diff --git a/Modules/Core/src/Interactions/mitkDisplayActionEventBroadcast.cpp b/Modules/Core/src/Interactions/mitkDisplayActionEventBroadcast.cpp index c345aa5337..e4e927d1ef 100644 --- a/Modules/Core/src/Interactions/mitkDisplayActionEventBroadcast.cpp +++ b/Modules/Core/src/Interactions/mitkDisplayActionEventBroadcast.cpp @@ -1,659 +1,786 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical Image Computing. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkDisplayActionEventBroadcast.h" // us #include "usGetModuleContext.h" #include "usModuleContext.h" // mitk core module +#include "mitkCompositePixelValueToString.h" #include "mitkDisplayActionEvents.h" +#include "mitkImage.h" +#include "mitkImagePixelReadAccessor.h" #include "mitkInteractionPositionEvent.h" #include "mitkLine.h" +#include "mitkNodePredicateDataType.h" +#include "mitkPixelTypeMultiplex.h" +#include "mitkStatusBar.h" mitk::DisplayActionEventBroadcast::DisplayActionEventBroadcast() : m_AlwaysReact(false) , m_AutoRepeat(false) , m_IndexToSliceModifier(4) , m_InvertScrollDirection(false) , m_InvertZoomDirection(false) , m_ZoomFactor(2) , m_InvertMoveDirection(false) , m_InvertLevelWindowDirection(false) , m_LinkPlanes(true) { m_StartCoordinateInMM.Fill(0); m_LastDisplayCoordinate.Fill(0); m_LastCoordinateInMM.Fill(0); m_CurrentDisplayCoordinate.Fill(0); // register the broadcast class (itself) as an interaction event observer via micro services us::ServiceProperties props; props["name"] = std::string("DisplayActionEventBroadcast"); m_ServiceRegistration = us::GetModuleContext()->RegisterService(this, props); } mitk::DisplayActionEventBroadcast::~DisplayActionEventBroadcast() { m_ServiceRegistration.Unregister(); } void mitk::DisplayActionEventBroadcast::Notify(InteractionEvent* interactionEvent, bool isHandled) { // the event is passed to the state machine interface to be handled if (!isHandled || m_AlwaysReact) { HandleEvent(interactionEvent, nullptr); } } void mitk::DisplayActionEventBroadcast::ConnectActionsAndFunctions() { CONNECT_CONDITION("check_position_event", CheckPositionEvent); CONNECT_CONDITION("check_can_rotate", CheckRotationPossible); CONNECT_CONDITION("check_can_swivel", CheckSwivelPossible); CONNECT_FUNCTION("init", Init); CONNECT_FUNCTION("move", Move); CONNECT_FUNCTION("zoom", Zoom); CONNECT_FUNCTION("scroll", Scroll); CONNECT_FUNCTION("ScrollOneUp", ScrollOneUp); CONNECT_FUNCTION("ScrollOneDown", ScrollOneDown); CONNECT_FUNCTION("levelWindow", AdjustLevelWindow); CONNECT_FUNCTION("setCrosshair", SetCrosshair); CONNECT_FUNCTION("updateStatusbar", UpdateStatusbar) CONNECT_FUNCTION("startRotation", StartRotation); CONNECT_FUNCTION("endRotation", EndRotation); CONNECT_FUNCTION("rotate", Rotate); CONNECT_FUNCTION("swivel", Swivel); } void mitk::DisplayActionEventBroadcast::ConfigurationChanged() { mitk::PropertyList::Pointer properties = GetAttributes(); // allwaysReact std::string strAlwaysReact = ""; m_AlwaysReact = false; if (properties->GetStringProperty("alwaysReact", strAlwaysReact)) { if (strAlwaysReact == "true") { m_AlwaysReact = true; } } // auto repeat std::string strAutoRepeat = ""; m_AutoRepeat = false; if (properties->GetStringProperty("autoRepeat", strAutoRepeat)) { if (strAutoRepeat == "true") { m_AutoRepeat = true; } } // pixel movement for scrolling one slice std::string strPixelPerSlice = ""; m_IndexToSliceModifier = 4; if (properties->GetStringProperty("pixelPerSlice", strPixelPerSlice)) { m_IndexToSliceModifier = atoi(strPixelPerSlice.c_str()); } // scroll direction if (!properties->GetStringProperty("scrollDirection", m_ScrollDirection)) { m_ScrollDirection = "updown"; } m_InvertScrollDirection = GetBoolProperty(properties, "invertScrollDirection", false); // zoom direction if (!properties->GetStringProperty("zoomDirection", m_ZoomDirection)) { m_ZoomDirection = "updown"; } m_InvertZoomDirection = GetBoolProperty(properties, "invertZoomDirection", false); m_InvertMoveDirection = GetBoolProperty(properties, "invertMoveDirection", false); if (!properties->GetStringProperty("levelWindowDirection", m_LevelDirection)) { m_LevelDirection = "leftright"; } m_InvertLevelWindowDirection = GetBoolProperty(properties, "invertLevelWindowDirection", false); // coupled rotation std::string strCoupled = ""; m_LinkPlanes = false; if (properties->GetStringProperty("coupled", strCoupled)) { if (strCoupled == "true") { m_LinkPlanes = true; } } // zoom factor std::string strZoomFactor = ""; properties->GetStringProperty("zoomFactor", strZoomFactor); m_ZoomFactor = .05; if (atoi(strZoomFactor.c_str()) > 