diff --git a/Modules/DiffusionImaging/FiberTracking/cmdapps/TractographyEvaluation/FitFibersToImage.cpp b/Modules/DiffusionImaging/FiberTracking/cmdapps/TractographyEvaluation/FitFibersToImage.cpp index 3c7c93bfb9..68234fad4b 100755 --- a/Modules/DiffusionImaging/FiberTracking/cmdapps/TractographyEvaluation/FitFibersToImage.cpp +++ b/Modules/DiffusionImaging/FiberTracking/cmdapps/TractographyEvaluation/FitFibersToImage.cpp @@ -1,747 +1,738 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include <mitkBaseData.h> #include <mitkImageCast.h> #include <mitkImageToItk.h> #include <metaCommand.h> #include <mitkCommandLineParser.h> #include <usAny.h> #include <mitkIOUtil.h> #include <boost/lexical_cast.hpp> #include <itksys/SystemTools.hxx> #include <itkDirectory.h> #include <mitkFiberBundle.h> #include <mitkPreferenceListReaderOptionsFunctor.h> #include <mitkDiffusionPropertyHelper.h> #include <vnl/vnl_linear_system.h> #include <Eigen/Dense> #include <mitkStickModel.h> #include <mitkBallModel.h> #include <vigra/regression.hxx> #include <itkImageFileWriter.h> #include <itkImageDuplicator.h> #include <itkMersenneTwisterRandomVariateGenerator.h> #include <mitkPeakImage.h> #include <vnl/algo/vnl_lbfgsb.h> #include <vnl/vnl_sparse_matrix.h> #include <vnl/vnl_sparse_matrix_linear_system.h> #include <vnl/algo/vnl_lsqr.h> #include <itkImageDuplicator.h> #include <itkTimeProbe.h> #include <random> #include <itkParticleSwarmOptimizer.h> #include <itkOnePlusOneEvolutionaryOptimizer.h> #include <itkGradientDescentOptimizer.h> #include <itkSPSAOptimizer.h> using namespace std; typedef itksys::SystemTools ist; typedef itk::Point<float, 4> PointType4; typedef itk::Image< float, 4 > PeakImgType; -const double UPSCALE = 1.0; vnl_vector_fixed<float,3> GetClosestPeak(itk::Index<4> idx, PeakImgType::Pointer peak_image , vnl_vector_fixed<float,3> fiber_dir, int& id, double& w ) { int m_NumDirs = peak_image->GetLargestPossibleRegion().GetSize()[3]/3; vnl_vector_fixed<float,3> out_dir; out_dir.fill(0); float angle = 0.8; for (int i=0; i<m_NumDirs; i++) { vnl_vector_fixed<float,3> dir; idx[3] = i*3; dir[0] = peak_image->GetPixel(idx); idx[3] += 1; dir[1] = peak_image->GetPixel(idx); idx[3] += 1; dir[2] = peak_image->GetPixel(idx); float mag = dir.magnitude(); if (mag<mitk::eps) continue; dir.normalize(); float a = dot_product(dir, fiber_dir); if (fabs(a)>angle) { angle = fabs(a); w = angle; if (a<0) out_dir = -dir; else out_dir = dir; out_dir *= mag; id = i; } } return out_dir; } class VnlCostFunction : public vnl_cost_function { public: vnl_sparse_matrix_linear_system< double >* S; vnl_sparse_matrix< double > m_A; + vnl_sparse_matrix< double > m_A_Ones; // matrix indicating active weights with 1 vnl_vector< double > m_b; - double m_Lambda; + double m_Lambda; // regularization factor + + vnl_vector<double> row_sums; // number of active weights per row + vnl_vector<double> local_weight_means; // mean weight of each row void SetProblem(vnl_sparse_matrix< double >& A, vnl_vector<double>& b, double lambda) { S = new vnl_sparse_matrix_linear_system<double>(A, b); m_A = A; m_b = b; m_Lambda = lambda; + + m_A_Ones.set_size(m_A.rows(), m_A.cols()); + m_A.reset(); + while (m_A.next()) + m_A_Ones.put(m_A.getrow(), m_A.getcolumn(), 1); + + unsigned int N = m_b.size(); + vnl_vector<double> ones; ones.set_size(dim); ones.fill(1.0); + row_sums.set_size(N); + m_A_Ones.mult(ones, row_sums); + local_weight_means.set_size(N); } VnlCostFunction(const int NumVars) : vnl_cost_function(NumVars) { } - double f_itk(vnl_vector<double> const &x) const + void regu_MSE(vnl_vector<double> const &x, double& cost) { - double min = x.min_value(); - if( min<0 ) - return 10000 * -min; + double mean = x.mean(); + vnl_vector<double> tx = x-mean; + cost += m_Lambda*1e8*tx.squared_magnitude()/x.size(); + } - double cost = S->get_rms_error(x); - double regu = m_Lambda*1e8*x.squared_magnitude()/x.size(); - cost += regu; - return cost; + void regu_MSM(vnl_vector<double> const &x, double& cost) + { + cost += m_Lambda*1e8*x.squared_magnitude()/x.size(); } - double f(vnl_vector<double> const &x) + void regu_localMSE(vnl_vector<double> const &x, double& cost) { - // // cost for x (mean squared error) - double cost = S->get_rms_error(x); - cost *= cost; + m_A_Ones.mult(x, local_weight_means); + local_weight_means = element_quotient(local_weight_means, row_sums); -// double cost = 0; -// vnl_vector<double> d; d.set_size(m_b.size()); -// S->multiply(x, d); -// d -= m_b; -// for (int i=0; i<d.size(); i++) -// { + m_A_Ones.reset(); + unsigned int num_elements = 0; + double regu = 0; + while (m_A_Ones.next()) + { + double d = 0; + if (x[m_A_Ones.getcolumn()]>local_weight_means[m_A_Ones.getrow()]) + d = std::exp(x[m_A_Ones.getcolumn()]) - std::exp(local_weight_means[m_A_Ones.getrow()]); + else + d = x[m_A_Ones.getcolumn()] - local_weight_means[m_A_Ones.getrow()]; + regu += d*d; + ++num_elements; + } + cost += m_Lambda*regu/num_elements; + } + + void grad_regu_MSE(vnl_vector<double> const &x, vnl_vector<double> &dx) + { + double mean = x.mean(); + vnl_vector<double> tx = x-mean; + + vnl_vector<double> tx2(dim, 0.0); + vnl_vector<double> h(dim, 1.0); + for (int c=0; c<dim; c++) + { + h[c] = dim-1; + tx2[c] += dot_product(h,tx); + h[c] = 1; + } + dx += tx2*m_Lambda*1e8*2.0/(dim*dim); + + } + + void grad_regu_MSM(vnl_vector<double> const &x, vnl_vector<double> &dx) + { + dx += m_Lambda*1e8*2.0*x/dim; + } + void grad_regu_localMSE(vnl_vector<double> const &x, vnl_vector<double> &dx) + { + m_A_Ones.mult(x, local_weight_means); + local_weight_means = element_quotient(local_weight_means, row_sums); + + vnl_vector<double> exp_x = x.apply(std::exp); + vnl_vector<double> exp_means = local_weight_means.apply(std::exp); + + vnl_vector<double> tdx(dim, 0); + m_A_Ones.reset(); + while (m_A_Ones.next()) + { + int c = m_A_Ones.getcolumn(); + int r = m_A_Ones.getrow(); + if (row_sums[r]==0) + continue; + + if (x[c]>local_weight_means[r]) + tdx[c] += (exp_x[c] * ( exp_x[c] - exp_means[r] ))/row_sums[r]; + else + tdx[c] += (x[c] - local_weight_means[r])/row_sums[r]; + } + dx += tdx*2.0*m_Lambda; + +// vnl_vector<double> dr; dr.set_size(dim); dr.fill(0); +// for (unsigned int r=0; r<m_A_Ones.rows(); r++) +// { +// int n = row_sums[r]; +// vnl_vector<double> weights; weights.set_size(n); +// vnl_matrix<double> temp(n,n,1); temp.fill_diagonal(n-1); + +// int i=0; +// for (auto w : m_A_Ones.get_row(r)) +// { +// weights[i]=w.second; +// ++i; +// } + +// weights -= local_weight_means[r]; +// weights = temp*weights; + +// i=0; +// for (auto w : m_A_Ones.get_row(r)) +// { +// dr[w.second] += weights[i]; +// ++i; +// } // } +// dx += dr*2.0*m_Lambda; + } + + + double f(vnl_vector<double> const &x) + { + double cost = S->get_rms_error(x); + cost *= cost; + // cost for e^x // vnl_vector<double> x_exp; x_exp.set_size(x.size()); // for (unsigned int c=0; c<x.size(); c++) // x_exp[c] = std::exp(x[c]); - // vnl_vector<double> d; d.set_size(x.size()); - // S->multiply(x_exp, d); - // d -= m_b; - // double cost = d.squared_magnitude()/x.size(); - - // // Tikhonov regu - double regu = m_Lambda*1e8*x.squared_magnitude()/x.size(); - - // aTV regu - // double regu = 0; - // unsigned int N = m_b.size(); - // vnl_vector<double> ones; ones.set_size(x.size()); ones.fill(1.0); - // vnl_vector<double> means; means.set_size(N); - // S->multiply(ones, means); - - // unsigned int norm = 0; - // for (unsigned int i=0; i<N; ++i) - // { - // if (m_A.get_row(i).empty()) - // continue; - // means[i] /= m_A.get_row(i).size(); + // double cost = S->get_rms_error(x_exp); + // cost *= cost; - // for (auto el : m_A.get_row(i)) - // { - // float d = 0; - // if (x[el.first]>means[i]) - // d = std::exp(x[el.first]) - std::exp(means[i]); - // else - // d = x[el.first] - means[i]; - - // regu += d*d; - // norm++; - // } - // } - // regu /= norm; + regu_localMSE(x, cost); +// regu_MSM(x, cost); - cost += regu; return cost; } void gradf(vnl_vector<double> const &x, vnl_vector<double> &dx) { dx.fill(0.0); unsigned int N = m_b.size(); // vnl_vector<double> x_exp; x_exp.set_size(x.size()); // for (unsigned int c=0; c<x.size(); c++) // x_exp[c] = std::exp(x[c]); vnl_vector<double> d; d.set_size(N); S->multiply(x,d); d -= m_b; S->transpose_multiply(d, dx); dx *= 2.0/N; // for (unsigned int c=0; c<x.size(); c++) // dx[c] *= x_exp[c]; // only for e^x weights - dx += m_Lambda*1e8*2.0*x/x.size(); + grad_regu_localMSE(x,dx); +// grad_regu_MSM(x,dx); } - }; -class ItkCostFunction : public itk::SingleValuedCostFunction -{ -public: - /** Standard class typedefs. */ - typedef ItkCostFunction Self; - typedef SingleValuedCostFunction Superclass; - typedef itk::SmartPointer<Self> Pointer; - typedef itk::SmartPointer<const Self> ConstPointer; - - /** Method for creation through the object factory. */ - itkNewMacro(Self) - - /** Run-time type information (and related methods). */ - itkTypeMacro(ItkCostFunction, SingleValuedCostfunction) - - void SetVnlCostFunction(VnlCostFunction& cf) { m_VnlCostFunction = cf; } - unsigned int GetNumberOfParameters(void) const { return m_VnlCostFunction.get_number_of_unknowns(); } // itk::CostFunction - - MeasureType GetValue(const ParametersType & parameters) const - { - return m_VnlCostFunction.f_itk(parameters); - } - - void GetDerivative(const ParametersType &, DerivativeType & ) const { - throw itk::ExceptionObject( __FILE__, __LINE__, "No derivative is available for this cost function."); - } - -protected: - ItkCostFunction(){} - ~ItkCostFunction(){} - - VnlCostFunction m_VnlCostFunction = VnlCostFunction(1); - -private: - ItkCostFunction(const Self &); //purposely not implemented - void operator = (const Self &); //purposely not implemented -}; - -void OptimizeItk(VnlCostFunction& cf, vnl_vector<double>& x, int iter, double lb, double ub) -{ - ItkCostFunction::ParametersType p; p.SetData(x.data_block(), x.size()); - - ItkCostFunction::Pointer itk_cf = ItkCostFunction::New(); - itk_cf->SetVnlCostFunction(cf); - - std::pair< double, double > bounds; bounds.first = lb; bounds.second = ub; - MITK_INFO << bounds; - - // itk::Statistics::MersenneTwisterRandomVariateGenerator::Pointer randGen = itk::Statistics::MersenneTwisterRandomVariateGenerator::New(); - // itk::OnePlusOneEvolutionaryOptimizer::Pointer opt = itk::OnePlusOneEvolutionaryOptimizer::New(); - // opt->SetCostFunction(itk_cf); - // opt->MinimizeOn(); - // opt->SetInitialPosition(p); - // opt->SetNormalVariateGenerator(randGen); - // opt->SetMaximumIteration(iter); - // opt->StartOptimization(); - - // itk::ParticleSwarmOptimizer::Pointer opt = itk::ParticleSwarmOptimizer::New(); - // opt->SetCostFunction(itk_cf); - // opt->SetInitialPosition(p); - // opt->SetParameterBounds(bounds, x.size()); - // opt->SetMaximalNumberOfIterations(iter); - // opt->SetNumberOfParticles(100); - // opt->SetParametersConvergenceTolerance(0.01, x.size()); - // opt->SetNumberOfGenerationsWithMinimalImprovement(3); - // opt->StartOptimization(); - - // itk::GradientDescentOptimizer::Pointer opt = itk::GradientDescentOptimizer::New(); - // opt->SetCostFunction(itk_cf); - // opt->SetInitialPosition(p); - // opt->SetMinimize(true); - // opt->SetNumberOfIterations(iter); - // opt->StartOptimization(); - - itk::SPSAOptimizer::Pointer