diff --git a/Modules/Segmentation/Interactions/mitkContourTool.cpp b/Modules/Segmentation/Interactions/mitkContourTool.cpp index 7c16912f7b..109fd68bdc 100644 --- a/Modules/Segmentation/Interactions/mitkContourTool.cpp +++ b/Modules/Segmentation/Interactions/mitkContourTool.cpp @@ -1,197 +1,190 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkContourTool.h" #include "mitkAbstractTransformGeometry.h" #include "mitkOverwriteDirectedPlaneImageFilter.h" #include "mitkOverwriteSliceImageFilter.h" #include "mitkToolManager.h" #include "mitkBaseRenderer.h" #include "mitkRenderingManager.h" //#include "mitkProperties.h" //#include "mitkPlanarCircle.h" #include "mitkLabelSetImage.h" #include "mitkInteractionEvent.h" #include "mitkStateMachineAction.h" mitk::ContourTool::ContourTool(int paintingPixelValue) : FeedbackContourTool("PressMoveReleaseWithCTRLInversion"), - m_PaintingPixelValue(paintingPixelValue), - m_CurrentLabelID(1) + m_PaintingPixelValue(paintingPixelValue) { } mitk::ContourTool::~ContourTool() { } void mitk::ContourTool::ConnectActionsAndFunctions() { CONNECT_FUNCTION("PrimaryButtonPressed", OnMousePressed); CONNECT_FUNCTION("Move", OnMouseMoved); CONNECT_FUNCTION("Release", OnMouseReleased); CONNECT_FUNCTION("InvertLogic", OnInvertLogic); } void mitk::ContourTool::Activated() { Superclass::Activated(); } void mitk::ContourTool::Deactivated() { Superclass::Deactivated(); } /** Just show the contour, insert the first point. */ void mitk::ContourTool::OnMousePressed(StateMachineAction *, InteractionEvent *interactionEvent) { auto *positionEvent = dynamic_cast(interactionEvent); if (!positionEvent) return; m_LastEventSender = positionEvent->GetSender(); m_LastEventSlice = m_LastEventSender->GetSlice(); int timestep = positionEvent->GetSender()->GetTimeStep(); ContourModel *contour = FeedbackContourTool::GetFeedbackContour(); // Clear feedback contour contour->Initialize(); // expand time bounds because our contour was initialized contour->Expand(timestep + 1); // draw as a closed contour contour->SetClosed(true, timestep); // add first mouse position mitk::Point3D point = positionEvent->GetPositionInWorld(); contour->AddVertex(point, timestep); FeedbackContourTool::SetFeedbackContourVisible(true); assert(positionEvent->GetSender()->GetRenderWindow()); mitk::RenderingManager::GetInstance()->RequestUpdate(positionEvent->GetSender()->GetRenderWindow()); } /** Insert the point to the feedback contour. */ void mitk::ContourTool::OnMouseMoved(StateMachineAction *, InteractionEvent *interactionEvent) { auto *positionEvent = dynamic_cast(interactionEvent); if (!positionEvent) return; int timestep = positionEvent->GetSender()->GetTimeStep(); ContourModel *contour = FeedbackContourTool::GetFeedbackContour(); mitk::Point3D point = positionEvent->GetPositionInWorld(); contour->AddVertex(point, timestep); assert(positionEvent->GetSender()->GetRenderWindow()); mitk::RenderingManager::GetInstance()->RequestUpdate(positionEvent->GetSender()->GetRenderWindow()); } /** Close the contour, project it to the image slice and fill it in 2D. */ void mitk::ContourTool::OnMouseReleased(StateMachineAction *, InteractionEvent *interactionEvent) { // 1. Hide the feedback contour, find out which slice the user clicked, find out which slice of the toolmanager's // working image corresponds to that FeedbackContourTool::SetFeedbackContourVisible(false); auto *positionEvent = dynamic_cast(interactionEvent); // const PositionEvent* positionEvent = dynamic_cast(stateEvent->GetEvent()); if (!positionEvent) return; assert(positionEvent->GetSender()->GetRenderWindow()); mitk::RenderingManager::GetInstance()->RequestUpdate(positionEvent->GetSender()->GetRenderWindow()); DataNode *workingNode(m_ToolManager->GetWorkingData(0)); if (!workingNode) return; auto *image = dynamic_cast(workingNode->GetData()); const PlaneGeometry *planeGeometry((positionEvent->GetSender()->GetCurrentWorldPlaneGeometry())); if (!image || !planeGeometry) return; - // Check if it is a multilabel-image - // If yes, get the new drawing color from it. - // Otherwise nothing happens. + // Check if it is a multilabel-image. If yes, get the new drawing color from it. auto *labelSetImage = dynamic_cast(image); - if (labelSetImage) + int activePixelValue = 1; + if (nullptr != labelSetImage) { - mitk::Label *label = labelSetImage->GetActiveLabel(labelSetImage->GetActiveLayer()); - m_CurrentLabelID = label->GetValue(); - } - else - { - m_CurrentLabelID = 1; + activePixelValue = labelSetImage->GetActiveLabel(labelSetImage->GetActiveLayer())->GetValue(); } const auto *abstractTransformGeometry( dynamic_cast(positionEvent->GetSender()->GetCurrentWorldPlaneGeometry())); if (!image || abstractTransformGeometry) return; // 2. Slice is known, now we try to get it as a 2D image and project the contour into index coordinates of this slice Image::Pointer slice = SegTool2D::GetAffectedImageSliceAs2DImage(positionEvent, image); if (slice.IsNull()) { MITK_ERROR << "Unable to extract slice." << std::endl; return; } ContourModel *feedbackContour = FeedbackContourTool::GetFeedbackContour(); ContourModel::Pointer projectedContour = FeedbackContourTool::ProjectContourTo2DSlice( slice, feedbackContour, true, false); // true: actually no idea why this is neccessary, but it works :-( if (projectedContour.IsNull()) return; int timestep = positionEvent->GetSender()->GetTimeStep(); // m_PaintingPixelValue only decides whether to paint or erase mitk::ContourModelUtils::FillContourInSlice( - projectedContour, timestep, slice, image, (m_PaintingPixelValue * m_CurrentLabelID)); + projectedContour, timestep, slice, image, (m_PaintingPixelValue * activePixelValue)); // this->WriteBackSegmentationResult(positionEvent, slice); SegTool2D::WriteBackSegmentationResult(positionEvent, slice); // 4. Make sure the result is drawn again --> is visible then. assert(positionEvent->GetSender()->GetRenderWindow()); } /** Called when the CTRL key is pressed. Will change the painting pixel value from 0 to 1 or from 1 to 0. */ void mitk::ContourTool::OnInvertLogic(StateMachineAction *, InteractionEvent *) { // Inversion only for 0 and 1 as painting values if (m_PaintingPixelValue == 1) { m_PaintingPixelValue = 0; FeedbackContourTool::SetFeedbackContourColor(1.0, 0.0, 0.0); } else if (m_PaintingPixelValue == 0) { m_PaintingPixelValue = 1; FeedbackContourTool::SetFeedbackContourColorDefault(); } } diff --git a/Modules/Segmentation/Interactions/mitkContourTool.h b/Modules/Segmentation/Interactions/mitkContourTool.h index 88b0317a83..23e7d7a79c 100644 --- a/Modules/Segmentation/Interactions/mitkContourTool.h +++ b/Modules/Segmentation/Interactions/mitkContourTool.h @@ -1,72 +1,71 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef mitkContourTool_h_Included #define mitkContourTool_h_Included #include "mitkCommon.h" #include "mitkFeedbackContourTool.h" #include namespace mitk { class Image; class StateMachineAction; class InteractionEvent; /** \brief Simple contour filling tool. \sa FeedbackContourTool \sa ExtractImageFilter \sa OverwriteSliceImageFilter \ingroup Interaction \ingroup ToolManagerEtAl Fills a visible contour (from FeedbackContourTool) during mouse dragging. When the mouse button is released, ContourTool tries to extract a slice from the working image and fill in the (filled) contour as a binary image. The painting "color" is defined by m_PaintingPixelValue, which is set in the constructor (by sub-classes) or during some event (e.g. in OnInvertLogic - when CTRL is pressed). \warning Only to be instantiated by mitk::ToolManager. $Author$ */ class MITKSEGMENTATION_EXPORT ContourTool : public FeedbackContourTool { public: mitkClassMacro(ContourTool, FeedbackContourTool); protected: ContourTool(int paintingPixelValue = 1); // purposely hidden ~ContourTool() override; void Activated() override; void Deactivated() override; virtual void OnMousePressed(StateMachineAction *, InteractionEvent *interactionEvent); virtual void OnMouseMoved(StateMachineAction *, InteractionEvent *interactionEvent); virtual void OnMouseReleased(StateMachineAction *, InteractionEvent *interactionEvent); virtual void OnInvertLogic(StateMachineAction *, InteractionEvent *interactionEvent); void ConnectActionsAndFunctions() override; int m_PaintingPixelValue; - int m_CurrentLabelID; }; } // namespace #endif diff --git a/Modules/Segmentation/Interactions/mitkPaintbrushTool.cpp b/Modules/Segmentation/Interactions/mitkPaintbrushTool.cpp index 1cb67b63d1..f3bb9b4500 100644 --- a/Modules/Segmentation/Interactions/mitkPaintbrushTool.cpp +++ b/Modules/Segmentation/Interactions/mitkPaintbrushTool.cpp @@ -1,594 +1,594 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkPaintbrushTool.h" #include "ipSegmentation.h" #include "mitkAbstractTransformGeometry.h" #include "mitkBaseRenderer.h" #include "mitkImageDataItem.h" #include "mitkOverwriteSliceImageFilter.h" #include "mitkToolManager.h" #include "mitkContourModelUtils.h" #include "mitkLabelSetImage.h" #include "mitkLevelWindowProperty.h" int mitk::PaintbrushTool::m_Size = 1; mitk::PaintbrushTool::PaintbrushTool(int paintingPixelValue) : FeedbackContourTool("PressMoveReleaseWithCTRLInversionAllMouseMoves"), m_PaintingPixelValue(paintingPixelValue), m_LastContourSize(0) // other than initial mitk::PaintbrushTool::m_Size (around l. 28) { m_MasterContour = ContourModel::New(); m_MasterContour->Initialize(); m_CurrentPlane = nullptr; m_WorkingNode = DataNode::New(); m_WorkingNode->SetProperty("levelwindow", mitk::LevelWindowProperty::New(mitk::LevelWindow(0, 1))); m_WorkingNode->SetProperty("binary", mitk::BoolProperty::New(true)); } mitk::PaintbrushTool::~PaintbrushTool() { } void mitk::PaintbrushTool::ConnectActionsAndFunctions() { CONNECT_FUNCTION("PrimaryButtonPressed", OnMousePressed); CONNECT_FUNCTION("Move", OnPrimaryButtonPressedMoved); CONNECT_FUNCTION("MouseMove", OnMouseMoved); CONNECT_FUNCTION("Release", OnMouseReleased); CONNECT_FUNCTION("InvertLogic", OnInvertLogic); } void mitk::PaintbrushTool::Activated() { Superclass::Activated(); FeedbackContourTool::SetFeedbackContourVisible(true); SizeChanged.Send(m_Size); m_ToolManager->WorkingDataChanged += mitk::MessageDelegate(this, &mitk::PaintbrushTool::OnToolManagerWorkingDataModified); } void mitk::PaintbrushTool::Deactivated() { FeedbackContourTool::SetFeedbackContourVisible(false); if (m_ToolManager->GetDataStorage()->Exists(m_WorkingNode)) m_ToolManager->GetDataStorage()->Remove(m_WorkingNode); m_WorkingSlice = nullptr; m_CurrentPlane = nullptr; m_ToolManager->WorkingDataChanged -= mitk::MessageDelegate(this, &mitk::PaintbrushTool::OnToolManagerWorkingDataModified); Superclass::Deactivated(); } void mitk::PaintbrushTool::SetSize(int value) { m_Size = value; } mitk::Point2D mitk::PaintbrushTool::upperLeft(mitk::Point2D p) { p[0] -= 0.5; p[1] += 0.5; return p; } void mitk::PaintbrushTool::UpdateContour(const InteractionPositionEvent *positionEvent) { // MITK_INFO<<"Update..."; // examine stateEvent and create a contour that matches the pixel mask that we are going to draw // mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); // const PositionEvent* positionEvent = dynamic_cast(stateEvent->GetEvent()); if (!positionEvent) return; // Get Spacing of current Slice // mitk::Vector3D vSpacing = m_WorkingSlice->GetSlicedGeometry()->GetPlaneGeometry(0)->GetSpacing(); // // Draw a contour in Square according to selected brush size // int radius = (m_Size) / 2; float fradius = static_cast(m_Size) / 2.0f; ContourModel::Pointer contourInImageIndexCoordinates = ContourModel::New(); // estimate center point of the brush ( relative to the pixel the mouse points on ) // -- left upper corner for even sizes, // -- midpoint for uneven sizes mitk::Point2D centerCorrection; centerCorrection.Fill(0); // even --> correction of [+0.5, +0.5] bool evenSize = ((m_Size % 2) == 0); if (evenSize) { centerCorrection[0] += 0.5; centerCorrection[1] += 0.5; } // we will compute the control points for the upper left quarter part of a circle contour std::vector quarterCycleUpperRight; std::vector quarterCycleLowerRight; std::vector quarterCycleLowerLeft; std::vector quarterCycleUpperLeft; mitk::Point2D curPoint; bool curPointIsInside = true; curPoint[0] = 0; curPoint[1] = radius; quarterCycleUpperRight.push_back(upperLeft(curPoint)); // to estimate if a pixel is inside the circle, we need to compare against the 'outer radius' // i.e. the distance from the midpoint [0,0] to the border of the pixel [0,radius] // const float outer_radius = static_cast(radius) + 0.5; while (curPoint[1] > 0) { // Move right until pixel is outside circle float curPointX_squared = 0.0f; float curPointY_squared = (curPoint[1] - centerCorrection[1]) * (curPoint[1] - centerCorrection[1]); while (curPointIsInside) { // increment posX and chec curPoint[0]++; curPointX_squared = (curPoint[0] - centerCorrection[0]) * (curPoint[0] - centerCorrection[0]); const float len = sqrt(curPointX_squared + curPointY_squared); if (len > fradius) { // found first Pixel in this horizontal line, that is outside the circle curPointIsInside = false; } } quarterCycleUpperRight.push_back(upperLeft(curPoint)); // Move down until pixel is inside circle while (!curPointIsInside) { // increment posX and chec curPoint[1]--; curPointY_squared = (curPoint[1] - centerCorrection[1]) * (curPoint[1] - centerCorrection[1]); const float len = sqrt(curPointX_squared + curPointY_squared); if (len <= fradius) { // found