isChecked()) { m_Parameters.m_SignalGen.m_DoSimulateRelaxation = true; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Relaxation", BoolProperty::New(true)); m_Parameters.m_Misc.m_ArtifactModelString += "_RELAX"; } m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition = m_Parameters.m_SignalGen.m_DoSimulateRelaxation; // N/2 ghosts m_Parameters.m_Misc.m_DoAddGhosts = m_Controls->m_AddGhosts->isChecked(); m_Parameters.m_SignalGen.m_KspaceLineOffset = m_Controls->m_kOffsetBox->value(); if (m_Controls->m_AddGhosts->isChecked()) { m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition = true; m_Parameters.m_Misc.m_ArtifactModelString += "_GHOST"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Ghost", DoubleProperty::New(m_Parameters.m_SignalGen.m_KspaceLineOffset)); } // Aliasing m_Parameters.m_Misc.m_DoAddAliasing = m_Controls->m_AddAliasing->isChecked(); m_Parameters.m_SignalGen.m_CroppingFactor = (100-m_Controls->m_WrapBox->value())/100; if (m_Controls->m_AddAliasing->isChecked()) { m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition = true; m_Parameters.m_Misc.m_ArtifactModelString += "_ALIASING"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Aliasing", DoubleProperty::New(m_Controls->m_WrapBox->value())); } // Spikes m_Parameters.m_Misc.m_DoAddSpikes = m_Controls->m_AddSpikes->isChecked(); m_Parameters.m_SignalGen.m_Spikes = m_Controls->m_SpikeNumBox->value(); m_Parameters.m_SignalGen.m_SpikeAmplitude = m_Controls->m_SpikeScaleBox->value(); if (m_Controls->m_AddSpikes->isChecked()) { m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition = true; m_Parameters.m_Misc.m_ArtifactModelString += "_SPIKES"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Spikes.Number", IntProperty::New(m_Parameters.m_SignalGen.m_Spikes)); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Spikes.Amplitude", DoubleProperty::New(m_Parameters.m_SignalGen.m_SpikeAmplitude)); } // Drift m_Parameters.m_SignalGen.m_DoAddDrift = m_Controls->m_AddDrift->isChecked(); m_Parameters.m_SignalGen.m_Drift = m_Controls->m_DriftFactor->value()/100; if (m_Controls->m_AddDrift->isChecked()) { m_Parameters.m_Misc.m_ArtifactModelString += "_DRIFT"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Drift", FloatProperty::New(m_Parameters.m_SignalGen.m_Drift)); } // gibbs ringing m_Parameters.m_SignalGen.m_DoAddGibbsRinging = m_Controls->m_AddGibbsRinging->isChecked(); if (m_Controls->m_AddGibbsRinging->isChecked()) { m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition = true; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Ringing", BoolProperty::New(true)); m_Parameters.m_Misc.m_ArtifactModelString += "_RINGING"; } // add distortions m_Parameters.m_Misc.m_DoAddDistortions = m_Controls->m_AddDistortions->isChecked(); if (m_Controls->m_AddDistortions->isChecked() && m_Controls->m_FrequencyMapBox->GetSelectedNode().IsNotNull()) { mitk::DataNode::Pointer fMapNode = m_Controls->m_FrequencyMapBox->GetSelectedNode(); mitk::Image* img = dynamic_cast(fMapNode->GetData()); ItkFloatImgType::Pointer itkImg = ItkFloatImgType::New(); CastToItkImage< ItkFloatImgType >(img, itkImg); if (m_Controls->m_TemplateComboBox->GetSelectedNode().IsNull()) // use geometry of frequency map { m_Parameters.m_SignalGen.m_ImageRegion = itkImg->GetLargestPossibleRegion(); m_Parameters.m_SignalGen.m_ImageSpacing = itkImg->GetSpacing(); m_Parameters.m_SignalGen.m_ImageOrigin = itkImg->GetOrigin(); m_Parameters.m_SignalGen.m_ImageDirection = itkImg->GetDirection(); } m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition = true; itk::ImageDuplicator::Pointer duplicator = itk::ImageDuplicator::New(); duplicator->SetInputImage(itkImg); duplicator->Update(); m_Parameters.m_SignalGen.m_FrequencyMap = duplicator->GetOutput(); m_Parameters.m_Misc.m_ArtifactModelString += "_DISTORTED"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Distortions", BoolProperty::New(true)); } m_Parameters.m_SignalGen.m_EddyStrength = m_Controls->m_EddyGradientStrength->value(); m_Parameters.m_Misc.m_DoAddEddyCurrents = m_Controls->m_AddEddy->isChecked(); if (m_Controls->m_AddEddy->isChecked()) { m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition = true; m_Parameters.m_Misc.m_ArtifactModelString += "_EDDY"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Eddy-strength", DoubleProperty::New(m_Parameters.m_SignalGen.m_EddyStrength)); } // Motion m_Parameters.m_SignalGen.m_DoAddMotion = false; m_Parameters.m_SignalGen.m_DoRandomizeMotion = m_Controls->m_RandomMotion->isChecked(); m_Parameters.m_SignalGen.m_Translation[0] = m_Controls->m_MaxTranslationBoxX->value(); m_Parameters.m_SignalGen.m_Translation[1] = m_Controls->m_MaxTranslationBoxY->value(); m_Parameters.m_SignalGen.m_Translation[2] = m_Controls->m_MaxTranslationBoxZ->value(); m_Parameters.m_SignalGen.m_Rotation[0] = m_Controls->m_MaxRotationBoxX->value(); m_Parameters.m_SignalGen.m_Rotation[1] = m_Controls->m_MaxRotationBoxY->value(); m_Parameters.m_SignalGen.m_Rotation[2] = m_Controls->m_MaxRotationBoxZ->value(); m_Parameters.m_SignalGen.m_MotionVolumes.clear(); m_Parameters.m_Misc.m_MotionVolumesBox = m_Controls->m_MotionVolumesBox->text().toStdString(); if ( m_Controls->m_AddMotion->isChecked()) { m_Parameters.m_SignalGen.m_DoAddMotion = true; m_Parameters.m_Misc.m_ArtifactModelString += "_MOTION"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Motion.Random", BoolProperty::New(m_Parameters.m_SignalGen.m_DoRandomizeMotion)); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Motion.Translation-x", DoubleProperty::New(m_Parameters.m_SignalGen.m_Translation[0])); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Motion.Translation-y", DoubleProperty::New(m_Parameters.m_SignalGen.m_Translation[1])); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Motion.Translation-z", DoubleProperty::New(m_Parameters.m_SignalGen.m_Translation[2])); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Motion.Rotation-x", DoubleProperty::New(m_Parameters.m_SignalGen.m_Rotation[0])); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Motion.Rotation-y", DoubleProperty::New(m_Parameters.m_SignalGen.m_Rotation[1])); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Motion.Rotation-z", DoubleProperty::New(m_Parameters.m_SignalGen.m_Rotation[2])); if ( m_Parameters.m_Misc.m_MotionVolumesBox == "random" ) { for ( size_t i=0; i < m_Parameters.m_SignalGen.GetNumVolumes(); ++i ) { m_Parameters.m_SignalGen.m_MotionVolumes.push_back( bool( rand()%2 ) ); } MITK_DEBUG << "QmitkFiberfoxView.cpp: Case m_Misc.m_MotionVolumesBox == \"random\"."; } else if ( ! m_Parameters.m_Misc.m_MotionVolumesBox.empty() ) { std::stringstream stream( m_Parameters.m_Misc.m_MotionVolumesBox ); std::vector numbers; int number = std::numeric_limits::max(); while( stream >> number ) { if( number < std::numeric_limits::max() ) { numbers.push_back( number ); } } // If a list of negative numbers is given: if( *(std::min_element( numbers.begin(), numbers.end() )) < 0 && *(std::max_element( numbers.begin(), numbers.end() )) <= 0 ) // cave: -0 == +0 { for ( size_t i=0; i < m_Parameters.m_SignalGen.GetNumVolumes(); ++i ) { m_Parameters.m_SignalGen.m_MotionVolumes.push_back( true ); } // set all true except those given. for( auto iter = std::begin( numbers ); iter != std::end( numbers ); ++iter ) { if ( -(*iter) < (int)m_Parameters.m_SignalGen.GetNumVolumes() && -(*iter) >= 0 ) { m_Parameters.m_SignalGen.m_MotionVolumes.at( -(*iter) ) = false; } } MITK_DEBUG << "QmitkFiberfoxView.cpp: Case list of negative numbers."; } // If a list of positive numbers is given: else if( *(std::min_element( numbers.begin(), numbers.end() )) >= 