0) { m_ZoomFactor = 1.0 + (atoi(strZoomFactor.c_str()) / 100.0); } } bool mitk::DisplayActionEventBroadcast::FilterEvents(InteractionEvent* interactionEvent, DataNode * /*dataNode*/) { - if (nullptr == interactionEvent->GetSender()) + mitk::BaseRenderer* sendingRenderer = interactionEvent->GetSender(); + if (nullptr == sendingRenderer) { return false; } - if (BaseRenderer::Standard3D == interactionEvent->GetSender()->GetMapperID()) + if (BaseRenderer::Standard3D == sendingRenderer->GetMapperID()) { return false; } return true; } bool mitk::DisplayActionEventBroadcast::CheckPositionEvent(const InteractionEvent *interactionEvent) { const auto* positionEvent = dynamic_cast(interactionEvent); if (nullptr == positionEvent) { return false; } return true; } bool mitk::DisplayActionEventBroadcast::CheckRotationPossible(const InteractionEvent *interactionEvent) { // Decide between moving and rotation slices. /* Detailed logic: 1. Find the SliceNavigationController that has sent the event: this one defines our rendering plane and will NOT be rotated. Needs not even be counted or checked. 2. Inspect every other SliceNavigationController - calculate the line intersection of this SliceNavigationController's plane with our rendering plane - if there is NO interesection, ignore and continue - IF there is an intersection - check the mouse cursor's distance from that line. 0. if the line is NOT near the cursor, remember the plane as "one of the other planes" (which can be rotated in "locked" mode) 1. on first line near the cursor, just remember this intersection line as THE other plane that we want to rotate 2. on every consecutive line near the cursor, check if the line is geometrically identical to the line that we want to rotate - if yes, we just push this line to the "other" lines and rotate it along - if no, then we have a situation where the mouse is near two other lines (e.g. crossing point) and don't want to rotate */ - const auto* posEvent = dynamic_cast(interactionEvent); - if (nullptr == posEvent) + const auto* positionEvent = dynamic_cast(interactionEvent); + if (nullptr == positionEvent) { return false; } - BaseRenderer* clickedRenderer = posEvent->GetSender(); + BaseRenderer* clickedRenderer = positionEvent->GetSender(); const PlaneGeometry* ourViewportGeometry = clickedRenderer->GetCurrentWorldPlaneGeometry(); if (nullptr == ourViewportGeometry) { return false; } - Point3D cursorPosition = posEvent->GetPositionInWorld(); + Point3D cursorPosition = positionEvent->GetPositionInWorld(); const auto spacing = ourViewportGeometry->GetSpacing(); const PlaneGeometry *geometryToBeRotated = nullptr; // this one is under the mouse cursor const PlaneGeometry *anyOtherGeometry = nullptr; // this is also visible (for calculation of intersection ONLY) Line3D intersectionLineWithGeometryToBeRotated; bool hitMultipleLines(false); m_SNCsToBeRotated.clear(); const double threshholdDistancePixels = 12.0; auto renWindows = interactionEvent->GetSender()->GetRenderingManager()->GetAllRegisteredRenderWindows(); for (auto renWin : renWindows) { SliceNavigationController *snc = BaseRenderer::GetInstance(renWin)->GetSliceNavigationController(); // If the mouse cursor is in 3D Renderwindow, do not check for intersecting planes. if (BaseRenderer::GetInstance(renWin)->GetMapperID() == BaseRenderer::Standard3D) continue; const PlaneGeometry *otherRenderersRenderPlane = snc->GetCurrentPlaneGeometry(); if (nullptr == otherRenderersRenderPlane) { continue; // ignore, we don't see a plane } // check if there is an intersection Line3D intersectionLine; // between rendered/clicked geometry and the one being analyzed if (!ourViewportGeometry->IntersectionLine(otherRenderersRenderPlane, intersectionLine)) { continue; // we ignore this plane, it's parallel to our plane } // check distance from intersection line const double distanceFromIntersectionLine = intersectionLine.Distance(cursorPosition) / spacing[snc->GetDefaultViewDirection()]; // far away line, only remember for linked rotation if necessary if (distanceFromIntersectionLine > threshholdDistancePixels) { anyOtherGeometry = otherRenderersRenderPlane; // we just take the last one, so overwrite each iteration (we just // need some crossing point) // TODO what about multiple crossings? NOW we have undefined behavior / random crossing point is used if (m_LinkPlanes) { m_SNCsToBeRotated.push_back(snc); } } else // close to cursor { if (nullptr == geometryToBeRotated) // first one close to the cursor { geometryToBeRotated = otherRenderersRenderPlane; intersectionLineWithGeometryToBeRotated = intersectionLine; m_SNCsToBeRotated.push_back(snc); } else { // compare to the line defined by geometryToBeRotated: if identical, just rotate this otherRenderersRenderPlane // together with the primary one // if different, DON'T rotate if (intersectionLine.IsParallel(intersectionLineWithGeometryToBeRotated) && intersectionLine.Distance(intersectionLineWithGeometryToBeRotated.GetPoint1()) < mitk::eps) { m_SNCsToBeRotated.push_back(snc); } else { hitMultipleLines = true; } } } } bool moveSlices(true); if (geometryToBeRotated && anyOtherGeometry && ourViewportGeometry && !hitMultipleLines) { // assure all three are valid, so calculation of center of rotation can be done moveSlices = false; } // question in state machine is: "rotate?" if (moveSlices) // i.e. NOT rotate { return false; } else { // we DO have enough information for rotation // remember where the last cursor position ON THE LINE has been observed m_LastCursorPosition = intersectionLineWithGeometryToBeRotated.Project(cursorPosition); // find center of rotation by intersection with any of the OTHER lines if (anyOtherGeometry->IntersectionPoint(intersectionLineWithGeometryToBeRotated, m_CenterOfRotation)) { return true; } else { return false; } } return false; } bool mitk::DisplayActionEventBroadcast::CheckSwivelPossible(const InteractionEvent *interactionEvent) { const ScalarType ThresholdDistancePixels = 6.0; // Decide between moving and rotation: if we're close to the crossing // point of the planes, moving mode is entered, otherwise // rotation/swivel mode - const auto *posEvent = dynamic_cast(interactionEvent); + const auto* positionEvent = dynamic_cast(interactionEvent); + if (nullptr == positionEvent) + { + return false; + } BaseRenderer *renderer = interactionEvent->GetSender(); - - if (!posEvent || !renderer) + if (nullptr == renderer) { return false; } - const Point3D& cursor = posEvent->GetPositionInWorld(); + const Point3D& cursor = positionEvent->GetPositionInWorld(); m_SNCsToBeRotated.clear(); const PlaneGeometry* clickedGeometry(nullptr); const PlaneGeometry* otherGeometry1(nullptr); const PlaneGeometry* otherGeometry2(nullptr); auto registeredRenderWindows = interactionEvent->GetSender()->GetRenderingManager()->GetAllRegisteredRenderWindows(); for (auto renWin : registeredRenderWindows) { SliceNavigationController* snc = BaseRenderer::GetInstance(renWin)->GetSliceNavigationController(); // If the mouse cursor is in 3D Renderwindow, do not check for intersecting planes. if (BaseRenderer::GetInstance(renWin)->GetMapperID() == BaseRenderer::Standard3D) continue; // unsigned int slice = (*iter)->GetSlice()->GetPos(); // unsigned int time = (*iter)->GetTime()->GetPos(); const PlaneGeometry *planeGeometry = snc->GetCurrentPlaneGeometry(); if (!planeGeometry) continue; if (snc == renderer->GetSliceNavigationController()) { clickedGeometry = planeGeometry; m_SNCsToBeRotated.push_back(snc); } else { if (otherGeometry1 == nullptr) { otherGeometry1 = planeGeometry; } else { otherGeometry2 = planeGeometry; } if (m_LinkPlanes) { // If planes are linked, apply rotation to all planes m_SNCsToBeRotated.push_back(snc); } } } Line3D line; Point3D point; if ((clickedGeometry != nullptr) && (otherGeometry1 != nullptr) && (otherGeometry2 != nullptr) && clickedGeometry->IntersectionLine(otherGeometry1, line) && otherGeometry2->IntersectionPoint(line, point)) { m_CenterOfRotation = point; if (m_CenterOfRotation.EuclideanDistanceTo(cursor) < ThresholdDistancePixels) { return false; } else { - m_ReferenceCursor = posEvent->GetPointerPositionOnScreen(); + m_ReferenceCursor = positionEvent->GetPointerPositionOnScreen(); // Get main axes of rotation plane and store it for rotation step m_RotationPlaneNormal = clickedGeometry->GetNormal(); ScalarType xVector[] = { 1.0, 0.0, 0.0 }; ScalarType yVector[] = { 0.0, 1.0, 0.0 }; clickedGeometry->BaseGeometry::IndexToWorld(Vector3D(xVector), m_RotationPlaneXVector); clickedGeometry->BaseGeometry::IndexToWorld(Vector3D(yVector), m_RotationPlaneYVector); m_RotationPlaneNormal.Normalize(); m_RotationPlaneXVector.Normalize(); m_RotationPlaneYVector.Normalize(); m_PreviousRotationAxis.Fill(0.0); m_PreviousRotationAxis[2] = 1.0; m_PreviousRotationAngle = 0.0; return true; } } else { return false; } return false; } void mitk::DisplayActionEventBroadcast::Init(StateMachineAction* stateMachineAction, InteractionEvent* interactionEvent) { - auto* positionEvent = static_cast(interactionEvent); + const auto* positionEvent = dynamic_cast(interactionEvent); + if (nullptr == positionEvent) + { + return; + } m_LastDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); m_CurrentDisplayCoordinate = m_LastDisplayCoordinate; positionEvent->GetSender()->DisplayToPlane(m_LastDisplayCoordinate, m_StartCoordinateInMM); m_LastCoordinateInMM = m_StartCoordinateInMM; } void mitk::DisplayActionEventBroadcast::Move(StateMachineAction* stateMachineAction, InteractionEvent* interactionEvent) { - auto* positionEvent = static_cast(interactionEvent); + const auto* positionEvent = dynamic_cast(interactionEvent); + if (nullptr == positionEvent) + { + return; + } BaseRenderer* sender = interactionEvent->GetSender(); Vector2D moveVector = m_LastDisplayCoordinate - positionEvent->GetPointerPositionOnScreen(); if (m_InvertMoveDirection) { moveVector *= -1.0; } moveVector *= sender->GetScaleFactorMMPerDisplayUnit(); // #TODO: put here? // store new display coordinate m_LastDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); // propagate move event with computed geometry values InvokeEvent(DisplayMoveEvent(interactionEvent, moveVector)); } void mitk::DisplayActionEventBroadcast::SetCrosshair(StateMachineAction* stateMachineAction, InteractionEvent* interactionEvent) { - auto* positionEvent = static_cast(interactionEvent); + const auto* positionEvent = dynamic_cast(interactionEvent); + if (nullptr == positionEvent) + { + return; + } + Point3D position = positionEvent->GetPositionInWorld(); // propagate set crosshair event with computed geometry values InvokeEvent(DisplaySetCrosshairEvent(interactionEvent, position)); } void mitk::DisplayActionEventBroadcast::Zoom(StateMachineAction* stateMachineAction, InteractionEvent* interactionEvent) { - auto* positionEvent = static_cast(interactionEvent); + const auto* positionEvent = dynamic_cast(interactionEvent); + if (nullptr == positionEvent) + { + return; + } float factor = 1.0; float distance = 0; if (m_ZoomDirection == "updown") { distance = m_CurrentDisplayCoordinate[1] - m_LastDisplayCoordinate[1]; } else { distance = m_CurrentDisplayCoordinate[0] - m_LastDisplayCoordinate[0]; } if (m_InvertZoomDirection) { distance *= -1.0; } // set zooming speed if (distance < 0.0) { factor = 1.0 / m_ZoomFactor; } else if (distance > 0.0) { factor = 1.0 * m_ZoomFactor; } // store new display coordinates m_LastDisplayCoordinate = m_CurrentDisplayCoordinate; m_CurrentDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); // propagate zoom event with computed geometry values InvokeEvent(DisplayZoomEvent(interactionEvent, factor, m_StartCoordinateInMM)); } void mitk::DisplayActionEventBroadcast::Scroll(StateMachineAction* stateMachineAction, InteractionEvent* interactionEvent) { - auto* positionEvent = static_cast(interactionEvent); + const auto* positionEvent = dynamic_cast(interactionEvent); + if (nullptr == positionEvent) + { + return; + } int sliceDelta = 0; // scroll direction if (m_ScrollDirection == "updown") { sliceDelta = static_cast(m_CurrentDisplayCoordinate[1] - m_LastDisplayCoordinate[1]); } else { sliceDelta = static_cast(m_CurrentDisplayCoordinate[0] - m_LastDisplayCoordinate[0]); } if (m_InvertScrollDirection) { sliceDelta *= -1; } // set how many pixels the mouse has to be moved to scroll one slice // if the mouse has been moved less than 'm_IndexToSliceModifier', pixels slice ONE slice only if (sliceDelta > 0 && sliceDelta < m_IndexToSliceModifier) { sliceDelta = m_IndexToSliceModifier; } else if (sliceDelta < 0 && sliceDelta > -m_IndexToSliceModifier) { sliceDelta = -m_IndexToSliceModifier; } sliceDelta /= m_IndexToSliceModifier; // store new display coordinates m_LastDisplayCoordinate = m_CurrentDisplayCoordinate; m_CurrentDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); // propagate scroll event with computed geometry values InvokeEvent(DisplayScrollEvent(interactionEvent, sliceDelta)); } void mitk::DisplayActionEventBroadcast::ScrollOneUp(StateMachineAction* stateMachineAction, InteractionEvent* interactionEvent) { int sliceDelta = 1; if (m_InvertScrollDirection) { sliceDelta = -1; } // propagate scroll event with a single slice delta (increase) InvokeEvent(DisplayScrollEvent(interactionEvent, sliceDelta)); } void mitk::DisplayActionEventBroadcast::ScrollOneDown(StateMachineAction* stateMachineAction, InteractionEvent* interactionEvent) { int sliceDelta = -1; if (m_InvertScrollDirection) { sliceDelta = 1; } // propagate scroll event with a single slice delta (decrease) InvokeEvent(DisplayScrollEvent(interactionEvent, sliceDelta)); } void mitk::DisplayActionEventBroadcast::AdjustLevelWindow(StateMachineAction* stateMachineAction, InteractionEvent* interactionEvent) { - auto* positionEvent = static_cast(interactionEvent); + const auto* positionEvent = dynamic_cast(interactionEvent); + if (nullptr == positionEvent) + { + return; + } mitk::ScalarType level; mitk::ScalarType window; if (m_LevelDirection == "leftright") { level = m_CurrentDisplayCoordinate[0] - m_LastDisplayCoordinate[0]; window = m_CurrentDisplayCoordinate[1] - m_LastDisplayCoordinate[1]; } else { level = m_CurrentDisplayCoordinate[1] - m_LastDisplayCoordinate[1]; window = m_CurrentDisplayCoordinate[0] - m_LastDisplayCoordinate[0]; } if (m_InvertLevelWindowDirection) { level *= -1; window *= -1; } level *= static_cast(2); window *= static_cast(2); // store new display coordinates m_LastDisplayCoordinate = m_CurrentDisplayCoordinate; m_CurrentDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); // propagate set level window event with the level and window delta InvokeEvent(DisplaySetLevelWindowEvent(interactionEvent, level, window)); } void mitk::DisplayActionEventBroadcast::StartRotation(StateMachineAction* stateMachineAction, InteractionEvent* interactionEvent) { // nothing here; no event sent } void mitk::DisplayActionEventBroadcast::EndRotation(StateMachineAction* stateMachineAction, InteractionEvent* interactionEvent) { // nothing here; no event sent } void mitk::DisplayActionEventBroadcast::Rotate(StateMachineAction* stateMachineAction, InteractionEvent* interactionEvent) { // nothing here; no event sent } void mitk::DisplayActionEventBroadcast::Swivel(StateMachineAction* stateMachineAction, InteractionEvent* interactionEvent) { // nothing here; no event sent } void mitk::DisplayActionEventBroadcast::UpdateStatusbar(StateMachineAction* stateMachineAction, InteractionEvent* interactionEvent) { + const auto* positionEvent = dynamic_cast(interactionEvent); + if (nullptr == positionEvent) + { + return; + } + + mitk::BaseRenderer::Pointer renderer = positionEvent->GetSender(); + + TNodePredicateDataType::Pointer isImageData = TNodePredicateDataType::New(); + mitk::DataStorage::SetOfObjects::ConstPointer nodes = renderer->GetDataStorage()->GetSubset(isImageData).GetPointer(); + if (nodes.IsNull()) + { + return; + } + + Point3D worldposition; + renderer->DisplayToWorld(positionEvent->GetPointerPositionOnScreen(), worldposition); + + mitk::Image::Pointer image3D; + mitk::DataNode::Pointer node; + mitk::DataNode::Pointer topSourceNode; + int component = 0; + + node = renderer->GetDataStorage()->GetTopLayerNode(nodes, worldposition, renderer); + if (node.IsNull()) + { + return; + } + + bool isBinary(false); + node->GetBoolProperty("binary", isBinary); + if (isBinary) + { + mitk::DataStorage::SetOfObjects::ConstPointer sourcenodes = renderer->GetDataStorage()->GetSources(node, nullptr, true); + if (!sourcenodes->empty()) + { + topSourceNode = renderer->GetDataStorage()->GetTopLayerNode(sourcenodes, worldposition, renderer); + } + if (topSourceNode.IsNotNull()) + { + image3D = dynamic_cast(topSourceNode->GetData()); + topSourceNode->GetIntProperty("Image.Displayed Component", component); + } + else + { + image3D = dynamic_cast(node->GetData()); + node->GetIntProperty("Image.Displayed Component", component); + } + } + else + { + image3D = dynamic_cast(node->GetData()); + node->GetIntProperty("Image.Displayed Component", component); + } + + // get the position and pixel value from the image and build up status bar text + auto statusBar = mitk::StatusBar::GetInstance(); + if (image3D.IsNotNull() && statusBar != nullptr) + { + itk::Index<3> p; + image3D->GetGeometry()->WorldToIndex(worldposition, p); + + auto pixelType = image3D->GetChannelDescriptor().GetPixelType().GetPixelType(); + if (pixelType == itk::ImageIOBase::RGB || pixelType == itk::ImageIOBase::RGBA) + { + std::string pixelValue = "Pixel RGB(A) value: "; + pixelValue.append(ConvertCompositePixelValueToString(image3D, p)); + statusBar->DisplayImageInfo(worldposition, p, renderer->GetTime(), pixelValue.c_str()); + } + else if (pixelType == itk::ImageIOBase::DIFFUSIONTENSOR3D || pixelType == itk::ImageIOBase::SYMMETRICSECONDRANKTENSOR) + { + std::string pixelValue = "See ODF Details view. "; + statusBar->DisplayImageInfo(worldposition, p, renderer->GetTime(), pixelValue.c_str()); + } + else + { + mitk::ScalarType pixelValue; + mitkPixelTypeMultiplex5( + mitk::FastSinglePixelAccess, + image3D->GetChannelDescriptor().GetPixelType(), + image3D, + image3D->GetVolumeData(renderer->GetTimeStep()), + p, + pixelValue, + component); + statusBar->DisplayImageInfo(worldposition, p, renderer->GetTime(), pixelValue); + } + } + else + { + statusBar->DisplayImageInfoInvalid(); + } } bool mitk::DisplayActionEventBroadcast::GetBoolProperty(mitk::PropertyList::Pointer propertyList, const char* propertyName, bool defaultValue) { std::string valueAsString; if (!propertyList->GetStringProperty(propertyName, valueAsString)) { return defaultValue; } else { if (valueAsString == "true") { return true; } else { return false; } } } diff --git a/Modules/Core/src/Interactions/mitkDisplayInteractor.cpp b/Modules/Core/src/Interactions/mitkDisplayInteractor.cpp index d8eb152114..f4dec28e3c 100644 --- a/Modules/Core/src/Interactions/mitkDisplayInteractor.cpp +++ b/Modules/Core/src/Interactions/mitkDisplayInteractor.cpp @@ -1,1003 +1,1007 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkDisplayInteractor.h" #include "mitkBaseRenderer.h" #include "mitkCameraController.h" #include "mitkInteractionPositionEvent.h" #include "mitkPropertyList.h" #include #include #include // level window #include "mitkLevelWindow.h" #include "mitkLevelWindowProperty.h" #include "mitkLine.h" #include "mitkNodePredicateDataType.h" #include "mitkStandaloneDataStorage.h" #include "vtkRenderWindowInteractor.h" // Rotation #include "mitkInteractionConst.h" #include "rotate_cursor.xpm" #include #include #include "mitkImage.h" #include "mitkImagePixelReadAccessor.h" #include "mitkPixelTypeMultiplex.h" #include "mitkStatusBar.h" #include #include "mitkDisplayActionEvents.h" void mitk::DisplayInteractor::Notify(InteractionEvent *interactionEvent, bool isHandled) { // to use the state machine pattern, // the event is passed to the state machine interface to be handled if (!isHandled || m_AlwaysReact) { HandleEvent(interactionEvent, nullptr); } } mitk::DisplayInteractor::DisplayInteractor() : m_IndexToSliceModifier(4) , m_AutoRepeat(false) , m_InvertScrollDirection(false) , m_InvertZoomDirection(false) , m_InvertMoveDirection(false) , m_InvertLevelWindowDirection(false) , m_AlwaysReact(false) , m_ZoomFactor(2) , m_LinkPlanes(true) { m_StartCoordinateInMM.Fill(0); m_LastDisplayCoordinate.Fill(0); m_LastCoordinateInMM.Fill(0); m_CurrentDisplayCoordinate.Fill(0); } mitk::DisplayInteractor::~DisplayInteractor() { // nothing here } void mitk::DisplayInteractor::ConnectActionsAndFunctions() { CONNECT_CONDITION("check_position_event", CheckPositionEvent); CONNECT_CONDITION("check_can_rotate", CheckRotationPossible); CONNECT_CONDITION("check_can_swivel", CheckSwivelPossible); CONNECT_FUNCTION("init", Init); CONNECT_FUNCTION("move", Move); CONNECT_FUNCTION("zoom", Zoom); CONNECT_FUNCTION("scroll", Scroll); CONNECT_FUNCTION("ScrollOneDown", ScrollOneDown); CONNECT_FUNCTION("ScrollOneUp", ScrollOneUp); CONNECT_FUNCTION("levelWindow", AdjustLevelWindow); CONNECT_FUNCTION("setCrosshair", SetCrosshair); CONNECT_FUNCTION("updateStatusbar", UpdateStatusbar) CONNECT_FUNCTION("startRotation", StartRotation); CONNECT_FUNCTION("endRotation", EndRotation); CONNECT_FUNCTION("rotate", Rotate); CONNECT_FUNCTION("swivel", Swivel); } bool mitk::DisplayInteractor::CheckPositionEvent(const InteractionEvent *interactionEvent) { const auto *positionEvent = dynamic_cast(interactionEvent); if (positionEvent == nullptr) { return false; } return true; } bool mitk::DisplayInteractor::CheckRotationPossible(const mitk::InteractionEvent *interactionEvent) { // Decide between moving and rotation slices. /* Detailed logic: 1. Find the SliceNavigationController that has sent the event: this one defines our rendering plane and will NOT be rotated. Needs not even be counted or checked. 2. Inspect every other SliceNavigationController - calculate the line intersection of this SliceNavigationController's plane with our rendering plane - if there is NO interesection, ignore and continue - IF there is an intersection - check the mouse cursor's distance from that line. 0. if the line is NOT near the cursor, remember the plane as "one of the other planes" (which can be rotated in "locked" mode) 1. on first line near the cursor, just remember this intersection line as THE other plane that we want to rotate 2. on every consecutive line near the cursor, check if the line is geometrically identical to the line that we want to rotate - if yes, we just push this line to the "other" lines and rotate it along - if no, then we have a situation where the mouse is near two other lines (e.g. crossing point) and don't want to rotate */ const auto *posEvent = dynamic_cast(interactionEvent); if (posEvent == nullptr) return false; BaseRenderer *clickedRenderer = posEvent->GetSender(); const