diff --git a/Core/Code/DataManagement/mitkImage.cpp b/Core/Code/DataManagement/mitkImage.cpp index ca542d10fd..a9f31623dd 100644 --- a/Core/Code/DataManagement/mitkImage.cpp +++ b/Core/Code/DataManagement/mitkImage.cpp @@ -1,1278 +1,1278 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkImage.h" #include "mitkImageStatisticsHolder.h" #include "mitkPixelTypeMultiplex.h" #include #define FILL_C_ARRAY( _arr, _size, _value) for(unsigned int i=0u; i<_size; i++) \ { _arr[i] = _value; } mitk::Image::Image() : m_Dimension(0), m_Dimensions(NULL), m_ImageDescriptor(NULL), m_OffsetTable(NULL), m_CompleteData(NULL), m_ImageStatistics(NULL) { - m_Dimensions = new unsigned int[MAX_IMAGE_DIMENSIONS]; - FILL_C_ARRAY( m_Dimensions, MAX_IMAGE_DIMENSIONS, 0u); + m_Dimensions = new unsigned int[MAX_IMAGE_DIMENSIONS]; + FILL_C_ARRAY( m_Dimensions, MAX_IMAGE_DIMENSIONS, 0u); - m_Initialized = false; + m_Initialized = false; } mitk::Image::Image(const Image &other) : SlicedData(other), m_Dimension(0), m_Dimensions(NULL), m_ImageDescriptor(NULL), m_OffsetTable(NULL), m_CompleteData(NULL), m_ImageStatistics(NULL) { m_Dimensions = new unsigned int[MAX_IMAGE_DIMENSIONS]; FILL_C_ARRAY( m_Dimensions, MAX_IMAGE_DIMENSIONS, 0u); this->Initialize( other.GetPixelType(), other.GetDimension(), other.GetDimensions()); //Since the above called "Initialize" method doesn't take the geometry into account we need to set it //here manually this->SetGeometry(dynamic_cast(other.GetGeometry()->Clone().GetPointer())); if (this->GetDimension() > 3) { const unsigned int time_steps = this->GetDimension(3); for (unsigned int i = 0u; i < time_steps; ++i) { ImageDataItemPointer volume = const_cast(other).GetVolumeData(i); this->SetVolume(volume->GetData(), i); } } else { ImageDataItemPointer volume = const_cast(other).GetVolumeData(0); this->SetVolume(volume->GetData(), 0); } } mitk::Image::~Image() { Clear(); m_ReferenceCountLock.Lock(); m_ReferenceCount = 3; m_ReferenceCountLock.Unlock(); m_ReferenceCountLock.Lock(); m_ReferenceCount = 0; m_ReferenceCountLock.Unlock(); if(m_OffsetTable != NULL) delete [] m_OffsetTable; if(m_ImageStatistics != NULL) delete m_ImageStatistics; } const mitk::PixelType mitk::Image::GetPixelType(int n) const { return this->m_ImageDescriptor->GetChannelTypeById(n); } unsigned int mitk::Image::GetDimension() const { return m_Dimension; } unsigned int mitk::Image::GetDimension(int i) const { if((i>=0) && (i<(int)m_Dimension)) return m_Dimensions[i]; return 1; } void* mitk::Image::GetData() { if(m_Initialized==false) { if(GetSource().IsNull()) return NULL; if(GetSource()->Updating()==false) GetSource()->UpdateOutputInformation(); } m_CompleteData=GetChannelData(); // update channel's data // if data was not available at creation point, the m_Data of channel descriptor is NULL // if data present, it won't be overwritten m_ImageDescriptor->GetChannelDescriptor(0).SetData(m_CompleteData->GetData()); return m_CompleteData->GetData(); } template void AccessPixel( const mitk::PixelType ptype, void* data, const unsigned int offset, double& value ) { value = 0.0; if( data == NULL ) return; if(ptype.GetBpe() != 24) { value = (double) (((T*) data)[ offset ]); } else { const unsigned int rgboffset = 3 * offset; double returnvalue = (((T*) data)[rgboffset ]); returnvalue += (((T*) data)[rgboffset + 1]); returnvalue += (((T*) data)[rgboffset + 2]); value = returnvalue; } } double mitk::Image::GetPixelValueByIndex(const mitk::Index3D &position, unsigned int timestep) { double value = 0; if (this->GetTimeSteps() < timestep) { timestep = this->GetTimeSteps(); } value = 0.0; const unsigned int* imageDims = this->m_ImageDescriptor->GetDimensions(); const mitk::PixelType ptype = this->m_ImageDescriptor->GetChannelTypeById(0); // Comparison ?>=0 not needed since all position[i] and timestep are unsigned int // (position[0]>=0 && position[1] >=0 && position[2]>=0 && timestep>=0) // && if ( (unsigned int)position[0] < imageDims[0] && (unsigned int)position[1] < imageDims[1] && ( (imageDims[2] == 0) || (unsigned int)position[2] < imageDims[2]) // in case a 2D Image passed in, the third dimension could be set to 0 causing the if() to fail /*&& (unsigned int)timestep < imageDims[3]*/ ) { const unsigned int offset = position[0] + position[1]*imageDims[0] + position[2]*imageDims[0]*imageDims[1] + timestep*imageDims[0]*imageDims[1]*imageDims[2]; mitkPixelTypeMultiplex3( AccessPixel, ptype, this->GetData(), offset, value ); } return value; } double mitk::Image::GetPixelValueByWorldCoordinate(const mitk::Point3D& position, unsigned int timestep) { double value = 0.0; if (this->GetTimeSteps() < timestep) { timestep = this->GetTimeSteps(); } Index3D itkIndex; this->GetGeometry()->WorldToIndex(position, itkIndex); const unsigned int* imageDims = this->m_ImageDescriptor->GetDimensions(); const mitk::PixelType ptype = this->m_ImageDescriptor->GetChannelTypeById(0); //if ( (itkIndex[0]>=0 && itkIndex[1] >=0 && itkIndex[2]>=0 && timestep>=0) // && // lines above taken from comparison since always true due to unsigned type if (((unsigned int)itkIndex[0] < imageDims[0] && (unsigned int)itkIndex[1] < imageDims[1] && (imageDims[2] == 0) ) || ((unsigned int)itkIndex[2] < imageDims[2])) // in case a 2D Image passed in, the third dimension could be set to 0 causing the if() to fail { const unsigned int offset = itkIndex[0] + itkIndex[1]*imageDims[0] + itkIndex[2]*imageDims[0]*imageDims[1] + timestep*imageDims[0]*imageDims[1]*imageDims[2]; mitkPixelTypeMultiplex3( AccessPixel, ptype, this->GetData(), offset, value ); } return value; } vtkImageData* mitk::Image::GetVtkImageData(int t, int n) { if(m_Initialized==false) { if(GetSource().IsNull()) return NULL; if(GetSource()->Updating()==false) GetSource()->UpdateOutputInformation(); } ImageDataItemPointer volume=GetVolumeData(t, n); if(volume.GetPointer()==NULL || volume->GetVtkImageData() == NULL) return NULL; float *fspacing = const_cast(GetSlicedGeometry(t)->GetFloatSpacing()); double dspacing[3] = {fspacing[0],fspacing[1],fspacing[2]}; volume->GetVtkImageData()->SetSpacing( dspacing ); return volume->GetVtkImageData(); } mitk::Image::ImageDataItemPointer mitk::Image::GetSliceData(int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) { if(IsValidSlice(s,t,n)==false) return NULL; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // slice directly available? int pos=GetSliceIndex(s,t,n); if(m_Slices[pos].GetPointer()!=NULL) return m_Slices[pos]; // is slice available as part of a volume that is available? ImageDataItemPointer sl, ch, vol; vol=m_Volumes[GetVolumeIndex(t,n)]; if((vol.GetPointer()!=NULL) && (vol->IsComplete())) { sl=new ImageDataItem(*vol, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, ((size_t) s)*m_OffsetTable[2]*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; } // is slice available as part of a channel that is available? ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) { sl=new ImageDataItem(*ch, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, (((size_t) s)*m_OffsetTable[2]+((size_t) t)*m_OffsetTable[3])*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; } // slice is unavailable. Can we calculate it? if((GetSource().IsNotNull()) && (GetSource()->Updating()==false)) { // ... wir mussen rechnen!!! .... m_RequestedRegion.SetIndex(0, 0); m_RequestedRegion.SetIndex(1, 0); m_RequestedRegion.SetIndex(2, s); m_RequestedRegion.SetIndex(3, t); m_RequestedRegion.SetIndex(4, n); m_RequestedRegion.SetSize(0, m_Dimensions[0]); m_RequestedRegion.SetSize(1, m_Dimensions[1]); m_RequestedRegion.SetSize(2, 1); m_RequestedRegion.SetSize(3, 1); m_RequestedRegion.SetSize(4, 1); m_RequestedRegionInitialized=true; GetSource()->Update(); if(IsSliceSet(s,t,n)) //yes: now we can call ourselves without the risk of a endless loop (see "if" above) return GetSliceData(s,t,n,data,importMemoryManagement); else return NULL; } else { ImageDataItemPointer item = AllocateSliceData(s,t,n,data,importMemoryManagement); item->SetComplete(true); return item; } } mitk::Image::ImageDataItemPointer mitk::Image::GetVolumeData(int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) { if(IsValidVolume(t,n)==false) return NULL; ImageDataItemPointer ch, vol; // volume directly available? int pos=GetVolumeIndex(t,n); vol=m_Volumes[pos]; if((vol.GetPointer()!=NULL) && (vol->IsComplete())) return vol; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // is volume available as part of a channel that is available? ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) { vol=new ImageDataItem(*ch, m_ImageDescriptor, 3, data, importMemoryManagement == ManageMemory, (((size_t) t)*m_OffsetTable[3])*(ptypeSize)); vol->SetComplete(true); return m_Volumes[pos]=vol; } // let's see if all slices of the volume are set, so that we can (could) combine them to a volume bool complete=true; unsigned int s; for(s=0;sSetComplete(true); } else { mitk::PixelType chPixelType = this->m_ImageDescriptor->GetChannelTypeById(n); vol=m_Volumes[pos]; // ok, let's combine the slices! if(vol.GetPointer()==NULL) vol=new ImageDataItem( chPixelType, 3, m_Dimensions, NULL, true); vol->SetComplete(true); size_t size=m_OffsetTable[2]*(ptypeSize); for(s=0;sGetParent()!=vol) { // copy data of slices in volume size_t offset = ((size_t) s)*size; std::memcpy(static_cast(vol->GetData())+offset, sl->GetData(), size); // FIXME mitkIpPicDescriptor * pic = sl->GetPicDescriptor(); // replace old slice with reference to volume sl=new ImageDataItem(*vol, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, ((size_t) s)*size); sl->SetComplete(true); //mitkIpFuncCopyTags(sl->GetPicDescriptor(), pic); m_Slices[posSl]=sl; } } //if(vol->GetPicDescriptor()->info->tags_head==NULL) // mitkIpFuncCopyTags(vol->GetPicDescriptor(), m_Slices[GetSliceIndex(0,t,n)]->GetPicDescriptor()); } return m_Volumes[pos]=vol; } // volume is unavailable. Can we calculate it? if((GetSource().IsNotNull()) && (GetSource()->Updating()==false)) { // ... wir muessen rechnen!!! .... m_RequestedRegion.SetIndex(0, 0); m_RequestedRegion.SetIndex(1, 0); m_RequestedRegion.SetIndex(2, 0); m_RequestedRegion.SetIndex(3, t); m_RequestedRegion.SetIndex(4, n); m_RequestedRegion.SetSize(0, m_Dimensions[0]); m_RequestedRegion.SetSize(1, m_Dimensions[1]); m_RequestedRegion.SetSize(2, m_Dimensions[2]); m_RequestedRegion.SetSize(3, 1); m_RequestedRegion.SetSize(4, 1); m_RequestedRegionInitialized=true; GetSource()->Update(); if(IsVolumeSet(t,n)) //yes: now we can call ourselves without the risk of a endless loop (see "if" above) return GetVolumeData(t,n,data,importMemoryManagement); else return NULL; } else { ImageDataItemPointer item = AllocateVolumeData(t,n,data,importMemoryManagement); item->SetComplete(true); return item; } } mitk::Image::ImageDataItemPointer mitk::Image::GetChannelData(int n, void *data, ImportMemoryManagementType importMemoryManagement) { if(IsValidChannel(n)==false) return NULL; ImageDataItemPointer ch, vol; ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) return ch; // let's see if all volumes are set, so that we can (could) combine them to a channel if(IsChannelSet(n)) { // if there is only one time frame we do not need to combine anything if(m_Dimensions[3]<=1) { vol=GetVolumeData(0,n,data,importMemoryManagement); ch=new ImageDataItem(*vol, m_ImageDescriptor, m_ImageDescriptor->GetNumberOfDimensions(), data, importMemoryManagement == ManageMemory); ch->SetComplete(true); } else { const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ch=m_Channels[n]; // ok, let's combine the volumes! if(ch.GetPointer()==NULL) ch=new ImageDataItem(this->m_ImageDescriptor, NULL, true); ch->SetComplete(true); size_t size=m_OffsetTable[m_Dimension-1]*(ptypeSize); unsigned int t; ImageDataItemPointerArray::iterator slicesIt = m_Slices.begin()+n*m_Dimensions[2]*m_Dimensions[3]; for(t=0;tGetParent()!=ch) { // copy data of volume in channel size_t offset = ((size_t) t)*m_OffsetTable[3]*(ptypeSize); std::memcpy(static_cast(ch->GetData())+offset, vol->GetData(), size); // REVEIW FIX mitkIpPicDescriptor * pic = vol->GetPicDescriptor(); // replace old volume with reference to channel vol=new ImageDataItem(*ch, m_ImageDescriptor, 3, data, importMemoryManagement == ManageMemory, offset); vol->SetComplete(true); //mitkIpFuncCopyTags(vol->GetPicDescriptor(), pic); m_Volumes[posVol]=vol; // get rid of slices - they may point to old volume ImageDataItemPointer dnull=NULL; for(unsigned int i = 0; i < m_Dimensions[2]; ++i, ++slicesIt) { assert(slicesIt != m_Slices.end()); *slicesIt = dnull; } } } // REVIEW FIX // if(ch->GetPicDescriptor()->info->tags_head==NULL) // mitkIpFuncCopyTags(ch->GetPicDescriptor(), m_Volumes[GetVolumeIndex(0,n)]->GetPicDescriptor()); } return m_Channels[n]=ch; } // channel is unavailable. Can we calculate it? if((GetSource().IsNotNull()) && (GetSource()->Updating()==false)) { // ... wir muessen rechnen!!! .... m_RequestedRegion.SetIndex(0, 0); m_RequestedRegion.SetIndex(1, 0); m_RequestedRegion.SetIndex(2, 0); m_RequestedRegion.SetIndex(3, 0); m_RequestedRegion.SetIndex(4, n); m_RequestedRegion.SetSize(0, m_Dimensions[0]); m_RequestedRegion.SetSize(1, m_Dimensions[1]); m_RequestedRegion.SetSize(2, m_Dimensions[2]); m_RequestedRegion.SetSize(3, m_Dimensions[3]); m_RequestedRegion.SetSize(4, 1); m_RequestedRegionInitialized=true; GetSource()->Update(); // did it work? if(IsChannelSet(n)) //yes: now we can call ourselves without the risk of a endless loop (see "if" above) return GetChannelData(n,data,importMemoryManagement); else return NULL; } else { ImageDataItemPointer item = AllocateChannelData(n,data,importMemoryManagement); item->SetComplete(true); return item; } } bool mitk::Image::IsSliceSet(int s, int t, int n) const { if(IsValidSlice(s,t,n)==false) return false; if(m_Slices[GetSliceIndex(s,t,n)].GetPointer()!=NULL) return true; ImageDataItemPointer ch, vol; vol=m_Volumes[GetVolumeIndex(t,n)]; if((vol.GetPointer()!=NULL) && (vol->IsComplete())) return true; ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) return true; return false; } bool mitk::Image::IsVolumeSet(int t, int n) const { if(IsValidVolume(t,n)==false) return false; ImageDataItemPointer ch, vol; // volume directly available? vol=m_Volumes[GetVolumeIndex(t,n)]; if((vol.GetPointer()!=NULL) && (vol->IsComplete())) return true; // is volume available as part of a channel that is available? ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) return true; // let's see if all slices of the volume are set, so that we can (could) combine them to a volume unsigned int s; for(s=0;sIsComplete())) return true; // let's see if all volumes are set, so that we can (could) combine them to a channel unsigned int t; for(t=0;t(data), s, t, n, CopyMemory); } bool mitk::Image::SetVolume(const void *data, int t, int n) { // const_cast is no risk for ImportMemoryManagementType == CopyMemory return SetImportVolume(const_cast(data), t, n, CopyMemory); } bool mitk::Image::SetChannel(const void *data, int n) { // const_cast is no risk for ImportMemoryManagementType == CopyMemory return SetImportChannel(const_cast(data), n, CopyMemory); } bool mitk::Image::SetImportSlice(void *data, int s, int t, int n, ImportMemoryManagementType importMemoryManagement) { if(IsValidSlice(s,t,n)==false) return false; ImageDataItemPointer sl; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); if(IsSliceSet(s,t,n)) { sl=GetSliceData(s,t,n,data,importMemoryManagement); if(sl->GetManageMemory()==false) { sl=AllocateSliceData(s,t,n,data,importMemoryManagement); if(sl.GetPointer()==NULL) return false; } if ( sl->GetData() != data ) std::memcpy(sl->GetData(), data, m_OffsetTable[2]*(ptypeSize)); sl->Modified(); //we have changed the data: call Modified()! Modified(); } else { sl=AllocateSliceData(s,t,n,data,importMemoryManagement); if(sl.GetPointer()==NULL) return false; if ( sl->GetData() != data ) std::memcpy(sl->GetData(), data, m_OffsetTable[2]*(ptypeSize)); //we just added a missing slice, which is not regarded as modification. //Therefore, we do not call Modified()! } return true; } bool mitk::Image::SetImportVolume(void *data, int t, int n, ImportMemoryManagementType importMemoryManagement) { if(IsValidVolume(t,n)==false) return false; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ImageDataItemPointer vol; if(IsVolumeSet(t,n)) { vol=GetVolumeData(t,n,data,importMemoryManagement); if(vol->GetManageMemory()==false) { vol=AllocateVolumeData(t,n,data,importMemoryManagement); if(vol.GetPointer()==NULL) return false; } if ( vol->GetData() != data ) std::memcpy(vol->GetData(), data, m_OffsetTable[3]*(ptypeSize)); vol->Modified(); vol->SetComplete(true); //we have changed the data: call Modified()! Modified(); } else { vol=AllocateVolumeData(t,n,data,importMemoryManagement); if(vol.GetPointer()==NULL) return false; if ( vol->GetData() != data ) { std::memcpy(vol->GetData(), data, m_OffsetTable[3]*(ptypeSize)); } vol->SetComplete(true); this->m_ImageDescriptor->GetChannelDescriptor(n).SetData( vol->GetData() ); //we just added a missing Volume, which is not regarded as modification. //Therefore, we do not call Modified()! } return true; } bool mitk::Image::SetImportChannel(void *data, int n, ImportMemoryManagementType importMemoryManagement) { if(IsValidChannel(n)==false) return false; // channel descriptor const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ImageDataItemPointer ch; if(IsChannelSet(n)) { ch=GetChannelData(n,data,importMemoryManagement); if(ch->GetManageMemory()==false) { ch=AllocateChannelData(n,data,importMemoryManagement); if(ch.GetPointer()==NULL) return false; } if ( ch->GetData() != data ) std::memcpy(ch->GetData(), data, m_OffsetTable[4]*(ptypeSize)); ch->Modified(); ch->SetComplete(true); //we have changed the data: call Modified()! Modified(); } else { ch=AllocateChannelData(n,data,importMemoryManagement); if(ch.GetPointer()==NULL) return false; if ( ch->GetData() != data ) std::memcpy(ch->GetData(), data, m_OffsetTable[4]*(ptypeSize)); ch->SetComplete(true); this->m_ImageDescriptor->GetChannelDescriptor(n).SetData( ch->GetData() ); //we just added a missing Channel, which is not regarded as modification. //Therefore, we do not call Modified()! } return true; } void mitk::Image::Initialize() { ImageDataItemPointerArray::iterator it, end; for( it=m_Slices.begin(), end=m_Slices.end(); it!=end; ++it ) { (*it)=NULL; } for( it=m_Volumes.begin(), end=m_Volumes.end(); it!=end; ++it ) { (*it)=NULL; } for( it=m_Channels.begin(), end=m_Channels.end(); it!=end; ++it ) { (*it)=NULL; } m_CompleteData = NULL; if( m_ImageStatistics == NULL) { m_ImageStatistics = new mitk::ImageStatisticsHolder( this ); } SetRequestedRegionToLargestPossibleRegion(); } void mitk::Image::Initialize(const mitk::ImageDescriptor::Pointer inDesc) { // store the descriptor this->m_ImageDescriptor = inDesc; // initialize image this->Initialize( inDesc->GetChannelDescriptor(0).GetPixelType(), inDesc->GetNumberOfDimensions(), inDesc->GetDimensions(), 1 ); } void mitk::Image::Initialize(const mitk::PixelType& type, unsigned int dimension, const unsigned int *dimensions, unsigned int channels) { Clear(); m_Dimension=dimension; if(!dimensions) itkExceptionMacro(<< "invalid zero dimension image"); unsigned int i; for(i=0;im_ImageDescriptor = mitk::ImageDescriptor::New(); this->m_ImageDescriptor->Initialize( this->m_Dimensions, this->m_Dimension ); for(i=0;i<4;++i) { m_LargestPossibleRegion.SetIndex(i, 0); m_LargestPossibleRegion.SetSize (i, m_Dimensions[i]); } m_LargestPossibleRegion.SetIndex(i, 0); m_LargestPossibleRegion.SetSize(i, channels); if(m_LargestPossibleRegion.GetNumberOfPixels()==0) { delete [] m_Dimensions; m_Dimensions = NULL; return; } for( unsigned int i=0u; im_ImageDescriptor->AddNewChannel( type ); } PlaneGeometry::Pointer planegeometry = PlaneGeometry::New(); planegeometry->InitializeStandardPlane(m_Dimensions[0], m_Dimensions[1]); SlicedGeometry3D::Pointer slicedGeometry = SlicedGeometry3D::New(); slicedGeometry->InitializeEvenlySpaced(planegeometry, m_Dimensions[2]); if(dimension>=4) { TimeBounds timebounds; timebounds[0] = 0.0; timebounds[1] = 1.0; slicedGeometry->SetTimeBounds(timebounds); } TimeSlicedGeometry::Pointer timeSliceGeometry = TimeSlicedGeometry::New(); timeSliceGeometry->InitializeEvenlyTimed(slicedGeometry, m_Dimensions[3]); timeSliceGeometry->ImageGeometryOn(); SetGeometry(timeSliceGeometry); ImageDataItemPointer dnull=NULL; m_Channels.assign(GetNumberOfChannels(), dnull); m_Volumes.assign(GetNumberOfChannels()*m_Dimensions[3], dnull); m_Slices.assign(GetNumberOfChannels()*m_Dimensions[3]*m_Dimensions[2], dnull); ComputeOffsetTable(); Initialize(); m_Initialized = true; } void mitk::Image::Initialize(const mitk::PixelType& type, const mitk::Geometry3D& geometry, unsigned int channels, int tDim ) { unsigned int dimensions[5]; dimensions[0] = (unsigned int)(geometry.GetExtent(0)+0.5); dimensions[1] = (unsigned int)(geometry.GetExtent(1)+0.5); dimensions[2] = (unsigned int)(geometry.GetExtent(2)+0.5); dimensions[3] = 0; dimensions[4] = 0; unsigned int dimension = 2; if ( dimensions[2] > 1 ) dimension = 3; if ( tDim > 0) { dimensions[3] = tDim; } else { const mitk::TimeSlicedGeometry* timeGeometry = dynamic_cast(&geometry); if ( timeGeometry != NULL ) { dimensions[3] = timeGeometry->GetTimeSteps(); } } if ( dimensions[3] > 1 ) dimension = 4; Initialize( type, dimension, dimensions, channels ); SetGeometry(static_cast(geometry.Clone().GetPointer())); mitk::BoundingBox::BoundsArrayType bounds = geometry.GetBoundingBox()->GetBounds(); if( (bounds[0] != 0.0) || (bounds[2] != 0.0) || (bounds[4] != 0.0) ) { SlicedGeometry3D* slicedGeometry = GetSlicedGeometry(0); mitk::Point3D origin; origin.Fill(0.0); slicedGeometry->IndexToWorld(origin, origin); bounds[1]-=bounds[0]; bounds[3]-=bounds[2]; bounds[5]-=bounds[4]; bounds[0] = 0.0; bounds[2] = 0.0; bounds[4] = 0.0; this->m_ImageDescriptor->Initialize( this->m_Dimensions, this->m_Dimension ); slicedGeometry->SetBounds(bounds); slicedGeometry->GetIndexToWorldTransform()->SetOffset(origin.Get_vnl_vector().data_block()); GetTimeSlicedGeometry()->InitializeEvenlyTimed(slicedGeometry, m_Dimensions[3]); } } void mitk::Image::Initialize(const mitk::PixelType& type, int sDim, const mitk::Geometry2D& geometry2d, bool flipped, unsigned int channels, int tDim ) { SlicedGeometry3D::Pointer slicedGeometry = SlicedGeometry3D::New(); slicedGeometry->InitializeEvenlySpaced(static_cast(geometry2d.Clone().GetPointer()), sDim, flipped); Initialize(type, *slicedGeometry, channels, tDim); } void mitk::Image::Initialize(const mitk::Image* image) { Initialize(image->GetPixelType(), *image->GetTimeSlicedGeometry()); } void mitk::Image::Initialize(vtkImageData* vtkimagedata, int channels, int tDim, int sDim) { if(vtkimagedata==NULL) return; m_Dimension=vtkimagedata->GetDataDimension(); unsigned int i, *tmpDimensions=new unsigned int[m_Dimension>4?m_Dimension:4]; for(i=0;iGetDimensions()[i]; if(m_Dimension<4) { unsigned int *p; for(i=0,p=tmpDimensions+m_Dimension;i<4-m_Dimension;++i, ++p) *p=1; } if(sDim>=0) { tmpDimensions[2]=sDim; if(m_Dimension < 3) m_Dimension = 3; } if(tDim>=0) { tmpDimensions[3]=tDim; if(m_Dimension < 4) m_Dimension = 4; } switch ( vtkimagedata->GetScalarType() ) { case VTK_BIT: case VTK_CHAR: //pixelType.Initialize(typeid(char), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_CHAR: //pixelType.Initialize(typeid(unsigned char), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_SHORT: //pixelType.Initialize(typeid(short), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_SHORT: //pixelType.Initialize(typeid(unsigned short), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_INT: //pixelType.Initialize(typeid(int), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_INT: //pixelType.Initialize(typeid(unsigned int), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_LONG: //pixelType.Initialize(typeid(long), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_LONG: //pixelType.Initialize(typeid(unsigned long), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_FLOAT: //pixelType.Initialize(typeid(float), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_DOUBLE: //pixelType.Initialize(typeid(double), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; default: break; } /* Initialize(pixelType, m_Dimension, tmpDimensions, channels); */ const double *spacinglist = vtkimagedata->GetSpacing(); Vector3D spacing; FillVector3D(spacing, spacinglist[0], 1.0, 1.0); if(m_Dimension>=2) spacing[1]=spacinglist[1]; if(m_Dimension>=3) spacing[2]=spacinglist[2]; // access origin of vtkImage Point3D origin; vtkFloatingPointType vtkorigin[3]; vtkimagedata->GetOrigin(vtkorigin); FillVector3D(origin, vtkorigin[0], 0.0, 0.0); if(m_Dimension>=2) origin[1]=vtkorigin[1]; if(m_Dimension>=3) origin[2]=vtkorigin[2]; SlicedGeometry3D* slicedGeometry = GetSlicedGeometry(0); // re-initialize PlaneGeometry with origin and direction PlaneGeometry* planeGeometry = static_cast(slicedGeometry->GetGeometry2D(0)); planeGeometry->SetOrigin(origin); // re-initialize SlicedGeometry3D slicedGeometry->SetOrigin(origin); slicedGeometry->SetSpacing(spacing); GetTimeSlicedGeometry()->InitializeEvenlyTimed(slicedGeometry, m_Dimensions[3]); delete [] tmpDimensions; } bool mitk::Image::IsValidSlice(int s, int t, int n) const { if(m_Initialized) return ((s>=0) && (s<(int)m_Dimensions[2]) && (t>=0) && (t< (int) m_Dimensions[3]) && (n>=0) && (n< (int)GetNumberOfChannels())); else return false; } bool mitk::Image::IsValidVolume(int t, int n) const { if(m_Initialized) return IsValidSlice(0, t, n); else return false; } bool mitk::Image::IsValidChannel(int n) const { if(m_Initialized) return IsValidSlice(0, 0, n); else return false; } void mitk::Image::ComputeOffsetTable() { if(m_OffsetTable!