diff --git a/Modules/DiffusionImaging/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.cpp b/Modules/DiffusionImaging/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.cpp index 59a4cc84ea..4142e043ca 100644 --- a/Modules/DiffusionImaging/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.cpp +++ b/Modules/DiffusionImaging/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.cpp @@ -1,753 +1,753 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date: 2009-07-14 19:11:20 +0200 (Tue, 14 Jul 2009) $ Version: $Revision: 18127 $ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #ifndef __itkAnalyticalDiffusionQballReconstructionImageFilter_cpp #define __itkAnalyticalDiffusionQballReconstructionImageFilter_cpp #include #include #include #include #include #include #include #include "itkPointShell.h" #include "mitkSphericalHarmonicsFunctions.h" namespace itk { #define QBALL_ANAL_RECON_PI M_PI template< class T, class TG, class TO, int L, int NODF> AnalyticalDiffusionQballReconstructionImageFilter ::AnalyticalDiffusionQballReconstructionImageFilter() : m_GradientDirectionContainer(NULL), m_NumberOfGradientDirections(0), m_NumberOfBaselineImages(1), m_Threshold(NumericTraits< ReferencePixelType >::NonpositiveMin()), m_BValue(1.0), m_Lambda(0.0), m_DirectionsDuplicated(false), m_Delta1(0.001), m_Delta2(0.001) { // At least 1 inputs is necessary for a vector image. // For images added one at a time we need at least six this->SetNumberOfRequiredInputs( 1 ); } template< class TReferenceImagePixelType, class TGradientImagePixelType, class TOdfPixelType, int NOrderL, int NrOdfDirections> typename itk::AnalyticalDiffusionQballReconstructionImageFilter< TReferenceImagePixelType,TGradientImagePixelType,TOdfPixelType, NOrderL,NrOdfDirections>::OdfPixelType itk::AnalyticalDiffusionQballReconstructionImageFilter ::Normalize( OdfPixelType odf, typename NumericTraits::AccumulateType b0 ) { switch( m_NormalizationMethod ) { case QBAR_STANDARD: { TOdfPixelType sum = 0; for(int i=0; i0) odf /= sum; return odf; break; } case QBAR_B_ZERO_B_VALUE: { for(int i=0; i vnl_vector itk::AnalyticalDiffusionQballReconstructionImageFilter ::PreNormalize( vnl_vector vec, typename NumericTraits::AccumulateType b0 ) { switch( m_NormalizationMethod ) { case QBAR_STANDARD: { return vec; break; } case QBAR_B_ZERO_B_VALUE: { int n = vec.size(); for(int i=0; i=1) vec[i] = 1-m_Delta2/2; else if (vec[i]>=1-m_Delta2) vec[i] = 1-m_Delta2/2-(1-vec[i])*(1-vec[i])/(2*m_Delta2); vec[i] = log(-log(vec[i])); } return vec; break; } } return vec; } template< class T, class TG, class TO, int L, int NODF> void AnalyticalDiffusionQballReconstructionImageFilter ::BeforeThreadedGenerateData() { // If we have more than 2 inputs, then each input, except the first is a // gradient image. The number of gradient images must match the number of // gradient directions. //const unsigned int numberOfInputs = this->GetNumberOfInputs(); // There need to be at least 6 gradient directions to be able to compute the // tensor basis if( m_NumberOfGradientDirections < 6 ) { itkExceptionMacro( << "At least 6 gradient directions are required" ); } // Input must be an itk::VectorImage. std::string gradientImageClassName( this->ProcessObject::GetInput(0)->GetNameOfClass()); if ( strcmp(gradientImageClassName.c_str(),"VectorImage") != 0 ) { itkExceptionMacro( << "There is only one Gradient image. I expect that to be a VectorImage. " << "But its of type: " << gradientImageClassName ); } this->ComputeReconstructionMatrix(); typename GradientImagesType::Pointer img = static_cast< GradientImagesType * >( this->ProcessObject::GetInput(0) ); m_BZeroImage = BZeroImageType::New(); m_BZeroImage->SetSpacing( img->GetSpacing() ); // Set the image spacing m_BZeroImage->SetOrigin( img->GetOrigin() ); // Set the image origin m_BZeroImage->SetDirection( img->GetDirection() ); // Set the image direction m_BZeroImage->SetLargestPossibleRegion( img->GetLargestPossibleRegion()); m_BZeroImage->SetBufferedRegion( img->GetLargestPossibleRegion() ); m_BZeroImage->Allocate(); m_ODFSumImage = BZeroImageType::New(); m_ODFSumImage->SetSpacing( img->GetSpacing() ); // Set the image spacing m_ODFSumImage->SetOrigin( img->GetOrigin() ); // Set the image origin m_ODFSumImage->SetDirection( img->GetDirection() ); // Set the image direction m_ODFSumImage->SetLargestPossibleRegion( img->GetLargestPossibleRegion()); m_ODFSumImage->SetBufferedRegion( img->GetLargestPossibleRegion() ); m_ODFSumImage->Allocate(); m_CoefficientImage = CoefficientImageType::New(); m_CoefficientImage->SetSpacing( img->GetSpacing() ); // Set the image spacing m_CoefficientImage->SetOrigin( img->GetOrigin() ); // Set the image origin m_CoefficientImage->SetDirection( img->GetDirection() ); // Set the image direction m_CoefficientImage->SetLargestPossibleRegion( img->GetLargestPossibleRegion()); m_CoefficientImage->SetBufferedRegion( img->GetLargestPossibleRegion() ); m_CoefficientImage->Allocate(); if(m_NormalizationMethod == QBAR_SOLID_ANGLE || m_NormalizationMethod == QBAR_NONNEG_SOLID_ANGLE) { m_Lambda = 0.0; } } template< class T, class TG, class TO, int L, int NODF> void AnalyticalDiffusionQballReconstructionImageFilter ::ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, int ) { typename OutputImageType::Pointer outputImage = static_cast< OutputImageType * >(this->ProcessObject::GetOutput(0)); ImageRegionIterator< OutputImageType > oit(outputImage, outputRegionForThread); oit.GoToBegin(); ImageRegionIterator< BZeroImageType > oit2(m_BZeroImage, outputRegionForThread); oit2.GoToBegin(); ImageRegionIterator< FloatImageType > oit3(m_ODFSumImage, outputRegionForThread); oit3.GoToBegin(); ImageRegionIterator< CoefficientImageType > oit4(m_CoefficientImage, outputRegionForThread); oit4.GoToBegin(); typedef ImageRegionConstIterator< GradientImagesType > GradientIteratorType; typedef typename GradientImagesType::PixelType GradientVectorType; typename GradientImagesType::Pointer gradientImagePointer = NULL; // Would have liked a dynamic_cast here, but seems SGI doesn't like it // The enum will ensure that an inappropriate cast is not done gradientImagePointer = static_cast< GradientImagesType * >( this->ProcessObject::GetInput(0) ); GradientIteratorType git(gradientImagePointer, outputRegionForThread ); git.GoToBegin(); // Compute the indicies of the baseline images and gradient images std::vector baselineind; // contains the indicies of // the baseline images std::vector gradientind; // contains the indicies of // the gradient images for(GradientDirectionContainerType::ConstIterator gdcit = this->m_GradientDirectionContainer->Begin(); gdcit != this->m_GradientDirectionContainer->End(); ++gdcit) { if(gdcit.Value().one_norm() <= 0.0) { baselineind.push_back(gdcit.Index()); } else { gradientind.push_back(gdcit.Index()); } } if( m_DirectionsDuplicated ) { int gradIndSize = gradientind.size(); for(int i=0; i::AccumulateType b0 = NumericTraits::Zero; // Average the baseline image pixels for(unsigned int i = 0; i < baselineind.size(); ++i) { b0 += b[baselineind[i]]; } b0 /= this->m_NumberOfBaselineImages; OdfPixelType odf(0.0); typename CoefficientImageType::PixelType coeffPixel(0.0); vnl_vector B(m_NumberOfGradientDirections); if( (b0 != 0) && (b0 >= m_Threshold) ) { for( unsigned int i = 0; i< m_NumberOfGradientDirections; i++ ) { B[i] = static_cast(b[gradientind[i]]); } B = PreNormalize(B, b0); if(m_NormalizationMethod == QBAR_SOLID_ANGLE) { vnl_vector