0 && *(std::max_element( numbers.begin(), numbers.end() )) >= 0 ) { for ( size_t i=0; i < m_Parameters.m_SignalGen.GetNumVolumes(); ++i ) { m_Parameters.m_SignalGen.m_MotionVolumes.push_back( false ); } // set all false except those given. for( auto iter = std::begin( numbers ); iter != std::end( numbers ); ++iter ) { if ( *iter < (int)m_Parameters.m_SignalGen.GetNumVolumes() && *iter >= 0 ) { m_Parameters.m_SignalGen.m_MotionVolumes.at( *iter ) = true; } } MITK_DEBUG << "QmitkFiberfoxView.cpp: Case list of positive numbers."; } else { MITK_ERROR << "QmitkFiberfoxView.cpp: Inconsistent list of numbers in m_MotionVolumesBox."; } } else { MITK_WARN << "QmitkFiberfoxView.cpp: Unrecognised parameters.m_Misc.m_MotionVolumesBox: " << m_Parameters.m_Misc.m_MotionVolumesBox; m_Parameters.m_Misc.m_MotionVolumesBox = "random"; // set default. for (unsigned int i=0; im_AcquisitionTypeBox->currentIndex(); m_Parameters.m_SignalGen.m_CoilSensitivityProfile = (SignalGenerationParameters::CoilSensitivityProfile)m_Controls->m_CoilSensBox->currentIndex(); m_Parameters.m_SignalGen.m_NumberOfCoils = m_Controls->m_NumCoilsBox->value(); m_Parameters.m_SignalGen.m_PartialFourier = m_Controls->m_PartialFourier->value(); m_Parameters.m_SignalGen.m_ReversePhase = m_Controls->m_ReversePhaseBox->isChecked(); m_Parameters.m_SignalGen.m_tLine = m_Controls->m_LineReadoutTimeBox->value(); m_Parameters.m_SignalGen.m_tInhom = m_Controls->m_T2starBox->value(); m_Parameters.m_SignalGen.m_tEcho = m_Controls->m_TEbox->value(); m_Parameters.m_SignalGen.m_tRep = m_Controls->m_TRbox->value(); m_Parameters.m_SignalGen.m_DoDisablePartialVolume = m_Controls->m_EnforcePureFiberVoxelsBox->isChecked(); m_Parameters.m_SignalGen.m_AxonRadius = m_Controls->m_FiberRadius->value(); m_Parameters.m_SignalGen.m_SignalScale = m_Controls->m_SignalScaleBox->value(); double voxelVolume = m_Parameters.m_SignalGen.m_ImageSpacing[0] * m_Parameters.m_SignalGen.m_ImageSpacing[1] * m_Parameters.m_SignalGen.m_ImageSpacing[2]; if ( m_Parameters.m_SignalGen.m_SignalScale*voxelVolume > itk::NumericTraits::max()*0.75 ) { m_Parameters.m_SignalGen.m_SignalScale = itk::NumericTraits::max()*0.75/voxelVolume; m_Controls->m_SignalScaleBox->setValue(m_Parameters.m_SignalGen.m_SignalScale); QMessageBox::information( nullptr, "Warning", "Maximum signal exceeding data type limits. Automatically adjusted to " + QString::number(m_Parameters.m_SignalGen.m_SignalScale) + " to obtain a maximum signal of 75% of the data type maximum." " Relaxation and other effects that affect the signal intensities are not accounted for."); } // Noise m_Parameters.m_Misc.m_DoAddNoise = m_Controls->m_AddNoise->isChecked(); m_Parameters.m_SignalGen.m_NoiseVariance = m_Controls->m_NoiseLevel->value(); if (m_Controls->m_AddNoise->isChecked()) { switch (m_Controls->m_NoiseDistributionBox->currentIndex()) { case 0: { if (m_Parameters.m_SignalGen.m_NoiseVariance>0) { m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition = true; m_Parameters.m_Misc.m_ArtifactModelString += "_COMPLEX-GAUSSIAN-"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Noise-Distribution", StringProperty::New("Complex Gaussian")); } break; } case 1: { if (m_Parameters.m_SignalGen.m_NoiseVariance>0) { m_Parameters.m_NoiseModel = std::make_shared< mitk::RicianNoiseModel >(); m_Parameters.m_Misc.m_ArtifactModelString += "_RICIAN-"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Noise-Distribution", StringProperty::New("Rician")); m_Parameters.m_NoiseModel->SetNoiseVariance(m_Parameters.m_SignalGen.m_NoiseVariance); } break; } case 2: { if (m_Parameters.m_SignalGen.m_NoiseVariance>0) { m_Parameters.m_NoiseModel = std::make_shared< mitk::ChiSquareNoiseModel >(); m_Parameters.m_Misc.m_ArtifactModelString += "_CHISQUARED-"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Noise-Distribution", StringProperty::New("Chi-squared")); m_Parameters.m_NoiseModel->SetNoiseVariance(m_Parameters.m_SignalGen.m_NoiseVariance); } break; } default: { if (m_Parameters.m_SignalGen.m_NoiseVariance>0) { m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition = true; m_Parameters.m_Misc.m_ArtifactModelString += "_COMPLEX-GAUSSIAN-"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Noise-Distribution", StringProperty::New("Complex Gaussian")); } break; } } if (m_Parameters.m_SignalGen.m_NoiseVariance>0) { m_Parameters.m_Misc.m_ArtifactModelString += QString::number(m_Parameters.m_SignalGen.m_NoiseVariance).toStdString(); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Noise-Variance", DoubleProperty::New(m_Parameters.m_SignalGen.m_NoiseVariance)); } } // signal models { // compartment 1 switch (m_Controls->m_Compartment1Box->currentIndex()) { case 0: { mitk::StickModel* model = new mitk::StickModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity(m_Controls->m_StickWidget1->GetD()); model->SetT2(m_Controls->m_StickWidget1->GetT2()); model->SetT1(m_Controls->m_StickWidget1->GetT1()); model->m_CompartmentId = 1; m_Parameters.m_FiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Stick"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.Description", StringProperty::New("Intra-axonal compartment") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.Model", StringProperty::New("Stick") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.D", DoubleProperty::New(m_Controls->m_StickWidget1->GetD()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.T2", DoubleProperty::New(model->GetT2()) ); break; } case 1: { mitk::TensorModel* model = new mitk::TensorModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity1(m_Controls->m_ZeppelinWidget1->GetD1()); model->SetDiffusivity2(m_Controls->m_ZeppelinWidget1->GetD2()); model->SetDiffusivity3(m_Controls->m_ZeppelinWidget1->GetD2()); model->SetT2(m_Controls->m_ZeppelinWidget1->GetT2()); model->SetT1(m_Controls->m_ZeppelinWidget1->GetT1()); model->m_CompartmentId = 1; m_Parameters.m_FiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Zeppelin"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.Description", StringProperty::New("Intra-axonal compartment") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.Model", StringProperty::New("Zeppelin") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.D1", DoubleProperty::New(m_Controls->m_ZeppelinWidget1->GetD1()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.D2", DoubleProperty::New(m_Controls->m_ZeppelinWidget1->GetD2()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.T2", DoubleProperty::New(model->GetT2()) ); break; } case 2: { mitk::TensorModel* model = new mitk::TensorModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity1(m_Controls->m_TensorWidget1->GetD1()); model->SetDiffusivity2(m_Controls->m_TensorWidget1->GetD2()); model->SetDiffusivity3(m_Controls->m_TensorWidget1->GetD3()); model->SetT2(m_Controls->m_TensorWidget1->GetT2()); model->SetT1(m_Controls->m_TensorWidget1->GetT1()); model->m_CompartmentId = 1; m_Parameters.m_FiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Tensor"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.Description", StringProperty::New("Intra-axonal compartment") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.Model", StringProperty::New("Tensor") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.D1", DoubleProperty::New(m_Controls->m_TensorWidget1->GetD1()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.D2", DoubleProperty::New(m_Controls->m_TensorWidget1->GetD2()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.D3", DoubleProperty::New(m_Controls->m_TensorWidget1->GetD3()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.T2", DoubleProperty::New(model->GetT2()) ); break; } case 