diff --git a/Core/Code/Algorithms/mitkExtractSliceFilter.cpp b/Core/Code/Algorithms/mitkExtractSliceFilter.cpp index db04901e9e..44b8850f12 100644 --- a/Core/Code/Algorithms/mitkExtractSliceFilter.cpp +++ b/Core/Code/Algorithms/mitkExtractSliceFilter.cpp @@ -1,485 +1,485 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkExtractSliceFilter.h" #include <vtkImageData.h> #include <vtkSmartPointer.h> #include <vtkLinearTransform.h> #include <vtkImageChangeInformation.h> #include <mitkAbstractTransformGeometry.h> #include <vtkGeneralTransform.h> #include <mitkPlaneClipping.h> mitk::ExtractSliceFilter::ExtractSliceFilter(vtkImageReslice* reslicer ){ if(reslicer == NULL){ m_Reslicer = vtkSmartPointer<vtkImageReslice>::New(); } else { m_Reslicer = reslicer; } m_TimeStep = 0; m_Reslicer->ReleaseDataFlagOn(); m_InterpolationMode = ExtractSliceFilter::RESLICE_NEAREST; + m_ResliceTransform = NULL; m_InPlaneResampleExtentByGeometry = false; m_OutPutSpacing = new mitk::ScalarType[2]; m_OutputDimension = 2; m_ZSpacing = 1.0; m_ZMin = 0; m_ZMax = 0; m_VtkOutputRequested = false; } mitk::ExtractSliceFilter::~ExtractSliceFilter(){ + m_ResliceTransform = NULL; m_WorldGeometry = NULL; delete [] m_OutPutSpacing; } void mitk::ExtractSliceFilter::GenerateOutputInformation(){ Superclass::GenerateOutputInformation(); //TODO try figure out how to set the specs of the slice before it is actually extracted /*Image::Pointer output = this->GetOutput(); Image::ConstPointer input = this->GetInput(); if (input.IsNull()) return; unsigned int dimensions[2]; dimensions[0] = m_WorldGeometry->GetExtent(0); dimensions[1] = m_WorldGeometry->GetExtent(1); output->Initialize(input->GetPixelType(), 2, dimensions, 1);*/ } void mitk::ExtractSliceFilter::GenerateInputRequestedRegion(){ //As we want all pixel information fo the image in our plane, the requested region //is set to the largest possible region in the image. //This is needed because an oblique plane has a larger extent then the image //and the in pipeline it is checked via PropagateResquestedRegion(). But the //extent of the slice is actually fitting because it is oblique within the image. ImageToImageFilter::InputImagePointer input = const_cast< ImageToImageFilter::InputImageType* > ( this->GetInput() ); input->SetRequestedRegionToLargestPossibleRegion(); } mitk::ScalarType* mitk::ExtractSliceFilter::GetOutputSpacing(){ return m_OutPutSpacing; } void mitk::ExtractSliceFilter::GenerateData(){ mitk::Image *input = const_cast< mitk::Image * >( this->GetInput() ); if (!input) { MITK_ERROR << "mitk::ExtractSliceFilter: No input image available. Please set the input!" << std::endl; itkExceptionMacro("mitk::ExtractSliceFilter: No input image available. Please set the input!"); return; } - - /*Set the transform of the image to be applied to the resampling grid. - Note (taken from vtkImageReslice documentation): - Applying a transform to the resampling grid (which lies in the output coordinate system) - is equivalent to applying the inverse of that transform to the input volume.*/ this->m_InputImageGeometry = input->GetTimeSlicedGeometry()->GetGeometry3D( m_TimeStep ); - if(m_InputImageGeometry.IsNotNull()) - m_Reslicer->SetResliceTransform(m_InputImageGeometry->GetVtkTransform()->GetLinearInverse()); - if(!m_WorldGeometry) { MITK_ERROR << "mitk::ExtractSliceFilter: No Geometry for reslicing available." << std::endl; itkExceptionMacro("mitk::ExtractSliceFilter: No Geometry for reslicing available."); return; } const TimeSlicedGeometry *inputTimeGeometry = this->GetInput()->GetTimeSlicedGeometry(); if ( ( inputTimeGeometry == NULL ) || ( inputTimeGeometry->GetTimeSteps() == 0 ) ) { itkWarningMacro(<<"Error reading input image TimeSlicedGeometry."); return; } // is it a valid timeStep? if ( inputTimeGeometry->IsValidTime( m_TimeStep ) == false ) { itkWarningMacro(<<"This is not a valid timestep: "<< m_TimeStep ); return; } // check if there is something to display. if ( ! input->IsVolumeSet( m_TimeStep ) ) { itkWarningMacro(<<"No volume data existent at given timestep "<< m_TimeStep ); return; } /*================#BEGIN setup vtkImageRslice properties================*/ Point3D origin; Vector3D right, bottom, normal; double widthInMM, heightInMM; Vector2D extent; const PlaneGeometry* planeGeometry = dynamic_cast<const PlaneGeometry*>(m_WorldGeometry); if ( planeGeometry != NULL ) { //if the worldGeomatry is a PlaneGeometry everthing is straight forward origin = planeGeometry->GetOrigin(); right = planeGeometry->GetAxisVector( 0 ); bottom = planeGeometry->GetAxisVector( 1 ); normal = planeGeometry->GetNormal(); if ( m_InPlaneResampleExtentByGeometry ) { // Resampling grid corresponds to the current world geometry. This // means that the spacing of the output 2D image depends on the // currently selected world geometry, and *not* on the image