first Pixel in this horizontal line, that is outside the circle curPointIsInside = true; quarterCycleUpperRight.push_back(upperLeft(curPoint)); } // Quarter cycle is full, when curPoint y position is 0 if (curPoint[1] <= 0) break; } } // QuarterCycle is full! Now copy quarter cycle to other quarters. if (!evenSize) { std::vector::const_iterator it = quarterCycleUpperRight.begin(); while (it != quarterCycleUpperRight.end()) { mitk::Point2D p; p = *it; // the contour points in the lower right corner have same position but with negative y values p[1] *= -1; quarterCycleLowerRight.push_back(p); // the contour points in the lower left corner have same position // but with both x,y negative p[0] *= -1; quarterCycleLowerLeft.push_back(p); // the contour points in the upper left corner have same position // but with x negative p[1] *= -1; quarterCycleUpperLeft.push_back(p); it++; } } else { std::vector::const_iterator it = quarterCycleUpperRight.begin(); while (it != quarterCycleUpperRight.end()) { mitk::Point2D p, q; p = *it; q = p; // the contour points in the lower right corner have same position but with negative y values q[1] *= -1; // correct for moved offset if size even = the midpoint is not the midpoint of the current pixel // but its upper rigt corner q[1] += 1; quarterCycleLowerRight.push_back(q); q = p; // the contour points in the lower left corner have same position // but with both x,y negative q[1] = -1.0f * q[1] + 1; q[0] = -1.0f * q[0] + 1; quarterCycleLowerLeft.push_back(q); // the contour points in the upper left corner have same position // but with x negative q = p; q[0] *= -1; q[0] += 1; quarterCycleUpperLeft.push_back(q); it++; } } // fill contour with poins in right ordering, starting with the upperRight block mitk::Point3D tempPoint; for (unsigned int i = 0; i < quarterCycleUpperRight.size(); i++) { tempPoint[0] = quarterCycleUpperRight[i][0]; tempPoint[1] = quarterCycleUpperRight[i][1]; tempPoint[2] = 0; contourInImageIndexCoordinates->AddVertex(tempPoint); } // the lower right has to be parsed in reverse order for (int i = quarterCycleLowerRight.size() - 1; i >= 0; i--) { tempPoint[0] = quarterCycleLowerRight[i][0]; tempPoint[1] = quarterCycleLowerRight[i][1]; tempPoint[2] = 0; contourInImageIndexCoordinates->AddVertex(tempPoint); } for (unsigned int i = 0; i < quarterCycleLowerLeft.size(); i++) { tempPoint[0] = quarterCycleLowerLeft[i][0]; tempPoint[1] = quarterCycleLowerLeft[i][1]; tempPoint[2] = 0; contourInImageIndexCoordinates->AddVertex(tempPoint); } // the upper left also has to be parsed in reverse order for (int i = quarterCycleUpperLeft.size() - 1; i >= 0; i--) { tempPoint[0] = quarterCycleUpperLeft[i][0]; tempPoint[1] = quarterCycleUpperLeft[i][1]; tempPoint[2] = 0; contourInImageIndexCoordinates->AddVertex(tempPoint); } m_MasterContour = contourInImageIndexCoordinates; } /** Just show the contour, get one point as the central point and add surrounding points to the contour. */ void mitk::PaintbrushTool::OnMousePressed(StateMachineAction *, InteractionEvent *interactionEvent) { if (m_WorkingSlice.IsNull()) return; auto *positionEvent = dynamic_cast(interactionEvent); if (!positionEvent) return; m_WorkingSlice->GetGeometry()->WorldToIndex(positionEvent->GetPositionInWorld(), m_LastPosition); // create new working node // a fresh node is needed to only display the actual drawing process for // the undo function if (m_ToolManager->GetDataStorage()->Exists(m_WorkingNode)) m_ToolManager->GetDataStorage()->Remove(m_WorkingNode); m_WorkingSlice = nullptr; m_CurrentPlane = nullptr; m_WorkingNode = DataNode::New(); m_WorkingNode->SetProperty("levelwindow", mitk::LevelWindowProperty::New(mitk::LevelWindow(0, 1))); m_WorkingNode->SetProperty("binary", mitk::BoolProperty::New(true)); this->m_WorkingNode->SetVisibility(true); m_LastEventSender = positionEvent->GetSender(); m_LastEventSlice = m_LastEventSender->GetSlice(); m_MasterContour->SetClosed(true); this->MouseMoved(interactionEvent, true); } void mitk::PaintbrushTool::OnMouseMoved(StateMachineAction *, InteractionEvent *interactionEvent) { MouseMoved(interactionEvent, false); } void mitk::PaintbrushTool::OnPrimaryButtonPressedMoved(StateMachineAction *, InteractionEvent *interactionEvent) { MouseMoved(interactionEvent, true); } /** Insert the point to the feedback contour,finish to build the contour and at the same time the painting function */ void mitk::PaintbrushTool::MouseMoved(mitk::InteractionEvent *interactionEvent, bool leftMouseButtonPressed) { auto *positionEvent = dynamic_cast(interactionEvent); CheckIfCurrentSliceHasChanged(positionEvent); if (m_LastContourSize != m_Size) { UpdateContour(positionEvent); m_LastContourSize = m_Size; } Point3D worldCoordinates = positionEvent->GetPositionInWorld(); Point3D indexCoordinates; m_WorkingSlice->GetGeometry()->WorldToIndex(worldCoordinates, indexCoordinates); // round to nearest voxel center (abort if this hasn't changed) if (m_Size % 2 == 0) // even { indexCoordinates[0] = std::round(indexCoordinates[0]); indexCoordinates[1] = std::round(indexCoordinates[1]); } else // odd { indexCoordinates[0] = std::round(indexCoordinates[0]); indexCoordinates[1] = std::round(indexCoordinates[1]); } static Point3D lastPos; // uninitialized: if somebody finds out how this can be initialized in a one-liner, tell me if (fabs(indexCoordinates[0] - lastPos[0]) > mitk::eps || fabs(indexCoordinates[1] - lastPos[1]) > mitk::eps || fabs(indexCoordinates[2] - lastPos[2]) > mitk::eps || leftMouseButtonPressed) { lastPos = indexCoordinates; } else { return; } int t = positionEvent->GetSender()->GetTimeStep(); auto contour = ContourModel::New(); contour->SetClosed(true); auto it = m_MasterContour->Begin(); auto end = m_MasterContour->End(); while (it != end) { auto point = (*it)->Coordinates; point[0] += indexCoordinates[0]; point[1] += indexCoordinates[1]; contour->AddVertex(point); ++it; } if (leftMouseButtonPressed) { const double dist = indexCoordinates.EuclideanDistanceTo(m_LastPosition); const double radius = static_cast(m_Size) / 2.0; DataNode *workingNode(m_ToolManager->GetWorkingData(0)); Image::Pointer image = dynamic_cast(workingNode->GetData()); - auto *labelImage = dynamic_cast(image.GetPointer()); + auto *labelSetImage = dynamic_cast(image.GetPointer()); - int activeColor = 1; - if (labelImage) + int activePixelValue = 1; + if (nullptr != labelSetImage) { - activeColor = labelImage->GetActiveLabel(labelImage->GetActiveLayer())->GetValue(); + activePixelValue = labelSetImage->GetActiveLabel(labelSetImage->GetActiveLayer())->GetValue(); } // m_PaintingPixelValue only decides whether to paint or erase mitk::ContourModelUtils::FillContourInSlice( - contour, m_WorkingSlice, image, m_PaintingPixelValue * activeColor); + contour, m_WorkingSlice, image, m_PaintingPixelValue * activePixelValue); m_WorkingNode->SetData(m_WorkingSlice); m_WorkingNode->Modified(); // if points are >= radius away draw rectangle to fill empty holes // in between the 2 points if (dist > radius) { const mitk::Point3D ¤tPos = indexCoordinates; mitk::Point3D direction; mitk::Point3D vertex; mitk::Point3D normal; direction[0] = indexCoordinates[0] - m_LastPosition[0]; direction[1] = indexCoordinates[1] - m_LastPosition[1]; direction[2] = indexCoordinates[2] - m_LastPosition[2]; direction[0] = direction.GetVnlVector().normalize()[0]; direction[1] = direction.GetVnlVector().normalize()[1]; direction[2] = direction.GetVnlVector().normalize()[2]; // 90 degrees rotation of direction normal[0] = -1.0 * direction[1]; normal[1] = direction[0]; contour->Clear(); // upper left corner vertex[0] = m_LastPosition[0] + (normal[0] * radius); vertex[1] = m_LastPosition[1] + (normal[1] * radius); contour->AddVertex(vertex); // upper right corner vertex[0] = currentPos[0] + (normal[0] * radius); vertex[1] = currentPos[1] + (normal[1] * radius); contour->AddVertex(vertex); // lower right corner vertex[0] = currentPos[0] - (normal[0] * radius); vertex[1] = currentPos[1] - (normal[1] * radius); contour->AddVertex(vertex); // lower left corner vertex[0] = m_LastPosition[0] - (normal[0] * radius); vertex[1] = m_LastPosition[1] - (normal[1] * radius); contour->AddVertex(vertex); - mitk::ContourModelUtils::FillContourInSlice(contour, m_WorkingSlice, image, m_PaintingPixelValue * activeColor); + mitk::ContourModelUtils::FillContourInSlice(contour, m_WorkingSlice, image, m_PaintingPixelValue * activePixelValue); m_WorkingNode->SetData(m_WorkingSlice); m_WorkingNode->Modified(); } } else { // switched from different renderwindow // no activate hover highlighting. Otherwise undo / redo wont work this->m_WorkingNode->SetVisibility(false); } m_LastPosition = indexCoordinates; // visualize contour ContourModel::Pointer displayContour = FeedbackContourTool::GetFeedbackContour(); displayContour->Clear(); ContourModel::Pointer tmp = FeedbackContourTool::BackProjectContourFrom2DSlice(m_WorkingSlice->GetGeometry(), contour); // copy transformed contour into display contour it = tmp->Begin(); end = tmp->End(); while (it != end) { Point3D point = (*it)->Coordinates; displayContour->AddVertex(point, t); it++; } m_FeedbackContourNode->GetData()->Modified(); assert(positionEvent->GetSender()->GetRenderWindow()); RenderingManager::GetInstance()->RequestUpdate(positionEvent->GetSender()->GetRenderWindow()); } void mitk::PaintbrushTool::OnMouseReleased(StateMachineAction *, InteractionEvent *interactionEvent) { // When mouse is released write segmentationresult back into image auto *positionEvent = dynamic_cast(interactionEvent); if (!positionEvent) return; this->WriteBackSegmentationResult(positionEvent, m_WorkingSlice->Clone()); // deactivate visibility of helper node m_WorkingNode->SetVisibility(false); RenderingManager::GetInstance()->RequestUpdate(positionEvent->GetSender()->GetRenderWindow()); } /** Called when the CTRL key is pressed. Will change the painting pixel value from 0 to 1 or from 1 to 0. */ void mitk::PaintbrushTool::OnInvertLogic(StateMachineAction *, InteractionEvent *) { // Inversion only for 0 and 1 as painting values if (m_PaintingPixelValue == 1) { m_PaintingPixelValue = 0; FeedbackContourTool::SetFeedbackContourColor(1.0, 0.0, 0.0); } else if (m_PaintingPixelValue == 0) { m_PaintingPixelValue = 1; FeedbackContourTool::SetFeedbackContourColorDefault(); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void mitk::PaintbrushTool::CheckIfCurrentSliceHasChanged(const InteractionPositionEvent *event) { const PlaneGeometry *planeGeometry((event->GetSender()->GetCurrentWorldPlaneGeometry())); const auto *abstractTransformGeometry( dynamic_cast(event->GetSender()->GetCurrentWorldPlaneGeometry())); DataNode *workingNode(m_ToolManager->GetWorkingData(0)); if (!workingNode) return; Image::Pointer image = dynamic_cast(workingNode->GetData()); if (!image || !planeGeometry || abstractTransformGeometry) return; if (m_CurrentPlane.IsNull() || m_WorkingSlice.IsNull()) { m_CurrentPlane = planeGeometry; m_WorkingSlice = SegTool2D::GetAffectedImageSliceAs2DImage(event, image)->Clone(); m_WorkingNode->ReplaceProperty("color", workingNode->GetProperty("color")); m_WorkingNode->SetData(m_WorkingSlice); } else { bool isSameSlice(false); isSameSlice = mitk::MatrixEqualElementWise(planeGeometry->GetIndexToWorldTransform()->GetMatrix(), m_CurrentPlane->GetIndexToWorldTransform()->GetMatrix()); isSameSlice = mitk::Equal(planeGeometry->GetIndexToWorldTransform()->GetOffset(), m_CurrentPlane->GetIndexToWorldTransform()->GetOffset()); if (!isSameSlice) { m_ToolManager->GetDataStorage()->Remove(m_WorkingNode); m_CurrentPlane = nullptr; m_WorkingSlice = nullptr; m_WorkingNode = nullptr; m_CurrentPlane = planeGeometry; m_WorkingSlice = SegTool2D::GetAffectedImageSliceAs2DImage(event, image)->Clone(); m_WorkingNode = mitk::DataNode::New(); m_WorkingNode->SetProperty("levelwindow", mitk::LevelWindowProperty::New(mitk::LevelWindow(0, 1))); m_WorkingNode->SetProperty("binary", mitk::BoolProperty::New(true)); m_WorkingNode->SetData(m_WorkingSlice); // So that the paintbrush contour vanished in the previous render window RenderingManager::GetInstance()->RequestUpdateAll(); } } if (!m_ToolManager->GetDataStorage()->Exists(m_WorkingNode)) { m_WorkingNode->SetProperty("outline binary", mitk::BoolProperty::New(true)); m_WorkingNode->SetProperty("color", workingNode->GetProperty("color")); m_WorkingNode->SetProperty("name", mitk::StringProperty::New("Paintbrush_Node")); m_WorkingNode->SetProperty("helper object", mitk::BoolProperty::New(true)); m_WorkingNode->SetProperty("opacity", mitk::FloatProperty::New(0.8)); m_WorkingNode->SetProperty("includeInBoundingBox", mitk::BoolProperty::New(false)); m_WorkingNode->SetVisibility( false, mitk::BaseRenderer::GetInstance(mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget3"))); m_ToolManager->GetDataStorage()->Add(m_WorkingNode); } } void mitk::PaintbrushTool::OnToolManagerWorkingDataModified() { // Here we simply set the current working slice to null. The next time the mouse is moved // within a renderwindow a new slice will be extracted from the new working data m_WorkingSlice = nullptr; } diff --git a/Modules/Segmentation/Interactions/mitkRegionGrowingTool.cpp b/Modules/Segmentation/Interactions/mitkRegionGrowingTool.cpp index 988d50cc5c..5bcc0fa99a 100644 --- a/Modules/Segmentation/Interactions/mitkRegionGrowingTool.cpp +++ b/Modules/Segmentation/Interactions/mitkRegionGrowingTool.cpp @@ -1,664 +1,664 