diff --git a/Modules/PhotoacousticsAlgorithms/Algorithms/mitkPhotoacousticBeamformingDMASFilter.cpp b/Modules/PhotoacousticsAlgorithms/Algorithms/mitkPhotoacousticBeamformingDMASFilter.cpp index 6a5c3959c8..763b600c52 100644 --- a/Modules/PhotoacousticsAlgorithms/Algorithms/mitkPhotoacousticBeamformingDMASFilter.cpp +++ b/Modules/PhotoacousticsAlgorithms/Algorithms/mitkPhotoacousticBeamformingDMASFilter.cpp @@ -1,517 +1,529 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #define _USE_MATH_DEFINES #include "mitkPhotoacousticBeamformingDMASFilter.h" #include "mitkProperties.h" #include "mitkImageReadAccessor.h" #include #include #include #include "Algorithms\ITKUltrasound\itkFFT1DComplexConjugateToRealImageFilter.h" #include "Algorithms\ITKUltrasound\itkFFT1DRealToComplexConjugateImageFilter.h" #include "mitkImageCast.h" #include // needed itk image filters #include "mitkITKImageImport.h" #include "itkFFTShiftImageFilter.h" #include "itkMultiplyImageFilter.h" #include "itkComplexToModulusImageFilter.h" #include mitk::BeamformingDMASFilter::BeamformingDMASFilter() : m_OutputData(nullptr), m_InputData(nullptr) { this->SetNumberOfIndexedInputs(1); this->SetNumberOfRequiredInputs(1); m_Conf.Pitch = 0.0003; m_Conf.SpeedOfSound = 1540; m_Conf.SamplesPerLine = 2048; m_Conf.ReconstructionLines = 128; m_Conf.RecordTime = 0.00006; m_Conf.TransducerElements = 128; } mitk::BeamformingDMASFilter::~BeamformingDMASFilter() { } void mitk::BeamformingDMASFilter::GenerateInputRequestedRegion() { Superclass::GenerateInputRequestedRegion(); mitk::Image* output = this->GetOutput(); mitk::Image* input = const_cast< mitk::Image * > (this->GetInput()); if (!output->IsInitialized()) { return; } input->SetRequestedRegionToLargestPossibleRegion(); //GenerateTimeInInputRegion(output, input); } void mitk::BeamformingDMASFilter::GenerateOutputInformation() { mitk::Image::ConstPointer input = this->GetInput(); mitk::Image::Pointer output = this->GetOutput(); if ((output->IsInitialized()) && (this->GetMTime() <= m_TimeOfHeaderInitialization.GetMTime())) return; itkDebugMacro(<< "GenerateOutputInformation()"); unsigned int dim[] = { m_Conf.ReconstructionLines, m_Conf.SamplesPerLine, input->GetDimension(2) }; output->Initialize(mitk::MakeScalarPixelType(), 3, dim); mitk::Vector3D spacing; spacing[0] = m_Conf.Pitch * m_Conf.TransducerElements * 1000 / m_Conf.ReconstructionLines; spacing[1] = m_Conf.RecordTime * m_Conf.SpeedOfSound / 2 * 1000 / m_Conf.SamplesPerLine; spacing[2] = 1; output->GetGeometry()->SetSpacing(spacing); output->GetGeometry()->Modified(); output->SetPropertyList(input->GetPropertyList()->Clone()); m_TimeOfHeaderInitialization.Modified(); } void mitk::BeamformingDMASFilter::GenerateData() { mitk::Image::ConstPointer input = this->GetInput(); mitk::Image::Pointer output = this->GetOutput(); double inputS = input->GetDimension(1); double inputL = input->GetDimension(0); double outputS = output->GetDimension(1); double outputL = output->GetDimension(0); double* VonHannWindow = VonHannFunction(m_Conf.TransducerElements*2); if (!output->IsInitialized()) { return; } auto begin = std::chrono::high_resolution_clock::now(); // debbuging the performance... for (int i = 0; i < output->GetDimension(2); ++i) // seperate Slices should get Beamforming seperately applied { mitk::ImageReadAccessor inputReadAccessor(input, input->GetSliceData(i)); m_OutputData = new double[m_Conf.ReconstructionLines*m_Conf.SamplesPerLine]; m_InputDataPuffer = new double[input->GetDimension(0)*input->GetDimension(1)]; if (input->GetPixelType().GetTypeAsString() == "scalar (double)") { m_InputData = (double*)inputReadAccessor.GetData(); } else if (input->GetPixelType().GetTypeAsString() == "scalar (short)") { short* InputPuffer = (short*)inputReadAccessor.GetData(); for (int l = 0; l < inputL; ++l) { for (int s = 0; s < inputS; ++s) { m_InputDataPuffer[l*(unsigned short)inputS + s] = (double)InputPuffer[l*(unsigned short)inputS + s]; } } m_InputData = m_InputDataPuffer; } else if (input->GetPixelType().GetTypeAsString() == "scalar (float)") { float* InputPuffer = (float*)inputReadAccessor.GetData(); for (int l = 0; l < inputL; ++l) { for (int s = 0; s < inputS; ++s) { m_InputDataPuffer[l*(unsigned short)inputS + s] = (double)InputPuffer[l*(unsigned short)inputS + s]; } } m_InputData = m_InputDataPuffer; } else { MITK_INFO << "Could not determine pixel type"; return; } for (int l = 0; l < outputL; ++l) { for (int s = 0; s < outputS; ++s) { m_OutputData[l*(unsigned short)outputS + s] = 0; } } unsigned short AddSample1 = 0; unsigned short AddSample2 = 0; unsigned short maxLine = 0; unsigned short minLine = 0; double delayMultiplicator = 0; double l_i = 0; double s_i = 0; double l = 0; double x = 0; double root = 0; double part = 0.07 * inputL; double tan_phi = std::tan(m_Conf.Angle/360*2*M_PI); double part_multiplicator = tan_phi * m_Conf.RecordTime / inputS * m_Conf.SpeedOfSound / m_Conf.Pitch; double VH_mult = 1; double mult = 0; if (m_Conf.DelayCalculationMethod == beamformingSettings::DelayCalc::Linear) { //linear delay for (unsigned short line = 0; line < outputL; ++line) { l_i = line / outputL * inputL; l = (inputL / 2 - l_i) / inputL*m_Conf.Pitch*m_Conf.TransducerElements; for (unsigned short sample = 0; sample < outputS; ++sample) { s_i = sample / outputS * inputS; part = part_multiplicator*s_i; + + if (part < 1) + part = 1; + maxLine = (unsigned short)std::min((l_i + part) + 1, inputL); minLine = (unsigned short)std::max((l_i - part), 0.0); VH_mult = m_Conf.TransducerElements * 2 / (maxLine - minLine); x = m_Conf.RecordTime / inputS * s_i * m_Conf.SpeedOfSound; root = l / sqrt(pow(l, 2) + pow(m_Conf.RecordTime / inputS * s_i * m_Conf.SpeedOfSound, 2)); delayMultiplicator = root / (m_Conf.RecordTime*m_Conf.SpeedOfSound) *m_Conf.Pitch*m_Conf.TransducerElements / inputL; //calculate the AddSamples beforehand to save some time unsigned short* AddSample = new unsigned short[maxLine - minLine]; for (unsigned short l_s = 0; l_s < maxLine - minLine; ++l_s) { AddSample[l_s] = (unsigned short)(delayMultiplicator * (minLine + l_s - l_i) + s_i); } for (unsigned short l_s1 = minLine; l_s1 < maxLine - 1; ++l_s1) { if (AddSample[l_s1 - minLine] < inputS && AddSample[l_s1 - minLine] >= 0) { for (unsigned short l_s2 = l_s1 + 1; l_s2 < maxLine; ++l_s2) { if (AddSample[l_s2 - minLine] < inputS && AddSample[l_s2 - minLine] >= 0) { mult = m_InputData[l_s2 + AddSample[l_s2 - minLine] * (unsigned short)inputL] * m_InputData[l_s1 + AddSample[l_s1 - minLine] * (unsigned short)inputL] * VonHannWindow[(unsigned short)((l_s1 - minLine)*VH_mult)] * VonHannWindow[(unsigned