PlaneGeometry *ourViewportGeometry = (clickedRenderer->GetCurrentWorldPlaneGeometry()); if (!ourViewportGeometry) return false; Point3D cursorPosition = posEvent->GetPositionInWorld(); const auto spacing = ourViewportGeometry->GetSpacing(); const PlaneGeometry *geometryToBeRotated = nullptr; // this one is under the mouse cursor const PlaneGeometry *anyOtherGeometry = nullptr; // this is also visible (for calculation of intersection ONLY) Line3D intersectionLineWithGeometryToBeRotated; bool hitMultipleLines(false); m_SNCsToBeRotated.clear(); const double threshholdDistancePixels = 12.0; auto renWindows = interactionEvent->GetSender()->GetRenderingManager()->GetAllRegisteredRenderWindows(); for (auto renWin : renWindows) { SliceNavigationController *snc = BaseRenderer::GetInstance(renWin)->GetSliceNavigationController(); // If the mouse cursor is in 3D Renderwindow, do not check for intersecting planes. if (BaseRenderer::GetInstance(renWin)->GetMapperID() == BaseRenderer::Standard3D) continue; const PlaneGeometry *otherRenderersRenderPlane = snc->GetCurrentPlaneGeometry(); if (otherRenderersRenderPlane == nullptr) continue; // ignore, we don't see a plane // check if there is an intersection Line3D intersectionLine; // between rendered/clicked geometry and the one being analyzed if (!ourViewportGeometry->IntersectionLine(otherRenderersRenderPlane, intersectionLine)) { continue; // we ignore this plane, it's parallel to our plane } // check distance from intersection line const double distanceFromIntersectionLine = intersectionLine.Distance(cursorPosition) / spacing[snc->GetDefaultViewDirection()]; // far away line, only remember for linked rotation if necessary if (distanceFromIntersectionLine > threshholdDistancePixels) { anyOtherGeometry = otherRenderersRenderPlane; // we just take the last one, so overwrite each iteration (we just // need some crossing point) // TODO what about multiple crossings? NOW we have undefined behavior / random crossing point is used if (m_LinkPlanes) { m_SNCsToBeRotated.push_back(snc); } } else // close to cursor { if (geometryToBeRotated == nullptr) // first one close to the cursor { geometryToBeRotated = otherRenderersRenderPlane; intersectionLineWithGeometryToBeRotated = intersectionLine; m_SNCsToBeRotated.push_back(snc); } else { // compare to the line defined by geometryToBeRotated: if identical, just rotate this otherRenderersRenderPlane // together with the primary one // if different, DON'T rotate if (intersectionLine.IsParallel(intersectionLineWithGeometryToBeRotated) && intersectionLine.Distance(intersectionLineWithGeometryToBeRotated.GetPoint1()) < mitk::eps) { m_SNCsToBeRotated.push_back(snc); } else { hitMultipleLines = true; } } } } bool moveSlices(true); if (geometryToBeRotated && anyOtherGeometry && ourViewportGeometry && !hitMultipleLines) { // assure all three are valid, so calculation of center of rotation can be done moveSlices = false; } // question in state machine is: "rotate?" if (moveSlices) // i.e. NOT rotate { return false; } else { // we DO have enough information for rotation m_LastCursorPosition = intersectionLineWithGeometryToBeRotated.Project( cursorPosition); // remember where the last cursor position ON THE LINE has been observed if (anyOtherGeometry->IntersectionPoint( intersectionLineWithGeometryToBeRotated, m_CenterOfRotation)) // find center of rotation by intersection with any of the OTHER lines { return true; } else { return false; } } return false; } bool mitk::DisplayInteractor::CheckSwivelPossible(const mitk::InteractionEvent *interactionEvent) { const ScalarType ThresholdDistancePixels = 6.0; // Decide between moving and rotation: if we're close to the crossing // point of the planes, moving mode is entered, otherwise // rotation/swivel mode const auto *posEvent = dynamic_cast(interactionEvent); BaseRenderer *renderer = interactionEvent->GetSender(); if (!posEvent || !renderer) return false; const Point3D &cursor = posEvent->GetPositionInWorld(); m_SNCsToBeRotated.clear(); const PlaneGeometry *clickedGeometry(nullptr); const PlaneGeometry *otherGeometry1(nullptr); const PlaneGeometry *otherGeometry2(nullptr); auto renWindows = interactionEvent->GetSender()->GetRenderingManager()->GetAllRegisteredRenderWindows(); for (auto renWin : renWindows) { SliceNavigationController *snc = BaseRenderer::GetInstance(renWin)->GetSliceNavigationController(); // If the mouse cursor is in 3D Renderwindow, do not check for intersecting planes. if (BaseRenderer::GetInstance(renWin)->GetMapperID() == BaseRenderer::Standard3D) continue; // unsigned