=NULL) delete [] m_OffsetTable; m_OffsetTable=new size_t[m_Dimension>4 ? m_Dimension+1 : 4+1]; unsigned int i; size_t num=1; m_OffsetTable[0] = 1; for (i=0; i < m_Dimension; ++i) { num *= m_Dimensions[i]; m_OffsetTable[i+1] = num; } for (;i < 4; ++i) m_OffsetTable[i+1] = num; } bool mitk::Image::IsValidTimeStep(int t) const { return ( ( m_Dimension >= 4 && t <= (int)m_Dimensions[3] && t > 0 ) || (t == 0) ); } void mitk::Image::Expand(unsigned int timeSteps) { if(timeSteps < 1) itkExceptionMacro(<< "Invalid timestep in Image!"); Superclass::Expand(timeSteps); } int mitk::Image::GetSliceIndex(int s, int t, int n) const { if(IsValidSlice(s,t,n)==false) return false; return ((size_t)s)+((size_t) t)*m_Dimensions[2]+((size_t) n)*m_Dimensions[3]*m_Dimensions[2]; //?? } int mitk::Image::GetVolumeIndex(int t, int n) const { if(IsValidVolume(t,n)==false) return false; return ((size_t)t)+((size_t) n)*m_Dimensions[3]; //?? } mitk::Image::ImageDataItemPointer mitk::Image::AllocateSliceData(int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) { int pos; pos=GetSliceIndex(s,t,n); const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // is slice available as part of a volume that is available? ImageDataItemPointer sl, ch, vol; vol=m_Volumes[GetVolumeIndex(t,n)]; if(vol.GetPointer()!=NULL) { sl=new ImageDataItem(*vol, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, ((size_t) s)*m_OffsetTable[2]*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; } // is slice available as part of a channel that is available? ch=m_Channels[n]; if(ch.GetPointer()!=NULL) { sl=new ImageDataItem(*ch, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, (((size_t) s)*m_OffsetTable[2]+((size_t) t)*m_OffsetTable[3])*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; } // allocate new volume (instead of a single slice to keep data together!) m_Volumes[GetVolumeIndex(t,n)]=vol=AllocateVolumeData(t,n,NULL,importMemoryManagement); sl=new ImageDataItem(*vol, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, ((size_t) s)*m_OffsetTable[2]*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; ////ALTERNATIVE: //// allocate new slice //sl=new ImageDataItem(*m_PixelType, 2, m_Dimensions); //m_Slices[pos]=sl; //return vol; } mitk::Image::ImageDataItemPointer mitk::Image::AllocateVolumeData(int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) { int pos; pos=GetVolumeIndex(t,n); const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // is volume available as part of a channel that is available? ImageDataItemPointer ch, vol; ch=m_Channels[n]; if(ch.GetPointer()!=NULL) { vol=new ImageDataItem(*ch, m_ImageDescriptor, 3, data,importMemoryManagement == ManageMemory, (((size_t) t)*m_OffsetTable[3])*(ptypeSize)); return m_Volumes[pos]=vol; } mitk::PixelType chPixelType = this->m_ImageDescriptor->GetChannelTypeById(n); // allocate new volume if(importMemoryManagement == CopyMemory) { vol=new ImageDataItem( chPixelType, 3, m_Dimensions, NULL, true); if(data != NULL) std::memcpy(vol->GetData(), data, m_OffsetTable[3]*(ptypeSize)); } else { vol=new ImageDataItem( chPixelType, 3, m_Dimensions, data, importMemoryManagement == ManageMemory); } m_Volumes[pos]=vol; return vol; } mitk::Image::ImageDataItemPointer mitk::Image::AllocateChannelData(int n, void *data, ImportMemoryManagementType importMemoryManagement) { ImageDataItemPointer ch; // allocate new channel if(importMemoryManagement == CopyMemory) { const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ch=new ImageDataItem(this->m_ImageDescriptor, NULL, true); if(data != NULL) std::memcpy(ch->GetData(), data, m_OffsetTable[4]*(ptypeSize)); } else { ch=new ImageDataItem(this->m_ImageDescriptor, data, importMemoryManagement == ManageMemory); } m_Channels[n]=ch; return ch; } unsigned int* mitk::Image::GetDimensions() const { return m_Dimensions; } void mitk::Image::Clear() { Superclass::Clear(); delete [] m_Dimensions; m_Dimensions = NULL; } void mitk::Image::SetGeometry(Geometry3D* aGeometry3D) { // Please be aware of the 0.5 offset/pixel-center issue! See Geometry documentation for further information if(aGeometry3D->GetImageGeometry()==false) { MITK_INFO << "WARNING: Applied a non-image geometry onto an image. Please be SURE that this geometry is pixel-center-based! If it is not, you need to call Geometry3D->ChangeImageGeometryConsideringOriginOffset(true) before calling image->setGeometry(..)\n"; } Superclass::SetGeometry(aGeometry3D); GetTimeSlicedGeometry()->ImageGeometryOn(); } void mitk::Image::PrintSelf(std::ostream& os, itk::Indent indent) const { unsigned char i; if(m_Initialized) { os << indent << " Dimension: " << m_Dimension << std::endl; os << indent << " Dimensions: "; for(i=0; i < m_Dimension; ++i) os << GetDimension(i) << " "; os << std::endl; for(unsigned int ch=0; ch < this->m_ImageDescriptor->GetNumberOfChannels(); ch++) { mitk::PixelType chPixelType = this->m_ImageDescriptor->GetChannelTypeById(ch); os << indent << " Channel: " << this->m_ImageDescriptor->GetChannelName(ch) << std::endl; os << indent << " PixelType: " << chPixelType.GetTypeId().name() << std::endl; os << indent << " BitsPerElement: " << chPixelType.GetSize() << std::endl; os << indent << " NumberOfComponents: " << chPixelType.GetNumberOfComponents() << std::endl; os << indent << " BitsPerComponent: " << chPixelType.GetBitsPerComponent() << std::endl; } } else { os << indent << " Image not initialized: m_Initialized: false" << std::endl; } Superclass::PrintSelf(os,indent); } bool mitk::Image::IsRotated() const { const mitk::Geometry3D* geo = this->GetGeometry(); bool ret = false; if(geo) { const vnl_matrix_fixed & mx = geo->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix(); float ref = 0; for(short k = 0; k < 3; ++k) ref += mx[k][k]; ref/=1000; // Arbitrary value; if a non-diagonal (nd) element is bigger then this, matrix is considered nd. for(short i = 0; i < 3; ++i) { for(short j = 0; j < 3; ++j) { if(i != j) { if(abs(mx[i][j]) > ref) // matrix is nd ret = true; } } } } return ret; } #include "mitkImageStatisticsHolder.h" //##Documentation mitk::ScalarType mitk::Image::GetScalarValueMin(int t) const { return m_ImageStatistics->GetScalarValueMin(t); } //##Documentation //## \brief Get the maximum for scalar images mitk::ScalarType mitk::Image::GetScalarValueMax(int t) const { return m_ImageStatistics->GetScalarValueMax(t); } //##Documentation //## \brief Get the second smallest value for scalar images mitk::ScalarType mitk::Image::GetScalarValue2ndMin(int t) const { return m_ImageStatistics->GetScalarValue2ndMin(t); } mitk::ScalarType mitk::Image::GetScalarValueMinNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetScalarValueMinNoRecompute(t); } mitk::ScalarType mitk::Image::GetScalarValue2ndMinNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetScalarValue2ndMinNoRecompute(t); } mitk::ScalarType mitk::Image::GetScalarValue2ndMax(int t) const { return m_ImageStatistics->GetScalarValue2ndMax(t); } mitk::ScalarType mitk::Image::GetScalarValueMaxNoRecompute( unsigned int t) const { return m_ImageStatistics->GetScalarValueMaxNoRecompute(t); } mitk::ScalarType mitk::Image::GetScalarValue2ndMaxNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetScalarValue2ndMaxNoRecompute(t); } mitk::ScalarType mitk::Image::GetCountOfMinValuedVoxels(int t ) const { return m_ImageStatistics->GetCountOfMinValuedVoxels(t); } mitk::ScalarType mitk::Image::GetCountOfMaxValuedVoxels(int t) const { return m_ImageStatistics->GetCountOfMaxValuedVoxels(t); } unsigned int mitk::Image::GetCountOfMaxValuedVoxelsNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetCountOfMaxValuedVoxelsNoRecompute(t); } unsigned int mitk::Image::GetCountOfMinValuedVoxelsNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetCountOfMinValuedVoxelsNoRecompute(t); } diff --git a/Core/Code/DataManagement/mitkTimeSlicedGeometry.cpp b/Core/Code/DataManagement/mitkTimeSlicedGeometry.cpp index 6e547d6e8a..1d95cc2152 100644 --- a/Core/Code/DataManagement/mitkTimeSlicedGeometry.cpp +++ b/Core/Code/DataManagement/mitkTimeSlicedGeometry.cpp @@ -1,416 +1,422 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkTimeSlicedGeometry.h" void mitk::TimeSlicedGeometry::UpdateInformation() { if(m_TimeSteps==0) return; unsigned long maxModifiedTime = 0, curModifiedTime; mitk::ScalarType stmin, stmax; stmin= ScalarTypeNumericTraits::NonpositiveMin(); stmax= ScalarTypeNumericTraits::max(); TimeBounds timeBounds; timeBounds[0]=stmax; timeBounds[1]=stmin; mitk::BoundingBox::Pointer boundingBox=mitk::BoundingBox::New(); mitk::BoundingBox::PointsContainer::Pointer pointscontainer=mitk::BoundingBox::PointsContainer::New(); unsigned int t; mitk::Geometry3D* geometry3d; mitk::BoundingBox::ConstPointer nextBoundingBox; mitk::BoundingBox::PointIdentifier pointid=0; // Need to check for zero bounding boxes mitk::ScalarType zeropoint[]={0,0,0,0,0,0}; BoundingBox::BoundsArrayType itkBoundsZero(zeropoint); for(t=0; t < m_TimeSteps; ++t) { geometry3d = GetGeometry3D(t); assert(geometry3d!=NULL); curModifiedTime = geometry3d->GetMTime(); if(maxModifiedTime < curModifiedTime) maxModifiedTime = curModifiedTime; const TimeBounds & curTimeBounds = geometry3d->GetTimeBounds(); if((curTimeBounds[0] > stmin) && (curTimeBounds[0] < timeBounds[0])) timeBounds[0] = curTimeBounds[0]; if((curTimeBounds[1] < stmax) && (curTimeBounds[1] > timeBounds[1])) timeBounds[1] = curTimeBounds[1]; nextBoundingBox = geometry3d->GetBoundingBox(); assert(nextBoundingBox.IsNotNull()); // Only respect non-zero BBes if (nextBoundingBox->GetBounds() == itkBoundsZero) { continue; } const mitk::BoundingBox::PointsContainer * nextPoints = nextBoundingBox->GetPoints(); if(nextPoints!=NULL) { mitk::BoundingBox::PointsContainer::ConstIterator pointsIt = nextPoints->Begin(); while (pointsIt != nextPoints->End() ) { pointscontainer->InsertElement( pointid++, pointsIt->Value()); ++pointsIt; } } } if(!(timeBounds[0] < stmax)) { timeBounds[0] = stmin; timeBounds[1] = stmax; } m_TimeBounds = timeBounds; assert(timeBounds[0]<=timeBounds[1]); boundingBox->SetPoints(pointscontainer); boundingBox->ComputeBoundingBox(); m_BoundingBox = boundingBox; SetIndexToWorldTransform(GetGeometry3D(0)->GetIndexToWorldTransform()); if(this->GetMTime() < maxModifiedTime) Modified(); } mitk::Geometry3D* mitk::TimeSlicedGeometry::GetGeometry3D(int t) const { mitk::Geometry3D::Pointer geometry3d = NULL; if(IsValidTime(t)) { geometry3d = m_Geometry3Ds[t]; //if (a) we don't have a Geometry3D stored for the requested time, //(b) m_EvenlyTimed is activated and (c) the first geometry (t=0) //is set, then we clone the geometry and set the m_TimeBounds accordingly. if((m_EvenlyTimed) && (geometry3d.IsNull())) { const Geometry3D* firstgeometry=m_Geometry3Ds[0].GetPointer(); assert(firstgeometry != NULL); mitk::Geometry3D::Pointer requestedgeometry; requestedgeometry = dynamic_cast(firstgeometry->Clone().GetPointer()); if ( requestedgeometry.IsNull() ) itkExceptionMacro("Geometry is NULL!"); TimeBounds timebounds = requestedgeometry->GetTimeBounds(); if(timebounds[1]SetTimeBounds(timebounds); } geometry3d = requestedgeometry; m_Geometry3Ds[t] = geometry3d; } } else return NULL; return geometry3d; } bool mitk::TimeSlicedGeometry::SetGeometry3D(mitk::Geometry3D* geometry3D, int t) { if(IsValidTime(t)) { m_Geometry3Ds[t]=geometry3D; return true; } return false; } int mitk::TimeSlicedGeometry::MSToTimeStep(mitk::ScalarType time_in_ms) const { if(time_in_ms < m_TimeBounds[0]) return -1; if(time_in_ms >= m_TimeBounds[1]) return m_TimeSteps; if(m_EvenlyTimed) { if(m_TimeBounds[0] == m_TimeBounds[1]) return 0; if((m_TimeBounds[0]>ScalarTypeNumericTraits::NonpositiveMin()) && (m_TimeBounds[1]GetTimeBounds(); if( (timeBounds[0] <= time_in_ms) && (time_in_ms <= timeBounds[1]) ) { return t; } } } return 0; } mitk::ScalarType mitk::TimeSlicedGeometry::TimeStepToMS(int timestep) const { if(IsValidTime(timestep)==false) return ScalarTypeNumericTraits::max(); if(m_EvenlyTimed) { if ( timestep == 0 ) return m_TimeBounds[0]; else { assert( ! (m_TimeBounds[0] == ScalarTypeNumericTraits::NonpositiveMin() && m_TimeBounds[1] == ScalarTypeNumericTraits::max() ) ); return ((mitk::ScalarType)timestep)/m_TimeSteps*(m_TimeBounds[1]-m_TimeBounds[0])+m_TimeBounds[0]; } } else { return GetGeometry3D(timestep)->GetTimeBounds()[0]; } } int mitk::TimeSlicedGeometry::TimeStepToTimeStep( const mitk::TimeSlicedGeometry *referenceGeometry, int t) const { int timeStep; if ( referenceGeometry->GetTimeSteps() > 1 ) { // referenceGeometry is nD+t timeStep = this->MSToTimeStep( referenceGeometry->TimeStepToMS( t ) ); } else { // referenceGEometry is nD (only one time step) timeStep = 0; } return timeStep; } void mitk::TimeSlicedGeometry::InitializeEvenlyTimed(unsigned int timeSteps) { Geometry3D::Pointer geometry3D = Geometry3D::New(); geometry3D->Initialize(); InitializeEvenlyTimed(geometry3D, timeSteps); } void mitk::TimeSlicedGeometry::InitializeEvenlyTimed(mitk::Geometry3D* geometry3D, unsigned int timeSteps) { assert(geometry3D!=NULL); geometry3D->Register(); InitializeEmpty(timeSteps); AffineTransform3D::Pointer transform = AffineTransform3D::New(); transform->SetMatrix(geometry3D->GetIndexToWorldTransform()->GetMatrix()); transform->SetOffset(geometry3D->GetIndexToWorldTransform()->GetOffset()); SetIndexToWorldTransform(transform); SetBounds(geometry3D->GetBounds()); SetGeometry3D(geometry3D, 0); SetEvenlyTimed(); UpdateInformation(); SetFrameOfReferenceID(geometry3D->GetFrameOfReferenceID()); SetImageGeometry(geometry3D->GetImageGeometry()); geometry3D->UnRegister(); } void mitk::TimeSlicedGeometry::InitializeEmpty(unsigned int timeSteps) { m_IndexToWorldTransform = NULL; Superclass::Initialize(); m_TimeSteps = timeSteps; // initialize with empty geometries Geometry3D::Pointer gnull=NULL; m_Geometry3Ds.assign(m_TimeSteps, gnull); } void mitk::TimeSlicedGeometry::ExpandToNumberOfTimeSteps( unsigned int timeSteps ) { if( timeSteps <= m_TimeSteps ) return; if(m_TimeSteps == 1) { Geometry3D* g3d = m_Geometry3Ds[0]; const TimeBounds & timeBounds = g3d->GetTimeBounds(); if( (timeBounds[0] == ScalarTypeNumericTraits::NonpositiveMin()) || (timeBounds[1]==ScalarTypeNumericTraits::max()) ) { mitk::ScalarType timeBounds[] = {0.0, 1.0}; m_Geometry3Ds[0]->SetTimeBounds( timeBounds ); } } // Expand to Number of time steps; initialize with empty geometries Geometry3D::Pointer gnull=NULL; m_Geometry3Ds.resize(timeSteps, gnull); m_TimeSteps = timeSteps; UpdateInformation(); } mitk::TimeSlicedGeometry::TimeSlicedGeometry() : m_TimeSteps(0), m_EvenlyTimed(false) { } mitk::TimeSlicedGeometry::TimeSlicedGeometry(const TimeSlicedGeometry& other) : Geometry3D(other), m_TimeSteps(other.m_TimeSteps), m_EvenlyTimed(other.m_EvenlyTimed) { m_Geometry3Ds.resize(m_TimeSteps); unsigned int t; for(t=0; t(other.m_Geometry3Ds[t]->Clone().GetPointer()), t); } } } mitk::TimeSlicedGeometry::~TimeSlicedGeometry() { } void mitk::TimeSlicedGeometry::SetImageGeometry(const bool isAnImageGeometry) { Superclass::SetImageGeometry(isAnImageGeometry); mitk::Geometry3D* geometry3d; unsigned int t; for(t=0; tSetImageGeometry(isAnImageGeometry); } } void mitk::TimeSlicedGeometry::ChangeImageGeometryConsideringOriginOffset(const bool isAnImageGeometry) { mitk::Geometry3D* geometry3d; unsigned int t; for(t=0; tChangeImageGeometryConsideringOriginOffset(isAnImageGeometry); } Superclass::ChangeImageGeometryConsideringOriginOffset(isAnImageGeometry); } void mitk::TimeSlicedGeometry::SetEvenlyTimed(bool on) { m_EvenlyTimed = on; Modified(); } bool mitk::TimeSlicedGeometry::IsValidTime(int t) const { return (t>=0) && (t< (int)m_TimeSteps); } +bool mitk::TimeSlicedGeometry::IsValid() const +{ + return Superclass::IsValid() && (m_TimeSteps > 0); +} + + void mitk::TimeSlicedGeometry::CopyTimes(const mitk::TimeSlicedGeometry* timeslicedgeometry, unsigned int t, unsigned int endtimeindex) { if(endtimeindex >= timeslicedgeometry->GetTimeSteps()) endtimeindex = timeslicedgeometry->GetTimeSteps()-1; if(endtimeindex >= this->GetTimeSteps()) endtimeindex = this->GetTimeSteps()-1; for(; t <= endtimeindex; ++t) { mitk::Geometry3D* geometry3d = GetGeometry3D(t); mitk::Geometry3D* othergeometry3d = timeslicedgeometry->GetGeometry3D(t); assert((geometry3d!=NULL) && (othergeometry3d!=NULL)); geometry3d->SetTimeBounds(othergeometry3d->GetTimeBounds()); } UpdateInformation(); } mitk::AffineGeometryFrame3D::Pointer mitk::TimeSlicedGeometry::Clone() const { Self::Pointer newGeometry = new TimeSlicedGeometry(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } void mitk::TimeSlicedGeometry::PrintSelf(std::ostream& os, itk::Indent indent) const { //Superclass::PrintSelf(os,indent); os << indent << " EvenlyTimed: " << m_EvenlyTimed << std::endl; os << indent << " TimeSteps: " << m_TimeSteps << std::endl; os << std::endl; os << indent << " GetGeometry3D(0): "; if(GetGeometry3D(0)==NULL) os << "NULL" << std::endl; else GetGeometry3D(0)->Print(os, indent); } void mitk::TimeSlicedGeometry::ExecuteOperation(Operation* operation) { // reach through to all time steps for (std::vector::iterator iter = m_Geometry3Ds.begin(); iter != m_Geometry3Ds.end(); ++iter) { (*iter)->ExecuteOperation(operation); } Geometry3D::ExecuteOperation(operation); this->Modified(); } diff --git a/Core/Code/DataManagement/mitkTimeSlicedGeometry.h b/Core/Code/DataManagement/mitkTimeSlicedGeometry.h index 62452482c7..0ed0ed632f 100644 --- a/Core/Code/DataManagement/mitkTimeSlicedGeometry.h +++ b/Core/Code/DataManagement/mitkTimeSlicedGeometry.h @@ -1,177 +1,181 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef TIMESLICEDGEOMETRY_H_HEADER_INCLUDED_C1EBD0AD #define TIMESLICEDGEOMETRY_H_HEADER_INCLUDED_C1EBD0AD #include "mitkGeometry3D.h" namespace mitk { //##Documentation //## @brief Describes a geometry consisting of several geometries which //## exist at different times. //## //## The geometry contains m_TimeSteps geometries, which can be accessed //## using GetGeometry3D(int t). To convert between world-time in //## milliseconds and the integer timestep-number use MSToTimeStep. //## The hull (in space and time) of the TimeSlicedGeometry contains all //## contained geometries. //## @warning The hull (i.e., transform, bounding-box and //## time-bounds) is only guaranteed to be up-to-date after calling //## UpdateInformation(). //## //## TimeSlicedGeometry and the associated Geometry3Ds have to be //## initialized in the method GenerateOutputInformation() of BaseProcess (or //## CopyInformation/ UpdateOutputInformation of BaseData, if possible, e.g., //## by analyzing pic tags in Image) subclasses. See also //## itk::ProcessObject::GenerateOutputInformation(), //## itk::DataObject::CopyInformation() and //## itk::DataObject::UpdateOutputInformation(). //## //## @ingroup Geometry class MITK_CORE_EXPORT TimeSlicedGeometry : public Geometry3D { public: mitkClassMacro(TimeSlicedGeometry, Geometry3D); itkNewMacro(Self); //##Documentation //## @brief Re-calculate the hull of the contained geometries. //## //## The transforms, bounding-box and time-bounds of this //## geometry (stored in members of the super-class Geometry3D) //## are re-calculated from the contained geometries. void UpdateInformation(); //##Documentation //## @brief Get the number of time-steps itkGetConstMacro(TimeSteps, unsigned int); //##Documentation //## @brief Set/Get whether the TimeSlicedGeometry is evenly-timed (m_EvenlyTimed) //## //## If (a) we don't have a Geometry3D stored for the requested time, //## (b) m_EvenlyTimed is activated and (c) the first geometry (t=0) //## is set, then we clone the geometry and set the m_TimeBounds accordingly. //## \sa GetGeometry3D itkGetConstMacro(EvenlyTimed, bool); virtual void SetEvenlyTimed(bool on = true); //##Documentation //## @brief Set the Geometry3D for time @a t virtual bool SetGeometry3D(mitk::Geometry3D* geometry3D, int t); //##Documentation //## @brief When switching from an Image Geometry to a normal Geometry (and the other way around), you have to change the origin as well (See Geometry Documentation)! This function will change the "isImageGeometry" bool flag and changes the origin respectively. virtual void ChangeImageGeometryConsideringOriginOffset( const bool isAnImageGeometry ); //##Documentation //## @brief Get the Geometry3D at time @a t virtual mitk::Geometry3D* GetGeometry3D(int t) const; //##Documentation //## @brief Test whether @a t is a valid time step virtual bool IsValidTime(int t) const; + //##Documentation + //## @brief Returns true if TimeSliceGeometry is valid + virtual bool