opt = itk::SPSAOptimizer::New(); - opt->SetCostFunction(itk_cf); - opt->SetInitialPosition(p); - opt->SetMinimize(true); - opt->SetNumberOfPerturbations(iter); - opt->StartOptimization(); - - x.copy_in(opt->GetCurrentPosition().data_block()); - for (unsigned int i=0; i<x.size(); i++) - MITK_INFO << opt->GetCurrentPosition()[i]; - // MITK_INFO << "Cost: " << opt->GetCurrentCost(); - -} - -std::vector<float> FitFibers( std::string , std::vector< mitk::FiberBundle::Pointer > input_tracts, mitk::Image::Pointer inputImage, bool single_fiber_fit, int max_iter, float g_tol, float lambda ) +vnl_vector<double> FitFibers( std::string , std::vector< mitk::FiberBundle::Pointer > input_tracts, mitk::Image::Pointer inputImage, vnl_sparse_matrix< double >& A, vnl_vector<double>& b, bool single_fiber_fit, int max_iter, float g_tol, float lambda ) { typedef mitk::ImageToItk< PeakImgType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(inputImage); caster->Update(); PeakImgType::Pointer itkImage = caster->GetOutput(); unsigned int* image_size = inputImage->GetDimensions(); int sz_x = image_size[0]; int sz_y = image_size[1]; int sz_z = image_size[2]; int sz_peaks = image_size[3]/3 + 1; // +1 for zero - peak int num_voxels = sz_x*sz_y*sz_z; unsigned int num_unknowns = input_tracts.size(); if (single_fiber_fit) { num_unknowns = 0; for (unsigned int bundle=0; bundle<input_tracts.size(); bundle++) num_unknowns += input_tracts.at(bundle)->GetNumFibers(); } unsigned int number_of_residuals = num_voxels * sz_peaks; // create linear system MITK_INFO << "Num. unknowns: " << num_unknowns; MITK_INFO << "Num. residuals: " << number_of_residuals; MITK_INFO << "Creating system ..."; - vnl_sparse_matrix< double > A; A.set_size(number_of_residuals, num_unknowns); - vnl_vector<double> b; b.set_size(number_of_residuals); b.fill(0.0); + A.set_size(number_of_residuals, num_unknowns); + b.set_size(number_of_residuals); b.fill(0.0); double TD = 0; double FD = 0; unsigned int dir_count = 0; unsigned int fiber_count = 0; for (unsigned int bundle=0; bundle<input_tracts.size(); bundle++) { vtkSmartPointer<vtkPolyData> polydata = input_tracts.at(bundle)->GetFiberPolyData(); for (int i=0; i<input_tracts.at(bundle)->GetNumFibers(); ++i) { vtkCell* cell = polydata->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (numPoints<2) MITK_INFO << "FIBER WITH ONLY ONE POINT ENCOUNTERED!"; for (int j=0; j<numPoints-1; ++j) { double* p1 = points->GetPoint(j); PointType4 p; p[0]=p1[0]; p[1]=p1[1]; p[2]=p1[2]; p[3]=0; itk::Index<4> idx4; itkImage->TransformPhysicalPointToIndex(p, idx4); if (!itkImage->GetLargestPossibleRegion().IsInside(idx4)) continue; double* p2 = points->GetPoint(j+1); vnl_vector_fixed<float,3> fiber_dir; fiber_dir[0] = p[0]-p2[0]; fiber_dir[1] = p[1]-p2[1]; fiber_dir[2] = p[2]-p2[2]; fiber_dir.normalize(); double w = 1; int peak_id = sz_peaks-1; vnl_vector_fixed<float,3> odf_peak = GetClosestPeak(idx4, itkImage, fiber_dir, peak_id, w); float peak_mag = odf_peak.magnitude(); int x = idx4[0]; int y = idx4[1]; int z = idx4[2]; - unsigned int linear_index = sz_peaks*(x + sz_x*y + sz_x*sz_y*z); + unsigned int linear_index = x + sz_x*y + sz_x*sz_y*z + sz_x*sz_y*sz_z*peak_id; - if (b[linear_index + peak_id] == 0 && peak_id<3) + if (b[linear_index] == 0 && peak_id<3) { dir_count++; FD += peak_mag; } TD += w; if (single_fiber_fit) { - b[linear_index + peak_id] = peak_mag; - A.put(linear_index + peak_id, fiber_count, A.get(linear_index + peak_id, fiber_count) + w); + b[linear_index] = peak_mag; + A.put(linear_index, fiber_count, A.get(linear_index, fiber_count) + w); } else { - b[linear_index + peak_id] = peak_mag; - A.put(linear_index + peak_id, bundle, A.get(linear_index + peak_id, bundle) + w); + b[linear_index] = peak_mag; + A.put(linear_index, bundle, A.get(linear_index, bundle) + w); } } ++fiber_count; } } TD /= (dir_count*fiber_count); FD /= dir_count; - A *= 1.0/TD; - b *= 100.0*UPSCALE/FD; // times 100 because we want to avoid too small weights + A /= TD; + b *= 100.0/FD; // times 100 because we want to avoid too small weights MITK_INFO << "TD: " << TD; MITK_INFO << "FD: " << FD; MITK_INFO << "Regularization: " << lambda; // pretty large regularization needed --> internally upscale by 1e8 itk::TimeProbe clock; clock.Start(); MITK_INFO << "Fitting fibers"; VnlCostFunction cost(num_unknowns); cost.SetProblem(A, b, lambda); vnl_vector<double> x; x.set_size(num_unknowns); x.fill( TD/100.0 * FD/2.0 ); vnl_lbfgsb minimizer(cost); vnl_vector<double> l; l.set_size(num_unknowns); l.fill(0); vnl_vector<long> bound_selection; bound_selection.set_size(num_unknowns); bound_selection.fill(1); minimizer.set_bound_selection(bound_selection); minimizer.set_lower_bound(l); minimizer.set_trace(true); minimizer.set_projected_gradient_tolerance(g_tol); if (max_iter>0) minimizer.set_max_function_evals(max_iter); minimizer.minimize(x); // SECOND RUN // USE QUARTILE AS LIMIT??? float mean_w = x.mean(); - x.fill(mean_w); MITK_INFO << "Mean weight: " << mean_w; + x.fill(mean_w); vnl_vector<double> u; u.set_size(num_unknowns); u.fill(mean_w * 3); minimizer.set_upper_bound(u); bound_selection.fill(2); minimizer.set_bound_selection(bound_selection); minimizer.minimize(x); MITK_INFO << "Residual error: " << minimizer.get_end_error(); MITK_INFO << "NumEvals: " << minimizer.get_num_evaluations(); MITK_INFO << "NumIterations: " << minimizer.get_num_iterations(); clock.Stop(); int h = clock.GetTotal()/3600; int m = ((int)clock.GetTotal()%3600)/60; int s = (int)clock.GetTotal()%60; MITK_INFO << "Optimization took " << h << "h, " << m << "m and " << s << "s"; - std::vector<float> weights; - for (unsigned int i=0; i<num_unknowns; ++i) - { -// MITK_INFO << x[i]; - weights.push_back(FD*x[i]); -// weights.push_back(x[i]); - } - return weights; +// vnl_sparse_matrix_linear_system<double> S(A, b); +// vnl_vector<double> fitted_b; fitted_b.set_size(b.size()); +// S.multiply(x, fitted_b); +// for (unsigned int r=0; r<b.size(); r++) +// MITK_INFO << fitted_b[r] << " - " << b[r]; + + return x; } std::vector< string > get_file_list(const std::string& path) { std::vector< string > file_list; itk::Directory::Pointer dir = itk::Directory::New(); if (dir->Load(path.c_str())) { int n = dir->GetNumberOfFiles(); for (int r = 0; r < n; r++) { const char *filename = dir->GetFile(r); std::string ext = ist::GetFilenameExtension(filename); if (ext==".fib" || ext==".trk") file_list.push_back(path + '/' + filename); } } return file_list; } int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Fit Fibers To Image"); parser.setCategory("Fiber Tracking Evaluation"); parser.setDescription(""); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); parser.addArgument("", "i1", mitkCommandLineParser::StringList, "Input tractograms:", "input tractograms (.fib, vtk ascii file format)", us::Any(), false); parser.addArgument("", "i2", mitkCommandLineParser::InputFile, "Input peaks:", "input peak image", us::Any(), false); parser.addArgument("", "it", mitkCommandLineParser::Int, "", ""); - parser.addArgument("", "s", mitkCommandLineParser::Bool, "", ""); + parser.addArgument("", "b", mitkCommandLineParser::Bool, "", ""); parser.addArgument("", "g", mitkCommandLineParser::Float, "", ""); parser.addArgument("", "l", mitkCommandLineParser::Float, "", ""); + parser.addArgument("", "r", mitkCommandLineParser::Int, "", ""); parser.addArgument("", "o", mitkCommandLineParser::OutputDirectory, "Output:", "output