diff --git a/Documentation/Doxygen/3-DeveloperManual/Starting/GettingToKnow/Tutorial/Step04.dox b/Documentation/Doxygen/3-DeveloperManual/Starting/GettingToKnow/Tutorial/Step04.dox index e399106c64..a2f3cffb0b 100644 --- a/Documentation/Doxygen/3-DeveloperManual/Starting/GettingToKnow/Tutorial/Step04.dox +++ b/Documentation/Doxygen/3-DeveloperManual/Starting/GettingToKnow/Tutorial/Step04.dox @@ -1,67 +1,67 @@ /** \page Step04Page MITK Tutorial - Step 4: Use several views to explore data \li Examples/Tutorial/Step4 \li https://www.mitk.org/download/tutorial-data/Pic3D.nrrd (image) \n https://www.mitk.org/download/tutorial-data/lungs.vtk (surface) As in Step 2 and Step 3 one or more data sets may be loaded. This now creates three views on the data. The QmitkRenderWindow is used for displaying a 3D view as in Step 3, but without volume-rendering. Furthermore two 2D views for slicing through the data are created. The class QmitkSliceWidget is used, which is based on the class QmitkRenderWindow, but additionally provides sliders to slice through the data. We create two instances of QmitkSliceWidget, one for axial and one for sagittal slicing. Step 4b enhances the program in that the two slices are also shown at their correct position in 3D as well as intersection-line, each in the other 2D view. As in the previous steps, to obtain the result the program has to be executed using the image file Pic3D.nrrd and the surface file lungs.vtk. \section Step4aSection Step 4a - Create axial and sagittal view \imageMacro{step4a_result.png,"",11.01} \dontinclude Step4.cpp Create a Qt horizontal box for the layout: \skipline QHBox Then create a renderwindow: \skipline QmitkRenderWindow \until SetMapperID Create a 2D view for slicing axially: \skipline view2 \until view2.SetData -Then create a 2D view for slicing sagitally. +Then create a 2D view for slicing sagittally. \skipline view3 \until view3.SetData The toplevelWidget is now the new main widget: \skipline qtapplication \skipline toplevelWidget.show \section Step4bSection Step 4b - Display slice positions \imageMacro{step4b_result.png,"",11.01} We now want to see the position of the slice in 2D and the slice itself in 3D. Therefore it has to be added to the tree: \dontinclude Step4.cpp \skipline ds->Add(view2.GetRenderer() \skipline ds->Add(view3.GetRenderer() Slice positions are now displayed as shown in the picture. \dontinclude Step4.cpp \ref Step03Page "[Previous step]" \ref Step05Page "[Next step]" \ref TutorialPage "[Main tutorial page]" */ diff --git a/Examples/Tutorial/Step4/Step4.cpp b/Examples/Tutorial/Step4/Step4.cpp index 236d2200c0..02c99351c4 100644 --- a/Examples/Tutorial/Step4/Step4.cpp +++ b/Examples/Tutorial/Step4/Step4.cpp @@ -1,164 +1,164 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "QmitkRegisterClasses.h" #include "QmitkRenderWindow.h" #include "QmitkSliceWidget.h" #include "mitkNodePredicateDataType.h" #include "mitkProperties.h" #include "mitkRenderingManager.h" #include "mitkStandaloneDataStorage.h" #include #include #include #include #include //##Documentation //## @brief Use several views to explore data //## //## As in Step2 and Step3, load one or more data sets (many image, //## surface and other formats), but create 3 views on the data. //## The QmitkRenderWindow is used for displaying a 3D view as in Step3, //## but without volume-rendering. //## Furthermore, we create two 2D views for slicing through the data. //## We use the class QmitkSliceWidget, which is based on the class //## QmitkRenderWindow, but additionally provides sliders //## to slice through the data. We create two instances of //## QmitkSliceWidget, one for axial and one for sagittal slicing. //## The two slices are also shown at their correct position in 3D as //## well as intersection-line, each in the other 2D view. int main(int argc, char *argv[]) { QApplication qtapplication(argc, argv); if (argc < 2) { fprintf( stderr, "Usage: %s [filename1] [filename2] ...\n\n", itksys::SystemTools::GetFilenameName(argv[0]).c_str()); return 1; } // Register Qmitk-dependent global instances QmitkRegisterClasses(); //************************************************************************* // Part I: Basic initialization //************************************************************************* // Create a DataStorage mitk::StandaloneDataStorage::Pointer ds = mitk::StandaloneDataStorage::New(); //************************************************************************* // Part II: Create some data by reading files //************************************************************************* int i; for (i = 1; i < argc; ++i) { // For testing if (strcmp(argv[i], "-testing") == 0) continue; //********************************************************************* // Part III: Put the data into the datastorage //********************************************************************* // Load datanode (eg. many image formats, surface formats, etc.) mitk::IOUtil::Load(argv[i], *ds); } //************************************************************************* // Part IV: Create windows and pass the tree to it //************************************************************************* // Create toplevel widget with horizontal layout QWidget toplevelWidget; QHBoxLayout layout; layout.setSpacing(2); layout.setMargin(0); toplevelWidget.setLayout(&layout); //************************************************************************* // Part IVa: 3D view //************************************************************************* // Create a renderwindow QmitkRenderWindow renderWindow(&toplevelWidget); layout.addWidget(&renderWindow); // Tell the renderwindow which (part of) the datastorage to render renderWindow.GetRenderer()->SetDataStorage(ds); // Use it as a 3D view renderWindow.GetRenderer()->SetMapperID(mitk::BaseRenderer::Standard3D); // Reposition the camera to include all visible actors renderWindow.GetRenderer()->GetVtkRenderer()->ResetCamera(); // ******************************************************* // ****************** START OF NEW PART ****************** // ******************************************************* //************************************************************************* // Part IVb: 2D view for slicing axially //************************************************************************* // Create QmitkSliceWidget, which is based on the class // QmitkRenderWindow, but additionally provides sliders QmitkSliceWidget view2(&toplevelWidget); layout.addWidget(&view2); view2.SetLevelWindowEnabled(true); // Tell the QmitkSliceWidget which (part of) the tree to render. // By default, it slices the data axially view2.SetDataStorage(ds); // Get the image from the data storage. A predicate (mitk::NodePredicateBase) // is used to get only nodes of the type mitk::Image. mitk::DataStorage::SetOfObjects::ConstPointer rs = ds->GetSubset(mitk::TNodePredicateDataType::New()); view2.SetData(rs->Begin(), mitk::SliceNavigationController::Axial); // We want to see the position of the slice in 2D and the // slice itself in 3D: add it to the datastorage! ds->Add(view2.GetRenderer()->GetCurrentWorldPlaneGeometryNode()); //************************************************************************* - // Part IVc: 2D view for slicing sagitally + // Part IVc: 2D view for slicing sagittally //************************************************************************* // Create QmitkSliceWidget, which is based on the class // QmitkRenderWindow, but additionally provides sliders QmitkSliceWidget view3(&toplevelWidget); layout.addWidget(&view3); view3.SetDataStorage(ds); // Tell the QmitkSliceWidget which (part of) the datastorage to render - // and to slice sagitally + // and to slice sagittally view3.SetData(rs->Begin(), mitk::SliceNavigationController::Sagittal); // We want to see the position of the slice in 2D and the // slice itself in 3D: add it to the datastorage! ds->Add(view3.GetRenderer()->GetCurrentWorldPlaneGeometryNode()); // ******************************************************* // ******************* END OF NEW PART ******************* // ******************************************************* //************************************************************************* // Part V: Qt-specific initialization //************************************************************************* toplevelWidget.show(); return qtapplication.exec(); } /** \example Step4.cpp */ diff --git a/Examples/Tutorial/Step5/Step5.cpp b/Examples/Tutorial/Step5/Step5.cpp index 6e3204d641..9faeac9d64 100644 --- a/Examples/Tutorial/Step5/Step5.cpp +++ b/Examples/Tutorial/Step5/Step5.cpp @@ -1,203 +1,203 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "QmitkRegisterClasses.h" #include "QmitkRenderWindow.h" #include "QmitkSliceWidget.h" #include "mitkNodePredicateDataType.h" #include "mitkProperties.h" #include "mitkRenderingManager.h" #include "mitkStandaloneDataStorage.h" #include "mitkPointSet.h" // NEW INCLUDE #include "mitkPointSetDataInteractor.h" #include #include #include #include //##Documentation //## @brief Interactively add points //## //## As in Step4, load one or more data sets (many image, //## surface and other formats) and create 3 views on the data. //## Additionally, we want to interactively add points. A node containing //## a PointSet as data is added to the data tree and a PointSetDataInteractor //## is associated with the node, which handles the interaction. The //## @em interaction @em pattern is defined in a state-machine, stored in an //## external XML file. Thus, we need to load a state-machine //## The interaction patterns defines the @em events, //## on which the interactor reacts (e.g., which mouse buttons are used to //## set a point), the @em transition to the next state (e.g., the initial //## may be "empty point set") and associated @a actions (e.g., add a point //## at the position where the mouse-click occured). int main(int argc, char *argv[]) { QApplication qtapplication(argc, argv); if (argc < 2) { fprintf( stderr, "Usage: %s [filename1] [filename2] ...\n\n", itksys::SystemTools::GetFilenameName(argv[0]).c_str()); return 1; } // Register Qmitk-dependent global instances QmitkRegisterClasses(); //************************************************************************* // Part I: Basic initialization //************************************************************************* // Create a DataStorage mitk::StandaloneDataStorage::Pointer ds = mitk::StandaloneDataStorage::New(); //************************************************************************* // Part II: Create some data by reading files //************************************************************************* int i; for (i = 1; i < argc; ++i) { // For testing if (strcmp(argv[i], "-testing") == 0) continue; // Load datanode (eg. many image formats, surface formats, etc.) mitk::StandaloneDataStorage::SetOfObjects::Pointer dataNodes = mitk::IOUtil::Load(argv[i], *ds); //********************************************************************* // Part III: Put the data into the datastorage //********************************************************************* // Add the node to the DataStorage if (dataNodes->empty()) { fprintf(stderr, "Could not open file %s \n\n", argv[i]); exit(2); } } //************************************************************************* // Part V: Create windows and pass the tree to it //************************************************************************* // Create toplevel widget with horizontal layout QWidget toplevelWidget; QHBoxLayout layout; layout.setSpacing(2); layout.setMargin(0); toplevelWidget.setLayout(&layout); //************************************************************************* // Part Va: 3D view //************************************************************************* // Create a renderwindow QmitkRenderWindow renderWindow(&toplevelWidget); layout.addWidget(&renderWindow); // Tell the renderwindow which (part of) the tree to render renderWindow.GetRenderer()->SetDataStorage(ds); // Use it as a 3D view renderWindow.GetRenderer()->SetMapperID(mitk::BaseRenderer::Standard3D); // Reposition the camera to include all visible actors renderWindow.GetRenderer()->GetVtkRenderer()->ResetCamera(); //************************************************************************* // Part Vb: 2D view for slicing axially //************************************************************************* // Create QmitkSliceWidget, which is based on the class // QmitkRenderWindow, but additionally provides sliders QmitkSliceWidget view2(&toplevelWidget); layout.addWidget(&view2); // Tell the QmitkSliceWidget which (part of) the tree to render. // By default, it slices the data axially view2.SetDataStorage(ds); mitk::DataStorage::SetOfObjects::ConstPointer rs = ds->GetSubset(mitk::TNodePredicateDataType::New()); view2.SetData(rs->Begin(), mitk::SliceNavigationController::Axial); // We want to see the position of the slice in 2D and the // slice itself in 3D: add it to the tree! ds->Add(view2.GetRenderer()->GetCurrentWorldPlaneGeometryNode()); //************************************************************************* - // Part Vc: 2D view for slicing sagitally + // Part Vc: 2D view for slicing sagittally //************************************************************************* // Create QmitkSliceWidget, which is based on the class // QmitkRenderWindow, but additionally provides sliders QmitkSliceWidget view3(&toplevelWidget); layout.addWidget(&view3); // Tell the QmitkSliceWidget which (part of) the tree to render - // and to slice sagitall + // and to slice sagittally view3.SetDataStorage(ds); view3.SetData(rs->Begin(), mitk::SliceNavigationController::Sagittal); // We want to see the position of the slice in 2D and the // slice itself in 3D: add it to the tree! ds->Add(view3.GetRenderer()->GetCurrentWorldPlaneGeometryNode()); // ******************************************************* // ****************** START OF NEW PART ****************** // ******************************************************* //************************************************************************* // Part VI: For allowing to interactively add points ... //************************************************************************* // ATTENTION: It is very important that the renderer already know their DataStorage, // because registerig DataInteractors with the render windows is done automatically // and only works if the BaseRenderer and the DataStorage know each other. // Create PointSet and a node for it mitk::PointSet::Pointer pointSet = mitk::PointSet::New(); mitk::DataNode::Pointer pointSetNode = mitk::DataNode::New(); // Store the point set in the DataNode pointSetNode->SetData(pointSet); // Add the node to the tree ds->Add(pointSetNode); // Create PointSetDataInteractor mitk::PointSetDataInteractor::Pointer interactor = mitk::PointSetDataInteractor::New(); // Set the StateMachine pattern that describes the flow of the interactions interactor->LoadStateMachine("PointSet.xml"); // Set the configuration file, which describes the user interactions that trigger actions // in this file SHIFT + LeftClick triggers add Point, but by modifying this file, // it could as well be changes to any other user interaction. interactor->SetEventConfig("PointSetConfig.xml"); // Assign the pointSetNode to the interactor, // alternatively one could also add the DataInteractor to the pointSetNode using the SetDataInteractor() method. interactor->SetDataNode(pointSetNode); // ******************************************************* // ******************* END OF NEW PART ******************* // ******************************************************* //************************************************************************* // Part VII: Qt-specific initialization //************************************************************************* toplevelWidget.show(); return qtapplication.exec(); } /** \example Step5.cpp */ diff --git a/Examples/Tutorial/Step6/Step6.cpp b/Examples/Tutorial/Step6/Step6.cpp index cd118fb7fd..0d60afc0f2 100644 --- a/Examples/Tutorial/Step6/Step6.cpp +++ b/Examples/Tutorial/Step6/Step6.cpp @@ -1,233 +1,233 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "Step6.h" #include "QmitkRenderWindow.h" #include "QmitkSliceWidget.h" #include "mitkProperties.h" #include "mitkRenderingManager.h" #include "mitkPointSet.h" #include "mitkPointSetDataInteractor.h" #include "mitkImageAccessByItk.h" #include "mitkRenderingManager.h" #include #include #include #include #include #include #include //##Documentation //## @brief Start region-grower at interactively added points Step6::Step6(int argc, char *argv[], QWidget *parent) : QWidget(parent) { // load data as in the previous steps; a reference to the first loaded // image is kept in the member m_FirstImage and used as input for the // region growing Load(argc, argv); } void Step6::Initialize() { // setup the widgets as in the previous steps, but with an additional // QVBox for a button to start the segmentation this->SetupWidgets(); // Create controlsParent widget with horizontal layout QWidget *controlsParent = new QWidget(this); this->layout()->addWidget(controlsParent); QHBoxLayout *hlayout = new QHBoxLayout(controlsParent); hlayout->setSpacing(2); QLabel *labelThresholdMin = new QLabel("Lower Threshold:", controlsParent); hlayout->addWidget(labelThresholdMin); m_LineEditThresholdMin = new QLineEdit("-1000", controlsParent); hlayout->addWidget(m_LineEditThresholdMin); QLabel *labelThresholdMax = new QLabel("Upper Threshold:", controlsParent); hlayout->addWidget(labelThresholdMax); m_LineEditThresholdMax = new QLineEdit("-400", controlsParent); hlayout->addWidget(m_LineEditThresholdMax); // create button to start the segmentation and connect its clicked() // signal to method StartRegionGrowing QPushButton *startButton = new QPushButton("start region growing", controlsParent); hlayout->addWidget(startButton); connect(startButton, SIGNAL(clicked()), this, SLOT(StartRegionGrowing())); if (m_FirstImage.IsNull()) startButton->setEnabled(false); // as in Step5, create PointSet (now as a member m_Seeds) and // associate a interactor to it m_Seeds = mitk::PointSet::New(); mitk::DataNode::Pointer pointSetNode = mitk::DataNode::New(); pointSetNode->SetData(m_Seeds); pointSetNode->SetProperty("layer", mitk::IntProperty::New(2)); m_DataStorage->Add(pointSetNode); // Create PointSetDataInteractor mitk::PointSetDataInteractor::Pointer interactor = mitk::PointSetDataInteractor::New(); interactor->LoadStateMachine("PointSet.xml"); interactor->SetEventConfig("PointSetConfig.xml"); interactor->SetDataNode(pointSetNode); } int Step6::GetThresholdMin() { return m_LineEditThresholdMin->text().toInt(); } int Step6::GetThresholdMax() { return m_LineEditThresholdMax->text().toInt(); } void Step6::StartRegionGrowing() { AccessByItk_1(m_FirstImage, RegionGrowing, this); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void Step6::Load(int argc, char *argv[]) { //************************************************************************* // Part I: Basic initialization //************************************************************************* m_DataStorage = mitk::StandaloneDataStorage::New(); //************************************************************************* // Part II: Create some data by reading files //************************************************************************* int i; for (i = 1; i < argc; ++i) { // For testing if (strcmp(argv[i], "-testing") == 0) continue; // Load datanode (eg. many image formats, surface formats, etc.) mitk::StandaloneDataStorage::SetOfObjects::Pointer dataNodes = mitk::IOUtil::Load(argv[i], *m_DataStorage); if (dataNodes->empty()) { fprintf(stderr, "Could not open file %s \n\n", argv[i]); exit(2); } mitk::Image::Pointer image = dynamic_cast(dataNodes->at(0)->GetData()); if ((m_FirstImage.IsNull()) && (image.IsNotNull())) m_FirstImage = image; } } void Step6::SetupWidgets() { //************************************************************************* // Part I: Create windows and pass the datastorage to it //************************************************************************* // Create toplevel widget with vertical layout QVBoxLayout *vlayout = new QVBoxLayout(this); vlayout->setMargin(0); vlayout->setSpacing(2); // Create viewParent widget with horizontal layout QWidget *viewParent = new QWidget(this); vlayout->addWidget(viewParent); QHBoxLayout *hlayout = new QHBoxLayout(viewParent); hlayout->setMargin(0); hlayout->setSpacing(2); //************************************************************************* // Part Ia: 3D view //************************************************************************* // Create a renderwindow QmitkRenderWindow *renderWindow = new QmitkRenderWindow(viewParent); hlayout->addWidget(renderWindow); // Tell the renderwindow which (part of) the tree to render renderWindow->GetRenderer()->SetDataStorage(m_DataStorage); // Use it as a 3D view renderWindow->GetRenderer()->SetMapperID(mitk::BaseRenderer::Standard3D); // Reposition the camera to include all visible actors renderWindow->GetRenderer()->GetVtkRenderer()->ResetCamera(); //************************************************************************* // Part Ib: 2D view for slicing axially //************************************************************************* // Create QmitkSliceWidget, which is based on the class // QmitkRenderWindow, but additionally provides sliders QmitkSliceWidget *view2 = new QmitkSliceWidget(viewParent); hlayout->addWidget(view2); // Tell the