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkRegionGrowingTool.h" #include "mitkApplicationCursor.h" #include "mitkBaseRenderer.h" #include "mitkImageDataItem.h" #include "mitkImageToContourModelFilter.h" #include "mitkOverwriteSliceImageFilter.h" #include "mitkRegionGrowingTool.xpm" #include "mitkRenderingManager.h" #include "mitkToolManager.h" #include "mitkExtractDirectedPlaneImageFilterNew.h" #include "mitkLabelSetImage.h" #include "mitkOverwriteDirectedPlaneImageFilter.h" // us #include #include #include #include // ITK #include "mitkITKImageImport.h" #include "mitkImageAccessByItk.h" #include #include #include #include #include #include namespace mitk { MITK_TOOL_MACRO(MITKSEGMENTATION_EXPORT, RegionGrowingTool, "Region growing tool"); } #define ROUND(a) ((a) > 0 ? (int)((a) + 0.5) : -(int)(0.5 - (a))) mitk::RegionGrowingTool::RegionGrowingTool() : FeedbackContourTool("PressMoveRelease"), m_SeedValue(0), m_ScreenYDifference(0), m_ScreenXDifference(0), m_MouseDistanceScaleFactor(0.5), m_PaintingPixelValue(0), m_FillFeedbackContour(true), m_ConnectedComponentValue(1) { } mitk::RegionGrowingTool::~RegionGrowingTool() { } void mitk::RegionGrowingTool::ConnectActionsAndFunctions() { CONNECT_FUNCTION("PrimaryButtonPressed", OnMousePressed); CONNECT_FUNCTION("Move", OnMouseMoved); CONNECT_FUNCTION("Release", OnMouseReleased); } const char **mitk::RegionGrowingTool::GetXPM() const { return mitkRegionGrowingTool_xpm; } us::ModuleResource mitk::RegionGrowingTool::GetIconResource() const { us::Module *module = us::GetModuleContext()->GetModule(); us::ModuleResource resource = module->GetResource("RegionGrowing_48x48.png"); return resource; } us::ModuleResource mitk::RegionGrowingTool::GetCursorIconResource() const { us::Module *module = us::GetModuleContext()->GetModule(); us::ModuleResource resource = module->GetResource("RegionGrowing_Cursor_32x32.png"); return resource; } const char *mitk::RegionGrowingTool::GetName() const { return "Region Growing"; } void mitk::RegionGrowingTool::Activated() { Superclass::Activated(); } void mitk::RegionGrowingTool::Deactivated() { Superclass::Deactivated(); } // Get the average pixel value of square/cube with radius=neighborhood around index template void mitk::RegionGrowingTool::GetNeighborhoodAverage(const itk::Image *itkImage, const itk::Index& index, ScalarType *result, unsigned int neighborhood) { // maybe assert that image dimension is only 2 or 3? auto neighborhoodInt = (int)neighborhood; TPixel averageValue(0); unsigned int numberOfPixels = (2 * neighborhood + 1) * (2 * neighborhood + 1); if (imageDimension == 3) { numberOfPixels *= (2 * neighborhood + 1); } MITK_DEBUG << "Getting neighborhood of " << numberOfPixels << " pixels around " << index; itk::Index currentIndex; for (int i = (0 - neighborhoodInt); i <= neighborhoodInt; ++i) { currentIndex[0] = index[0] + i; for (int j = (0 - neighborhoodInt); j <= neighborhoodInt; ++j) { currentIndex[1] = index[1] + j; if (imageDimension == 3) { for (int k = (0 - neighborhoodInt); k <= neighborhoodInt; ++k) { currentIndex[2] = index[2] + k; if (itkImage->GetLargestPossibleRegion().IsInside(currentIndex)) { averageValue += itkImage->GetPixel(currentIndex); } else { numberOfPixels -= 1; } } } else { if (itkImage->GetLargestPossibleRegion().IsInside(currentIndex)) { averageValue += itkImage->GetPixel(currentIndex); } else { numberOfPixels -= 1; } } } } *result = (ScalarType)averageValue; *result /= numberOfPixels; } // Check whether index lies inside a segmentation template void mitk::RegionGrowingTool::IsInsideSegmentation(const itk::Image *itkImage, const itk::Index& index, bool *result) { if (itkImage->GetPixel(index) > 0) { *result = true; } else { *result = false; } } // Do the region growing (i.e. call an ITK filter that does it) template void mitk::RegionGrowingTool::StartRegionGrowing(const itk::Image *inputImage, const itk::Index& seedIndex, const std::array& thresholds, mitk::Image::Pointer &outputImage) { MITK_DEBUG << "Starting region growing at index " << seedIndex << " with lower threshold " << thresholds[0] << " and upper threshold " << thresholds[1]; typedef itk::Image InputImageType; typedef itk::Image OutputImageType; typedef itk::ConnectedThresholdImageFilter RegionGrowingFilterType; typename RegionGrowingFilterType::Pointer regionGrower = RegionGrowingFilterType::New(); // perform region growing in desired segmented region regionGrower->SetInput(inputImage); regionGrower->SetSeed(seedIndex); regionGrower->SetLower(thresholds[0]); regionGrower->SetUpper(thresholds[1]); try { regionGrower->Update(); } catch (...) { return; // Should we do something? } typename OutputImageType::Pointer resultImage = regionGrower->GetOutput(); // Smooth result: Every pixel is replaced by the majority of the neighborhood typedef itk::NeighborhoodIterator NeighborhoodIteratorType; typedef itk::ImageRegionIterator ImageIteratorType; typename NeighborhoodIteratorType::RadiusType radius; radius.Fill(2); // for now, maybe make this something the user can adjust in the preferences? typedef itk::ImageDuplicator< OutputImageType > DuplicatorType; typename DuplicatorType::Pointer duplicator = DuplicatorType::New(); duplicator->SetInputImage(resultImage); duplicator->Update(); typename OutputImageType::Pointer resultDup = duplicator->GetOutput(); NeighborhoodIteratorType neighborhoodIterator(radius, resultDup, resultDup->GetRequestedRegion()); ImageIteratorType imageIterator(resultImage, resultImage->GetRequestedRegion()); for (neighborhoodIterator.GoToBegin(), imageIterator.GoToBegin(); !neighborhoodIterator.IsAtEnd(); ++neighborhoodIterator, ++imageIterator) { DefaultSegmentationDataType voteYes(0); DefaultSegmentationDataType voteNo(0); for (unsigned int i = 0; i < neighborhoodIterator.Size(); ++i) { if (neighborhoodIterator.GetPixel(i) > 0) { voteYes += 1; } else { voteNo += 1; } } if (voteYes > voteNo) { imageIterator.Set(1); } else { imageIterator.Set(0); } } if (resultImage.IsNull()) { MITK_DEBUG << "Region growing result is empty."; } // Can potentially have multiple regions, use connected component image filter to label disjunct regions typedef itk::ConnectedComponentImageFilter ConnectedComponentImageFilterType; typename ConnectedComponentImageFilterType::Pointer connectedComponentFilter = ConnectedComponentImageFilterType::New(); connectedComponentFilter->SetInput(resultImage); connectedComponentFilter->Update(); typename OutputImageType::Pointer resultImageCC = connectedComponentFilter->GetOutput(); m_ConnectedComponentValue = resultImageCC->GetPixel(seedIndex); outputImage = mitk::GrabItkImageMemory(resultImageCC); } template void mitk::RegionGrowingTool::CalculateInitialThresholds(const itk::Image*) { LevelWindow