itself. extent[0] = m_WorldGeometry->GetExtent( 0 ); extent[1] = m_WorldGeometry->GetExtent( 1 ); } else { // Resampling grid corresponds to the input geometry. This means that // the spacing of the output 2D image is directly derived from the // associated input image, regardless of the currently selected world // geometry. Vector3D rightInIndex, bottomInIndex; inputTimeGeometry->GetGeometry3D( m_TimeStep )->WorldToIndex( right, rightInIndex ); inputTimeGeometry->GetGeometry3D( m_TimeStep )->WorldToIndex( bottom, bottomInIndex ); extent[0] = rightInIndex.GetNorm(); extent[1] = bottomInIndex.GetNorm(); } // Get the extent of the current world geometry and calculate resampling // spacing therefrom. widthInMM = m_WorldGeometry->GetExtentInMM( 0 ); heightInMM = m_WorldGeometry->GetExtentInMM( 1 ); m_OutPutSpacing[0] = widthInMM / extent[0]; m_OutPutSpacing[1] = heightInMM / extent[1]; right.Normalize(); bottom.Normalize(); normal.Normalize(); /* * Transform the origin to center based coordinates. * Note: * The worldGeometry surrouding the image is no imageGeometry. So the worldGeometry * has its origin at the corner of the voxel and needs to be transformed. */ if( !(m_WorldGeometry->GetImageGeometry())) { origin += right * ( m_OutPutSpacing[0] * 0.5 ); origin += bottom * ( m_OutPutSpacing[1] * 0.5 ); } + /*Set a transform to be applied to the resampling grid from given geometry. + Note: Applying a transform to the resampling grid (which lies in the output coordinate system) + is equivalent to applying the inverse of that transform to the input volume.*/ + if(m_InputImageGeometry.IsNotNull()) + m_Reslicer->SetResliceTransform(m_InputImageGeometry->GetVtkTransform()->GetLinearInverse()); + // Set background level to TRANSLUCENT (see Geometry2DDataVtkMapper3D), // else the background of the image turns out gray m_Reslicer->SetBackgroundLevel( -32768 ); } else{ //Code for curved planes, mostly taken 1:1 from imageVtkMapper2D and not tested yet. // Do we have an AbstractTransformGeometry? // This is the case for AbstractTransformGeometry's (e.g. a ThinPlateSplineCurvedGeometry ) const mitk::AbstractTransformGeometry* abstractGeometry = dynamic_cast< const AbstractTransformGeometry * >(m_WorldGeometry); if(abstractGeometry != NULL) { extent[0] = abstractGeometry->GetParametricExtent(0); extent[1] = abstractGeometry->GetParametricExtent(1); widthInMM = abstractGeometry->GetParametricExtentInMM(0); heightInMM = abstractGeometry->GetParametricExtentInMM(1); m_OutPutSpacing[0] = widthInMM / extent[0]; m_OutPutSpacing[1] = heightInMM / extent[1]; origin = abstractGeometry->GetPlane()->GetOrigin(); right = abstractGeometry->GetPlane()->GetAxisVector(0); right.Normalize(); bottom = abstractGeometry->GetPlane()->GetAxisVector(1); bottom.Normalize(); normal = abstractGeometry->GetPlane()->GetNormal(); normal.Normalize(); // Use a combination of the InputGeometry *and* the possible non-rigid // AbstractTransformGeometry for reslicing the 3D Image vtkSmartPointer<vtkGeneralTransform> composedResliceTransform = vtkSmartPointer<vtkGeneralTransform>::New(); composedResliceTransform->Identity(); composedResliceTransform->Concatenate( inputTimeGeometry->GetGeometry3D( m_TimeStep )->GetVtkTransform()->GetLinearInverse() ); composedResliceTransform->Concatenate( abstractGeometry->GetVtkAbstractTransform() ); m_Reslicer->SetResliceTransform( composedResliceTransform ); // Set background level to BLACK instead of translucent, to avoid // boundary artifacts (see Geometry2DDataVtkMapper3D) m_Reslicer->SetBackgroundLevel( -1023 ); } else { itkExceptionMacro("mitk::ExtractSliceFilter: No fitting geometry for reslice axis!"); return; } } if(m_InputImageGeometry.IsNotNull()){ //if the resliceTransform is set the reslice axis are recalculated. //Thus the geometry information is not fitting. Therefor a unitSpacingFilter //is used to set up a global spacing of 1 and compensate the transform. vtkSmartPointer<vtkImageChangeInformation> unitSpacingImageFilter = vtkSmartPointer<vtkImageChangeInformation>::New() ; unitSpacingImageFilter->ReleaseDataFlagOn(); unitSpacingImageFilter->SetOutputSpacing( 1.0, 1.0, 1.0 ); unitSpacingImageFilter->SetInput( input->GetVtkImageData(m_TimeStep) ); m_Reslicer->SetInput(unitSpacingImageFilter->GetOutput() ); } else { //if no tranform is set the image can be used directly m_Reslicer->SetInput(input->GetVtkImageData(m_TimeStep)); } /*setup the plane where vktImageReslice extracts the slice*/ //ResliceAxesOrigin is the ancor point of the plane double originInVtk[3]; itk2vtk(origin, originInVtk); m_Reslicer->SetResliceAxesOrigin(originInVtk); //the cosines define the plane: x and y are the direction vectors, n is the planes normal //this specifies a matrix 3x3 // x1 y1 n1 // x2 y2 n2 // x3 y3 n3 double cosines[9]; vnl2vtk(right.GetVnlVector(), cosines);//x vnl2vtk(bottom.GetVnlVector(), cosines + 3);//y vnl2vtk(normal.GetVnlVector(), cosines + 6);//n m_Reslicer->SetResliceAxesDirectionCosines(cosines); //we only have one slice, not a volume m_Reslicer->SetOutputDimensionality(m_OutputDimension); //set the interpolation mode for slicing switch(this->m_InterpolationMode){ case RESLICE_NEAREST: m_Reslicer->SetInterpolationModeToNearestNeighbor(); break; case RESLICE_LINEAR: m_Reslicer->SetInterpolationModeToLinear(); break; case RESLICE_CUBIC: m_Reslicer->SetInterpolationModeToCubic(); break; default: //the default interpolation used by mitk m_Reslicer->SetInterpolationModeToNearestNeighbor(); } /*========== BEGIN setup extent of the slice ==========*/ int xMin, xMax, yMin, yMax; xMin = yMin = 0; xMax = static_cast< int >( extent[0]); yMax = static_cast< int >( extent[1]); vtkFloatingPointType sliceBounds[6]; if (m_WorldGeometry->GetReferenceGeometry()) { for ( int i = 0; i < 6; ++i ) { sliceBounds[i] = 0.0; } if (this->GetClippedPlaneBounds( m_WorldGeometry->GetReferenceGeometry(), planeGeometry, sliceBounds )) { // Calculate output extent (integer values) xMin = static_cast< int >( sliceBounds[0] / m_OutPutSpacing[0] + 0.5 ); xMax = static_cast< int >( sliceBounds[1] / m_OutPutSpacing[0] + 0.5 ); yMin = static_cast< int >( sliceBounds[2] / m_OutPutSpacing[1] + 0.5 ); yMax = static_cast< int >( sliceBounds[3] / m_OutPutSpacing[1] + 0.5 ); } // ELSE we use the default values } // Set the output extents! First included pixel index and last included pixel index // xMax and yMax are one after the last pixel. so they have to be decremented by 1. // In case we have a 2D image, xMax or yMax might be 0. in this case, do not decrement, but take 0. m_Reslicer->SetOutputExtent(xMin, std::max(0, xMax-1), yMin, std::max(0, yMax-1), m_ZMin, m_ZMax ); /*========== END setup extent of the slice ==========*/ m_Reslicer->SetOutputOrigin( 0.0, 0.0, 0.0 ); m_Reslicer->SetOutputSpacing( m_OutPutSpacing[0], m_OutPutSpacing[1], m_ZSpacing ); //TODO check the following lines, they are responsible wether vtk error outputs appear or not m_Reslicer->UpdateWholeExtent(); //this produces a bad allocation error for 2D images //m_Reslicer->GetOutput()->UpdateInformation(); //m_Reslicer->GetOutput()->SetUpdateExtentToWholeExtent(); //start the pipeline m_Reslicer->Update(); /*================ #END setup vtkImageRslice properties================*/ if(m_VtkOutputRequested){ return; //no converting to mitk //no mitk geometry will be set, as the output is vtkImageData only!!! } else { /*================ #BEGIN Get the slice from vtkImageReslice and convert it to mit::Image================*/ vtkImageData* reslicedImage; reslicedImage = m_Reslicer->GetOutput(); if(!reslicedImage) { itkWarningMacro(<<"Reslicer returned empty image"); return; } mitk::Image::Pointer resultImage = this->GetOutput(); //initialize resultimage with the specs of the vtkImageData object returned from vtkImageReslice if (reslicedImage->GetDataDimension() == 1) { // If original image was 2D, the slice might have an y extent of 0. // Still i want to ensure here that Image is 2D resultImage->Initialize(reslicedImage,1,-1,-1,1); } else { resultImage->Initialize(reslicedImage); } //transfer the voxel data resultImage->SetVolume(reslicedImage->GetScalarPointer()); //set the geometry from current worldgeometry for the reusultimage //this is needed that the image has the correct mitk geometry //the originalGeometry is the Geometry of the result slice // mitk::AffineGeometryFrame3D::Pointer originalGeometryAGF = m_WorldGeometry->Clone(); // Geometry2D::Pointer originalGeometry = dynamic_cast<Geometry2D*>( originalGeometryAGF.GetPointer() ); Geometry2D::Pointer originalGeometry = m_WorldGeometry->Clone(); originalGeometry->GetIndexToWorldTransform()->SetMatrix(m_WorldGeometry->GetIndexToWorldTransform()->GetMatrix()); Point3D sliceOrigin = originalGeometry->GetOrigin(); if( !(m_WorldGeometry->GetImageGeometry())) { //the origin of the worldGeometry is transformed to center based coordinates to be an imageGeometry originalGeometry->ChangeImageGeometryConsideringOriginOffset(true); } /*At this point we have to adjust the geometry because the origin isn't correct. The wrong origin is related to the rotation of the current world geometry plane. This causes errors on transfering world to index coordinates. We just shift the origin in each direction about the amount of the expanding (needed while rotating the plane). */ Vector3D axis0 = originalGeometry->GetAxisVector(0); Vector3D axis1 = originalGeometry->GetAxisVector(1); axis0.Normalize(); axis1.Normalize(); //adapt the origin. Note that for orthogonal planes the minima are '0' and thus the origin stays the same. sliceOrigin += (axis0 * (xMin * m_OutPutSpacing[0])) + (axis1 * (yMin * m_OutPutSpacing[1])); originalGeometry->SetOrigin(sliceOrigin); originalGeometry->Modified(); resultImage->SetGeometry( originalGeometry ); /*the bounds as well as the extent of the worldGeometry are not adapted correctly during crosshair rotation. This is only a quick fix and has to be evaluated. The new bounds are set via the max values of the calcuted slice extent. It will look like [ 0, x, 0, y, 0, 1]. */ mitk::BoundingBox::BoundsArrayType boundsCopy; boundsCopy[0] = boundsCopy[2] = boundsCopy[4] = 0; boundsCopy[5] = 1; boundsCopy[1] = xMax - xMin; boundsCopy[3] = yMax - yMin; resultImage->GetGeometry()->SetBounds(boundsCopy); /*================ #END Get the slice from vtkImageReslice and convert it to mitk Image================*/ } } bool mitk::ExtractSliceFilter::GetClippedPlaneBounds(vtkFloatingPointType bounds[6]){ if(!m_WorldGeometry || !this->GetInput()) return false; return this->GetClippedPlaneBounds(m_WorldGeometry->GetReferenceGeometry(), dynamic_cast< const PlaneGeometry * >( m_WorldGeometry ), bounds); } bool mitk::ExtractSliceFilter::GetClippedPlaneBounds( const Geometry3D *boundingGeometry, const PlaneGeometry *planeGeometry, vtkFloatingPointType *bounds ) { bool b = mitk::PlaneClipping::CalculateClippedPlaneBounds(boundingGeometry, planeGeometry, bounds); return b; } diff --git a/Core/Code/Algorithms/mitkExtractSliceFilter.h b/Core/Code/Algorithms/mitkExtractSliceFilter.h index 2c8c2f8a43..9eb910b278 100644 --- a/Core/Code/Algorithms/mitkExtractSliceFilter.h +++ b/Core/Code/Algorithms/mitkExtractSliceFilter.h @@ -1,171 +1,169 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkExtractSliceFilter_h_Included #define mitkExtractSliceFilter_h_Included #include "MitkExports.h" #include "mitkImageToImageFilter.h" #include <vtkSmartPointer.h> #include <vtkImageReslice.h> #include <vtkMatrix4x4.h> #include <vtkImageData.h> #include <vtkPoints.h> #include <vtkTransform.h> #include <vtkAbstractTransform.h> namespace mitk { /** \brief ExtractSliceFilter extracts a 2D abitrary oriented slice from a 3D volume. The filter can reslice in all orthogonal planes such as sagittal, coronal and axial, and is also able to reslice a abitrary oriented oblique plane. Curved planes are specified via an AbstractTransformGeometry as the input worldgeometry. - Both image geometries (with center based coordinates) and bounding/world geomtries can be used. - Also make sure to define the plane in the output coordinate system. That is important if the image itself is rotated. The convinient workflow is: 1. Set an image as input. - 2. Set the worldGeometry2D. This defines a grid where the slice is being extracted. + 2. Set the worldGeometry2D. This defines a grid where the slice is being extracted 3. And then start the pipeline. There are a few more properties that can be set to modify the behavior of the slicing. The properties are: - interpolation mode either Nearestneighbor, Linear or Cubic. + - a transform this is a convinient way to adapt the reslice axis for the case + that the image is transformed e.g. rotated. - time step the time step in a timesliced volume. - resample by geometry wether the resampling grid corresponds to the specs of the - worldgeometry or is directly derived from the input image. + worldgeometry or is directly derived from the input image By default the properties are set to: - interpolation mode Nearestneighbor. + - a transform NULL (No transform is set). - time step 0. - resample by geometry false (Corresponds to input image). */ class MITK_CORE_EXPORT ExtractSliceFilter : public ImageToImageFilter { public: mitkClassMacro(ExtractSliceFilter, ImageToImageFilter); itkNewMacro(ExtractSliceFilter); mitkNewMacro1Param(Self, vtkImageReslice*); - /** \brief Set the plane where reslice at. - Note: Both image geometries (with center based coordinates) and bounding/world geomtries can be used. - Also make sure to define the plane in the output coordinate system. That is important if the image is rotated. - */ + /** \brief Set the axis where to reslice at.*/ void SetWorldGeometry(const Geometry2D* geometry ){ this->m_WorldGeometry = geometry; this->Modified(); } /** \brief Set the time step in the 4D volume */ void SetTimeStep( unsigned int timestep){ this->m_TimeStep = timestep; } unsigned int GetTimeStep(){ return this->m_TimeStep; } /** \brief Resampling grid corresponds to: false->image true->worldgeometry*/ void SetInPlaneResampleExtentByGeometry(bool inPlaneResampleExtentByGeometry){ this->m_InPlaneResampleExtentByGeometry = inPlaneResampleExtentByGeometry; } /** \brief Sets the output dimension of the slice*/ void SetOutputDimensionality(unsigned int dimension){ this->m_OutputDimension = dimension; } /** \brief Set the spacing in z direction manually. * Required if the outputDimension is > 2. */ void SetOutputSpacingZDirection(double zSpacing){ this->m_ZSpacing = zSpacing; } /** \brief Set the extent in pixel for direction z manualy. Required