QmitkSliceWidget which (part of) the tree to render. // By default, it slices the data axially view2->SetDataStorage(m_DataStorage); mitk::DataStorage::SetOfObjects::ConstPointer rs = m_DataStorage->GetAll(); view2->SetData(rs->Begin(), mitk::SliceNavigationController::Axial); // We want to see the position of the slice in 2D and the // slice itself in 3D: add it to the tree! m_DataStorage->Add(view2->GetRenderer()->GetCurrentWorldPlaneGeometryNode()); //************************************************************************* - // Part Ic: 2D view for slicing sagitally + // Part Ic: 2D view for slicing sagittally //************************************************************************* // Create QmitkSliceWidget, which is based on the class // QmitkRenderWindow, but additionally provides sliders QmitkSliceWidget *view3 = new QmitkSliceWidget(viewParent); hlayout->addWidget(view3); // Tell the QmitkSliceWidget which (part of) the tree to render - // and to slice sagitally + // and to slice sagittally view3->SetDataStorage(m_DataStorage); view3->SetData(rs->Begin(), mitk::SliceNavigationController::Sagittal); // We want to see the position of the slice in 2D and the // slice itself in 3D: add it to the tree! m_DataStorage->Add(view3->GetRenderer()->GetCurrentWorldPlaneGeometryNode()); //************************************************************************* // Part II: handle updates: To avoid unnecessary updates, we have to //************************************************************************* // define when to update. The RenderingManager serves this purpose, and // each RenderWindow has to be registered to it. /*mitk::RenderingManager *renderingManager = mitk::RenderingManager::GetInstance(); renderingManager->AddRenderWindow( renderWindow ); renderingManager->AddRenderWindow( view2->GetRenderWindow() ); renderingManager->AddRenderWindow( view3->GetRenderWindow() );*/ } /** \example Step6.cpp */ diff --git a/Modules/Classification/CLUtilities/include/mitkCLUtil.h b/Modules/Classification/CLUtilities/include/mitkCLUtil.h index 6202e9197b..7241b2d4af 100644 --- a/Modules/Classification/CLUtilities/include/mitkCLUtil.h +++ b/Modules/Classification/CLUtilities/include/mitkCLUtil.h @@ -1,581 +1,581 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef mitkCLUtil_h #define mitkCLUtil_h #include #include #include #include #include #include #include namespace mitk { class MITKCLUTILITIES_EXPORT CLUtil { public: /// /// \brief The MorphologicalDimensions enum /// enum MorphologicalDimensions { - Axial,Coronal,Sagital,All + Axial,Coronal,Sagittal,All }; /// /// \brief CreateCheckerBoardPredictionMask /// \param image /// \param outimage /// static void CreateCheckerboardMask(mitk::Image::Pointer image, mitk::Image::Pointer & outimage); /// /// \brief InterpolateCreateCheckerboardPrediction /// \param checkerboard_prediction /// \param checkerboard_mask /// \param outimage /// static void InterpolateCheckerboardPrediction(mitk::Image::Pointer checkerboard_prediction, mitk::Image::Pointer & checkerboard_mask, mitk::Image::Pointer & outimage); /// /// \brief CountVoxel /// \param image /// \param map /// static void CountVoxel(mitk::Image::Pointer image, std::map & map); /// /// \brief CountVoxel /// \param image /// \param label /// \param count /// static void CountVoxel(mitk::Image::Pointer image, unsigned int label, unsigned int & count); /// /// \brief CountVoxel /// \param image /// \param count /// static void CountVoxel(mitk::Image::Pointer image, unsigned int & count); /// /// \brief SumVoxelForLabel /// \param image /// \param source /// \param label /// \param val /// static void SumVoxelForLabel(mitk::Image::Pointer image, const mitk::Image::Pointer & source , unsigned int label, double & val ); /// /// \brief SqSumVoxelForLabel /// \param image /// \param source /// \param label /// \param val /// static void SqSumVoxelForLabel(mitk::Image::Pointer image, const mitk::Image::Pointer & source, unsigned int label, double & val ); /// /// \brief LogicalAndImages /// \param image1 /// \param image2 /// \param outimage /// static void LogicalAndImages(const Image::Pointer &image1, const Image::Pointer &image2, Image::Pointer &outimage); /// /// \brief GaussianFilter /// \param image /// \param smoothed /// \param sigma /// static void GaussianFilter(mitk::Image::Pointer image, mitk::Image::Pointer & smoothed ,double sigma); /// /// \brief SubtractGaussianFilter /// \param image /// \param smoothed (Result is sigma1-sigma2) /// \param sigma1 /// \param sigma2 /// static void DifferenceOfGaussianFilter(mitk::Image::Pointer image, mitk::Image::Pointer & smoothed, double sigma1, double sigma2); /// /// \brief Laplacian of Gaussian /// \param image /// \param smoothed (Result is sigma1-sigma2) /// \param sigma1 /// static void LaplacianOfGaussianFilter(mitk::Image::Pointer image, mitk::Image::Pointer & smoothed, double sigma1); /// /// \brief SubtractGaussianFilter /// \param image /// \param out /// \param sigma /// static void HessianOfGaussianFilter(mitk::Image::Pointer image, std::vector &out, double sigma); /// /// \brief Local Histogram /// \param image /// \param out /// \param Bins /// \param NeighbourhoodSize /// static void LocalHistogram(mitk::Image::Pointer image, std::vector &out, int Bins, int NeighbourhoodSize); /// /// \brief transform /// \param matrix /// \param mask /// template static mitk::Image::Pointer Transform(const Eigen::Matrix & matrix, const mitk::Image::Pointer & mask) { itk::Image::Pointer itkMask; mitk::CastToItkImage(mask,itkMask); typename itk::Image::Pointer itk_img = itk::Image::New(); itk_img->SetRegions(itkMask->GetLargestPossibleRegion()); itk_img->SetOrigin(itkMask->GetOrigin()); itk_img->SetSpacing(itkMask->GetSpacing()); itk_img->SetDirection(itkMask->GetDirection()); itk_img->Allocate(); unsigned int n_numSamples = 0; mitk::CLUtil::CountVoxel(mask,n_numSamples); if(n_numSamples != matrix.rows()) MITK_ERROR << "Number of samples in matrix and number of points under the masks is not the same!"; auto mit = itk::ImageRegionConstIterator >(itkMask, itkMask->GetLargestPossibleRegion()); auto oit = itk::ImageRegionIterator >(itk_img, itk_img->GetLargestPossibleRegion()); unsigned int current_row = 0; while(!mit.IsAtEnd()) { if(mit.Value() > 0) oit.Set(matrix(current_row++,0)); else oit.Set(0.0); ++mit; ++oit; } mitk::Image::Pointer out_img = mitk::Image::New(); mitk::GrabItkImageMemory(itk_img,out_img); return out_img; } /// /// \brief TransformImageToMatrix /// \param img /// \param mask /// template static Eigen::Matrix Transform(const mitk::Image::Pointer & img, const mitk::Image::Pointer & mask) { itk::Image::Pointer current_mask; mitk::CastToItkImage(mask,current_mask); unsigned int n_numSamples = 0; mitk::CLUtil::CountVoxel(mask,n_numSamples); typename itk::Image::Pointer current_img; mitk::CastToItkImage(img,current_img); Eigen::Matrix out_matrix(n_numSamples,1); auto mit = itk::ImageRegionConstIterator >(current_mask, current_mask->GetLargestPossibleRegion()); auto iit = itk::ImageRegionConstIterator >(current_img,current_img->GetLargestPossibleRegion()); unsigned int current_row = 0; while (!mit.IsAtEnd()) { if(mit.Value() > 0) out_matrix(current_row++) = iit.Value(); ++mit; ++iit; } return out_matrix; } /// /// \brief DilateBinary /// \param sourceImage /// \param resultImage /// \param radius Size of the StructuringElement /// \param d /// static void DilateBinary(mitk::Image::Pointer & sourceImage, mitk::Image::Pointer& resultImage, int radius , MorphologicalDimensions d); /// /// \brief ErodeBinary /// \param sourceImage /// \param resultImage /// \param radius Size of the StructuringElement /// \param d /// static void ErodeBinary(mitk::Image::Pointer & sourceImage, mitk::Image::Pointer& resultImage, int radius, MorphologicalDimensions d); /// /// \brief ClosingBinary /// \param sourceImage /// \param resultImage /// \param radius Size of the StructuringElement /// \param d /// static void ClosingBinary(mitk::Image::Pointer & sourceImage, mitk::Image::Pointer& resultImage, int radius, MorphologicalDimensions d); /// /// \brief MergeLabels /// \param img /// \param map merge instruction where each map entry defines a mapping instruction. Key \c \ - Value \c \ /// static void MergeLabels(mitk::Image::Pointer & img, const std::map & map); /// /// \brief ConnectedComponentsImage /// \param image /// \param mask /// \param outimage /// \param num_components Number of components found in the image /// static void ConnectedComponentsImage(mitk::Image::Pointer & image, mitk::Image::Pointer& mask, mitk::Image::Pointer &outimage, unsigned int& num_components); /// /// \brief GrabLabel /// \param image /// \param outimage /// \param label /// static void GrabLabel(mitk::Image::Pointer & image, mitk::Image::Pointer & outimage, unsigned int label); /// /// \brief itkInsertLabel /// \param image /// \param maskImage /// \param label /// static void InsertLabel(mitk::Image::Pointer & image, mitk::Image::Pointer & maskImage, unsigned int label); /// /// \brief ErodeGrayscale /// \param image /// \param outimage /// \param radius /// \param d /// static void ErodeGrayscale(mitk::Image::Pointer & image, unsigned int radius, mitk::CLUtil::MorphologicalDimensions d, mitk::Image::Pointer & outimage ); /// /// \brief DilateGrayscale /// \param image /// \param outimage /// \param radius /// \param d /// static void DilateGrayscale(mitk::Image::Pointer & image, unsigned int radius, mitk::CLUtil::MorphologicalDimensions d, mitk::Image::Pointer & outimage ); /// /// \brief FillHoleGrayscale /// \param image /// \param outimage /// static void FillHoleGrayscale(mitk::Image::Pointer & image, mitk::Image::Pointer & outimage); /// /// \brief ProbabilityMap /// \param sourceImage /// \param mean /// \param std_dev /// \param resultImage /// static void ProbabilityMap(const mitk::Image::Pointer& sourceImage, double mean, double std_dev, mitk::Image::Pointer& resultImage); template static void itkCountVoxel( TImageType * image, std::map & map) { auto it = itk::ImageRegionIterator< TImageType >(image,image->GetLargestPossibleRegion()); while(!it.IsAtEnd()) { if(map.find(it.Value()) == map.end()) map[it.Value()] = 0; map[it.Value()]++; ++it; } } template static void itkCountVoxel(TImageType* image, typename TImageType::PixelType label, unsigned int & count ) { itk::ImageRegionConstIterator inputIter(image, image->GetLargestPossibleRegion()); while(!inputIter.IsAtEnd()) { if(inputIter.Value() == label) ++count; ++inputIter; } } template static inline void itkCountVoxel(TImageType * mask, unsigned int & n_numSamples) { auto mit = itk::ImageRegionConstIterator(mask, mask->GetLargestPossibleRegion()); while (!mit.IsAtEnd()) { if(mit.Value() > 0) n_numSamples++; ++mit; } } template static void itkSampleLabel(TImageType1* image, TImageType2* output, double acceptrate, unsigned int label) { std::srand (time(nullptr)); itk::ImageRegionConstIterator< TImageType1 > inputIter(image, image->GetLargestPossibleRegion()); itk::ImageRegionIterator< TImageType2 > outputIter(output, output->GetLargestPossibleRegion()); while (!inputIter.IsAtEnd()) { double r = (double)(rand()) / RAND_MAX; if(inputIter.Get() == label && r < acceptrate) outputIter.Set(label); ++inputIter; ++outputIter; } } template static void itkSampleLabel(TImageType* image, mitk::Image::Pointer & output, unsigned int n_samples_drawn) { std::srand (time(nullptr)); typename TImageType::Pointer itk_out = TImageType::New(); itk_out->SetRegions(image->GetLargestPossibleRegion()); itk_out->SetDirection(image->GetDirection()); itk_out->SetOrigin(image->GetOrigin()); itk_out->SetSpacing(image->GetSpacing()); itk_out->Allocate(); itk_out->FillBuffer(0); itk::ImageRegionConstIterator< TImageType > inputIter(image, image->GetLargestPossibleRegion()); itk::ImageRegionIterator< TImageType > outputIter(itk_out, itk_out->GetLargestPossibleRegion()); for(unsigned int i = 0 ; i < n_samples_drawn ;) { double r = (double)(rand()) / RAND_MAX; if(inputIter.Value() != 0 && r < 0.01 && outputIter.Value() == 0) { outputIter.Set(inputIter.Value()); i++; } ++inputIter; ++outputIter; if(inputIter.IsAtEnd()) { inputIter.GoToBegin(); outputIter.GoToBegin(); } } mitk::CastToMitkImage(itk_out, output); } private: template static void itkErodeGrayscale(TImageType * image, mitk::Image::Pointer & outimage , unsigned int radius, mitk::CLUtil::MorphologicalDimensions d); template static void itkDilateGrayscale(TImageType * image, mitk::Image::Pointer & outimage , unsigned int radius, mitk::CLUtil::MorphologicalDimensions d); template static void itkFillHoleGrayscale(TImageType * image, mitk::Image::Pointer & outimage); template< typename TImageType > static void itkInsertLabel(TImageType * maskImage, mitk::Image::Pointer & outimage, unsigned int label) { typename TImageType::Pointer itk_out; if(outimage.IsNull()) // create if necessary { MITK_INFO << "Initialize new image"; itk_out = TImageType::New(); itk_out->SetSpacing(maskImage->GetSpacing()); itk_out->SetDirection(maskImage->GetDirection()); itk_out->SetOrigin(maskImage->GetOrigin()); itk_out->SetRegions(maskImage->GetLargestPossibleRegion()); itk_out->Allocate(); itk_out->FillBuffer(0); }else { mitk::CastToItkImage(outimage, itk_out); } itk::ImageRegionIterator oit(itk_out,itk_out->GetLargestPossibleRegion()); itk::ImageRegionConstIterator mit(maskImage,maskImage->GetLargestPossibleRegion()); while(!mit.IsAtEnd()) { if(mit.Value() != 0) { oit.Set(label); } ++oit; ++mit; } mitk::CastToMitkImage(itk_out,outimage); } template< typename TImageType > static void itkGrabLabel(TImageType * image, mitk::Image::Pointer & outimage, unsigned int label) { typedef itk::Image TOutType; TOutType::Pointer itk_out = TOutType::New(); itk_out->SetRegions(image->GetLargestPossibleRegion()); itk_out->SetDirection(image->GetDirection()); itk_out->SetOrigin(image->GetOrigin()); itk_out->SetSpacing(image->GetSpacing()); itk_out->Allocate(); itk::ImageRegionConstIterator iit(image, image->GetLargestPossibleRegion()); itk::ImageRegionIterator oit(itk_out,itk_out->GetLargestPossibleRegion()); while(!iit.IsAtEnd()) { if(iit.Value() == static_cast(label)) oit.Set(1); else oit.Set(0); ++iit; ++oit; } mitk::CastToMitkImage(itk_out, outimage); } template static void itkMergeLabels(TImagetype * img, const std::map & map) { auto it = itk::ImageRegionIterator(img,img->GetLargestPossibleRegion()); while(!it.IsAtEnd()) { if(map.find(it.Value())!=map.end()) it.Set( map.at(it.Value()) ); ++it; } } template static void itkConnectedComponentsImage(TImageType * image, mitk::Image::Pointer& mask, mitk::Image::Pointer &outimage, unsigned int& num_components) { typedef itk::Image MaskImageType; MaskImageType::Pointer itk_mask; if(mask.IsNull()) { itk_mask = MaskImageType::New(); itk_mask->SetRegions(image->GetLargestPossibleRegion()); itk_mask->SetDirection(image->GetDirection()); itk_mask->SetOrigin(image->GetOrigin()); itk_mask->SetSpacing(image->GetSpacing()); itk_mask->Allocate(); itk_mask->FillBuffer(1); }else{ mitk::CastToItkImage(mask,itk_mask); } typedef itk::ConnectedComponentImageFilter FilterType; typename FilterType::Pointer cc_filter = FilterType::New(); cc_filter->SetMaskImage(itk_mask.GetPointer()); cc_filter->SetInput(image); cc_filter->SetBackgroundValue(0); cc_filter->Update(); num_components = cc_filter->GetObjectCount(); mitk::CastToMitkImage(cc_filter->GetOutput(), outimage); } template< typename TImageType > static void itkCreateCheckerboardMask(TImageType * image, mitk::Image::Pointer & outimage); template< typename TImageType > static void itkInterpolateCheckerboardPrediction(TImageType * checkerboard_prediction, mitk::Image::Pointer & checkerboard_mask, mitk::Image::Pointer & outimage); template static void itkSumVoxelForLabel(TImageType* image, const mitk::Image::Pointer & source , typename TImageType::PixelType label, double & val ); template static void itkSqSumVoxelForLabel(TImageType* image, const mitk::Image::Pointer & source, typename TImageType::PixelType label, double & val ); template static void itkFitStructuringElement(TStructuringElement & se, MorphologicalDimensions d, int radius); template static void itkDilateBinary(TImageType * sourceImage, mitk::Image::Pointer& resultImage, int radius , MorphologicalDimensions d); template static void itkErodeBinary(TImageType * sourceImage, mitk::Image::Pointer& resultImage, int radius, MorphologicalDimensions d); template static void itkClosingBinary(TImageType * sourceImage, mitk::Image::Pointer& resultImage, int radius, MorphologicalDimensions d); template static void itkFillHolesBinary(itk::Image* sourceImage, mitk::Image::Pointer& resultImage); template static void itkLogicalAndImages(const TImageType * image1, const mitk::Image::Pointer & image2, mitk::Image::Pointer & outimage); template static void itkGaussianFilter(TImageType * image, mitk::Image::Pointer & smoothed ,double sigma); template static void itkDifferenceOfGaussianFilter(TImageType * image, mitk::Image::Pointer & smoothed, double sigma1, double sigma2); template static void itkProbabilityMap(const TImageType * sourceImage, double mean, double std_dev, mitk::Image::Pointer& resultImage); template static void itkHessianOfGaussianFilter(itk::Image* itkImage, double variance, std::vector &out); template static void itkLaplacianOfGaussianFilter(itk::Image* itkImage, double variance, mitk::Image::Pointer &output); template static void itkLocalHistograms(itk::Image* itkImage, std::vector &out, int size, int bins); }; } //namespace MITK #endif diff --git a/Modules/Classification/CLUtilities/src/mitkCLUtil.cpp b/Modules/Classification/CLUtilities/src/mitkCLUtil.cpp index 115d7c8630..d67040b3f6 100644 --- a/Modules/Classification/CLUtilities/src/mitkCLUtil.cpp +++ b/Modules/Classification/CLUtilities/src/mitkCLUtil.cpp @@ -1,642 +1,642 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef _mitkCLUtil_HXX #define _mitkCLUtil_HXX #include #include #include #include // itk includes #include #include #include "itkHessianRecursiveGaussianImageFilter.h" #include "itkUnaryFunctorImageFilter.h" #include "vnl/algo/vnl_symmetric_eigensystem.h" #include #include // Morphologic Operations #include #include #include #include #include #include #include #include // Image Filter #include #include void mitk::CLUtil::ProbabilityMap(const mitk::Image::Pointer & image , double mean, double stddev, mitk::Image::Pointer & outimage) { AccessFixedDimensionByItk_3(image, mitk::CLUtil::itkProbabilityMap, 3, mean, stddev, outimage); } void mitk::CLUtil::ErodeGrayscale(mitk::Image::Pointer & image , unsigned int radius, mitk::CLUtil::MorphologicalDimensions d, mitk::Image::Pointer & outimage) { AccessFixedDimensionByItk_3(image, mitk::CLUtil::itkErodeGrayscale, 3, outimage, radius, d); } void mitk::CLUtil::DilateGrayscale(mitk::Image::Pointer & image, unsigned int radius, mitk::CLUtil::MorphologicalDimensions d, mitk::Image::Pointer & outimage) { AccessFixedDimensionByItk_3(image, mitk::CLUtil::itkDilateGrayscale, 3, outimage, radius, d); } void mitk::CLUtil::FillHoleGrayscale(mitk::Image::Pointer & image, mitk::Image::Pointer & outimage) { AccessFixedDimensionByItk_1(image, mitk::CLUtil::itkFillHoleGrayscale, 3, outimage); } void mitk::CLUtil::InsertLabel(mitk::Image::Pointer & image, mitk::Image::Pointer & maskImage, unsigned int label) { AccessByItk_2(image, mitk::CLUtil::itkInsertLabel, maskImage, label); } void mitk::CLUtil::GrabLabel(mitk::Image::Pointer & image, mitk::Image::Pointer & outimage, unsigned int label) { AccessFixedDimensionByItk_2(image, mitk::CLUtil::itkGrabLabel, 3, outimage, label); } void mitk::CLUtil::ConnectedComponentsImage(mitk::Image::Pointer & image, mitk::Image::Pointer& mask, mitk::Image::Pointer &outimage, unsigned int& num_components) { AccessFixedDimensionByItk_3(image, mitk::CLUtil::itkConnectedComponentsImage,3, mask, outimage, num_components); } void mitk::CLUtil::MergeLabels(mitk::Image::Pointer & img, const std::map & map) { AccessByItk_1(img, mitk::CLUtil::itkMergeLabels, map); } void mitk::CLUtil::CountVoxel(mitk::Image::Pointer image, std::map & map) { AccessByItk_1(image, mitk::CLUtil::itkCountVoxel, map); } void mitk::CLUtil::CountVoxel(mitk::Image::Pointer image, unsigned int label, unsigned int & count) { AccessByItk_2(image, mitk::CLUtil::itkCountVoxel, label, count); } void mitk::CLUtil::CountVoxel(mitk::Image::Pointer image, unsigned int & count) { AccessByItk_1(image, mitk::CLUtil::itkCountVoxel, count); } void mitk::CLUtil::CreateCheckerboardMask(mitk::Image::Pointer image, mitk::Image::Pointer & outimage) { AccessFixedDimensionByItk_1(image, mitk::CLUtil::itkCreateCheckerboardMask,3, outimage); } void mitk::CLUtil::LogicalAndImages(const mitk::Image::Pointer & image1, const mitk::Image::Pointer & image2, mitk::Image::Pointer & outimage) { AccessFixedDimensionByItk_2(image1,itkLogicalAndImages, 3, image2, outimage); } void mitk::CLUtil::InterpolateCheckerboardPrediction(mitk::Image::Pointer checkerboard_prediction, mitk::Image::Pointer & checkerboard_mask, mitk::Image::Pointer & outimage) { AccessFixedDimensionByItk_2(checkerboard_prediction, mitk::CLUtil::itkInterpolateCheckerboardPrediction,3, checkerboard_mask, outimage); } void mitk::CLUtil::GaussianFilter(mitk::Image::Pointer image, mitk::Image::Pointer & smoothed ,double sigma) { AccessFixedDimensionByItk_2(image, mitk::CLUtil::itkGaussianFilter,3, smoothed, sigma); } void mitk::CLUtil::DifferenceOfGaussianFilter(mitk::Image::Pointer image, mitk::Image::Pointer & smoothed, double sigma1, double sigma2) { AccessFixedDimensionByItk_3(image, mitk::CLUtil::itkDifferenceOfGaussianFilter, 