root", us::Any(), false); map<string, us::Any> parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; mitkCommandLineParser::StringContainerType fib_files = us::any_cast<mitkCommandLineParser::StringContainerType>(parsedArgs["i1"]); string dwiFile = us::any_cast<string>(parsedArgs["i2"]); string outRoot = us::any_cast<string>(parsedArgs["o"]); - bool single_fib = false; - if (parsedArgs.count("s")) - single_fib = us::any_cast<bool>(parsedArgs["s"]); + bool single_fib = true; + if (parsedArgs.count("b")) + single_fib = !us::any_cast<bool>(parsedArgs["b"]); int max_iter = 0; if (parsedArgs.count("it")) max_iter = us::any_cast<int>(parsedArgs["it"]); +// int regu = 0; +// if (parsedArgs.count("r")) +// regu = us::any_cast<int>(parsedArgs["r"]); + float g_tol = 1e-5; if (parsedArgs.count("g")) g_tol = us::any_cast<float>(parsedArgs["g"]); float lambda = 1.0; if (parsedArgs.count("l")) lambda = us::any_cast<float>(parsedArgs["l"]); try { std::vector< mitk::FiberBundle::Pointer > input_tracts; mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Peak Image", "Fiberbundles"}, {}); mitk::Image::Pointer inputImage = dynamic_cast<mitk::PeakImage*>(mitk::IOUtil::Load(dwiFile, &functor)[0].GetPointer()); float minSpacing = 1; if(inputImage->GetGeometry()->GetSpacing()[0]<inputImage->GetGeometry()->GetSpacing()[1] && inputImage->GetGeometry()->GetSpacing()[0]<inputImage->GetGeometry()->GetSpacing()[2]) minSpacing = inputImage->GetGeometry()->GetSpacing()[0]; else if (inputImage->GetGeometry()->GetSpacing()[1] < inputImage->GetGeometry()->GetSpacing()[2]) minSpacing = inputImage->GetGeometry()->GetSpacing()[1]; else minSpacing = inputImage->GetGeometry()->GetSpacing()[2]; std::vector< std::string > fib_names; for (auto item : fib_files) { if ( ist::FileIsDirectory(item) ) { for ( auto fibFile : get_file_list(item) ) { mitk::FiberBundle::Pointer inputTractogram = dynamic_cast<mitk::FiberBundle*>(mitk::IOUtil::Load(fibFile)[0].GetPointer()); if (inputTractogram.IsNull()) continue; - inputTractogram->ResampleLinear(minSpacing/4); + inputTractogram->ResampleLinear(minSpacing/10); input_tracts.push_back(inputTractogram); fib_names.push_back(fibFile); } } else { mitk::FiberBundle::Pointer inputTractogram = dynamic_cast<mitk::FiberBundle*>(mitk::IOUtil::Load(item)[0].GetPointer()); if (inputTractogram.IsNull()) continue; - inputTractogram->ResampleLinear(minSpacing/4); + inputTractogram->ResampleLinear(minSpacing/10); input_tracts.push_back(inputTractogram); fib_names.push_back(item); } } - std::vector<float> weights = FitFibers(outRoot, input_tracts, inputImage, single_fib, max_iter, g_tol, lambda); + vnl_sparse_matrix<double> A; + vnl_vector<double> b; + vnl_vector<double> x = FitFibers(outRoot, input_tracts, inputImage, A, b, single_fib, max_iter, g_tol, lambda); + MITK_INFO << "Weighting fibers"; if (single_fib) { unsigned int fiber_count = 0; for (unsigned int bundle=0; bundle<input_tracts.size(); bundle++) { for (int i=0; i<input_tracts.at(bundle)->GetNumFibers(); i++) { - input_tracts.at(bundle)->SetFiberWeight(i, weights.at(fiber_count)); + input_tracts.at(bundle)->SetFiberWeight(i, x[fiber_count]); ++fiber_count; } } } else { for (unsigned int i=0; i<fib_names.size(); ++i) - input_tracts.at(i)->SetFiberWeights(weights.at(i)); + input_tracts.at(i)->SetFiberWeights(x[i]); } // OUTPUT IMAGES MITK_INFO << "Generating output images ..."; typedef mitk::ImageToItk< PeakImgType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(inputImage); caster->Update(); - PeakImgType::Pointer itkImage = caster->GetOutput(); + PeakImgType::Pointer peak_image = caster->GetOutput(); itk::ImageDuplicator< PeakImgType >::Pointer duplicator = itk::ImageDuplicator< PeakImgType >::New(); - duplicator->SetInputImage(itkImage); + duplicator->SetInputImage(peak_image); duplicator->Update(); PeakImgType::Pointer