if the output dimension is > 2. */ void SetOutputExtentZDirection(int zMin, int zMax) { this->m_ZMin = zMin; this->m_ZMax = zMax; } /** \brief Get the bounding box of the slice [xMin, xMax, yMin, yMax, zMin, zMax] * The method uses the input of the filter to calculate the bounds. * It is recommended to use * GetClippedPlaneBounds(const Geometry3D*, const PlaneGeometry*, vtkFloatingPointType*) * if you are not sure about the input. */ bool GetClippedPlaneBounds(double bounds[6]); /** \brief Get the bounding box of the slice [xMin, xMax, yMin, yMax, zMin, zMax]*/ bool GetClippedPlaneBounds( const Geometry3D *boundingGeometry, const PlaneGeometry *planeGeometry, vtkFloatingPointType *bounds ); /** \brief Get the spacing of the slice. returns mitk::ScalarType[2] */ mitk::ScalarType* GetOutputSpacing(); /** \brief Get Output as vtkImageData. * Note: * SetVtkOutputRequest(true) has to be called at least once before * GetVtkOutput(). Otherwise the output is empty for the first update step. */ vtkImageData* GetVtkOutput(){ m_VtkOutputRequested = true; return m_Reslicer->GetOutput(); } /** Set VtkOutPutRequest to suppress the convertion of the image. * It is suggested to use this with GetVtkOutput(). * Note: * SetVtkOutputRequest(true) has to be called at least once before * GetVtkOutput(). Otherwise the output is empty for the first update step. */ void SetVtkOutputRequest(bool isRequested){ m_VtkOutputRequested = isRequested; } /** \brief Get the reslices axis matrix. * Note: the axis are recalculated when calling SetResliceTransformByGeometry. */ vtkMatrix4x4* GetResliceAxes(){ return this->m_Reslicer->GetResliceAxes(); } enum ResliceInterpolation { RESLICE_NEAREST=0, RESLICE_LINEAR=1, RESLICE_CUBIC=3 }; void SetInterpolationMode( ExtractSliceFilter::ResliceInterpolation interpolation){ this->m_InterpolationMode = interpolation; } protected: ExtractSliceFilter(vtkImageReslice* reslicer = NULL); virtual ~ExtractSliceFilter(); virtual void GenerateData(); virtual void GenerateOutputInformation(); virtual void GenerateInputRequestedRegion(); const Geometry2D* m_WorldGeometry; vtkSmartPointer<vtkImageReslice> m_Reslicer; unsigned int m_TimeStep; unsigned int m_OutputDimension; double m_ZSpacing; int m_ZMin; int m_ZMax; ResliceInterpolation m_InterpolationMode; Geometry3D::ConstPointer m_InputImageGeometry; bool m_InPlaneResampleExtentByGeometry;//Resampling grid corresponds to: false->image true->worldgeometry mitk::ScalarType* m_OutPutSpacing; bool m_VtkOutputRequested; }; } #endif // mitkExtractSliceFilter_h_Included diff --git a/Modules/Segmentation/Algorithms/mitkDiffSliceOperationApplier.cpp b/Modules/Segmentation/Algorithms/mitkDiffSliceOperationApplier.cpp index e2aecf19cf..9d292ac3c1 100644 --- a/Modules/Segmentation/Algorithms/mitkDiffSliceOperationApplier.cpp +++ b/Modules/Segmentation/Algorithms/mitkDiffSliceOperationApplier.cpp @@ -1,75 +1,76 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkDiffSliceOperationApplier.h" #include "mitkRenderingManager.h" #include <vtkSmartPointer.h> mitk::DiffSliceOperationApplier::DiffSliceOperationApplier() { } mitk::DiffSliceOperationApplier::~DiffSliceOperationApplier() { } void mitk::DiffSliceOperationApplier::ExecuteOperation( Operation* operation ) { DiffSliceOperation* imageOperation = dynamic_cast<DiffSliceOperation*>( operation ); //as we only support DiffSliceOperation return if operation is not type of DiffSliceOperation if(!imageOperation) return; //chak if the operation is valid if(imageOperation->IsValid()) { //the actual overwrite filter (vtk) vtkSmartPointer<mitkVtkImageOverwrite> reslice = vtkSmartPointer<mitkVtkImageOverwrite>::New(); //Set the slice as 'input' reslice->SetInputSlice(imageOperation->GetSlice()); //set overwrite mode to true to write back to the image volume reslice->SetOverwriteMode(true); reslice->Modified(); //a wrapper for vtkImageOverwrite mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(reslice); extractor->SetInput( imageOperation->GetImage() ); extractor->SetTimeStep( imageOperation->GetTimeStep() ); extractor->SetWorldGeometry( dynamic_cast<Geometry2D*>(imageOperation->GetWorldGeometry()) ); extractor->SetVtkOutputRequest(true); + extractor->SetResliceTransformByGeometry( imageOperation->GetImage()->GetTimeSlicedGeometry()->GetGeometry3D( imageOperation->GetTimeStep() ) ); extractor->Modified(); extractor->Update(); //make sure the modification is rendered RenderingManager::GetInstance()->RequestUpdateAll(); imageOperation->GetImage()->Modified(); } } //mitk::DiffSliceOperationApplier* mitk::DiffSliceOperationApplier::s_Instance = NULL; mitk::DiffSliceOperationApplier* mitk::DiffSliceOperationApplier::GetInstance() { //if(!s_Instance) static DiffSliceOperationApplier* s_Instance = new DiffSliceOperationApplier(); return s_Instance; } \ No newline at end of file diff --git