short)((l_s2 - minLine)*VH_mult)]; m_OutputData[sample*(unsigned short)outputL + line] += sqrt(abs(mult)) * ((mult > 0) - (mult < 0)); } } } } - m_OutputData[sample*(unsigned short)outputL + line] = 10 * m_OutputData[sample*(unsigned short)outputL + line] / (pow(maxLine - minLine, 2) - (maxLine - minLine - 1)); + m_OutputData[sample*(unsigned short)outputL + line] = 10 * m_OutputData[sample*(unsigned short)outputL + line] / (pow(maxLine - minLine, 2) - (maxLine - minLine)); delete[] AddSample; } } } else if (m_Conf.DelayCalculationMethod == beamformingSettings::DelayCalc::QuadApprox) { //quadratic delay for (unsigned short line = 0; line < outputL; ++line) { l_i = line / outputL * inputL; for (unsigned short sample = 0; sample < outputS; ++sample) { s_i = sample / outputS * inputS; part = part_multiplicator*s_i; + + if (part < 1) + part = 1; + maxLine = (unsigned short)std::min((l_i + part) + 1, inputL); minLine = (unsigned short)std::max((l_i - part), 0.0); delayMultiplicator = pow((inputS / (m_Conf.RecordTime*m_Conf.SpeedOfSound) * (m_Conf.Pitch*m_Conf.TransducerElements) / inputL), 2) / s_i; //calculate the AddSamples beforehand to save some time unsigned short* AddSample = new unsigned short[maxLine - minLine]; for (unsigned short l_s = 0; l_s < maxLine - minLine; ++l_s) { AddSample[l_s] = (unsigned short)(delayMultiplicator * pow((minLine + l_s - l_i), 2) + s_i); } for (unsigned short l_s1 = minLine; l_s1 < maxLine - 1; ++l_s1) { if (AddSample[l_s1 - minLine] < inputS && AddSample[l_s1 - minLine] >= 0) { for (unsigned short l_s2 = l_s1 + 1; l_s2 < maxLine; ++l_s2) { if (AddSample[l_s2 - minLine] < inputS && AddSample[l_s2 - minLine] >= 0) { mult = m_InputData[l_s2 + AddSample[l_s2 - minLine] * (unsigned short)inputL] * VonHannWindow[(unsigned short)((l_s2 - minLine)*VH_mult)] * m_InputData[l_s1 + AddSample[l_s1 - minLine] * (unsigned short)inputL] * VonHannWindow[(unsigned short)((l_s1 - minLine)*VH_mult)]; m_OutputData[sample*(unsigned short)outputL + line] += sqrt(abs(mult)) * ((mult > 0) - (mult < 0)); } } } } m_OutputData[sample*(unsigned short)outputL + line] = 10 * m_OutputData[sample*(unsigned short)outputL + line] / (pow(maxLine-minLine,2) - (maxLine-minLine-1)); delete[] AddSample; } } } else if (m_Conf.DelayCalculationMethod == beamformingSettings::DelayCalc::Spherical) { //exact delay for (unsigned short line = 0; line < outputL; ++line) { l_i = line / outputL * inputL; for (unsigned short sample = 0; sample < outputS; ++sample) { s_i = sample / outputS * inputS; part = part_multiplicator*s_i; + + if (part < 1) + part = 1; + maxLine = (unsigned short)std::min((l_i + part) + 1, inputL); minLine = (unsigned short)std::max((l_i - part), 0.0); //calculate the AddSamples beforehand to save some time unsigned short* AddSample = new unsigned short[maxLine - minLine]; for (unsigned short l_s = 0; l_s < maxLine - minLine; ++l_s) { AddSample[l_s] = (unsigned short)sqrt( pow(s_i, 2) + pow((inputS / (m_Conf.RecordTime*m_Conf.SpeedOfSound) * ((minLine + l_s - l_i)*m_Conf.Pitch*m_Conf.TransducerElements) / inputL), 2) ); } for (unsigned short l_s1 = minLine; l_s1 < maxLine - 1; ++l_s1) { if (AddSample[l_s1 - minLine] < inputS && AddSample[l_s1 - minLine] >= 0) { for (unsigned short l_s2 = l_s1 + 1; l_s2 < maxLine; ++l_s2) { if (AddSample[l_s2 - minLine] < inputS && AddSample[l_s2 - minLine] >= 0) { mult = m_InputData[l_s2 + AddSample[l_s2 - minLine] * (unsigned short)inputL] * VonHannWindow[(unsigned short)((l_s2 - minLine)*VH_mult)] * m_InputData[l_s1 + AddSample[l_s1 - minLine] * (unsigned short)inputL] * VonHannWindow[(unsigned short)((l_s1 - minLine)*VH_mult)]; m_OutputData[sample*(unsigned short)outputL + line] += sqrt(abs(mult)) * ((mult > 0) - (mult < 0)); } } } } m_OutputData[sample*(unsigned short)outputL + line] = 10 * m_OutputData[sample*(unsigned short)outputL + line] / (pow(maxLine - minLine, 2) - (maxLine - minLine - 1)); delete[] AddSample; } } } output->SetSlice(m_OutputData, i); delete[] m_OutputData; delete[] m_InputDataPuffer; m_OutputData = nullptr; m_InputData = nullptr; } mitk::Image::Pointer BP = BandpassFilter(output); for (int i = 0; i < output->GetDimension(2); ++i) { mitk::ImageReadAccessor copy(BP, BP->GetSliceData(i)); output->SetSlice(copy.GetData(), i); } m_TimeOfHeaderInitialization.Modified(); delete[] VonHannWindow; auto end = std::chrono::high_resolution_clock::now(); MITK_INFO << "DMAS Beamforming of " << output->GetDimension(2) << " Images completed in " << ((double)std::chrono::duration_cast(end - begin).count()) / 1000000 << "ms" << std::endl; } void mitk::BeamformingDMASFilter::Configure(beamformingSettings settings) { m_Conf = settings; } mitk::Image::Pointer mitk::BeamformingDMASFilter::BandpassFilter(mitk::Image::Pointer data) { typedef double PixelType; typedef itk::Image< PixelType, 3 > RealImageType; RealImageType::Pointer image; mitk::CastToItkImage(data, image); typedef itk::FFT1DRealToComplexConjugateImageFilter ForwardFFTFilterType; typedef ForwardFFTFilterType::OutputImageType ComplexImageType; ForwardFFTFilterType::Pointer forwardFFTFilter = ForwardFFTFilterType::New(); forwardFFTFilter->SetInput(image); forwardFFTFilter->SetDirection(1); try { forwardFFTFilter->UpdateOutputInformation(); } catch (itk::ExceptionObject & error) { std::cerr << "Error: " << error << std::endl; MITK_WARN << "Bandpass can not be applied after beamforming"; return data; } - int lowerBound = -100 * data->GetGeometry()->GetSpacing()[1] / 0.0244141; - int upperBound = 100 * data->GetGeometry()->GetSpacing()[1] / 0.0244141; + int lowerBound = -70 * data->GetGeometry()->GetSpacing()[1] / 0.0244141; + int upperBound = 70 * data->GetGeometry()->GetSpacing()[1] / 0.0244141; int center1 = (int)(((double)lowerBound + data->GetDimension(1)/2) / 2); int center2 = (int)(-(-(double)upperBound + data->GetDimension(1)/2) / 2 + data->GetDimension(1)); int width1 = (int)((double)lowerBound + data->GetDimension(1) / 2); int width2 = (int)(-(double)upperBound + data->GetDimension(1) / 2); MITK_INFO << "center1 " << center1 << " width1 " << width1; MITK_INFO << "center2 " << center2 << " width2 " << width2; RealImageType::Pointer fftMultiplicator1 = BPFunction(data, width1, center1); RealImageType::Pointer fftMultiplicator2 = BPFunction(data, width2, center2); typedef itk::AddImageFilter AddImageFilterType; AddImageFilterType::Pointer addImageFilter = AddImageFilterType::New(); addImageFilter->SetInput1(fftMultiplicator1); addImageFilter->SetInput2(fftMultiplicator2); typedef itk::FFTShiftImageFilter< RealImageType, RealImageType > FFTShiftFilterType; FFTShiftFilterType::Pointer fftShiftFilter = FFTShiftFilterType::New(); fftShiftFilter->SetInput(addImageFilter->GetOutput()); typedef itk::MultiplyImageFilter< ComplexImageType, RealImageType, ComplexImageType > MultiplyFilterType; MultiplyFilterType::Pointer multiplyFilter = MultiplyFilterType::New(); multiplyFilter->SetInput1(forwardFFTFilter->GetOutput()); multiplyFilter->SetInput2(fftShiftFilter->GetOutput()); /*itk::ComplexToModulusImageFilter::Pointer toReal = itk::ComplexToModulusImageFilter::New(); toReal->SetInput(forwardFFTFilter->GetOutput()); return GrabItkImageMemory(addImageFilter->GetOutput()); //toReal->GetOutput());*/ //DEBUG typedef itk::FFT1DComplexConjugateToRealImageFilter< ComplexImageType, RealImageType > InverseFilterType; InverseFilterType::Pointer inverseFFTFilter = InverseFilterType::New(); inverseFFTFilter->SetInput(multiplyFilter->GetOutput()); inverseFFTFilter->SetDirection(1); return GrabItkImageMemory(inverseFFTFilter->GetOutput()); } itk::Image::Pointer mitk::BeamformingDMASFilter::BPFunction(mitk::Image::Pointer reference, int width, int center) { // tukey window - double alpha = 0.5 * reference->GetGeometry()->GetSpacing()[1] / 0.0244141; + double alpha = 0.2 * reference->GetGeometry()->GetSpacing()[1] / 0.0244141; double* imageData = new double[reference->GetDimension(0)*reference->GetDimension(1)]; for (int sample = 0; sample < reference->GetDimension(1); ++sample) { imageData[reference->GetDimension(0)*sample] = 0; } for (int n = 0; n < width; ++n) { if (n <= (alpha*(width - 1)) / 2) { imageData[reference->GetDimension(0)*(n + center - (int)(width / 2))] = (1 + cos(M_PI*(2 * n / (alpha*(width - 1)) - 1))) / 2; } else if (n >= (width - 1)*(1 - alpha / 2) && n <= (width - 1)) { imageData[reference->GetDimension(0)*(n + center - (int)(width / 2))] = (1 + cos(M_PI*(2 * n / (alpha*(width - 1)) + 1 - 2 / alpha))) / 2; } else { imageData[reference->GetDimension(0)*(n + center - (int)(width / 2))] = 1; } } for (int line = 1; line < reference->GetDimension(0); ++line) { for (int sample = 0; sample < reference->GetDimension(1); ++sample) { imageData[reference->GetDimension(0)*sample + line] = imageData[reference->GetDimension(0)*sample]; } } typedef itk::Image< double, 3U > ImageType; ImageType::RegionType region; ImageType::IndexType start; start.Fill(0); region.SetIndex(start); ImageType::SizeType size; size[0] = reference->GetDimension(0); size[1] = reference->GetDimension(1); size[2] = reference->GetDimension(2); region.SetSize(size); ImageType::SpacingType SpacingItk; SpacingItk[0] = reference->GetGeometry()->GetSpacing()[0]; SpacingItk[1] = reference->GetGeometry()->GetSpacing()[1]; SpacingItk[2] = reference->GetGeometry()->GetSpacing()[2]; ImageType::Pointer image = ImageType::New(); image->SetRegions(region); image->Allocate(); image->FillBuffer(itk::NumericTraits::Zero); image->SetSpacing(SpacingItk); ImageType::IndexType pixelIndex; for (ImageType::IndexValueType slice = 0; slice < reference->GetDimension(2); ++slice) { for (ImageType::IndexValueType line = 0; line < reference->GetDimension(0); ++line) { for (ImageType::IndexValueType sample = 0; sample < reference->GetDimension(1); ++sample) { pixelIndex[0] = line; pixelIndex[1] = sample; pixelIndex[2] = slice; image->SetPixel(pixelIndex, imageData[line + sample*reference->GetDimension(0)]); } } } delete[] imageData; return