3, smoothed, sigma1, sigma2); } void mitk::CLUtil::LaplacianOfGaussianFilter(mitk::Image::Pointer image, mitk::Image::Pointer & smoothed, double sigma1) { AccessByItk_2(image, mitk::CLUtil::itkLaplacianOfGaussianFilter, sigma1, smoothed); } void mitk::CLUtil::HessianOfGaussianFilter(mitk::Image::Pointer image, std::vector &out, double sigma) { AccessByItk_2(image, mitk::CLUtil::itkHessianOfGaussianFilter, sigma, out); } void mitk::CLUtil::LocalHistogram(mitk::Image::Pointer image, std::vector &out, int Bins, int NeighbourhoodSize) { AccessByItk_3(image, mitk::CLUtil::itkLocalHistograms, out, NeighbourhoodSize, Bins); } void mitk::CLUtil::DilateBinary(mitk::Image::Pointer & sourceImage, mitk::Image::Pointer& resultImage, int factor , MorphologicalDimensions d) { AccessFixedDimensionByItk_3(sourceImage, mitk::CLUtil::itkDilateBinary, 3, resultImage, factor, d); } void mitk::CLUtil::ErodeBinary(mitk::Image::Pointer & sourceImage, mitk::Image::Pointer& resultImage, int factor, MorphologicalDimensions d) { AccessFixedDimensionByItk_3(sourceImage, mitk::CLUtil::itkErodeBinary, 3, resultImage, factor, d); } void mitk::CLUtil::ClosingBinary(mitk::Image::Pointer & sourceImage, mitk::Image::Pointer& resultImage, int factor, MorphologicalDimensions d) { AccessFixedDimensionByItk_3(sourceImage, mitk::CLUtil::itkClosingBinary, 3, resultImage, factor, d); } template void mitk::CLUtil::itkProbabilityMap(const TImageType * sourceImage, double mean, double std_dev, mitk::Image::Pointer& resultImage) { itk::Image::Pointer itk_img = itk::Image::New(); itk_img->SetRegions(sourceImage->GetLargestPossibleRegion()); itk_img->SetOrigin(sourceImage->GetOrigin()); itk_img->SetSpacing(sourceImage->GetSpacing()); itk_img->SetDirection(sourceImage->GetDirection()); itk_img->Allocate(); itk::ImageRegionConstIterator it(sourceImage,sourceImage->GetLargestPossibleRegion()); itk::ImageRegionIterator > outit(itk_img,itk_img->GetLargestPossibleRegion()); while(!it.IsAtEnd()) { double x = it.Value(); double prob = (1.0/(std_dev*std::sqrt(2.0*itk::Math::pi))) * std::exp(-(((x-mean)*(x-mean))/(2.0*std_dev*std_dev))); outit.Set(prob); ++it; ++outit; } mitk::CastToMitkImage(itk_img, resultImage); } template< typename TImageType > void mitk::CLUtil::itkInterpolateCheckerboardPrediction(TImageType * checkerboard_prediction, Image::Pointer &checkerboard_mask, mitk::Image::Pointer & outimage) { typename TImageType::Pointer itk_checkerboard_mask; mitk::CastToItkImage(checkerboard_mask,itk_checkerboard_mask); typename TImageType::Pointer itk_outimage = TImageType::New(); itk_outimage->SetRegions(checkerboard_prediction->GetLargestPossibleRegion()); itk_outimage->SetDirection(checkerboard_prediction->GetDirection()); itk_outimage->SetOrigin(checkerboard_prediction->GetOrigin()); itk_outimage->SetSpacing(checkerboard_prediction->GetSpacing()); itk_outimage->Allocate(); itk_outimage->FillBuffer(0); //typedef typename itk::ShapedNeighborhoodIterator::SizeType SizeType; typedef itk::Size<3> SizeType; SizeType size; size.Fill(1); itk::ShapedNeighborhoodIterator iit(size,checkerboard_prediction,checkerboard_prediction->GetLargestPossibleRegion()); itk::ShapedNeighborhoodIterator mit(size,itk_checkerboard_mask,itk_checkerboard_mask->GetLargestPossibleRegion()); itk::ImageRegionIterator oit(itk_outimage,itk_outimage->GetLargestPossibleRegion()); typedef typename itk::ShapedNeighborhoodIterator::OffsetType OffsetType; OffsetType offset; offset.Fill(0); offset[0] = 1; // {1,0,0} iit.ActivateOffset(offset); mit.ActivateOffset(offset); offset[0] = -1; // {-1,0,0} iit.ActivateOffset(offset); mit.ActivateOffset(offset); offset[0] = 0; offset[1] = 1; //{0,1,0} iit.ActivateOffset(offset); mit.ActivateOffset(offset); offset[1] = -1; //{0,-1,0} iit.ActivateOffset(offset); mit.ActivateOffset(offset); // iit.ActivateOffset({{0,0,1}}); // iit.ActivateOffset({{0,0,-1}}); // mit.ActivateOffset({{0,0,1}}); // mit.ActivateOffset({{0,0,-1}}); while(!iit.IsAtEnd()) { if(mit.GetCenterPixel() == 0) { typename TImageType::PixelType mean = 0; for (auto i = iit.Begin(); ! i.IsAtEnd(); i++) { mean += i.Get(); } //std::sort(list.begin(),list.end(),[](const typename TImageType::PixelType x,const typename TImageType::PixelType y){return x<=y;}); oit.Set((mean+0.5)/6.0); } else { oit.Set(iit.GetCenterPixel()); } ++iit; ++mit; ++oit; } mitk::CastToMitkImage(itk_outimage,outimage); } template< typename TImageType > void mitk::CLUtil::itkCreateCheckerboardMask(TImageType * image, mitk::Image::Pointer & outimage) { typename TImageType::Pointer zeroimg = TImageType::New(); zeroimg->SetRegions(image->GetLargestPossibleRegion()); zeroimg->SetDirection(image->GetDirection()); zeroimg->SetOrigin(image->GetOrigin()); zeroimg->SetSpacing(image->GetSpacing()); zeroimg->Allocate(); zeroimg->FillBuffer(0); typedef itk::CheckerBoardImageFilter FilterType; typename FilterType::Pointer filter = FilterType::New(); filter->SetInput1(image); filter->SetInput2(zeroimg); typename FilterType::PatternArrayType pattern; pattern.SetElement(0,(image->GetLargestPossibleRegion().GetSize()[0])); pattern.SetElement(1,(image->GetLargestPossibleRegion().GetSize()[1])); pattern.SetElement(2,(image->GetLargestPossibleRegion().GetSize()[2])); filter->SetCheckerPattern(pattern); filter->Update(); mitk::CastToMitkImage(filter->GetOutput(), outimage); } template void mitk::CLUtil::itkSumVoxelForLabel(TImageType* image, const mitk::Image::Pointer & source , typename TImageType::PixelType label, double & val ) { itk::Image::Pointer itk_source; mitk::CastToItkImage(source,itk_source); itk::ImageRegionConstIterator inputIter(image, image->GetLargestPossibleRegion()); itk::ImageRegionConstIterator< itk::Image > sourceIter(itk_source, itk_source->GetLargestPossibleRegion()); while(!inputIter.IsAtEnd()) { if(inputIter.Value() == label) val += sourceIter.Value(); ++inputIter; ++sourceIter; } } template void mitk::CLUtil::itkSqSumVoxelForLabel(TImageType* image, const mitk::Image::Pointer & source, typename TImageType::PixelType label, double & val ) { itk::Image::Pointer itk_source; mitk::CastToItkImage(source,itk_source); itk::ImageRegionConstIterator inputIter(image, image->GetLargestPossibleRegion()); itk::ImageRegionConstIterator< itk::Image > sourceIter(itk_source, itk_source->GetLargestPossibleRegion()); while(!inputIter.IsAtEnd()) { if(inputIter.Value() == label) val += sourceIter.Value() * sourceIter.Value(); ++inputIter; ++sourceIter; } } template void mitk::CLUtil::itkFitStructuringElement(TStructuringElement & se, MorphologicalDimensions d, int factor) { typename TStructuringElement::SizeType size; size.Fill(factor); switch(d) { case(All): case(Axial): size.SetElement(2,0); break; - case(Sagital): + case(Sagittal): size.SetElement(0,0); break; case(Coronal): size.SetElement(1,0); break; } se.SetRadius(size); se.CreateStructuringElement(); } template void mitk::CLUtil::itkClosingBinary(TImageType * sourceImage, mitk::Image::Pointer& resultImage, int factor, MorphologicalDimensions d) { typedef itk::BinaryBallStructuringElement BallType; typedef itk::BinaryMorphologicalClosingImageFilter FilterType; BallType strElem; itkFitStructuringElement(strElem,d,factor); typename FilterType::Pointer erodeFilter = FilterType::New(); erodeFilter->SetKernel(strElem); erodeFilter->SetInput(sourceImage); erodeFilter->SetForegroundValue(1); erodeFilter->Update(); mitk::CastToMitkImage(erodeFilter->GetOutput(), resultImage); } template void mitk::CLUtil::itkDilateBinary(TImageType * sourceImage, mitk::Image::Pointer& resultImage, int factor, MorphologicalDimensions d) { typedef itk::BinaryBallStructuringElement BallType; typedef typename itk::BinaryDilateImageFilter BallDilateFilterType; BallType strElem; itkFitStructuringElement(strElem,d,factor); typename BallDilateFilterType::Pointer erodeFilter = BallDilateFilterType::New(); erodeFilter->SetKernel(strElem); erodeFilter->SetInput(sourceImage); erodeFilter->SetDilateValue(1); erodeFilter->Update(); mitk::CastToMitkImage(erodeFilter->GetOutput(), resultImage); } template void mitk::CLUtil::itkErodeBinary(TImageType * sourceImage, mitk::Image::Pointer& resultImage, int factor, MorphologicalDimensions d) { typedef itk::BinaryBallStructuringElement BallType; typedef typename itk::BinaryErodeImageFilter BallErodeFilterType; BallType strElem; itkFitStructuringElement(strElem,d,factor); typename BallErodeFilterType::Pointer erodeFilter = BallErodeFilterType::New(); erodeFilter->SetKernel(strElem); erodeFilter->SetInput(sourceImage); erodeFilter->SetErodeValue(1); // erodeFilter->UpdateLargestPossibleRegion(); erodeFilter->Update(); mitk::CastToMitkImage(erodeFilter->GetOutput(), resultImage); } /// /// \brief itkFillHolesBinary /// \param sourceImage /// \param resultImage /// template void mitk::CLUtil::itkFillHolesBinary(itk::Image* sourceImage, mitk::Image::Pointer& resultImage) { typedef itk::Image ImageType; typedef typename itk::BinaryFillholeImageFilter FillHoleFilterType; typename FillHoleFilterType::Pointer fillHoleFilter = FillHoleFilterType::New(); fillHoleFilter->SetInput(sourceImage); fillHoleFilter->SetForegroundValue(1); fillHoleFilter->Update(); mitk::CastToMitkImage(fillHoleFilter->GetOutput(), resultImage); } /// /// \brief itkLogicalAndImages /// \param image1 keep the values of image 1 /// \param image2 /// template void mitk::CLUtil::itkLogicalAndImages(const TImageType * image1, const mitk::Image::Pointer & image2, mitk::Image::Pointer & outimage) { typename TImageType::Pointer itk_outimage = TImageType::New(); itk_outimage->SetRegions(image1->GetLargestPossibleRegion()); itk_outimage->SetDirection(image1->GetDirection()); itk_outimage->SetOrigin(image1->GetOrigin()); itk_outimage->SetSpacing(image1->GetSpacing()); itk_outimage->Allocate(); itk_outimage->FillBuffer(0); typename TImageType::Pointer itk_image2; mitk::CastToItkImage(image2,itk_image2); itk::ImageRegionConstIterator it1(image1, image1->GetLargestPossibleRegion()); itk::ImageRegionConstIterator it2(itk_image2, itk_image2->GetLargestPossibleRegion()); itk::ImageRegionIterator oit(itk_outimage,itk_outimage->GetLargestPossibleRegion()); while(!it1.IsAtEnd()) { if(it1.Value() == 0 || it2.Value() == 0) { oit.Set(0); }else oit.Set(it1.Value()); ++it1; ++it2; ++oit; } mitk::CastToMitkImage(itk_outimage, outimage); } /// /// \brief GaussianFilter /// \param image /// \param smoothed /// \param sigma /// template void mitk::CLUtil::itkGaussianFilter(TImageType * image, mitk::Image::Pointer & smoothed ,double sigma) { typedef itk::DiscreteGaussianImageFilter FilterType; typename FilterType::Pointer filter = FilterType::New(); filter->SetInput(image); filter->SetVariance(sigma); filter->Update(); mitk::CastToMitkImage(filter->GetOutput(),smoothed); } template void mitk::CLUtil::itkDifferenceOfGaussianFilter(TImageType * image, mitk::Image::Pointer & smoothed, double sigma1, double sigma2) { typedef itk::DiscreteGaussianImageFilter FilterType; typedef itk::SubtractImageFilter SubtractFilterType; typename FilterType::Pointer filter1 = FilterType::New(); typename FilterType::Pointer filter2 = FilterType::New(); typename SubtractFilterType::Pointer subFilter = SubtractFilterType::New(); filter1->SetInput(image); filter1->SetVariance(sigma1); filter1->Update(); filter2->SetInput(image); filter2->SetVariance(sigma2); filter2->Update(); subFilter->SetInput1(filter1->GetOutput()); subFilter->SetInput2(filter2->GetOutput()); subFilter->Update(); mitk::CastToMitkImage(subFilter->GetOutput(), smoothed); } template void mitk::CLUtil::itkLaplacianOfGaussianFilter(itk::Image* itkImage, double variance, mitk::Image::Pointer &output) { typedef itk::Image ImageType; typedef itk::DiscreteGaussianImageFilter< ImageType, ImageType > GaussFilterType; typedef itk::LaplacianRecursiveGaussianImageFilter LaplacianFilter; typename GaussFilterType::Pointer gaussianFilter = GaussFilterType::New(); gaussianFilter->SetInput(itkImage); gaussianFilter->SetVariance(variance); gaussianFilter->Update(); typename LaplacianFilter::Pointer laplaceFilter = LaplacianFilter::New(); laplaceFilter->SetInput(gaussianFilter->GetOutput()); laplaceFilter->Update(); mitk::CastToMitkImage(laplaceFilter->GetOutput(), output); } namespace Functor { template class MatrixFirstEigenvalue { public: MatrixFirstEigenvalue() {} virtual ~MatrixFirstEigenvalue() {} int order; inline TOutput operator ()(const TInput& input) { double a, b, c; if (input[0] < 0.01 && input[1] < 0.01 &&input[2] < 0.01 &&input[3] < 0.01 &&input[4] < 0.01 &&input[5] < 0.01) return 0; vnl_symmetric_eigensystem_compute_eigenvals(input[0], input[1], input[2], input[3], input[4], input[5], a, b, c); switch (order) { case 0: return a; case 1: return b; case 2: return c; default: return a; } } bool operator !=(const MatrixFirstEigenvalue) const { return false; } bool operator ==(const MatrixFirstEigenvalue& other) const { return !(*this != other); } }; } template void mitk::CLUtil::itkHessianOfGaussianFilter(itk::Image* itkImage, double variance, std::vector &out) { typedef itk::Image ImageType; typedef itk::Image FloatImageType; typedef itk::HessianRecursiveGaussianImageFilter HessianFilterType; typedef typename HessianFilterType::OutputImageType VectorImageType; typedef Functor::MatrixFirstEigenvalue DeterminantFunctorType; typedef itk::UnaryFunctorImageFilter DetFilterType; typename HessianFilterType::Pointer hessianFilter = HessianFilterType::New(); hessianFilter->SetInput(itkImage); hessianFilter->SetSigma(std::sqrt(variance)); for (unsigned int i = 0; i < VImageDimension; ++i) { mitk::Image::Pointer tmpImage = mitk::Image::New(); typename DetFilterType::Pointer detFilter = DetFilterType::New(); detFilter->SetInput(hessianFilter->GetOutput()); detFilter->GetFunctor().order = i; detFilter->Update(); mitk::CastToMitkImage(detFilter->GetOutput(), tmpImage); out.push_back(tmpImage); } } template void mitk::CLUtil::itkLocalHistograms(itk::Image* itkImage, std::vector &out, int size, int bins) { typedef itk::Image ImageType; typedef itk::MultiHistogramFilter MultiHistogramType; typename MultiHistogramType::Pointer filter = MultiHistogramType::New(); filter->SetInput(itkImage); filter->SetUseImageIntensityRange(true); filter->SetSize(size); filter->SetBins(bins); filter->Update(); for (int i = 0; i < bins; ++i) { mitk::Image::Pointer img = mitk::Image::New(); mitk::CastToMitkImage(filter->GetOutput(i), img); out.push_back(img); } } template void mitk::CLUtil::itkErodeGrayscale(TImageType * image, mitk::Image::Pointer & outimage , unsigned int radius, mitk::CLUtil::MorphologicalDimensions d) { typedef itk::BinaryBallStructuringElement StructureElementType; typedef itk::GrayscaleErodeImageFilter FilterType; StructureElementType ball; itkFitStructuringElement(ball,d, radius); typename FilterType::Pointer filter = FilterType::New(); filter->SetKernel(ball); filter->SetInput(image); filter->Update(); mitk::CastToMitkImage(filter->GetOutput(),outimage); } template void mitk::CLUtil::itkDilateGrayscale(TImageType * image, mitk::Image::Pointer & outimage , unsigned int radius, mitk::CLUtil::MorphologicalDimensions d) { typedef itk::BinaryBallStructuringElement StructureElementType; typedef itk::GrayscaleDilateImageFilter FilterType; StructureElementType ball; itkFitStructuringElement(ball,d, radius); typename FilterType::Pointer filter = FilterType::New(); filter->SetKernel(ball); filter->SetInput(image); filter->Update(); mitk::CastToMitkImage(filter->GetOutput(),outimage); } template void mitk::CLUtil::itkFillHoleGrayscale(TImageType * image, mitk::Image::Pointer & outimage) { typedef itk::GrayscaleFillholeImageFilter FilterType; typename FilterType::Pointer filter = FilterType::New(); filter->SetInput(image); filter->Update(); mitk::CastToMitkImage(filter->GetOutput(),outimage); } #endif diff --git a/Modules/Core/test/mitkExtractSliceFilterTest.cpp b/Modules/Core/test/mitkExtractSliceFilterTest.cpp index 23524473a9..6bb27c7e6b 100644 --- a/Modules/Core/test/mitkExtractSliceFilterTest.cpp +++ b/Modules/Core/test/mitkExtractSliceFilterTest.cpp @@ -1,1069 +1,1069 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // use this to create the test volume on the fly #define CREATE_VOLUME // use this to save the created volume //#define SAVE_VOLUME // use this to calculate the error from the sphere mathematical model to our pixel based one //#define CALC_TESTFAILURE_DEVIATION // use this to render an oblique slice through a specified image //#define SHOW_SLICE_IN_RENDER_WINDOW // use this to have infos printed in mbilog //#define EXTRACTOR_DEBUG /*these are the deviations calculated by the function CalcTestFailureDeviation (see for details)*/ #define Testfailure_Deviation_Mean_128 0.853842 #define Testfailure_Deviation_Volume_128 0.145184 #define Testfailure_Deviation_Diameter_128 1.5625 #define Testfailure_Deviation_Mean_256 0.397693 #define Testfailure_Deviation_Volume_256 0.0141357 #define Testfailure_Deviation_Diameter_256 0.78125 #define Testfailure_Deviation_Mean_512 0.205277 #define Testfailure_Deviation_Volume_512 0.01993 #define Testfailure_Deviation_Diameter_512 0.390625 class mitkExtractSliceFilterTestClass { public: static void TestSlice(mitk::PlaneGeometry *planeGeometry, std::string testname) { TestPlane = planeGeometry; TestName = testname; mitk::ScalarType centerCoordValue = TestvolumeSize / 2.0; mitk::ScalarType center[3] = {centerCoordValue, centerCoordValue, centerCoordValue}; mitk::Point3D centerIndex(center); double radius = TestvolumeSize / 4.0; if (TestPlane->Distance(centerIndex) >= radius) return; // outside sphere // feed ExtractSliceFilter mitk::ExtractSliceFilter::Pointer slicer = mitk::ExtractSliceFilter::New(); slicer->SetInput(TestVolume); slicer->SetWorldGeometry(TestPlane); slicer->Update(); MITK_TEST_CONDITION_REQUIRED(slicer->GetOutput() != nullptr, "Extractor returned a slice"); mitk::Image::Pointer reslicedImage = slicer->GetOutput(); AccessFixedDimensionByItk(reslicedImage, TestSphereRadiusByItk, 2); AccessFixedDimensionByItk(reslicedImage, TestSphereAreaByItk, 2); /* double devArea, devDiameter; if(TestvolumeSize == 128.0){ devArea = Testfailure_Deviation_Volume_128; devDiameter = Testfailure_Deviation_Diameter_128; } else if(TestvolumeSize == 256.0){devArea = Testfailure_Deviation_Volume_256; devDiameter = Testfailure_Deviation_Diameter_256;} else if (TestvolumeSize == 512.0){devArea = Testfailure_Deviation_Volume_512; devDiameter = Testfailure_Deviation_Diameter_512;} else{devArea = Testfailure_Deviation_Volume_128; devDiameter = Testfailure_Deviation_Diameter_128;} */ std::string areatestName = TestName.append(" area"); std::string diametertestName = TestName.append(" testing diameter"); // TODO think about the deviation, 1% makes no sense at all MITK_TEST_CONDITION(std::abs(100 - testResults.percentageAreaCalcToPixel) < 1, areatestName); MITK_TEST_CONDITION(std::abs(100 - testResults.percentageRadiusToPixel) < 1, diametertestName); #ifdef EXTRACTOR_DEBUG MITK_INFO << TestName << " >>> " << "planeDistanceToSphereCenter: " << testResults.planeDistanceToSphereCenter; MITK_INFO << "area in pixels: " << testResults.areaInPixel << " <-> area in mm: " << testResults.areaCalculated << " = " << testResults.percentageAreaCalcToPixel << "%"; MITK_INFO << "calculated diameter: " << testResults.diameterCalculated << " <-> diameter in mm: " << testResults.diameterInMM << " <-> diameter in pixel: " << testResults.diameterInPixel << " = " << testResults.percentageRadiusToPixel << "%"; #endif } /* * get the radius of the slice of a sphere based on pixel distance from edge to edge of the circle. */ template static void TestSphereRadiusByItk(itk::Image *inputImage) { typedef itk::Image InputImageType; // set the index to the middle of the image's edge at x and y axis typename InputImageType::IndexType currentIndexX; currentIndexX[0] = (int)(TestvolumeSize / 2.0); currentIndexX[1] = 0; typename InputImageType::IndexType currentIndexY; currentIndexY[0] = 0; currentIndexY[1] = (int)(TestvolumeSize / 2.0); // remember the last pixel value double lastValueX = inputImage->GetPixel(currentIndexX); double lastValueY = inputImage->GetPixel(currentIndexY); // storage for the index marks std::vector indicesX; std::vector indicesY; /*Get four indices on the edge of the circle*/ while (currentIndexX[1] < TestvolumeSize && currentIndexX[0] < TestvolumeSize) { // move x direction currentIndexX[1] += 1; // move y direction currentIndexY[0] += 1; if (inputImage->GetPixel(currentIndexX) > lastValueX) { // mark the current index typename InputImageType::IndexType markIndex; markIndex[0] = currentIndexX[0]; markIndex[1] = currentIndexX[1]; indicesX.push_back(markIndex); } else if (inputImage->GetPixel(currentIndexX) < lastValueX) { // mark the current index typename InputImageType::IndexType markIndex; markIndex[0] = currentIndexX[0]; markIndex[1] = currentIndexX[1] - 1; // value inside the sphere indicesX.push_back(markIndex); } if (inputImage->GetPixel(currentIndexY) > lastValueY) { // mark the current index typename InputImageType::IndexType markIndex; markIndex[0] = currentIndexY[0]; markIndex[1] = currentIndexY[1]; indicesY.push_back(markIndex); } else if (inputImage->GetPixel(currentIndexY) < lastValueY) { // mark the current index typename InputImageType::IndexType markIndex; markIndex[0] = currentIndexY[0]; markIndex[1] = currentIndexY[1] - 1; // value inside the sphere indicesY.push_back(markIndex); } // found both marks? if (indicesX.size() == 2 && indicesY.size() == 2) break; // the new 'last' values lastValueX = inputImage->GetPixel(currentIndexX); lastValueY = inputImage->GetPixel(currentIndexY); } /* *If we are here we found the four marks on the edge of the circle. *For the case our plane is rotated and shifted, we have to calculate the center of the circle, *else the center is the intersection of both straight lines between the marks. *When we have the center, the diameter of the circle will be checked to the reference value(math!). */ // each distance from the first mark of each direction to the center of the straight line between the marks double distanceToCenterX = std::abs(indicesX[0][1] - indicesX[1][1]) / 2.0; // double distanceToCenterY = std::abs(indicesY[0][0] - indicesY[1][0]) / 2.0; // the center of the straight lines typename InputImageType::IndexType centerX; // typename InputImageType::IndexType centerY; centerX[0] = indicesX[0][0]; centerX[1] = indicesX[0][1] + distanceToCenterX; // TODO think about implicit cast to int. this is not the real center of the image, which could be between two // pixels // centerY[0] = indicesY[0][0] + distanceToCenterY; // centerY[1] = inidcesY[0][1]; typename InputImageType::IndexType currentIndex(centerX); lastValueX = inputImage->GetPixel(currentIndex); long sumpixels = 0; std::vector diameterIndices; // move up while (currentIndex[1] < TestvolumeSize) { currentIndex[1] += 1; if (inputImage->GetPixel(currentIndex) != lastValueX) { typename InputImageType::IndexType markIndex; markIndex[0] = currentIndex[0]; markIndex[1] = currentIndex[1] - 1; diameterIndices.push_back(markIndex); break; } sumpixels++; lastValueX = inputImage->GetPixel(currentIndex); } currentIndex[1] -= sumpixels; // move back to center to go in the other direction lastValueX = inputImage->GetPixel(currentIndex); // move down while (currentIndex[1] >= 0) { currentIndex[1] -= 1; if (inputImage->GetPixel(currentIndex) != lastValueX) { typename InputImageType::IndexType markIndex; markIndex[0] = currentIndex[0]; markIndex[1] = currentIndex[1]; // outside sphere because we want to calculate the distance from edge to edge diameterIndices.push_back(markIndex); break; } sumpixels++; lastValueX = inputImage->GetPixel(currentIndex); } /* *Now sumpixels should be the apromximate diameter of the circle. This is checked with the calculated diameter from *the plane transformation(math). */ mitk::Point3D volumeCenter; volumeCenter[0] = volumeCenter[1] = volumeCenter[2] = TestvolumeSize / 2.0; double planeDistanceToSphereCenter = TestPlane->Distance(volumeCenter); double sphereRadius = TestvolumeSize / 4.0; // calculate the radius of the circle cut from the sphere by the plane double diameter = 2.0 * std::sqrt(std::pow(sphereRadius, 2) - std::pow(planeDistanceToSphereCenter, 2)); double percentageRadiusToPixel = 100 / diameter * sumpixels; /* *calculate the radius in mm by the both marks of the center line by using the world coordinates */ // get the points as 3D coordinates mitk::Vector3D diameterPointRight, diameterPointLeft; diameterPointRight[2] = diameterPointLeft[2] = 0.0; diameterPointLeft[0] = diameterIndices[0][0]; diameterPointLeft[1] = diameterIndices[0][1]; diameterPointRight[0] = diameterIndices[1][0]; diameterPointRight[1] = diameterIndices[1][1]; // transform to worldcoordinates TestVolume->GetGeometry()->IndexToWorld(diameterPointLeft, diameterPointLeft); TestVolume->GetGeometry()->IndexToWorld(diameterPointRight, diameterPointRight); // euklidian distance double diameterInMM = ((diameterPointLeft * -1.0) + diameterPointRight).GetNorm(); testResults.diameterInMM = diameterInMM; testResults.diameterCalculated = diameter; testResults.diameterInPixel = sumpixels; testResults.percentageRadiusToPixel = percentageRadiusToPixel; testResults.planeDistanceToSphereCenter = planeDistanceToSphereCenter; } /*brute force the area pixel by pixel*/ template static void TestSphereAreaByItk(itk::Image *inputImage) { typedef itk::Image InputImageType; typedef itk::ImageRegionConstIterator ImageIterator; ImageIterator imageIterator(inputImage, inputImage->GetLargestPossibleRegion()); imageIterator.GoToBegin(); int sumPixelsInArea = 0; while (!imageIterator.IsAtEnd()) { if (inputImage->GetPixel(imageIterator.GetIndex()) == pixelValueSet) sumPixelsInArea++; ++imageIterator; } mitk::Point3D volumeCenter; volumeCenter[0] = volumeCenter[1] = volumeCenter[2] = TestvolumeSize / 2.0; double planeDistanceToSphereCenter = TestPlane->Distance(volumeCenter); double sphereRadius = TestvolumeSize / 4.0; // calculate the radius of the circle cut from the sphere by the plane double radius = std::sqrt(std::pow(sphereRadius, 2) - std::pow(planeDistanceToSphereCenter, 2)); double areaInMM = 3.14159265358979 * std::pow(radius, 2); testResults.areaCalculated = areaInMM; testResults.areaInPixel = sumPixelsInArea; testResults.percentageAreaCalcToPixel = 100 / areaInMM * sumPixelsInArea; } /* * random a voxel. define plane through this voxel. reslice at the plane. compare the pixel vaues of the voxel * in the volume with the pixel value in the resliced image. * there are some indice shifting problems which causes the test to fail for oblique planes. seems like the chosen * worldcoordinate is not corrresponding to the index in the 2D image. and so the pixel values are not the same as * expected. */ static void PixelvalueBasedTest() { /* setup itk image */ typedef itk::Image ImageType; typedef itk::ImageRegionConstIterator ImageIterator; ImageType::Pointer image = ImageType::New(); ImageType::IndexType start; start[0] = start[1] = start[2] = 0; ImageType::SizeType size; size[0] = size[1] = size[2] = 32; ImageType::RegionType imgRegion; imgRegion.SetSize(size); imgRegion.SetIndex(start); image->SetRegions(imgRegion); image->SetSpacing(1.0); image->Allocate(); ImageIterator imageIterator(image, image->GetLargestPossibleRegion()); imageIterator.GoToBegin(); unsigned short pixelValue = 0; // fill the image with distinct values while (!imageIterator.IsAtEnd()) { image->SetPixel(imageIterator.GetIndex(), pixelValue); ++imageIterator; ++pixelValue; } /* end setup itk image */ mitk::Image::Pointer imageInMitk; CastToMitkImage(image, imageInMitk); /*mitk::ImageWriter::Pointer writer = mitk::ImageWriter::New(); writer->SetInput(imageInMitk); std::string file = "C:\\Users\\schroedt\\Desktop\\cube.nrrd"; writer->SetFileName(file); writer->Update();*/ PixelvalueBasedTestByPlane(imageInMitk, mitk::PlaneGeometry::Coronal); PixelvalueBasedTestByPlane(imageInMitk, mitk::PlaneGeometry::Sagittal); PixelvalueBasedTestByPlane(imageInMitk, mitk::PlaneGeometry::Axial); } static void PixelvalueBasedTestByPlane(mitk::Image *imageInMitk, mitk::PlaneGeometry::PlaneOrientation orientation) { typedef itk::Image ImageType; // set the seed of the rand function srand((unsigned)time(nullptr)); /* setup a random orthogonal plane */ int sliceindex = 17; // rand() % 32; bool isFrontside = true; bool isRotated = false; if (orientation == mitk::PlaneGeometry::Axial) { /*isFrontside = false; isRotated = true;*/ } mitk::PlaneGeometry::Pointer plane = mitk::PlaneGeometry::New(); plane->InitializeStandardPlane(imageInMitk->GetGeometry(), orientation, sliceindex, isFrontside, isRotated); mitk::Point3D origin = plane->GetOrigin(); mitk::Vector3D normal; normal = plane->GetNormal(); normal.Normalize(); origin += normal * 0.5; // pixelspacing is 1, so half the spacing is 0.5 plane->SetOrigin(origin); // we dont need this any more, because we are only testing orthogonal planes /*mitk::Vector3D rotationVector; rotationVector[0] = randFloat(); rotationVector[1] = randFloat(); rotationVector[2] = randFloat(); float degree = randFloat() * 180.0; mitk::RotationOperation* op = new mitk::RotationOperation(mitk::OpROTATE, plane->GetCenter(), rotationVector, degree); plane->ExecuteOperation(op); delete op;*/ /* end setup plane */ /* define a point in the 3D volume. * add the two axis vectors of the plane (each multiplied with a * random number) to the origin. now the two random numbers * become our index coordinates in the 2D image, because the * length of the axis vectors is 1. */ mitk::Point3D planeOrigin = plane->GetOrigin(); mitk::Vector3D axis0, axis1; axis0 = plane->GetAxisVector(0); axis1 = plane->GetAxisVector(1); axis0.Normalize(); axis1.Normalize(); unsigned char n1 = 7; // rand() % 32; unsigned char n2 = 13; // rand() % 32; mitk::Point3D testPoint3DInWorld; testPoint3DInWorld = planeOrigin + (axis0 * n1) + (axis1 * n2); // get the index of the point in the 3D volume ImageType::IndexType testPoint3DInIndex; imageInMitk->GetGeometry()->WorldToIndex(testPoint3DInWorld, testPoint3DInIndex); itk::Index<3> testPoint2DInIndex; /* end define a point in the 3D volume.*/ // do reslicing at the plane mitk::ExtractSliceFilter::Pointer slicer = mitk::ExtractSliceFilter::New(); slicer->SetInput(imageInMitk); slicer->SetWorldGeometry(plane); slicer->Update(); mitk::Image::Pointer slice = slicer->GetOutput(); // Get TestPoiont3D as Index in Slice slice->GetGeometry()->WorldToIndex(testPoint3DInWorld, testPoint2DInIndex); mitk::Point3D p, sliceIndexToWorld, imageIndexToWorld; p[0] = testPoint2DInIndex[0]; p[1] = testPoint2DInIndex[1]; p[2] = testPoint2DInIndex[2]; slice->GetGeometry()->IndexToWorld(p, sliceIndexToWorld); p[0] = testPoint3DInIndex[0]; p[1] = testPoint3DInIndex[1]; p[2] = testPoint3DInIndex[2]; imageInMitk->GetGeometry()->IndexToWorld(p, imageIndexToWorld); itk::Index<2> testPoint2DIn2DIndex; testPoint2DIn2DIndex[0] = testPoint2DInIndex[0]; testPoint2DIn2DIndex[1] = testPoint2DInIndex[1]; typedef mitk::ImagePixelReadAccessor VolumeReadAccessorType; typedef mitk::ImagePixelReadAccessor SliceReadAccessorType; VolumeReadAccessorType VolumeReadAccessor(imageInMitk); SliceReadAccessorType SliceReadAccessor(slice); // compare the pixelvalues of the defined point in the 3D volume with the value of the resliced image unsigned short valueAt3DVolume = VolumeReadAccessor.GetPixelByIndex(testPoint3DInIndex); unsigned short valueAtSlice = SliceReadAccessor.GetPixelByIndex(testPoint2DIn2DIndex); // valueAt3DVolume == valueAtSlice is not always working. because of rounding errors // indices are shifted MITK_TEST_CONDITION(valueAt3DVolume == valueAtSlice, "comparing pixelvalues for orthogonal plane"); vtkSmartPointer imageInVtk = imageInMitk->GetVtkImageData(); vtkSmartPointer sliceInVtk = slice->GetVtkImageData(); double PixelvalueByMitkOutput = sliceInVtk->GetScalarComponentAsDouble(n1, n2, 0, 0); // double valueVTKinImage = imageInVtk->GetScalarComponentAsDouble(testPoint3DInIndex[0], testPoint3DInIndex[1], // testPoint3DInIndex[2], 0); /* Test that everything is working equally if vtkoutput is used instead of the default output * from mitk ImageToImageFilter */ mitk::ExtractSliceFilter::Pointer slicerWithVtkOutput = mitk::ExtractSliceFilter::New(); slicerWithVtkOutput->SetInput(imageInMitk); slicerWithVtkOutput->SetWorldGeometry(plane); slicerWithVtkOutput->SetVtkOutputRequest(true); slicerWithVtkOutput->Update(); vtkSmartPointer vtkImageByVtkOutput = slicerWithVtkOutput->GetVtkOutput(); double PixelvalueByVtkOutput = vtkImageByVtkOutput->GetScalarComponentAsDouble(n1, n2, 0, 0); MITK_TEST_CONDITION(PixelvalueByMitkOutput == PixelvalueByVtkOutput, "testing convertion of image output vtk->mitk by reslicer"); /*================ mbilog outputs ===========================*/ #ifdef EXTRACTOR_DEBUG MITK_INFO << "\n" << "TESTINFO index: " << sliceindex << " orientation: " << orientation << " frontside: " << isFrontside << " rotated: " << isRotated; MITK_INFO << "\n" << "slice index to world: " << sliceIndexToWorld; MITK_INFO << "\n" << "image index to world: " << imageIndexToWorld; MITK_INFO << "\n" << "vtk: slice: " << PixelvalueByMitkOutput << ", image: " << valueVTKinImage; MITK_INFO << "\n" << "testPoint3D InWorld" << testPoint3DInWorld << " is " << testPoint2DInIndex << " in 2D"; MITK_INFO << "\n" << "randoms: " << ((int)n1) << ", " << ((int)n2); MITK_INFO << "\n" << "point is inside plane: " << plane->IsInside(testPoint3DInWorld) << " and volume: " << imageInMitk->GetGeometry()->IsInside(testPoint3DInWorld); MITK_INFO << "\n" << "volume idx: " << testPoint3DInIndex << " = " << valueAt3DVolume; MITK_INFO << "\n" << "volume world: " << testPoint3DInWorld << " = " << valueAt3DVolumeByWorld; MITK_INFO << "\n" << "slice idx: " << testPoint2DInIndex << " = " << valueAtSlice; itk::Index<3> curr; curr[0] = curr[1] = curr[2] = 0; for (int i = 0; i < 32; ++i) { for (int j = 0; j < 32; ++j) { ++curr[1]; if (SliceReadAccessor.GetPixelByIndex(curr) == valueAt3DVolume) { MITK_INFO << "\n" << valueAt3DVolume << " MATCHED mitk " << curr; } } curr[1] = 0; ++curr[0]; } typedef itk::Image Image2DType; Image2DType::Pointer img = Image2DType::New(); CastToItkImage(slice, img); typedef itk::ImageRegionConstIterator Iterator2D; Iterator2D iter(img, img->GetLargestPossibleRegion()); iter.GoToBegin(); while (!iter.IsAtEnd()) { if (img->GetPixel(iter.GetIndex()) == valueAt3DVolume) MITK_INFO << "\n" << valueAt3DVolume << " MATCHED itk " << iter.GetIndex(); ++iter; } #endif // EXTRACTOR_DEBUG } /* random a float value */ static float randFloat() { return (((float)rand() + 1.0) / ((float)RAND_MAX + 1.0)) + (((float)rand() + 1.0) / ((float)RAND_MAX + 1.0)) / ((float)RAND_MAX + 1.0); } /* create a sphere with the size of the given testVolumeSize*/ static void InitializeTestVolume() { #ifdef CREATE_VOLUME // do sphere creation ItkVolumeGeneration(); #ifdef SAVE_VOLUME // save in file mitk::ImageWriter::Pointer writer = mitk::ImageWriter::New(); writer->SetInput(TestVolume); std::string file; std::ostringstream filename; filename << "C:\\home\\schroedt\\MITK\\Modules\\ImageExtraction\\Testing\\Data\\sphere_"; filename << TestvolumeSize; filename << ".nrrd"; file = filename.str(); writer->SetFileName(file); writer->Update(); #endif // SAVE_VOLUME #endif #ifndef CREATE_VOLUME // read from file mitk::StandardFileLocations::Pointer locator = mitk::StandardFileLocations::GetInstance(); std::string filename = locator->FindFile("sphere_512.nrrd.mhd", "Modules/ImageExtraction/Testing/Data"); TestVolume = mitk::IOUtil::Load(filename); #endif #ifdef CALC_TESTFAILURE_DEVIATION // get the TestFailureDeviation in % AccessFixedDimensionByItk(TestVolume, CalcTestFailureDeviation, 3); #endif } // the test result of the sphere reslice struct SliceProperties { double planeDistanceToSphereCenter; double diameterInMM; double diameterInPixel; double diameterCalculated; double percentageRadiusToPixel; double areaCalculated; double areaInPixel; double percentageAreaCalcToPixel; }; static mitk::Image::Pointer TestVolume; static double TestvolumeSize; static mitk::PlaneGeometry::Pointer TestPlane; static std::string TestName; static unsigned char pixelValueSet; static SliceProperties testResults; static double TestFailureDeviation; private: /* * Generate a sphere with a radius of TestvolumeSize / 4.0 */ static void ItkVolumeGeneration() { typedef itk::Image TestVolumeType; typedef itk::ImageRegionConstIterator ImageIterator; TestVolumeType::Pointer sphereImage = TestVolumeType::New(); TestVolumeType::IndexType start; start[0] = start[1] = start[2] = 0; TestVolumeType::SizeType size; size[0] = size[1] = size[2] = TestvolumeSize; TestVolumeType::RegionType imgRegion; imgRegion.SetSize(size); imgRegion.SetIndex(start); sphereImage->SetRegions(imgRegion); sphereImage->SetSpacing(1.0); sphereImage->Allocate(); sphereImage->FillBuffer(0); mitk::Vector3D center; center[0] = center[1] = center[2] = TestvolumeSize / 2.0; double radius = TestvolumeSize / 4.0; double pixelValue = pixelValueSet; ImageIterator imageIterator(sphereImage, sphereImage->GetLargestPossibleRegion()); imageIterator.GoToBegin(); mitk::Vector3D currentVoxelInIndex; while (!imageIterator.IsAtEnd()) { currentVoxelInIndex[0] = imageIterator.GetIndex()[0]; currentVoxelInIndex[1] = imageIterator.GetIndex()[1]; currentVoxelInIndex[2] = imageIterator.GetIndex()[2]; double distanceToCenter = (center + (currentVoxelInIndex * -1.0)).GetNorm(); // if distance to center is smaller then the radius of the sphere if (distanceToCenter < radius) { sphereImage->SetPixel(imageIterator.GetIndex(), pixelValue); } ++imageIterator; } CastToMitkImage(sphereImage, TestVolume); } /* calculate the devation of the voxel object to the mathematical sphere object. * this is use to make a statement about the accuracy of the resliced image, eg. the circle's diameter or area. */ template static void CalcTestFailureDeviation(itk::Image *inputImage) { typedef itk::Image InputImageType; typedef itk::ImageRegionConstIterator ImageIterator; ImageIterator iterator(inputImage, inputImage->GetLargestPossibleRegion()); iterator.GoToBegin(); int volumeInPixel = 0; while (!iterator.IsAtEnd()) { if (inputImage->GetPixel(iterator.GetIndex()) == pixelValueSet) volumeInPixel++; ++iterator; } double diameter = TestvolumeSize / 2.0; double volumeCalculated = (1.0 / 6.0) * 3.14159265358979 * std::pow(diameter, 3); double volumeDeviation = std::abs(100 - (100 / volumeCalculated * volumeInPixel)); typename InputImageType::IndexType index; index[0] = index[1] = TestvolumeSize / 2.0; index[2] = 0; int sumpixels = 0; while (index[2] < TestvolumeSize) { if (inputImage->GetPixel(index) == pixelValueSet) sumpixels++; index[2] += 1; } double diameterDeviation = std::abs(100 - (100 / diameter * sumpixels)); #ifdef DEBUG MITK_INFO << "volume deviation: " << volumeDeviation << " diameter deviation:" << diameterDeviation; #endif mitkExtractSliceFilterTestClass::TestFailureDeviation = (volumeDeviation + diameterDeviation) / 2.0; } }; /*================ #END class ================*/ /*================#BEGIN Instanciation of members ================*/ mitk::Image::Pointer mitkExtractSliceFilterTestClass::TestVolume = mitk::Image::New(); double mitkExtractSliceFilterTestClass::TestvolumeSize = 256.0; mitk::PlaneGeometry::Pointer mitkExtractSliceFilterTestClass::TestPlane = mitk::PlaneGeometry::New(); std::string mitkExtractSliceFilterTestClass::TestName = ""; unsigned char mitkExtractSliceFilterTestClass::pixelValueSet = 255; mitkExtractSliceFilterTestClass::SliceProperties mitkExtractSliceFilterTestClass::testResults = { -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0}; double mitkExtractSliceFilterTestClass::TestFailureDeviation = 0.0; /*================ #END Instanciation of members ================*/ /*================ #BEGIN test main ================*/ int mitkExtractSliceFilterTest(int /*argc*/, char * /*argv*/ []) { MITK_TEST_BEGIN("mitkExtractSliceFilterTest") // pixelvalue based testing mitkExtractSliceFilterTestClass::PixelvalueBasedTest(); // initialize sphere test volume mitkExtractSliceFilterTestClass::InitializeTestVolume(); mitk::Vector3D spacing = mitkExtractSliceFilterTestClass::TestVolume->GetGeometry()->GetSpacing(); // the center of the sphere = center of image double sphereCenter = mitkExtractSliceFilterTestClass::TestvolumeSize / 2.0; double planeSize = mitkExtractSliceFilterTestClass::TestvolumeSize; /* axial plane */ mitk::PlaneGeometry::Pointer geometryAxial = mitk::PlaneGeometry::New(); geometryAxial->InitializeStandardPlane( planeSize, planeSize, spacing, mitk::PlaneGeometry::Axial, sphereCenter, false, true); geometryAxial->ChangeImageGeometryConsideringOriginOffset(true); mitk::Point3D origin = geometryAxial->GetOrigin(); mitk::Vector3D normal; normal = geometryAxial->GetNormal(); normal.Normalize(); origin += normal * 0.5; // pixelspacing is 1, so half the spacing is 0.5 // geometryAxial->SetOrigin(origin); mitkExtractSliceFilterTestClass::TestSlice(geometryAxial, "Testing axial plane"); /* end axial plane */ /* sagittal plane */ - mitk::PlaneGeometry::Pointer geometrySagital = mitk::PlaneGeometry::New(); - geometrySagital->InitializeStandardPlane( + mitk::PlaneGeometry::Pointer geometrySagittal = mitk::PlaneGeometry::New(); + geometrySagittal->InitializeStandardPlane( planeSize, planeSize, spacing, mitk::PlaneGeometry::Sagittal, sphereCenter, true, false); - geometrySagital->ChangeImageGeometryConsideringOriginOffset(true); + geometrySagittal->ChangeImageGeometryConsideringOriginOffset(true); - origin = geometrySagital->GetOrigin(); - normal = geometrySagital->GetNormal(); + origin = geometrySagittal->GetOrigin(); + normal = geometrySagittal->GetNormal(); normal.Normalize(); origin += normal * 0.5; // pixelspacing is 1, so half the spacing is 0.5 - // geometrySagital->SetOrigin(origin); + // geometrySagittal->SetOrigin(origin); - mitkExtractSliceFilterTestClass::TestSlice(geometrySagital, "Testing sagittal plane"); + mitkExtractSliceFilterTestClass::TestSlice(geometrySagittal, "Testing sagittal plane"); /* sagittal plane */ /* sagittal shifted plane */ - mitk::PlaneGeometry::Pointer geometrySagitalShifted = mitk::PlaneGeometry::New(); - geometrySagitalShifted->InitializeStandardPlane( + mitk::PlaneGeometry::Pointer geometrySagittalShifted = mitk::PlaneGeometry::New(); + geometrySagittalShifted->InitializeStandardPlane( planeSize, planeSize, spacing, mitk::PlaneGeometry::Sagittal, (sphereCenter - 14), true, false); - geometrySagitalShifted->ChangeImageGeometryConsideringOriginOffset(true); + geometrySagittalShifted->ChangeImageGeometryConsideringOriginOffset(true); - origin = geometrySagitalShifted->GetOrigin(); - normal = geometrySagitalShifted->GetNormal(); + origin = geometrySagittalShifted->GetOrigin(); + normal = geometrySagittalShifted->GetNormal(); normal.Normalize(); origin += normal * 0.5; // pixelspacing is 1, so half the spacing is 0.5 - // geometrySagitalShifted->SetOrigin(origin); + // geometrySagittalShifted->SetOrigin(origin); - mitkExtractSliceFilterTestClass::TestSlice(geometrySagitalShifted, "Testing sagittal plane