a/Modules/Segmentation/Interactions/mitkSegTool2D.cpp b/Modules/Segmentation/Interactions/mitkSegTool2D.cpp index 10b9498029..8fb2bbff62 100644 --- a/Modules/Segmentation/Interactions/mitkSegTool2D.cpp +++ b/Modules/Segmentation/Interactions/mitkSegTool2D.cpp @@ -1,398 +1,400 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkSegTool2D.h" #include "mitkToolManager.h" #include "mitkDataStorage.h" #include "mitkBaseRenderer.h" #include "mitkPlaneGeometry.h" #include "mitkExtractImageFilter.h" #include "mitkExtractDirectedPlaneImageFilter.h" //Include of the new ImageExtractor #include "mitkExtractDirectedPlaneImageFilterNew.h" #include "mitkPlanarCircle.h" #include "mitkOverwriteSliceImageFilter.h" #include "mitkOverwriteDirectedPlaneImageFilter.h" #include "mitkGetModuleContext.h" //Includes for 3DSurfaceInterpolation #include "mitkImageToContourFilter.h" #include "mitkSurfaceInterpolationController.h" //includes for resling and overwriting #include <mitkExtractSliceFilter.h> #include <mitkVtkImageOverwrite.h> #include <vtkSmartPointer.h> #include <vtkImageData.h> #include <mitkDiffSliceOperationApplier.h> #include "mitkOperationEvent.h" #include "mitkUndoController.h" #define ROUND(a) ((a)>0 ? (int)((a)+0.5) : -(int)(0.5-(a))) mitk::SegTool2D::SegTool2D(const char* type) :Tool(type), m_LastEventSender(NULL), m_LastEventSlice(0), m_Contourmarkername ("Position"), m_ShowMarkerNodes (false), m_3DInterpolationEnabled(true) { } mitk::SegTool2D::~SegTool2D() { } float mitk::SegTool2D::CanHandleEvent( StateEvent const *stateEvent) const { const PositionEvent* positionEvent = dynamic_cast<const PositionEvent*>(stateEvent->GetEvent()); if (!positionEvent) return 0.0; if ( positionEvent->GetSender()->GetMapperID() != BaseRenderer::Standard2D ) return 0.0; // we don't want anything but 2D //This are the mouse event that are used by the statemachine patterns for zooming and panning. This must be possible although a tool is activ if (stateEvent->GetId() == EIDRIGHTMOUSEBTN || stateEvent->GetId() == EIDMIDDLEMOUSEBTN || stateEvent->GetId() == EIDRIGHTMOUSEBTNANDCTRL || stateEvent->GetId() == EIDMIDDLEMOUSERELEASE || stateEvent->GetId() == EIDRIGHTMOUSERELEASE || stateEvent->GetId() == EIDRIGHTMOUSEBTNANDMOUSEMOVE || stateEvent->GetId() == EIDMIDDLEMOUSEBTNANDMOUSEMOVE || stateEvent->GetId() == EIDCTRLANDRIGHTMOUSEBTNANDMOUSEMOVE || stateEvent->GetId() == EIDCTRLANDRIGHTMOUSEBTNRELEASE ) { //Since the usual segmentation tools currently do not need right click interaction but the mitkDisplayVectorInteractor return 0.0; } else { return 1.0; } } bool mitk::SegTool2D::DetermineAffectedImageSlice( const Image* image, const PlaneGeometry* plane, int& affectedDimension, int& affectedSlice ) { assert(image); assert(plane); // compare normal of plane to the three axis vectors of the image Vector3D normal = plane->GetNormal(); Vector3D imageNormal0 = image->GetSlicedGeometry()->GetAxisVector(0); Vector3D imageNormal1 = image->GetSlicedGeometry()->GetAxisVector(1); Vector3D imageNormal2 = image->GetSlicedGeometry()->GetAxisVector(2); normal.Normalize(); imageNormal0.Normalize(); imageNormal1.Normalize(); imageNormal2.Normalize(); imageNormal0.SetVnlVector( vnl_cross_3d<ScalarType>(normal.GetVnlVector(),imageNormal0.GetVnlVector()) ); imageNormal1.SetVnlVector( vnl_cross_3d<ScalarType>(normal.GetVnlVector(),imageNormal1.GetVnlVector()) ); imageNormal2.SetVnlVector( vnl_cross_3d<ScalarType>(normal.GetVnlVector(),imageNormal2.GetVnlVector()) ); double eps( 0.00001 ); // axial if ( imageNormal2.GetNorm() <= eps ) { affectedDimension = 2; } // sagittal else if ( imageNormal1.GetNorm() <= eps ) { affectedDimension = 1; } // frontal else if ( imageNormal0.GetNorm() <= eps ) { affectedDimension = 0; } else { affectedDimension = -1; // no idea return false; } // determine slice number in image Geometry3D* imageGeometry = image->GetGeometry(0); Point3D testPoint = imageGeometry->GetCenter(); Point3D projectedPoint; plane->Project( testPoint, projectedPoint ); Point3D indexPoint; imageGeometry->WorldToIndex( projectedPoint, indexPoint ); affectedSlice = ROUND( indexPoint[affectedDimension] ); MITK_DEBUG << "indexPoint " << indexPoint << " affectedDimension " << affectedDimension << " affectedSlice " << affectedSlice; // check if this index is still within the image if ( affectedSlice < 0 || affectedSlice >= static_cast<int>(image->GetDimension(affectedDimension)) ) return false; return true; } mitk::Image::Pointer mitk::SegTool2D::GetAffectedImageSliceAs2DImage(const PositionEvent* positionEvent, const Image* image) { if (!positionEvent) return NULL; assert( positionEvent->GetSender() ); // sure, right? unsigned int timeStep = positionEvent->GetSender()->GetTimeStep( image ); // get the timestep of the visible part (time-wise) of the image // first, we determine, which slice is affected const