3: { mitk::RawShModel* model = new mitk::RawShModel(); m_Parameters.m_SignalGen.m_DoSimulateRelaxation = false; model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetMaxNumKernels(m_Controls->m_PrototypeWidget1->GetNumberOfSamples()); model->SetFaRange(m_Controls->m_PrototypeWidget1->GetMinFa(), m_Controls->m_PrototypeWidget1->GetMaxFa()); model->SetAdcRange(m_Controls->m_PrototypeWidget1->GetMinAdc(), m_Controls->m_PrototypeWidget1->GetMaxAdc()); model->m_CompartmentId = 1; m_Parameters.m_FiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Prototype"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.Description", StringProperty::New("Intra-axonal compartment") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.Model", StringProperty::New("Prototype") ); break; } } if (m_Controls->m_Comp1VolumeFraction->GetSelectedNode().IsNotNull()) { mitk::DataNode::Pointer volumeNode = m_Controls->m_Comp1VolumeFraction->GetSelectedNode(); ItkDoubleImgType::Pointer comp1VolumeImage = ItkDoubleImgType::New(); mitk::Image* img = dynamic_cast(volumeNode->GetData()); CastToItkImage< ItkDoubleImgType >(img, comp1VolumeImage); m_Parameters.m_FiberModelList.back()->SetVolumeFractionImage(comp1VolumeImage); } // compartment 2 switch (m_Controls->m_Compartment2Box->currentIndex()) { case 0: break; case 1: { mitk::StickModel* model = new mitk::StickModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity(m_Controls->m_StickWidget2->GetD()); model->SetT2(m_Controls->m_StickWidget2->GetT2()); model->SetT1(m_Controls->m_StickWidget2->GetT1()); model->m_CompartmentId = 2; m_Parameters.m_FiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Stick"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.Description", StringProperty::New("Inter-axonal compartment") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.Model", StringProperty::New("Stick") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.D", DoubleProperty::New(m_Controls->m_StickWidget2->GetD()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.T2", DoubleProperty::New(model->GetT2()) ); break; } case 2: { mitk::TensorModel* model = new mitk::TensorModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity1(m_Controls->m_ZeppelinWidget2->GetD1()); model->SetDiffusivity2(m_Controls->m_ZeppelinWidget2->GetD2()); model->SetDiffusivity3(m_Controls->m_ZeppelinWidget2->GetD2()); model->SetT2(m_Controls->m_ZeppelinWidget2->GetT2()); model->SetT1(m_Controls->m_ZeppelinWidget2->GetT1()); model->m_CompartmentId = 2; m_Parameters.m_FiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Zeppelin"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.Description", StringProperty::New("Inter-axonal compartment") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.Model", StringProperty::New("Zeppelin") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.D1", DoubleProperty::New(m_Controls->m_ZeppelinWidget2->GetD1()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.D2", DoubleProperty::New(m_Controls->m_ZeppelinWidget2->GetD2()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.T2", DoubleProperty::New(model->GetT2()) ); break; } case 3: { mitk::TensorModel* model = new mitk::TensorModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity1(m_Controls->m_TensorWidget2->GetD1()); model->SetDiffusivity2(m_Controls->m_TensorWidget2->GetD2()); model->SetDiffusivity3(m_Controls->m_TensorWidget2->GetD3()); model->SetT2(m_Controls->m_TensorWidget2->GetT2()); model->SetT1(m_Controls->m_TensorWidget2->GetT1()); model->m_CompartmentId = 2; m_Parameters.m_FiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Tensor"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.Description", StringProperty::New("Inter-axonal compartment") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.Model", StringProperty::New("Tensor") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.D1", DoubleProperty::New(m_Controls->m_TensorWidget2->GetD1()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.D2", DoubleProperty::New(m_Controls->m_TensorWidget2->GetD2()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.D3", DoubleProperty::New(m_Controls->m_TensorWidget2->GetD3()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.T2", DoubleProperty::New(model->GetT2()) ); break; } } if (m_Controls->m_Comp2VolumeFraction->GetSelectedNode().IsNotNull() && m_Parameters.m_FiberModelList.size()==2) { mitk::DataNode::Pointer volumeNode = m_Controls->m_Comp2VolumeFraction->GetSelectedNode(); ItkDoubleImgType::Pointer comp1VolumeImage = ItkDoubleImgType::New(); mitk::Image* img = dynamic_cast(volumeNode->GetData()); CastToItkImage< ItkDoubleImgType >(img, comp1VolumeImage); m_Parameters.m_FiberModelList.back()->SetVolumeFractionImage(comp1VolumeImage); } // compartment 3 switch (m_Controls->m_Compartment3Box->currentIndex()) { case 0: { mitk::BallModel* model = new mitk::BallModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity(m_Controls->m_BallWidget1->GetD()); model->SetT2(m_Controls->m_BallWidget1->GetT2()); model->SetT1(m_Controls->m_BallWidget1->GetT1()); model->m_CompartmentId = 3; m_Parameters.m_NonFiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Ball"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.Description", StringProperty::New("Extra-axonal compartment 1") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.Model", StringProperty::New("Ball") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.D", DoubleProperty::New(m_Controls->m_BallWidget1->GetD()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.T2", DoubleProperty::New(model->GetT2()) ); break; } case 1: { mitk::AstroStickModel* model = new mitk::AstroStickModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity(m_Controls->m_AstrosticksWidget1->GetD()); model->SetT2(m_Controls->m_AstrosticksWidget1->GetT2()); model->SetT1(m_Controls->m_AstrosticksWidget1->GetT1()); model->SetRandomizeSticks(m_Controls->m_AstrosticksWidget1->GetRandomizeSticks()); model->m_CompartmentId = 3; m_Parameters.m_NonFiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Astrosticks"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.Description", StringProperty::New("Extra-axonal compartment 1") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.Model", StringProperty::New("Astrosticks") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.D", DoubleProperty::New(m_Controls->m_AstrosticksWidget1->GetD()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.T2", DoubleProperty::New(model->GetT2()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.RandomSticks", BoolProperty::New(m_Controls->m_AstrosticksWidget1->GetRandomizeSticks()) ); break; } case 2: { mitk::DotModel* model = new mitk::DotModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetT2(m_Controls->m_DotWidget1->GetT2()); model->SetT1(m_Controls->m_DotWidget1->GetT1()); model->m_CompartmentId = 3; m_Parameters.m_NonFiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Dot"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.Description", StringProperty::New("Extra-axonal compartment 1") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.Model", StringProperty::New("Dot") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.T2", DoubleProperty::New(model->GetT2()) ); break; } case 3: { mitk::RawShModel* model = new mitk::RawShModel(); m_Parameters.m_SignalGen.m_DoSimulateRelaxation = false; model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetMaxNumKernels(m_Controls->m_PrototypeWidget3->GetNumberOfSamples()); model->SetFaRange(m_Controls->m_PrototypeWidget3->GetMinFa(), m_Controls->m_PrototypeWidget3->GetMaxFa()); model->SetAdcRange(m_Controls->m_PrototypeWidget3->GetMinAdc(), m_Controls->m_PrototypeWidget3->GetMaxAdc()); model->m_CompartmentId = 3; m_Parameters.m_NonFiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Prototype"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.Description", StringProperty::New("Extra-axonal compartment 1") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.Model", StringProperty::New("Prototype") ); break; } } if (m_Controls->m_Comp3VolumeFraction->GetSelectedNode().IsNotNull()) { mitk::DataNode::Pointer volumeNode = m_Controls->m_Comp3VolumeFraction->GetSelectedNode(); ItkDoubleImgType::Pointer comp1VolumeImage = ItkDoubleImgType::New(); mitk::Image* img = dynamic_cast(volumeNode->GetData()); CastToItkImage< ItkDoubleImgType >(img, comp1VolumeImage); m_Parameters.m_NonFiberModelList.back()->SetVolumeFractionImage(comp1VolumeImage); } switch (m_Controls->m_Compartment4Box->currentIndex()) { case 0: break; case 1: { mitk::BallModel* model = new mitk::BallModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity(m_Controls->m_BallWidget2->GetD()); model->SetT2(m_Controls->m_BallWidget2->GetT2()); model->SetT1(m_Controls->m_BallWidget2->GetT1()); model->m_CompartmentId = 4; m_Parameters.m_NonFiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Ball"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.Description", StringProperty::New("Extra-axonal compartment 2") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.Model", StringProperty::New("Ball") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.D", DoubleProperty::New(m_Controls->m_BallWidget2->GetD()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.T2", DoubleProperty::New(model->GetT2()) ); break; } case 2: { mitk::AstroStickModel* model = new mitk::AstroStickModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity(m_Controls->m_AstrosticksWidget2->GetD()); model->SetT2(m_Controls->m_AstrosticksWidget2->GetT2()); model->SetT1(m_Controls->m_AstrosticksWidget2->GetT1()); model->SetRandomizeSticks(m_Controls->m_AstrosticksWidget2->GetRandomizeSticks()); model->m_CompartmentId = 4; m_Parameters.m_NonFiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Astrosticks"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.Description", StringProperty::New("Extra-axonal compartment 2") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.Model", StringProperty::New("Astrosticks") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.D", DoubleProperty::New(m_Controls->m_AstrosticksWidget2->GetD()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.T2", DoubleProperty::New(model->GetT2()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.RandomSticks", BoolProperty::New(m_Controls->m_AstrosticksWidget2->GetRandomizeSticks()) ); break; } case 3: { mitk::DotModel* model = new mitk::DotModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetT2(m_Controls->m_DotWidget2->GetT2()); model->SetT1(m_Controls->m_DotWidget2->GetT1()); model->m_CompartmentId = 4; m_Parameters.m_NonFiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Dot"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.Description", StringProperty::New("Extra-axonal compartment 2") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.Model", StringProperty::New("Dot") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.T2", DoubleProperty::New(model->GetT2()) ); break; } case 4: { mitk::RawShModel* model = new mitk::RawShModel(); m_Parameters.m_SignalGen.m_DoSimulateRelaxation = false; model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetMaxNumKernels(m_Controls->m_PrototypeWidget4->GetNumberOfSamples()); model->SetFaRange(m_Controls->m_PrototypeWidget4->GetMinFa(), m_Controls->m_PrototypeWidget4->GetMaxFa()); model->SetAdcRange(m_Controls->m_PrototypeWidget4->GetMinAdc(), m_Controls->m_PrototypeWidget4->GetMaxAdc()); model->m_CompartmentId = 4; m_Parameters.m_NonFiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Prototype"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.Description", StringProperty::New("Extra-axonal compartment 2") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.Model", StringProperty::New("Prototype") ); break; } } if (m_Controls->m_Comp4VolumeFraction->GetSelectedNode().IsNotNull() && m_Parameters.m_NonFiberModelList.size()==2) { mitk::DataNode::Pointer volumeNode = m_Controls->m_Comp4VolumeFraction->GetSelectedNode(); ItkDoubleImgType::Pointer compVolumeImage = ItkDoubleImgType::New(); mitk::Image* img = dynamic_cast(volumeNode->GetData()); CastToItkImage< ItkDoubleImgType >(img, compVolumeImage); m_Parameters.m_NonFiberModelList.back()->SetVolumeFractionImage(compVolumeImage); } } m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.SignalScale", IntProperty::New(m_Parameters.m_SignalGen.m_SignalScale)); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.FiberRadius", IntProperty::New(m_Parameters.m_SignalGen.m_AxonRadius)); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Tinhom", DoubleProperty::New(m_Parameters.m_SignalGen.m_tInhom)); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Tline", DoubleProperty::New(m_Parameters.m_SignalGen.m_tLine)); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.TE", DoubleProperty::New(m_Parameters.m_SignalGen.m_tEcho)); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.b-value", DoubleProperty::New(m_Parameters.m_SignalGen.GetBvalue())); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.NoPartialVolume", BoolProperty::New(m_Parameters.m_SignalGen.m_DoDisablePartialVolume)); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Relaxation", BoolProperty::New(m_Parameters.m_SignalGen.m_DoSimulateRelaxation)); m_Parameters.m_Misc.m_ResultNode->AddProperty("binary", BoolProperty::New(false)); } void QmitkFiberfoxView::SaveParameters(QString filename) { UpdateParametersFromGui(); std::vector< int > bVals = m_Parameters.m_SignalGen.GetBvalues(); std::cout << "b-values: "; for (auto v : bVals) std::cout << v << " "; std::cout << std::endl; bool ok = true; bool first = true; bool dosampling = false; mitk::Image::Pointer diffImg = nullptr; itk::Image< itk::DiffusionTensor3D< double >, 3 >::Pointer tensorImage = nullptr; const int shOrder = 2; typedef itk::AnalyticalDiffusionQballReconstructionImageFilter QballFilterType; QballFilterType::CoefficientImageType::Pointer itkFeatureImage = nullptr; ItkDoubleImgType::Pointer adcImage = nullptr; for (unsigned int i=0; i* model = nullptr; if (i* >(m_Parameters.m_FiberModelList.at(i)); } else { model = dynamic_cast< mitk::RawShModel<>* >(m_Parameters.m_NonFiberModelList.at(i-m_Parameters.m_FiberModelList.size())); } if ( model!