coeffs(m_NumberCoefficients); coeffs = ( (*m_CoeffReconstructionMatrix) * B ); coeffs[0] += 1.0/(2.0*sqrt(QBALL_ANAL_RECON_PI)); odf = ( (*m_SphericalHarmonicBasisMatrix) * coeffs ).data_block(); coeffPixel = coeffs.data_block(); } else if(m_NormalizationMethod == QBAR_NONNEG_SOLID_ANGLE) { /** this would be the place to implement a non-negative * solver for quadratic programming problem: * min .5*|| Bc-s ||^2 subject to -CLPc <= 4*pi*ones * (refer to MICCAI 2009 Goh et al. "Estimating ODFs with PDF constraints") * .5*|| Bc-s ||^2 == .5*c'B'Bc - x'B's + .5*s's */ itkExceptionMacro( << "Nonnegative Solid Angle not yet implemented"); } else { odf = ( (*m_ReconstructionMatrix) * B ).data_block(); } odf = Normalize(odf, b0); } oit.Set( odf ); oit2.Set( b0 ); float sum = 0; for (int k=0; k void AnalyticalDiffusionQballReconstructionImageFilter ::tofile2(vnl_matrix *pA, std::string fname) { vnl_matrix A = (*pA); ofstream myfile; std::locale C("C"); std::locale originalLocale = myfile.getloc(); myfile.imbue(C); myfile.open (fname.c_str()); myfile << "A1=["; for(int i=0; i void AnalyticalDiffusionQballReconstructionImageFilter ::ComputeReconstructionMatrix() { //for(int i=-6;i<7;i++) // std::cout << boost::math::legendre_p(6, i, 0.65657) << std::endl; if( m_NumberOfGradientDirections < 6 ) { itkExceptionMacro( << "Not enough gradient directions supplied. Need to supply at least 6" ); } { // check for duplicate diffusion gradients bool warning = false; for(GradientDirectionContainerType::ConstIterator gdcit1 = this->m_GradientDirectionContainer->Begin(); gdcit1 != this->m_GradientDirectionContainer->End(); ++gdcit1) { for(GradientDirectionContainerType::ConstIterator gdcit2 = this->m_GradientDirectionContainer->Begin(); gdcit2 != this->m_GradientDirectionContainer->End(); ++gdcit2) { if(gdcit1.Value() == gdcit2.Value() && gdcit1.Index() != gdcit2.Index()) { itkWarningMacro( << "Some of the Diffusion Gradients equal each other. Corresponding image data should be averaged before calling this filter." ); warning = true; break; } } if (warning) break; } // handle acquisition schemes where only half of the spherical // shell is sampled by the gradient directions. In this case, // each gradient direction is duplicated in negative direction. vnl_vector centerMass(3); centerMass.fill(0.0); int count = 0; for(GradientDirectionContainerType::ConstIterator gdcit1 = this->m_GradientDirectionContainer->Begin(); gdcit1 != this->m_GradientDirectionContainer->End(); ++gdcit1) { if(gdcit1.Value().one_norm() > 0.0) { centerMass += gdcit1.Value(); count ++; } } centerMass /= count; if(centerMass.two_norm() > 0.1) { m_DirectionsDuplicated = true; m_NumberOfGradientDirections *= 2; } } vnl_matrix *Q = new vnl_matrix(3, m_NumberOfGradientDirections); { int i = 0; for(GradientDirectionContainerType::ConstIterator gdcit = this->m_GradientDirectionContainer->Begin(); gdcit != this->m_GradientDirectionContainer->End(); ++gdcit) { if(gdcit.Value().one_norm() > 0.0) { double x = gdcit.Value().get(0); double y = gdcit.Value().get(1); double z = gdcit.Value().get(2); double cart[3]; - mitk::ShericalHarmonicsFunctions::Cart2Sph(x,y,z,cart); + mitk::mitk_sh_functions::Cart2Sph(x,y,z,cart); (*Q)(0,i) = cart[0]; (*Q)(1,i) = cart[1]; (*Q)(2,i++) = cart[2]; } } if(m_DirectionsDuplicated) { for(GradientDirectionContainerType::ConstIterator gdcit = this->m_GradientDirectionContainer->Begin(); gdcit != this->m_GradientDirectionContainer->End(); ++gdcit) { if(gdcit.Value().one_norm() > 0.0) { double x = gdcit.Value().get(0); double y = gdcit.Value().get(1); double z = gdcit.Value().get(2); double cart[3]; - mitk::ShericalHarmonicsFunctions::Cart2Sph(x,y,z,cart); + mitk::mitk_sh_functions::Cart2Sph(x,y,z,cart); (*Q)(0,i) = cart[0]; (*Q)(1,i) = cart[1]; (*Q)(2,i++) = cart[2]; } } } } int l = L; m_NumberCoefficients = (int)(l*l + l + 2.0)/2.0 + l; vnl_matrix* B = new vnl_matrix(m_NumberOfGradientDirections,m_NumberCoefficients); vnl_matrix* _L = new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients); _L->fill(0.0); vnl_matrix* LL = new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients); LL->fill(0.0); vnl_matrix* P = new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients); P->fill(0.0); vnl_matrix* Inv = new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients); P->fill(0.0); vnl_vector* lj = new vnl_vector(m_NumberCoefficients); m_LP = new vnl_vector(m_NumberCoefficients); for(unsigned int i=0; i(B->transpose()); //tofile2(&m_B_t,"m_B_t"); vnl_matrix B_t_B = (*m_B_t) * (*B); //tofile2(&B_t_B,"B_t_B"); vnl_matrix lambdaLL(m_NumberCoefficients,m_NumberCoefficients); lambdaLL.update((*LL)); lambdaLL *= m_Lambda; //tofile2(&lambdaLL,"lLL"); vnl_matrix tmp( B_t_B + lambdaLL); vnl_matrix_inverse *pseudoInverse = new vnl_matrix_inverse( tmp ); (*Inv) = pseudoInverse->pinverse(); //tofile2(Inv,"Inv"); vnl_matrix temp((*Inv) * (*m_B_t)); double fac1 = (1.0/(16.0*QBALL_ANAL_RECON_PI*QBALL_ANAL_RECON_PI)); switch(m_NormalizationMethod) { case QBAR_ADC_ONLY: case QBAR_RAW_SIGNAL: break; case QBAR_STANDARD: case QBAR_B_ZERO_B_VALUE: case QBAR_B_ZERO: case QBAR_NONE: temp = (*P) * temp; break; case QBAR_SOLID_ANGLE: temp = fac1 * (*P) * (*_L) * temp; break; case QBAR_NONNEG_SOLID_ANGLE: break; } //tofile2(&temp,"A"); m_CoeffReconstructionMatrix = new vnl_matrix(m_NumberCoefficients,m_NumberOfGradientDirections); for(int i=0; iodfs later int NOdfDirections = NODF; vnl_matrix_fixed* U = itk::PointShell >::DistributePointShell(); m_SphericalHarmonicBasisMatrix = new vnl_matrix(NOdfDirections,m_NumberCoefficients); vnl_matrix* sphericalHarmonicBasisMatrix2 = new vnl_matrix(NOdfDirections,m_NumberCoefficients); for(int i=0; i(NOdfDirections,m_NumberOfGradientDirections); *m_ReconstructionMatrix = (*m_SphericalHarmonicBasisMatrix) * (*m_CoeffReconstructionMatrix); } template< class T, class TG, class TO, int L, int NODF> void AnalyticalDiffusionQballReconstructionImageFilter ::SetGradientImage( GradientDirectionContainerType *gradientDirection, const GradientImagesType *gradientImage ) { this->m_GradientDirectionContainer = gradientDirection; unsigned int numImages = gradientDirection->Size(); this->m_NumberOfBaselineImages = 0; for(GradientDirectionContainerType::Iterator it = this->m_GradientDirectionContainer->Begin(); it != this->m_GradientDirectionContainer->End(); it++) { if(it.Value().one_norm() <= 0.0) { this->m_NumberOfBaselineImages++; } else // Normalize non-zero gradient directions { it.Value() = it.Value() / it.Value().two_norm(); } } this->m_NumberOfGradientDirections = numImages - this->m_NumberOfBaselineImages; // ensure that the gradient image we received has as many components as // the number of gradient directions if( gradientImage->GetVectorLength() != this->m_NumberOfBaselineImages + m_NumberOfGradientDirections ) { itkExceptionMacro( << m_NumberOfGradientDirections << " gradients + " << this->m_NumberOfBaselineImages << "baselines = " << m_NumberOfGradientDirections + this->m_NumberOfBaselineImages << " directions specified but image has " << gradientImage->GetVectorLength() << " components."); } this->ProcessObject::SetNthInput( 0, const_cast< GradientImagesType* >(gradientImage) ); } template< class T, class TG, class TO, int L, int NODF> void AnalyticalDiffusionQballReconstructionImageFilter ::PrintSelf(std::ostream& os, Indent indent) const { std::locale C("C"); std::locale originalLocale = os.getloc(); os.imbue(C); Superclass::PrintSelf(os,indent); os << indent << "OdfReconstructionMatrix: " << m_ReconstructionMatrix << std::endl; if ( m_GradientDirectionContainer ) { os << indent << "GradientDirectionContainer: " << m_GradientDirectionContainer << std::endl; } else { os << indent << "GradientDirectionContainer: (Gradient directions not set)" << std::endl; } os << indent << "NumberOfGradientDirections: " << m_NumberOfGradientDirections << std::endl; os << indent << "NumberOfBaselineImages: " << m_NumberOfBaselineImages << std::endl; os << indent << "Threshold for reference B0 image: " << m_Threshold << std::endl; os << indent << "BValue: " << m_BValue << std::endl; os.imbue( originalLocale ); } } #endif // __itkAnalyticalDiffusionQballReconstructionImageFilter_cpp diff --git a/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp b/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp index d221ea4d11..56b4b4a22a 100644 --- a/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp +++ b/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp @@ -1,1181 +1,1202 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date: 2009-07-14 19:11:20 +0200 (Tue, 14 Jul 2009) $ Version: $Revision: 18127 $ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #ifndef __itkDiffusionMultiShellQballReconstructionImageFilter_cpp #define __itkDiffusionMultiShellQballReconstructionImageFilter_cpp #include #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include #include "mitkSphericalHarmonicsFunctions.h" #include "mitkVNLVectorFunctions.h" #include "itkPointShell.h" #include namespace itk { #define QBALL_ANAL_RECON_PI M_PI template< class T, class TG, class TO, int L, int NODF> DiffusionMultiShellQballReconstructionImageFilter ::DiffusionMultiShellQballReconstructionImageFilter() : m_GradientDirectionContainer(NULL), m_NumberOfGradientDirections(0), m_NumberOfBaselineImages(1), m_Threshold(NumericTraits< ReferencePixelType >::NonpositiveMin()), m_BValue(1.0), m_Lambda(0.0), m_IsHemisphericalArrangementOfGradientDirections(false), m_IsArithmeticProgession(false), m_ReconstructionType(Standard1Shell) { // At least 1 inputs is necessary for a vector image. // For images added one at a time we need at least six this->SetNumberOfRequiredInputs( 1 ); } template< class TReferenceImagePixelType, class TGradientImagePixelType, class TOdfPixelType, int NOrderL, int NrOdfDirections> typename itk::DiffusionMultiShellQballReconstructionImageFilter< TReferenceImagePixelType,TGradientImagePixelType,TOdfPixelType, NOrderL,NrOdfDirections>::OdfPixelType itk::DiffusionMultiShellQballReconstructionImageFilter ::Normalize( OdfPixelType odf, typename NumericTraits::AccumulateType b0 ) { for(int i=0; i0) odf /= sum; return odf; } template void itk::DiffusionMultiShellQballReconstructionImageFilter ::Threshold(vnl_vector & vec, double sigma) { for(int i = 0; i < vec.size(); i++) { if(vec[i] < 0) { vec[i] = sigma / 2 ; } if(0 <= vec[i] && vec[i] < sigma ) { vec[i] = sigma / 2 + (vec[i] * vec[i]) / (2 * sigma); } if( 1 - sigma <= vec[i] && vec[i] < 1 ) { vec[i] = 1-(sigma/2) - ((( 1 - vec[i]) * (1 - vec[i] )) / (2 * sigma) ); } if( 1 <= vec[i] ) { vec[i] = 1 - (sigma / 2); } } } template void itk::DiffusionMultiShellQballReconstructionImageFilter ::Threshold(vnl_matrix & mat, double sigma) { for(int i = 0; i < mat.rows(); i++) { for( int j = 0; j < mat.cols(); j++ ){ if(mat(i,j) < 0) { mat(i,j) = sigma / 2 ; } if(0 <= mat(i,j) && mat(i,j) < sigma ) { mat(i,j) = sigma / 2 + (mat(i,j) * mat(i,j)) / (2 * sigma); } if( 1 - sigma <= mat(i,j) && mat(i,j) < 1 ) { mat(i,j) = 1-(sigma/2) - (((1 - mat(i,j)) *( 1 - mat(i,j))) / (2 * sigma) ); } if( 1 <= mat(i,j) ) { mat(i,j) = 1 - (sigma / 2); } } } } template void itk::DiffusionMultiShellQballReconstructionImageFilter ::Projection1( vnl_matrix & E, double delta ) { const double sF = sqrt(5.0); vnl_vector vOnes(E.rows()); vOnes.fill(1.0); vnl_matrix T0(E.rows(), E.cols()); T0.fill(0.0); vnl_matrix C(E.rows(), 7); C.fill(0); vnl_matrix A(E.rows(), 7); A.fill(0.0); vnl_matrix B(E.rows(), 7); B.fill(0.0); vnl_vector s0(E.rows()); s0.fill(0.0); vnl_vector a0(E.rows()); a0.fill(0.0); vnl_vector b0(E.rows()); b0.fill(0.0); vnl_vector ta(E.rows()); ta.fill(0.0); vnl_vector tb(E.rows()); tb.fill(0.0); vnl_vector e(E.rows()); e.fill(0.0); vnl_vector m(E.rows()); m.fill(0.0); vnl_vector a(E.rows()); a.fill(0.0); vnl_vector b(E.rows()); b.fill(0.0); // logarithmierung aller werte in E for(int i = 0 ; i < E.rows(); i++) { for(int j = 0 ; j < E.cols(); j++) { T0(i,j) = -log(E(i,j)); } } //T0 = -T0.apply(std::log); // Summeiere Zeilenweise über alle Shells sum = E1+E2+E3 for(int i = 0 ; i < E.rows(); i++) { s0[i] = T0(i,0) + T0(i,1) + T0(i,2); } for(int i = 0; i < E.rows(); i ++) { // Alle Signal-Werte auf der Ersten shell E(N,0) normiert auf s0 a0 = E(i,0) / s0[i]; // Alle Signal-Werte auf der Zweiten shell E(N,1) normiert auf s0 b0 = E(i,1) / s0[i]; } ta = a0 * 3.0; tb = b0 * 3.0; e = tb - (ta * 2.0); m = (tb * 2.0 ) + ta; for(int i = 0; i < E.rows(); i++) { C(i,0) = tb[i] < 1+3*delta && 0.5+1.5*(sF+1)*delta < ta[i] && ta[i] < 1-3* (sF+2) *delta; C(i,1) = e[i] <= -1 +3*(2*sF+5)* delta && ta[i] >= 1-3*(sF+2)*delta; C(i,2) = m[i] > 3 -3*sF*delta && -1+3*(2*sF+5)*delta < e[i] && e[i]<-3*sF*delta; C(i,3) = m[i] >= 3-3*sF*delta && e[i] >= -3 *sF * delta; C(i,4) = 2.5 + 1.5*(5+sF)*delta < m[i] && m[i] < 3-3*sF*delta && e[i] > -3*sF*delta; C(i,5) = ta[i] <= 0.5+1.5 *(sF+1)*delta && m[i] <= 2.5 + 1.5 *(5+sF) * delta; C(i,6) = !( C(i,0) || C(i,1) || C(i,2) || C(i,3) || C(i,4) || C(i,5) ); // ~ANY(C(i,[0-5] ),2) A(i,0)=(bool)C(i,0) * a0(i); A(i,1)=(bool)C(i,1) * (1.0/3.0-(sF+2)*delta); A(i,2)=(bool)C(i,2) * (0.2+0.8*a0(i)-0.4*b0(i)-delta/sF); A(i,3)=(bool)C(i,3) * (0.2+delta/sF); A(i,4)=(bool)C(i,4) * (0.2*a0(i)+0.4*b0(i)+2*delta/sF); A(i,5)=(bool)C(i,5) * (1.0/6.0+0.5*(sF+1)*delta); A(i,6)=(bool)C(i,6) * a0(i); B(i,0)=(bool)C(i,0) * (1.0/3.0+delta); B(i,1)=(bool)C(i,1) * (1.0/3.0+delta); B(i,2)=(bool)C(i,2) * (0.4-0.4*a0(i)+0.2*b0(i)-2*delta/sF); B(i,3)=(bool)C(i,3) * (0.4-3*delta/sF); B(i,4)=(bool)C(i,4) * (0.4*a0(i)+0.8*b0(i)-delta/sF); B(i,5)=(bool)C(i,5) * (1.0/3.0+delta); B(i,6)=(bool)C(i,6) * b0(i); } for(int i = 0 ; i < E.rows(); i++) { double sumA = 0; double sumB = 0; for(int j = 0 ; j < 7; j++) { sumA += A(i,j); sumB += B(i,j); } a[i] = sumA; b[i] = sumB; } for(int i = 0; i < E.rows(); i++) { E(i,0) = exp(-(a[i]*s0[i])); E(i,1) = exp(-(b[i]*s0[i])); E(i,2) = exp(-((1-a[i]-b[i])*s0[i])); } } template void itk::DiffusionMultiShellQballReconstructionImageFilter ::Projection2( vnl_vector & A, vnl_vector & a, vnl_vector & b, double delta0) { const double s6 = sqrt(6); const double s15 = s6/2.0; vnl_vector delta(a.size()); delta.fill(delta0); vnl_matrix AM(a.size(), 15); AM.fill(0.0); vnl_matrix aM(a.size(), 15); aM.fill(0.0); vnl_matrix bM(a.size(), 15); bM.fill(0.0); vnl_matrix B(a.size(), 15); B.fill(0); AM.set_column(0, A); AM.set_column(1, A); AM.set_column(2, A); AM.set_column(3, delta); AM.set_column(4, (A+a-b - (delta*s6))/3.0); AM.set_column(5, delta); AM.set_column(6, delta); AM.set_column(7, delta); AM.set_column(8, A); AM.set_column(9, 0.2*(a*2+A-2*(s6+1)*delta)); AM.set_column(10,0.2*(b*(-2)+A+2-2*(s6+1)*delta)); AM.set_column(11, delta); AM.set_column(12, delta); AM.set_column(13, delta); AM.set_column(14, 0.5-(1+s15)*delta); aM.set_column(0, a); aM.set_column(1, a); aM.set_column(2, -delta + 