image; } double* mitk::BeamformingDMASFilter::VonHannFunction(int samples) { double* VonHannWindow = new double[samples]; for (int n = 0; n < samples; ++n) { VonHannWindow[n] = (1 - cos(2 * M_PI * n / (samples - 1))) / 2; } return VonHannWindow; } \ No newline at end of file diff --git a/Plugins/org.mitk.gui.qt.photoacoustics.imageprocessing/src/internal/PAImageProcessing.cpp b/Plugins/org.mitk.gui.qt.photoacoustics.imageprocessing/src/internal/PAImageProcessing.cpp index 659a97fd8b..df0de633cb 100644 --- a/Plugins/org.mitk.gui.qt.photoacoustics.imageprocessing/src/internal/PAImageProcessing.cpp +++ b/Plugins/org.mitk.gui.qt.photoacoustics.imageprocessing/src/internal/PAImageProcessing.cpp @@ -1,245 +1,290 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Blueberry #include #include // Qmitk #include "PAImageProcessing.h" // Qt #include //mitk image #include #include "mitkPhotoacousticImage.h" #include "Algorithms\mitkPhotoacousticBeamformingDASFilter.h" #include "Algorithms\mitkPhotoacousticBeamformingDMASFilter.h" const std::string PAImageProcessing::VIEW_ID = "org.mitk.views.paimageprocessing"; PAImageProcessing::PAImageProcessing() : m_ResampleSpacing(0), m_UseLogfilter(false) { } void PAImageProcessing::SetFocus() { m_Controls.buttonApplyBModeFilter->setFocus(); } void PAImageProcessing::CreateQtPartControl( QWidget *parent ) { // create GUI widgets from the Qt Designer's .ui file m_Controls.setupUi( parent ); connect( m_Controls.buttonApplyBModeFilter, SIGNAL(clicked()), this, SLOT(ApplyBModeFilter()) ); connect(m_Controls.DoResampling, SIGNAL(clicked()), this, SLOT(UseResampling())); connect(m_Controls.Logfilter, SIGNAL(clicked()), this, SLOT(UseLogfilter())); connect(m_Controls.ResamplingValue, SIGNAL(valueChanged(double)), this, SLOT(SetResampling())); connect(m_Controls.buttonApplyBeamforming, SIGNAL(clicked()), this, SLOT(ApplyBeamforming())); m_Controls.DoResampling->setChecked(false); m_Controls.ResamplingValue->setEnabled(false); UpdateBFSettings(); } void PAImageProcessing::OnSelectionChanged( berry::IWorkbenchPart::Pointer /*source*/, const QList& nodes ) { // iterate all selected objects, adjust warning visibility foreach( mitk::DataNode::Pointer node, nodes ) { if( node.IsNotNull() && dynamic_cast(node->GetData()) ) { m_Controls.labelWarning->setVisible( false ); m_Controls.buttonApplyBModeFilter->setEnabled( true ); return; } } m_Controls.labelWarning->setVisible( true ); m_Controls.buttonApplyBModeFilter->setEnabled( false ); } void PAImageProcessing::UseResampling() { if (m_Controls.DoResampling->isChecked()) { m_Controls.ResamplingValue->setEnabled(true); m_ResampleSpacing = m_Controls.ResamplingValue->value(); } else { m_Controls.ResamplingValue->setEnabled(false); m_ResampleSpacing = 0; } } void PAImageProcessing::UseLogfilter() { m_UseLogfilter = m_Controls.Logfilter->isChecked(); } void PAImageProcessing::SetResampling() { m_ResampleSpacing = m_Controls.ResamplingValue->value(); } void PAImageProcessing::ApplyBModeFilter() { QList nodes = this->GetDataManagerSelection(); if (nodes.empty()) return; mitk::DataNode::Pointer node = nodes.front(); if (!node) { // Nothing selected. Inform the user and return QMessageBox::information( NULL, "Template", "Please load and select an image before starting image processing."); return; } mitk::BaseData* data = node->GetData(); if (data) { // test if this data item is an image or not (could also be a surface or something totally different) mitk::Image* image = dynamic_cast(data); if (image) { std::stringstream message; std::string name; message << "Performing image processing for image "; if (node->GetName(name)) { // a property called "name" was found for this DataNode message << "'" << name << "'"; } message << "."; MITK_INFO << message.str(); + + auto newNode = mitk::DataNode::New(); + mitk::PhotoacousticImage::Pointer filterbank = mitk::PhotoacousticImage::New(); - node->SetData(filterbank->ApplyBmodeFilter(image, m_UseLogfilter, m_ResampleSpacing)); + newNode->SetData(filterbank->ApplyBmodeFilter(image, m_UseLogfilter, m_ResampleSpacing)); // update level window for the current dynamic range mitk::LevelWindow levelWindow; - node->GetLevelWindow(levelWindow); - data = node->GetData(); + newNode->GetLevelWindow(levelWindow); + data = newNode->GetData(); levelWindow.SetAuto(dynamic_cast(data),true,true); - node->SetLevelWindow(levelWindow); + newNode->SetLevelWindow(levelWindow); + + // name the new Data node + std::stringstream newNodeName; + if (node->GetName(name)) + { + // a property called "name" was found for this DataNode + newNodeName << name << ", "; + } + newNodeName << "B-Mode"; + newNode->SetName(newNodeName.str()); + + // add new node to data storage + this->GetDataStorage()->Add(newNode); // update rendering mitk::RenderingManager::GetInstance()->InitializeViews( dynamic_cast(data)->GetGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } } void PAImageProcessing::ApplyBeamforming() { UpdateBFSettings(); QList nodes = this->GetDataManagerSelection(); if (nodes.empty()) return; + mitk::DataStorage::Pointer storage = this->GetDataStorage(); + mitk::DataNode::Pointer node = nodes.front(); if (!node) { // Nothing selected. Inform the user and return QMessageBox::information(NULL, "Template", "Please load and select an image before starting image processing."); return; } mitk::BaseData* data = node->GetData(); if (data) { // test if this data item is an image or not (could also be a surface or something totally different) mitk::Image* image = dynamic_cast(data); if (image) { std::stringstream message; std::string name; message << "Performing beamforming for image "; if (node->GetName(name)) { // a property called "name" was found for this DataNode message << "'" << name << "'"; } message << "."; MITK_INFO << message.str(); mitk::PhotoacousticImage::Pointer filterbank = mitk::PhotoacousticImage::New(); + auto newNode = mitk::DataNode::New(); + if(m_CurrentBeamformingAlgorithm == BeamformingAlgorithms::DAS) - node->SetData(filterbank->ApplyBeamformingDAS(image, DASconfig)); + newNode->SetData(filterbank->ApplyBeamformingDAS(image, DASconfig)); else if(m_CurrentBeamformingAlgorithm == BeamformingAlgorithms::DMAS) - node->SetData(filterbank->ApplyBeamformingDMAS(image, DMASconfig)); + newNode->SetData(filterbank->ApplyBeamformingDMAS(image, DMASconfig)); + + // name the new Data node + std::stringstream newNodeName; + if (node->GetName(name)) + { + // a property called "name" was found for this DataNode + newNodeName << name << ", "; + } + + if (m_CurrentBeamformingAlgorithm == BeamformingAlgorithms::DAS) + newNodeName << "DAS