shifted"); + mitkExtractSliceFilterTestClass::TestSlice(geometrySagittalShifted, "Testing sagittal plane shifted"); /* end sagittal shifted plane */ /* coronal plane */ mitk::PlaneGeometry::Pointer geometryCoronal = mitk::PlaneGeometry::New(); geometryCoronal->InitializeStandardPlane( planeSize, planeSize, spacing, mitk::PlaneGeometry::Coronal, sphereCenter, true, false); geometryCoronal->ChangeImageGeometryConsideringOriginOffset(true); origin = geometryCoronal->GetOrigin(); normal = geometryCoronal->GetNormal(); normal.Normalize(); origin += normal * 0.5; // pixelspacing is 1, so half the spacing is 0.5 // geometryCoronal->SetOrigin(origin); mitkExtractSliceFilterTestClass::TestSlice(geometryCoronal, "Testing coronal plane"); /* end coronal plane */ /* oblique plane */ mitk::PlaneGeometry::Pointer obliquePlane = mitk::PlaneGeometry::New(); obliquePlane->InitializeStandardPlane( planeSize, planeSize, spacing, mitk::PlaneGeometry::Sagittal, sphereCenter, true, false); obliquePlane->ChangeImageGeometryConsideringOriginOffset(true); origin = obliquePlane->GetOrigin(); normal = obliquePlane->GetNormal(); normal.Normalize(); origin += normal * 0.5; // pixelspacing is 1, so half the spacing is 0.5 // obliquePlane->SetOrigin(origin); mitk::Vector3D rotationVector; rotationVector[0] = 0.2; rotationVector[1] = 0.4; rotationVector[2] = 0.62; float degree = 37.0; mitk::RotationOperation *op = new mitk::RotationOperation(mitk::OpROTATE, obliquePlane->GetCenter(), rotationVector, degree); obliquePlane->ExecuteOperation(op); delete op; mitkExtractSliceFilterTestClass::TestSlice(obliquePlane, "Testing oblique plane"); /* end oblique plane */ #ifdef SHOW_SLICE_IN_RENDER_WINDOW /*================ #BEGIN vtk render code ================*/ // set reslicer for renderwindow mitk::Image::Pointer pic = mitk::IOUtil::Load(filename); vtkSmartPointer slicer = vtkSmartPointer::New(); slicer->SetInput(pic->GetVtkImageData()); mitk::PlaneGeometry::Pointer obliquePl = mitk::PlaneGeometry::New(); obliquePl->InitializeStandardPlane( pic->GetGeometry(), mitk::PlaneGeometry::Sagittal, pic->GetGeometry()->GetCenter()[0], true, false); obliquePl->ChangeImageGeometryConsideringOriginOffset(true); mitk::Point3D origin2 = obliquePl->GetOrigin(); mitk::Vector3D n; n = obliquePl->GetNormal(); n.Normalize(); origin2 += n * 0.5; // pixelspacing is 1, so half the spacing is 0.5 obliquePl->SetOrigin(origin2); mitk::Vector3D rotation; rotation[0] = 0.534307; rotation[1] = 0.000439605; rotation[2] = 0.423017; MITK_INFO << rotation; mitk::RotationOperation *operation = new mitk::RotationOperation(mitk::OpROTATE, obliquePl->GetCenter(), rotationVector, degree); obliquePl->ExecuteOperation(operation); delete operation; double origin[3]; origin[0] = obliquePl->GetOrigin()[0]; origin[1] = obliquePl->GetOrigin()[1]; origin[2] = obliquePl->GetOrigin()[2]; slicer->SetResliceAxesOrigin(origin); mitk::Vector3D right, bottom, normal; right = obliquePl->GetAxisVector(0); bottom = obliquePl->GetAxisVector(1); normal = obliquePl->GetNormal(); right.Normalize(); bottom.Normalize(); normal.Normalize(); double cosines[9]; mitk::vnl2vtk(right.GetVnlVector(), cosines); // x mitk::vnl2vtk(bottom.GetVnlVector(), cosines + 3); // y mitk::vnl2vtk(normal.GetVnlVector(), cosines + 6); // n slicer->SetResliceAxesDirectionCosines(cosines); slicer->SetOutputDimensionality(2); slicer->Update(); // set vtk renderwindow vtkSmartPointer vtkPlane = vtkSmartPointer::New(); vtkPlane->SetOrigin(0.0, 0.0, 0.0); // These two points define the axes of the plane in combination with the origin. // Point 1 is the x-axis and point 2 the y-axis. // Each plane is transformed according to the view (axial, coronal and sagittal) afterwards. vtkPlane->SetPoint1(1.0, 0.0, 0.0); // P1: (xMax, yMin, depth) vtkPlane->SetPoint2(0.0, 1.0, 0.0); // P2: (xMin, yMax, depth) // these are not the correct values for all slices, only a square plane by now vtkSmartPointer imageMapper = vtkSmartPointer::New(); imageMapper->SetInputConnection(vtkPlane->GetOutputPort()); vtkSmartPointer lookupTable = vtkSmartPointer::New(); // built a default lookuptable lookupTable->SetRampToLinear(); lookupTable->SetSaturationRange(0.0, 0.0); lookupTable->SetHueRange(0.0, 0.0); lookupTable->SetValueRange(0.0, 1.0); lookupTable->Build(); // map all black values to transparent lookupTable->SetTableValue(0, 0.0, 0.0, 0.0, 0.0); lookupTable->SetRange(-255.0, 255.0); // lookupTable->SetRange(-1022.0, 1184.0);//pic3D range vtkSmartPointer texture = vtkSmartPointer::New(); texture->SetInput(slicer->GetOutput()); texture->SetLookupTable(lookupTable); texture->SetMapColorScalarsThroughLookupTable(true); vtkSmartPointer imageActor = vtkSmartPointer::New(); imageActor->SetMapper(imageMapper); imageActor->SetTexture(texture); // Setup renderers vtkSmartPointer renderer = vtkSmartPointer::New(); renderer->AddActor(imageActor); // Setup render window vtkSmartPointer renderWindow = vtkSmartPointer::New(); renderWindow->AddRenderer(renderer); // Setup render window interactor vtkSmartPointer renderWindowInteractor = vtkSmartPointer::New(); vtkSmartPointer style = vtkSmartPointer::New(); renderWindowInteractor->SetInteractorStyle(style); // Render and start interaction renderWindowInteractor->SetRenderWindow(renderWindow); // renderer->AddViewProp(imageActor); renderWindow->Render(); renderWindowInteractor->Start(); // always end with this! /*================ #END vtk render code ================*/ #endif // SHOW_SLICE_IN_RENDER_WINDOW MITK_TEST_END() } diff --git a/Modules/Core/test/mitkPlaneGeometryTest.cpp b/Modules/Core/test/mitkPlaneGeometryTest.cpp index 18335cf753..f255f79b46 100644 --- a/Modules/Core/test/mitkPlaneGeometryTest.cpp +++ b/Modules/Core/test/mitkPlaneGeometryTest.cpp @@ -1,1093 +1,1093 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkAffineTransform3D.h" #include "mitkBaseGeometry.h" #include "mitkGeometry3D.h" #include "mitkInteractionConst.h" #include "mitkLine.h" #include "mitkPlaneGeometry.h" #include "mitkRotationOperation.h" #include "mitkSlicedGeometry3D.h" #include "mitkThinPlateSplineCurvedGeometry.h" #include #include #include #include #include #include #include #include static const mitk::ScalarType testEps = 1E-9; // the epsilon used in this test == at least float precision. class mitkPlaneGeometryTestSuite : public mitk::TestFixture { CPPUNIT_TEST_SUITE(mitkPlaneGeometryTestSuite); MITK_TEST(TestInitializeStandardPlane); MITK_TEST(TestProjectPointOntoPlane); MITK_TEST(TestPlaneGeometryCloning); MITK_TEST(TestInheritance); MITK_TEST(TestSetExtendInMM); MITK_TEST(TestRotate); MITK_TEST(TestClone); MITK_TEST(TestPlaneComparison); MITK_TEST(TestAxialInitialization); MITK_TEST(TestCoronalInitialization); MITK_TEST(TestSagittalInitialization); MITK_TEST(TestLefthandedCoordinateSystem); MITK_TEST(TestDominantAxesError); MITK_TEST(TestCheckRotationMatrix); // Currently commented out, see See bug 15990 // MITK_TEST(testPlaneGeometryInitializeOrder); MITK_TEST(TestIntersectionPoint); MITK_TEST(TestCase1210); CPPUNIT_TEST_SUITE_END(); private: // private test members that are initialized by setUp() mitk::PlaneGeometry::Pointer planegeometry; mitk::Point3D origin; mitk::Vector3D right, bottom, normal, spacing; mitk::ScalarType width, height; mitk::ScalarType widthInMM, heightInMM, thicknessInMM; public: void setUp() override { planegeometry = mitk::PlaneGeometry::New(); width = 100; widthInMM = width; height = 200; heightInMM = height; thicknessInMM = 1.0; mitk::FillVector3D(origin, 4.5, 7.3, 11.2); mitk::FillVector3D(right, widthInMM, 0, 0); mitk::FillVector3D(bottom, 0, heightInMM, 0); mitk::FillVector3D(normal, 0, 0, thicknessInMM); mitk::FillVector3D(spacing, 1.0, 1.0, thicknessInMM); planegeometry->InitializeStandardPlane(right, bottom); planegeometry->SetOrigin(origin); planegeometry->SetSpacing(spacing); } void tearDown() override {} // This test verifies inheritance behaviour, this test will fail if the behaviour changes in the future void TestInheritance() { mitk::PlaneGeometry::Pointer plane = mitk::PlaneGeometry::New(); mitk::Geometry3D::Pointer g3d = dynamic_cast(plane.GetPointer()); CPPUNIT_ASSERT_MESSAGE("Planegeometry should not be castable to Geometry 3D", g3d.IsNull()); mitk::BaseGeometry::Pointer base = dynamic_cast(plane.GetPointer()); CPPUNIT_ASSERT_MESSAGE("Planegeometry should be castable to BaseGeometry", base.IsNotNull()); g3d = mitk::Geometry3D::New(); base = dynamic_cast(g3d.GetPointer()); CPPUNIT_ASSERT_MESSAGE("Geometry3D should be castable to BaseGeometry", base.IsNotNull()); mitk::SlicedGeometry3D::Pointer sliced = mitk::SlicedGeometry3D::New(); g3d = dynamic_cast(sliced.GetPointer()); CPPUNIT_ASSERT_MESSAGE("SlicedGeometry3D should not be castable to Geometry3D", g3d.IsNull()); mitk::ThinPlateSplineCurvedGeometry::Pointer thin = mitk::ThinPlateSplineCurvedGeometry::New(); plane = dynamic_cast(thin.GetPointer()); CPPUNIT_ASSERT_MESSAGE("AbstractTransformGeometry should be castable to PlaneGeometry", plane.IsNotNull()); plane = mitk::PlaneGeometry::New(); mitk::AbstractTransformGeometry::Pointer atg = dynamic_cast(plane.GetPointer()); CPPUNIT_ASSERT_MESSAGE("PlaneGeometry should not be castable to AbstractTransofrmGeometry", atg.IsNull()); } void TestDominantAxesError() { auto image = mitk::IOUtil::Load(GetTestDataFilePath("NotQuiteARotationMatrix.nrrd")); auto matrix = image->GetGeometry()->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().transpose(); std::vector< int > axes = mitk::PlaneGeometry::CalculateDominantAxes(matrix); CPPUNIT_ASSERT_MESSAGE("Domiant axes cannot be determined in this dataset. Output should be default ordering.", axes.at(0)==0 && axes.at(1)==1 && axes.at(2)==2); } void TestCheckRotationMatrix() { auto image = mitk::IOUtil::Load(GetTestDataFilePath("NotQuiteARotationMatrix.nrrd")); bool is_rotation = mitk::PlaneGeometry::CheckRotationMatrix(image->GetGeometry()->GetIndexToWorldTransform(), 1e-8); CPPUNIT_ASSERT_MESSAGE("Since the test data matrix is not quite a rotation matrix, this should be detected.", !is_rotation); } void TestLefthandedCoordinateSystem() { /** * @brief This method tests InitializeStandardPlane() and IndexToWorld() * with a left-handed coordinate orientation or indexToWorldMatrix. * * Of course this test does not use standard Parameters, which are right-handed. * See also discussion of bug #11477: http://bugs.mitk.org/show_bug.cgi?id=11477 */ planegeometry = mitk::PlaneGeometry::New(); width = 100; widthInMM = 5; height = 200; heightInMM = 3; thicknessInMM = 1.0; mitk::FillVector3D(right, widthInMM, 0, 0); mitk::FillVector3D(bottom, 0, heightInMM, 0); // This one negative sign results in lefthanded coordinate orientation and det(matrix) < 0. mitk::FillVector3D(normal, 0, 0, -thicknessInMM); mitk::AffineTransform3D::Pointer transform = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType matrix; mitk::AffineTransform3D::MatrixType::InternalMatrixType &vnl_matrix = matrix.GetVnlMatrix(); vnl_matrix.set_column(0, right); vnl_matrix.set_column(1, bottom); vnl_matrix.set_column(2, normal); // making sure that we didn't screw up this special test case or else fail deadly: assert(vnl_determinant(vnl_matrix) < 0.0); transform->SetIdentity(); transform->SetMatrix(matrix); planegeometry->InitializeStandardPlane(width, height, transform); // Crux of the matter. CPPUNIT_ASSERT_MESSAGE( "Testing if IndexToWorldMatrix is correct after InitializeStandardPlane( width, height, transform ) ", mitk::MatrixEqualElementWise(planegeometry->GetIndexToWorldTransform()->GetMatrix(), matrix)); mitk::Point3D p_index; p_index[0] = 10.; p_index[1] = 10.; p_index[2] = 0.; mitk::Point3D p_world; mitk::Point3D p_expectedResult; p_expectedResult[0] = 50.; p_expectedResult[1] = 30.; p_expectedResult[2] = 0.; ((mitk::BaseGeometry::Pointer)planegeometry)->IndexToWorld(p_index, p_world); // Crux of the matter. CPPUNIT_ASSERT_MESSAGE("Testing if IndexToWorld(a,b) function works correctly with lefthanded matrix ", mitk::Equal(p_world, p_expectedResult, testEps)); } // See bug 1210 // Test does not use standard Parameters void TestCase1210() { mitk::PlaneGeometry::Pointer planegeometry = mitk::PlaneGeometry::New(); mitk::Point3D origin; mitk::Vector3D right, down, spacing; mitk::FillVector3D(origin, 4.5, 7.3, 11.2); mitk::FillVector3D(right, 1.015625, 1.015625, 1.1999969482421875); mitk::FillVector3D(down, 1.4012984643248170709237295832899161312802619418765e-45, 0, 0); mitk::FillVector3D(spacing, 0, 1.4713633875410579244699160624544119378442750389703e-43, 9.2806360452222355258639080851310540729807238879469e-32); std::cout << "Testing InitializeStandardPlane(rightVector, downVector, spacing = nullptr): " << std::endl; CPPUNIT_ASSERT_NO_THROW(planegeometry->InitializeStandardPlane(right, down, &spacing)); /* std::cout << "Testing width, height and thickness (in units): "; if((mitk::Equal(planegeometry->GetExtent(0),width)==false) || (mitk::Equal(planegeometry->GetExtent(1),height)==false) || (mitk::Equal(planegeometry->GetExtent(2),1)==false) ) { std::cout<<"[FAILED]"<GetExtentInMM(0),widthInMM)==false) || (mitk::Equal(planegeometry->GetExtentInMM(1),heightInMM)==false) || (mitk::Equal(planegeometry->GetExtentInMM(2),thicknessInMM)==false) ) { std::cout<<"[FAILED]"< 0. * */ // Test does not use standard Parameters void TestIntersectionPoint() { // init plane with its parameter mitk::PlaneGeometry::Pointer myPlaneGeometry = mitk::PlaneGeometry::New(); mitk::Point3D origin; origin[0] = 0.0; origin[1] = 2.0; origin[2] = 0.0; mitk::Vector3D normal; normal[0] = 0.0; normal[1] = 1.0; normal[2] = 0.0; myPlaneGeometry->InitializePlane(origin, normal); // generate points and line for intersection testing // point distance of given line > 1 mitk::Point3D pointP1; pointP1[0] = 2.0; pointP1[1] = 1.0; pointP1[2] = 0.0; mitk::Point3D pointP2; pointP2[0] = 2.0; pointP2[1] = 4.0; pointP2[2] = 0.0; mitk::Vector3D lineDirection; lineDirection[0] = pointP2[0] - pointP1[0]; lineDirection[1] = pointP2[1] - pointP1[1]; lineDirection[2] = pointP2[2] - pointP1[2]; mitk::Line3D xingline(pointP1, lineDirection); mitk::Point3D calcXingPoint; myPlaneGeometry->IntersectionPoint(xingline, calcXingPoint); // point distance of given line < 1 mitk::Point3D pointP3; pointP3[0] = 2.0; pointP3[1] = 2.2; pointP3[2] = 0.0; mitk::Point3D pointP4; pointP4[0] = 2.0; pointP4[1] = 1.7; pointP4[2] = 0.0; mitk::Vector3D lineDirection2; lineDirection2[0] = pointP4[0] - pointP3[0]; lineDirection2[1] = pointP4[1] - pointP3[1]; lineDirection2[2] = pointP4[2] - pointP3[2]; mitk::Line3D xingline2(pointP3, lineDirection2); mitk::Point3D calcXingPoint2; myPlaneGeometry->IntersectionPoint(xingline2, calcXingPoint2); // intersection points must be the same CPPUNIT_ASSERT_MESSAGE("Failed to calculate Intersection Point", calcXingPoint == calcXingPoint2); } /** * @brief This method tests method ProjectPointOntoPlane. * * See also bug #3409. */ // Test does not use standard Parameters void TestProjectPointOntoPlane() { mitk::PlaneGeometry::Pointer myPlaneGeometry = mitk::PlaneGeometry::New(); // create normal mitk::Vector3D normal; normal[0] = 0.0; normal[1] = 0.0; normal[2] = 1.0; // create origin mitk::Point3D origin; origin[0] = -27.582859; origin[1] = 50; origin[2] = 200.27742; // initialize plane geometry myPlaneGeometry->InitializePlane(origin, normal); // output to descripe the test std::cout << "Testing PlaneGeometry according to bug #3409" << std::endl; std::cout << "Our normal is: " << normal << std::endl; std::cout << "So ALL projected points should have exactly the same z-value!" << std::endl; // create a number of points mitk::Point3D myPoints[5]; myPoints[0][0] = -27.582859; myPoints[0][1] = 50.00; myPoints[0][2] = 200.27742; myPoints[1][0] = -26.58662; myPoints[1][1] = 50.00; myPoints[1][2] = 200.19026; myPoints[2][0] = -26.58662; myPoints[2][1] = 50.00; myPoints[2][2] = 200.33124; myPoints[3][0] = 104.58662; myPoints[3][1] = 452.12313; myPoints[3][2] = 866.41236; myPoints[4][0] = -207.58662; myPoints[4][1] = 312.00; myPoints[4][2] = -300.12346; // project points onto plane mitk::Point3D myProjectedPoints[5]; for (unsigned int i = 0; i < 5; ++i) { myProjectedPoints[i] = myPlaneGeometry->ProjectPointOntoPlane(myPoints[i]); } // compare z-values with z-value of plane (should be equal) bool allPointsOnPlane = true; for (auto &myProjectedPoint : myProjectedPoints) { if (fabs(myProjectedPoint[2] - origin[2]) > mitk::sqrteps) { allPointsOnPlane = false; } } CPPUNIT_ASSERT_MESSAGE("All points lie not on the same plane", allPointsOnPlane); } void TestPlaneGeometryCloning() { mitk::PlaneGeometry::Pointer geometry2D = createPlaneGeometry(); try { mitk::PlaneGeometry::Pointer clone = geometry2D->Clone(); itk::Matrix matrix = clone->GetIndexToWorldTransform()->GetMatrix(); CPPUNIT_ASSERT_MESSAGE("Test if matrix element exists...", matrix[0][0] == 31); double origin = geometry2D->GetOrigin()[0]; CPPUNIT_ASSERT_MESSAGE("First Point of origin as expected...", mitk::Equal(origin, 8)); double spacing = geometry2D->GetSpacing()[0]; CPPUNIT_ASSERT_MESSAGE("First Point of spacing as expected...", mitk::Equal(spacing, 31)); } catch (...) { CPPUNIT_FAIL("Error during access on a member of cloned geometry"); } // direction [row] [coloum] MITK_TEST_OUTPUT(<< "Casting a rotated 2D ITK Image to a MITK Image and check if Geometry is still same"); } void TestPlaneGeometryInitializeOrder() { mitk::Vector3D mySpacing; mySpacing[0] = 31; mySpacing[1] = 0.1; mySpacing[2] = 5.4; mitk::Point3D myOrigin; myOrigin[0] = 8; myOrigin[1] = 9; myOrigin[2] = 10; mitk::AffineTransform3D::Pointer myTransform = mitk::AffineTransform3D::New(); itk::Matrix transMatrix; transMatrix.Fill(0); transMatrix[0][0] = 1; transMatrix[1][1] = 2; transMatrix[2][2] = 4; myTransform->SetMatrix(transMatrix); mitk::PlaneGeometry::Pointer geometry2D1 = mitk::PlaneGeometry::New(); geometry2D1->SetIndexToWorldTransform(myTransform); geometry2D1->SetSpacing(mySpacing); geometry2D1->SetOrigin(myOrigin); mitk::PlaneGeometry::Pointer geometry2D2 = mitk::PlaneGeometry::New(); geometry2D2->SetSpacing(mySpacing); geometry2D2->SetOrigin(myOrigin); geometry2D2->SetIndexToWorldTransform(myTransform); mitk::PlaneGeometry::Pointer geometry2D3 = mitk::PlaneGeometry::New(); geometry2D3->SetIndexToWorldTransform(myTransform); geometry2D3->SetSpacing(mySpacing); geometry2D3->SetOrigin(myOrigin); geometry2D3->SetIndexToWorldTransform(myTransform); CPPUNIT_ASSERT_MESSAGE("Origin of Geometry 1 matches that of Geometry 2.", mitk::Equal(geometry2D1->GetOrigin(), geometry2D2->GetOrigin())); CPPUNIT_ASSERT_MESSAGE("Origin of Geometry 1 match those of Geometry 3.", mitk::Equal(geometry2D1->GetOrigin(), geometry2D3->GetOrigin())); CPPUNIT_ASSERT_MESSAGE("Origin of Geometry 2 match those of Geometry 3.", mitk::Equal(geometry2D2->GetOrigin(), geometry2D3->GetOrigin())); CPPUNIT_ASSERT_MESSAGE("Spacing of Geometry 1 match those of Geometry 2.", mitk::Equal(geometry2D1->GetSpacing(), geometry2D2->GetSpacing())); CPPUNIT_ASSERT_MESSAGE("Spacing of Geometry 1 match those of Geometry 3.", mitk::Equal(geometry2D1->GetSpacing(), geometry2D3->GetSpacing())); CPPUNIT_ASSERT_MESSAGE("Spacing of Geometry 2 match those of Geometry 3.", mitk::Equal(geometry2D2->GetSpacing(), geometry2D3->GetSpacing())); CPPUNIT_ASSERT_MESSAGE("Transformation of Geometry 1 match those of Geometry 2.", compareMatrix(geometry2D1->GetIndexToWorldTransform()->GetMatrix(), geometry2D2->GetIndexToWorldTransform()->GetMatrix())); CPPUNIT_ASSERT_MESSAGE("Transformation of Geometry 1 match those of Geometry 3.", compareMatrix(geometry2D1->GetIndexToWorldTransform()->GetMatrix(), geometry2D3->GetIndexToWorldTransform()->GetMatrix())); CPPUNIT_ASSERT_MESSAGE("Transformation of Geometry 2 match those of Geometry 3.", compareMatrix(geometry2D2->GetIndexToWorldTransform()->GetMatrix(), geometry2D3->GetIndexToWorldTransform()->GetMatrix())); } void TestInitializeStandardPlane() { CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: width", mitk::Equal(planegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: height", mitk::Equal(planegeometry->GetExtent(1), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: depth", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: width in mm", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: heght in mm", mitk::Equal(planegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: depth in mm", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: AxisVectorRight", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: AxisVectorBottom", mitk::Equal(planegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: AxisVectorNormal", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); mitk::Vector3D spacing; thicknessInMM = 1.5; normal.Normalize(); normal *= thicknessInMM; mitk::FillVector3D(spacing, 1.0, 1.0, thicknessInMM); planegeometry->InitializeStandardPlane(right.GetVnlVector(), bottom.GetVnlVector(), &spacing); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: width", mitk::Equal(planegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: height", mitk::Equal(planegeometry->GetExtent(1), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: depth", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: width in mm", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: height in mm", mitk::Equal(planegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: depth in mm", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: AxisVectorRight", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: AxisVectorBottom", mitk::Equal(planegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: AxisVectorNormal", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); ; } void