1); aM.set_column(3, a); aM.set_column(4, (A*2+a*5+b+s6*delta)/6.0); aM.set_column(5, a); aM.set_column(6, -delta + 1); aM.set_column(7, 0.5*(a+b)+(1+s15)*delta); aM.set_column(8, -delta + 1); aM.set_column(9, 0.2*(a*4+A*2+(s6+1)*delta)); aM.set_column(10, -delta + 1); aM.set_column(11, (s6+3)*delta); aM.set_column(12, -delta + 1); aM.set_column(13, -delta + 1); aM.set_column(14, -delta + 1); bM.set_column(0, b); bM.set_column(1, delta); bM.set_column(2, b); bM.set_column(3, b); bM.set_column(4, (A*(-2)+a+b*5-s6*delta)/6.0); bM.set_column(5, delta); bM.set_column(6, b); bM.set_column(7, 0.5*(a+b)-(1+s15)*delta); bM.set_column(8, delta); bM.set_column(9, delta); bM.set_column(10, 0.2*(b*4-A*2+1-(s6+1)*delta)); bM.set_column(11, delta); bM.set_column(12, delta); bM.set_column(13, -delta*(s6+3) + 1); bM.set_column(14, delta); delta0 *= 0.99; for(int i = 0 ; i < a.size(); i ++) { for(int j = 0 ; j < 15; j ++) { B(i,j) = delta0 < AM(i,j) && 2 * (AM(i,j) + delta0 * s15) < aM(i,j) - bM(i,j) && bM(i,j) > delta0 && aM(i,j) < 1- delta0; } } vnl_matrix R2(a.size(), 15); R2.fill(0.0); vnl_matrix A_(a.size(), 15); A_.fill(0.0); vnl_matrix a_(a.size(), 15); a_.fill(0.0); vnl_matrix b_(a.size(), 15); b_.fill(0.0); vnl_matrix OnesVecMat(1, 15); OnesVecMat.fill(1.0); vnl_matrix AVecMat(a.size(), 1); AVecMat.set_column(0,A); vnl_matrix aVecMat(a.size(), 1); aVecMat.set_column(0,a); vnl_matrix bVecMat(a.size(), 1); bVecMat.set_column(0,b); A_ = AM - (AVecMat * OnesVecMat); a_ = aM - (aVecMat * OnesVecMat); b_ = bM - (bVecMat * OnesVecMat); for(int i = 0 ; i < a.size(); i++) for(int j = 0 ; j < 15; j++) { A_(i,j) *= A_(i,j); a_(i,j) *= a_(i,j); b_(i,j) *= b_(i,j); } R2 = A_ + a_ + b_; for(int i = 0 ; i < a.size(); i ++) { for(int j = 0 ; j < 15; j ++) { if(B(i,j) == 0) R2(i,j) = 1e20; } } std::vector indicies(a.size()); // suche den spalten-index der zu der kleinsten Zahl einer Zeile korrespondiert for(int i = 0 ; i < a.size(); i++) { unsigned int index = 0; double minvalue = 999; for(int j = 0 ; j < 15 ; j++) { if(R2(i,j) < minvalue){ minvalue = R2(i,j); index = j; } } indicies[i] = index; } for(int i = 0 ; i < a.size(); i++) { A[i] = AM(i,indicies[i]); a[i] = aM(i,indicies[i]); b[i] = bM(i,indicies[i]); } } template void itk::DiffusionMultiShellQballReconstructionImageFilter ::S_S0Normalization( vnl_vector & vec, typename NumericTraits::AccumulateType b0 ) { double b0f = (double)b0; for(int i = 0; i < vec.size(); i++) { if (b0f==0) b0f = 0.01; if(vec[i] >= b0f) vec[i] = b0f - 0.001; vec[i] /= b0f; } } template void itk::DiffusionMultiShellQballReconstructionImageFilter ::S_S0Normalization( vnl_matrix & mat, typename NumericTraits::AccumulateType b0 ) { double b0f = (double)b0; for(int i = 0; i < mat.rows(); i++) { for( int j = 0; j < mat.cols(); j++ ){ if (b0f==0) b0f = 0.01; if(mat(i,j) >= b0f) mat(i,j) = b0f - 0.001; mat(i,j) /= b0f; } } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::DoubleLogarithm(vnl_vector & vec) { for(int i = 0; i < vec.size(); i++) { vec[i] = log(-log(vec[i])); } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::SetGradientImage( GradientDirectionContainerType *gradientDirection, const GradientImagesType *gradientImage ) { this->m_GradientDirectionContainer = gradientDirection; this->m_NumberOfBaselineImages = 0; for(GradientDirectionContainerType::Iterator it = gradientDirection->Begin(); it != gradientDirection->End(); it++) { if( it.Value().one_norm() <= 0.0 ) this->m_NumberOfBaselineImages ++; else it.Value() = it.Value() / it.Value().two_norm(); } this->m_NumberOfGradientDirections = gradientDirection->Size() - this->m_NumberOfBaselineImages; // ensure that the gradient image we received has as many components as // the number of gradient directions if( gradientImage->GetVectorLength() != this->m_NumberOfBaselineImages + m_NumberOfGradientDirections ) { itkExceptionMacro( << m_NumberOfGradientDirections << " gradients + " << this->m_NumberOfBaselineImages << "baselines = " << m_NumberOfGradientDirections + this->m_NumberOfBaselineImages << " directions specified but image has " << gradientImage->GetVectorLength() << " components."); } this->ProcessObject::SetNthInput( 0, const_cast< GradientImagesType* >(gradientImage) ); } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::BeforeThreadedGenerateData() { itk::TimeProbe clock; clock.Start(); if( m_NumberOfGradientDirections < (((L+1)*(L+2))/2) /* && m_NumberOfGradientDirections < 6 */ ) { itkExceptionMacro( << "At least " << ((L+1)*(L+2))/2 << " gradient directions are required" ); } // Input must be an itk::VectorImage. std::string gradientImageClassName(this->ProcessObject::GetInput(0)->GetNameOfClass()); if ( strcmp(gradientImageClassName.c_str(),"VectorImage") != 0 ) itkExceptionMacro( << "There is only one Gradient image. I expect that to be a VectorImage. But its of type: " << gradientImageClassName ); m_BZeroImage = BZeroImageType::New(); typename GradientImagesType::Pointer img = static_cast< GradientImagesType * >( this->ProcessObject::GetInput(0) ); m_BZeroImage->SetSpacing( img->GetSpacing() ); // Set the image spacing m_BZeroImage->SetOrigin( img->GetOrigin() ); // Set the image origin m_BZeroImage->SetDirection( img->GetDirection() ); // Set the image direction m_BZeroImage->SetLargestPossibleRegion( img->GetLargestPossibleRegion()); m_BZeroImage->SetBufferedRegion( img->GetLargestPossibleRegion() ); m_BZeroImage->Allocate(); // if no GradientIndexMap is set take all Gradients to GradientIndicies-Vector and add this to GradientIndexMap[ALL] // add All Bzero if(m_GradientIndexMap.size() == 0){ // split for all gradient directions the image in baseline-indicies and gradient-indicies for a fast access GradientDirectionContainerType::ConstIterator gdcit; for( gdcit = this->m_GradientDirectionContainer->Begin(); gdcit != this->m_GradientDirectionContainer->End(); ++gdcit) { if(gdcit.Value().one_norm() <= 0.0) // if vector length at current position is 0, it is a basline signal { m_GradientIndexMap[0].push_back(gdcit.Index()); }else{ // it is a gradient signal of length != 0 m_GradientIndexMap[1].push_back(gdcit.Index()); } } m_ReconstructionType = Standard1Shell; }else if(m_GradientIndexMap.size() == 4){ GradientIndexMapIteraotr it = m_GradientIndexMap.begin(); it++; int b1 = (*it).first; it++; int b2 = (*it).first; it++; int b3 = (*it).first; if(b2 - b1 == b1 && b3 - b2 == b1 ) { m_ReconstructionType = Analytical3Shells; }else { m_ReconstructionType = NumericalNShells; } }else if(m_GradientIndexMap.size() > 2) { m_ReconstructionType = NumericalNShells; } switch(m_ReconstructionType) { case Analytical3Shells: { GradientIndexMapIteraotr it = m_GradientIndexMap.begin(); it++; this->ComputeReconstructionMatrix((*it).second); break; } case NumericalNShells: this->ComputeReconstructionMatrix(m_GradientIndexMap[1]); break; case Standard1Shell: this->ComputeReconstructionMatrix(m_GradientIndexMap[1]); break; } clock.Stop(); MITK_INFO << "Before GenerateData : " << clock.GetTotal(); } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::StandardOneShellReconstruction(const OutputImageRegionType& outputRegionForThread) { // Get output image pointer typename OutputImageType::Pointer outputImage = static_cast< OutputImageType * >(this->ProcessObject::GetOutput(0)); // ImageRegionIterator for the output image ImageRegionIterator< OutputImageType > oit(outputImage, outputRegionForThread); oit.GoToBegin(); // ImageRegionIterator for the BZero (output) image ImageRegionIterator< BZeroImageType > oit2(m_BZeroImage, outputRegionForThread); oit2.GoToBegin(); IndiciesVector BZeroIndicies = m_GradientIndexMap[0]; IndiciesVector SignalIndicies = m_GradientIndexMap[1]; // if the gradient directiosn aragement is hemispherical, duplicate all gradient directions // alone, interested in the value, the direction can be neglected if(m_IsHemisphericalArrangementOfGradientDirections){ int NumbersOfGradientIndicies = SignalIndicies.size(); for (int i = 0 ; i < NumbersOfGradientIndicies; i++) SignalIndicies.push_back(SignalIndicies[i]); } // Get input gradient image pointer typename GradientImagesType::Pointer gradientImagePointer = static_cast< GradientImagesType * >( this->ProcessObject::GetInput(0) ); // Const ImageRegionIterator for input gradient image typedef ImageRegionConstIterator< GradientImagesType > GradientIteratorType; GradientIteratorType git(gradientImagePointer, outputRegionForThread ); git.GoToBegin(); typedef typename GradientImagesType::PixelType GradientVectorType; // iterate overall voxels of the gradient image region while( ! git.IsAtEnd() ) { GradientVectorType b = git.Get(); // compute the average bzero signal typename NumericTraits::AccumulateType b0 = NumericTraits::Zero; for(unsigned int i = 0; i < BZeroIndicies.size(); ++i) { b0 += b[BZeroIndicies[i]]; } b0 /= BZeroIndicies.size(); // ODF Vector OdfPixelType odf(0.0); // Create the Signal Vector vnl_vector SignalVector(m_NumberOfGradientDirections); if( (b0 != 0) && (b0 >= m_Threshold) ) { for( unsigned int i = 0; i< SignalIndicies.size(); i++ ) { SignalVector[i] = static_cast(b[SignalIndicies[i]]); } // apply threashold an generate ln(-ln(E)) signal // Replace SignalVector with PreNormalized SignalVector S_S0Normalization(SignalVector, b0); DoubleLogarithm(SignalVector); // ODF coeffs-vector vnl_vector coeffs(m_NumberCoefficients); // approximate ODF coeffs coeffs = ( (*m_CoeffReconstructionMatrix) * SignalVector ); coeffs[0] += 1.0/(2.0*sqrt(QBALL_ANAL_RECON_PI)); odf = mitk::mitk_vnl_function::element_cast(( (*m_ODFSphericalHarmonicBasisMatrix) * coeffs )).data_block(); } // set ODF to ODF-Image oit.Set( odf ); ++oit; // set b0(average) to b0-Image oit2.Set( b0 ); ++oit2; ++git; } MITK_INFO << "One Thread finished reconstruction"; } #include +#include +#include + +class LMFunction : public vnl_least_squares_function +{ + void f(vnl_vector const& x, vnl_vector& fx) + { + + } +}; + + +template< class T, class TG, class TO, int L, int NODF> +void DiffusionMultiShellQballReconstructionImageFilter +::NumericalNShellReconstruction(const OutputImageRegionType& outputRegionForThread) +{ + + + vnl_levenberg_marquardt LMOptimizer = new vnl_levenberg_marquardt(); + +} template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::AnalyticalThreeShellReconstruction(const OutputImageRegionType& outputRegionForThread) { typename OutputImageType::Pointer outputImage = static_cast< OutputImageType * >(this->ProcessObject::GetOutput(0)); ImageRegionIterator< OutputImageType > oit(outputImage, outputRegionForThread); oit.GoToBegin(); ImageRegionIterator< BZeroImageType > oit2(m_BZeroImage, outputRegionForThread); oit2.GoToBegin(); IndiciesVector BZeroIndicies = m_GradientIndexMap[0]; //MAP-Pair(B-value, SignalShell1Indiecies) GradientIndexMapIteraotr it = m_GradientIndexMap.begin(); // it = b-vlaue = 0 it++; // it = b-value = 1000 IndiciesVector Shell1Indiecies = (*it).second; it++; // it = b-value = 2000 IndiciesVector Shell2Indiecies = (*it).second; it++; // it = b-value = 3000 IndiciesVector Shell3Indiecies = (*it).second; if(m_IsHemisphericalArrangementOfGradientDirections){ int NumbersOfGradientIndicies = Shell1Indiecies.size(); for (int i = 0 ; i < NumbersOfGradientIndicies; i++){ Shell1Indiecies.push_back(Shell1Indiecies[i]); Shell2Indiecies.push_back(Shell2Indiecies[i]); Shell3Indiecies.push_back(Shell3Indiecies[i]); } } // Get input gradient image pointer typename GradientImagesType::Pointer gradientImagePointer = static_cast< GradientImagesType * >( this->ProcessObject::GetInput(0) ); // Const ImageRegionIterator for input gradient image typedef ImageRegionConstIterator< GradientImagesType > GradientIteratorType; GradientIteratorType git(gradientImagePointer, outputRegionForThread ); git.GoToBegin(); typedef typename GradientImagesType::PixelType GradientVectorType; //------------------------- Preperations Zone ------------------------------------ // N x 3 // x E1 , E2 , E3 // // N : : : // : : : // vnl_matrix< double > * E = new vnl_matrix(Shell1Indiecies.size(), 3); vnl_vector * AlphaValues = new vnl_vector(Shell1Indiecies.size()); vnl_vector * BetaValues = new vnl_vector(Shell1Indiecies.size()); vnl_vector * LAValues = new vnl_vector(Shell1Indiecies.size()); vnl_vector * PValues = new vnl_vector(Shell1Indiecies.size()); OdfPixelType odf(0.0); //------------------------- Preperations Zone END --------------------------------- // iterate overall voxels of the gradient image region while( ! git.IsAtEnd() ) { GradientVectorType b = git.Get(); // compute the average bzero signal typename NumericTraits::AccumulateType b0 = NumericTraits::Zero; for(unsigned int i = 0; i < BZeroIndicies.size(); ++i) { b0 += b[BZeroIndicies[i]]; } b0 /= BZeroIndicies.size(); if( (b0 != 0) && (b0 >= m_Threshold) ) { for(int i = 0 ; i < Shell1Indiecies.size(); i++) { E->put(i,0, static_cast(b[Shell1Indiecies[i]])); E->put(i,1, static_cast(b[Shell2Indiecies[i]])); E->put(i,2, static_cast(b[Shell3Indiecies[i]])); } //Approximated-Signal by SH fit - using the specific shell directions and values E->set_column(1, (*m_SHBasisMatrix) * ((*m_SignalReonstructionMatrix) * (E->get_column(1)))); E->set_column(2, (*m_SHBasisMatrix) * ((*m_SignalReonstructionMatrix) * (E->get_column(2)))); // Si/S0 S_S0Normalization(*E,b0); //Implements Eq. [19] and Fig. 4. Threshold(*E); //inqualities [31]. Taking the lograithm of th first tree inqualities //convert the quadratic inqualities to linear ones. Projection1(*E); double E1, E2, E3, P2,A,B2,B,P,alpha,beta,lambda, ER1, ER2; for( unsigned int i = 0; i< Shell1Indiecies.size(); i++ ) { E1 = E->get(i,0); E2 = E->get(i,1); E3 = E->get(i,2); P2 = E2-E1*E1; A = (E3 -E1*E2) / ( 2* P2); B2 = A * A -(E1 * E3 - E2 * E2) /P2; B = 0; if(B2 > 0) B = sqrt(B2); P = 0; if(P2 > 0) P = sqrt(P2); alpha = A + B; beta = A - B; lambda = 0.5 + 0.5 * std::sqrt(1 - std::pow((P * 2 ) / (alpha - beta), 2));; ER1 = std::fabs(lambda * (alpha - beta) + (beta - E1 )) + std::fabs(lambda * (std::pow(alpha, 2) - std::pow(beta, 2)) + (std::pow(beta, 2) - E2 )) + std::fabs(lambda * (std::pow(alpha, 3) - std::pow(beta, 3)) + (std::pow(beta, 3) - E3 )); ER2 = std::fabs((lambda-1) * (alpha - beta) + (beta - E1 )) + std::fabs((lambda-1) * (std::pow(alpha, 2) - std::pow(beta, 2)) + (std::pow(beta, 2) - E2 )) + std::fabs((lambda-1) * (std::pow(alpha, 3) - std::pow(beta, 3)) + (std::pow(beta, 3) - E3 )); PValues->put(i, P); AlphaValues->put(i, alpha); BetaValues->put(i, beta); LAValues->put(i,(lambda * (ER1 < ER2)) + ((1-lambda) * (ER1 >= ER2))); } Projection2(*PValues, *AlphaValues, *BetaValues); Threshold(*AlphaValues); Threshold(*BetaValues); DoubleLogarithm(*AlphaValues); DoubleLogarithm(*BetaValues); //L * A + (1-L) * B = S //L * A + B - L * B = S //L*(A - B) + B = S vnl_vector SignalVector(element_product((*LAValues) , (*AlphaValues)-(*BetaValues)) + (*BetaValues)); vnl_vector coeffs((*m_CoeffReconstructionMatrix) *SignalVector ); // the first coeff is a fix value coeffs[0] += 