=nullptr && model->GetNumberOfKernels() <= 0 ) { if (first==true) { if ( QMessageBox::question(nullptr, "Prototype signal sampling", "Do you want to sample prototype signals from the selected diffusion-weighted imag and save them?", QMessageBox::Yes, QMessageBox::No) == QMessageBox::Yes ) dosampling = true; first = false; if ( dosampling && (m_Controls->m_TemplateComboBox->GetSelectedNode().IsNull() || !mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( dynamic_cast(m_Controls->m_TemplateComboBox->GetSelectedNode()->GetData()) ) ) ) { QMessageBox::information(nullptr, "Parameter file not saved", "No diffusion-weighted image selected to sample signal from."); return; } else if (dosampling) { diffImg = dynamic_cast(m_Controls->m_TemplateComboBox->GetSelectedNode()->GetData()); typedef itk::DiffusionTensor3DReconstructionImageFilter< short, short, double > TensorReconstructionImageFilterType; TensorReconstructionImageFilterType::Pointer filter = TensorReconstructionImageFilterType::New(); ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(diffImg, itkVectorImagePointer); filter->SetBValue(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); filter->SetGradientImage(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg), itkVectorImagePointer ); filter->Update(); tensorImage = filter->GetOutput(); QballFilterType::Pointer qballfilter = QballFilterType::New(); qballfilter->SetBValue(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); qballfilter->SetGradientImage(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg), itkVectorImagePointer ); qballfilter->SetLambda(0.006); qballfilter->SetNormalizationMethod(QballFilterType::QBAR_RAW_SIGNAL); qballfilter->Update(); itkFeatureImage = qballfilter->GetCoefficientImage(); itk::AdcImageFilter< short, double >::Pointer adcFilter = itk::AdcImageFilter< short, double >::New(); adcFilter->SetInput( itkVectorImagePointer ); adcFilter->SetGradientDirections(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg)); adcFilter->SetB_value(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); adcFilter->Update(); adcImage = adcFilter->GetOutput(); } } typedef itk::DiffusionTensor3DReconstructionImageFilter< short, short, double > TensorReconstructionImageFilterType; TensorReconstructionImageFilterType::Pointer filter = TensorReconstructionImageFilterType::New(); ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(diffImg, itkVectorImagePointer); filter->SetBValue(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); filter->SetGradientImage(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg), itkVectorImagePointer ); filter->Update(); tensorImage = filter->GetOutput(); QballFilterType::Pointer qballfilter = QballFilterType::New(); qballfilter->SetBValue(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); qballfilter->SetGradientImage(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg), itkVectorImagePointer ); qballfilter->SetLambda(0.006); qballfilter->SetNormalizationMethod(QballFilterType::QBAR_RAW_SIGNAL); qballfilter->Update(); itkFeatureImage = qballfilter->GetCoefficientImage(); itk::AdcImageFilter< short, double >::Pointer adcFilter = itk::AdcImageFilter< short, double >::New(); adcFilter->SetInput( itkVectorImagePointer ); adcFilter->SetGradientDirections(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg)); adcFilter->SetB_value(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); adcFilter->Update(); adcImage = adcFilter->GetOutput(); if (dosampling && diffImg.IsNotNull()) { ok = model->SampleKernels(diffImg, m_Parameters.m_SignalGen.m_MaskImage, tensorImage, itkFeatureImage, adcImage); if (!ok) { QMessageBox::information( nullptr, "Parameter file not saved", "No valid prototype signals could be sampled."); return; } } } } m_Parameters.SaveParameters(filename.toStdString()); m_ParameterFile = filename; } void QmitkFiberfoxView::SaveParameters() { QString filename = QFileDialog::getSaveFileName( 0, tr("Save Parameters"), m_ParameterFile, tr("Fiberfox Parameters (*.ffp)") ); SaveParameters(filename); } void QmitkFiberfoxView::LoadParameters() { QString filename = QFileDialog::getOpenFileName(0, tr("Load Parameters"), QString(itksys::SystemTools::GetFilenamePath(m_ParameterFile.toStdString()).c_str()), tr("Fiberfox Parameters (*.ffp)") ); if(filename.isEmpty() || filename.isNull()) return; m_ParameterFile = filename; m_Parameters.LoadParameters(filename.toStdString()); if (m_Parameters.m_MissingTags.size()>0) { QString missing("Parameter file might be corrupted. The following parameters could not be read: "); missing += QString(m_Parameters.m_MissingTags.c_str()); missing += "\nDefault values have been assigned to the missing parameters."; QMessageBox::information( nullptr, "Warning!", missing); } // image generation parameters m_Controls->m_SizeX->setValue(m_Parameters.m_SignalGen.m_ImageRegion.GetSize(0)); m_Controls->m_SizeY->setValue(m_Parameters.m_SignalGen.m_ImageRegion.GetSize(1)); m_Controls->m_SizeZ->setValue(m_Parameters.m_SignalGen.m_ImageRegion.GetSize(2)); m_Controls->m_SpacingX->setValue(m_Parameters.m_SignalGen.m_ImageSpacing[0]); m_Controls->m_SpacingY->setValue(m_Parameters.m_SignalGen.m_ImageSpacing[1]); m_Controls->m_SpacingZ->setValue(m_Parameters.m_SignalGen.m_ImageSpacing[2]); m_Controls->m_NumGradientsBox->setValue(m_Parameters.m_SignalGen.GetNumWeightedVolumes()); m_Controls->m_BvalueBox->setValue(m_Parameters.m_SignalGen.GetBvalue()); m_Controls->m_SignalScaleBox->setValue(m_Parameters.m_SignalGen.m_SignalScale); m_Controls->m_TEbox->setValue(m_Parameters.m_SignalGen.m_tEcho); m_Controls->m_LineReadoutTimeBox->setValue(m_Parameters.m_SignalGen.m_tLine); m_Controls->m_T2starBox->setValue(m_Parameters.m_SignalGen.m_tInhom); m_Controls->m_FiberRadius->setValue(m_Parameters.m_SignalGen.m_AxonRadius); m_Controls->m_RelaxationBox->setChecked(m_Parameters.m_SignalGen.m_DoSimulateRelaxation); m_Controls->m_EnforcePureFiberVoxelsBox->setChecked(m_Parameters.m_SignalGen.m_DoDisablePartialVolume); m_Controls->m_ReversePhaseBox->setChecked(m_Parameters.m_SignalGen.m_ReversePhase); m_Controls->m_PartialFourier->setValue(m_Parameters.m_SignalGen.m_PartialFourier); m_Controls->m_TRbox->setValue(m_Parameters.m_SignalGen.m_tRep); m_Controls->m_NumCoilsBox->setValue(m_Parameters.m_SignalGen.m_NumberOfCoils); m_Controls->m_CoilSensBox->setCurrentIndex(m_Parameters.m_SignalGen.m_CoilSensitivityProfile); m_Controls->m_AcquisitionTypeBox->setCurrentIndex(m_Parameters.m_SignalGen.m_AcquisitionType); if (!m_Parameters.m_Misc.m_BvalsFile.empty()) { m_Controls->m_UseBvalsBvecsBox->setChecked(true); m_Controls->m_LoadBvalsEdit->setText(QString(m_Parameters.m_Misc.m_BvalsFile.c_str())); } else m_Controls->m_LoadBvalsEdit->setText("-"); if (!m_Parameters.m_Misc.m_BvecsFile.empty()) { m_Controls->m_UseBvalsBvecsBox->setChecked(true); m_Controls->m_LoadBvecsEdit->setText(QString(m_Parameters.m_Misc.m_BvecsFile.c_str())); } else m_Controls->m_LoadBvecsEdit->setText("-"); if (m_Parameters.m_NoiseModel!=nullptr) { m_Controls->m_AddNoise->setChecked(m_Parameters.m_Misc.m_DoAddNoise); if (dynamic_cast*>(m_Parameters.m_NoiseModel.get())) { m_Controls->m_NoiseDistributionBox->setCurrentIndex(0); } else if (dynamic_cast*>(m_Parameters.m_NoiseModel.get())) { m_Controls->m_NoiseDistributionBox->setCurrentIndex(1); } m_Controls->m_NoiseLevel->setValue(m_Parameters.m_NoiseModel->GetNoiseVariance()); } else { m_Controls->m_AddNoise->setChecked(m_Parameters.m_Misc.m_DoAddNoise); m_Controls->m_NoiseLevel->setValue(m_Parameters.m_SignalGen.m_NoiseVariance); } m_Controls->m_VolumeFractionsBox->setChecked(m_Parameters.m_Misc.m_CheckOutputVolumeFractionsBox); m_Controls->m_AdvancedOptionsBox_2->setChecked(m_Parameters.m_Misc.m_CheckAdvancedSignalOptionsBox); m_Controls->m_AddGhosts->setChecked(m_Parameters.m_Misc.m_DoAddGhosts); m_Controls->m_AddAliasing->setChecked(m_Parameters.m_Misc.m_DoAddAliasing); m_Controls->m_AddDistortions->setChecked(m_Parameters.m_Misc.m_DoAddDistortions); m_Controls->m_AddSpikes->setChecked(m_Parameters.m_Misc.m_DoAddSpikes); m_Controls->m_AddEddy->setChecked(m_Parameters.m_Misc.m_DoAddEddyCurrents); m_Controls->m_AddDrift->setChecked(m_Parameters.m_SignalGen.m_DoAddDrift); m_Controls->m_kOffsetBox->setValue(m_Parameters.m_SignalGen.m_KspaceLineOffset); m_Controls->m_WrapBox->setValue(100*(1-m_Parameters.m_SignalGen.m_CroppingFactor)); m_Controls->m_DriftFactor->setValue(100*m_Parameters.m_SignalGen.m_Drift); m_Controls->m_SpikeNumBox->setValue(m_Parameters.m_SignalGen.m_Spikes); m_Controls->m_SpikeScaleBox->setValue(m_Parameters.m_SignalGen.m_SpikeAmplitude); m_Controls->m_EddyGradientStrength->setValue(m_Parameters.m_SignalGen.m_EddyStrength); m_Controls->m_AddGibbsRinging->setChecked(m_Parameters.m_SignalGen.m_DoAddGibbsRinging); m_Controls->m_AddMotion->setChecked(m_Parameters.m_SignalGen.m_DoAddMotion); m_Controls->m_RandomMotion->setChecked(m_Parameters.m_SignalGen.m_DoRandomizeMotion); m_Controls->m_MotionVolumesBox->setText(QString(m_Parameters.m_Misc.m_MotionVolumesBox.c_str())); m_Controls->m_MaxTranslationBoxX->setValue(m_Parameters.m_SignalGen.m_Translation[0]); m_Controls->m_MaxTranslationBoxY->setValue(m_Parameters.m_SignalGen.m_Translation[1]); m_Controls->m_MaxTranslationBoxZ->setValue(m_Parameters.m_SignalGen.m_Translation[2]); m_Controls->m_MaxRotationBoxX->setValue(m_Parameters.m_SignalGen.m_Rotation[0]); m_Controls->m_MaxRotationBoxY->setValue(m_Parameters.m_SignalGen.m_Rotation[1]); m_Controls->m_MaxRotationBoxZ->setValue(m_Parameters.m_SignalGen.m_Rotation[2]); m_Controls->m_Compartment1Box->setCurrentIndex(0); m_Controls->m_Compartment2Box->setCurrentIndex(0); m_Controls->m_Compartment3Box->setCurrentIndex(0); m_Controls->m_Compartment4Box->setCurrentIndex(0); for (unsigned int i=0; i* signalModel = nullptr; if (iGetVolumeFractionImage().IsNotNull() ) { compVolNode = mitk::DataNode::New(); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(signalModel->GetVolumeFractionImage().GetPointer()); image->SetVolume(signalModel->GetVolumeFractionImage()->GetBufferPointer()); compVolNode->SetData( image ); compVolNode->SetName("Compartment volume "+QString::number(signalModel->m_CompartmentId).toStdString()); GetDataStorage()->Add(compVolNode); } switch (signalModel->m_CompartmentId) { case 1: { if (compVolNode.IsNotNull()) m_Controls->m_Comp1VolumeFraction->SetSelectedNode(compVolNode); if (dynamic_cast*>(signalModel)) { mitk::StickModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_StickWidget1->SetT2(model->GetT2()); m_Controls->m_StickWidget1->SetT1(model->GetT1()); m_Controls->m_StickWidget1->SetD(model->GetDiffusivity()); m_Controls->m_Compartment1Box->setCurrentIndex(0); break; } else if (dynamic_cast*>(signalModel)) { mitk::TensorModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_TensorWidget1->SetT2(model->GetT2()); m_Controls->m_TensorWidget1->SetT1(model->GetT1()); m_Controls->m_TensorWidget1->SetD1(model->GetDiffusivity1()); m_Controls->m_TensorWidget1->SetD2(model->GetDiffusivity2()); m_Controls->m_TensorWidget1->SetD3(model->GetDiffusivity3()); m_Controls->m_Compartment1Box->setCurrentIndex(2); break; } else if (dynamic_cast*>(signalModel)) { mitk::RawShModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_PrototypeWidget1->SetNumberOfSamples(model->GetMaxNumKernels()); m_Controls->m_PrototypeWidget1->SetMinFa(model->GetFaRange().first); m_Controls->m_PrototypeWidget1->SetMaxFa(model->GetFaRange().second); m_Controls->m_PrototypeWidget1->SetMinAdc(model->GetAdcRange().first); m_Controls->m_PrototypeWidget1->SetMaxAdc(model->GetAdcRange().second); m_Controls->m_Compartment1Box->setCurrentIndex(3); break; } break; } case 2: { if (compVolNode.IsNotNull()) m_Controls->m_Comp2VolumeFraction->SetSelectedNode(compVolNode); if (dynamic_cast*>(signalModel)) { mitk::StickModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_StickWidget2->SetT2(model->GetT2()); m_Controls->m_StickWidget2->SetT1(model->GetT1()); m_Controls->m_StickWidget2->SetD(model->GetDiffusivity()); m_Controls->m_Compartment2Box->setCurrentIndex(1); break; } else if (dynamic_cast*>(signalModel)) { mitk::TensorModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_TensorWidget2->SetT2(model->GetT2()); m_Controls->m_TensorWidget2->SetT1(model->GetT1()); m_Controls->m_TensorWidget2->SetD1(model->GetDiffusivity1()); m_Controls->m_TensorWidget2->SetD2(model->GetDiffusivity2()); m_Controls->m_TensorWidget2->SetD3(model->GetDiffusivity3()); m_Controls->m_Compartment2Box->setCurrentIndex(3); break; } break; } case 3: { if (compVolNode.IsNotNull()) m_Controls->m_Comp3VolumeFraction->SetSelectedNode(compVolNode); if (dynamic_cast*>(signalModel)) { mitk::BallModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_BallWidget1->SetT2(model->GetT2()); m_Controls->m_BallWidget1->SetT1(model->GetT1()); m_Controls->m_BallWidget1->SetD(model->GetDiffusivity()); m_Controls->m_Compartment3Box->setCurrentIndex(0); break; } else if (dynamic_cast*>(signalModel)) { mitk::AstroStickModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_AstrosticksWidget1->SetT2(model->GetT2()); m_Controls->m_AstrosticksWidget1->SetT1(model->GetT1()); m_Controls->m_AstrosticksWidget1->SetD(model->GetDiffusivity()); m_Controls->m_AstrosticksWidget1->SetRandomizeSticks(model->GetRandomizeSticks()); m_Controls->m_Compartment3Box->setCurrentIndex(1); break; } else if (dynamic_cast*>(signalModel)) { mitk::DotModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_DotWidget1->SetT2(model->GetT2()); m_Controls->m_DotWidget1->SetT1(model->GetT1()); m_Controls->m_Compartment3Box->setCurrentIndex(2); break; } else if (dynamic_cast*>(signalModel)) { mitk::RawShModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_PrototypeWidget3->SetNumberOfSamples(model->GetMaxNumKernels()); m_Controls->m_PrototypeWidget3->SetMinFa(model->GetFaRange().first); m_Controls->m_PrototypeWidget3->SetMaxFa(model->GetFaRange().second); m_Controls->m_PrototypeWidget3->SetMinAdc(model->GetAdcRange().first); m_Controls->m_PrototypeWidget3->SetMaxAdc(model->GetAdcRange().second); m_Controls->m_Compartment3Box->setCurrentIndex(3); break; } break; } case 4: { if (compVolNode.IsNotNull()) m_Controls->m_Comp4VolumeFraction->SetSelectedNode(compVolNode); if (dynamic_cast*>(signalModel)) { mitk::BallModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_BallWidget2->SetT2(model->GetT2()); m_Controls->m_BallWidget2->SetT1(model->GetT1()); m_Controls->m_BallWidget2->SetD(model->GetDiffusivity()); m_Controls->m_Compartment4Box->setCurrentIndex(1); break; } else if (dynamic_cast*>(signalModel)) { mitk::AstroStickModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_AstrosticksWidget2->SetT2(model->GetT2()); m_Controls->m_AstrosticksWidget2->SetT1(model->GetT1()); m_Controls->m_AstrosticksWidget2->SetD(model->GetDiffusivity()); m_Controls->m_AstrosticksWidget2->SetRandomizeSticks(model->GetRandomizeSticks()); m_Controls->m_Compartment4Box->setCurrentIndex(2); break; } else if (dynamic_cast*>(signalModel)) { mitk::DotModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_DotWidget2->SetT2(model->GetT2()); m_Controls->m_DotWidget2->SetT1(model->GetT1()); m_Controls->m_Compartment4Box->setCurrentIndex(3); break; } else if (dynamic_cast*>(signalModel)) { mitk::RawShModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_PrototypeWidget4->SetNumberOfSamples(model->GetMaxNumKernels()); m_Controls->m_PrototypeWidget4->SetMinFa(model->GetFaRange().first); m_Controls->m_PrototypeWidget4->SetMaxFa(model->GetFaRange().second); m_Controls->m_PrototypeWidget4->SetMinAdc(model->GetAdcRange().first); m_Controls->m_PrototypeWidget4->SetMaxAdc(model->GetAdcRange().second); m_Controls->m_Compartment4Box->setCurrentIndex(4); break; } break; } } } if ( m_Parameters.m_SignalGen.m_MaskImage ) { mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(m_Parameters.m_SignalGen.m_MaskImage.GetPointer()); image->SetVolume(m_Parameters.m_SignalGen.m_MaskImage->GetBufferPointer()); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("Tissue mask"); GetDataStorage()->Add(node); m_Controls->m_MaskComboBox->SetSelectedNode(node); } if ( m_Parameters.m_SignalGen.m_FrequencyMap ) { mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(m_Parameters.m_SignalGen.m_FrequencyMap.GetPointer()); image->SetVolume(m_Parameters.m_SignalGen.m_FrequencyMap->GetBufferPointer()); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("Frequency map"); GetDataStorage()->Add(node); m_Controls->m_FrequencyMapBox->SetSelectedNode(node); } } void QmitkFiberfoxView::ShowAdvancedOptions(int state) { if (state) { m_Controls->m_AdvancedSignalOptionsFrame->setVisible(true); m_Controls->m_AdvancedOptionsBox_2->setChecked(true); } else { m_Controls->m_AdvancedSignalOptionsFrame->setVisible(false); m_Controls->m_AdvancedOptionsBox_2->setChecked(false); } } void QmitkFiberfoxView::Comp1ModelFrameVisibility(int index) { m_Controls->m_StickWidget1->setVisible(false); m_Controls->m_ZeppelinWidget1->setVisible(false); m_Controls->m_TensorWidget1->setVisible(false); m_Controls->m_PrototypeWidget1->setVisible(false); switch (index) { case 0: m_Controls->m_StickWidget1->setVisible(true); break; case 1: m_Controls->m_ZeppelinWidget1->setVisible(true); break; case 2: m_Controls->m_TensorWidget1->setVisible(true); break; case 3: m_Controls->m_PrototypeWidget1->setVisible(true); break; } } void QmitkFiberfoxView::Comp2ModelFrameVisibility(int index) { m_Controls->m_StickWidget2->setVisible(false); m_Controls->m_ZeppelinWidget2->setVisible(false); m_Controls->m_TensorWidget2->setVisible(false); m_Controls->m_Comp2FractionFrame->setVisible(false); switch (index) { case 0: break; case 1: m_Controls->m_StickWidget2->setVisible(true); m_Controls->m_Comp2FractionFrame->setVisible(true); break; case 2: m_Controls->m_ZeppelinWidget2->setVisible(true); m_Controls->m_Comp2FractionFrame->setVisible(true); break; case 3: m_Controls->m_TensorWidget2->setVisible(true); m_Controls->m_Comp2FractionFrame->setVisible(true); break; } } void QmitkFiberfoxView::Comp3ModelFrameVisibility(int index) { m_Controls->m_BallWidget1->setVisible(false); m_Controls->m_AstrosticksWidget1->setVisible(false); m_Controls->m_DotWidget1->setVisible(false); m_Controls->m_PrototypeWidget3->setVisible(false); switch (index) { case 0: m_Controls->m_BallWidget1->setVisible(true); break; case 1: m_Controls->m_AstrosticksWidget1->setVisible(true); break; case 2: m_Controls->m_DotWidget1->setVisible(true); break; case 3: m_Controls->m_PrototypeWidget3->setVisible(true); break; } } void QmitkFiberfoxView::Comp4ModelFrameVisibility(int index) { m_Controls->m_BallWidget2->setVisible(false); m_Controls->m_AstrosticksWidget2->setVisible(false); m_Controls->m_DotWidget2->setVisible(false); m_Controls->m_PrototypeWidget4->setVisible(false); m_Controls->m_Comp4FractionFrame->setVisible(false); switch (index) { case 0: break; case 1: m_Controls->m_BallWidget2->setVisible(true); m_Controls->m_Comp4FractionFrame->setVisible(true); break; case 2: m_Controls->m_AstrosticksWidget2->setVisible(true); m_Controls->m_Comp4FractionFrame->setVisible(true); break; case 3: m_Controls->m_DotWidget2->setVisible(true); m_Controls->m_Comp4FractionFrame->setVisible(true); break; case 4: m_Controls->m_PrototypeWidget4->setVisible(true); m_Controls->m_Comp4FractionFrame->setVisible(true); break; } } void QmitkFiberfoxView::OnAddMotion(int value) { if (value>0) m_Controls->m_MotionArtifactFrame->setVisible(true); else m_Controls->m_MotionArtifactFrame->setVisible(false); } void QmitkFiberfoxView::OnAddDrift(int value) { if (value>0) m_Controls->m_DriftFrame->setVisible(true); else m_Controls->m_DriftFrame->setVisible(false); } void QmitkFiberfoxView::OnAddAliasing(int value) { if (value>0) m_Controls->m_AliasingFrame->setVisible(true); else m_Controls->m_AliasingFrame->setVisible(false); } void QmitkFiberfoxView::OnAddSpikes(int value) { if (value>0) m_Controls->m_SpikeFrame->setVisible(true); else m_Controls->m_SpikeFrame->setVisible(false); } void QmitkFiberfoxView::OnAddEddy(int value) { if (value>0) m_Controls->m_EddyFrame->setVisible(true); else m_Controls->m_EddyFrame->setVisible(false); } void QmitkFiberfoxView::OnAddDistortions(int value) { if (value>0) m_Controls->m_DistortionsFrame->setVisible(true); else m_Controls->m_DistortionsFrame->setVisible(false); } void QmitkFiberfoxView::OnAddGhosts(int value) { if (value>0) m_Controls->m_GhostFrame->setVisible(true); else m_Controls->m_GhostFrame->setVisible(false); } void QmitkFiberfoxView::OnAddNoise(int value) { if (value>0) m_Controls->m_NoiseFrame->setVisible(true); else m_Controls->m_NoiseFrame->setVisible(false); } QmitkFiberfoxView::GradientListType QmitkFiberfoxView::GenerateHalfShell(int NPoints) { NPoints *= 2; GradientListType pointshell; int numB0 = NPoints/20; if (numB0==0) numB0=1; GradientType g; g.Fill(0.0); for (int i=0; i theta; theta.set_size(NPoints); vnl_vector phi; phi.set_size(NPoints); double C = sqrt(4*itk::Math::pi); phi(0) = 0.0; phi(NPoints-1) = 0.0; for(int i=0; i0 && i std::vector > QmitkFiberfoxView::MakeGradientList() { std::vector > retval; vnl_matrix_fixed* U = itk::PointShell >::DistributePointShell(); // Add 0 vector for B0 int numB0 = ndirs/10; if (numB0==0) numB0=1; itk::Vector v; v.Fill(0.0); for (int i=0; i v; v[0] = U->get(0,i); v[1] = U->get(1,i); v[2] = U->get(2,i); retval.push_back(v); } return retval; } void QmitkFiberfoxView::GenerateImage() { if (m_Controls->m_FiberBundleComboBox->GetSelectedNode().IsNull() && !mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( m_Controls->m_TemplateComboBox->GetSelectedNode())) { mitk::Image::Pointer image = mitk::ImageGenerator::GenerateGradientImage( m_Controls->m_SizeX->value(), m_Controls->m_SizeY->value(), m_Controls->m_SizeZ->value(), m_Controls->m_SpacingX->value(), m_Controls->m_SpacingY->value(), m_Controls->m_SpacingZ->value()); mitk::Point3D origin; origin[0] = m_Controls->m_SpacingX->value()/2; origin[1] = m_Controls->m_SpacingY->value()/2; origin[2] = m_Controls->m_SpacingZ->value()/2; image->SetOrigin(origin); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("Dummy"); unsigned int window = m_Controls->m_SizeX->value()*m_Controls->m_SizeY->value()*m_Controls->m_SizeZ->value(); unsigned int level = window/2; mitk::LevelWindow lw; lw.SetLevelWindow(level, window); node->SetProperty( "levelwindow", mitk::LevelWindowProperty::New( lw ) ); GetDataStorage()->Add(node); m_SelectedImageNode = node; mitk::BaseData::Pointer basedata = node->GetData(); if (basedata.IsNotNull()) { mitk::RenderingManager::GetInstance()->InitializeViews( basedata->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } UpdateGui(); QMessageBox::information(nullptr, "Template image generated", "You have selected no fiber bundle or diffusion-weighted image, which can be used to simulate a new diffusion-weighted image. A template image with the specified geometry has been generated that can be used to draw artificial fibers (see view 'Fiber Generator')."); } else if (m_Controls->m_FiberBundleComboBox->GetSelectedNode().IsNotNull()) SimulateImageFromFibers(m_Controls->m_FiberBundleComboBox->GetSelectedNode()); else if ( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( m_Controls->m_TemplateComboBox->GetSelectedNode()) ) SimulateForExistingDwi(m_Controls->m_TemplateComboBox->GetSelectedNode()); else QMessageBox::information(nullptr, "No image generated", "You have selected no fiber bundle or diffusion-weighted image, which can be used to simulate a new diffusion-weighted image."); } void QmitkFiberfoxView::SetFocus() { } void QmitkFiberfoxView::SimulateForExistingDwi(mitk::DataNode* imageNode) { bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( dynamic_cast(imageNode->GetData())) ); if ( !isDiffusionImage ) { return; } UpdateParametersFromGui(); mitk::Image::Pointer