TestSetExtendInMM() { normal.Normalize(); normal *= thicknessInMM; planegeometry->SetExtentInMM(2, thicknessInMM); CPPUNIT_ASSERT_MESSAGE("Testing SetExtentInMM(2, ...), querying by GetExtentInMM(2): ", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing SetExtentInMM(2, ...), querying by GetAxisVector(2) and comparing to normal: ", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); planegeometry->SetOrigin(origin); CPPUNIT_ASSERT_MESSAGE("Testing SetOrigin", mitk::Equal(planegeometry->GetOrigin(), origin, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() after SetOrigin: Right", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() after SetOrigin: Bottom", mitk::Equal(planegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() after SetOrigin: Normal", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); mappingTests2D(planegeometry, width, height, widthInMM, heightInMM, origin, right, bottom); } void TestRotate() { // Changing the IndexToWorldTransform to a rotated version by SetIndexToWorldTransform() (keep origin): mitk::AffineTransform3D::Pointer transform = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType::InternalMatrixType vnlmatrix; vnlmatrix = planegeometry->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix(); mitk::VnlVector axis(3); mitk::FillVector3D(axis, 1.0, 1.0, 1.0); axis.normalize(); vnl_quaternion rotation(axis, 0.223); vnlmatrix = rotation.rotation_matrix_transpose() * vnlmatrix; mitk::Matrix3D matrix; matrix = vnlmatrix; transform->SetMatrix(matrix); transform->SetOffset(planegeometry->GetIndexToWorldTransform()->GetOffset()); right.SetVnlVector(rotation.rotation_matrix_transpose() * right.GetVnlVector()); bottom.SetVnlVector(rotation.rotation_matrix_transpose() * bottom.GetVnlVector()); normal.SetVnlVector(rotation.rotation_matrix_transpose() * normal.GetVnlVector()); planegeometry->SetIndexToWorldTransform(transform); // The origin changed,because m_Origin=m_IndexToWorldTransform->GetOffset()+GetAxisVector(2)*0.5 // and the AxisVector changes due to the rotation. In other words: the rotation was done around // the corner of the box, not around the planes origin. Now change it to a rotation around // the origin, simply by re-setting the origin to the original one: planegeometry->SetOrigin(origin); CPPUNIT_ASSERT_MESSAGE("Testing whether SetIndexToWorldTransform kept origin: ", mitk::Equal(planegeometry->GetOrigin(), origin, testEps)); mitk::Point2D point; point[0] = 4; point[1] = 3; mitk::Point2D dummy; planegeometry->WorldToIndex(point, dummy); planegeometry->IndexToWorld(dummy, dummy); CPPUNIT_ASSERT_MESSAGE("Testing consistency of index and world coordinates.", dummy == point); CPPUNIT_ASSERT_MESSAGE("Testing width of rotated version: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height of rotated version: ", mitk::Equal(planegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness of rotated version: ", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of rotated version: right ", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of rotated version: bottom", mitk::Equal(planegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of rotated version: normal", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing GetAxisVector(direction).GetNorm() != planegeometry->GetExtentInMM(direction) of rotated version: ", mitk::Equal(planegeometry->GetAxisVector(0).GetNorm(), planegeometry->GetExtentInMM(0), testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing GetAxisVector(direction).GetNorm() != planegeometry->GetExtentInMM(direction) of rotated version: ", mitk::Equal(planegeometry->GetAxisVector(1).GetNorm(), planegeometry->GetExtentInMM(1), testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing GetAxisVector(direction).GetNorm() != planegeometry->GetExtentInMM(direction) of rotated version: ", mitk::Equal(planegeometry->GetAxisVector(2).GetNorm(), planegeometry->GetExtentInMM(2), testEps)); mappingTests2D(planegeometry, width, height, widthInMM, heightInMM, origin, right, bottom); width *= 2; height *= 3; planegeometry->SetSizeInUnits(width, height); CPPUNIT_ASSERT_MESSAGE("Testing SetSizeInUnits() of rotated version: ", mitk::Equal(planegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing SetSizeInUnits() of rotated version: ", mitk::Equal(planegeometry->GetExtent(1), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing SetSizeInUnits() of rotated version: ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width (in mm) of version with changed size in units: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in mm) of version with changed size in units: ", mitk::Equal(planegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness (in mm) of version with changed size in units: ", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of version with changed size in units: right ", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of version with changed size in units: bottom", mitk::Equal(planegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of version with changed size in units: normal", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing GetAxisVector(direction).GetNorm() != planegeometry->GetExtentInMM(direction) of rotated version: ", mitk::Equal(planegeometry->GetAxisVector(0).GetNorm(), planegeometry->GetExtentInMM(0), testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing GetAxisVector(direction).GetNorm() != planegeometry->GetExtentInMM(direction) of rotated version: ", mitk::Equal(planegeometry->GetAxisVector(1).GetNorm(), planegeometry->GetExtentInMM(1), testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing GetAxisVector(direction).GetNorm() != planegeometry->GetExtentInMM(direction) of rotated version: ", mitk::Equal(planegeometry->GetAxisVector(2).GetNorm(), planegeometry->GetExtentInMM(2), testEps)); mappingTests2D(planegeometry, width, height, widthInMM, heightInMM, origin, right, bottom); } void TestClone() { mitk::PlaneGeometry::Pointer clonedplanegeometry = dynamic_cast(planegeometry->Clone().GetPointer()); // Cave: Statement below is negated! CPPUNIT_ASSERT_MESSAGE("Testing Clone(): ", !((clonedplanegeometry.IsNull()) || (clonedplanegeometry->GetReferenceCount() != 1))); CPPUNIT_ASSERT_MESSAGE("Testing origin of cloned version: ", mitk::Equal(clonedplanegeometry->GetOrigin(), origin, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width (in units) of cloned version: ", mitk::Equal(clonedplanegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in units) of cloned version: ", mitk::Equal(clonedplanegeometry->GetExtent(1), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing extent (in units) of cloned version: ", mitk::Equal(clonedplanegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width (in mm) of cloned version: ", mitk::Equal(clonedplanegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in mm) of cloned version: ", mitk::Equal(clonedplanegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness (in mm) of cloned version: ", mitk::Equal(clonedplanegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of cloned version: right", mitk::Equal(clonedplanegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of cloned version: bottom", mitk::Equal(clonedplanegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of cloned version: normal", mitk::Equal(clonedplanegeometry->GetAxisVector(2), normal, testEps)); mappingTests2D(clonedplanegeometry, width, height, widthInMM, heightInMM, origin, right, bottom); } void TestSagittalInitialization() { mitk::Point3D cornerpoint0 = planegeometry->GetCornerPoint(0); mitk::PlaneGeometry::Pointer clonedplanegeometry = planegeometry->Clone(); // Testing InitializeStandardPlane(clonedplanegeometry, planeorientation = Sagittal, zPosition = 0, frontside=true): planegeometry->InitializeStandardPlane(clonedplanegeometry, mitk::PlaneGeometry::Sagittal); mitk::Vector3D newright, newbottom, newnormal; mitk::ScalarType newthicknessInMM; newright = bottom; newthicknessInMM = widthInMM / width * 1.0; // extent in normal direction is 1; newnormal = right; newnormal.Normalize(); newnormal *= newthicknessInMM; newbottom = normal; newbottom.Normalize(); newbottom *= thicknessInMM; - CPPUNIT_ASSERT_MESSAGE("Testing GetCornerPoint(0) of sagitally initialized version:", + CPPUNIT_ASSERT_MESSAGE("Testing GetCornerPoint(0) of sagittally initialized version:", mitk::Equal(planegeometry->GetCornerPoint(0), cornerpoint0, testEps)); // ok, corner was fine, so we can dare to believe the origin is ok. origin = planegeometry->GetOrigin(); - CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of sagitally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of sagittally initialized version: ", mitk::Equal(planegeometry->GetExtent(0), height, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of sagitally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of sagittally initialized version: ", mitk::Equal(planegeometry->GetExtent(1), 1, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of sagitally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of sagittally initialized version: ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of sagitally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of sagittally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(0), heightInMM, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of sagitally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of sagittally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(1), thicknessInMM, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of sagitally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of sagittally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(2), newthicknessInMM, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of sagitally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of sagittally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(0), newright, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of sagitally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of sagittally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(1), newbottom, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of sagitally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of sagittally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(2), newnormal, testEps)); mappingTests2D(planegeometry, height, 1, heightInMM, thicknessInMM, origin, newright, newbottom); // set origin back to the one of the axial slice: origin = clonedplanegeometry->GetOrigin(); // Testing backside initialization: InitializeStandardPlane(clonedplanegeometry, planeorientation = Axial, zPosition // = 0, frontside=false, rotated=true): planegeometry->InitializeStandardPlane(clonedplanegeometry, mitk::PlaneGeometry::Axial, 0, false, true); mitk::Point3D backsideorigin; backsideorigin = origin + clonedplanegeometry->GetAxisVector(1); //+clonedplanegeometry->GetAxisVector(2); CPPUNIT_ASSERT_MESSAGE("Testing origin of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetOrigin(), backsideorigin, testEps)); mitk::Point3D backsidecornerpoint0; backsidecornerpoint0 = cornerpoint0 + clonedplanegeometry->GetAxisVector(1); //+clonedplanegeometry->GetAxisVector(2); - CPPUNIT_ASSERT_MESSAGE("Testing GetCornerPoint(0) of sagitally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing GetCornerPoint(0) of sagittally initialized version: ", mitk::Equal(planegeometry->GetCornerPoint(0), backsidecornerpoint0, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of backsidedly, axially initialized version " "(should be same as in mm due to unit spacing, except for thickness, which is always 1): ", mitk::Equal(planegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of backsidedly, axially initialized version " "(should be same as in mm due to unit spacing, except for thickness, which is always 1): ", mitk::Equal(planegeometry->GetExtent(1), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of backsidedly, axially initialized version " "(should be same as in mm due to unit spacing, except for thickness, which is always 1): ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetAxisVector(1), -bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); // T22254: Flipped sign mappingTests2D(planegeometry, width, height, widthInMM, heightInMM, backsideorigin, right, -bottom); } void TestCoronalInitialization() { mitk::Point3D cornerpoint0 = planegeometry->GetCornerPoint(0); mitk::PlaneGeometry::Pointer clonedplanegeometry = dynamic_cast(planegeometry->Clone().GetPointer()); //-------- mitk::Vector3D newright, newbottom, newnormal; mitk::ScalarType newthicknessInMM; // Testing InitializeStandardPlane(clonedplanegeometry, planeorientation = Coronal, zPosition = 0, frontside=true) planegeometry->InitializeStandardPlane(clonedplanegeometry, mitk::PlaneGeometry::Coronal); newright = right; newbottom = normal; newbottom.Normalize(); newbottom *= thicknessInMM; newthicknessInMM = heightInMM / height * 1.0 /*extent in normal direction is 1*/; newnormal = -bottom; newnormal.Normalize(); newnormal *= newthicknessInMM; CPPUNIT_ASSERT_MESSAGE("Testing GetCornerPoint(0) of coronally initialized version: ", mitk::Equal(planegeometry->GetCornerPoint(0), cornerpoint0, testEps)); // ok, corner was fine, so we can dare to believe the origin is ok. origin = planegeometry->GetOrigin(); CPPUNIT_ASSERT_MESSAGE("Testing width (in units) of coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in units) of coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(1), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness (in units) of coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width (in mm) of coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in mm) of coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(1), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness (in mm) of coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(2), newthicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(0), newright, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(1), newbottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(2), -newnormal, testEps)); // T22254: Flipped sign mappingTests2D(planegeometry, width, 1, widthInMM, thicknessInMM, origin, newright, newbottom); // Changing plane to in-plane unit spacing using SetSizeInUnits: planegeometry->SetSizeInUnits(planegeometry->GetExtentInMM(0), planegeometry->GetExtentInMM(1)); CPPUNIT_ASSERT_MESSAGE("Testing origin of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetOrigin(), origin, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in units) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in units) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(1), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in units) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in mm) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in mm) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(1), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in mm) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(2), newthicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(0), newright, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(1), newbottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(2), -newnormal, testEps)); // T22254: Flipped sign mappingTests2D(planegeometry, widthInMM, thicknessInMM, widthInMM, thicknessInMM, origin, newright, newbottom); // Changing plane to unit spacing also in normal direction using SetExtentInMM(2, 1.0): planegeometry->SetExtentInMM(2, 1.0); newnormal.Normalize(); CPPUNIT_ASSERT_MESSAGE("Testing origin of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetOrigin(), origin, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in units) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in units) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(1), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in units) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in mm) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in mm) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(1), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in mm) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(2), 1.0, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(0), newright, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(1), newbottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(2), -newnormal, testEps)); // T22254: Flipped sign mappingTests2D(planegeometry, widthInMM, thicknessInMM, widthInMM, thicknessInMM, origin, newright, newbottom); } void TestAxialInitialization() { mitk::Point3D cornerpoint0 = planegeometry->GetCornerPoint(0); // Clone, move, rotate and test for 'IsParallel' and 'IsOnPlane' mitk::PlaneGeometry::Pointer clonedplanegeometry = dynamic_cast(planegeometry->Clone().GetPointer()); CPPUNIT_ASSERT_MESSAGE("Testing Clone(): ", !((clonedplanegeometry.IsNull()) || (clonedplanegeometry->GetReferenceCount() != 1))); std::cout << "Testing InitializeStandardPlane(clonedplanegeometry, planeorientation = Axial, zPosition = 0, " "frontside=true): " << std::endl; planegeometry->InitializeStandardPlane(clonedplanegeometry); CPPUNIT_ASSERT_MESSAGE("Testing origin of axially initialized version: ", mitk::Equal(planegeometry->GetOrigin(), origin)); CPPUNIT_ASSERT_MESSAGE("Testing GetCornerPoint(0) of axially initialized version: ", mitk::Equal(planegeometry->GetCornerPoint(0), cornerpoint0)); CPPUNIT_ASSERT_MESSAGE("Testing width (in units) of axially initialized version (should be same as in mm due to " "unit spacing, except for thickness, which is always 1): ", mitk::Equal(planegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in units) of axially initialized version (should be same as in mm due to " "unit spacing, except for thickness, which is always 1): ", mitk::Equal(planegeometry->GetExtent(1), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness (in units) of axially initialized version (should be same as in mm due " "to unit spacing, except for thickness, which is always 1): ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width (in mm) of axially initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in mm) of axially initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness (in mm) of axially initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of axially initialized version: ", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of axially initialized version: ", mitk::Equal(planegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of axially initialized version: ", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); mappingTests2D(planegeometry, width, height, widthInMM, heightInMM, origin, right, bottom); } void TestPlaneComparison() { // Clone, move, rotate and test for 'IsParallel' and 'IsOnPlane' mitk::PlaneGeometry::Pointer clonedplanegeometry2 = dynamic_cast(planegeometry->Clone().GetPointer()); CPPUNIT_ASSERT_MESSAGE("Testing Clone(): ", !