1.0/(2.0*sqrt(QBALL_ANAL_RECON_PI)); // Cast the Signal-Type from double to float for the ODF-Image odf = mitk::mitk_vnl_function::element_cast( (*m_ODFSphericalHarmonicBasisMatrix) * coeffs ).data_block(); odf *= (QBALL_ANAL_RECON_PI*4/NODF); Normalize(odf,b0); } // set ODF to ODF-Image oit.Set( odf ); ++oit; // set b0(average) to b0-Image oit2.Set( b0 ); ++oit2; ++git; } MITK_INFO << "THREAD FINISHED"; delete E; delete AlphaValues; delete BetaValues; delete PValues; delete LAValues; } template< class T, class TG, class TO, int L, int NODF> vnl_vector DiffusionMultiShellQballReconstructionImageFilter ::AnalyticalThreeShellParameterEstimation(const IndiciesVector * shell1Indicies,const IndiciesVector * shell2Indicies ,const IndiciesVector * shell3Indicies, vnl_vector) { } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, int NumberOfThreads) { itk::TimeProbe clock; clock.Start(); switch(m_ReconstructionType) { case Standard1Shell: StandardOneShellReconstruction(outputRegionForThread); break; case Analytical3Shells: AnalyticalThreeShellReconstruction(outputRegionForThread); break; case NumericalNShells: break; } clock.Stop(); MITK_INFO << "Reconstruction in : " << clock.GetTotal() << " TU"; } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter:: ComputeSphericalHarmonicsBasis(vnl_matrix * QBallReference, vnl_matrix *SHBasisOutput, vnl_matrix* LaplaciaBaltramiOutput, vnl_vector* SHOrderAssociation, vnl_matrix* SHEigenvalues ) { for(unsigned int i=0; i< (*SHBasisOutput).rows(); i++) { for(int k = 0; k <= L; k += 2) { for(int m =- k; m <= k; m++) { int j = ( k * k + k + 2 ) / 2 + m - 1; // Compute SHBasisFunctions double phi = (*QBallReference)(0,i); double th = (*QBallReference)(1,i); - (*SHBasisOutput)(i,j) = mitk::ShericalHarmonicsFunctions::Yj(m,k,th,phi); + (*SHBasisOutput)(i,j) = mitk::mitk_sh_functions::Yj(m,k,th,phi); // Laplacian Baltrami Order Association if(LaplaciaBaltramiOutput) (*LaplaciaBaltramiOutput)(j,j) = k*k*(k + 1)*(k+1); // SHEigenvalues with order Accosiation kj if(SHEigenvalues) (*SHEigenvalues)(j,j) = -k* (k+1); // Order Association if(SHOrderAssociation) (*SHOrderAssociation)[j] = k; } } } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::ComputeFunkRadonTransformationMatrix(vnl_vector* SHOrderAssociationReference, vnl_matrix* FRTMatrixOutput ) { for(int i=0; i bool DiffusionMultiShellQballReconstructionImageFilter ::CheckHemisphericalArrangementOfGradientDirections() { // handle acquisition schemes where only half of the spherical // shell is sampled by the gradient directions. In this case, // each gradient direction is duplicated in negative direction. vnl_vector centerMass(3); centerMass.fill(0.0); int count = 0; GradientDirectionContainerType::ConstIterator gdcit1; for( gdcit1 = this->m_GradientDirectionContainer->Begin(); gdcit1 != this->m_GradientDirectionContainer->End(); ++gdcit1) { if(gdcit1.Value().one_norm() > 0.0) { centerMass += gdcit1.Value(); count ++; } } centerMass /= count; if(centerMass.two_norm() > 0.1) { return false; } return true; } template< class T, class TG, class TO, int L, int NOdfDirections> void DiffusionMultiShellQballReconstructionImageFilter ::ComputeReconstructionMatrix(std::vector< unsigned int > gradientIndiciesVector) { typedef std::auto_ptr< vnl_matrix< double> > MatrixDoublePtr; typedef std::auto_ptr< vnl_vector< int > > VectorIntPtr; typedef std::auto_ptr< vnl_matrix_inverse< double > > InverseMatrixDoublePtr; int numberOfGradientDirections = gradientIndiciesVector.size(); if( numberOfGradientDirections < (((L+1)*(L+2))/2) || numberOfGradientDirections < 6 ) { itkExceptionMacro( << "At least (L+1)(L+2)/2 gradient directions are required" ); } CheckDuplicateDiffusionGradients(); // check if gradient directions are arrangement as a hemisphere(true) or sphere(false) m_IsHemisphericalArrangementOfGradientDirections = CheckHemisphericalArrangementOfGradientDirections(); if(m_IsHemisphericalArrangementOfGradientDirections) numberOfGradientDirections *= 2; MatrixDoublePtr Q(new vnl_matrix(3, numberOfGradientDirections)); Q->fill(0.0); // Cartesian to spherical coordinates { int j = 0; for(int i = 0; i < gradientIndiciesVector.size(); i++) { double x = this->m_GradientDirectionContainer->ElementAt(gradientIndiciesVector[i]).get(0); double y = this->m_GradientDirectionContainer->ElementAt(gradientIndiciesVector[i]).get(1); double z = this->m_GradientDirectionContainer->ElementAt(gradientIndiciesVector[i]).get(2); double cart[3]; - mitk::ShericalHarmonicsFunctions::Cart2Sph(x,y,z,cart); + mitk::mitk_sh_functions::Cart2Sph(x,y,z,cart); (*Q)(0,j) = cart[0]; (*Q)(1,j) = cart[1]; (*Q)(2,j++) = cart[2]; } if(m_IsHemisphericalArrangementOfGradientDirections) { for(int i = 0; i < gradientIndiciesVector.size(); i++) { double x = this->m_GradientDirectionContainer->ElementAt(gradientIndiciesVector[i]).get(0); double y = this->m_GradientDirectionContainer->ElementAt(gradientIndiciesVector[i]).get(1); double z = this->m_GradientDirectionContainer->ElementAt(gradientIndiciesVector[i]).get(2); double cart[3]; - mitk::ShericalHarmonicsFunctions::Cart2Sph(x,y,z,cart); + mitk::mitk_sh_functions::Cart2Sph(x,y,z,cart); (*Q)(0,j) = cart[0]; (*Q)(1,j) = cart[1]; (*Q)(2,j++) = cart[2]; } } } int LOrder = L; m_NumberCoefficients = (int)(LOrder*LOrder + LOrder + 2.0)/2.0 + LOrder; m_SHBasisMatrix = new vnl_matrix(numberOfGradientDirections,m_NumberCoefficients); m_SHBasisMatrix->fill(0.0); VectorIntPtr SHOrderAssociation(new vnl_vector(m_NumberCoefficients)); SHOrderAssociation->fill(0.0); MatrixDoublePtr LaplacianBaltrami(new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients)); LaplacianBaltrami->fill(0.0); MatrixDoublePtr FRTMatrix(new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients)); FRTMatrix->fill(0.0); MatrixDoublePtr SHEigenvalues(new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients)); SHEigenvalues->fill(0.0); // SHBasis-Matrix + LaplacianBaltrami-Matrix + SHOrderAssociationVector ComputeSphericalHarmonicsBasis(Q.get() ,m_SHBasisMatrix, LaplacianBaltrami.get(), SHOrderAssociation.get(), SHEigenvalues.get()); // Compute FunkRadon Transformation Matrix Associated to SHBasis Order lj ComputeFunkRadonTransformationMatrix(SHOrderAssociation.get() ,FRTMatrix.get()); MatrixDoublePtr temp(new vnl_matrix(((m_SHBasisMatrix->transpose()) * (*m_SHBasisMatrix)) + (m_Lambda * (*LaplacianBaltrami)))); InverseMatrixDoublePtr pseudo_inv(new vnl_matrix_inverse((*temp))); MatrixDoublePtr inverse(new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients)); inverse->fill(0.0); (*inverse) = pseudo_inv->inverse(); // ODF Factor ( missing 1/4PI ?? ) double factor = (1.0/(16.0*QBALL_ANAL_RECON_PI*QBALL_ANAL_RECON_PI)); m_SignalReonstructionMatrix = new vnl_matrix((*inverse) * (m_SHBasisMatrix->transpose())); m_CoeffReconstructionMatrix = new vnl_matrix(( factor * ((*FRTMatrix) * ((*SHEigenvalues) * (*m_SignalReonstructionMatrix))) )); // this code goes to the image adapter coeffs->odfs later vnl_matrix_fixed* U = itk::PointShell >::DistributePointShell(); m_ODFSphericalHarmonicBasisMatrix = new vnl_matrix(NOdfDirections,m_NumberCoefficients); m_ODFSphericalHarmonicBasisMatrix->fill(0.0); for(int i=0; i((*m_ODFSphericalHarmonicBasisMatrix) * (*m_CoeffReconstructionMatrix)); } template< class T, class TG, class TO, int L, int NODF> template< class VNLType > void DiffusionMultiShellQballReconstructionImageFilter ::printMatrix( VNLType * mat ) { std::stringstream stream; for(int