IsValid() const; + //##Documentation //## @brief Convert time in ms to a time step virtual int MSToTimeStep(mitk::ScalarType time_in_ms) const; //##Documentation //## @brief Convert time step to time in ms virtual mitk::ScalarType TimeStepToMS(int timestep) const; //##Documentation //## @brief Convert time step in the reference TimeSlicedGeometry to time step //## in this TimeSlicedGeometry. virtual int TimeStepToTimeStep(const mitk::TimeSlicedGeometry *referenceGeometry, int t) const; //##Documentation //## @brief Completely initialize this instance as evenly-timed with //## \a timeSteps geometries of type Geometry3D, each initialized by //## Geometry3D::Initialize(). virtual void InitializeEvenlyTimed(unsigned int timeSteps); //##Documentation //## @brief Completely initialize this instance as evenly-timed with //## \a timeSteps geometries identical to the provided Geometry3D //## except for the time bounds virtual void InitializeEvenlyTimed(mitk::Geometry3D* geometry3D, unsigned int timeSteps); //##Documentation //## @brief Initialize this instance to contain \a timeSteps //## geometries, but without setting them yet virtual void InitializeEmpty(unsigned int timeSteps); //##Documentation //## @brief Expand the number of time steps contained //## to \a timeSteps. //## //## New, additional time steps will be initialized empty. //## Only enlargement of the time steps vector is intended and possible. virtual void ExpandToNumberOfTimeSteps( unsigned int timeSteps ); virtual void SetImageGeometry(const bool isAnImageGeometry); //##Documentation //## @brief Copy the m_TimeBounds of the geometries contained //## in timeslicedgeometry into the geometries contained in this //## TimeSlicedGeometry object. //## //## Useful for initialization of the TimeSlicedGeometry of the //## output in GenerateOutputInformation() methods of process objects, //## see for example BoundingObjectCutter::GenerateOutputInformation(). //## @param t start time index //## @param endtimeindex (endtimeindex) is the time index of //## the last geometry whose time-bounds are copied. If //## timeslicedgeometry or this TimeSlicedGeometry object does //## not contain enough geometries, endtimeindex is reduced //## appropriately. void CopyTimes(const mitk::TimeSlicedGeometry* timeslicedgeometry, unsigned int t=0, unsigned int endtimeindex = itk::NumericTraits::max()); //##Documentation //## @brief duplicates the geometry virtual AffineGeometryFrame3D::Pointer Clone() const; TimeSlicedGeometry::Pointer CloneCopy() const; virtual void ExecuteOperation(Operation* operation); protected: TimeSlicedGeometry(); TimeSlicedGeometry(const TimeSlicedGeometry& other); virtual ~TimeSlicedGeometry(); virtual void PrintSelf(std::ostream& os, itk::Indent indent) const; mutable std::vector m_Geometry3Ds; //##Documentation //## @brief Number of time steps unsigned int m_TimeSteps; //##Documentation //## @brief \a true in case the time steps have equal length bool m_EvenlyTimed; static const std::string EVENLY_TIMED; static const std::string TIME_STEPS; }; } // namespace mitk #endif /* TIMESLICEDGEOMETRY_H_HEADER_INCLUDED_C1EBD0AD */ diff --git a/Core/Code/Rendering/mitkImageVtkMapper2D.cpp b/Core/Code/Rendering/mitkImageVtkMapper2D.cpp index f4950792b1..809d5e42d1 100644 --- a/Core/Code/Rendering/mitkImageVtkMapper2D.cpp +++ b/Core/Code/Rendering/mitkImageVtkMapper2D.cpp @@ -1,1235 +1,1238 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //MITK #include #include #include #include #include #include #include #include #include #include #include #include //#include #include #include "mitkImageStatisticsHolder.h" //MITK Rendering #include "mitkImageVtkMapper2D.h" #include "vtkMitkThickSlicesFilter.h" #include "vtkMitkApplyLevelWindowToRGBFilter.h" //VTK #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //ITK #include mitk::ImageVtkMapper2D::ImageVtkMapper2D() { } mitk::ImageVtkMapper2D::~ImageVtkMapper2D() { //The 3D RW Mapper (Geometry2DDataVtkMapper3D) is listening to this event, //in order to delete the images from the 3D RW. this->InvokeEvent( itk::DeleteEvent() ); } //set the two points defining the textured plane according to the dimension and spacing void mitk::ImageVtkMapper2D::GeneratePlane(mitk::BaseRenderer* renderer, vtkFloatingPointType planeBounds[6]) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); float depth = this->CalculateLayerDepth(renderer); //Set the origin to (xMin; yMin; depth) of the plane. This is necessary for obtaining the correct //plane size in crosshair rotation and swivel mode. localStorage->m_Plane->SetOrigin(planeBounds[0], planeBounds[2], depth); //These two points define the axes of the plane in combination with the origin. //Point 1 is the x-axis and point 2 the y-axis. //Each plane is transformed according to the view (transversal, coronal and saggital) afterwards. localStorage->m_Plane->SetPoint1(planeBounds[1], planeBounds[2], depth); //P1: (xMax, yMin, depth) localStorage->m_Plane->SetPoint2(planeBounds[0], planeBounds[3], depth); //P2: (xMin, yMax, depth) } float mitk::ImageVtkMapper2D::CalculateLayerDepth(mitk::BaseRenderer* renderer) { //get the clipping range to check how deep into z direction we can render images double maxRange = renderer->GetVtkRenderer()->GetActiveCamera()->GetClippingRange()[1]; //Due to a VTK bug, we cannot use the whole clipping range. /100 is empirically determined float depth = -maxRange*0.01; // divide by 100 int layer = 0; GetDataNode()->GetIntProperty( "layer", layer, renderer); //add the layer property for each image to render images with a higher layer on top of the others depth += layer*10; //*10: keep some room for each image (e.g. for QBalls in between) if(depth > 0.0f) { depth = 0.0f; MITK_WARN << "Layer value exceeds clipping range. Set to minimum instead."; } return depth; } const mitk::Image* mitk::ImageVtkMapper2D::GetInput( void ) { return static_cast< const mitk::Image * >( this->GetData() ); } vtkProp* mitk::ImageVtkMapper2D::GetVtkProp(mitk::BaseRenderer* renderer) { //return the actor corresponding to the renderer return m_LSH.GetLocalStorage(renderer)->m_Actor; } void mitk::ImageVtkMapper2D::MitkRenderOverlay(BaseRenderer* renderer) { if ( this->IsVisible(renderer)==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) { this->GetVtkProp(renderer)->RenderOverlay(renderer->GetVtkRenderer()); } } void mitk::ImageVtkMapper2D::MitkRenderOpaqueGeometry(BaseRenderer* renderer) { if ( this->IsVisible( renderer )==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) { this->GetVtkProp(renderer)->RenderOpaqueGeometry( renderer->GetVtkRenderer() ); } } void mitk::ImageVtkMapper2D::MitkRenderTranslucentGeometry(BaseRenderer* renderer) { if ( this->IsVisible(renderer)==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) { this->GetVtkProp(renderer)->RenderTranslucentPolygonalGeometry(renderer->GetVtkRenderer()); } } void mitk::ImageVtkMapper2D::MitkRenderVolumetricGeometry(BaseRenderer* renderer) { if(IsVisible(renderer)==false) return; if ( GetVtkProp(renderer)->GetVisibility() ) { this->GetVtkProp(renderer)->RenderVolumetricGeometry(renderer->GetVtkRenderer()); } } void mitk::ImageVtkMapper2D::GenerateDataForRenderer( mitk::BaseRenderer *renderer ) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); mitk::Image *input = const_cast< mitk::Image * >( this->GetInput() ); - if ( input == NULL ) + if ( input == NULL || input->IsInitialized() == false ) { return; } //check if there is a valid worldGeometry const Geometry2D *worldGeometry = renderer->GetCurrentWorldGeometry2D(); if( ( worldGeometry == NULL ) || ( !worldGeometry->IsValid() ) || ( !worldGeometry->HasReferenceGeometry() )) { return; } // check if there is something to display if ( !input->IsVolumeSet( this->GetTimestep() ) ) return; input->Update(); vtkImageData* inputData = input->GetVtkImageData( this->GetTimestep() ); if ( inputData == NULL ) { return; } // how big the area is in physical coordinates: widthInMM x heightInMM pixels mitk::ScalarType widthInMM, heightInMM; // take transform of input image into account const TimeSlicedGeometry *inputTimeGeometry = input->GetTimeSlicedGeometry(); const Geometry3D* inputGeometry = inputTimeGeometry->GetGeometry3D( this->GetTimestep() ); // Bounds information for reslicing (only reuqired if reference geometry // is present) vtkFloatingPointType sliceBounds[6]; bool boundsInitialized = false; for ( int i = 0; i < 6; ++i ) { sliceBounds[i] = 0.0; } //Extent (in pixels) of the image Vector2D extent; // Do we have a simple PlaneGeometry? // This is the "regular" case (e.g. slicing through an image axis-parallel or even oblique) const PlaneGeometry *planeGeometry = dynamic_cast< const PlaneGeometry * >( worldGeometry ); if ( planeGeometry != NULL ) { localStorage->m_Origin = planeGeometry->GetOrigin(); localStorage->m_Right = planeGeometry->GetAxisVector( 0 ); // right = Extent of Image in mm (worldspace) localStorage->m_Bottom = planeGeometry->GetAxisVector( 1 ); localStorage->m_Normal = planeGeometry->GetNormal(); bool inPlaneResampleExtentByGeometry = false; GetDataNode()->GetBoolProperty("in plane resample extent by geometry", inPlaneResampleExtentByGeometry, renderer); if ( inPlaneResampleExtentByGeometry ) { // Resampling grid corresponds to the current world geometry. This // means that the spacing of the output 2D image depends on the // currently selected world geometry, and *not* on the image itself. extent[0] = worldGeometry->GetExtent( 0 ); extent[1] = worldGeometry->GetExtent( 1 ); } else { // Resampling grid corresponds to the input geometry. This means that // the spacing of the output 2D image is directly derived from the // associated input image, regardless of the currently selected world // geometry. Vector3D rightInIndex, bottomInIndex; inputGeometry->WorldToIndex( localStorage->m_Right, rightInIndex ); inputGeometry->WorldToIndex( localStorage->m_Bottom, bottomInIndex ); extent[0] = rightInIndex.GetNorm(); extent[1] = bottomInIndex.GetNorm(); } // Get the extent of the current world geometry and calculate resampling // spacing therefrom. widthInMM = worldGeometry->GetExtentInMM( 0 ); heightInMM = worldGeometry->GetExtentInMM( 1 ); localStorage->m_mmPerPixel[0] = widthInMM / extent[0]; localStorage->m_mmPerPixel[1] = heightInMM / extent[1]; localStorage->m_Right.Normalize(); localStorage->m_Bottom.Normalize(); localStorage->m_Normal.Normalize(); //transform the origin to corner based coordinates, because VTK is corner based. localStorage->m_Origin += localStorage->m_Right * ( localStorage->m_mmPerPixel[0] * 0.5 ); localStorage->m_Origin += localStorage->m_Bottom * ( localStorage->m_mmPerPixel[1] * 0.5 ); // Use inverse transform of the input geometry for reslicing the 3D image localStorage->m_Reslicer->SetResliceTransform( inputGeometry->GetVtkTransform()->GetLinearInverse() ); // Set background level to TRANSLUCENT (see Geometry2DDataVtkMapper3D) localStorage->m_Reslicer->SetBackgroundLevel( -32768 ); // Calculate the actual bounds of the transformed plane clipped by the // dataset bounding box; this is required for drawing the texture at the // correct position during 3D mapping. - boundsInitialized = this->CalculateClippedPlaneBounds( - worldGeometry->GetReferenceGeometry(), planeGeometry, sliceBounds ); + if (worldGeometry->HasReferenceGeometry()) + { + boundsInitialized = this->CalculateClippedPlaneBounds( + worldGeometry->GetReferenceGeometry(), planeGeometry, sliceBounds ); + } } else { // Do we have an AbstractTransformGeometry? // This is the case for AbstractTransformGeometry's (e.g. a thin-plate-spline transform) const mitk::AbstractTransformGeometry* abstractGeometry = dynamic_cast< const AbstractTransformGeometry * >(worldGeometry); if(abstractGeometry != NULL) { extent[0] = abstractGeometry->GetParametricExtent(0); extent[1] = abstractGeometry->GetParametricExtent(1); widthInMM = abstractGeometry->GetParametricExtentInMM(0); heightInMM = abstractGeometry->GetParametricExtentInMM(1); localStorage->m_mmPerPixel[0] = widthInMM / extent[0]; localStorage->m_mmPerPixel[1] = heightInMM / extent[1]; localStorage->m_Origin = abstractGeometry->GetPlane()->GetOrigin(); localStorage->m_Right = abstractGeometry->GetPlane()->GetAxisVector(0); localStorage->m_Right.Normalize(); localStorage->m_Bottom = abstractGeometry->GetPlane()->GetAxisVector(1); localStorage->m_Bottom.Normalize(); localStorage->m_Normal = abstractGeometry->GetPlane()->GetNormal(); localStorage->m_Normal.Normalize(); // Use a combination of the InputGeometry *and* the possible non-rigid // AbstractTransformGeometry for reslicing the 3D Image vtkGeneralTransform *composedResliceTransform = vtkGeneralTransform::New(); composedResliceTransform->Identity(); composedResliceTransform->Concatenate( inputGeometry->GetVtkTransform()->GetLinearInverse() ); composedResliceTransform->Concatenate( abstractGeometry->GetVtkAbstractTransform() ); localStorage->m_Reslicer->SetResliceTransform( composedResliceTransform ); composedResliceTransform->UnRegister( NULL ); // decrease RC // Set background level to BLACK instead of translucent, to avoid // boundary artifacts (see Geometry2DDataVtkMapper3D) localStorage->m_Reslicer->SetBackgroundLevel( -1023 ); } else { //no geometry => we can't reslice return; } } // Make sure that the image to display has a certain minimum size. if ( (extent[0] <= 2) && (extent[1] <= 2) ) { return; } //### begin set reslice interpolation // Initialize the interpolation mode for resampling; switch to nearest // neighbor if the input image is too small. if ( (input->GetDimension() >= 3) && (input->GetDimension(2) > 1) ) { VtkResliceInterpolationProperty *resliceInterpolationProperty; this->GetDataNode()->GetProperty( resliceInterpolationProperty, "reslice interpolation" ); int interpolationMode = VTK_RESLICE_NEAREST; if ( resliceInterpolationProperty != NULL ) { interpolationMode = resliceInterpolationProperty->GetInterpolation(); } switch ( interpolationMode ) { case VTK_RESLICE_NEAREST: localStorage->m_Reslicer->SetInterpolationModeToNearestNeighbor(); break; case VTK_RESLICE_LINEAR: localStorage->m_Reslicer->SetInterpolationModeToLinear(); break; case VTK_RESLICE_CUBIC: localStorage->m_Reslicer->SetInterpolationModeToCubic(); break; } } else { localStorage->m_Reslicer->SetInterpolationModeToNearestNeighbor(); } //### end set reslice interpolation //Thickslicing int thickSlicesMode = 0; int thickSlicesNum = 1; // Thick slices parameters if( inputData->GetNumberOfScalarComponents() == 1 ) // for now only single component are allowed { DataNode *dn=renderer->GetCurrentWorldGeometry2DNode(); if(dn) { ResliceMethodProperty *resliceMethodEnumProperty=0; if( dn->GetProperty( resliceMethodEnumProperty, "reslice.thickslices" ) && resliceMethodEnumProperty ) thickSlicesMode = resliceMethodEnumProperty->GetValueAsId(); IntProperty *intProperty=0; if( dn->GetProperty( intProperty, "reslice.thickslices.num" ) && intProperty ) { thickSlicesNum = intProperty->GetValue(); if(thickSlicesNum < 1) thickSlicesNum=1; if(thickSlicesNum > 10) thickSlicesNum=10; } } else { MITK_WARN << "no associated widget plane data tree node found"; } } localStorage->m_UnitSpacingImageFilter->SetInput( inputData ); localStorage->m_Reslicer->SetInput( localStorage->m_UnitSpacingImageFilter->GetOutput() ); //number of pixels per mm in x- and y-direction of the resampled Vector2D pixelsPerMM; pixelsPerMM[0] = 1.0 / localStorage->m_mmPerPixel[0]; pixelsPerMM[1] = 1.0 / localStorage->m_mmPerPixel[1]; //calulate the originArray and the orientations for the reslice-filter double originArray[3]; itk2vtk( localStorage->m_Origin, originArray ); localStorage->m_Reslicer->SetResliceAxesOrigin( originArray ); double cosines[9]; // direction of the X-axis of the sampled result vnl2vtk( localStorage->m_Right.Get_vnl_vector(), cosines ); // direction of the Y-axis of the sampled result vnl2vtk( localStorage->m_Bottom.Get_vnl_vector(), cosines + 3 );//fill next 3 elements // normal of the plane vnl2vtk( localStorage->m_Normal.Get_vnl_vector(), cosines + 6 );//fill the last 3 elements localStorage->m_Reslicer->SetResliceAxesDirectionCosines( cosines ); int xMin, xMax, yMin, yMax; if ( boundsInitialized ) { // Calculate output extent (integer values) xMin = static_cast< int >( sliceBounds[0] / localStorage->m_mmPerPixel[0] + 0.5 ); xMax = static_cast< int >( sliceBounds[1] / localStorage->m_mmPerPixel[0] + 0.5 ); yMin = static_cast< int >( sliceBounds[2] / localStorage->m_mmPerPixel[1] + 0.5 ); yMax = static_cast< int >( sliceBounds[3] / localStorage->m_mmPerPixel[1] + 0.5 ); } else { // If no reference geometry is available, we also don't know about the // maximum plane size; xMin = yMin = 0; xMax = static_cast< int >( extent[0] - pixelsPerMM[0] + 0.5); yMax = static_cast< int >( extent[1] - pixelsPerMM[1] + 0.5); } // Disallow huge dimensions if ( (xMax-xMin) * (yMax-yMin) > 4096*4096 ) { return; } // Calculate dataset spacing in plane z direction (NOT spacing of current // world geometry) double dataZSpacing = 1.0; Vector3D normInIndex; inputGeometry->WorldToIndex( localStorage->m_Normal, normInIndex ); if(thickSlicesMode > 0) { dataZSpacing = 1.0 / normInIndex.GetNorm(); localStorage->m_Reslicer->SetOutputDimensionality( 3 ); localStorage->m_Reslicer->SetOutputExtent( xMin, xMax-1, yMin, yMax-1, -thickSlicesNum, 0+thickSlicesNum ); } else { localStorage->m_Reslicer->SetOutputDimensionality( 2 ); localStorage->m_Reslicer->SetOutputExtent( xMin, xMax-1, yMin, yMax-1, 0, 0 ); } localStorage->m_Reslicer->SetOutputOrigin( 0.0, 0.0, 0.0 ); localStorage->m_Reslicer->SetOutputSpacing( localStorage->m_mmPerPixel[0], localStorage->m_mmPerPixel[1], dataZSpacing ); // xMax and yMax are meant exclusive until now, whereas // SetOutputExtent wants an inclusive bound. Thus, we need // to subtract 1. //Make sure the updateExtent is equal to the wholeExtent of vtkImageReslice, //else the updateExtent is one step ahead of the wholeExtent and vtk errors //are thrown. localStorage->m_Reslicer->UpdateWholeExtent(); // Do the reslicing. Modified() is called to make sure that the reslicer is // executed even though the input geometry information did not change; this // is necessary when the input /em data, but not the /em geometry changes. if(thickSlicesMode>0) { localStorage->m_TSFilter->SetThickSliceMode( thickSlicesMode-1 ); localStorage->m_TSFilter->SetInput( localStorage->m_Reslicer->GetOutput() ); localStorage->m_TSFilter->Modified(); localStorage->m_TSFilter->Update(); localStorage->m_ReslicedImage = localStorage->m_TSFilter->GetOutput(); } else { localStorage->m_Reslicer->Modified(); localStorage->m_Reslicer->Update(); localStorage->m_ReslicedImage = localStorage->m_Reslicer->GetOutput(); } if((localStorage->m_ReslicedImage == NULL) || (localStorage->m_ReslicedImage->GetDataDimension() < 1)) { MITK_WARN << "reslicer returned empty image"; return; } //get the number of scalar components to distinguish between different image types int numberOfComponents = localStorage->m_ReslicedImage->GetNumberOfScalarComponents(); //get the binary property bool binary = false; bool binaryOutline = false; this->GetDataNode()->GetBoolProperty( "binary", binary, renderer ); if(binary) //binary image { this->GetDataNode()->GetBoolProperty( "outline binary", binaryOutline, renderer ); if(binaryOutline) //contour rendering { if ( this->GetInput()->GetPixelType().GetBpe() <= 8 ) { //generate ontours/outlines localStorage->m_OutlinePolyData = CreateOutlinePolyData(renderer); float binaryOutlineWidth(1.0); if (this->GetDataNode()->GetFloatProperty( "outline width", binaryOutlineWidth, renderer )) { localStorage->m_Actor->GetProperty()->SetLineWidth(binaryOutlineWidth); } } else { binaryOutline = false; this->ApplyLookuptable(renderer); MITK_WARN << "Type of all binary images should be (un)signed char. Outline does not work on other pixel types!"; } } else //standard binary image { if(numberOfComponents != 1) { MITK_ERROR << "Rendering Error: Binary Images with more then 1 component are not supported!"; } } this->ApplyLookuptable(renderer); //Interpret the values as binary values localStorage->m_Texture->MapColorScalarsThroughLookupTableOn(); } else if( numberOfComponents == 1 ) //gray images { //Interpret the values as gray values localStorage->m_Texture->MapColorScalarsThroughLookupTableOn(); this->ApplyLookuptable(renderer); } else if ( (numberOfComponents == 3) || (numberOfComponents == 4) ) //RBG(A) images { //Interpret the RGB(A) images values correctly localStorage->m_Texture->MapColorScalarsThroughLookupTableOff(); this->ApplyLookuptable(renderer); this->ApplyRBGALevelWindow(renderer); } else { MITK_ERROR << "2D Reindering Error: Unknown number of components!!! Please report to rendering task force or check your data!"; } this->ApplyColor( renderer ); this->ApplyOpacity( renderer ); this->TransformActor( renderer ); //connect mapper with the data if(binary && binaryOutline) //connect the mapper with the polyData which contains the lines { //We need the contour for the binary oultine property as actor localStorage->m_Mapper->SetInput(localStorage->m_OutlinePolyData); localStorage->m_Actor->SetTexture(NULL); //no texture for contours } else { //Connect the mapper with the input texture. This is the standard case. //setup the textured plane this->GeneratePlane( renderer, sliceBounds ); //set the plane as input for the mapper localStorage->m_Mapper->SetInputConnection(localStorage->m_Plane->GetOutputPort()); //set the texture for the actor localStorage->m_Actor->SetTexture(localStorage->m_Texture); } // We have been modified => save this for next Update() localStorage->m_LastUpdateTime.Modified(); } void mitk::ImageVtkMapper2D::ApplyColor( mitk::BaseRenderer* renderer ) { LocalStorage *localStorage = this->GetLocalStorage( renderer ); // check for interpolation properties bool textureInterpolation = false; GetDataNode()->GetBoolProperty( "texture interpolation", textureInterpolation, renderer ); //set the interpolation modus according to the property localStorage->m_Texture->SetInterpolate(textureInterpolation); bool useColor = true; this->GetDataNode()->GetBoolProperty( "use color", useColor, renderer ); if( useColor ) { float rgb[3]= { 1.0f, 1.0f, 1.0f }; // check for color prop and use it for rendering if it exists // binary image hovering & binary image selection bool hover = false; bool selected = false; GetDataNode()->GetBoolProperty("binaryimage.ishovering", hover, renderer); GetDataNode()->GetBoolProperty("selected", selected, renderer); if(hover && !selected) { mitk::ColorProperty::Pointer colorprop = dynamic_cast(GetDataNode()->GetProperty ("binaryimage.hoveringcolor", renderer)); if(colorprop.IsNotNull()) { memcpy(rgb, colorprop->GetColor().GetDataPointer(), 3*sizeof(float)); } else { GetColor( rgb, renderer ); } } if(selected) { mitk::ColorProperty::Pointer colorprop = dynamic_cast(GetDataNode()->GetProperty ("binaryimage.selectedcolor", renderer)); if(colorprop.IsNotNull()) { memcpy(rgb, colorprop->GetColor().GetDataPointer(), 3*sizeof(float)); } else { GetColor( rgb, renderer ); } } if(!hover && !selected) { GetColor( rgb, renderer ); } double