((clonedplanegeometry2.IsNull()) || (clonedplanegeometry2->GetReferenceCount() != 1))); CPPUNIT_ASSERT_MESSAGE("Testing wheter original and clone are at the same position", clonedplanegeometry2->IsOnPlane(planegeometry.GetPointer())); CPPUNIT_ASSERT_MESSAGE(" Asserting that origin is on the plane cloned plane:", clonedplanegeometry2->IsOnPlane(origin)); mitk::VnlVector newaxis(3); mitk::FillVector3D(newaxis, 1.0, 1.0, 1.0); newaxis.normalize(); vnl_quaternion rotation2(newaxis, 0.0); mitk::Vector3D clonednormal = clonedplanegeometry2->GetNormal(); mitk::Point3D clonedorigin = clonedplanegeometry2->GetOrigin(); auto planerot = new mitk::RotationOperation(mitk::OpROTATE, origin, clonedplanegeometry2->GetAxisVector(0), 180.0); clonedplanegeometry2->ExecuteOperation(planerot); CPPUNIT_ASSERT_MESSAGE(" Asserting that a flipped plane is still on the original plane: ", clonedplanegeometry2->IsOnPlane(planegeometry.GetPointer())); clonedorigin += clonednormal; clonedplanegeometry2->SetOrigin(clonedorigin); CPPUNIT_ASSERT_MESSAGE("Testing if the translated (cloned, flipped) plane is parallel to its origin plane: ", clonedplanegeometry2->IsParallel(planegeometry)); delete planerot; planerot = new mitk::RotationOperation(mitk::OpROTATE, origin, clonedplanegeometry2->GetAxisVector(0), 0.5); clonedplanegeometry2->ExecuteOperation(planerot); CPPUNIT_ASSERT_MESSAGE("Testing if a non-paralell plane gets recognized as not paralell [rotation +0.5 degree] : ", !clonedplanegeometry2->IsParallel(planegeometry)); delete planerot; planerot = new mitk::RotationOperation(mitk::OpROTATE, origin, clonedplanegeometry2->GetAxisVector(0), -1.0); clonedplanegeometry2->ExecuteOperation(planerot); CPPUNIT_ASSERT_MESSAGE("Testing if a non-paralell plane gets recognized as not paralell [rotation -0.5 degree] : ", !clonedplanegeometry2->IsParallel(planegeometry)); delete planerot; planerot = new mitk::RotationOperation(mitk::OpROTATE, origin, clonedplanegeometry2->GetAxisVector(0), 360.5); clonedplanegeometry2->ExecuteOperation(planerot); CPPUNIT_ASSERT_MESSAGE("Testing if a non-paralell plane gets recognized as paralell [rotation 360 degree] : ", clonedplanegeometry2->IsParallel(planegeometry)); } private: // helper Methods for the Tests mitk::PlaneGeometry::Pointer createPlaneGeometry() { mitk::Vector3D mySpacing; mySpacing[0] = 31; mySpacing[1] = 0.1; mySpacing[2] = 5.4; mitk::Point3D myOrigin; myOrigin[0] = 8; myOrigin[1] = 9; myOrigin[2] = 10; mitk::AffineTransform3D::Pointer myTransform = mitk::AffineTransform3D::New(); itk::Matrix transMatrix; transMatrix.Fill(0); transMatrix[0][0] = 1; transMatrix[1][1] = 2; transMatrix[2][2] = 4; myTransform->SetMatrix(transMatrix); mitk::PlaneGeometry::Pointer geometry2D = mitk::PlaneGeometry::New(); geometry2D->SetIndexToWorldTransform(myTransform); geometry2D->SetSpacing(mySpacing); geometry2D->SetOrigin(myOrigin); return geometry2D; } bool compareMatrix(itk::Matrix left, itk::Matrix right) { bool equal = true; for (int i = 0; i < 3; ++i) for (int j = 0; j < 3; ++j) equal &= mitk::Equal(left[i][j], right[i][j]); return equal; } /** * This function tests for correct mapping and is called several times from other tests **/ void mappingTests2D(const mitk::PlaneGeometry *planegeometry, const mitk::ScalarType &width, const mitk::ScalarType &height, const mitk::ScalarType &widthInMM, const mitk::ScalarType &heightInMM, const mitk::Point3D &origin, const mitk::Vector3D &right, const mitk::Vector3D &bottom) { std::cout << "Testing mapping Map(pt2d_mm(x=widthInMM/2.3,y=heightInMM/2.5), pt3d_mm) and compare with expected: "; mitk::Point2D pt2d_mm; mitk::Point3D pt3d_mm, expected_pt3d_mm; pt2d_mm[0] = widthInMM / 2.3; pt2d_mm[1] = heightInMM / 2.5; expected_pt3d_mm = origin + right * (pt2d_mm[0] / right.GetNorm()) + bottom * (pt2d_mm[1] / bottom.GetNorm()); planegeometry->Map(pt2d_mm, pt3d_mm); CPPUNIT_ASSERT_MESSAGE( "Testing mapping Map(pt2d_mm(x=widthInMM/2.3,y=heightInMM/2.5), pt3d_mm) and compare with expected", mitk::Equal(pt3d_mm, expected_pt3d_mm, testEps)); std::cout << "Testing mapping Map(pt3d_mm, pt2d_mm) and compare with expected: "; mitk::Point2D testpt2d_mm; planegeometry->Map(pt3d_mm, testpt2d_mm); std::cout << std::setprecision(12) << "Expected pt2d_mm " << pt2d_mm << std::endl; std::cout << std::setprecision(12) << "Result testpt2d_mm " << testpt2d_mm << std::endl; std::cout << std::setprecision(12) << "10*mitk::eps " << 10 * mitk::eps << std::endl; // This eps is temporarily set to 10*mitk::eps. See bug #15037 for details. CPPUNIT_ASSERT_MESSAGE("Testing mapping Map(pt3d_mm, pt2d_mm) and compare with expected", mitk::Equal(pt2d_mm, testpt2d_mm, 10 * mitk::eps)); std::cout << "Testing IndexToWorld(pt2d_units, pt2d_mm) and compare with expected: "; mitk::Point2D pt2d_units; pt2d_units[0] = width / 2.0; pt2d_units[1] = height / 2.0; pt2d_mm[0] = widthInMM / 2.0; pt2d_mm[1] = heightInMM / 2.0; planegeometry->IndexToWorld(pt2d_units, testpt2d_mm); std::cout << std::setprecision(12) << "Expected pt2d_mm " << pt2d_mm << std::endl; std::cout << std::setprecision(12) << "Result testpt2d_mm " << testpt2d_mm << std::endl; std::cout << std::setprecision(12) << "10*mitk::eps " << 10 * mitk::eps << std::endl; // This eps is temporarily set to 10*mitk::eps. See bug #15037 for details. CPPUNIT_ASSERT_MESSAGE("Testing IndexToWorld(pt2d_units, pt2d_mm) and compare with expected: ", mitk::Equal(pt2d_mm, testpt2d_mm, 10 * mitk::eps)); std::cout << "Testing WorldToIndex(pt2d_mm, pt2d_units) and compare with expected: "; mitk::Point2D testpt2d_units; planegeometry->WorldToIndex(pt2d_mm, testpt2d_units); std::cout << std::setprecision(12) << "Expected pt2d_units " << pt2d_units << std::endl; std::cout << std::setprecision(12) << "Result testpt2d_units " << testpt2d_units << std::endl; std::cout << std::setprecision(12) << "10*mitk::eps " << 10 * mitk::eps << std::endl; // This eps is temporarily set to 10*mitk::eps. See bug #15037 for details. CPPUNIT_ASSERT_MESSAGE("Testing WorldToIndex(pt2d_mm, pt2d_units) and compare with expected:", mitk::Equal(pt2d_units, testpt2d_units, 10 * mitk::eps)); } }; MITK_TEST_SUITE_REGISTRATION(mitkPlaneGeometry) diff --git a/Modules/ImageExtraction/Testing/mitkExtractDirectedPlaneImageFilterTest.cpp b/Modules/ImageExtraction/Testing/mitkExtractDirectedPlaneImageFilterTest.cpp index 1bcc6d5245..38ca33881a 100644 --- a/Modules/ImageExtraction/Testing/mitkExtractDirectedPlaneImageFilterTest.cpp +++ b/Modules/ImageExtraction/Testing/mitkExtractDirectedPlaneImageFilterTest.cpp @@ -1,293 +1,293 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ // //#include "mitkExtractDirectedPlaneImageFilter.h" //#include "mitkStandardFileLocations.h" // //#include //#include //#include //#include //#include // //#include "mitkTestingMacros.h" // //#include // // // class ExtractionTesting{ // // public: // // struct Testcase // { // int number; // std::string name; // std::string imageFilename; // std::string referenceImageFilename; // bool success; // mitk::Geometry2D::Pointer (*GetPlane) (void); // }; // // static void DoTesting(Testcase &testcase) // { // mitk::Image::Pointer image = GetImageToTest(testcase.imageFilename); // if ( image.IsNull){ // testcase.success = false; // return; // } // // /*mitk::Image::Pointer referenceImage = GetImageToTest(testcase.referenceImageFilename); // if ( referenceImage.IsNull){ // testcase.success = false; // return; // } // // mitk::Geometry2D::Pointer directedGeometry2D = testcase.GetPlane(); // if(directedGeometry2D.IsNull){ // testcase.success = false;*/ // } // // //put testing here // //TODO vtkIMageREslice setup // //vtkSmartPointer colorImage = image->GetVtkImageData(); // // vtkSmartPointer imageMapper = vtkSmartPointer::New(); // imageMapper->SetInput(colorImage); // // // vtkSmartPointer imageActor = vtkSmartPointer::New(); // imageActor->SetMapper(imageMapper); // //imageActor->SetPosition(20, 20); // // // Setup renderers // vtkSmartPointer renderer = vtkSmartPointer::New(); // // // Setup render window // vtkSmartPointer renderWindow = vtkSmartPointer::New(); // renderWindow->AddRenderer(renderer); // // // Setup render window interactor // vtkSmartPointer renderWindowInteractor = // vtkSmartPointer::New(); // vtkSmartPointer style = vtkSmartPointer::New(); // renderWindowInteractor->SetInteractorStyle(style); // // // Render and start interaction // renderWindowInteractor->SetRenderWindow(renderWindow); // //renderer->AddViewProp(imageActor); // renderer->AddActor(imageActor); // // renderWindow->Render(); // renderWindowInteractor->Start(); // } // // // static std::vector InitializeTestCases() // { // int testcounter = 0; // std::vector tests= // // //#BEGIN setup TestCases // // { // { // ++testcounter, // "TestCoronal", // "image.nrrd", // "coronalReference.nrrd", // false, // &TestCoronal // }, // { // ++testcounter, -// "TestSagital", +// "TestSagittal", // "image.nrrd", // "sagitalReference.nrrd", // false, -// &TestSagital +// &TestSagittal // }, // { // ++testcounter, // "TestCoronal", // "image.nrrd", // "coronalReference.nrrd", // false, // &TestCoronal // }, // { // ++testcounter, // "Test_u_Rotation", // "image.nrrd", // "uRotationReference.nrrd", // false, // &Test_u_Rotation // }, // { // ++testcounter, // "Test_v_Rotation", // "image.nrrd", // "vRotationReference.nrrd", // false, // &Test_v_Rotation // }, // { // ++testcounter, // "TestTwoDirectionalRation", // "image.nrrd", // "twoDirectionalRationReference.nrrd", // false, // &TestTwoDirectionalRotation // }, // { // ++testcounter, // "Test4D", // "image.nrrd", // "twoDirectionalRationReference.nrrd", // false, // &Test4D // }, // { // ++testcounter, // "Test2D", // "coronalReference.nrrd", // "coronalReference.nrrd", // false, // &Test2D // }, // { // ++testcounter, // "Test2D", // nullptr, // nullptr, // false, // &Test1D // } // // }; // // //#END setup TestCases // // return tests; // } // // protected: // // static mitk::Image::Pointer GetImageToTest(std::string filename){ // //retrieve referenceImage // //// mitk::StandardFileLocations::Pointer locator = mitk::StandardFileLocations::GetInstance(); //// //// const std::string filepath = locator->FindFile(filename, "Modules/MitkExt/Testing/Data"); //// //// if (filepath.empty()) //// { //// return nullptr; //// } //// //////TODO read imge from file //// itk::FilenamesContainer file; //// file.push_back( filename ); // mitk::ItkImageFileReader::Pointer reader = mitk::ItkImageFileReader::New(); // reader->SetFileName("C:\home\Pics\Pic3D.nrrd"); // // reader->Update(); // // mitk::Image::Pointer image = reader->GetOutput(); // // return image; // } // // -// static mitk::Geometry2D::Pointer TestSagital() +// static mitk::Geometry2D::Pointer TestSagittal() // { // // return nullptr; // } // // static mitk::Geometry2D::Pointer TestCoronal() // { // return nullptr; // } // // static mitk::Geometry2D::Pointer TestAxial() // { // return nullptr; // } // // static mitk::Geometry2D::Pointer Test_u_Rotation() // { // return nullptr; // } // // static mitk::Geometry2D::Pointer Test_v_Rotation() // { // return nullptr; // } // // static mitk::Geometry2D::Pointer TestTwoDirectionalRotation() // { // return nullptr; // } // // static mitk::Geometry2D::Pointer Test4DImage() // {return nullptr; // // } // // static mitk::Geometry2D::Pointer Test2DImage() // { // return nullptr; // } // // static mitk::Geometry2D::Pointer Test1DImage() // { // return nullptr; // } // //}; // // //** // * Tests for the class "mitkExtractDirectedPlaneImageFilter". // * // * argc and argv are the command line parameters which were passed to // * the ADD_TEST command in the CMakeLists.txt file. For the automatic // * tests, argv is either empty for the simple tests or contains the filename // * of a test image for the image tests (see CMakeLists.txt). // */ // int mitkExtractDirectedPlaneImageFilterTest(int /* argc */, char* /*argv*/[]) //{ // // always start with this! // MITK_TEST_BEGIN("mitkExtractDirectedPlaneImageFilter") // // // mitk::ExtractDirectedPlaneImageFilter::Pointer extractor = mitk::ExtractDirectedPlaneImageFilter::New(); // MITK_TEST_CONDITION_REQUIRED(extractor.IsNotNull(),"Testing instantiation") // // // std::vector allTests = ExtractionTesting::InitializeTestCases(); // // for( int i = 0; i < allTests.size(); i++);{ // // ExtractionTesting::Testcase testCase = allTest[i]; // // ExtractionTesting::DoTesting(testCase); // // MITK_TEST_CONDITION(testCase.success, "Testcase #'" << testCase.number << " " << testCase.name); // } // // // always end with this! // MITK_TEST_END() //} diff --git a/Modules/MatchPointRegistrationUI/Qmitk/QmitkRegistrationManipulationWidget.ui b/Modules/MatchPointRegistrationUI/Qmitk/QmitkRegistrationManipulationWidget.ui index 3b21b89e32..f43f20ac0c 100644 --- a/Modules/MatchPointRegistrationUI/Qmitk/QmitkRegistrationManipulationWidget.ui +++ b/Modules/MatchPointRegistrationUI/Qmitk/QmitkRegistrationManipulationWidget.ui @@ -1,623 +1,623 @@ QmitkRegistrationManipulationWidget 0 0 379 317 5 5 5 5 5 Translation 6 3 6 3 y (Coronal) x (Sagittal) z (Axial) -100 100 Qt::Horizontal -100 100 Qt::Horizontal -100 100 Qt::Horizontal 0 0 70 0 0 0 background-color: rgb(0, 170, 0) Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter mm -9999.000000000000000 9999.000000000000000 0.500000000000000 0 0 70 0 0 0 background-color:rgb(0, 0, 240) Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter mm -9999.000000000000000 9999.000000000000000 0.500000000000000 0 0 70 0 0 0 background-color:rgb(255, 0, 0) Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter mm -9999.000000000000000 9999.000000000000000 0.500000000000000 Rotation 6 3 6 3 6 y (Coronal) x (Sagittal) z (Axial) -180 180 Qt::Horizontal -180 180 Qt::Horizontal -180 180 Qt::Horizontal 0 0 86 0 0 0 background-color:rgb(0, 170, 0) Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter ° -360.000000000000000 360.000000000000000 0.500000000000000 0 0 86 0 0 0 background-color:rgb(0, 0, 240) Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter ° -360.000000000000000 360.000000000000000 0.500000000000000 0 0 86 0 0 0 background-color:rgb(255, 0, 0) Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter ° -360.000000000000000 360.000000000000000 0.500000000000000 Scaling 6 3 6 3 - y (Sagital) + y (Sagittal) x (Frontal) z (Axial) -100 100 Qt::Horizontal -100 100 Qt::Horizontal -100 100 Qt::Horizontal 0 0 70 0 0 0 -9999.000000000000000 9999.000000000000000 0 0 70 0 0 0 -9999.000000000000000 9999.000000000000000 0 0 70 0 0 0 -9999.000000000000000 9999.000000000000000 5 5 true true true diff --git a/Modules/QtWidgets/include/QmitkRenderWindowMenu.h b/Modules/QtWidgets/include/QmitkRenderWindowMenu.h index 275f0176cd..f0f96cb4db 100644 --- a/Modules/QtWidgets/include/QmitkRenderWindowMenu.h +++ b/Modules/QtWidgets/include/QmitkRenderWindowMenu.h @@ -1,194 +1,194 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef QMITKRENDERWINDOWMENU_H #define QMITKRENDERWINDOWMENU_H // mitk qtwidgets module #include "MitkQtWidgetsExports.h" #include "QmitkMultiWidgetLayoutManager.h" // mitk core #include // qt #include #include #include #include #include #include #include #include /** * \ingroup QmitkModule * \brief The QmitkRenderWindowMenu is a popup Widget which shows * up when the mouse cursor enter a QmitkRenderWindow. * The Menu Widget is located in the right top corner of each * RenderWindow. It includes different settings. For example * the layout design can be changed with the setting button. Switching * between full-screen mode and layout design can be done * with the full-screen button. * The popup Widget can be deactivated with ActivateMenuWidget(false) in * QmitkRenderWindow. * * \sa QmitkRenderWindow * */ class MITKQTWIDGETS_EXPORT QmitkRenderWindowMenu : public QWidget { Q_OBJECT public: using LayoutIndex = mitk::BaseRenderer::ViewDirection; using LayoutDesign = QmitkMultiWidgetLayoutManager::LayoutDesign; QmitkRenderWindowMenu(QWidget *parent = nullptr, Qt::WindowFlags f = nullptr, mitk::BaseRenderer *b = nullptr); ~QmitkRenderWindowMenu() override; /*! Return visibility of settings menu. The menu is connected with m_SettingsButton and includes layout direction (axial, coronal .. ) and layout design (standard layout, 2D images top, 3D bottom ... ). */ bool GetSettingsMenuVisibilty() { if (m_LayoutActionsMenu == nullptr) return false; else return m_LayoutActionsMenu->isVisible(); } - /*! Set layout index. Defines layout direction (axial, coronal, sagital or threeD) of the parent. */ + /*! Set layout index. Defines layout direction (axial, coronal, sagittal or threeD) of the parent. */ void SetLayoutIndex(LayoutIndex layoutIndex); - /*! Return layout direction of parent (axial, coronal, sagital or threeD) */ + /*! Return layout direction of parent (axial, coronal, sagittal or threeD) */ LayoutIndex GetLayoutIndex() { return m_Layout; } /*! Update list of layout design (standard layout, 2D images top, 3D bottom ..). Set action of current layout design to disable and all other to enable. */ void UpdateLayoutDesignList(LayoutDesign layoutDesign); void UpdateCrosshairVisibility(bool visible); void UpdateCrosshairRotationMode(int mode); /*! Move menu widget to correct position (right upper corner). E.g. it is necessary when the full-screen mode is activated.*/ void MoveWidgetToCorrectPos(); void ShowMenu(); void HideMenu(); protected: /*! Reimplemented from QWidget. The paint event is a request to repaint all or part of a widget.*/ void paintEvent(QPaintEvent *event) override; void CreateMenuWidget(); /*! Create settings menu which contains layout direction and the different layout designs. */ void CreateSettingsWidget(); /*! Change Icon of full-screen button depending on full-screen mode. */ void ChangeFullScreenIcon(); Q_SIGNALS: void ResetView(); // == "global reinit" void CrosshairVisibilityChanged(bool); // \brief int parameters are enum from QmitkStdMultiWidget void CrosshairRotationModeChanged(int); /*! emit signal, when layout design changed by the setting menu.*/ void LayoutDesignChanged(LayoutDesign layoutDesign); protected Q_SLOTS: /// this function is continuously called by a timer /// to do the auto rotation void AutoRotateNextStep(); /// this function is invoked when the auto-rotate action /// is clicked void OnAutoRotationActionTriggered(); void OnTSNumChanged(int); void OnCrosshairMenuAboutToShow(); void OnCrosshairVisibilityChanged(bool); void OnCrosshairRotationModeSelected(QAction *); /*! slot for activating/deactivating the full-screen mode. The slot is connected to the clicked() event of m_FullScreenButton. Activating the full-screen maximize the current widget, deactivating restore If layout design changed by the settings menu, the full-Screen mode is automatically switched to false. */ void OnFullScreenButton(bool checked); /*! Slot for opening setting menu. The slot is connected to the clicked() event of m_SettingsButton. The settings menu includes different layout directions (axial, coronal, sagittal and 3D) as well all layout design (standard layout, 2D images top, 3D bottom ..)*/ void OnLayoutDesignButton(bool checked); void OnSetLayout(LayoutDesign layoutDesign); protected: QToolButton* m_CrosshairModeButton; QToolButton* m_FullScreenButton; QToolButton* m_LayoutDesignButton; QMenu* m_LayoutActionsMenu; QAction* m_DefaultLayoutAction; QAction* m_All2DTop3DBottomLayoutAction; QAction* m_All2DLeft3DRightLayoutAction; QAction* m_OneBigLayoutAction; QAction* m_Only2DHorizontalLayoutAction; QAction* m_Only2DVerticalLayoutAction; QAction* m_OneTop3DBottomLayoutAction; QAction* m_OneLeft3DRightLayoutAction; QAction* m_AllHorizontalLayoutAction; QAction* m_AllVerticalLayoutAction; QAction* m_RemoveOneLayoutAction; QLabel *m_TSLabel; QMenu *m_CrosshairMenu; /*! Flag if full-screen mode is activated or deactivated. */ bool m_FullScreenMode; private: mitk::BaseRenderer::Pointer m_Renderer; QTimer* m_AutoRotationTimer; QWidget *m_Parent; //memory because mode is set to default for slice num = 1 static unsigned int m_DefaultThickMode; int m_CrosshairRotationMode; bool m_CrosshairVisibility; LayoutIndex m_Layout; LayoutDesign m_LayoutDesign; LayoutDesign m_OldLayoutDesign; }; #endif // QMITKRENDERWINDOWMENU_H diff --git a/Modules/Segmentation/SegmentationUtilities/MorphologicalOperations/mitkMorphologicalOperations.cpp b/Modules/Segmentation/SegmentationUtilities/MorphologicalOperations/mitkMorphologicalOperations.cpp index 7f011e2a9e..c4a9b811b1 100644 --- a/Modules/Segmentation/SegmentationUtilities/MorphologicalOperations/mitkMorphologicalOperations.cpp +++ b/Modules/Segmentation/SegmentationUtilities/MorphologicalOperations/mitkMorphologicalOperations.cpp @@ -1,414 +1,414 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkMorphologicalOperations.h" #include #include #include #include #include #include #include #include #include #include #include void mitk::MorphologicalOperations::Closing(mitk::Image::Pointer &image, int factor, mitk::MorphologicalOperations::StructuralElementType structuralElement) { MITK_INFO << "Start Closing..."; auto timeSteps = static_cast(image->GetTimeSteps()); if (timeSteps > 1) { mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); timeSelector->SetInput(image); for (int t = 0; t < timeSteps; ++t) { MITK_INFO << " Processing time step " << t; timeSelector->SetTimeNr(t); timeSelector->Update(); mitk::Image::Pointer img3D = timeSelector->GetOutput(); img3D->DisconnectPipeline(); AccessByItk_3(img3D, itkClosing, img3D, factor, structuralElement); mitk::ImageReadAccessor accessor(img3D); image->SetVolume(accessor.GetData(), t); } } else { AccessByItk_3(image, itkClosing, image, factor, structuralElement); } MITK_INFO << "Finished Closing"; } void mitk::MorphologicalOperations::Erode(mitk::Image::Pointer &image, int factor, mitk::MorphologicalOperations::StructuralElementType structuralElement) { MITK_INFO << "Start Erode..."; auto timeSteps = static_cast(image->GetTimeSteps()); if (timeSteps > 1) { mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); timeSelector->SetInput(image); for (int t = 0; t < timeSteps; ++t) { MITK_INFO << " Processing time step " << t; timeSelector->SetTimeNr(t); timeSelector->Update(); mitk::Image::Pointer img3D = timeSelector->GetOutput(); img3D->DisconnectPipeline(); AccessByItk_3(img3D, itkErode, img3D, factor, structuralElement); mitk::ImageReadAccessor accessor(img3D); image->SetVolume(accessor.GetData(), t); } } else { AccessByItk_3(image, itkErode, image, factor, structuralElement); } MITK_INFO << "Finished Erode"; } void mitk::MorphologicalOperations::Dilate(mitk::Image::Pointer &image, int factor, mitk::MorphologicalOperations::StructuralElementType structuralElement) { MITK_INFO << "Start Dilate..."; auto timeSteps = static_cast(image->GetTimeSteps()); if (timeSteps > 1) { mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); timeSelector->SetInput(image); for (int t = 0; t < timeSteps; ++t) { MITK_INFO << " Processing time step " << t; timeSelector->SetTimeNr(t); timeSelector->Update(); mitk::Image::Pointer img3D = timeSelector->GetOutput(); img3D->DisconnectPipeline(); AccessByItk_3(img3D, itkDilate, img3D, factor, structuralElement); mitk::ImageReadAccessor accessor(img3D); image->SetVolume(accessor.GetData(), t); } } else { AccessByItk_3(image, itkDilate, image, factor, structuralElement); } MITK_INFO << "Finished Dilate"; } void mitk::MorphologicalOperations::Opening(mitk::Image::Pointer &image, int factor, mitk::MorphologicalOperations::StructuralElementType structuralElement) { MITK_INFO << "Start Opening..."; auto timeSteps = static_cast(image->GetTimeSteps()); if (timeSteps > 1) { mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); timeSelector->SetInput(image); for (int t = 0; t < timeSteps; ++t) { MITK_INFO << " Processing time step " << t; timeSelector->SetTimeNr(t); timeSelector->Update(); mitk::Image::Pointer img3D = timeSelector->GetOutput(); img3D->DisconnectPipeline(); AccessByItk_3(img3D, itkOpening, img3D, factor, structuralElement); mitk::ImageReadAccessor accessor(img3D); image->SetVolume(accessor.GetData(), t); } } else { AccessByItk_3(image, itkOpening, image, factor, structuralElement); } MITK_INFO << "Finished