diffImg = dynamic_cast(imageNode->GetData()); ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(diffImg, itkVectorImagePointer); m_TractsToDwiFilter = itk::TractsToDWIImageFilter< short >::New(); m_Parameters.m_Misc.m_ParentNode = imageNode; m_Parameters.m_SignalGen.m_SignalScale = 1; m_Parameters.m_Misc.m_ResultNode->SetName(m_Parameters.m_Misc.m_ParentNode->GetName() +"_D"+QString::number(m_Parameters.m_SignalGen.m_ImageRegion.GetSize(0)).toStdString() +"-"+QString::number(m_Parameters.m_SignalGen.m_ImageRegion.GetSize(1)).toStdString() +"-"+QString::number(m_Parameters.m_SignalGen.m_ImageRegion.GetSize(2)).toStdString() +"_S"+QString::number(m_Parameters.m_SignalGen.m_ImageSpacing[0]).toStdString() +"-"+QString::number(m_Parameters.m_SignalGen.m_ImageSpacing[1]).toStdString() +"-"+QString::number(m_Parameters.m_SignalGen.m_ImageSpacing[2]).toStdString() +"_b"+QString::number(m_Parameters.m_SignalGen.GetBvalue()).toStdString() +"_"+m_Parameters.m_Misc.m_SignalModelString +m_Parameters.m_Misc.m_ArtifactModelString); + m_Parameters.ApplyDirectionMatrix(); m_TractsToDwiFilter->SetParameters(m_Parameters); m_TractsToDwiFilter->SetInputImage(itkVectorImagePointer); m_Thread.start(QThread::LowestPriority); } void QmitkFiberfoxView::SimulateImageFromFibers(mitk::DataNode* fiberNode) { mitk::FiberBundle::Pointer fiberBundle = dynamic_cast(fiberNode->GetData()); if (fiberBundle->GetNumFibers()<=0) { return; } UpdateParametersFromGui(); m_TractsToDwiFilter = itk::TractsToDWIImageFilter< short >::New(); m_Parameters.m_Misc.m_ParentNode = fiberNode; m_Parameters.m_Misc.m_ResultNode->SetName(m_Parameters.m_Misc.m_ParentNode->GetName() +"_D"+QString::number(m_Parameters.m_SignalGen.m_ImageRegion.GetSize(0)).toStdString() +"-"+QString::number(m_Parameters.m_SignalGen.m_ImageRegion.GetSize(1)).toStdString() +"-"+QString::number(m_Parameters.m_SignalGen.m_ImageRegion.GetSize(2)).toStdString() +"_S"+QString::number(m_Parameters.m_SignalGen.m_ImageSpacing[0]).toStdString() +"-"+QString::number(m_Parameters.m_SignalGen.m_ImageSpacing[1]).toStdString() +"-"+QString::number(m_Parameters.m_SignalGen.m_ImageSpacing[2]).toStdString() +"_b"+QString::number(m_Parameters.m_SignalGen.GetBvalue()).toStdString() +"_"+m_Parameters.m_Misc.m_SignalModelString +m_Parameters.m_Misc.m_ArtifactModelString); if ( m_Controls->m_TemplateComboBox->GetSelectedNode().IsNotNull() && mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( dynamic_cast (m_Controls->m_TemplateComboBox->GetSelectedNode()->GetData()) ) ) { bool first = true; bool ok = true; mitk::Image::Pointer diffImg = dynamic_cast(m_Controls->m_TemplateComboBox->GetSelectedNode()->GetData()); itk::Image< itk::DiffusionTensor3D< double >, 3 >::Pointer tensorImage = nullptr; const int shOrder = 2; typedef itk::AnalyticalDiffusionQballReconstructionImageFilter QballFilterType; QballFilterType::CoefficientImageType::Pointer itkFeatureImage = nullptr; ItkDoubleImgType::Pointer adcImage = nullptr; for (unsigned int i=0; i* model = nullptr; if (i* >(m_Parameters.m_FiberModelList.at(i)); else model = dynamic_cast< mitk::RawShModel<>* >(m_Parameters.m_NonFiberModelList.at(i-m_Parameters.m_FiberModelList.size())); if (model!=0 && model->GetNumberOfKernels()<=0) { if (first==true) { ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(diffImg, itkVectorImagePointer); typedef itk::DiffusionTensor3DReconstructionImageFilter< short, short, double > TensorReconstructionImageFilterType; TensorReconstructionImageFilterType::Pointer filter = TensorReconstructionImageFilterType::New(); filter->SetBValue(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); filter->SetGradientImage(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg), itkVectorImagePointer ); filter->Update(); tensorImage = filter->GetOutput(); QballFilterType::Pointer qballfilter = QballFilterType::New(); qballfilter->SetGradientImage(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg), itkVectorImagePointer ); qballfilter->SetBValue(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); qballfilter->SetLambda(0.006); qballfilter->SetNormalizationMethod(QballFilterType::QBAR_RAW_SIGNAL); qballfilter->Update(); itkFeatureImage = qballfilter->GetCoefficientImage(); itk::AdcImageFilter< short, double >::Pointer adcFilter = itk::AdcImageFilter< short, double >::New(); adcFilter->SetInput( itkVectorImagePointer ); adcFilter->SetGradientDirections(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg)); adcFilter->SetB_value(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); adcFilter->Update(); adcImage = adcFilter->GetOutput(); } ok = model->SampleKernels(diffImg, m_Parameters.m_SignalGen.m_MaskImage, tensorImage, itkFeatureImage, adcImage); if (!ok) break; } } if (!ok) { QMessageBox::information( nullptr, "Simulation cancelled", "No valid prototype signals could be sampled."); return; } } else if ( m_Controls->m_Compartment1Box->currentIndex()==3 || m_Controls->m_Compartment3Box->currentIndex()==3 || m_Controls->m_Compartment4Box->currentIndex()==4 ) { QMessageBox::information( nullptr, "Simulation cancelled", "Prototype signal but no diffusion-weighted image selected to sample signal from."); return; } + m_Parameters.ApplyDirectionMatrix(); m_TractsToDwiFilter->SetParameters(m_Parameters); m_TractsToDwiFilter->SetFiberBundle(fiberBundle); m_Thread.start(QThread::LowestPriority); } void QmitkFiberfoxView::SetBvalsEdit() { // SELECT FOLDER DIALOG std::string filename; filename = QFileDialog::getOpenFileName(nullptr, "Select bvals file", QString(filename.c_str())).toStdString(); if (filename.empty()) m_Controls->m_LoadBvalsEdit->setText("-"); else m_Controls->m_LoadBvalsEdit->setText(QString(filename.c_str())); } void QmitkFiberfoxView::SetBvecsEdit() { // SELECT FOLDER DIALOG std::string filename; filename = QFileDialog::getOpenFileName(nullptr, "Select bvecs file", QString(filename.c_str())).toStdString(); if (filename.empty()) m_Controls->m_LoadBvecsEdit->setText("-"); else m_Controls->m_LoadBvecsEdit->setText(QString(filename.c_str())); } void QmitkFiberfoxView::SetOutputPath() { // SELECT FOLDER DIALOG std::string outputPath; outputPath = QFileDialog::getExistingDirectory(nullptr, "Save images to...", QString(outputPath.c_str())).toStdString(); if (outputPath.empty()) m_Controls->m_SavePathEdit->setText("-"); else { outputPath += "/"; m_Controls->m_SavePathEdit->setText(QString(outputPath.c_str())); } } void QmitkFiberfoxView::UpdateGui() { m_Controls->m_GeometryFrame->setEnabled(true); m_Controls->m_GeometryMessage->setVisible(false); m_Controls->m_DiffusionPropsMessage->setVisible(false); m_Controls->m_LoadGradientsFrame->setVisible(false); m_Controls->m_GenerateGradientsFrame->setVisible(false); if (m_Controls->m_UseBvalsBvecsBox->isChecked()) m_Controls->m_LoadGradientsFrame->setVisible(true); else m_Controls->m_GenerateGradientsFrame->setVisible(true); // Signal generation gui if (m_Controls->m_MaskComboBox->GetSelectedNode().IsNotNull() || m_Controls->m_TemplateComboBox->GetSelectedNode().IsNotNull()) { m_Controls->m_GeometryMessage->setVisible(true); m_Controls->m_GeometryFrame->setEnabled(false); } if ( m_Controls->m_TemplateComboBox->GetSelectedNode().IsNotNull() && mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( dynamic_cast(m_Controls->m_TemplateComboBox->GetSelectedNode()->GetData()) ) ) { m_Controls->m_DiffusionPropsMessage->setVisible(true); m_Controls->m_GeometryMessage->setVisible(true); m_Controls->m_GeometryFrame->setEnabled(false); m_Controls->m_LoadGradientsFrame->setVisible(false); m_Controls->m_GenerateGradientsFrame->setVisible(false); } }