rgbConv[3] = {(double)rgb[0], (double)rgb[1], (double)rgb[2]}; //conversion to double for VTK localStorage->m_Actor->GetProperty()->SetColor(rgbConv); } else { //If the user defines a lut, we dont want to use the color and take white instead. localStorage->m_Actor->GetProperty()->SetColor(1.0, 1.0, 1.0); } } void mitk::ImageVtkMapper2D::ApplyOpacity( mitk::BaseRenderer* renderer ) { LocalStorage* localStorage = this->GetLocalStorage( renderer ); float opacity = 1.0f; // check for opacity prop and use it for rendering if it exists GetOpacity( opacity, renderer ); //set the opacity according to the properties localStorage->m_Actor->GetProperty()->SetOpacity(opacity); } void mitk::ImageVtkMapper2D::ApplyLookuptable( mitk::BaseRenderer* renderer ) { bool binary = false; bool CTFcanBeApplied = false; this->GetDataNode()->GetBoolProperty( "binary", binary, renderer ); LocalStorage* localStorage = this->GetLocalStorage(renderer); //default lookuptable localStorage->m_Texture->SetLookupTable( localStorage->m_LookupTable ); if(binary) { //default lookuptable for binary images localStorage->m_Texture->GetLookupTable()->SetRange(0.0, 1.0); } else { bool useColor = true; this->GetDataNode()->GetBoolProperty( "use color", useColor, renderer ); if((!useColor)) { //BEGIN PROPERTY user-defined lut //currently we do not allow a lookuptable if it is a binary image // If lookup table use is requested... mitk::LookupTableProperty::Pointer LookupTableProp; LookupTableProp = dynamic_cast (this->GetDataNode()->GetProperty("LookupTable")); //...check if there is a lookuptable provided by the user if ( LookupTableProp.IsNotNull() ) { // If lookup table use is requested and supplied by the user: // only update the lut, when the properties have changed... if( LookupTableProp->GetLookupTable()->GetMTime() <= this->GetDataNode()->GetPropertyList()->GetMTime() ) { LookupTableProp->GetLookupTable()->ChangeOpacityForAll( LookupTableProp->GetLookupTable()->GetVtkLookupTable()->GetAlpha()*localStorage->m_Actor->GetProperty()->GetOpacity() ); LookupTableProp->GetLookupTable()->ChangeOpacity(0, 0.0); } //we use the user-defined lookuptable localStorage->m_Texture->SetLookupTable( LookupTableProp->GetLookupTable()->GetVtkLookupTable() ); } else { CTFcanBeApplied = true; } }//END PROPERTY user-defined lut LevelWindow levelWindow; this->GetLevelWindow( levelWindow, renderer ); //set up the lookuptable with the level window range localStorage->m_Texture->GetLookupTable()->SetRange( levelWindow.GetLowerWindowBound(), levelWindow.GetUpperWindowBound() ); } //the color function can be applied if the user does not want to use color //and does not provide a lookuptable if(CTFcanBeApplied) { ApplyColorTransferFunction(renderer); } localStorage->m_Texture->SetInput( localStorage->m_ReslicedImage ); } void mitk::ImageVtkMapper2D::ApplyColorTransferFunction(mitk::BaseRenderer* renderer) { mitk::TransferFunctionProperty::Pointer transferFunctionProperty = dynamic_cast(this->GetDataNode()->GetProperty("Image Rendering.Transfer Function",renderer )); LocalStorage* localStorage = m_LSH.GetLocalStorage(renderer); if(transferFunctionProperty.IsNotNull()) { localStorage->m_Texture->SetLookupTable(transferFunctionProperty->GetValue()->GetColorTransferFunction()); } else { MITK_WARN << "Neither a lookuptable nor a transfer function is set and use color is off."; } } bool mitk::ImageVtkMapper2D::LineIntersectZero( vtkPoints *points, int p1, int p2, vtkFloatingPointType *bounds ) { vtkFloatingPointType point1[3]; vtkFloatingPointType point2[3]; points->GetPoint( p1, point1 ); points->GetPoint( p2, point2 ); if ( (point1[2] * point2[2] <= 0.0) && (point1[2] != point2[2]) ) { double x, y; x = ( point1[0] * point2[2] - point1[2] * point2[0] ) / ( point2[2] - point1[2] ); y = ( point1[1] * point2[2] - point1[2] * point2[1] ) / ( point2[2] - point1[2] ); if ( x < bounds[0] ) { bounds[0] = x; } if ( x > bounds[1] ) { bounds[1] = x; } if ( y < bounds[2] ) { bounds[2] = y; } if ( y > bounds[3] ) { bounds[3] = y; } bounds[4] = bounds[5] = 0.0; return true; } return false; } bool mitk::ImageVtkMapper2D::CalculateClippedPlaneBounds( const Geometry3D *boundingGeometry, const PlaneGeometry *planeGeometry, vtkFloatingPointType *bounds ) { // Clip the plane with the bounding geometry. To do so, the corner points // of the bounding box are transformed by the inverse transformation // matrix, and the transformed bounding box edges derived therefrom are // clipped with the plane z=0. The resulting min/max values are taken as // bounds for the image reslicer. const mitk::BoundingBox *boundingBox = boundingGeometry->GetBoundingBox(); mitk::BoundingBox::PointType bbMin = boundingBox->GetMinimum(); mitk::BoundingBox::PointType bbMax = boundingBox->GetMaximum(); vtkSmartPointer points = vtkSmartPointer::New(); if(boundingGeometry->GetImageGeometry()) { points->InsertPoint( 0, bbMin[0]-0.5, bbMin[1]-0.5, bbMin[2]-0.5 ); points->InsertPoint( 1, bbMin[0]-0.5, bbMin[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 2, bbMin[0]-0.5, bbMax[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 3, bbMin[0]-0.5, bbMax[1]-0.5, bbMin[2]-0.5 ); points->InsertPoint( 4, bbMax[0]-0.5, bbMin[1]-0.5, bbMin[2]-0.5 ); points->InsertPoint( 5, bbMax[0]-0.5, bbMin[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 6, bbMax[0]-0.5, bbMax[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 7, bbMax[0]-0.5, bbMax[1]-0.5, bbMin[2]-0.5 ); } else { points->InsertPoint( 0, bbMin[0], bbMin[1], bbMin[2] ); points->InsertPoint( 1, bbMin[0], bbMin[1], bbMax[2] ); points->InsertPoint( 2, bbMin[0], bbMax[1], bbMax[2] ); points->InsertPoint( 3, bbMin[0], bbMax[1], bbMin[2] ); points->InsertPoint( 4, bbMax[0], bbMin[1], bbMin[2] ); points->InsertPoint( 5, bbMax[0], bbMin[1], bbMax[2] ); points->InsertPoint( 6, bbMax[0], bbMax[1], bbMax[2] ); points->InsertPoint( 7, bbMax[0], bbMax[1], bbMin[2] ); } vtkSmartPointer newPoints = vtkSmartPointer::New(); vtkSmartPointer transform = vtkSmartPointer::New(); transform->Identity(); transform->Concatenate( planeGeometry->GetVtkTransform()->GetLinearInverse() ); transform->Concatenate( boundingGeometry->GetVtkTransform() ); transform->TransformPoints( points, newPoints ); bounds[0] = bounds[2] = 10000000.0; bounds[1] = bounds[3] = -10000000.0; bounds[4] = bounds[5] = 0.0; this->LineIntersectZero( newPoints, 0, 1, bounds ); this->LineIntersectZero( newPoints, 1, 2, bounds ); this->LineIntersectZero( newPoints, 2, 3, bounds ); this->LineIntersectZero( newPoints, 3, 0, bounds ); this->LineIntersectZero( newPoints, 0, 4, bounds ); this->LineIntersectZero( newPoints, 1, 5, bounds ); this->LineIntersectZero( newPoints, 2, 6, bounds ); this->LineIntersectZero( newPoints, 3, 7, bounds ); this->LineIntersectZero( newPoints, 4, 5, bounds ); this->LineIntersectZero( newPoints, 5, 6, bounds ); this->LineIntersectZero( newPoints, 6, 7, bounds ); this->LineIntersectZero( newPoints, 7, 4, bounds ); if ( (bounds[0] > 9999999.0) || (bounds[2] > 9999999.0) || (bounds[1] < -9999999.0) || (bounds[3] < -9999999.0) ) { return false; } else { // The resulting bounds must be adjusted by the plane spacing, since we // we have so far dealt with index coordinates const float *planeSpacing = planeGeometry->GetFloatSpacing(); bounds[0] *= planeSpacing[0]; bounds[1] *= planeSpacing[0]; bounds[2] *= planeSpacing[1]; bounds[3] *= planeSpacing[1]; bounds[4] *= planeSpacing[2]; bounds[5] *= planeSpacing[2]; return true; } } void mitk::ImageVtkMapper2D::ApplyRBGALevelWindow( mitk::BaseRenderer* renderer ) { LocalStorage* localStorage = this->GetLocalStorage( renderer ); //pass the LuT to the RBG filter localStorage->m_LevelWindowToRGBFilterObject->SetLookupTable(localStorage->m_Texture->GetLookupTable()); mitk::LevelWindow opacLevelWindow; if( this->GetLevelWindow( opacLevelWindow, renderer, "opaclevelwindow" ) ) {//pass the opaque level window to the filter localStorage->m_LevelWindowToRGBFilterObject->SetMinOpacity(opacLevelWindow.GetLowerWindowBound()); localStorage->m_LevelWindowToRGBFilterObject->SetMaxOpacity(opacLevelWindow.GetUpperWindowBound()); } else {//no opaque level window localStorage->m_LevelWindowToRGBFilterObject->SetMinOpacity(0.0); localStorage->m_LevelWindowToRGBFilterObject->SetMaxOpacity(255.0); } localStorage->m_LevelWindowToRGBFilterObject->SetInput(localStorage->m_ReslicedImage); //connect the texture with the output of the RGB filter localStorage->m_Texture->SetInputConnection(localStorage->m_LevelWindowToRGBFilterObject->GetOutputPort()); } void mitk::ImageVtkMapper2D::Update(mitk::BaseRenderer* renderer) { if ( !this->IsVisible( renderer ) ) { return; } mitk::Image* data = const_cast( this->GetInput() ); if ( data == NULL ) { return; } // Calculate time step of the input data for the specified renderer (integer value) this->CalculateTimeStep( renderer ); // Check if time step is valid const TimeSlicedGeometry *dataTimeGeometry = data->GetTimeSlicedGeometry(); if ( ( dataTimeGeometry == NULL ) || ( dataTimeGeometry->GetTimeSteps() == 0 ) || ( !dataTimeGeometry->IsValidTime( this->GetTimestep() ) ) ) { return; } const DataNode *node = this->GetDataNode(); data->UpdateOutputInformation(); LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); //check if something important has changed and we need to rerender if ( (localStorage->m_LastUpdateTime < node->GetMTime()) //was the node modified? || (localStorage->m_LastUpdateTime < data->GetPipelineMTime()) //Was the data modified? || (localStorage->m_LastUpdateTime < renderer->GetCurrentWorldGeometry2DUpdateTime()) //was the geometry modified? || (localStorage->m_LastUpdateTime < renderer->GetCurrentWorldGeometry2D()->GetMTime()) || (localStorage->m_LastUpdateTime < node->GetPropertyList()->GetMTime()) //was a property modified? || (localStorage->m_LastUpdateTime < node->GetPropertyList(renderer)->GetMTime()) ) { this->GenerateDataForRenderer( renderer ); } // since we have checked that nothing important has changed, we can set // m_LastUpdateTime to the current time localStorage->m_LastUpdateTime.Modified(); } void mitk::ImageVtkMapper2D::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { mitk::Image::Pointer image = dynamic_cast(node->GetData()); // Properties common for both images and segmentations node->AddProperty( "use color", mitk::BoolProperty::New( true ), renderer, overwrite ); node->AddProperty( "depthOffset", mitk::FloatProperty::New( 0.0 ), renderer, overwrite ); node->AddProperty( "outline binary", mitk::BoolProperty::New( false ), renderer, overwrite ); node->AddProperty( "outline width", mitk::FloatProperty::New( 1.0 ), renderer, overwrite ); if(image->IsRotated()) node->AddProperty( "reslice interpolation", mitk::VtkResliceInterpolationProperty::New(VTK_RESLICE_CUBIC) ); else node->AddProperty( "reslice interpolation", mitk::VtkResliceInterpolationProperty::New() ); node->AddProperty( "texture interpolation", mitk::BoolProperty::New( mitk::DataNodeFactory::m_TextureInterpolationActive ) ); // set to user configurable default value (see global options) node->AddProperty( "in plane resample extent by geometry", mitk::BoolProperty::New( false ) ); node->AddProperty( "bounding box", mitk::BoolProperty::New( false ) ); std::string modality; if ( node->GetStringProperty( "dicom.series.Modality", modality ) ) { // modality provided by DICOM or other reader if ( modality == "PT") // NOT a typo, PT is the abbreviation for PET used in DICOM { node->SetProperty( "use color", mitk::BoolProperty::New( false ), renderer ); node->SetProperty( "opacity", mitk::FloatProperty::New( 0.5 ), renderer ); } } bool isBinaryImage(false); if ( ! node->GetBoolProperty("binary", isBinaryImage) ) { // ok, property is not set, use heuristic to determine if this // is a binary image mitk::Image::Pointer centralSliceImage; ScalarType minValue = 0.0; ScalarType maxValue = 0.0; ScalarType min2ndValue = 0.0; ScalarType max2ndValue = 0.0; mitk::ImageSliceSelector::Pointer sliceSelector = mitk::ImageSliceSelector::New(); sliceSelector->SetInput(image); sliceSelector->SetSliceNr(image->GetDimension(2)/2); sliceSelector->SetTimeNr(image->GetDimension(3)/2); sliceSelector->SetChannelNr(image->GetDimension(4)/2); sliceSelector->Update(); centralSliceImage = sliceSelector->GetOutput(); if ( centralSliceImage.IsNotNull() && centralSliceImage->IsInitialized() ) { minValue = centralSliceImage->GetStatistics()->GetScalarValueMin(); maxValue = centralSliceImage->GetStatistics()->GetScalarValueMax(); min2ndValue = centralSliceImage->GetStatistics()->GetScalarValue2ndMin(); max2ndValue = centralSliceImage->GetStatistics()->GetScalarValue2ndMax(); } if ( minValue == maxValue ) { // centralSlice is strange, lets look at all data minValue = image->GetStatistics()->GetScalarValueMin(); maxValue = image->GetStatistics()->GetScalarValueMaxNoRecompute(); min2ndValue = image->GetStatistics()->GetScalarValue2ndMinNoRecompute(); max2ndValue = image->GetStatistics()->GetScalarValue2ndMaxNoRecompute(); } isBinaryImage = ( maxValue == min2ndValue && minValue == max2ndValue ); } // some more properties specific for a binary... if (isBinaryImage) { node->AddProperty( "opacity", mitk::FloatProperty::New(0.3f), renderer, overwrite ); node->AddProperty( "color", ColorProperty::New(1.0,0.0,0.0), renderer, overwrite ); node->AddProperty( "binaryimage.selectedcolor", ColorProperty::New(1.0,0.0,0.0), renderer, overwrite ); node->AddProperty( "binaryimage.selectedannotationcolor", ColorProperty::New(1.0,0.0,0.0), renderer, overwrite ); node->AddProperty( "binaryimage.hoveringcolor", ColorProperty::New(1.0,0.0,0.0), renderer, overwrite ); node->AddProperty( "binaryimage.hoveringannotationcolor", ColorProperty::New(1.0,0.0,0.0), renderer, overwrite ); node->AddProperty( "binary", mitk::BoolProperty::New( true ), renderer, overwrite ); node->AddProperty("layer", mitk::IntProperty::New(10), renderer, overwrite); } else //...or image type object { node->AddProperty( "opacity", mitk::FloatProperty::New(1.0f), renderer, overwrite ); node->AddProperty( "color", ColorProperty::New(1.0,1.0,1.0), renderer, overwrite ); node->AddProperty( "binary", mitk::BoolProperty::New( false ), renderer, overwrite ); node->AddProperty("layer", mitk::IntProperty::New(0), renderer, overwrite); } if(image.IsNotNull() && image->IsInitialized()) { if((overwrite) || (node->GetProperty("levelwindow", renderer)==NULL)) { /* initialize level/window from DICOM tags */ std::string sLevel; std::string sWindow; if ( node->GetStringProperty( "dicom.voilut.WindowCenter", sLevel ) && node->GetStringProperty( "dicom.voilut.WindowWidth", sWindow ) ) { float level = atof( sLevel.c_str() ); float window = atof( sWindow.c_str() ); mitk::LevelWindow contrast; std::string sSmallestPixelValueInSeries; std::string sLargestPixelValueInSeries; if ( node->GetStringProperty( "dicom.series.SmallestPixelValueInSeries", sSmallestPixelValueInSeries ) && node->GetStringProperty( "dicom.series.LargestPixelValueInSeries", sLargestPixelValueInSeries ) ) { float smallestPixelValueInSeries = atof( sSmallestPixelValueInSeries.c_str() ); float largestPixelValueInSeries = atof( sLargestPixelValueInSeries.c_str() ); contrast.SetRangeMinMax( smallestPixelValueInSeries-1, largestPixelValueInSeries+1 ); // why not a little buffer? // might remedy some l/w widget challenges } else { contrast.SetAuto( static_cast(node->GetData()), false, true ); // we need this as a fallback } contrast.SetLevelWindow( level, window); node->SetProperty( "levelwindow", LevelWindowProperty::New( contrast ), renderer ); } } if(((overwrite) || (node->GetProperty("opaclevelwindow", renderer)==NULL)) && image->GetPixelType().GetPixelTypeId() == typeid(itk::RGBAPixel)) { mitk::LevelWindow opaclevwin; opaclevwin.SetRangeMinMax(0,255); opaclevwin.SetWindowBounds(0,255); mitk::LevelWindowProperty::Pointer prop = mitk::LevelWindowProperty::New(opaclevwin); node->SetProperty( "opaclevelwindow", prop, renderer ); } if((overwrite) || (node->GetProperty("LookupTable", renderer)==NULL)) { // add a default rainbow lookup table for color mapping mitk::LookupTable::Pointer mitkLut = mitk::LookupTable::New(); vtkLookupTable* vtkLut = mitkLut->GetVtkLookupTable(); vtkLut->SetHueRange(0.6667, 0.0); vtkLut->SetTableRange(0.0, 20.0); vtkLut->Build(); mitk::LookupTableProperty::Pointer mitkLutProp = mitk::LookupTableProperty::New(); mitkLutProp->SetLookupTable(mitkLut); node->SetProperty( "LookupTable", mitkLutProp ); } } Superclass::SetDefaultProperties(node, renderer, overwrite); } mitk::ImageVtkMapper2D::LocalStorage* mitk::ImageVtkMapper2D::GetLocalStorage(mitk::BaseRenderer* renderer) { return m_LSH.GetLocalStorage(renderer); } vtkSmartPointer mitk::ImageVtkMapper2D::CreateOutlinePolyData(mitk::BaseRenderer* renderer ){ LocalStorage* localStorage = this->GetLocalStorage(renderer); //get the min and max index values of each direction int* extent = localStorage->m_ReslicedImage->GetExtent(); int xMin = extent[0]; int xMax = extent[1]; int yMin = extent[2]; int yMax = extent[3]; int* dims = localStorage->m_ReslicedImage->GetDimensions(); //dimensions of the image int line = dims[0]; //how many pixels per line? int x = xMin; //pixel index x int y = yMin; //pixel index y char* currentPixel; //get the depth for each contour float depth = CalculateLayerDepth(renderer); vtkSmartPointer points = vtkSmartPointer::New(); //the points to draw vtkSmartPointer lines = vtkSmartPointer::New(); //the lines to connect the points while (y <= yMax) { currentPixel = static_cast(localStorage->m_ReslicedImage->GetScalarPointer(x, y, 0)); //if the current pixel value is set to something if ((currentPixel) && (*currentPixel != 0)) - { + { //check in which direction a line is necessary - //a line is added if the neighbor of the current pixel has the value 0 - //and if the pixel is located at the edge of the image + //a line is added if the neighbor of the current pixel has the value 0 + //and if the pixel is located at the edge of the image - //if vvvvv not the first line vvvvv + //if vvvvv not the first line vvvvv if (y > yMin && *(currentPixel-line) == 0) - { //x direction - bottom edge of the pixel + { //x direction - bottom edge of the pixel //add the 2 points vtkIdType p1 = points->InsertNextPoint(x*localStorage->m_mmPerPixel[0], y*localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint((x+1)*localStorage->m_mmPerPixel[0], y*localStorage->m_mmPerPixel[1], depth); //add the line between both points lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } - //if vvvvv not the last line vvvvv + //if vvvvv not the last line vvvvv if (y < yMax && *(currentPixel+line) == 0) - { //x direction - top edge of the pixel + { //x direction - top edge of the pixel vtkIdType p1 = points->InsertNextPoint(x*localStorage->m_mmPerPixel[0], (y+1)*localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint((x+1)*localStorage->m_mmPerPixel[0], (y+1)*localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } - //if vvvvv not the first pixel vvvvv + //if vvvvv not the first pixel vvvvv if ( (x > xMin || y > yMin) && *(currentPixel-1) == 0) - { //y direction - left edge of the pixel + { //y direction - left edge of the pixel vtkIdType p1 = points->InsertNextPoint(x*localStorage->m_mmPerPixel[0], y*localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint(x*localStorage->m_mmPerPixel[0], (y+1)*localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } - //if vvvvv not the last pixel vvvvv + //if vvvvv not the last pixel vvvvv if ( (y < yMax || (x < xMax) ) && *(currentPixel+1) == 0) - { //y direction - right edge of the pixel + { //y direction - right edge of the pixel vtkIdType p1 = points->InsertNextPoint((x+1)*localStorage->m_mmPerPixel[0], y*localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint((x+1)*localStorage->m_mmPerPixel[0], (y+1)*localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } - /* now consider pixels at the edge of the image */ + /* now consider pixels at the edge of the image */ - //if vvvvv left edge of image vvvvv + //if vvvvv left edge of image vvvvv if (x == xMin) - { //draw left edge of the pixel + { //draw left edge of the pixel vtkIdType p1 = points->InsertNextPoint(x*localStorage->m_mmPerPixel[0], y*localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint(x*localStorage->m_mmPerPixel[0], (y+1)*localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } - //if vvvvv right edge of image vvvvv + //if vvvvv right edge of image vvvvv if (x == xMax) - { //draw right edge of the pixel + { //draw right edge of the pixel vtkIdType p1 = points->InsertNextPoint((x+1)*localStorage->m_mmPerPixel[0], y*localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint((x+1)*localStorage->m_mmPerPixel[0], (y+1)*localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } - //if vvvvv bottom edge of image vvvvv + //if vvvvv bottom edge of image vvvvv if (y == yMin) - { //draw bottom edge of the pixel + { //draw bottom edge of the pixel vtkIdType p1 = points->InsertNextPoint(x*localStorage->m_mmPerPixel[0], y*localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint((x+1)*localStorage->m_mmPerPixel[0], y*localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } - //if vvvvv top edge of image vvvvv + //if vvvvv top edge of image vvvvv if (y == yMax) - { //draw top edge of the pixel + { //draw top edge of the pixel vtkIdType p1 = points->InsertNextPoint(x*localStorage->m_mmPerPixel[0], (y+1)*localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint((x+1)*localStorage->m_mmPerPixel[0], (y+1)*localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } }//end if currentpixel is set x++; if (x > xMax) - { //reached end of line + { //reached end of line x = xMin; y++; } }//end of while // Create a polydata to store everything in vtkSmartPointer polyData = vtkSmartPointer::New(); // Add the points to the dataset polyData->SetPoints(points); // Add the lines to the dataset polyData->SetLines(lines); return polyData; } void mitk::ImageVtkMapper2D::TransformActor(mitk::BaseRenderer* renderer) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); //get the transformation matrix of the reslicer in order to render the slice as transversal, coronal or saggital vtkSmartPointer trans = vtkSmartPointer::New(); vtkSmartPointer matrix = localStorage->m_Reslicer->GetResliceAxes(); trans->SetMatrix(matrix); //transform the plane/contour (the actual actor) to the corresponding view (transversal, coronal or saggital) localStorage->m_Actor->SetUserTransform(trans); //transform the origin to center based coordinates, because MITK is center based. localStorage->m_Actor->SetPosition( -0.5*localStorage->m_mmPerPixel[0], -0.5*localStorage->m_mmPerPixel[1], 0.0); } mitk::ImageVtkMapper2D::LocalStorage::LocalStorage() { //Do as much actions as possible in here to avoid double executions. m_Plane = vtkSmartPointer::New(); m_Texture = vtkSmartPointer::New(); m_LookupTable = vtkSmartPointer::New(); m_Mapper = vtkSmartPointer::New(); m_Actor = vtkSmartPointer::New(); m_Reslicer = vtkSmartPointer::New(); m_TSFilter = vtkSmartPointer::New(); m_UnitSpacingImageFilter = vtkSmartPointer::New(); m_OutlinePolyData = vtkSmartPointer::New(); m_ReslicedImage = vtkSmartPointer::New(); //the following actions are always the same and thus can be performed //in the constructor for each image (i.e. the image-corresponding local storage) m_TSFilter->ReleaseDataFlagOn(); m_Reslicer->ReleaseDataFlagOn(); m_UnitSpacingImageFilter->SetOutputSpacing( 1.0, 1.0, 1.0 ); //built a default lookuptable m_LookupTable->SetRampToLinear(); m_LookupTable->SetSaturationRange( 0.0, 0.0 ); m_LookupTable->SetHueRange( 0.0, 0.0 ); m_LookupTable->SetValueRange( 0.0, 1.0 ); m_LookupTable->Build(); //map all black values to transparent m_LookupTable->SetTableValue(0, 0.0, 0.0, 0.0, 0.0); //do not repeat the texture (the image) m_Texture->RepeatOff(); //set the mapper for the actor m_Actor->SetMapper(m_Mapper); //filter for RGB(A) images m_LevelWindowToRGBFilterObject = new vtkMitkApplyLevelWindowToRGBFilter(); } diff --git a/Modules/Qmitk/QmitkStdMultiWidget.cpp b/Modules/Qmitk/QmitkStdMultiWidget.cpp index b47ace640c..db1bf3a3d3 100644 --- a/Modules/Qmitk/QmitkStdMultiWidget.cpp +++ b/Modules/Qmitk/QmitkStdMultiWidget.cpp @@ -1,2213 +1,2214 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #define SMW_INFO MITK_INFO("widget.stdmulti") #include "QmitkStdMultiWidget.h" #include #include #include #include #include #include #include #include #include "mitkProperties.h" #include "mitkGeometry2DDataMapper2D.h" #include "mitkGlobalInteraction.h" #include "mitkDisplayInteractor.h" #include "mitkPointSet.h" #include "mitkPositionEvent.h" #include "mitkStateEvent.h" #include "mitkLine.h" #include "mitkInteractionConst.h" #include "mitkDataStorage.h" #include "mitkNodePredicateBase.h" #include "mitkNodePredicateDataType.h" #include "mitkNodePredicateNot.h" #include "mitkNodePredicateProperty.h" #include "mitkStatusBar.h" #include "mitkImage.h" #include "mitkVtkLayerController.h" QmitkStdMultiWidget::QmitkStdMultiWidget(QWidget* parent, Qt::WindowFlags f, mitk::RenderingManager* renderingManager) : QWidget(parent, f), mitkWidget1(NULL), mitkWidget2(NULL), mitkWidget3(NULL), mitkWidget4(NULL), levelWindowWidget(NULL), QmitkStdMultiWidgetLayout(NULL), m_Layout(LAYOUT_DEFAULT), m_PlaneMode(PLANE_MODE_SLICING), m_RenderingManager(renderingManager), m_GradientBackgroundFlag(true), m_MainSplit(NULL), m_LayoutSplit(NULL), m_SubSplit1(NULL), m_SubSplit2(NULL), mitkWidget1Container(NULL), mitkWidget2Container(NULL), mitkWidget3Container(NULL), mitkWidget4Container(NULL), m_PendingCrosshairPositionEvent(false), m_CrosshairNavigationEnabled(false) { /****************************************************** * Use the global RenderingManager is none was specified * ****************************************************/ if (m_RenderingManager == NULL) { m_RenderingManager = mitk::RenderingManager::GetInstance(); } /*******************************/ //Create Widget manually /*******************************/ //create Layouts QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); QmitkStdMultiWidgetLayout->setContentsMargins(0,0,0,0); //Set Layout to widget this->setLayout(QmitkStdMultiWidgetLayout); // QmitkNavigationToolBar* toolBar = new QmitkNavigationToolBar(); // QmitkStdMultiWidgetLayout->addWidget( toolBar ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( Qt::Vertical, m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //create m_SubSplit1 and m_SubSplit2 m_SubSplit1 = new QSplitter( m_LayoutSplit ); m_SubSplit2 = new QSplitter( m_LayoutSplit ); //creae Widget Container mitkWidget1Container = new QWidget(m_SubSplit1); mitkWidget2Container = new QWidget(m_SubSplit1); mitkWidget3Container = new QWidget(m_SubSplit2); mitkWidget4Container = new QWidget(m_SubSplit2); mitkWidget1Container->setContentsMargins(0,0,0,0); mitkWidget2Container->setContentsMargins(0,0,0,0); mitkWidget3Container->setContentsMargins(0,0,0,0); mitkWidget4Container->setContentsMargins(0,0,0,0); //create Widget Layout QHBoxLayout *mitkWidgetLayout1 = new QHBoxLayout(mitkWidget1Container); QHBoxLayout *mitkWidgetLayout2 = new QHBoxLayout(mitkWidget2Container); QHBoxLayout *mitkWidgetLayout3 = new QHBoxLayout(mitkWidget3Container); QHBoxLayout *mitkWidgetLayout4 = new QHBoxLayout(mitkWidget4Container); mitkWidgetLayout1->setMargin(0); mitkWidgetLayout2->setMargin(0); mitkWidgetLayout3->setMargin(0); mitkWidgetLayout4->setMargin(0); //set Layout to Widget Container mitkWidget1Container->setLayout(mitkWidgetLayout1); mitkWidget2Container->setLayout(mitkWidgetLayout2); mitkWidget3Container->setLayout(mitkWidgetLayout3); mitkWidget4Container->setLayout(mitkWidgetLayout4); //set SizePolicy mitkWidget1Container->setSizePolicy(QSizePolicy::Expanding,QSizePolicy::Expanding); mitkWidget2Container->setSizePolicy(QSizePolicy::Expanding,QSizePolicy::Expanding); mitkWidget3Container->setSizePolicy(QSizePolicy::Expanding,QSizePolicy::Expanding); mitkWidget4Container->setSizePolicy(QSizePolicy::Expanding,QSizePolicy::Expanding); //insert Widget Container into the splitters m_SubSplit1->addWidget( mitkWidget1Container ); m_SubSplit1->addWidget( mitkWidget2Container ); m_SubSplit2->addWidget( mitkWidget3Container ); m_SubSplit2->addWidget( mitkWidget4Container ); // m_RenderingManager->SetGlobalInteraction( mitk::GlobalInteraction::GetInstance() ); //Create RenderWindows 1 mitkWidget1 = new QmitkRenderWindow(mitkWidget1Container, "stdmulti.widget1", NULL, m_RenderingManager); mitkWidget1->setMaximumSize(2000,2000); mitkWidget1->SetLayoutIndex( TRANSVERSAL ); mitkWidgetLayout1->addWidget(mitkWidget1); //Create RenderWindows 2 mitkWidget2 = new QmitkRenderWindow(mitkWidget2Container, "stdmulti.widget2", NULL, m_RenderingManager); mitkWidget2->setMaximumSize(2000,2000); mitkWidget2->setEnabled( TRUE ); mitkWidget2->SetLayoutIndex( SAGITTAL ); mitkWidgetLayout2->addWidget(mitkWidget2); //Create RenderWindows 3 mitkWidget3 = new QmitkRenderWindow(mitkWidget3Container, "stdmulti.widget3", NULL, m_RenderingManager); mitkWidget3->setMaximumSize(2000,2000); mitkWidget3->SetLayoutIndex( CORONAL ); mitkWidgetLayout3->addWidget(mitkWidget3); //Create RenderWindows 4 mitkWidget4 = new QmitkRenderWindow(mitkWidget4Container, "stdmulti.widget4", NULL, m_RenderingManager); mitkWidget4->setMaximumSize(2000,2000); mitkWidget4->SetLayoutIndex( THREE_D ); mitkWidgetLayout4->addWidget(mitkWidget4); //create SignalSlot Connection connect( mitkWidget1, SIGNAL( SignalLayoutDesignChanged(int) ), this, SLOT( OnLayoutDesignChanged(int) ) ); connect( mitkWidget1, SIGNAL( ResetView() ), this, SLOT( ResetCrosshair() ) ); connect( mitkWidget1, SIGNAL( ChangeCrosshairRotationMode(int) ), this, SLOT( SetWidgetPlaneMode(int) ) ); connect( this, SIGNAL(WidgetNotifyNewCrossHairMode(int)), mitkWidget1, SLOT(OnWidgetPlaneModeChanged(int)) ); connect( mitkWidget2, SIGNAL( SignalLayoutDesignChanged(int) ), this, SLOT( OnLayoutDesignChanged(int) ) ); connect( mitkWidget2, SIGNAL( ResetView() ), this, SLOT( ResetCrosshair() ) ); connect( mitkWidget2, SIGNAL( ChangeCrosshairRotationMode(int) ), this, SLOT( SetWidgetPlaneMode(int) ) ); connect( this, SIGNAL(WidgetNotifyNewCrossHairMode(int)), mitkWidget2, SLOT(OnWidgetPlaneModeChanged(int)) ); connect( mitkWidget3, SIGNAL( SignalLayoutDesignChanged(int) ), this, SLOT( OnLayoutDesignChanged(int) ) ); connect( mitkWidget3, SIGNAL( ResetView() ), this, SLOT( ResetCrosshair() ) ); connect( mitkWidget3, SIGNAL( ChangeCrosshairRotationMode(int) ), this, SLOT( SetWidgetPlaneMode(int) ) ); connect( this, SIGNAL(WidgetNotifyNewCrossHairMode(int)), mitkWidget3, SLOT(OnWidgetPlaneModeChanged(int)) ); connect( mitkWidget4, SIGNAL( SignalLayoutDesignChanged(int) ), this, SLOT( OnLayoutDesignChanged(int) ) ); connect( mitkWidget4, SIGNAL( ResetView() ), this, SLOT( ResetCrosshair() ) ); connect( mitkWidget4, SIGNAL( ChangeCrosshairRotationMode(int) ), this, SLOT( SetWidgetPlaneMode(int) ) ); connect( this, SIGNAL(WidgetNotifyNewCrossHairMode(int)), mitkWidget4, SLOT(OnWidgetPlaneModeChanged(int)) ); //Create Level Window Widget levelWindowWidget = new QmitkLevelWindowWidget( m_MainSplit ); //this levelWindowWidget->setObjectName(QString::fromUtf8("levelWindowWidget")); QSizePolicy sizePolicy(QSizePolicy::Preferred, QSizePolicy::Preferred); sizePolicy.setHorizontalStretch(0); sizePolicy.setVerticalStretch(0); sizePolicy.setHeightForWidth(levelWindowWidget->sizePolicy().hasHeightForWidth()); levelWindowWidget->setSizePolicy(sizePolicy); levelWindowWidget->setMaximumSize(QSize(50, 2000)); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //show mainSplitt and add to Layout m_MainSplit->show(); //resize Image. this->resize( QSize(364, 477).expandedTo(minimumSizeHint()) ); //Initialize the widgets. this->InitializeWidget(); //Activate Widget Menu this->ActivateMenuWidget( true ); } void QmitkStdMultiWidget::InitializeWidget() { m_PositionTracker = NULL; // transfer colors in WorldGeometry-Nodes of the associated Renderer QColor qcolor; //float color[3] = {1.0f,1.0f,1.0f}; mitk::DataNode::Pointer planeNode; mitk::IntProperty::Pointer layer; // of widget 1 planeNode = mitk::BaseRenderer::GetInstance(mitkWidget1->GetRenderWindow())->GetCurrentWorldGeometry2DNode(); planeNode->SetColor(1.0,0.0,0.0); layer = mitk::IntProperty::New(1000); planeNode->SetProperty("layer",layer); // ... of widget 2 planeNode = mitk::BaseRenderer::GetInstance(mitkWidget2->GetRenderWindow())->GetCurrentWorldGeometry2DNode(); planeNode->SetColor(0.0,1.0,0.0); layer = mitk::IntProperty::New(1000); planeNode->SetProperty("layer",layer); // ... of widget 3 planeNode = mitk::BaseRenderer::GetInstance(mitkWidget3->GetRenderWindow())->GetCurrentWorldGeometry2DNode(); planeNode->SetColor(0.0,0.0,1.0); layer = mitk::IntProperty::New(1000); planeNode->SetProperty("layer",layer); // ... of widget 4 planeNode = mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow())->GetCurrentWorldGeometry2DNode(); planeNode->SetColor(1.0,1.0,0.0); layer = mitk::IntProperty::New(1000); planeNode->SetProperty("layer",layer); mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow())->SetMapperID(mitk::BaseRenderer::Standard3D); // Set plane mode (slicing/rotation behavior) to slicing (default) m_PlaneMode = PLANE_MODE_SLICING; // Set default view directions for SNCs mitkWidget1->GetSliceNavigationController()->SetDefaultViewDirection( mitk::SliceNavigationController::Transversal ); mitkWidget2->GetSliceNavigationController()->SetDefaultViewDirection( mitk::SliceNavigationController::Sagittal ); mitkWidget3->GetSliceNavigationController()->SetDefaultViewDirection( mitk::SliceNavigationController::Frontal ); mitkWidget4->GetSliceNavigationController()->SetDefaultViewDirection( mitk::SliceNavigationController::Original ); /*************************************************/ //Write Layout Names into the viewers -- hardCoded //Info for later: //int view = this->GetRenderWindow1()->GetSliceNavigationController()->GetDefaultViewDirection(); //QString layoutName; //if( view == mitk::SliceNavigationController::Transversal ) // layoutName = "Transversal"; //else if( view == mitk::SliceNavigationController::Sagittal ) // layoutName = "Sagittal"; //else if( view == mitk::SliceNavigationController::Frontal ) // layoutName = "Coronal"; //else if( view == mitk::SliceNavigationController::Original ) // layoutName = "Original"; //if( view >= 0 && view < 4 ) // //write LayoutName --> Viewer 3D shoudn't write the layoutName. //Render Window 1 == transversal m_CornerAnnotaions[0].cornerText = vtkCornerAnnotation::New(); m_CornerAnnotaions[0].cornerText->SetText(0, "Transversal"); m_CornerAnnotaions[0].cornerText->SetMaximumFontSize(12); m_CornerAnnotaions[0].textProp = vtkTextProperty::New(); m_CornerAnnotaions[0].textProp->SetColor( 1.0, 0.0, 0.0 ); m_CornerAnnotaions[0].cornerText->SetTextProperty( m_CornerAnnotaions[0].textProp ); m_CornerAnnotaions[0].ren = vtkRenderer::New(); m_CornerAnnotaions[0].ren->AddActor(m_CornerAnnotaions[0].cornerText); m_CornerAnnotaions[0].ren->InteractiveOff(); mitk::VtkLayerController::GetInstance(this->GetRenderWindow1()->GetRenderWindow())->InsertForegroundRenderer(m_CornerAnnotaions[0].ren,true); //Render Window 2 == sagittal m_CornerAnnotaions[1].cornerText = vtkCornerAnnotation::New(); m_CornerAnnotaions[1].cornerText->SetText(0, "Sagittal"); m_CornerAnnotaions[1].cornerText->SetMaximumFontSize(12); m_CornerAnnotaions[1].textProp = vtkTextProperty::New(); m_CornerAnnotaions[1].textProp->SetColor( 0.0, 1.0, 0.0 ); m_CornerAnnotaions[1].cornerText->SetTextProperty( m_CornerAnnotaions[1].textProp ); m_CornerAnnotaions[1].ren = vtkRenderer::New(); m_CornerAnnotaions[1].ren->AddActor(m_CornerAnnotaions[1].cornerText); m_CornerAnnotaions[1].ren->InteractiveOff(); mitk::VtkLayerController::GetInstance(this->GetRenderWindow2()->GetRenderWindow())->InsertForegroundRenderer(m_CornerAnnotaions[1].ren,true); //Render Window 3 == coronal m_CornerAnnotaions[2].cornerText = vtkCornerAnnotation::New(); m_CornerAnnotaions[2].cornerText->SetText(0, "Coronal"); m_CornerAnnotaions[2].cornerText->SetMaximumFontSize(12); m_CornerAnnotaions[2].textProp = vtkTextProperty::New(); m_CornerAnnotaions[2].textProp->SetColor( 0.295, 0.295, 1.0 ); m_CornerAnnotaions[2].cornerText->SetTextProperty( m_CornerAnnotaions[2].textProp ); m_CornerAnnotaions[2].ren = vtkRenderer::New(); m_CornerAnnotaions[2].ren->AddActor(m_CornerAnnotaions[2].cornerText); m_CornerAnnotaions[2].ren->InteractiveOff(); mitk::VtkLayerController::GetInstance(this->GetRenderWindow3()->GetRenderWindow())->InsertForegroundRenderer(m_CornerAnnotaions[2].ren,true); /*************************************************/ // create a slice rotator // m_SlicesRotator = mitk::SlicesRotator::New(); // @TODO next line causes sure memory leak // rotator will be created nonetheless (will be switched on and off) m_SlicesRotator = mitk::SlicesRotator::New("slices-rotator"); m_SlicesRotator->AddSliceController( mitkWidget1->GetSliceNavigationController() ); m_SlicesRotator->AddSliceController( mitkWidget2->GetSliceNavigationController() ); m_SlicesRotator->AddSliceController( mitkWidget3->GetSliceNavigationController() ); // create a slice swiveller (using the same state-machine as SlicesRotator) m_SlicesSwiveller = mitk::SlicesSwiveller::New("slices-rotator"); m_SlicesSwiveller->AddSliceController( mitkWidget1->GetSliceNavigationController() ); m_SlicesSwiveller->AddSliceController( mitkWidget2->GetSliceNavigationController() ); m_SlicesSwiveller->AddSliceController( mitkWidget3->GetSliceNavigationController() ); //initialize m_TimeNavigationController: send time via sliceNavigationControllers m_TimeNavigationController = mitk::SliceNavigationController::New("dummy"); m_TimeNavigationController->ConnectGeometryTimeEvent( mitkWidget1->GetSliceNavigationController() , false); m_TimeNavigationController->ConnectGeometryTimeEvent( mitkWidget2->GetSliceNavigationController() , false); m_TimeNavigationController->ConnectGeometryTimeEvent( mitkWidget3->GetSliceNavigationController() , false); m_TimeNavigationController->ConnectGeometryTimeEvent( mitkWidget4->GetSliceNavigationController() , false); mitkWidget1->GetSliceNavigationController() ->ConnectGeometrySendEvent(mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow())); // Set TimeNavigationController to RenderingManager // (which uses it internally for views initialization!) m_RenderingManager->SetTimeNavigationController( m_TimeNavigationController ); //reverse connection between sliceNavigationControllers and m_TimeNavigationController mitkWidget1->GetSliceNavigationController() ->ConnectGeometryTimeEvent(m_TimeNavigationController.GetPointer(), false); mitkWidget2->GetSliceNavigationController() ->ConnectGeometryTimeEvent(m_TimeNavigationController.GetPointer(), false); mitkWidget3->GetSliceNavigationController() ->ConnectGeometryTimeEvent(m_TimeNavigationController.GetPointer(), false); mitkWidget4->GetSliceNavigationController() ->ConnectGeometryTimeEvent(m_TimeNavigationController.GetPointer(), false); m_MouseModeSwitcher = mitk::MouseModeSwitcher::New( mitk::GlobalInteraction::GetInstance() ); m_LastLeftClickPositionSupplier = mitk::CoordinateSupplier::New("navigation", NULL); mitk::GlobalInteraction::GetInstance()->AddListener( m_LastLeftClickPositionSupplier ); // setup gradient background m_GradientBackground1 = mitk::GradientBackground::New(); m_GradientBackground1->SetRenderWindow( mitkWidget1->GetRenderWindow() ); m_GradientBackground1->Disable(); m_GradientBackground2 = mitk::GradientBackground::New(); m_GradientBackground2->SetRenderWindow( mitkWidget2->GetRenderWindow() ); m_GradientBackground2->Disable(); m_GradientBackground3 = mitk::GradientBackground::New(); m_GradientBackground3->SetRenderWindow( mitkWidget3->GetRenderWindow() ); m_GradientBackground3->Disable(); m_GradientBackground4 = mitk::GradientBackground::New(); m_GradientBackground4->SetRenderWindow( mitkWidget4->GetRenderWindow() ); m_GradientBackground4->SetGradientColors(0.1,0.1,0.1,0.5,0.5,0.5); m_GradientBackground4->Enable(); // setup the department logo rendering m_LogoRendering1 = mitk::ManufacturerLogo::New(); m_LogoRendering1->SetRenderWindow( mitkWidget1->GetRenderWindow() ); m_LogoRendering1->Disable(); m_LogoRendering2 = mitk::ManufacturerLogo::New(); m_LogoRendering2->SetRenderWindow( mitkWidget2->GetRenderWindow() ); m_LogoRendering2->Disable(); m_LogoRendering3 = mitk::ManufacturerLogo::New(); m_LogoRendering3->SetRenderWindow( mitkWidget3->GetRenderWindow() ); m_LogoRendering3->Disable(); m_LogoRendering4 = mitk::ManufacturerLogo::New(); m_LogoRendering4->SetRenderWindow( mitkWidget4->GetRenderWindow() ); m_LogoRendering4->Enable(); m_RectangleRendering1 = mitk::RenderWindowFrame::New(); m_RectangleRendering1->SetRenderWindow( mitkWidget1->GetRenderWindow() ); m_RectangleRendering1->Enable(1.0,0.0,0.0); m_RectangleRendering2 = mitk::RenderWindowFrame::New(); m_RectangleRendering2->SetRenderWindow( mitkWidget2->GetRenderWindow() ); m_RectangleRendering2->Enable(0.0,1.0,0.0); m_RectangleRendering3 = mitk::RenderWindowFrame::New(); m_RectangleRendering3->SetRenderWindow( mitkWidget3->GetRenderWindow() ); m_RectangleRendering3->Enable(0.0,0.0,1.0); m_RectangleRendering4 = mitk::RenderWindowFrame::New(); m_RectangleRendering4->SetRenderWindow( mitkWidget4->GetRenderWindow() ); m_RectangleRendering4->Enable(1.0,1.0,0.0); } QmitkStdMultiWidget::~QmitkStdMultiWidget() { DisablePositionTracking(); DisableNavigationControllerEventListening(); mitk::VtkLayerController::GetInstance(this->GetRenderWindow1()->GetRenderWindow())->RemoveRenderer( m_CornerAnnotaions[0].ren ); mitk::VtkLayerController::GetInstance(this->GetRenderWindow2()->GetRenderWindow())->RemoveRenderer( m_CornerAnnotaions[1].ren ); mitk::VtkLayerController::GetInstance(this->GetRenderWindow3()->GetRenderWindow())->RemoveRenderer( m_CornerAnnotaions[2].ren ); //Delete CornerAnnotation m_CornerAnnotaions[0].cornerText->Delete(); m_CornerAnnotaions[0].textProp->Delete(); m_CornerAnnotaions[0].ren->Delete(); m_CornerAnnotaions[1].cornerText->Delete(); m_CornerAnnotaions[1].textProp->Delete(); m_CornerAnnotaions[1].ren->Delete(); m_CornerAnnotaions[2].cornerText->Delete(); m_CornerAnnotaions[2].textProp->Delete(); m_CornerAnnotaions[2].ren->Delete(); } void QmitkStdMultiWidget::RemovePlanesFromDataStorage() { if (m_PlaneNode1.IsNotNull() && m_PlaneNode2.IsNotNull() && m_PlaneNode3.IsNotNull() && m_Node.IsNotNull()) { if(m_DataStorage.IsNotNull()) { m_DataStorage->Remove(m_PlaneNode1); m_DataStorage->Remove(m_PlaneNode2); m_DataStorage->Remove(m_PlaneNode3); m_DataStorage->Remove(m_Node); } } } void QmitkStdMultiWidget::AddPlanesToDataStorage() { if (m_PlaneNode1.IsNotNull() && m_PlaneNode2.IsNotNull() && m_PlaneNode3.IsNotNull() && m_Node.IsNotNull()) { if (m_DataStorage.IsNotNull()) { m_DataStorage->Add(m_Node); m_DataStorage->Add(m_PlaneNode1, m_Node); m_DataStorage->Add(m_PlaneNode2, m_Node); m_DataStorage->Add(m_PlaneNode3, m_Node); static_cast(m_PlaneNode1->GetMapper(mitk::BaseRenderer::Standard2D))->SetDatastorageAndGeometryBaseNode(m_DataStorage, m_Node); static_cast(m_PlaneNode2->GetMapper(mitk::BaseRenderer::Standard2D))->SetDatastorageAndGeometryBaseNode(m_DataStorage, m_Node); static_cast(m_PlaneNode3->GetMapper(mitk::BaseRenderer::Standard2D))->SetDatastorageAndGeometryBaseNode(m_DataStorage, m_Node); } } } void QmitkStdMultiWidget::changeLayoutTo2DImagesUp() { SMW_INFO << "changing layout to 2D images up... " << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //Set Layout to widget this->setLayout(QmitkStdMultiWidgetLayout); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( Qt::Vertical, m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //create m_SubSplit1 and m_SubSplit2 m_SubSplit1 = new QSplitter( m_LayoutSplit ); m_SubSplit2 = new QSplitter( m_LayoutSplit ); //insert Widget Container into splitter top m_SubSplit1->addWidget( mitkWidget1Container ); m_SubSplit1->addWidget( mitkWidget2Container ); m_SubSplit1->addWidget( mitkWidget3Container ); //set SplitterSize for splitter top QList splitterSize; splitterSize.push_back(1000); splitterSize.push_back(1000); splitterSize.push_back(1000); m_SubSplit1->setSizes( splitterSize ); //insert Widget Container into splitter bottom m_SubSplit2->addWidget( mitkWidget4Container ); //set SplitterSize for splitter m_LayoutSplit splitterSize.clear(); splitterSize.push_back(400); splitterSize.push_back(1000); m_LayoutSplit->setSizes( splitterSize ); //show mainSplitt m_MainSplit->show(); //show Widget if hidden if ( mitkWidget1->isHidden() ) mitkWidget1->show(); if ( mitkWidget2->isHidden() ) mitkWidget2->show(); if ( mitkWidget3->isHidden() ) mitkWidget3->show(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); //Change Layout Name m_Layout = LAYOUT_2D_IMAGES_UP; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_2D_IMAGES_UP ); mitkWidget2->LayoutDesignListChanged( LAYOUT_2D_IMAGES_UP ); mitkWidget3->LayoutDesignListChanged( LAYOUT_2D_IMAGES_UP ); mitkWidget4->LayoutDesignListChanged( LAYOUT_2D_IMAGES_UP ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutTo2DImagesLeft() { SMW_INFO << "changing layout to 2D images left... " << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //create m_SubSplit1 and m_SubSplit2 m_SubSplit1 = new QSplitter( Qt::Vertical, m_LayoutSplit ); m_SubSplit2 = new QSplitter( m_LayoutSplit ); //insert Widget into the splitters m_SubSplit1->addWidget( mitkWidget1Container ); m_SubSplit1->addWidget( mitkWidget2Container ); m_SubSplit1->addWidget( mitkWidget3Container ); //set splitterSize of SubSplit1 QList splitterSize; splitterSize.push_back(1000); splitterSize.push_back(1000); splitterSize.push_back(1000); m_SubSplit1->setSizes( splitterSize ); m_SubSplit2->addWidget( mitkWidget4Container ); //set splitterSize of Layout Split splitterSize.clear(); splitterSize.push_back(400); splitterSize.push_back(1000); m_LayoutSplit->setSizes( splitterSize ); //show mainSplitt and add to Layout m_MainSplit->show(); //show Widget if hidden if ( mitkWidget1->isHidden() ) mitkWidget1->show(); if ( mitkWidget2->isHidden() ) mitkWidget2->show(); if ( mitkWidget3->isHidden() ) mitkWidget3->show(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); //update Layout Name m_Layout = LAYOUT_2D_IMAGES_LEFT; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_2D_IMAGES_LEFT ); mitkWidget2->LayoutDesignListChanged( LAYOUT_2D_IMAGES_LEFT ); mitkWidget3->LayoutDesignListChanged( LAYOUT_2D_IMAGES_LEFT ); mitkWidget4->LayoutDesignListChanged( LAYOUT_2D_IMAGES_LEFT ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutToDefault() { SMW_INFO << "changing layout to default... " << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( Qt::Vertical, m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //create m_SubSplit1 and m_SubSplit2 m_SubSplit1 = new QSplitter( m_LayoutSplit ); m_SubSplit2 = new QSplitter( m_LayoutSplit ); //insert Widget container into the splitters m_SubSplit1->addWidget( mitkWidget1Container ); m_SubSplit1->addWidget( mitkWidget2Container ); m_SubSplit2->addWidget( mitkWidget3Container ); m_SubSplit2->addWidget( mitkWidget4Container ); //set splitter Size QList splitterSize; splitterSize.push_back(1000); splitterSize.push_back(1000); m_SubSplit1->setSizes( splitterSize ); m_SubSplit2->setSizes( splitterSize ); m_LayoutSplit->setSizes( splitterSize ); //show mainSplitt and add to Layout m_MainSplit->show(); //show Widget if hidden if ( mitkWidget1->isHidden() ) mitkWidget1->show(); if ( mitkWidget2->isHidden() ) mitkWidget2->show(); if ( mitkWidget3->isHidden() ) mitkWidget3->show(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); m_Layout = LAYOUT_DEFAULT; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_DEFAULT ); mitkWidget2->LayoutDesignListChanged( LAYOUT_DEFAULT ); mitkWidget3->LayoutDesignListChanged( LAYOUT_DEFAULT ); mitkWidget4->LayoutDesignListChanged( LAYOUT_DEFAULT ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutToBig3D() { SMW_INFO << "changing layout to big 3D ..." << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //add widget Splitter to main Splitter m_MainSplit->addWidget( mitkWidget4Container ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //show mainSplitt and add to Layout m_MainSplit->show(); //show/hide Widgets mitkWidget1->hide(); mitkWidget2->hide(); mitkWidget3->hide(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); m_Layout = LAYOUT_BIG_3D; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_BIG_3D ); mitkWidget2->LayoutDesignListChanged( LAYOUT_BIG_3D ); mitkWidget3->LayoutDesignListChanged( LAYOUT_BIG_3D ); mitkWidget4->LayoutDesignListChanged( LAYOUT_BIG_3D ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutToWidget1() { SMW_INFO << "changing layout to big Widget1 ..." << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //add widget Splitter to main Splitter m_MainSplit->addWidget( mitkWidget1Container ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //show mainSplitt and add to Layout m_MainSplit->show(); //show/hide Widgets if ( mitkWidget1->isHidden() ) mitkWidget1->show(); mitkWidget2->hide(); mitkWidget3->hide(); mitkWidget4->hide(); m_Layout = LAYOUT_WIDGET1; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_WIDGET1 ); mitkWidget2->LayoutDesignListChanged( LAYOUT_WIDGET1 ); mitkWidget3->LayoutDesignListChanged( LAYOUT_WIDGET1 ); mitkWidget4->LayoutDesignListChanged( LAYOUT_WIDGET1 ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutToWidget2() { SMW_INFO << "changing layout to big Widget2 ..." << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //add widget Splitter to main Splitter m_MainSplit->addWidget( mitkWidget2Container ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //show mainSplitt and add to Layout m_MainSplit->show(); //show/hide Widgets mitkWidget1->hide(); if ( mitkWidget2->isHidden() ) mitkWidget2->show(); mitkWidget3->hide(); mitkWidget4->hide(); m_Layout = LAYOUT_WIDGET2; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_WIDGET2 ); mitkWidget2->LayoutDesignListChanged( LAYOUT_WIDGET2 ); mitkWidget3->LayoutDesignListChanged( LAYOUT_WIDGET2 ); mitkWidget4->LayoutDesignListChanged( LAYOUT_WIDGET2 ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutToWidget3() { SMW_INFO << "changing layout to big Widget3 ..." << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //add widget Splitter to main Splitter m_MainSplit->addWidget( mitkWidget3Container ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //show mainSplitt and add to Layout m_MainSplit->show(); //show/hide Widgets mitkWidget1->hide(); mitkWidget2->hide(); if ( mitkWidget3->isHidden() ) mitkWidget3->show(); mitkWidget4->hide(); m_Layout = LAYOUT_WIDGET3; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_WIDGET3 ); mitkWidget2->LayoutDesignListChanged( LAYOUT_WIDGET3 ); mitkWidget3->LayoutDesignListChanged( LAYOUT_WIDGET3 ); mitkWidget4->LayoutDesignListChanged( LAYOUT_WIDGET3 ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutToRowWidget3And4() { SMW_INFO << "changing layout to Widget3 and 4 in a Row..." << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( Qt::Vertical, m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //add Widgets to splitter m_LayoutSplit->addWidget( mitkWidget3Container ); m_LayoutSplit->addWidget( mitkWidget4Container ); //set Splitter Size QList splitterSize; splitterSize.push_back(1000); splitterSize.push_back(1000); m_LayoutSplit->setSizes( splitterSize ); //show mainSplitt and add to Layout m_MainSplit->show(); //show/hide Widgets mitkWidget1->hide(); mitkWidget2->hide(); if ( mitkWidget3->isHidden() ) mitkWidget3->show(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); m_Layout = LAYOUT_ROW_WIDGET_3_AND_4; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_ROW_WIDGET_3_AND_4 ); mitkWidget2->LayoutDesignListChanged( LAYOUT_ROW_WIDGET_3_AND_4 ); mitkWidget3->LayoutDesignListChanged( LAYOUT_ROW_WIDGET_3_AND_4 ); mitkWidget4->LayoutDesignListChanged( LAYOUT_ROW_WIDGET_3_AND_4 ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutToColumnWidget3And4() { SMW_INFO << "changing layout to Widget3 and 4 in one Column..." << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //add Widgets to splitter m_LayoutSplit->addWidget( mitkWidget3Container ); m_LayoutSplit->addWidget( mitkWidget4Container ); //set SplitterSize QList splitterSize; splitterSize.push_back(1000); splitterSize.push_back(1000); m_LayoutSplit->setSizes( splitterSize ); //show mainSplitt and add to Layout m_MainSplit->show(); //show/hide Widgets mitkWidget1->hide(); mitkWidget2->hide(); if ( mitkWidget3->isHidden() ) mitkWidget3->show(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); m_Layout = LAYOUT_COLUMN_WIDGET_3_AND_4; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_COLUMN_WIDGET_3_AND_4 ); mitkWidget2->LayoutDesignListChanged( LAYOUT_COLUMN_WIDGET_3_AND_4 ); mitkWidget3->LayoutDesignListChanged( LAYOUT_COLUMN_WIDGET_3_AND_4 ); mitkWidget4->LayoutDesignListChanged( LAYOUT_COLUMN_WIDGET_3_AND_4 ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutToRowWidgetSmall3andBig4() { SMW_INFO << "changing layout to Widget3 and 4 in a Row..." << std::endl; this->changeLayoutToRowWidget3And4(); m_Layout = LAYOUT_ROW_WIDGET_SMALL3_AND_BIG4; } void QmitkStdMultiWidget::changeLayoutToSmallUpperWidget2Big3and4() { SMW_INFO << "changing layout to Widget3 and 4 in a Row..." << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( Qt::Vertical, m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //create m_SubSplit1 and m_SubSplit2 m_SubSplit1 = new QSplitter( Qt::Vertical, m_LayoutSplit ); m_SubSplit2 = new QSplitter( m_LayoutSplit ); //insert Widget into the splitters m_SubSplit1->addWidget( mitkWidget2Container ); m_SubSplit2->addWidget( mitkWidget3Container ); m_SubSplit2->addWidget( mitkWidget4Container ); //set Splitter Size QList splitterSize; splitterSize.push_back(1000); splitterSize.push_back(1000); m_SubSplit2->setSizes( splitterSize ); splitterSize.clear(); splitterSize.push_back(500); splitterSize.push_back(1000); m_LayoutSplit->setSizes( splitterSize ); //show mainSplitt m_MainSplit->show(); //show Widget if hidden mitkWidget1->hide(); if ( mitkWidget2->isHidden() ) mitkWidget2->show(); if ( mitkWidget3->isHidden() ) mitkWidget3->show(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); m_Layout = LAYOUT_SMALL_UPPER_WIDGET2_BIG3_AND4; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_SMALL_UPPER_WIDGET2_BIG3_AND4 ); mitkWidget2->LayoutDesignListChanged( LAYOUT_SMALL_UPPER_WIDGET2_BIG3_AND4 ); mitkWidget3->LayoutDesignListChanged( LAYOUT_SMALL_UPPER_WIDGET2_BIG3_AND4 ); mitkWidget4->LayoutDesignListChanged( LAYOUT_SMALL_UPPER_WIDGET2_BIG3_AND4 ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutTo2x2Dand3DWidget() { SMW_INFO << "changing layout to 2 x 2D and 3D Widget" << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //create m_SubSplit1 and m_SubSplit2 m_SubSplit1 = new QSplitter( Qt::Vertical, m_LayoutSplit ); m_SubSplit2 = new QSplitter( m_LayoutSplit ); //add Widgets to splitter m_SubSplit1->addWidget( mitkWidget1Container ); m_SubSplit1->addWidget( mitkWidget2Container ); m_SubSplit2->addWidget( mitkWidget4Container ); //set Splitter Size QList splitterSize; splitterSize.push_back(1000); splitterSize.push_back(1000); m_SubSplit1->setSizes( splitterSize ); m_LayoutSplit->setSizes( splitterSize ); //show mainSplitt and add to Layout m_MainSplit->show(); //show/hide Widgets if ( mitkWidget1->isHidden() ) mitkWidget1->show(); if ( mitkWidget2->isHidden() ) mitkWidget2->show(); mitkWidget3->hide(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); m_Layout = LAYOUT_2X_2D_AND_3D_WIDGET; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_2X_2D_AND_3D_WIDGET ); mitkWidget2->LayoutDesignListChanged( LAYOUT_2X_2D_AND_3D_WIDGET ); mitkWidget3->LayoutDesignListChanged( LAYOUT_2X_2D_AND_3D_WIDGET ); mitkWidget4->LayoutDesignListChanged( LAYOUT_2X_2D_AND_3D_WIDGET ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutToLeft2Dand3DRight2D() { SMW_INFO << "changing layout to 2D and 3D left, 2D right Widget" << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //create m_SubSplit1 and m_SubSplit2 m_SubSplit1 = new QSplitter( Qt::Vertical, m_LayoutSplit ); m_SubSplit2 = new QSplitter( m_LayoutSplit ); //add Widgets to splitter m_SubSplit1->addWidget( mitkWidget1Container ); m_SubSplit1->addWidget( mitkWidget4Container ); m_SubSplit2->addWidget( mitkWidget2Container ); //set Splitter Size QList splitterSize; splitterSize.push_back(1000); splitterSize.push_back(1000); m_SubSplit1->setSizes( splitterSize ); m_LayoutSplit->setSizes( splitterSize ); //show mainSplitt and add to Layout m_MainSplit->show(); //show/hide Widgets if ( mitkWidget1->isHidden() ) mitkWidget1->show(); if ( mitkWidget2->isHidden() ) mitkWidget2->show(); mitkWidget3->hide(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); m_Layout = LAYOUT_2D_AND_3D_LEFT_2D_RIGHT_WIDGET; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_2D_AND_3D_LEFT_2D_RIGHT_WIDGET ); mitkWidget2->LayoutDesignListChanged( LAYOUT_2D_AND_3D_LEFT_2D_RIGHT_WIDGET ); mitkWidget3->LayoutDesignListChanged( LAYOUT_2D_AND_3D_LEFT_2D_RIGHT_WIDGET ); mitkWidget4->LayoutDesignListChanged( LAYOUT_2D_AND_3D_LEFT_2D_RIGHT_WIDGET ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutTo2DUpAnd3DDown() { SMW_INFO << "changing layout to 2D up and 3D down" << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //Set Layout to widget this->setLayout(QmitkStdMultiWidgetLayout); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( Qt::Vertical, m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //create m_SubSplit1 and m_SubSplit2 m_SubSplit1 = new QSplitter( m_LayoutSplit ); m_SubSplit2 = new QSplitter( m_LayoutSplit ); //insert Widget Container into splitter top m_SubSplit1->addWidget( mitkWidget1Container ); //set SplitterSize for splitter top QList splitterSize; // splitterSize.push_back(1000); // splitterSize.push_back(1000); // splitterSize.push_back(1000); // m_SubSplit1->setSizes( splitterSize ); //insert Widget Container into splitter bottom m_SubSplit2->addWidget( mitkWidget4Container ); //set SplitterSize for splitter m_LayoutSplit splitterSize.clear(); splitterSize.push_back(700); splitterSize.push_back(700); m_LayoutSplit->setSizes( splitterSize ); //show mainSplitt m_MainSplit->show(); //show/hide Widgets if ( mitkWidget1->isHidden() ) mitkWidget1->show(); mitkWidget2->hide(); mitkWidget3->hide(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); m_Layout = LAYOUT_2D_UP_AND_3D_DOWN; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_2D_UP_AND_3D_DOWN ); mitkWidget2->LayoutDesignListChanged( LAYOUT_2D_UP_AND_3D_DOWN ); mitkWidget3->LayoutDesignListChanged( LAYOUT_2D_UP_AND_3D_DOWN ); mitkWidget4->LayoutDesignListChanged( LAYOUT_2D_UP_AND_3D_DOWN ); //update all Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::SetDataStorage( mitk::DataStorage* ds ) { mitk::BaseRenderer::GetInstance(mitkWidget1->GetRenderWindow())->SetDataStorage(ds); mitk::BaseRenderer::GetInstance(mitkWidget2->GetRenderWindow())->SetDataStorage(ds); mitk::BaseRenderer::GetInstance(mitkWidget3->GetRenderWindow())->SetDataStorage(ds); mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow())->SetDataStorage(ds); m_DataStorage = ds; } void QmitkStdMultiWidget::Fit() { vtkRenderer * vtkrenderer; mitk::BaseRenderer::GetInstance(mitkWidget1->GetRenderWindow())->GetDisplayGeometry()->Fit(); mitk::BaseRenderer::GetInstance(mitkWidget2->GetRenderWindow())->GetDisplayGeometry()->Fit(); mitk::BaseRenderer::GetInstance(mitkWidget3->GetRenderWindow())->GetDisplayGeometry()->Fit(); mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow())->GetDisplayGeometry()->Fit(); int w = vtkObject::GetGlobalWarningDisplay(); vtkObject::GlobalWarningDisplayOff(); vtkrenderer = mitk::BaseRenderer::GetInstance(mitkWidget1->GetRenderWindow())->GetVtkRenderer(); if ( vtkrenderer!= NULL ) vtkrenderer->ResetCamera(); vtkrenderer = mitk::BaseRenderer::GetInstance(mitkWidget2->GetRenderWindow())->GetVtkRenderer(); if ( vtkrenderer!= NULL ) vtkrenderer->ResetCamera(); vtkrenderer = mitk::BaseRenderer::GetInstance(mitkWidget3->GetRenderWindow())->GetVtkRenderer(); if ( vtkrenderer!= NULL ) vtkrenderer->ResetCamera(); vtkrenderer = mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow())->GetVtkRenderer(); if ( vtkrenderer!= NULL ) vtkrenderer->ResetCamera(); vtkObject::SetGlobalWarningDisplay(w); } void QmitkStdMultiWidget::InitPositionTracking() { //PoinSetNode for MouseOrientation m_PositionTrackerNode = mitk::DataNode::New(); m_PositionTrackerNode->SetProperty("name", mitk::StringProperty::New("Mouse Position")); m_PositionTrackerNode->SetData( mitk::PointSet::New() ); m_PositionTrackerNode->SetColor(1.0,0.33,0.0); m_PositionTrackerNode->SetProperty("layer", mitk::IntProperty::New(1001)); m_PositionTrackerNode->SetVisibility(true); m_PositionTrackerNode->SetProperty("inputdevice", mitk::BoolProperty::New(true) ); m_PositionTrackerNode->SetProperty("BaseRendererMapperID", mitk::IntProperty::New(0) );//point position 2D mouse m_PositionTrackerNode->SetProperty("baserenderer", mitk::StringProperty::New("N/A")); } void QmitkStdMultiWidget::AddDisplayPlaneSubTree() { // add the displayed planes of the multiwidget to a node to which the subtree // @a planesSubTree points ... float white[3] = {1.0f,1.0f,1.0f}; mitk::Geometry2DDataMapper2D::Pointer mapper; // ... of widget 1 m_PlaneNode1 = (mitk::BaseRenderer::GetInstance(mitkWidget1->GetRenderWindow()))->GetCurrentWorldGeometry2DNode(); m_PlaneNode1->SetColor(white, mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow())); m_PlaneNode1->SetProperty("visible", mitk::BoolProperty::New(true)); m_PlaneNode1->SetProperty("name", mitk::StringProperty::New("widget1Plane")); m_PlaneNode1->SetProperty("includeInBoundingBox", mitk::BoolProperty::New(false)); m_PlaneNode1->SetProperty("helper object", mitk::BoolProperty::New(true)); mapper = mitk::Geometry2DDataMapper2D::New(); m_PlaneNode1->SetMapper(mitk::BaseRenderer::Standard2D, mapper); // ... of widget 2 m_PlaneNode2 =( mitk::BaseRenderer::GetInstance(mitkWidget2->GetRenderWindow()))->GetCurrentWorldGeometry2DNode(); m_PlaneNode2->SetColor(white, mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow())); m_PlaneNode2->SetProperty("visible", mitk::BoolProperty::New(true)); m_PlaneNode2->SetProperty("name", mitk::StringProperty::New("widget2Plane")); m_PlaneNode2->SetProperty("includeInBoundingBox", mitk::BoolProperty::New(false)); m_PlaneNode2->SetProperty("helper object", mitk::BoolProperty::New(true)); mapper = mitk::Geometry2DDataMapper2D::New(); m_PlaneNode2->SetMapper(mitk::BaseRenderer::Standard2D, mapper); // ... of widget 3 m_PlaneNode3 = (mitk::BaseRenderer::GetInstance(mitkWidget3->GetRenderWindow()))->GetCurrentWorldGeometry2DNode(); m_PlaneNode3->SetColor(white, mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow())); m_PlaneNode3->SetProperty("visible", mitk::BoolProperty::New(true)); m_PlaneNode3->SetProperty("name", mitk::StringProperty::New("widget3Plane")); m_PlaneNode3->SetProperty("includeInBoundingBox", mitk::BoolProperty::New(false)); m_PlaneNode3->SetProperty("helper object", mitk::BoolProperty::New(true)); mapper = mitk::Geometry2DDataMapper2D::New(); m_PlaneNode3->SetMapper(mitk::BaseRenderer::Standard2D, mapper); m_Node = mitk::DataNode::New(); m_Node->SetProperty("name", mitk::StringProperty::New("Widgets")); m_Node->SetProperty("helper object", mitk::BoolProperty::New(true)); } mitk::SliceNavigationController* QmitkStdMultiWidget::GetTimeNavigationController() { return m_TimeNavigationController.GetPointer(); } void QmitkStdMultiWidget::EnableStandardLevelWindow() { levelWindowWidget->disconnect(this); levelWindowWidget->SetDataStorage(mitk::BaseRenderer::GetInstance(mitkWidget1->GetRenderWindow())->GetDataStorage()); levelWindowWidget->show(); } void QmitkStdMultiWidget::DisableStandardLevelWindow() { levelWindowWidget->disconnect(this); levelWindowWidget->hide(); } // CAUTION: Legacy code for enabling Qt-signal-controlled view initialization. // Use RenderingManager::InitializeViews() instead. bool QmitkStdMultiWidget::InitializeStandardViews( const mitk::Geometry3D * geometry ) { return m_RenderingManager->InitializeViews( geometry ); } void QmitkStdMultiWidget::RequestUpdate() { m_RenderingManager->RequestUpdate(mitkWidget1->GetRenderWindow()); m_RenderingManager->RequestUpdate(mitkWidget2->GetRenderWindow()); m_RenderingManager->RequestUpdate(mitkWidget3->GetRenderWindow()); m_RenderingManager->RequestUpdate(mitkWidget4->GetRenderWindow()); } void QmitkStdMultiWidget::ForceImmediateUpdate() { m_RenderingManager->ForceImmediateUpdate(mitkWidget1->GetRenderWindow()); m_RenderingManager->ForceImmediateUpdate(mitkWidget2->GetRenderWindow()); m_RenderingManager->ForceImmediateUpdate(mitkWidget3->GetRenderWindow()); m_RenderingManager->ForceImmediateUpdate(mitkWidget4->GetRenderWindow()); } void QmitkStdMultiWidget::wheelEvent( QWheelEvent * e ) { emit WheelMoved( e ); } void QmitkStdMultiWidget::mousePressEvent(QMouseEvent * e) { if (e->button() == Qt::LeftButton) { mitk::Point3D pointValue = this->GetLastLeftClickPosition(); emit LeftMouseClicked(pointValue); } } void QmitkStdMultiWidget::moveEvent( QMoveEvent* e ) { QWidget::moveEvent( e ); // it is necessary to readjust the position of the overlays as the StdMultiWidget has moved // unfortunately it's not done by QmitkRenderWindow::moveEvent -> must be done here emit Moved(); } void QmitkStdMultiWidget::leaveEvent ( QEvent * /*e*/ ) { //set cursor back to initial state m_SlicesRotator->ResetMouseCursor(); } QmitkRenderWindow* QmitkStdMultiWidget::GetRenderWindow1() const { return mitkWidget1; } QmitkRenderWindow* QmitkStdMultiWidget::GetRenderWindow2() const { return mitkWidget2; } QmitkRenderWindow* QmitkStdMultiWidget::GetRenderWindow3() const { return mitkWidget3; } QmitkRenderWindow* QmitkStdMultiWidget::GetRenderWindow4() const { return mitkWidget4; } const mitk::Point3D& QmitkStdMultiWidget::GetLastLeftClickPosition() const { return m_LastLeftClickPositionSupplier->GetCurrentPoint(); } const mitk::Point3D QmitkStdMultiWidget::GetCrossPosition() const { const mitk::PlaneGeometry *plane1 = mitkWidget1->GetSliceNavigationController()->GetCurrentPlaneGeometry(); const mitk::PlaneGeometry *plane2 = mitkWidget2->GetSliceNavigationController()->GetCurrentPlaneGeometry(); const mitk::PlaneGeometry *plane3 = mitkWidget3->GetSliceNavigationController()->GetCurrentPlaneGeometry(); mitk::Line3D line; if ( (plane1 != NULL) && (plane2 != NULL) && (plane1->IntersectionLine( plane2, line )) ) { mitk::Point3D point; if ( (plane3 != NULL) && (plane3->IntersectionPoint( line, point )) ) { return point; } } return m_LastLeftClickPositionSupplier->GetCurrentPoint(); } void QmitkStdMultiWidget::EnablePositionTracking() { if (!m_PositionTracker) { m_PositionTracker = mitk::PositionTracker::New("PositionTracker", NULL); } mitk::GlobalInteraction* globalInteraction = mitk::GlobalInteraction::GetInstance(); if (globalInteraction) { if(m_DataStorage.IsNotNull()) m_DataStorage->Add(m_PositionTrackerNode); globalInteraction->AddListener(m_PositionTracker); } } void QmitkStdMultiWidget::DisablePositionTracking() { mitk::GlobalInteraction* globalInteraction = mitk::GlobalInteraction::GetInstance(); if(globalInteraction) { if (m_DataStorage.IsNotNull()) m_DataStorage->Remove(m_PositionTrackerNode); globalInteraction->RemoveListener(m_PositionTracker); } } void QmitkStdMultiWidget::EnsureDisplayContainsPoint( mitk::DisplayGeometry* displayGeometry, const mitk::Point3D& p) { mitk::Point2D pointOnPlane; displayGeometry->Map( p, pointOnPlane ); // point minus origin < width or height ==> outside ? mitk::Vector2D pointOnRenderWindow_MM; pointOnRenderWindow_MM = pointOnPlane.GetVectorFromOrigin() - displayGeometry->GetOriginInMM(); mitk::Vector2D sizeOfDisplay( displayGeometry->GetSizeInMM() ); if ( sizeOfDisplay[0] < pointOnRenderWindow_MM[0] || 0 > pointOnRenderWindow_MM[0] || sizeOfDisplay[1] < pointOnRenderWindow_MM[1] || 0 > pointOnRenderWindow_MM[1] ) { // point is not visible -> move geometry mitk::Vector2D offset( (pointOnRenderWindow_MM - sizeOfDisplay / 2.0) / displayGeometry->GetScaleFactorMMPerDisplayUnit() ); displayGeometry->MoveBy( offset ); } } void QmitkStdMultiWidget::MoveCrossToPosition(const mitk::Point3D& newPosition) { // create a PositionEvent with the given position and // tell the slice navigation controllers to move there mitk::Point2D p2d; mitk::PositionEvent event( mitk::BaseRenderer::GetInstance(mitkWidget1->GetRenderWindow()), 0, 0, 0, mitk::Key_unknown, p2d, newPosition ); mitk::StateEvent stateEvent(mitk::EIDLEFTMOUSEBTN, &event); mitk::StateEvent stateEvent2(mitk::EIDLEFTMOUSERELEASE, &event); switch ( m_PlaneMode ) { default: case PLANE_MODE_SLICING: mitkWidget1->GetSliceNavigationController()->HandleEvent( &stateEvent ); mitkWidget2->GetSliceNavigationController()->HandleEvent( &stateEvent ); mitkWidget3->GetSliceNavigationController()->HandleEvent( &stateEvent ); // just in case SNCs will develop something that depends on the mouse // button being released again mitkWidget1->GetSliceNavigationController()->HandleEvent( &stateEvent2 ); mitkWidget2->GetSliceNavigationController()->HandleEvent( &stateEvent2 ); mitkWidget3->GetSliceNavigationController()->HandleEvent( &stateEvent2 ); break; case PLANE_MODE_ROTATION: m_SlicesRotator->HandleEvent( &stateEvent ); // just in case SNCs will develop something that depends on the mouse // button being released again m_SlicesRotator->HandleEvent( &stateEvent2 ); break; case PLANE_MODE_SWIVEL: m_SlicesSwiveller->HandleEvent( &stateEvent ); // just in case SNCs will develop something that depends on the mouse // button being released again m_SlicesSwiveller->HandleEvent( &stateEvent2 ); break; } // determine if cross is now out of display // if so, move the display window EnsureDisplayContainsPoint( mitk::BaseRenderer::GetInstance(mitkWidget1->GetRenderWindow()) ->GetDisplayGeometry(), newPosition ); EnsureDisplayContainsPoint( mitk::BaseRenderer::GetInstance(mitkWidget2->GetRenderWindow()) ->GetDisplayGeometry(), newPosition ); EnsureDisplayContainsPoint( mitk::BaseRenderer::GetInstance(mitkWidget3->GetRenderWindow()) ->GetDisplayGeometry(), newPosition ); // update displays m_RenderingManager->RequestUpdateAll(); } void QmitkStdMultiWidget::HandleCrosshairPositionEvent() { if(!m_PendingCrosshairPositionEvent) { m_PendingCrosshairPositionEvent=true; QTimer::singleShot(0,this,SLOT( HandleCrosshairPositionEventDelayed() ) ); } } void QmitkStdMultiWidget::HandleCrosshairPositionEventDelayed() { m_PendingCrosshairPositionEvent = false; // find image with highest layer mitk::Point3D crosshairPos = this->GetCrossPosition(); mitk::TNodePredicateDataType::Pointer isImageData = mitk::TNodePredicateDataType::New(); mitk::DataStorage::SetOfObjects::ConstPointer nodes = this->m_DataStorage->GetSubset(isImageData).GetPointer(); std::string statusText; mitk::Image::Pointer image3D; int maxlayer = -32768; mitk::BaseRenderer* baseRenderer = this->mitkWidget1->GetSliceNavigationController()->GetRenderer(); // find image with largest layer, that is the image shown on top in the render window for (unsigned int x = 0; x < nodes->size(); x++) { - if(nodes->at(x)->GetData()->GetGeometry()->IsInside(crosshairPos)) + if ( (nodes->at(x)->GetData()->GetGeometry() != NULL) && + nodes->at(x)->GetData()->GetGeometry()->IsInside(crosshairPos) ) { int layer = 0; if(!