PlaneGeometry* planeGeometry( dynamic_cast<const PlaneGeometry*> (positionEvent->GetSender()->GetCurrentWorldGeometry2D() ) ); return this->GetAffectedImageSliceAs2DImage(planeGeometry, image, timeStep); } mitk::Image::Pointer mitk::SegTool2D::GetAffectedImageSliceAs2DImage(const PlaneGeometry* planeGeometry, const Image* image, unsigned int timeStep) { if ( !image || !planeGeometry ) return NULL; //Make sure that for reslicing and overwriting the same alogrithm is used. We can specify the mode of the vtk reslicer vtkSmartPointer<mitkVtkImageOverwrite> reslice = vtkSmartPointer<mitkVtkImageOverwrite>::New(); //set to false to extract a slice reslice->SetOverwriteMode(false); reslice->Modified(); //use ExtractSliceFilter with our specific vtkImageReslice for overwriting and extracting mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(reslice); extractor->SetInput( image ); extractor->SetTimeStep( timeStep ); extractor->SetWorldGeometry( planeGeometry ); extractor->SetVtkOutputRequest(false); + extractor->SetResliceTransformByGeometry( image->GetTimeSlicedGeometry()->GetGeometry3D( timeStep ) ); extractor->Modified(); extractor->Update(); Image::Pointer slice = extractor->GetOutput(); /*============= BEGIN undo feature block ========================*/ //specify the undo operation with the non edited slice m_undoOperation = new DiffSliceOperation(const_cast<mitk::Image*>(image), extractor->GetVtkOutput(), slice->GetGeometry(), timeStep, const_cast<mitk::PlaneGeometry*>(planeGeometry)); /*============= END undo feature block ========================*/ return slice; } mitk::Image::Pointer mitk::SegTool2D::GetAffectedWorkingSlice(const PositionEvent* positionEvent) { DataNode* workingNode( m_ToolManager->GetWorkingData(0) ); if ( !workingNode ) return NULL; Image* workingImage = dynamic_cast<Image*>(workingNode->GetData()); if ( !workingImage ) return NULL; return GetAffectedImageSliceAs2DImage( positionEvent, workingImage ); } mitk::Image::Pointer mitk::SegTool2D::GetAffectedReferenceSlice(const PositionEvent* positionEvent) { DataNode* referenceNode( m_ToolManager->GetReferenceData(0) ); if ( !referenceNode ) return NULL; Image* referenceImage = dynamic_cast<Image*>(referenceNode->GetData()); if ( !referenceImage ) return NULL; return GetAffectedImageSliceAs2DImage( positionEvent, referenceImage ); } void mitk::SegTool2D::WriteBackSegmentationResult (const PositionEvent* positionEvent, Image* slice) { if(!positionEvent) return; const PlaneGeometry* planeGeometry( dynamic_cast<const PlaneGeometry*> (positionEvent->GetSender()->GetCurrentWorldGeometry2D() ) ); if( planeGeometry && slice) { DataNode* workingNode( m_ToolManager->GetWorkingData(0) ); Image* image = dynamic_cast<Image*>(workingNode->GetData()); unsigned int timeStep = positionEvent->GetSender()->GetTimeStep( image ); this->WriteBackSegmentationResult(planeGeometry, slice, timeStep); slice->DisconnectPipeline(); ImageToContourFilter::Pointer contourExtractor = ImageToContourFilter::New(); contourExtractor->SetInput(slice); contourExtractor->Update(); mitk::Surface::Pointer contour = contourExtractor->GetOutput(); if (m_3DInterpolationEnabled && contour->GetVtkPolyData()->GetNumberOfPoints() > 0 ) { unsigned int pos = this->AddContourmarker(positionEvent); mitk::ServiceReference serviceRef = mitk::GetModuleContext()->GetServiceReference<PlanePositionManagerService>(); PlanePositionManagerService* service = dynamic_cast<PlanePositionManagerService*>(mitk::GetModuleContext()->GetService(serviceRef)); mitk::SurfaceInterpolationController::GetInstance()->AddNewContour( contour, service->GetPlanePosition(pos)); contour->DisconnectPipeline(); } } } void mitk::SegTool2D::WriteBackSegmentationResult (const PlaneGeometry* planeGeometry, Image* slice, unsigned int timeStep) { if(!planeGeometry || !slice) return; DataNode* workingNode( m_ToolManager->GetWorkingData(0) ); Image* image = dynamic_cast<Image*>(workingNode->GetData()); //Make sure that for reslicing and overwriting the same alogrithm is used. We can specify the mode of the vtk reslicer vtkSmartPointer<mitkVtkImageOverwrite> reslice = vtkSmartPointer<mitkVtkImageOverwrite>::New(); //Set the slice as 'input' reslice->SetInputSlice(slice->GetVtkImageData()); //set overwrite mode to true to write back to the image volume reslice->SetOverwriteMode(true); reslice->Modified(); mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(reslice); extractor->SetInput( image ); extractor->SetTimeStep( timeStep ); extractor->SetWorldGeometry( planeGeometry ); extractor->SetVtkOutputRequest(true); + extractor->SetResliceTransformByGeometry( image->GetTimeSlicedGeometry()->GetGeometry3D( timeStep ) ); extractor->Modified(); extractor->Update(); //the image was modified within the pipeline, but not marked so image->Modified(); image->GetVtkImageData()->Modified(); /*============= BEGIN