i = 0 ; i < mat->rows(); i++) { stream.str(""); for(int j = 0; j < mat->cols(); j++) { stream << (*mat)(i,j) << " "; } } MITK_INFO << stream.str(); } template< class T, class TG, class TO, int L, int NODF> bool DiffusionMultiShellQballReconstructionImageFilter ::CheckDuplicateDiffusionGradients() { GradientDirectionContainerType::ConstIterator gdcit1; GradientDirectionContainerType::ConstIterator gdcit2; for(gdcit1 = this->m_GradientDirectionContainer->Begin(); gdcit1 != this->m_GradientDirectionContainer->End(); ++gdcit1) { for(gdcit2 = this->m_GradientDirectionContainer->Begin(); gdcit2 != this->m_GradientDirectionContainer->End(); ++gdcit2) { if(gdcit1.Value() == gdcit2.Value() && gdcit1.Index() != gdcit2.Index()) { itkWarningMacro( << "Some of the Diffusion Gradients equal each other. Corresponding image data should be averaged before calling this filter." ); return true; } } } return false; } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::PrintSelf(std::ostream& os, Indent indent) const { std::locale C("C"); std::locale originalLocale = os.getloc(); os.imbue(C); Superclass::PrintSelf(os,indent); os << indent << "OdfReconstructionMatrix: " << m_ReconstructionMatrix << std::endl; if ( m_GradientDirectionContainer ) { os << indent << "GradientDirectionContainer: " << m_GradientDirectionContainer << std::endl; } else { os << indent << "GradientDirectionContainer: (Gradient directions not set)" << std::endl; } os << indent << "NumberOfGradientDirections: " << m_NumberOfGradientDirections << std::endl; os << indent << "NumberOfBaselineImages: " << m_NumberOfBaselineImages << std::endl; os << indent << "Threshold for reference B0 image: " << m_Threshold << std::endl; os << indent << "BValue: " << m_BValue << std::endl; os.imbue( originalLocale ); } } #endif // __itkDiffusionMultiShellQballReconstructionImageFilter_cpp diff --git a/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.h b/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.h index ad3324735a..f2118fdcd5 100644 --- a/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.h +++ b/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.h @@ -1,235 +1,236 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date: 2009-07-14 19:11:20 +0200 (Tue, 14 Jul 2009) $ Version: $Revision: 18127 $ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #ifndef __itkDiffusionMultiShellQballReconstructionImageFilter_h_ #define __itkDiffusionMultiShellQballReconstructionImageFilter_h_ #include "itkImageToImageFilter.h" #include "vnl/vnl_vector_fixed.h" #include "vnl/vnl_matrix.h" #include "vnl/algo/vnl_svd.h" #include "itkVectorContainer.h" #include "itkVectorImage.h" #include namespace itk{ /** \class DiffusionMultiShellQballReconstructionImageFilter Aganj_2010 */ template< class TReferenceImagePixelType, class TGradientImagePixelType, class TOdfPixelType, int NOrderL, int NrOdfDirections> class DiffusionMultiShellQballReconstructionImageFilter : public ImageToImageFilter< Image< TReferenceImagePixelType, 3 >, Image< Vector< TOdfPixelType, NrOdfDirections >, 3 > > { public: typedef DiffusionMultiShellQballReconstructionImageFilter Self; typedef SmartPointer Pointer; typedef SmartPointer ConstPointer; typedef ImageToImageFilter< Image< TReferenceImagePixelType, 3>, Image< Vector< TOdfPixelType, NrOdfDirections >, 3 > > Superclass; typedef TReferenceImagePixelType ReferencePixelType; typedef TGradientImagePixelType GradientPixelType; typedef Vector< TOdfPixelType, NrOdfDirections > OdfPixelType; typedef typename Superclass::InputImageType ReferenceImageType; typedef Image< OdfPixelType, 3 > OdfImageType; typedef OdfImageType OutputImageType; typedef TOdfPixelType BZeroPixelType; typedef Image< BZeroPixelType, 3 > BZeroImageType; typedef typename Superclass::OutputImageRegionType OutputImageRegionType; /** Typedef defining one (of the many) gradient images. */ typedef Image< GradientPixelType, 3 > GradientImageType; /** An alternative typedef defining one (of the many) gradient images. * It will be assumed that the vectorImage has the same dimension as the * Reference image and a vector length parameter of \c n (number of * gradient directions)*/ typedef VectorImage< GradientPixelType, 3 > GradientImagesType; /** Holds the ODF reconstruction matrix */ typedef vnl_matrix< TOdfPixelType >* OdfReconstructionMatrixType; typedef vnl_matrix< double > * CoefficientMatrixType; /** Holds each magnetic field gradient used to acquire one DWImage */ typedef vnl_vector_fixed< double, 3 > GradientDirectionType; /** Container to hold gradient directions of the 'n' DW measurements */ typedef VectorContainer< unsigned int, GradientDirectionType > GradientDirectionContainerType; typedef std::map > GradientIndexMap; typedef std::map >::iterator GradientIndexMapIteraotr; typedef std::vector IndiciesVector; // --------------------------------------------------------------------------------------------// /** Method for creation through the object factory. */ itkNewMacro(Self); /** Runtime information support. */ itkTypeMacro(DiffusionMultiShellQballReconstructionImageFilter, ImageToImageFilter); /** set method to add gradient directions and its corresponding * image. The image here is a VectorImage. The user is expected to pass the * gradient directions in a container. The ith element of the container * corresponds to the gradient direction of the ith component image the * VectorImage. For the baseline image, a vector of all zeros * should be set.*/ void SetGradientImage( GradientDirectionContainerType *, const GradientImagesType *image); void SetGradientIndexMap(GradientIndexMap gradientIdexMap) { m_GradientIndexMap = gradientIdexMap; /* std::stringstream s1, s2, s3; for(int i = 0; i < m_GradientIndexMap[1000].size() ; i++){ s1 << m_GradientIndexMap[1000][i] << " "; s2 << m_GradientIndexMap[2000][i] << " "; s3 << m_GradientIndexMap[3000][i] << " "; } MITK_INFO << "1 SHELL " << std::endl << s1.str(); MITK_INFO << "2 SHELL " << std::endl << s2.str(); MITK_INFO << "3 SHELL " << std::endl << s3.str(); */ } /** Get reference image */ virtual ReferenceImageType * GetReferenceImage() { return ( static_cast< ReferenceImageType *>(this->ProcessObject::GetInput(0)) ); } /** Return the gradient direction. idx is 0 based */ virtual GradientDirectionType GetGradientDirection( unsigned int idx) const { if( idx >= m_GradientDirectionContainer->Size() ) { itkExceptionMacro( << "Gradient direction " << idx << "does not exist" ); } return m_GradientDirectionContainer->ElementAt( idx+1 ); } OdfPixelType Normalize(OdfPixelType odf, typename NumericTraits::AccumulateType b0 ); void S_S0Normalization( vnl_vector & vec, typename NumericTraits::AccumulateType b0 = 0 ); void S_S0Normalization( vnl_matrix & mat, typename NumericTraits::AccumulateType b0 = 0 ); void DoubleLogarithm(vnl_vector & vec); void Threshold(vnl_vector & vec, double sigma = 0.0001); void Threshold(vnl_matrix & mat, double sigma = 0.0001); void Projection1( vnl_matrix & mat, double delta = 0.0001); void Projection2( vnl_vector & A, vnl_vector & alpha, vnl_vector & beta, double delta = 0.0001); /** Threshold on the reference image data. The output ODF will be a null * pdf for pixels in the reference image that have a value less than this * threshold. */ itkSetMacro( Threshold, ReferencePixelType ); itkGetMacro( Threshold, ReferencePixelType ); itkGetMacro( BZeroImage, typename BZeroImageType::Pointer); //itkGetMacro( ODFSumImage, typename