(nodes->at(x)->GetIntProperty("layer", layer))) continue; if(layer > maxlayer) { if( static_cast(nodes->at(x))->IsVisible( baseRenderer ) ) { image3D = dynamic_cast(nodes->at(x)->GetData()); maxlayer = layer; } } } } std::stringstream stream; mitk::Index3D p; if(image3D.IsNotNull()) { image3D->GetGeometry()->WorldToIndex(crosshairPos, p); stream.precision(2); stream<<"Position: <" << std::fixed < mm"; stream<<"; Index: <"< "; mitk::ScalarType pixelValue = image3D->GetPixelValueByIndex(p, baseRenderer->GetTimeStep()); if (fabs(pixelValue)>1000000) { stream<<"; Time: " << baseRenderer->GetTime() << " ms; Pixelvalue: "<GetPixelValueByIndex(p, baseRenderer->GetTimeStep())<<" "; } else { stream<<"; Time: " << baseRenderer->GetTime() << " ms; Pixelvalue: "<GetPixelValueByIndex(p, baseRenderer->GetTimeStep())<<" "; } } else { stream << "No image information at this position!"; } statusText = stream.str(); mitk::StatusBar::GetInstance()->DisplayGreyValueText(statusText.c_str()); } void QmitkStdMultiWidget::EnableNavigationControllerEventListening() { // Let NavigationControllers listen to GlobalInteraction mitk::GlobalInteraction *gi = mitk::GlobalInteraction::GetInstance(); // Listen for SliceNavigationController mitkWidget1->GetSliceNavigationController()->crosshairPositionEvent.AddListener( mitk::MessageDelegate( this, &QmitkStdMultiWidget::HandleCrosshairPositionEvent ) ); mitkWidget2->GetSliceNavigationController()->crosshairPositionEvent.AddListener( mitk::MessageDelegate( this, &QmitkStdMultiWidget::HandleCrosshairPositionEvent ) ); mitkWidget3->GetSliceNavigationController()->crosshairPositionEvent.AddListener( mitk::MessageDelegate( this, &QmitkStdMultiWidget::HandleCrosshairPositionEvent ) ); switch ( m_PlaneMode ) { default: case PLANE_MODE_SLICING: gi->AddListener( mitkWidget1->GetSliceNavigationController() ); gi->AddListener( mitkWidget2->GetSliceNavigationController() ); gi->AddListener( mitkWidget3->GetSliceNavigationController() ); gi->AddListener( mitkWidget4->GetSliceNavigationController() ); break; case PLANE_MODE_ROTATION: gi->AddListener( m_SlicesRotator ); break; case PLANE_MODE_SWIVEL: gi->AddListener( m_SlicesSwiveller ); break; } gi->AddListener( m_TimeNavigationController ); m_CrosshairNavigationEnabled = true; } void QmitkStdMultiWidget::DisableNavigationControllerEventListening() { // Do not let NavigationControllers listen to GlobalInteraction mitk::GlobalInteraction *gi = mitk::GlobalInteraction::GetInstance(); switch ( m_PlaneMode ) { default: case PLANE_MODE_SLICING: gi->RemoveListener( mitkWidget1->GetSliceNavigationController() ); gi->RemoveListener( mitkWidget2->GetSliceNavigationController() ); gi->RemoveListener( mitkWidget3->GetSliceNavigationController() ); gi->RemoveListener( mitkWidget4->GetSliceNavigationController() ); break; case PLANE_MODE_ROTATION: m_SlicesRotator->ResetMouseCursor(); gi->RemoveListener( m_SlicesRotator ); break; case PLANE_MODE_SWIVEL: m_SlicesSwiveller->ResetMouseCursor(); gi->RemoveListener( m_SlicesSwiveller ); break; } gi->RemoveListener( m_TimeNavigationController ); m_CrosshairNavigationEnabled = false; } int QmitkStdMultiWidget::GetLayout() const { return m_Layout; } bool QmitkStdMultiWidget::GetGradientBackgroundFlag() const { return m_GradientBackgroundFlag; } void QmitkStdMultiWidget::EnableGradientBackground() { // gradient background is by default only in widget 4, otherwise // interferences between 2D rendering and VTK rendering may occur. //m_GradientBackground1->Enable(); //m_GradientBackground2->Enable(); //m_GradientBackground3->Enable(); m_GradientBackground4->Enable(); m_GradientBackgroundFlag = true; } void QmitkStdMultiWidget::DisableGradientBackground() { //m_GradientBackground1->Disable(); //m_GradientBackground2->Disable(); //m_GradientBackground3->Disable(); m_GradientBackground4->Disable(); m_GradientBackgroundFlag = false; } void QmitkStdMultiWidget::EnableDepartmentLogo() { m_LogoRendering4->Enable(); } void QmitkStdMultiWidget::DisableDepartmentLogo() { m_LogoRendering4->Disable(); } bool QmitkStdMultiWidget::IsDepartmentLogoEnabled() const { return m_LogoRendering4->IsEnabled(); } bool QmitkStdMultiWidget::IsCrosshairNavigationEnabled() const { return m_CrosshairNavigationEnabled; } mitk::SlicesRotator * QmitkStdMultiWidget::GetSlicesRotator() const { return m_SlicesRotator; } mitk::SlicesSwiveller * QmitkStdMultiWidget::GetSlicesSwiveller() const { return m_SlicesSwiveller; } void QmitkStdMultiWidget::SetWidgetPlaneVisibility(const char* widgetName, bool visible, mitk::BaseRenderer *renderer) { if (m_DataStorage.IsNotNull()) { mitk::DataNode* n = m_DataStorage->GetNamedNode(widgetName); if (n != NULL) n->SetVisibility(visible, renderer); } } void QmitkStdMultiWidget::SetWidgetPlanesVisibility(bool visible, mitk::BaseRenderer *renderer) { SetWidgetPlaneVisibility("widget1Plane", visible, renderer); SetWidgetPlaneVisibility("widget2Plane", visible, renderer); SetWidgetPlaneVisibility("widget3Plane", visible, renderer); m_RenderingManager->RequestUpdateAll(); } void QmitkStdMultiWidget::SetWidgetPlanesLocked(bool locked) { //do your job and lock or unlock slices. GetRenderWindow1()->GetSliceNavigationController()->SetSliceLocked(locked); GetRenderWindow2()->GetSliceNavigationController()->SetSliceLocked(locked); GetRenderWindow3()->GetSliceNavigationController()->SetSliceLocked(locked); } void QmitkStdMultiWidget::SetWidgetPlanesRotationLocked(bool locked) { //do your job and lock or unlock slices. GetRenderWindow1()->GetSliceNavigationController()->SetSliceRotationLocked(locked); GetRenderWindow2()->GetSliceNavigationController()->SetSliceRotationLocked(locked); GetRenderWindow3()->GetSliceNavigationController()->SetSliceRotationLocked(locked); } void QmitkStdMultiWidget::SetWidgetPlanesRotationLinked( bool link ) { m_SlicesRotator->SetLinkPlanes( link ); m_SlicesSwiveller->SetLinkPlanes( link ); emit WidgetPlanesRotationLinked( link ); } void QmitkStdMultiWidget::SetWidgetPlaneMode( int userMode ) { MITK_DEBUG << "Changing crosshair mode to " << userMode; // first of all reset left mouse button interaction to default if PACS interaction style is active m_MouseModeSwitcher->SelectMouseMode( mitk::MouseModeSwitcher::MousePointer ); emit WidgetNotifyNewCrossHairMode( userMode ); int mode = m_PlaneMode; bool link = false; // Convert user interface mode to actual mode { switch(userMode) { case 0: mode = PLANE_MODE_SLICING; link = false; break; case 1: mode = PLANE_MODE_ROTATION; link = false; break; case 2: mode = PLANE_MODE_ROTATION; link = true; break; case 3: mode = PLANE_MODE_SWIVEL; link = false; break; } } // Slice rotation linked m_SlicesRotator->SetLinkPlanes( link ); m_SlicesSwiveller->SetLinkPlanes( link ); // Do nothing if mode didn't change if ( m_PlaneMode == mode ) { return; } mitk::GlobalInteraction *gi = mitk::GlobalInteraction::GetInstance(); // Remove listeners of previous mode switch ( m_PlaneMode ) { default: case PLANE_MODE_SLICING: // Notify MainTemplate GUI that this mode has been deselected emit WidgetPlaneModeSlicing( false ); gi->RemoveListener( mitkWidget1->GetSliceNavigationController() ); gi->RemoveListener( mitkWidget2->GetSliceNavigationController() ); gi->RemoveListener( mitkWidget3->GetSliceNavigationController() ); gi->RemoveListener( mitkWidget4->GetSliceNavigationController() ); break; case PLANE_MODE_ROTATION: // Notify MainTemplate GUI that this mode has been deselected emit WidgetPlaneModeRotation( false ); m_SlicesRotator->ResetMouseCursor(); gi->RemoveListener( m_SlicesRotator ); break; case PLANE_MODE_SWIVEL: // Notify MainTemplate GUI that this mode has been deselected emit WidgetPlaneModeSwivel( false ); m_SlicesSwiveller->ResetMouseCursor(); gi->RemoveListener( m_SlicesSwiveller ); break; } // Set new mode and add corresponding listener to GlobalInteraction m_PlaneMode = mode; switch ( m_PlaneMode ) { default: case PLANE_MODE_SLICING: // Notify MainTemplate GUI that this mode has been selected emit WidgetPlaneModeSlicing( true ); // Add listeners gi->AddListener( mitkWidget1->GetSliceNavigationController() ); gi->AddListener( mitkWidget2->GetSliceNavigationController() ); gi->AddListener( mitkWidget3->GetSliceNavigationController() ); gi->AddListener( mitkWidget4->GetSliceNavigationController() ); m_RenderingManager->InitializeViews(); break; case PLANE_MODE_ROTATION: // Notify MainTemplate GUI that this mode has been selected emit WidgetPlaneModeRotation( true ); // Add listener gi->AddListener( m_SlicesRotator ); break; case PLANE_MODE_SWIVEL: // Notify MainTemplate GUI that this mode has been selected emit WidgetPlaneModeSwivel( true ); // Add listener gi->AddListener( m_SlicesSwiveller ); break; } // Notify MainTemplate GUI that mode has changed emit WidgetPlaneModeChange(m_PlaneMode); } void QmitkStdMultiWidget::SetGradientBackgroundColors( const mitk::Color & upper, const mitk::Color & lower ) { m_GradientBackground1->SetGradientColors(upper[0], upper[1], upper[2], lower[0], lower[1], lower[2]); m_GradientBackground2->SetGradientColors(upper[0], upper[1], upper[2], lower[0], lower[1], lower[2]); m_GradientBackground3->SetGradientColors(upper[0], upper[1], upper[2], lower[0], lower[1], lower[2]); m_GradientBackground4->SetGradientColors(upper[0], upper[1], upper[2], lower[0], lower[1], lower[2]); m_GradientBackgroundFlag = true; } void QmitkStdMultiWidget::SetDepartmentLogoPath( const char * path ) { m_LogoRendering1->SetLogoSource(path); m_LogoRendering2->SetLogoSource(path); m_LogoRendering3->SetLogoSource(path); m_LogoRendering4->SetLogoSource(path); } void QmitkStdMultiWidget::SetWidgetPlaneModeToSlicing( bool activate ) { if ( activate ) { this->SetWidgetPlaneMode( PLANE_MODE_SLICING ); } } void QmitkStdMultiWidget::SetWidgetPlaneModeToRotation( bool activate ) { if ( activate ) { this->SetWidgetPlaneMode( PLANE_MODE_ROTATION ); } } void QmitkStdMultiWidget::SetWidgetPlaneModeToSwivel( bool activate ) { if ( activate ) { this->SetWidgetPlaneMode( PLANE_MODE_SWIVEL ); } } void QmitkStdMultiWidget::OnLayoutDesignChanged( int layoutDesignIndex ) { switch( layoutDesignIndex ) { case LAYOUT_DEFAULT: { this->changeLayoutToDefault(); break; } case LAYOUT_2D_IMAGES_UP: { this->changeLayoutTo2DImagesUp(); break; } case LAYOUT_2D_IMAGES_LEFT: { this->changeLayoutTo2DImagesLeft(); break; } case LAYOUT_BIG_3D: { this->changeLayoutToBig3D(); break; } case LAYOUT_WIDGET1: { this->changeLayoutToWidget1(); break; } case LAYOUT_WIDGET2: { this->changeLayoutToWidget2(); break; } case LAYOUT_WIDGET3: { this->changeLayoutToWidget3(); break; } case LAYOUT_2X_2D_AND_3D_WIDGET: { this->changeLayoutTo2x2Dand3DWidget(); break; } case LAYOUT_ROW_WIDGET_3_AND_4: { this->changeLayoutToRowWidget3And4(); break; } case LAYOUT_COLUMN_WIDGET_3_AND_4: { this->changeLayoutToColumnWidget3And4(); break; } case LAYOUT_ROW_WIDGET_SMALL3_AND_BIG4: { this->changeLayoutToRowWidgetSmall3andBig4(); break; } case LAYOUT_SMALL_UPPER_WIDGET2_BIG3_AND4: { this->changeLayoutToSmallUpperWidget2Big3and4(); break; } case LAYOUT_2D_AND_3D_LEFT_2D_RIGHT_WIDGET: { this->changeLayoutToLeft2Dand3DRight2D(); break; } }; } void QmitkStdMultiWidget::UpdateAllWidgets() { mitkWidget1->resize( mitkWidget1Container->frameSize().width()-1, mitkWidget1Container->frameSize().height() ); mitkWidget1->resize( mitkWidget1Container->frameSize().width(), mitkWidget1Container->frameSize().height() ); mitkWidget2->resize( mitkWidget2Container->frameSize().width()-1, mitkWidget2Container->frameSize().height() ); mitkWidget2->resize( mitkWidget2Container->frameSize().width(), mitkWidget2Container->frameSize().height() ); mitkWidget3->resize( mitkWidget3Container->frameSize().width()-1, mitkWidget3Container->frameSize().height() ); mitkWidget3->resize( mitkWidget3Container->frameSize().width(), mitkWidget3Container->frameSize().height() ); mitkWidget4->resize( mitkWidget4Container->frameSize().width()-1, mitkWidget4Container->frameSize().height() ); mitkWidget4->resize( mitkWidget4Container->frameSize().width(), mitkWidget4Container->frameSize().height() ); } void QmitkStdMultiWidget::HideAllWidgetToolbars() { mitkWidget1->HideRenderWindowMenu(); mitkWidget2->HideRenderWindowMenu(); mitkWidget3->HideRenderWindowMenu(); mitkWidget4->HideRenderWindowMenu(); } void QmitkStdMultiWidget::ActivateMenuWidget( bool state ) { mitkWidget1->ActivateMenuWidget( state, this ); mitkWidget2->ActivateMenuWidget( state, this ); mitkWidget3->ActivateMenuWidget( state, this ); mitkWidget4->ActivateMenuWidget( state, this ); } bool QmitkStdMultiWidget::IsMenuWidgetEnabled() const { return mitkWidget1->GetActivateMenuWidgetFlag(); } void QmitkStdMultiWidget::ResetCrosshair() { if (m_DataStorage.IsNotNull()) { mitk::NodePredicateNot::Pointer pred = mitk::NodePredicateNot::New(mitk::NodePredicateProperty::New("includeInBoundingBox" , mitk::BoolProperty::New(false))); mitk::NodePredicateNot::Pointer pred2 = mitk::NodePredicateNot::New(mitk::NodePredicateProperty::New("includeInBoundingBox" , mitk::BoolProperty::New(true))); mitk::DataStorage::SetOfObjects::ConstPointer rs = m_DataStorage->GetSubset(pred); mitk::DataStorage::SetOfObjects::ConstPointer rs2 = m_DataStorage->GetSubset(pred2); // calculate bounding geometry of these nodes mitk::TimeSlicedGeometry::Pointer bounds = m_DataStorage->ComputeBoundingGeometry3D(rs, "visible"); m_RenderingManager->InitializeViews(bounds); //m_RenderingManager->InitializeViews( m_DataStorage->ComputeVisibleBoundingGeometry3D() ); // reset interactor to normal slicing this->SetWidgetPlaneMode(PLANE_MODE_SLICING); } } void QmitkStdMultiWidget::EnableColoredRectangles() { m_RectangleRendering1->Enable(1.0, 0.0, 0.0); m_RectangleRendering2->Enable(0.0, 1.0, 0.0); m_RectangleRendering3->Enable(0.0, 0.0, 1.0); m_RectangleRendering4->Enable(1.0, 1.0, 0.0); } void QmitkStdMultiWidget::DisableColoredRectangles() { m_RectangleRendering1->Disable(); m_RectangleRendering2->Disable(); m_RectangleRendering3->Disable(); m_RectangleRendering4->Disable(); } bool QmitkStdMultiWidget::IsColoredRectanglesEnabled() const { return m_RectangleRendering1->IsEnabled(); } mitk::MouseModeSwitcher* QmitkStdMultiWidget::GetMouseModeSwitcher() { return m_MouseModeSwitcher; } void QmitkStdMultiWidget::MouseModeSelected( mitk::MouseModeSwitcher::MouseMode mouseMode ) { if ( mouseMode == 0 ) { this->EnableNavigationControllerEventListening(); } else { this->DisableNavigationControllerEventListening(); } } mitk::DataNode::Pointer QmitkStdMultiWidget::GetWidgetPlane1() { return this->m_PlaneNode1; } mitk::DataNode::Pointer QmitkStdMultiWidget::GetWidgetPlane2() { return this->m_PlaneNode2; } mitk::DataNode::Pointer QmitkStdMultiWidget::GetWidgetPlane3() { return this->m_PlaneNode3; } mitk::DataNode::Pointer QmitkStdMultiWidget::GetWidgetPlane(int id) { switch(id) { case 1: return this->m_PlaneNode1; break; case 2: return this->m_PlaneNode2; break; case 3: return this->m_PlaneNode3; break; default: return NULL; } } diff --git a/Plugins/org.mitk.gui.qt.datamanager/src/QmitkDataManagerView.cpp b/Plugins/org.mitk.gui.qt.datamanager/src/QmitkDataManagerView.cpp index c307dc3129..117c1dc2af 100644 --- a/Plugins/org.mitk.gui.qt.datamanager/src/QmitkDataManagerView.cpp +++ b/Plugins/org.mitk.gui.qt.datamanager/src/QmitkDataManagerView.cpp @@ -1,937 +1,938 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkDataManagerView.h" #include //# Own Includes //## mitk #include "mitkDataStorageEditorInput.h" #include "mitkIDataStorageReference.h" #include "mitkNodePredicateDataType.h" #include "mitkCoreObjectFactory.h" #include "mitkPACSPlugin.h" #include "mitkDataNodeFactory.h" #include "mitkColorProperty.h" #include "mitkCommon.h" #include "mitkDelegateManager.h" #include "mitkNodePredicateData.h" #include "mitkNodePredicateNot.h" #include "mitkNodePredicateProperty.h" #include "mitkEnumerationProperty.h" #include "mitkProperties.h" #include #include #include #include //## Qmitk #include #include #include #include #include #include #include "src/internal/QmitkNodeTableViewKeyFilter.h" #include "src/internal/QmitkInfoDialog.h" //## Berry #include #include #include #include #include #include //# Toolkit Includes #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mitkDataNodeObject.h" #include "mitkIContextMenuAction.h" #include "berryIExtensionPointService.h" const std::string QmitkDataManagerView::VIEW_ID = "org.mitk.views.datamanager"; QmitkDataManagerView::QmitkDataManagerView() { } QmitkDataManagerView::~QmitkDataManagerView() { //Remove all registered actions from each descriptor for (std::vector< std::pair< QmitkNodeDescriptor*, QAction* > >::iterator it = m_DescriptorActionList.begin();it != m_DescriptorActionList.end(); it++) { // first== the NodeDescriptor; second== the registered QAction (it->first)->RemoveAction(it->second); } } void QmitkDataManagerView::CreateQtPartControl(QWidget* parent) { m_CurrentRowCount = 0; m_Parent = parent; //# Preferences berry::IPreferencesService::Pointer prefService = berry::Platform::GetServiceRegistry() .GetServiceById(berry::IPreferencesService::ID); berry::IBerryPreferences::Pointer prefs = (prefService->GetSystemPreferences()->Node(VIEW_ID)) .Cast(); assert( prefs ); prefs->OnChanged.AddListener( berry::MessageDelegate1( this , &QmitkDataManagerView::OnPreferencesChanged ) ); //# GUI m_NodeTreeModel = new QmitkDataStorageTreeModel(this->GetDataStorage()); m_NodeTreeModel->setParent( parent ); m_NodeTreeModel->SetPlaceNewNodesOnTop( prefs->GetBool("Place new nodes on top", true) ); m_NodeTreeModel->SetShowHelperObjects( prefs->GetBool("Show helper objects", false) ); m_NodeTreeModel->SetShowNodesContainingNoData( prefs->GetBool("Show nodes containing no data", false) ); m_SurfaceDecimation = prefs->GetBool("Use surface decimation", false); //# Tree View (experimental) m_NodeTreeView = new QTreeView; m_NodeTreeView->setSelectionMode( QAbstractItemView::ExtendedSelection ); m_NodeTreeView->setSelectionBehavior( QAbstractItemView::SelectRows ); m_NodeTreeView->setAlternatingRowColors(true); m_NodeTreeView->setDragEnabled(true); m_NodeTreeView->setDropIndicatorShown(true); m_NodeTreeView->setAcceptDrops(true); m_NodeTreeView->setContextMenuPolicy(Qt::CustomContextMenu); m_NodeTreeView->setModel(m_NodeTreeModel); m_NodeTreeView->header()->setResizeMode(0,QHeaderView::ResizeToContents); m_NodeTreeView->header()->setStretchLastSection(false); m_NodeTreeView->installEventFilter(new QmitkNodeTableViewKeyFilter(this)); QObject::connect( m_NodeTreeView, SIGNAL(customContextMenuRequested(const QPoint&)) , this, SLOT(NodeTableViewContextMenuRequested(const QPoint&)) ); QObject::connect( m_NodeTreeModel, SIGNAL(rowsInserted (const QModelIndex&, int, int)) , this, SLOT(NodeTreeViewRowsInserted ( const QModelIndex&, int, int )) ); QObject::connect( m_NodeTreeModel, SIGNAL(rowsRemoved (const QModelIndex&, int, int)) , this, SLOT(NodeTreeViewRowsRemoved( const QModelIndex&, int, int )) ); QObject::connect( m_NodeTreeView->selectionModel() , SIGNAL( selectionChanged ( const QItemSelection &, const QItemSelection & ) ) , this , SLOT( NodeSelectionChanged ( const QItemSelection &, const QItemSelection & ) ) ); //# m_NodeMenu m_NodeMenu = new QMenu(m_NodeTreeView); // # Actions berry::IEditorRegistry* editorRegistry = berry::PlatformUI::GetWorkbench()->GetEditorRegistry(); std::list editors = editorRegistry->GetEditors("*.mitk"); if (editors.size() > 1) { m_ShowInMapper = new QSignalMapper(this); foreach(berry::IEditorDescriptor::Pointer descriptor, editors) { QAction* action = new QAction(QString::fromStdString(descriptor->GetLabel()), this); m_ShowInActions << action; m_ShowInMapper->connect(action, SIGNAL(triggered()), m_ShowInMapper, SLOT(map())); m_ShowInMapper->setMapping(action, QString::fromStdString(descriptor->GetId())); } connect(m_ShowInMapper, SIGNAL(mapped(QString)), this, SLOT(ShowIn(QString))); } QmitkNodeDescriptor* unknownDataNodeDescriptor = QmitkNodeDescriptorManager::GetInstance()->GetUnknownDataNodeDescriptor(); QmitkNodeDescriptor* imageDataNodeDescriptor = QmitkNodeDescriptorManager::GetInstance()->GetDescriptor("Image"); QmitkNodeDescriptor* surfaceDataNodeDescriptor = QmitkNodeDescriptorManager::GetInstance()->GetDescriptor("Surface"); QAction* globalReinitAction = new QAction(QIcon(":/org.mitk.gui.qt.datamanager/Refresh_48.png"), "Global Reinit", this); QObject::connect( globalReinitAction, SIGNAL( triggered(bool) ) , this, SLOT( GlobalReinit(bool) ) ); unknownDataNodeDescriptor->AddAction(globalReinitAction); m_DescriptorActionList.push_back(std::pair(unknownDataNodeDescriptor, globalReinitAction)); QAction* saveAction = new QAction(QIcon(":/org.mitk.gui.qt.datamanager/Save_48.png"), "Save...", this); QObject::connect( saveAction, SIGNAL( triggered(bool) ) , this, SLOT( SaveSelectedNodes(bool) ) ); unknownDataNodeDescriptor->AddAction(saveAction); m_DescriptorActionList.push_back(std::pair(unknownDataNodeDescriptor,saveAction)); QAction* removeAction = new