unexplained_image = duplicator->GetOutput(); + unexplained_image->FillBuffer(0.0); duplicator->SetInputImage(unexplained_image); duplicator->Update(); PeakImgType::Pointer residual_image = duplicator->GetOutput(); + residual_image->FillBuffer(0.0); duplicator->SetInputImage(residual_image); duplicator->Update(); - PeakImgType::Pointer explained_image = duplicator->GetOutput(); - explained_image->FillBuffer(0.0); - - for (unsigned int bundle=0; bundle<input_tracts.size(); bundle++) - { - vtkSmartPointer<vtkPolyData> polydata = input_tracts.at(bundle)->GetFiberPolyData(); - - for (int i=0; i<input_tracts.at(bundle)->GetNumFibers(); ++i) - { - vtkCell* cell = polydata->GetCell(i); - int numPoints = cell->GetNumberOfPoints(); - vtkPoints* points = cell->GetPoints(); - - if (numPoints<2) - MITK_INFO << "FIBER WITH ONLY ONE POINT ENCOUNTERED!"; - - float w = input_tracts.at(bundle)->GetFiberWeight(i); - - for (int j=0; j<numPoints-1; ++j) - { - double* p1 = points->GetPoint(j); - PointType4 p; - p[0]=p1[0]; - p[1]=p1[1]; - p[2]=p1[2]; - p[3]=0; - - itk::Index<4> idx4; - itkImage->TransformPhysicalPointToIndex(p, idx4); - if (!itkImage->GetLargestPossibleRegion().IsInside(idx4)) - continue; - - double* p2 = points->GetPoint(j+1); - vnl_vector_fixed<float,3> fiber_dir; - fiber_dir[0] = p[0]-p2[0]; - fiber_dir[1] = p[1]-p2[1]; - fiber_dir[2] = p[2]-p2[2]; - fiber_dir.normalize(); - - int peak_id = -1; - double contr = 1; - GetClosestPeak(idx4, itkImage, fiber_dir, peak_id, contr); - if (peak_id<0) - continue; - - vnl_vector_fixed<float,3> unexplained_dir; - vnl_vector_fixed<float,3> explained_dir; - vnl_vector_fixed<float,3> res_dir; - vnl_vector_fixed<float,3> peak_dir; - - idx4[3] = peak_id*3; - unexplained_dir[0] = unexplained_image->GetPixel(idx4); - explained_dir[0] = explained_image->GetPixel(idx4); - res_dir[0] = residual_image->GetPixel(idx4); - peak_dir[0] = itkImage->GetPixel(idx4); - - idx4[3] += 1; - unexplained_dir[1] = unexplained_image->GetPixel(idx4); - explained_dir[1] = explained_image->GetPixel(idx4); - res_dir[1] = residual_image->GetPixel(idx4); - peak_dir[1] = itkImage->GetPixel(idx4); - - idx4[3] += 1; - unexplained_dir[2] = unexplained_image->GetPixel(idx4); - explained_dir[2] = explained_image->GetPixel(idx4); - res_dir[2] = residual_image->GetPixel(idx4); - peak_dir[2] = itkImage->GetPixel(idx4); - - if (dot_product(peak_dir, fiber_dir)<0) - fiber_dir *= -1; - fiber_dir *= w; - - idx4[3] = peak_id*3; - residual_image->SetPixel(idx4, res_dir[0] - fiber_dir[0]); - - idx4[3] += 1; - residual_image->SetPixel(idx4, res_dir[1] - fiber_dir[1]); - - idx4[3] += 1; - residual_image->SetPixel(idx4, res_dir[2] - fiber_dir[2]); - - if ( fabs(unexplained_dir[0]) - fabs(fiber_dir[0]) < 0 ) // did we "overexplain" stuff? - fiber_dir = unexplained_dir; + PeakImgType::Pointer fitted_image = duplicator->GetOutput(); + fitted_image->FillBuffer(0.0); + +// vnl_sparse_matrix_linear_system<double> S(A, b); +// vnl_vector<double> fitted_b; fitted_b.set_size(b.size()); +// S.multiply(x, fitted_b); + +// unsigned int* image_size = inputImage->GetDimensions(); +// int sz_x = image_size[0]; +// int sz_y = image_size[1]; +// int sz_z = image_size[2]; +// int sz_peaks = image_size[3]/3 + 1; // +1 for zero - peak +// for (unsigned int r=0; r<b.size(); r++) +// { +// itk::Index<4> idx; +// unsigned int linear_index = r; +// idx[0] = linear_index % sz_x; linear_index /= sz_x; +// idx[1] = linear_index % sz_y; linear_index /= sz_y; +// idx[2] = linear_index % sz_z; linear_index /= sz_z; +// int peak_id = linear_index % sz_peaks; + +// if (peak_id<sz_peaks-1) +// { +// vnl_vector_fixed<float,3> peak_dir; + +// idx[3] = peak_id*3; +// peak_dir[0] = peak_image->GetPixel(idx); +// idx[3] += 