Opening"; } void mitk::MorphologicalOperations::FillHoles(mitk::Image::Pointer &image) { MITK_INFO << "Start FillHole..."; auto timeSteps = static_cast(image->GetTimeSteps()); if (timeSteps > 1) { mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); timeSelector->SetInput(image); for (int t = 0; t < timeSteps; ++t) { MITK_INFO << " Processing time step " << t; timeSelector->SetTimeNr(t); timeSelector->Update(); mitk::Image::Pointer img3D = timeSelector->GetOutput(); img3D->DisconnectPipeline(); AccessByItk_1(img3D, itkFillHoles, img3D); mitk::ImageReadAccessor accessor(img3D); image->SetVolume(accessor.GetData(), t); } } else { AccessByItk_1(image, itkFillHoles, image); } MITK_INFO << "Finished FillHole"; } template void mitk::MorphologicalOperations::itkClosing( itk::Image *sourceImage, mitk::Image::Pointer &resultImage, int factor, mitk::MorphologicalOperations::StructuralElementType structuralElementFlags) { typedef itk::Image ImageType; typedef itk::BinaryBallStructuringElement BallType; typedef itk::BinaryCrossStructuringElement CrossType; typedef typename itk::BinaryMorphologicalClosingImageFilter BallClosingFilterType; typedef typename itk::BinaryMorphologicalClosingImageFilter CrossClosingFilterType; - if (structuralElementFlags & (Ball_Axial | Ball_Coronal | Ball_Sagital)) + if (structuralElementFlags & (Ball_Axial | Ball_Coronal | Ball_Sagittal)) { BallType ball = CreateStructuringElement(structuralElementFlags, factor); typename BallClosingFilterType::Pointer closingFilter = BallClosingFilterType::New(); closingFilter->SetKernel(ball); closingFilter->SetInput(sourceImage); closingFilter->SetForegroundValue(1); closingFilter->UpdateLargestPossibleRegion(); mitk::CastToMitkImage(closingFilter->GetOutput(), resultImage); } else { CrossType cross = CreateStructuringElement(structuralElementFlags, factor); typename CrossClosingFilterType::Pointer closingFilter = CrossClosingFilterType::New(); closingFilter->SetKernel(cross); closingFilter->SetInput(sourceImage); closingFilter->SetForegroundValue(1); closingFilter->UpdateLargestPossibleRegion(); mitk::CastToMitkImage(closingFilter->GetOutput(), resultImage); } } template void mitk::MorphologicalOperations::itkErode( itk::Image *sourceImage, mitk::Image::Pointer &resultImage, int factor, mitk::MorphologicalOperations::StructuralElementType structuralElementFlags) { typedef itk::Image ImageType; typedef itk::BinaryBallStructuringElement BallType; typedef itk::BinaryCrossStructuringElement CrossType; typedef typename itk::BinaryErodeImageFilter BallErodeFilterType; typedef typename itk::BinaryErodeImageFilter CrossErodeFilterType; - if (structuralElementFlags & (Ball_Axial | Ball_Coronal | Ball_Sagital)) + if (structuralElementFlags & (Ball_Axial | Ball_Coronal | Ball_Sagittal)) { BallType ball = CreateStructuringElement(structuralElementFlags, factor); typename BallErodeFilterType::Pointer erodeFilter = BallErodeFilterType::New(); erodeFilter->SetKernel(ball); erodeFilter->SetInput(sourceImage); erodeFilter->SetErodeValue(1); erodeFilter->UpdateLargestPossibleRegion(); mitk::CastToMitkImage(erodeFilter->GetOutput(), resultImage); } else { CrossType cross = CreateStructuringElement(structuralElementFlags, factor); typename CrossErodeFilterType::Pointer erodeFilter = CrossErodeFilterType::New(); erodeFilter->SetKernel(cross); erodeFilter->SetInput(sourceImage); erodeFilter->SetErodeValue(1); erodeFilter->UpdateLargestPossibleRegion(); mitk::CastToMitkImage(erodeFilter->GetOutput(), resultImage); } } template void mitk::MorphologicalOperations::itkDilate( itk::Image *sourceImage, mitk::Image::Pointer &resultImage, int factor, mitk::MorphologicalOperations::StructuralElementType structuralElementFlags) { typedef itk::Image ImageType; typedef itk::BinaryBallStructuringElement BallType; typedef itk::BinaryCrossStructuringElement CrossType; typedef typename itk::BinaryDilateImageFilter BallDilateFilterType; typedef typename itk::BinaryDilateImageFilter CrossDilateFilterType; - if (structuralElementFlags & (Ball_Axial | Ball_Coronal | Ball_Sagital)) + if (structuralElementFlags & (Ball_Axial | Ball_Coronal | Ball_Sagittal)) { BallType ball = CreateStructuringElement(structuralElementFlags, factor); typename BallDilateFilterType::Pointer dilateFilter = BallDilateFilterType::New(); dilateFilter->SetKernel(ball); dilateFilter->SetInput(sourceImage); dilateFilter->SetDilateValue(1); dilateFilter->UpdateLargestPossibleRegion(); mitk::CastToMitkImage(dilateFilter->GetOutput(), resultImage); } else { CrossType cross = CreateStructuringElement(structuralElementFlags, factor); typename CrossDilateFilterType::Pointer dilateFilter = CrossDilateFilterType::New(); dilateFilter->SetKernel(cross); dilateFilter->SetInput(sourceImage); dilateFilter->SetDilateValue(1); dilateFilter->UpdateLargestPossibleRegion(); mitk::CastToMitkImage(dilateFilter->GetOutput(), resultImage); } } template void mitk::MorphologicalOperations::itkOpening( itk::Image *sourceImage, mitk::Image::Pointer &resultImage, int factor, mitk::MorphologicalOperations::StructuralElementType structuralElementFlags) { typedef itk::Image ImageType; typedef itk::BinaryBallStructuringElement BallType; typedef itk::BinaryCrossStructuringElement CrossType; typedef typename itk::BinaryMorphologicalOpeningImageFilter BallOpeningFiltertype; typedef typename itk::BinaryMorphologicalOpeningImageFilter CrossOpeningFiltertype; - if (structuralElementFlags & (Ball_Axial | Ball_Coronal | Ball_Sagital)) + if (structuralElementFlags & (Ball_Axial | Ball_Coronal | Ball_Sagittal)) { BallType ball = CreateStructuringElement(structuralElementFlags, factor); typename BallOpeningFiltertype::Pointer openingFilter = BallOpeningFiltertype::New(); openingFilter->SetKernel(ball); openingFilter->SetInput(sourceImage); openingFilter->SetForegroundValue(1); openingFilter->SetBackgroundValue(0); openingFilter->UpdateLargestPossibleRegion(); mitk::CastToMitkImage(openingFilter->GetOutput(), resultImage); } else { CrossType cross = CreateStructuringElement(structuralElementFlags, factor); typename CrossOpeningFiltertype::Pointer openingFilter = CrossOpeningFiltertype::New(); openingFilter->SetKernel(cross); openingFilter->SetInput(sourceImage); openingFilter->SetForegroundValue(1); openingFilter->SetBackgroundValue(0); openingFilter->UpdateLargestPossibleRegion(); mitk::CastToMitkImage(openingFilter->GetOutput(), resultImage); } } template void mitk::MorphologicalOperations::itkFillHoles(itk::Image *sourceImage, mitk::Image::Pointer &resultImage) { typedef itk::Image ImageType; typedef typename itk::BinaryFillholeImageFilter FillHoleFilterType; typename FillHoleFilterType::Pointer fillHoleFilter = FillHoleFilterType::New(); fillHoleFilter->SetInput(sourceImage); fillHoleFilter->SetForegroundValue(1); fillHoleFilter->UpdateLargestPossibleRegion(); mitk::CastToMitkImage(fillHoleFilter->GetOutput(), resultImage); } template TStructuringElement mitk::MorphologicalOperations::CreateStructuringElement(StructuralElementType structuralElementFlag, int factor) { TStructuringElement strElem; typename TStructuringElement::SizeType size; size.Fill(0); switch (structuralElementFlag) { case Ball_Axial: case Cross_Axial: size.SetElement(0, factor); size.SetElement(1, factor); break; case Ball_Coronal: case Cross_Coronal: size.SetElement(0, factor); size.SetElement(2, factor); break; - case Ball_Sagital: - case Cross_Sagital: + case Ball_Sagittal: + case Cross_Sagittal: size.SetElement(1, factor); size.SetElement(2, factor); break; case Ball: case Cross: size.Fill(factor); break; } strElem.SetRadius(size); strElem.CreateStructuringElement(); return strElem; } diff --git a/Modules/Segmentation/SegmentationUtilities/MorphologicalOperations/mitkMorphologicalOperations.h b/Modules/Segmentation/SegmentationUtilities/MorphologicalOperations/mitkMorphologicalOperations.h index d5c7ebe3d6..6ebef0c35a 100644 --- a/Modules/Segmentation/SegmentationUtilities/MorphologicalOperations/mitkMorphologicalOperations.h +++ b/Modules/Segmentation/SegmentationUtilities/MorphologicalOperations/mitkMorphologicalOperations.h @@ -1,89 +1,89 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef mitkMorphologicalOperations_h #define mitkMorphologicalOperations_h #include #include namespace mitk { /** \brief Encapsulates several morphological operations that can be performed on segmentations. */ class MITKSEGMENTATION_EXPORT MorphologicalOperations { public: enum StructuralElementType { Ball = 7, Ball_Axial = 1, - Ball_Sagital = 2, + Ball_Sagittal = 2, Ball_Coronal = 4, Cross = 56, Cross_Axial = 8, - Cross_Sagital = 16, + Cross_Sagittal = 16, Cross_Coronal = 32 }; ///@{ /** \brief Perform morphological operation on 2D, 3D or 3D+t segmentation. */ static void Closing(mitk::Image::Pointer &image, int factor, StructuralElementType structuralElement); static void Erode(mitk::Image::Pointer &image, int factor, StructuralElementType structuralElement); static void Dilate(mitk::Image::Pointer &image, int factor, StructuralElementType structuralElement); static void Opening(mitk::Image::Pointer &image, int factor, StructuralElementType structuralElement); static void FillHoles(mitk::Image::Pointer &image); ///@} private: MorphologicalOperations(); template static TStructuringElement CreateStructuringElement(StructuralElementType structuralElementFlag, int factor); ///@{ /** \brief Perform morphological operation by using corresponding ITK filter. */ template static void itkClosing(itk::Image *sourceImage, mitk::Image::Pointer &resultImage, int factor, StructuralElementType structuralElement); template static void itkErode(itk::Image *sourceImage, mitk::Image::Pointer &resultImage, int factor, StructuralElementType structuralElement); template static void itkDilate(itk::Image *sourceImage, mitk::Image::Pointer &resultImage, int factor, StructuralElementType structuralElement); template static void itkOpening(itk::Image *sourceImage, mitk::Image::Pointer &resultImage, int factor, StructuralElementType structuralElement); template static void itkFillHoles(itk::Image *sourceImage, mitk::Image::Pointer &resultImage); ///@} }; } #endif diff --git a/Plugins/org.mitk.gui.qt.segmentation/src/internal/SegmentationUtilities/MorphologicalOperations/QmitkMorphologicalOperationsWidget.cpp b/Plugins/org.mitk.gui.qt.segmentation/src/internal/SegmentationUtilities/MorphologicalOperations/QmitkMorphologicalOperationsWidget.cpp index d67b951f87..5a15febb83 100644 --- a/Plugins/org.mitk.gui.qt.segmentation/src/internal/SegmentationUtilities/MorphologicalOperations/QmitkMorphologicalOperationsWidget.cpp +++ b/Plugins/org.mitk.gui.qt.segmentation/src/internal/SegmentationUtilities/MorphologicalOperations/QmitkMorphologicalOperationsWidget.cpp @@ -1,251 +1,251 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "QmitkMorphologicalOperationsWidget.h" #include #include #include static const char* const HelpText = "Select a segmentation above"; QmitkMorphologicalOperationsWidget::QmitkMorphologicalOperationsWidget(mitk::SliceNavigationController* timeNavigationController, QWidget* parent) : QmitkSegmentationUtilityWidget(timeNavigationController, parent) { m_Controls.setupUi(this); m_Controls.dataSelectionWidget->AddDataSelection(QmitkDataSelectionWidget::SegmentationPredicate); m_Controls.dataSelectionWidget->SetHelpText(HelpText); connect(m_Controls.btnClosing, SIGNAL(clicked()), this, SLOT(OnClosingButtonClicked())); connect(m_Controls.btnOpening, SIGNAL(clicked()), this, SLOT(OnOpeningButtonClicked())); connect(m_Controls.btnDilatation, SIGNAL(clicked()), this, SLOT(OnDilatationButtonClicked())); connect(m_Controls.btnErosion, SIGNAL(clicked()), this, SLOT(OnErosionButtonClicked())); connect(m_Controls.btnFillHoles, SIGNAL(clicked()), this, SLOT(OnFillHolesButtonClicked())); connect(m_Controls.radioButtonMorphoCross, SIGNAL(clicked()), this, SLOT(OnRadioButtonsClicked())); connect(m_Controls.radioButtonMorphoBall, SIGNAL(clicked()), this, SLOT(OnRadioButtonsClicked())); connect(m_Controls.dataSelectionWidget, SIGNAL(SelectionChanged(unsigned int, const mitk::DataNode*)), this, SLOT(OnSelectionChanged(unsigned int, const mitk::DataNode*))); if (m_Controls.dataSelectionWidget->GetSelection(0).IsNotNull()) this->OnSelectionChanged(0, m_Controls.dataSelectionWidget->GetSelection(0)); } QmitkMorphologicalOperationsWidget::~QmitkMorphologicalOperationsWidget() { } void QmitkMorphologicalOperationsWidget::OnSelectionChanged(unsigned int, const mitk::DataNode*) { QmitkDataSelectionWidget* dataSelectionWidget = m_Controls.dataSelectionWidget; mitk::DataNode::Pointer node = dataSelectionWidget->GetSelection(0); if (node.IsNotNull()) { m_Controls.dataSelectionWidget->SetHelpText(""); this->EnableButtons(true); } else { m_Controls.dataSelectionWidget->SetHelpText(HelpText); this->EnableButtons(false); } } void QmitkMorphologicalOperationsWidget::EnableButtons(bool enable) { m_Controls.btnClosing->setEnabled(enable); m_Controls.btnDilatation->setEnabled(enable); m_Controls.btnErosion->setEnabled(enable); m_Controls.btnFillHoles->setEnabled(enable); m_Controls.btnOpening->setEnabled(enable); } void QmitkMorphologicalOperationsWidget::OnRadioButtonsClicked() { bool enable = m_Controls.radioButtonMorphoBall->isChecked(); m_Controls.sliderMorphFactor->setEnabled(enable); m_Controls.spinBoxMorphFactor->setEnabled(enable); } void QmitkMorphologicalOperationsWidget::OnClosingButtonClicked() { QApplication::setOverrideCursor(QCursor(Qt::BusyCursor)); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QmitkDataSelectionWidget* dataSelectionWidget = m_Controls.dataSelectionWidget; mitk::DataNode::Pointer node = dataSelectionWidget->GetSelection(0); mitk::Image::Pointer image = static_cast(node->GetData()); mitk::MorphologicalOperations::StructuralElementType structuralElement = CreateStructerElement_UI(); try { int factor = m_Controls.spinBoxMorphFactor->isEnabled() ? m_Controls.spinBoxMorphFactor->value() : 1; mitk::MorphologicalOperations::Closing(image, factor, structuralElement); } catch (const itk::ExceptionObject& exception) { MITK_WARN << "Exception caught: " << exception.GetDescription(); QApplication::restoreOverrideCursor(); return; } node->SetData(image); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QApplication::restoreOverrideCursor(); } void QmitkMorphologicalOperationsWidget::OnOpeningButtonClicked() { QApplication::setOverrideCursor(QCursor(Qt::BusyCursor)); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QmitkDataSelectionWidget* dataSelectionWidget = m_Controls.dataSelectionWidget; mitk::DataNode::Pointer node = dataSelectionWidget->GetSelection(0); mitk::Image::Pointer image = static_cast(node->GetData()); mitk::MorphologicalOperations::StructuralElementType structuralElement = CreateStructerElement_UI(); try { int factor = m_Controls.spinBoxMorphFactor->isEnabled() ? m_Controls.spinBoxMorphFactor->value() : 1; mitk::MorphologicalOperations::Opening(image, factor, structuralElement); } catch (const itk::ExceptionObject& exception) { MITK_WARN << "Exception caught: " << exception.GetDescription(); QApplication::restoreOverrideCursor(); return; } node->SetData(image); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QApplication::restoreOverrideCursor(); } void QmitkMorphologicalOperationsWidget::OnDilatationButtonClicked() { QApplication::setOverrideCursor(QCursor(Qt::BusyCursor)); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QmitkDataSelectionWidget* dataSelectionWidget = m_Controls.dataSelectionWidget; mitk::DataNode::Pointer node = dataSelectionWidget->GetSelection(0); mitk::Image::Pointer image = static_cast(node->GetData()); mitk::MorphologicalOperations::StructuralElementType structuralElement = this->CreateStructerElement_UI(); try { int factor = m_Controls.spinBoxMorphFactor->isEnabled() ? m_Controls.spinBoxMorphFactor->value() : 1; mitk::MorphologicalOperations::Dilate(image, factor, structuralElement); } catch (const itk::ExceptionObject& exception) { MITK_WARN << "Exception caught: " << exception.GetDescription(); QApplication::restoreOverrideCursor(); return; } node->SetData(image); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QApplication::restoreOverrideCursor(); } void QmitkMorphologicalOperationsWidget::OnErosionButtonClicked() { QApplication::setOverrideCursor(QCursor(Qt::BusyCursor)); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QmitkDataSelectionWidget* dataSelectionWidget = m_Controls.dataSelectionWidget; mitk::DataNode::Pointer node = dataSelectionWidget->GetSelection(0); mitk::Image::Pointer image = static_cast(node->GetData()); mitk::MorphologicalOperations::StructuralElementType structuralElement = CreateStructerElement_UI(); try { int factor = m_Controls.spinBoxMorphFactor->isEnabled() ? m_Controls.spinBoxMorphFactor->value() : 1; mitk::MorphologicalOperations::Erode(image, factor, structuralElement); } catch (const itk::ExceptionObject& exception) { MITK_WARN << "Exception caught: " << exception.GetDescription(); QApplication::restoreOverrideCursor(); return; } node->SetData(image); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QApplication::restoreOverrideCursor(); } void QmitkMorphologicalOperationsWidget::OnFillHolesButtonClicked() { QApplication::setOverrideCursor(QCursor(Qt::BusyCursor)); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QmitkDataSelectionWidget* dataSelectionWidget = m_Controls.dataSelectionWidget; mitk::DataNode::Pointer node = dataSelectionWidget->GetSelection(0); mitk::Image::Pointer image = static_cast(node->GetData()); try { mitk::MorphologicalOperations::FillHoles(image); } catch (const itk::ExceptionObject& exception) { MITK_WARN << "Exception caught: " << exception.GetDescription(); QApplication::restoreOverrideCursor(); return; } node->SetData(image); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QApplication::restoreOverrideCursor(); } mitk::MorphologicalOperations::StructuralElementType QmitkMorphologicalOperationsWidget::CreateStructerElement_UI() { bool ball = m_Controls.radioButtonMorphoBall->isChecked(); int accum_flag = 0; if(ball){ if(m_Controls.planeSelectionComboBox->currentIndex() == 0) accum_flag = mitk::MorphologicalOperations::Ball; // 3D Operation if(m_Controls.planeSelectionComboBox->currentIndex() == 1) accum_flag = mitk::MorphologicalOperations::Ball_Axial; // 2D Operation - Axial plane - if(m_Controls.planeSelectionComboBox->currentIndex() == 2) accum_flag = mitk::MorphologicalOperations::Ball_Sagital; // 2D Operation - Sagital plane + if(m_Controls.planeSelectionComboBox->currentIndex() == 2) accum_flag = mitk::MorphologicalOperations::Ball_Sagittal; // 2D Operation - Sagittal plane if(m_Controls.planeSelectionComboBox->currentIndex() == 3) accum_flag = mitk::MorphologicalOperations::Ball_Coronal; // 2D Operation - Coronal plane }else{ if(m_Controls.planeSelectionComboBox->currentIndex() == 0) accum_flag = mitk::MorphologicalOperations::Cross; if(m_Controls.planeSelectionComboBox->currentIndex() == 1) accum_flag = mitk::MorphologicalOperations::Cross_Axial; - if(m_Controls.planeSelectionComboBox->currentIndex() == 2) accum_flag = mitk::MorphologicalOperations::Cross_Sagital; + if(m_Controls.planeSelectionComboBox->currentIndex() == 2) accum_flag = mitk::MorphologicalOperations::Cross_Sagittal; if(m_Controls.planeSelectionComboBox->currentIndex() == 3) accum_flag = mitk::MorphologicalOperations::Cross_Coronal; } return (mitk::MorphologicalOperations::StructuralElementType)accum_flag; } diff --git a/Plugins/org.mitk.gui.qt.segmentation/src/internal/SegmentationUtilities/MorphologicalOperations/QmitkMorphologicalOperationsWidgetControls.ui b/Plugins/org.mitk.gui.qt.segmentation/src/internal/SegmentationUtilities/MorphologicalOperations/QmitkMorphologicalOperationsWidgetControls.ui index 0d1c003d6c..b328a3b7ad 100644 --- a/Plugins/org.mitk.gui.qt.segmentation/src/internal/SegmentationUtilities/MorphologicalOperations/QmitkMorphologicalOperationsWidgetControls.ui +++ b/Plugins/org.mitk.gui.qt.segmentation/src/internal/SegmentationUtilities/MorphologicalOperations/QmitkMorphologicalOperationsWidgetControls.ui @@ -1,323 +1,323 @@ QmitkMorphologicalOperationsWidgetControls 0 0 184 377 0 0 Structuring Element Ball true Cross 3D Operation 2D Operation - Axial - 2D Operation - Sagital + 2D Operation - Sagittal 2D Operation - Coronal Radius 1 20 1 Qt::Horizontal 1 20 false 0 0 Dilation :/SegmentationUtilities/MorphologicalOperations/Dilate_48x48.png:/SegmentationUtilities/MorphologicalOperations/Dilate_48x48.png 32 32 Qt::ToolButtonTextUnderIcon false 0 0 Erosion :/SegmentationUtilities/MorphologicalOperations/Erode_48x48.png:/SegmentationUtilities/MorphologicalOperations/Erode_48x48.png 32 32 Qt::ToolButtonTextUnderIcon false 0 0 Closing :/SegmentationUtilities/MorphologicalOperations/Closing_48x48.png:/SegmentationUtilities/MorphologicalOperations/Closing_48x48.png 32 32 Qt::ToolButtonTextUnderIcon false 0 0 Opening :/SegmentationUtilities/MorphologicalOperations/Opening_48x48.png:/SegmentationUtilities/MorphologicalOperations/Opening_48x48.png 32 32 Qt::ToolButtonTextUnderIcon false 0 0 Globally fills holes in segmentation (structuring element and radius not required) Fill Holes :/SegmentationUtilities/MorphologicalOperations/FillHoles_48x48.png:/SegmentationUtilities/MorphologicalOperations/FillHoles_48x48.png 32 32 Qt::ToolButtonTextUnderIcon Qt::Vertical 20 40 QmitkDataSelectionWidget QWidget
internal/Common/QmitkDataSelectionWidget.h
1
sliderMorphFactor valueChanged(int) spinBoxMorphFactor setValue(int) 240 27 766 36 spinBoxMorphFactor valueChanged(int) sliderMorphFactor setValue(int) 784 38 657 38