BlaImage::Pointer); itkSetMacro( BValue, TOdfPixelType); itkSetMacro( Lambda, double ); itkGetMacro( Lambda, double ); itkGetConstReferenceMacro( BValue, TOdfPixelType); protected: DiffusionMultiShellQballReconstructionImageFilter(); ~DiffusionMultiShellQballReconstructionImageFilter() {}; void PrintSelf(std::ostream& os, Indent indent) const; void ComputeReconstructionMatrix(std::vector< unsigned int > gradientIndiciesVector); bool CheckDuplicateDiffusionGradients(); void ComputeSphericalHarmonicsBasis(vnl_matrix* QBallReference, vnl_matrix* SHBasisOutput, vnl_matrix* LaplaciaBaltramiOutput, vnl_vector* SHOrderAssociation , vnl_matrix * SHEigenvalues); void ComputeFunkRadonTransformationMatrix(vnl_vector* SHOrderAssociationReference, vnl_matrix* FRTMatrixOutput ); bool CheckHemisphericalArrangementOfGradientDirections(); void BeforeThreadedGenerateData(); void ThreadedGenerateData( const OutputImageRegionType &outputRegionForThread, int NumberOfThreads ); vnl_vector AnalyticalThreeShellParameterEstimation(const IndiciesVector * shell1, const IndiciesVector * shell2, const IndiciesVector * shell3, vnl_vector b); void StandardOneShellReconstruction(const OutputImageRegionType& outputRegionForThread); void AnalyticalThreeShellReconstruction(const OutputImageRegionType& outputRegionForThread); + void NumericalNShellReconstruction(const OutputImageRegionType& outputRegionForThread); private: enum ReconstructionType { Analytical3Shells, NumericalNShells, Standard1Shell }; CoefficientMatrixType m_ReconstructionMatrix; CoefficientMatrixType m_CoeffReconstructionMatrix; CoefficientMatrixType m_ODFSphericalHarmonicBasisMatrix; CoefficientMatrixType m_SignalReonstructionMatrix; CoefficientMatrixType m_SHBasisMatrix; /** container to hold gradient directions */ GradientDirectionContainerType::Pointer m_GradientDirectionContainer; /** Number of gradient measurements */ unsigned int m_NumberOfGradientDirections; /** Number of baseline images */ unsigned int m_NumberOfBaselineImages; /** Threshold on the reference image data */ ReferencePixelType m_Threshold; /** LeBihan's b-value for normalizing tensors */ TOdfPixelType m_BValue; typename BZeroImageType::Pointer m_BZeroImage; GradientIndexMap m_GradientIndexMap; double m_Lambda; bool m_IsHemisphericalArrangementOfGradientDirections; bool m_IsArithmeticProgession; int m_NumberCoefficients; ReconstructionType m_ReconstructionType; template< class VNLType > void printMatrix( VNLType * mat ); }; } #ifndef ITK_MANUAL_INSTANTIATION #include "itkDiffusionMultiShellQballReconstructionImageFilter.cpp" #endif #endif //__itkDiffusionMultiShellQballReconstructionImageFilter_h_ diff --git a/Modules/DiffusionImaging/Reconstruction/mitkSphericalHarmonicsFunctions.cpp b/Modules/DiffusionImaging/Reconstruction/mitkSphericalHarmonicsFunctions.cpp index 6317215e60..07d4d24ca6 100644 --- a/Modules/DiffusionImaging/Reconstruction/mitkSphericalHarmonicsFunctions.cpp +++ b/Modules/DiffusionImaging/Reconstruction/mitkSphericalHarmonicsFunctions.cpp @@ -1,145 +1,91 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date: 2009-07-14 19:11:20 +0200 (Tue, 14 Jul 2009) $ Version: $Revision: 18127 $ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #include #define _USE_MATH_DEFINES #include #if BOOST_VERSION / 100000 > 0 #if BOOST_VERSION / 100 % 1000 > 34 #include +#include #endif #endif #include "mitkSphericalHarmonicsFunctions.h" namespace mitk{ #define SPHERICAL_HARMONICS_PI M_PI -double mitk::ShericalHarmonicsFunctions::factorial(int number) { +double mitk::mitk_sh_functions::factorial(int number) { if(number <= 1) return 1; double result = 1.0; for(int i=1; i<=number; i++) result *= i; return result; } -void mitk::ShericalHarmonicsFunctions::Cart2Sph(double x, double y, double z, double *cart) +void mitk::mitk_sh_functions::Cart2Sph(double x, double y, double z, double *cart) { double phi, th, rad; rad = sqrt(x*x+y*y+z*z); th = atan2(z,sqrt(x*x+y*y)); phi = atan2(y,x); th = -th+SPHERICAL_HARMONICS_PI/2; phi = -phi+SPHERICAL_HARMONICS_PI; cart[0] = phi; cart[1] = th; cart[2] = rad; } -double mitk::ShericalHarmonicsFunctions::legendre0(int l) +double mitk::mitk_sh_functions::legendre0(int l) { if( l%2 != 0 ) { return 0; } else { double prod1 = 1.0; for(int i=1;i SPHERICAL_HARMONICS_PI ) - { - std::cout << "bad range" << std::endl; - return 0; - } - - if( phi < 0 || phi > 2*SPHERICAL_HARMONICS_PI ) - { - std::cout << "bad range" << std::endl; - return 0; - } - - double pml = 0; - double fac1 = factorial(l+m); - double fac2 = factorial(l-m); - - if( m<0 ) - { -#if BOOST_VERSION / 100000 > 0 -#if BOOST_VERSION / 100 % 1000 > 34 - pml = ::boost::math::legendre_p(l, -m, cos(theta)); -#else - std::cout << "ERROR: Boost 1.35 minimum required" << std::endl; -#endif -#else - std::cout << "ERROR: Boost 1.35 minimum required" << std::endl; -#endif - double mypow = pow(-1.0,-m); - double myfac = (fac1/fac2); - pml *= mypow*myfac; - } - else - { -#if BOOST_VERSION / 100000 > 0 -#if BOOST_VERSION / 100 % 1000 > 34 - pml = ::boost::math::legendre_p(l, m, cos(theta)); -#endif -#endif - } - - //std::cout << "legendre(" << l << "," << m << "," << cos(theta) << ") = " << pml << std::endl; - double retval = sqrt(((2.0*(double)l+1.0)/(4.0*SPHERICAL_HARMONICS_PI))*(fac2/fac1)) * pml; - if( !complexPart ) - { - retval *= cos(m*phi); - } - else - { - retval *= sin(m*phi); - } - //std::cout << retval << std::endl; - return retval; -} - -double mitk::ShericalHarmonicsFunctions::Yj(int m, int k, double theta, double phi) +double mitk::mitk_sh_functions::Yj(int m, int k, double theta, double phi) { if( -k <= m && m < 0 ) { - return sqrt(2.0) * spherical_harmonic(m,k,theta,phi,false); + return sqrt(2.0) * ::boost::math::spherical_harmonic_r(k,m,theta,phi);; } if( m == 0 ) - return spherical_harmonic(0,k,theta,phi,false); + return ::boost::math::spherical_harmonic_r(k,m,theta,phi); if( 0 < m && m <= k ) { - return sqrt(2.0) * spherical_harmonic(m,k,theta,phi,true); + return sqrt(2.0) * ::boost::math::spherical_harmonic_i(k,m,theta,phi); } return 0; } + } diff --git a/Modules/DiffusionImaging/Reconstruction/mitkSphericalHarmonicsFunctions.h b/Modules/DiffusionImaging/Reconstruction/mitkSphericalHarmonicsFunctions.h index 9abc121e44..f185b00ceb 100644 --- a/Modules/DiffusionImaging/Reconstruction/mitkSphericalHarmonicsFunctions.h +++ b/Modules/DiffusionImaging/Reconstruction/mitkSphericalHarmonicsFunctions.h @@ -1,38 +1,37 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date: 2009-07-14 19:11:20 +0200 (Tue, 14 Jul 2009) $ Version: $Revision: 18127 $ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #ifndef __mitkSphericalHarmonicsHandler_h_ #define __mitkSphericalHarmonicsHandler_h_ #include "MitkDiffusionImagingExports.h" namespace mitk{ -class MitkDiffusionImaging_EXPORT ShericalHarmonicsFunctions{ +namespace mitk_sh_functions{ -public : - static double factorial(int number); - static void Cart2Sph(double x, double y, double z, double* cart); - static double legendre0(int l); - static double spherical_harmonic(int m,int l,double theta,double phi, bool complexPart); - static double Yj(int m, int k, double theta, double phi); + double factorial(int number); + void Cart2Sph(double x, double y, double z, double* cart); + double legendre0(int l); + double spherical_harmonic(int m,int l,double theta,double phi, bool complexPart); + double Yj(int m, int k, double theta, double phi); -}; +} } #endif //__mitkSphericalHarmonicsHandler_h_