QAction(QIcon(":/org.mitk.gui.qt.datamanager/Remove_48.png"), "Remove", this); QObject::connect( removeAction, SIGNAL( triggered(bool) ) , this, SLOT( RemoveSelectedNodes(bool) ) ); unknownDataNodeDescriptor->AddAction(removeAction); m_DescriptorActionList.push_back(std::pair(unknownDataNodeDescriptor,removeAction)); QAction* reinitAction = new QAction(QIcon(":/org.mitk.gui.qt.datamanager/Refresh_48.png"), "Reinit", this); QObject::connect( reinitAction, SIGNAL( triggered(bool) ) , this, SLOT( ReinitSelectedNodes(bool) ) ); unknownDataNodeDescriptor->AddAction(reinitAction); m_DescriptorActionList.push_back(std::pair(unknownDataNodeDescriptor,reinitAction)); // find contextMenuAction extension points and add them to the node descriptor berry::IExtensionPointService::Pointer extensionPointService = berry::Platform::GetExtensionPointService(); berry::IConfigurationElement::vector cmActions( extensionPointService->GetConfigurationElementsFor("org.mitk.gui.qt.datamanager.contextMenuActions") ); berry::IConfigurationElement::vector::iterator cmActionsIt; std::string cmNodeDescriptorName; std::string cmLabel; std::string cmIcon; std::string cmClass; QmitkNodeDescriptor* tmpDescriptor; QAction* contextMenuAction; QVariant cmActionDataIt; m_ConfElements.clear(); int i=1; for (cmActionsIt = cmActions.begin() ; cmActionsIt != cmActions.end() ; ++cmActionsIt) { cmIcon.erase(); if((*cmActionsIt)->GetAttribute("nodeDescriptorName", cmNodeDescriptorName) && (*cmActionsIt)->GetAttribute("label", cmLabel) && (*cmActionsIt)->GetAttribute("class", cmClass)) { (*cmActionsIt)->GetAttribute("icon", cmIcon); // create context menu entry here tmpDescriptor = QmitkNodeDescriptorManager::GetInstance()->GetDescriptor(QString::fromStdString(cmNodeDescriptorName)); if(!tmpDescriptor) { MITK_WARN << "cannot add action \"" << cmLabel << "\" because descriptor " << cmNodeDescriptorName << " does not exist"; continue; } contextMenuAction = new QAction( QString::fromStdString(cmLabel), parent); tmpDescriptor->AddAction(contextMenuAction); m_DescriptorActionList.push_back(std::pair(tmpDescriptor,contextMenuAction)); m_ConfElements[contextMenuAction] = *cmActionsIt; cmActionDataIt.setValue(i); contextMenuAction->setData( cmActionDataIt ); connect( contextMenuAction, SIGNAL( triggered(bool) ) , this, SLOT( ContextMenuActionTriggered(bool) ) ); ++i; } } m_OpacitySlider = new QSlider; m_OpacitySlider->setMinimum(0); m_OpacitySlider->setMaximum(100); m_OpacitySlider->setOrientation(Qt::Horizontal); QObject::connect( m_OpacitySlider, SIGNAL( valueChanged(int) ) , this, SLOT( OpacityChanged(int) ) ); QLabel* _OpacityLabel = new QLabel("Opacity: "); QHBoxLayout* _OpacityWidgetLayout = new QHBoxLayout; _OpacityWidgetLayout->setContentsMargins(4,4,4,4); _OpacityWidgetLayout->addWidget(_OpacityLabel); _OpacityWidgetLayout->addWidget(m_OpacitySlider); QWidget* _OpacityWidget = new QWidget; _OpacityWidget->setLayout(_OpacityWidgetLayout); QWidgetAction* opacityAction = new QWidgetAction(this); opacityAction ->setDefaultWidget(_OpacityWidget); QObject::connect( opacityAction , SIGNAL( changed() ) , this, SLOT( OpacityActionChanged() ) ); unknownDataNodeDescriptor->AddAction(opacityAction , false); m_DescriptorActionList.push_back(std::pair(unknownDataNodeDescriptor,opacityAction)); m_ColorButton = new QPushButton; m_ColorButton->setSizePolicy(QSizePolicy::Expanding,QSizePolicy::Minimum); //m_ColorButton->setText("Change color"); QObject::connect( m_ColorButton, SIGNAL( clicked() ) , this, SLOT( ColorChanged() ) ); QLabel* _ColorLabel = new QLabel("Color: "); _ColorLabel->setSizePolicy(QSizePolicy::Minimum,QSizePolicy::Minimum); QHBoxLayout* _ColorWidgetLayout = new QHBoxLayout; _ColorWidgetLayout->setContentsMargins(4,4,4,4); _ColorWidgetLayout->addWidget(_ColorLabel); _ColorWidgetLayout->addWidget(m_ColorButton); QWidget* _ColorWidget = new QWidget; _ColorWidget->setLayout(_ColorWidgetLayout); QWidgetAction* colorAction = new QWidgetAction(this); colorAction->setDefaultWidget(_ColorWidget); QObject::connect( colorAction, SIGNAL( changed() ) , this, SLOT( ColorActionChanged() ) ); unknownDataNodeDescriptor->AddAction(colorAction, false); m_DescriptorActionList.push_back(std::pair(unknownDataNodeDescriptor,colorAction)); m_TextureInterpolation = new QAction("Texture Interpolation", this); m_TextureInterpolation->setCheckable ( true ); QObject::connect( m_TextureInterpolation, SIGNAL( changed() ) , this, SLOT( TextureInterpolationChanged() ) ); QObject::connect( m_TextureInterpolation, SIGNAL( toggled(bool) ) , this, SLOT( TextureInterpolationToggled(bool) ) ); imageDataNodeDescriptor->AddAction(m_TextureInterpolation, false); m_DescriptorActionList.push_back(std::pair(imageDataNodeDescriptor,m_TextureInterpolation)); m_SurfaceRepresentation = new QAction("Surface Representation", this); m_SurfaceRepresentation->setMenu(new QMenu); QObject::connect( m_SurfaceRepresentation->menu(), SIGNAL( aboutToShow() ) , this, SLOT( SurfaceRepresentationMenuAboutToShow() ) ); surfaceDataNodeDescriptor->AddAction(m_SurfaceRepresentation, false); m_DescriptorActionList.push_back(std::pair(surfaceDataNodeDescriptor, m_SurfaceRepresentation)); QAction* showOnlySelectedNodes = new QAction(QIcon(":/org.mitk.gui.qt.datamanager/ShowSelectedNode_48.png") , "Show only selected nodes", this); QObject::connect( showOnlySelectedNodes, SIGNAL( triggered(bool) ) , this, SLOT( ShowOnlySelectedNodes(bool) ) ); unknownDataNodeDescriptor->AddAction(showOnlySelectedNodes); m_DescriptorActionList.push_back(std::pair(unknownDataNodeDescriptor, showOnlySelectedNodes)); QAction* toggleSelectedVisibility = new QAction(QIcon(":/org.mitk.gui.qt.datamanager/InvertShowSelectedNode_48.png") , "Toggle visibility", this); QObject::connect( toggleSelectedVisibility, SIGNAL( triggered(bool) ) , this, SLOT( ToggleVisibilityOfSelectedNodes(bool) ) ); unknownDataNodeDescriptor->AddAction(toggleSelectedVisibility); m_DescriptorActionList.push_back(std::pair(unknownDataNodeDescriptor,toggleSelectedVisibility)); QAction* actionShowInfoDialog = new QAction(QIcon(":/org.mitk.gui.qt.datamanager/ShowDataInfo_48.png") , "Details...", this); QObject::connect( actionShowInfoDialog, SIGNAL( triggered(bool) ) , this, SLOT( ShowInfoDialogForSelectedNodes(bool) ) ); unknownDataNodeDescriptor->AddAction(actionShowInfoDialog); m_DescriptorActionList.push_back(std::pair(unknownDataNodeDescriptor,actionShowInfoDialog)); QAction* otsuFilterAction = new QAction("Apply Otsu Filter", this); QObject::connect( otsuFilterAction, SIGNAL( triggered(bool) ) , this, SLOT( OtsuFilter(bool) ) ); // Otsu filter does not work properly, remove it temporarily // imageDataNodeDescriptor->AddAction(otsuFilterAction); // m_DescriptorActionList.push_back(std::pair(imageDataNodeDescriptor,otsuFilterAction)); QGridLayout* _DndFrameWidgetLayout = new QGridLayout; _DndFrameWidgetLayout->addWidget(m_NodeTreeView, 0, 0); _DndFrameWidgetLayout->setContentsMargins(0,0,0,0); m_DndFrameWidget = new QmitkDnDFrameWidget(m_Parent); m_DndFrameWidget->setLayout(_DndFrameWidgetLayout); QVBoxLayout* layout = new QVBoxLayout(parent); layout->addWidget(m_DndFrameWidget); layout->setContentsMargins(0,0,0,0); m_Parent->setLayout(layout); } void QmitkDataManagerView::SetFocus() { } void QmitkDataManagerView::ContextMenuActionTriggered( bool ) { QAction* action = qobject_cast ( sender() ); std::map::iterator it = m_ConfElements.find( action ); if( it == m_ConfElements.end() ) { MITK_WARN << "associated conf element for action " << action->text().toStdString() << " not found"; return; } berry::IConfigurationElement::Pointer confElem = it->second; mitk::IContextMenuAction* contextMenuAction = confElem->CreateExecutableExtension("class"); std::string className; std::string smoothed; confElem->GetAttribute("class", className); confElem->GetAttribute("smoothed", smoothed); if(className == "QmitkThresholdAction") { contextMenuAction->SetDataStorage(this->GetDataStorage()); } else if(className == "QmitkCreatePolygonModelAction") { contextMenuAction->SetDataStorage(this->GetDataStorage()); if(smoothed == "false") { contextMenuAction->SetSmoothed(false); } else { contextMenuAction->SetSmoothed(true); } contextMenuAction->SetDecimated(m_SurfaceDecimation); } else if(className == "QmitkStatisticsAction") { contextMenuAction->SetFunctionality(this); } contextMenuAction->Run( this->GetCurrentSelection() ); // run the action } void QmitkDataManagerView::OnPreferencesChanged(const berry::IBerryPreferences* prefs) { if( m_NodeTreeModel->GetPlaceNewNodesOnTopFlag() != prefs->GetBool("Place new nodes on top", true) ) m_NodeTreeModel->SetPlaceNewNodesOnTop( !m_NodeTreeModel->GetPlaceNewNodesOnTopFlag() ); if( m_NodeTreeModel->GetShowHelperObjectsFlag()!= prefs->GetBool("Show helper objects", false) ) m_NodeTreeModel->SetShowHelperObjects( !m_NodeTreeModel->GetShowHelperObjectsFlag() ); if( m_NodeTreeModel->GetShowNodesContainingNoDataFlag()!= prefs->GetBool("Show nodes containing no data", false) ) m_NodeTreeModel->SetShowNodesContainingNoData( !m_NodeTreeModel->GetShowNodesContainingNoDataFlag() ); m_NodeTreeView->expandAll(); m_SurfaceDecimation = prefs->GetBool("Use surface decimation", false); this->GlobalReinit(); } void QmitkDataManagerView::NodeTableViewContextMenuRequested( const QPoint & pos ) { QModelIndex selected = m_NodeTreeView->indexAt ( pos ); mitk::DataNode::Pointer node = m_NodeTreeModel->GetNode(selected); QList selectedNodes = this->GetCurrentSelection(); if(!selectedNodes.isEmpty()) { m_NodeMenu->clear(); QList actions; if(selectedNodes.size() == 1 ) { actions = QmitkNodeDescriptorManager::GetInstance()->GetActions(node); for(QList::iterator it = actions.begin(); it != actions.end(); ++it) { (*it)->setData(QVariant::fromValue(node.GetPointer())); } } else actions = QmitkNodeDescriptorManager::GetInstance()->GetActions(selectedNodes); if (!m_ShowInActions.isEmpty()) { QMenu* showInMenu = m_NodeMenu->addMenu("Show In"); showInMenu->addActions(m_ShowInActions); } m_NodeMenu->addActions(actions); m_NodeMenu->popup(QCursor::pos()); } } void QmitkDataManagerView::OpacityChanged(int value) { mitk::DataNode* node = m_NodeTreeModel->GetNode(m_NodeTreeView->selectionModel()->currentIndex()); if(node) { float opacity = static_cast(value)/100.0f; node->SetFloatProperty("opacity", opacity); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkDataManagerView::OpacityActionChanged() { mitk::DataNode* node = m_NodeTreeModel->GetNode(m_NodeTreeView->selectionModel()->currentIndex()); if(node) { float opacity = 0.0; if(node->GetFloatProperty("opacity", opacity)) { m_OpacitySlider->setValue(static_cast(opacity*100)); } } } void QmitkDataManagerView::ColorChanged() { mitk::DataNode* node = m_NodeTreeModel->GetNode(m_NodeTreeView->selectionModel()->currentIndex()); if(node) { QColor color = QColorDialog::getColor(); m_ColorButton->setAutoFillBackground(true); node->SetProperty("color",mitk::ColorProperty::New(color.red()/255.0,color.green()/255.0,color.blue()/255.0)); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkDataManagerView::ColorActionChanged() { mitk::DataNode* node = m_NodeTreeModel->GetNode(m_NodeTreeView->selectionModel()->currentIndex()); if(node) { mitk::Color color; mitk::ColorProperty::Pointer colorProp; node->GetProperty(colorProp,"color"); if(colorProp.IsNull()) return; color = colorProp->GetValue(); QString styleSheet = "background-color:rgb("; styleSheet.append(QString::number(color[0]*255)); styleSheet.append(","); styleSheet.append(QString::number(color[1]*255)); styleSheet.append(","); styleSheet.append(QString::number(color[2]*255)); styleSheet.append(")"); m_ColorButton->setStyleSheet(styleSheet); } } void QmitkDataManagerView::TextureInterpolationChanged() { mitk::DataNode* node = m_NodeTreeModel->GetNode(m_NodeTreeView->selectionModel()->currentIndex()); if(node) { bool textureInterpolation = false; node->GetBoolProperty("texture interpolation", textureInterpolation); m_TextureInterpolation->setChecked(textureInterpolation); } } void QmitkDataManagerView::TextureInterpolationToggled( bool checked ) { mitk::DataNode* node = m_NodeTreeModel->GetNode(m_NodeTreeView->selectionModel()->currentIndex()); if(node) { node->SetBoolProperty("texture interpolation", checked); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkDataManagerView::SurfaceRepresentationMenuAboutToShow() { mitk::DataNode* node = m_NodeTreeModel->GetNode(m_NodeTreeView->selectionModel()->currentIndex()); if(!node) return; mitk::EnumerationProperty* representationProp = dynamic_cast (node->GetProperty("material.representation")); if(!representationProp) return; // clear menu m_SurfaceRepresentation->menu()->clear(); QAction* tmp; // create menu entries for(mitk::EnumerationProperty::EnumConstIterator it=representationProp->Begin(); it!=representationProp->End() ; it++) { tmp = m_SurfaceRepresentation->menu()->addAction(QString::fromStdString(it->second)); tmp->setCheckable(true); if(it->second == representationProp->GetValueAsString()) { tmp->setChecked(true); } QObject::connect( tmp, SIGNAL( triggered(bool) ) , this, SLOT( SurfaceRepresentationActionToggled(bool) ) ); } } void QmitkDataManagerView::SurfaceRepresentationActionToggled( bool /*checked*/ ) { mitk::DataNode* node = m_NodeTreeModel->GetNode(m_NodeTreeView->selectionModel()->currentIndex()); if(!node) return; mitk::EnumerationProperty* representationProp = dynamic_cast (node->GetProperty("material.representation")); if(!representationProp) return; QAction* senderAction = qobject_cast ( QObject::sender() ); if(!senderAction) return; std::string activatedItem = senderAction->text().toStdString(); if ( activatedItem != representationProp->GetValueAsString() ) { if ( representationProp->IsValidEnumerationValue( activatedItem ) ) { representationProp->SetValue( activatedItem ); representationProp->InvokeEvent( itk::ModifiedEvent() ); representationProp->Modified(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } } void QmitkDataManagerView::SaveSelectedNodes( bool ) { QModelIndexList indexesOfSelectedRows = m_NodeTreeView->selectionModel()->selectedRows(); mitk::DataNode* node = 0; unsigned int indexesOfSelectedRowsSize = indexesOfSelectedRows.size(); for (unsigned int i = 0; iGetNode(indexesOfSelectedRows.at(i)); // if node is not defined or if the node contains geometry data do not remove it if ( node != 0 ) { mitk::BaseData::Pointer data = node->GetData(); if (data.IsNotNull()) { QString error; try { CommonFunctionality::SaveBaseData( data.GetPointer(), node->GetName().c_str() ); } catch(std::exception& e) { error = e.what(); } catch(...) { error = "Unknown error occured"; } if( !error.isEmpty() ) QMessageBox::critical( m_Parent, "Error saving...", error ); } } } } void QmitkDataManagerView::ReinitSelectedNodes( bool ) { mitk::IRenderWindowPart* renderWindow = this->OpenRenderWindowPart(); QList selectedNodes = this->GetCurrentSelection(); foreach(mitk::DataNode::Pointer node, selectedNodes) { mitk::BaseData::Pointer basedata = node->GetData(); - if (basedata.IsNotNull()) + if ( basedata.IsNotNull() && + basedata->GetTimeSlicedGeometry()->IsValid() ) { renderWindow->GetRenderingManager()->InitializeViews( basedata->GetTimeSlicedGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); renderWindow->GetRenderingManager()->RequestUpdateAll(); } } } void QmitkDataManagerView::RemoveSelectedNodes( bool ) { QModelIndexList indexesOfSelectedRows = m_NodeTreeView->selectionModel()->selectedRows(); if(indexesOfSelectedRows.size() < 1) { return; } std::vector selectedNodes; mitk::DataNode* node = 0; QString question = tr("Do you really want to remove "); for (QModelIndexList::iterator it = indexesOfSelectedRows.begin() ; it != indexesOfSelectedRows.end(); it++) { node = m_NodeTreeModel->GetNode(*it); // if node is not defined or if the node contains geometry data do not remove it if ( node != 0 /*& strcmp(node->GetData()->GetNameOfClass(), "Geometry2DData") != 0*/ ) { selectedNodes.push_back(node); question.append(QString::fromStdString(node->GetName())); question.append(", "); } } // remove the last two characters = ", " question = question.remove(question.size()-2, 2); question.append(" from data storage?"); QMessageBox::StandardButton answerButton = QMessageBox::question( m_Parent , tr("DataManager") , question , QMessageBox::Yes | QMessageBox::No, QMessageBox::Yes); if(answerButton == QMessageBox::Yes) { for (std::vector::iterator it = selectedNodes.begin() ; it != selectedNodes.end(); it++) { node = *it; this->GetDataStorage()->Remove(node); this->GlobalReinit(false); } } } void QmitkDataManagerView::MakeAllNodesInvisible( bool ) { QList nodes = m_NodeTreeModel->GetNodeSet(); foreach(mitk::DataNode::Pointer node, nodes) { node->SetVisibility(false); } //mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkDataManagerView::ShowOnlySelectedNodes( bool ) { QList selectedNodes = this->GetCurrentSelection(); QList allNodes = m_NodeTreeModel->GetNodeSet(); foreach(mitk::DataNode::Pointer node, allNodes) { node->SetVisibility(selectedNodes.contains(node)); } //mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkDataManagerView::ToggleVisibilityOfSelectedNodes( bool ) { QList selectedNodes = this->GetCurrentSelection(); bool isVisible = false; foreach(mitk::DataNode::Pointer node, selectedNodes) { isVisible = false; node->GetBoolProperty("visible", isVisible); node->SetVisibility(!isVisible); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkDataManagerView::ShowInfoDialogForSelectedNodes( bool ) { QList selectedNodes = this->GetCurrentSelection(); QmitkInfoDialog _QmitkInfoDialog(selectedNodes, this->m_Parent); _QmitkInfoDialog.exec(); } void QmitkDataManagerView::Load( bool ) { QStringList fileNames = QFileDialog::getOpenFileNames(NULL, "Load data", "", mitk::CoreObjectFactory::GetInstance()->GetFileExtensions()); for ( QStringList::Iterator it = fileNames.begin(); it != fileNames.end(); ++it ) { FileOpen((*it).toAscii(), 0); } } void QmitkDataManagerView::FileOpen( const char * fileName, mitk::DataNode* parentNode ) { mitk::DataNodeFactory::Pointer factory = mitk::DataNodeFactory::New(); try { factory->SetFileName( fileName ); QApplication::setOverrideCursor( QCursor(Qt::WaitCursor) ); factory->Update(); for ( unsigned int i = 0 ; i < factory->GetNumberOfOutputs( ); ++i ) { mitk::DataNode::Pointer node = factory->GetOutput( i ); if ( ( node.IsNotNull() ) && ( node->GetData() != NULL ) ) { this->GetDataStorage()->Add(node, parentNode); mitk::BaseData::Pointer basedata = node->GetData(); mitk::RenderingManager::GetInstance()->InitializeViews( basedata->GetTimeSlicedGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); //mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } } catch ( itk::ExceptionObject & ex ) { itkGenericOutputMacro( << "Exception during file open: " << ex ); } QApplication::restoreOverrideCursor(); } QItemSelectionModel *QmitkDataManagerView::GetDataNodeSelectionModel() const { return m_NodeTreeView->selectionModel(); } void QmitkDataManagerView::GlobalReinit( bool ) { mitk::IRenderWindowPart* renderWindow = this->OpenRenderWindowPart(); // get all nodes that have not set "includeInBoundingBox" to false mitk::NodePredicateNot::Pointer pred = mitk::NodePredicateNot::New(mitk::NodePredicateProperty::New("includeInBoundingBox" , mitk::BoolProperty::New(false))); mitk::DataStorage::SetOfObjects::ConstPointer rs = this->GetDataStorage()->GetSubset(pred); // calculate bounding geometry of these nodes mitk::TimeSlicedGeometry::Pointer bounds = this->GetDataStorage()->ComputeBoundingGeometry3D(rs, "visible"); // initialize the views to the bounding geometry renderWindow->GetRenderingManager()->InitializeViews(bounds); } void QmitkDataManagerView::OnSelectionChanged( berry::IWorkbenchPart::Pointer part , const QList& selection ) { if(part.GetPointer() == this) return; QItemSelection newSelection; m_NodeTreeView->selectionModel()->reset(); foreach(mitk::DataNode::Pointer node, selection) { QModelIndex treeIndex = m_NodeTreeModel->GetIndex(node); if(treeIndex.isValid()) newSelection.select(treeIndex, treeIndex); } m_NodeTreeView->selectionModel()->select(newSelection, QItemSelectionModel::SelectCurrent); } void QmitkDataManagerView::OtsuFilter( bool ) { QList selectedNodes = this->GetCurrentSelection(); mitk::Image::Pointer mitkImage = 0; foreach(mitk::DataNode::Pointer node, selectedNodes) { mitkImage = dynamic_cast( node->GetData() ); if(mitkImage.IsNull()) continue; try { // get selected mitk image const unsigned short dim = 3; typedef short InputPixelType; typedef unsigned char OutputPixelType; typedef itk::Image< InputPixelType, dim > InputImageType; typedef itk::Image< OutputPixelType, dim > OutputImageType; typedef itk::OtsuThresholdImageFilter< InputImageType, OutputImageType > FilterType; FilterType::Pointer filter = FilterType::New(); filter->SetOutsideValue( 1 ); filter->SetInsideValue( 0 ); InputImageType::Pointer itkImage; mitk::CastToItkImage(mitkImage, itkImage); filter->SetInput( itkImage ); filter->Update(); mitk::DataNode::Pointer resultNode = mitk::DataNode::New(); std::string nameOfResultImage = node->GetName(); nameOfResultImage.append("Otsu"); resultNode->SetProperty("name", mitk::StringProperty::New(nameOfResultImage) ); resultNode->SetProperty("binary", mitk::BoolProperty::New(true) ); resultNode->SetData( mitk::ImportItkImage ( filter->GetOutput() ) ); this->GetDataStorage()->Add(resultNode, node); } catch( std::exception& err ) { MITK_ERROR(this->GetClassName()) << err.what(); } } } void QmitkDataManagerView::NodeTreeViewRowsRemoved ( const QModelIndex & /*parent*/, int /*start*/, int /*end*/ ) { m_CurrentRowCount = m_NodeTreeModel->rowCount(); } void QmitkDataManagerView::NodeTreeViewRowsInserted( const QModelIndex & parent, int, int ) { m_NodeTreeView->setExpanded(parent, true); // a new row was inserted if( m_CurrentRowCount == 0 && m_NodeTreeModel->rowCount() == 1 ) { this->OpenRenderWindowPart(); m_CurrentRowCount = m_NodeTreeModel->rowCount(); /* std::vector nodes = m_NodeTreeModel->GetNodeSet(); if(nodes.size() == 1) { QModelIndex treeIndex = m_NodeTreeModel->GetIndex(nodes.front()); m_NodeTreeView->selectionModel()->setCurrentIndex( treeIndex, QItemSelectionModel::ClearAndSelect ); } */ } } void QmitkDataManagerView::NodeSelectionChanged( const QItemSelection & /*selected*/, const QItemSelection & /*deselected*/ ) { QList nodes = m_NodeTreeModel->GetNodeSet(); foreach(mitk::DataNode::Pointer node, nodes) { if ( node.IsNotNull() ) node->SetBoolProperty("selected", false); } nodes.clear(); nodes = this->GetCurrentSelection(); foreach(mitk::DataNode::Pointer node, nodes) { if ( node.IsNotNull() ) node->SetBoolProperty("selected", true); } //changing the selection does NOT require any rendering processes! //mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkDataManagerView::ShowIn(const QString &editorId) { berry::IWorkbenchPage::Pointer page = this->GetSite()->GetPage(); berry::IEditorInput::Pointer input(new mitk::DataStorageEditorInput(this->GetDataStorageReference())); page->OpenEditor(input, editorId.toStdString(), false, berry::IWorkbenchPage::MATCH_ID); } mitk::IRenderWindowPart* QmitkDataManagerView::OpenRenderWindowPart() { return this->GetRenderWindowPart(QmitkAbstractView::ACTIVATE | QmitkAbstractView::OPEN); }