beamformed, "; + else if (m_CurrentBeamformingAlgorithm == BeamformingAlgorithms::DMAS) + newNodeName << "DMAS beamformed, "; + + if (DASconfig.DelayCalculationMethod == mitk::BeamformingDASFilter::beamformingSettings::DelayCalc::Linear) + newNodeName << "linear delay"; + if (DASconfig.DelayCalculationMethod == mitk::BeamformingDASFilter::beamformingSettings::DelayCalc::QuadApprox) + newNodeName << "quadratic delay"; + if (DASconfig.DelayCalculationMethod == mitk::BeamformingDASFilter::beamformingSettings::DelayCalc::Spherical) + newNodeName << "spherical delay"; + + newNode->SetName(newNodeName.str()); // update level window for the current dynamic range mitk::LevelWindow levelWindow; - node->GetLevelWindow(levelWindow); - data = node->GetData(); + newNode->GetLevelWindow(levelWindow); + data = newNode->GetData(); levelWindow.SetAuto(dynamic_cast(data), true, true); - node->SetLevelWindow(levelWindow); + newNode->SetLevelWindow(levelWindow); + + // add new node to data storage + this->GetDataStorage()->Add(newNode); // update rendering mitk::RenderingManager::GetInstance()->InitializeViews( dynamic_cast(data)->GetGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } } void PAImageProcessing::UpdateBFSettings() { if ("Delay and Sum" == m_Controls.BFAlgorithm->currentText()) m_CurrentBeamformingAlgorithm = BeamformingAlgorithms::DAS; else if ("Delay, Multiply and Sum" == m_Controls.BFAlgorithm->currentText()) m_CurrentBeamformingAlgorithm = BeamformingAlgorithms::DMAS; if ("Linear Waves" == m_Controls.DelayCalculation->currentText()) { DASconfig.DelayCalculationMethod = mitk::BeamformingDASFilter::beamformingSettings::DelayCalc::Linear; DMASconfig.DelayCalculationMethod = mitk::BeamformingDMASFilter::beamformingSettings::DelayCalc::Linear; } else if ("Quadratic Approximation to Spherical Waves" == m_Controls.DelayCalculation->currentText()) { DASconfig.DelayCalculationMethod = mitk::BeamformingDASFilter::beamformingSettings::DelayCalc::QuadApprox; DMASconfig.DelayCalculationMethod = mitk::BeamformingDMASFilter::beamformingSettings::DelayCalc::QuadApprox; } else if ("Spherical Waves" == m_Controls.DelayCalculation->currentText()) { DASconfig.DelayCalculationMethod = mitk::BeamformingDASFilter::beamformingSettings::DelayCalc::Spherical; DMASconfig.DelayCalculationMethod = mitk::BeamformingDMASFilter::beamformingSettings::DelayCalc::Spherical; } DASconfig.Pitch = m_Controls.Pitch->value() / 1000; // [m] DASconfig.SpeedOfSound = m_Controls.SpeedOfSound->value(); // [m/s] DASconfig.SamplesPerLine = m_Controls.Samples->value(); DASconfig.ReconstructionLines = m_Controls.Lines->value(); DASconfig.RecordTime = m_Controls.ScanDepth->value() / 1000 / DASconfig.SpeedOfSound * 2; // [s] DASconfig.TransducerElements = m_Controls.ElementCount->value(); DASconfig.Angle = m_Controls.Angle->value(); DMASconfig.Pitch = m_Controls.Pitch->value() / 1000; // [m] DMASconfig.SpeedOfSound = m_Controls.SpeedOfSound->value(); // [m/s] DMASconfig.SamplesPerLine = m_Controls.Samples->value(); DMASconfig.ReconstructionLines = m_Controls.Lines->value(); DMASconfig.RecordTime = m_Controls.ScanDepth->value() / 1000 / DMASconfig.SpeedOfSound * 2; // [s] DMASconfig.TransducerElements = m_Controls.ElementCount->value(); DMASconfig.Angle = m_Controls.Angle->value(); } \ No newline at end of file