levelWindow; m_ToolManager->GetReferenceData(0)->GetLevelWindow(levelWindow); m_ThresholdExtrema[0] = static_cast(std::numeric_limits::lowest()); m_ThresholdExtrema[1] = static_cast(std::numeric_limits::max()); const ScalarType lowerWindowBound = std::max(m_ThresholdExtrema[0], levelWindow.GetLowerWindowBound()); const ScalarType upperWindowBound = std::min(m_ThresholdExtrema[1], levelWindow.GetUpperWindowBound()); if (m_SeedValue < lowerWindowBound) { m_InitialThresholds = { m_ThresholdExtrema[0], lowerWindowBound }; } else if (m_SeedValue > upperWindowBound) { m_InitialThresholds = { upperWindowBound, m_ThresholdExtrema[1] }; } else { const ScalarType range = 0.1 * (upperWindowBound - lowerWindowBound); // 10% of the visible window m_InitialThresholds[0] = std::min(std::max(lowerWindowBound, m_SeedValue - 0.5 * range), upperWindowBound - range); m_InitialThresholds[1] = m_InitialThresholds[0] + range; } } void mitk::RegionGrowingTool::OnMousePressed(StateMachineAction *, InteractionEvent *interactionEvent) { auto *positionEvent = dynamic_cast(interactionEvent); if (!positionEvent) return; MITK_DEBUG << "OnMousePressed"; m_LastEventSender = positionEvent->GetSender(); m_LastEventSlice = m_LastEventSender->GetSlice(); m_LastScreenPosition = positionEvent->GetPointerPositionOnScreen(); // ReferenceSlice is from the underlying image, WorkingSlice from the active segmentation (can be empty) m_ReferenceSlice = FeedbackContourTool::GetAffectedReferenceSlice(positionEvent); m_WorkingSlice = FeedbackContourTool::GetAffectedWorkingSlice(positionEvent); if (m_WorkingSlice.IsNotNull()) // can't do anything without a working slice (i.e. a possibly empty segmentation) { MITK_DEBUG << "OnMousePressed: got working slice"; // 2. Determine if the user clicked inside or outside of the segmentation/working slice (i.e. the whole volume) mitk::BaseGeometry::Pointer workingSliceGeometry; workingSliceGeometry = m_WorkingSlice->GetGeometry(); workingSliceGeometry->WorldToIndex(positionEvent->GetPositionInWorld(), m_SeedPoint); itk::Index<2> indexInWorkingSlice2D; indexInWorkingSlice2D[0] = m_SeedPoint[0]; indexInWorkingSlice2D[1] = m_SeedPoint[1]; if (workingSliceGeometry->IsIndexInside(m_SeedPoint)) { MITK_DEBUG << "OnMousePressed: point " << positionEvent->GetPositionInWorld() << " (index coordinates " << m_SeedPoint << ") is inside working slice"; // 3. determine the pixel value under the last click to determine what to do bool inside(true); AccessFixedDimensionByItk_2(m_WorkingSlice, IsInsideSegmentation, 2, indexInWorkingSlice2D, &inside); m_PaintingPixelValue = inside ? 0 : 1; if (inside) { MITK_DEBUG << "Clicked inside segmentation"; // For now, we're doing nothing when the user clicks inside the segmentation. Behaviour can be implemented via // OnMousePressedInside() // When you do, be sure to remove the m_PaintingPixelValue check in OnMouseMoved() and OnMouseReleased() return; } else { MITK_DEBUG << "Clicked outside of segmentation"; OnMousePressedOutside(nullptr, interactionEvent); } } } } // Use this to implement a behaviour for when the user clicks inside a segmentation (for example remove something) // Old IpPic code is kept as comment for reference void mitk::RegionGrowingTool::OnMousePressedInside() { // mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent // ); // //const PositionEvent* positionEvent = dynamic_cast(stateEvent->GetEvent()); // checked in // OnMousePressed // // 3.1.1. Create a skeletonization of the segmentation and try to find a nice cut // // apply the skeletonization-and-cut algorithm // // generate contour to remove // // set m_ReferenceSlice = nullptr so nothing will happen during mouse move // // remember to fill the contour with 0 in mouserelease // mitkIpPicDescriptor* segmentationHistory = ipMITKSegmentationCreateGrowerHistory( workingPicSlice, // m_LastWorkingSeed, nullptr ); // free again // if (segmentationHistory) // { // tCutResult cutContour = ipMITKSegmentationGetCutPoints( workingPicSlice, segmentationHistory, // initialWorkingOffset ); // tCutResult is a ipSegmentation type // mitkIpPicFree( segmentationHistory ); // if (cutContour.cutIt) // { // int timestep = positionEvent->GetSender()->GetTimeStep(); // // 3.1.2 copy point from float* to mitk::Contour // ContourModel::Pointer contourInImageIndexCoordinates = ContourModel::New(); // contourInImageIndexCoordinates->Expand(timestep + 1); // contourInImageIndexCoordinates->SetClosed(true, timestep); // Point3D newPoint; // for (int index = 0; index < cutContour.deleteSize; ++index) // { // newPoint[0] = cutContour.deleteCurve[ 2 * index + 0 ] - 0.5;//correction is needed because the // output of the algorithm is center based // newPoint[1] = cutContour.deleteCurve[ 2 * index + 1 ] - 0.5;//and we want our contour displayed // corner based. // newPoint[2] = 0.0; // contourInImageIndexCoordinates->AddVertex( newPoint, timestep ); // } // free(cutContour.traceline); // free(cutContour.deleteCurve); // perhaps visualize this for fun? // free(cutContour.onGradient); // ContourModel::Pointer contourInWorldCoordinates = FeedbackContourTool::BackProjectContourFrom2DSlice( // m_WorkingSlice->GetGeometry(), contourInImageIndexCoordinates, true ); // true: sub 0.5 for // ipSegmentation correction // FeedbackContourTool::SetFeedbackContour( contourInWorldCoordinates ); // FeedbackContourTool::SetFeedbackContourVisible(true); // mitk::RenderingManager::GetInstance()->RequestUpdate( positionEvent->GetSender()->GetRenderWindow() ); // m_FillFeedbackContour = true; // } // else // { // m_FillFeedbackContour = false; // } // } // else // { // m_FillFeedbackContour = false; // } // m_ReferenceSlice = nullptr; // return true; } void mitk::RegionGrowingTool::OnMousePressedOutside(StateMachineAction *, InteractionEvent *interactionEvent) { auto *positionEvent = dynamic_cast(interactionEvent); if (positionEvent) { // Get geometry and indices mitk::BaseGeometry::Pointer workingSliceGeometry; workingSliceGeometry = m_WorkingSlice->GetGeometry(); itk::Index<2> indexInWorkingSlice2D; indexInWorkingSlice2D[0] = m_SeedPoint[0]; indexInWorkingSlice2D[1] = m_SeedPoint[1]; mitk::BaseGeometry::Pointer referenceSliceGeometry; referenceSliceGeometry = m_ReferenceSlice->GetGeometry(); itk::Index<3> indexInReferenceSlice; itk::Index<2> indexInReferenceSlice2D; referenceSliceGeometry->WorldToIndex(positionEvent->GetPositionInWorld(), indexInReferenceSlice); indexInReferenceSlice2D[0] = indexInReferenceSlice[0]; indexInReferenceSlice2D[1] = indexInReferenceSlice[1]; // Get seed neighborhood ScalarType averageValue(0); AccessFixedDimensionByItk_3(m_ReferenceSlice, GetNeighborhoodAverage, 2, indexInReferenceSlice2D, &averageValue, 1); m_SeedValue = averageValue; MITK_DEBUG << "Seed value is " << m_SeedValue; // Calculate initial thresholds AccessFixedDimensionByItk(m_ReferenceSlice, CalculateInitialThresholds, 2); m_Thresholds[0] = m_InitialThresholds[0]; m_Thresholds[1] = m_InitialThresholds[1]; // Perform region growing mitk::Image::Pointer resultImage = mitk::Image::New(); AccessFixedDimensionByItk_3( m_ReferenceSlice, StartRegionGrowing, 2, indexInWorkingSlice2D, m_Thresholds, resultImage); resultImage->SetGeometry(workingSliceGeometry); // Extract contour if (resultImage.IsNotNull() && m_ConnectedComponentValue >= 1) { float isoOffset = 0.33; mitk::ImageToContourModelFilter::Pointer contourExtractor = mitk::ImageToContourModelFilter::New(); contourExtractor->SetInput(resultImage); contourExtractor->SetContourValue(m_ConnectedComponentValue - isoOffset); contourExtractor->Update(); ContourModel::Pointer resultContour = ContourModel::New(); resultContour = contourExtractor->GetOutput(); // Show contour if (resultContour.IsNotNull()) { ContourModel::Pointer resultContourWorld = FeedbackContourTool::BackProjectContourFrom2DSlice( workingSliceGeometry, FeedbackContourTool::ProjectContourTo2DSlice(m_WorkingSlice, resultContour)); // this is not a beautiful solution, just one that works, check T22412 for details auto t = positionEvent->GetSender()->GetTimeStep(); FeedbackContourTool::SetFeedbackContour(0 != t ? ContourModelUtils::MoveZerothContourTimeStep(resultContourWorld, t) : resultContourWorld); FeedbackContourTool::SetFeedbackContourVisible(true); mitk::RenderingManager::GetInstance()->RequestUpdate(m_LastEventSender->GetRenderWindow()); } } } } void mitk::RegionGrowingTool::OnMouseMoved(StateMachineAction *, InteractionEvent *interactionEvent) { // Until OnMousePressedInside() implements a behaviour, we're just returning here whenever m_PaintingPixelValue is 0, // i.e. when the user clicked inside the segmentation if (m_PaintingPixelValue == 0) { return; } auto *positionEvent = dynamic_cast(interactionEvent); if (m_ReferenceSlice.IsNotNull() && positionEvent) { // Get geometry and indices mitk::BaseGeometry::Pointer workingSliceGeometry; workingSliceGeometry = m_WorkingSlice->GetGeometry(); itk::Index<2> indexInWorkingSlice2D; indexInWorkingSlice2D[0] = m_SeedPoint[0]; indexInWorkingSlice2D[1] = m_SeedPoint[1]; m_ScreenYDifference += positionEvent->GetPointerPositionOnScreen()[1] - m_LastScreenPosition[1]; m_ScreenXDifference += positionEvent->GetPointerPositionOnScreen()[0] - m_LastScreenPosition[0]; m_LastScreenPosition = positionEvent->GetPointerPositionOnScreen(); // Moving the mouse up and down adjusts the width of the threshold window, // moving it left and right shifts the threshold window m_Thresholds[0] = std::min(m_SeedValue, m_InitialThresholds[0] - (m_ScreenYDifference - m_ScreenXDifference) * m_MouseDistanceScaleFactor); m_Thresholds[1] = std::max(m_SeedValue, m_InitialThresholds[1] + (m_ScreenYDifference + m_ScreenXDifference) * m_MouseDistanceScaleFactor); // Do not exceed the pixel type extrema of the reference slice, though m_Thresholds[0] = std::max(m_ThresholdExtrema[0], m_Thresholds[0]); m_Thresholds[1] = std::min(m_ThresholdExtrema[1], m_Thresholds[1]); // Perform region growing again and show the result mitk::Image::Pointer resultImage = mitk::Image::New(); AccessFixedDimensionByItk_3( m_ReferenceSlice, StartRegionGrowing, 2, indexInWorkingSlice2D, m_Thresholds, resultImage); resultImage->SetGeometry(workingSliceGeometry); // Update the contour if (resultImage.IsNotNull() && m_ConnectedComponentValue >= 1) { float isoOffset = 0.33; mitk::ImageToContourModelFilter::Pointer contourExtractor = mitk::ImageToContourModelFilter::New(); contourExtractor->SetInput(resultImage); contourExtractor->SetContourValue(m_ConnectedComponentValue - isoOffset); contourExtractor->Update(); ContourModel::Pointer resultContour = ContourModel::New(); resultContour = contourExtractor->GetOutput(); // Show contour if (resultContour.IsNotNull()) { ContourModel::Pointer resultContourWorld = FeedbackContourTool::BackProjectContourFrom2DSlice( workingSliceGeometry, FeedbackContourTool::ProjectContourTo2DSlice(m_WorkingSlice, resultContour)); // this is not a beautiful solution, just one that works, check T22412 for details int timestep = positionEvent->GetSender()->GetTimeStep(); if (0 != timestep) { int size = resultContourWorld->GetNumberOfVertices(0); auto resultContourTimeWorld = mitk::ContourModel::New(); resultContourTimeWorld->Expand(timestep + 1); for (int loop = 0; loop < size; ++loop) { resultContourTimeWorld->AddVertex(resultContourWorld->GetVertexAt(loop, 0), timestep); } FeedbackContourTool::SetFeedbackContour(resultContourTimeWorld); } else { FeedbackContourTool::SetFeedbackContour(resultContourWorld); } FeedbackContourTool::SetFeedbackContourVisible(true); mitk::RenderingManager::GetInstance()->ForceImmediateUpdate(positionEvent->GetSender()->GetRenderWindow()); } } } } void mitk::RegionGrowingTool::OnMouseReleased(StateMachineAction *, InteractionEvent *interactionEvent) { // Until OnMousePressedInside() implements a behaviour, we're just returning here whenever m_PaintingPixelValue is 0, // i.e. when the user clicked inside the segmentation if (m_PaintingPixelValue == 0) { return; } auto *positionEvent = dynamic_cast(interactionEvent); if (m_WorkingSlice.IsNotNull() && m_FillFeedbackContour && positionEvent) { // Project contour into working slice ContourModel *feedbackContour(FeedbackContourTool::GetFeedbackContour()); ContourModel::Pointer projectedContour; // this is not a beautiful solution, just one that works, check T22412 for details int timestep = positionEvent->GetSender()->GetTimeStep(); if (0 != timestep) { int size = feedbackContour->GetNumberOfVertices(timestep); auto feedbackContourTime = mitk::ContourModel::New(); feedbackContourTime->Expand(timestep + 1); for (int loop = 0; loop < size; ++loop) { feedbackContourTime->AddVertex(feedbackContour->GetVertexAt(loop, timestep), 0); } projectedContour = FeedbackContourTool::ProjectContourTo2DSlice(m_WorkingSlice, feedbackContourTime, false, false); } else { projectedContour = FeedbackContourTool::ProjectContourTo2DSlice(m_WorkingSlice, feedbackContour, false, false); } // If there is a projected contour, fill it if (projectedContour.IsNotNull()) { // Get working data to pass to following method so we don't overwrite locked labels in a LabelSetImage mitk::DataNode *workingNode(m_ToolManager->GetWorkingData(0)); - mitk::LabelSetImage *labelImage = workingNode != nullptr + mitk::LabelSetImage *labelSetImage = workingNode != nullptr ? dynamic_cast(workingNode->GetData()) : nullptr; MITK_DEBUG << "Filling Segmentation"; - if (labelImage != nullptr) + if (nullptr != labelSetImage) { // m_PaintingPixelValue only decides whether to paint or not // For LabelSetImages we want to paint with the active label value - auto activeLabel = labelImage->GetActiveLabel(labelImage->GetActiveLayer())->GetValue(); + auto activePixelValue = labelSetImage->GetActiveLabel(labelSetImage->GetActiveLayer())->GetValue(); mitk::ContourModelUtils::FillContourInSlice(projectedContour, 0, m_WorkingSlice, - labelImage, - m_PaintingPixelValue * activeLabel); + labelSetImage, + m_PaintingPixelValue * activePixelValue); } else { mitk::ContourModelUtils::FillContourInSlice(projectedContour, 0, m_WorkingSlice, m_WorkingSlice, m_PaintingPixelValue); } this->WriteBackSegmentationResult(positionEvent, m_WorkingSlice); FeedbackContourTool::SetFeedbackContourVisible(false); } m_ScreenYDifference = 0; m_ScreenXDifference = 0; } } diff --git a/Modules/Segmentation/Interactions/mitkSetRegionTool.cpp b/Modules/Segmentation/Interactions/mitkSetRegionTool.cpp index 4029a52fa9..79fd3f5bc4 100644 --- a/Modules/Segmentation/Interactions/mitkSetRegionTool.cpp +++ b/Modules/Segmentation/Interactions/mitkSetRegionTool.cpp @@ -1,181 +1,181 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkSetRegionTool.h" #include "mitkToolManager.h" #include "mitkBaseRenderer.h" #include "mitkImageDataItem.h" #include "mitkLabelSetImage.h" #include #include #include #include #include mitk::SetRegionTool::SetRegionTool(int paintingPixelValue) : FeedbackContourTool("PressMoveRelease"), m_PaintingPixelValue(paintingPixelValue) { } mitk::SetRegionTool::~SetRegionTool() { } void mitk::SetRegionTool::ConnectActionsAndFunctions() { CONNECT_FUNCTION("PrimaryButtonPressed", OnMousePressed); CONNECT_FUNCTION("Release", OnMouseReleased); CONNECT_FUNCTION("Move", OnMouseMoved); } void mitk::SetRegionTool::Activated() { Superclass::Activated(); } void mitk::SetRegionTool::Deactivated() { Superclass::Deactivated(); } void mitk::SetRegionTool::OnMousePressed(StateMachineAction *, InteractionEvent *interactionEvent) { auto *positionEvent = dynamic_cast(interactionEvent); if (!positionEvent) return; m_LastEventSender = positionEvent->GetSender(); m_LastEventSlice = m_LastEventSender->GetSlice(); // 1. Get the working image Image::Pointer workingSlice = FeedbackContourTool::GetAffectedWorkingSlice(positionEvent); if (workingSlice.IsNull()) return; // can't do anything without the segmentation // if click was outside the image, don't continue const BaseGeometry *sliceGeometry = workingSlice->GetGeometry(); itk::Index<3> projectedPointIn2D; sliceGeometry->WorldToIndex(positionEvent->GetPositionInWorld(), projectedPointIn2D); if (!sliceGeometry->IsIndexInside(projectedPointIn2D)) { MITK_WARN << "Point outside of segmentation slice." << std::endl; return; // can't use that as a seed point } typedef itk::Image InputImageType; typedef InputImageType::IndexType IndexType; typedef itk::ConnectedThresholdImageFilter RegionGrowingFilterType; RegionGrowingFilterType::Pointer regionGrower = RegionGrowingFilterType::New(); // convert world coordinates to image indices IndexType seedIndex; sliceGeometry->WorldToIndex(positionEvent->GetPositionInWorld(), seedIndex); // perform region growing in desired segmented region InputImageType::Pointer itkImage = InputImageType::New(); CastToItkImage(workingSlice, itkImage); regionGrower->SetInput(itkImage); regionGrower->AddSeed(seedIndex); InputImageType::PixelType bound = itkImage->GetPixel(seedIndex); regionGrower->SetLower(bound); regionGrower->SetUpper(bound); regionGrower->SetReplaceValue(1); itk::BinaryFillholeImageFilter::Pointer fillHolesFilter = itk::BinaryFillholeImageFilter::New(); fillHolesFilter->SetInput(regionGrower->GetOutput()); fillHolesFilter->SetForegroundValue(1); // Store result and preview mitk::Image::Pointer resultImage = mitk::GrabItkImageMemory(fillHolesFilter->GetOutput()); resultImage->SetGeometry(workingSlice->GetGeometry()); // Get the current working color DataNode *workingNode(m_ToolManager->GetWorkingData(0)); if (!workingNode) return; mitk::ImageToContourModelFilter::Pointer contourextractor = mitk::ImageToContourModelFilter::New(); contourextractor->SetInput(resultImage); contourextractor->Update(); mitk::ContourModel::Pointer awesomeContour = contourextractor->GetOutput(); auto t = positionEvent->GetSender()->GetTimeStep(); FeedbackContourTool::SetFeedbackContour(0 != t ? ContourModelUtils::MoveZerothContourTimeStep(awesomeContour, t) : awesomeContour); FeedbackContourTool::SetFeedbackContourVisible(true); mitk::RenderingManager::GetInstance()->RequestUpdate(positionEvent->GetSender()->GetRenderWindow()); } void mitk::SetRegionTool::OnMouseReleased(StateMachineAction *, InteractionEvent *interactionEvent) { auto *positionEvent = dynamic_cast(interactionEvent); if (!positionEvent) return; assert(positionEvent->GetSender()->GetRenderWindow()); // 1. Hide the feedback contour, find out which slice the user clicked, find out which slice of the toolmanager's // working image corresponds to that FeedbackContourTool::SetFeedbackContourVisible(false); mitk::RenderingManager::GetInstance()->RequestUpdate(positionEvent->GetSender()->GetRenderWindow()); int timeStep = positionEvent->GetSender()->GetTimeStep(); DataNode *workingNode(m_ToolManager->GetWorkingData(0)); if (!workingNode) return; auto *image = dynamic_cast(workingNode->GetData()); const PlaneGeometry *planeGeometry((positionEvent->GetSender()->GetCurrentWorldPlaneGeometry())); if (!image || !planeGeometry) return; Image::Pointer slice = FeedbackContourTool::GetAffectedImageSliceAs2DImage(positionEvent, image); if (slice.IsNull()) { MITK_ERROR << "Unable to extract slice." << std::endl; return; } ContourModel *feedbackContour(FeedbackContourTool::GetFeedbackContour()); ContourModel::Pointer projectedContour = FeedbackContourTool::ProjectContourTo2DSlice( slice, feedbackContour, false, false); // false: don't add 0.5 (done by FillContourInSlice) // false: don't constrain the contour to the image's inside if (projectedContour.IsNull()) return; - auto *labelImage = dynamic_cast(image); - int activeColor = 1; - if (labelImage != nullptr) + auto *labelSetImage = dynamic_cast(image); + int activePixelValue = 1; + if (nullptr != labelSetImage) { - activeColor = labelImage->GetActiveLabel()->GetValue(); + activePixelValue = labelSetImage->GetActiveLabel()->GetValue(); } mitk::ContourModelUtils::FillContourInSlice( - projectedContour, timeStep, slice, image, m_PaintingPixelValue * activeColor); + projectedContour, timeStep, slice, image, m_PaintingPixelValue * activePixelValue); this->WriteBackSegmentationResult(positionEvent, slice); } void mitk::SetRegionTool::OnMouseMoved(mitk::StateMachineAction *, mitk::InteractionEvent *) { }