1; +// peak_dir[1] = peak_image->GetPixel(idx); +// idx[3] += 1; +// peak_dir[2] = peak_image->GetPixel(idx); + +// peak_dir.normalize(); +// peak_dir *= fitted_b[r]; +// // MITK_INFO << fitted_b[r] << " - " << b[r]; + +// idx[3] = peak_id*3; +// fitted_image->SetPixel(idx, peak_dir[0]); + +// idx[3] += 1; +// fitted_image->SetPixel(idx, peak_dir[1]); + +// idx[3] += 1; +// fitted_image->SetPixel(idx, peak_dir[2]); +// } +// } - idx4[3] = peak_id*3; - unexplained_image->SetPixel(idx4, unexplained_dir[0] - fiber_dir[0]); - explained_image->SetPixel(idx4, explained_dir[0] + fiber_dir[0]); - idx4[3] += 1; - unexplained_image->SetPixel(idx4, unexplained_dir[1] - fiber_dir[1]); - explained_image->SetPixel(idx4, explained_dir[1] + fiber_dir[1]); + // for (unsigned int bundle=0; bundle<input_tracts.size(); bundle++) + // { + // vtkSmartPointer<vtkPolyData> polydata = input_tracts.at(bundle)->GetFiberPolyData(); - idx4[3] += 1; - unexplained_image->SetPixel(idx4, unexplained_dir[2] - fiber_dir[2]); - explained_image->SetPixel(idx4, explained_dir[2] + fiber_dir[2]); - } + // for (int i=0; i<input_tracts.at(bundle)->GetNumFibers(); ++i) + // { + // vtkCell* cell = polydata->GetCell(i); + // int numPoints = cell->GetNumberOfPoints(); + // vtkPoints* points = cell->GetPoints(); + + // if (numPoints<2) + // MITK_INFO << "FIBER WITH ONLY ONE POINT ENCOUNTERED!"; + + // float w = input_tracts.at(bundle)->GetFiberWeight(i); + + // for (int j=0; j<numPoints-1; ++j) + // { + // double* p1 = points->GetPoint(j); + // PointType4 p; + // p[0]=p1[0]; + // p[1]=p1[1]; + // p[2]=p1[2]; + // p[3]=0; + + // itk::Index<4> idx4; + // peak_image->TransformPhysicalPointToIndex(p, idx4); + // if (!peak_image->GetLargestPossibleRegion().IsInside(idx4)) + // continue; + + // double* p2 = points->GetPoint(j+1); + // vnl_vector_fixed<float,3> tract_dir; + // tract_dir[0] = p[0]-p2[0]; + // tract_dir[1] = p[1]-p2[1]; + // tract_dir[2] = p[2]-p2[2]; + // tract_dir.normalize(); + + // int peak_id = -1; + // double contr = 1; + // vnl_vector_fixed<float,3> peak_dir = GetClosestPeak(idx4, peak_image, tract_dir, peak_id, contr); + + // idx4[3] = peak_id*3; + // tract_image->SetPixel(idx4, tract_image->GetPixel(idx4) + tract_dir[0]); + + // idx4[3] += 1; + // tract_image->SetPixel(idx4, tract_image->GetPixel(idx4) + tract_dir[1]); + + // idx4[3] += 1; + // tract_image->SetPixel(idx4, tract_image->GetPixel(idx4) + tract_dir[2]); + // } - } - } + // } + // } - itk::ImageFileWriter< PeakImgType >::Pointer writer = itk::ImageFileWriter< PeakImgType >::New(); - writer->SetInput(unexplained_image); - writer->SetFileName(outRoot + "unexplained_image.nrrd"); - writer->Update(); + // itk::ImageFileWriter< PeakImgType >::Pointer writer = itk::ImageFileWriter< PeakImgType >::New(); + // writer->SetInput(fitted_image); + // writer->SetFileName(outRoot + "fitted_image.nrrd"); + // writer->Update(); - writer->SetInput(explained_image); - writer->SetFileName(outRoot + "explained_image.nrrd"); - writer->Update(); + // writer->SetInput(tract_image); + // writer->SetFileName(outRoot + "explained_image.nrrd"); + // writer->Update(); - writer->SetInput(residual_image); - writer->SetFileName(outRoot + "residual_image.nrrd"); - writer->Update(); + // writer->SetInput(residual_image); + // writer->SetFileName(outRoot + "residual_image.nrrd"); + // writer->Update(); for (unsigned int bundle=0; bundle<input_tracts.size(); bundle++) { input_tracts.at(bundle)->Compress(0.1); std::string name = fib_names.at(bundle); name = ist::GetFilenameWithoutExtension(name); mitk::IOUtil::Save(input_tracts.at(bundle), outRoot + name + "_fitted.fib"); } } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; }