undo feature block ========================*/ //specify the undo operation with the edited slice m_doOperation = new DiffSliceOperation(image, extractor->GetVtkOutput(),slice->GetGeometry(), timeStep, const_cast<mitk::PlaneGeometry*>(planeGeometry)); //create an operation event for the undo stack OperationEvent* undoStackItem = new OperationEvent( DiffSliceOperationApplier::GetInstance(), m_doOperation, m_undoOperation, "Segmentation" ); //add it to the undo controller UndoController::GetCurrentUndoModel()->SetOperationEvent( undoStackItem ); //clear the pointers as the operation are stored in the undocontroller and also deleted from there m_undoOperation = NULL; m_doOperation = NULL; /*============= END undo feature block ========================*/ mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void mitk::SegTool2D::SetShowMarkerNodes(bool status) { m_ShowMarkerNodes = status; } void mitk::SegTool2D::SetEnable3DInterpolation(bool enabled) { m_3DInterpolationEnabled = enabled; } unsigned int mitk::SegTool2D::AddContourmarker ( const PositionEvent* positionEvent ) { const mitk::Geometry2D* plane = dynamic_cast<const Geometry2D*> (dynamic_cast< const mitk::SlicedGeometry3D*>( positionEvent->GetSender()->GetSliceNavigationController()->GetCurrentGeometry3D())->GetGeometry2D(0)); mitk::ServiceReference serviceRef = mitk::GetModuleContext()->GetServiceReference<PlanePositionManagerService>(); PlanePositionManagerService* service = dynamic_cast<PlanePositionManagerService*>(mitk::GetModuleContext()->GetService(serviceRef)); unsigned int size = service->GetNumberOfPlanePositions(); unsigned int id = service->AddNewPlanePosition(plane, positionEvent->GetSender()->GetSliceNavigationController()->GetSlice()->GetPos()); mitk::PlanarCircle::Pointer contourMarker = mitk::PlanarCircle::New(); mitk::Point2D p1; plane->Map(plane->GetCenter(), p1); mitk::Point2D p2 = p1; p2[0] -= plane->GetSpacing()[0]; p2[1] -= plane->GetSpacing()[1]; contourMarker->PlaceFigure( p1 ); contourMarker->SetCurrentControlPoint( p1 ); contourMarker->SetGeometry2D( const_cast<Geometry2D*>(plane)); std::stringstream markerStream; mitk::DataNode* workingNode (m_ToolManager->GetWorkingData(0)); markerStream << m_Contourmarkername ; markerStream << " "; markerStream << id+1; DataNode::Pointer rotatedContourNode = DataNode::New(); rotatedContourNode->SetData(contourMarker); rotatedContourNode->SetProperty( "name", StringProperty::New(markerStream.str()) ); rotatedContourNode->SetProperty( "isContourMarker", BoolProperty::New(true)); rotatedContourNode->SetBoolProperty( "PlanarFigureInitializedWindow", true, positionEvent->GetSender() ); rotatedContourNode->SetProperty( "includeInBoundingBox", BoolProperty::New(false)); rotatedContourNode->SetProperty( "helper object", mitk::BoolProperty::New(!m_ShowMarkerNodes)); rotatedContourNode->SetProperty( "planarfigure.drawcontrolpoints", BoolProperty::New(false)); rotatedContourNode->SetProperty( "planarfigure.drawname", BoolProperty::New(false)); rotatedContourNode->SetProperty( "planarfigure.drawoutline", BoolProperty::New(false)); rotatedContourNode->SetProperty( "planarfigure.drawshadow", BoolProperty::New(false)); if (plane) { if ( id == size ) { m_ToolManager->GetDataStorage()->Add(rotatedContourNode, workingNode); } else { mitk::NodePredicateProperty::Pointer isMarker = mitk::NodePredicateProperty::New("isContourMarker", mitk::BoolProperty::New(true)); mitk::DataStorage::SetOfObjects::ConstPointer markers = m_ToolManager->GetDataStorage()->GetDerivations(workingNode,isMarker); for ( mitk::DataStorage::SetOfObjects::const_iterator iter = markers->begin(); iter != markers->end(); ++iter) { std::string nodeName = (*iter)->GetName(); unsigned int t = nodeName.find_last_of(" "); unsigned int markerId = atof(nodeName.substr(t+1).c_str())-1; if(id == markerId) { return id; } } m_ToolManager->GetDataStorage()->Add(rotatedContourNode, workingNode); } } return id; } void mitk::SegTool2D::InteractiveSegmentationBugMessage( const std::string& message ) { MITK_ERROR << "********************************************************************************" << std::endl << " " << message << std::endl << "********************************************************************************" << std::endl << " " << std::endl << " If your image is rotated or the 2D views don't really contain the patient image, try to press the button next to the image selection. " << std::endl << " " << std::endl << " Please file a BUG REPORT: " << std::endl << " http://bugs.mitk.org" << std::endl << " Contain the following information:" << std::endl << " - What image were you working on?" << std::endl << " - Which region of the image?" << std::endl << " - Which tool did you use?" << std::endl << " - What did you do?" << std::endl << " - What happened (not)? What did you expect?" << std::endl; }