int slice = (*iter)->GetSlice()->GetPos(); // unsigned int time = (*iter)->GetTime()->GetPos(); const PlaneGeometry *planeGeometry = snc->GetCurrentPlaneGeometry(); if (!planeGeometry) continue; if (snc == renderer->GetSliceNavigationController()) { clickedGeometry = planeGeometry; m_SNCsToBeRotated.push_back(snc); } else { if (otherGeometry1 == nullptr) { otherGeometry1 = planeGeometry; } else { otherGeometry2 = planeGeometry; } if (m_LinkPlanes) { // If planes are linked, apply rotation to all planes m_SNCsToBeRotated.push_back(snc); } } } mitk::Line3D line; mitk::Point3D point; if ((clickedGeometry != nullptr) && (otherGeometry1 != nullptr) && (otherGeometry2 != nullptr) && clickedGeometry->IntersectionLine(otherGeometry1, line) && otherGeometry2->IntersectionPoint(line, point)) { m_CenterOfRotation = point; if (m_CenterOfRotation.EuclideanDistanceTo(cursor) < ThresholdDistancePixels) { return false; } else { m_ReferenceCursor = posEvent->GetPointerPositionOnScreen(); // Get main axes of rotation plane and store it for rotation step m_RotationPlaneNormal = clickedGeometry->GetNormal(); ScalarType xVector[] = {1.0, 0.0, 0.0}; ScalarType yVector[] = {0.0, 1.0, 0.0}; clickedGeometry->BaseGeometry::IndexToWorld(Vector3D(xVector), m_RotationPlaneXVector); clickedGeometry->BaseGeometry::IndexToWorld(Vector3D(yVector), m_RotationPlaneYVector); m_RotationPlaneNormal.Normalize(); m_RotationPlaneXVector.Normalize(); m_RotationPlaneYVector.Normalize(); m_PreviousRotationAxis.Fill(0.0); m_PreviousRotationAxis[2] = 1.0; m_PreviousRotationAngle = 0.0; return true; } } else { return false; } return false; } void mitk::DisplayInteractor::Init(StateMachineAction *, InteractionEvent *interactionEvent) { auto *positionEvent = static_cast(interactionEvent); m_LastDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); m_CurrentDisplayCoordinate = m_LastDisplayCoordinate; positionEvent->GetSender()->DisplayToPlane(m_LastDisplayCoordinate, m_StartCoordinateInMM); m_LastCoordinateInMM = m_StartCoordinateInMM; } void mitk::DisplayInteractor::Move(StateMachineAction *, InteractionEvent *interactionEvent) { BaseRenderer *sender = interactionEvent->GetSender(); auto *positionEvent = static_cast(interactionEvent); float invertModifier = -1.0; if (m_InvertMoveDirection) { invertModifier = 1.0; } // perform translation Vector2D moveVector = (positionEvent->GetPointerPositionOnScreen() - m_LastDisplayCoordinate) * invertModifier; moveVector *= sender->GetScaleFactorMMPerDisplayUnit(); sender->GetCameraController()->MoveBy(moveVector); sender->GetRenderingManager()->RequestUpdate(sender->GetRenderWindow()); /* auto renWindows = sender->GetRenderingManager()->GetAllRegisteredRenderWindows(); for (auto renWin : renWindows) { if (BaseRenderer::GetInstance(renWin)->GetMapperID() == BaseRenderer::Standard2D) { BaseRenderer::GetInstance(renWin)->GetCameraController()->MoveBy(moveVector); BaseRenderer::GetInstance(renWin)->GetRenderingManager()->RequestUpdate(renWin); } } */ m_LastDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); } void mitk::DisplayInteractor::SetCrosshair(mitk::StateMachineAction *, mitk::InteractionEvent *interactionEvent) { auto* positionEvent = static_cast(interactionEvent); Point3D pos = positionEvent->GetPositionInWorld(); const BaseRenderer::Pointer sender = interactionEvent->GetSender(); auto renWindows = sender->GetRenderingManager()->GetAllRegisteredRenderWindows(); for (auto renWin : renWindows) { if (BaseRenderer::GetInstance(renWin)->GetMapperID() == BaseRenderer::Standard2D && renWin != sender->GetRenderWindow()) { BaseRenderer::GetInstance(renWin)->GetSliceNavigationController()->SelectSliceByPoint(pos); } } } void mitk::DisplayInteractor::Zoom(StateMachineAction *, InteractionEvent *interactionEvent) { float factor = 1.0; float distance = 0; if (m_ZoomDirection == "updown") { distance = m_CurrentDisplayCoordinate[1] - m_LastDisplayCoordinate[1]; } else { distance = m_CurrentDisplayCoordinate[0] - m_LastDisplayCoordinate[0]; } if (m_InvertZoomDirection) { distance *= -1.0; } // set zooming speed if (distance < 0.0) { factor = 1.0 / m_ZoomFactor; } else if (distance > 0.0) { factor = 1.0 * m_ZoomFactor; } auto* positionEvent = static_cast(interactionEvent); m_LastDisplayCoordinate = m_CurrentDisplayCoordinate; m_CurrentDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); if (factor != 1.0) { const BaseRenderer::Pointer sender = interactionEvent->GetSender(); sender->GetCameraController()->Zoom(factor, m_StartCoordinateInMM); sender->GetRenderingManager()->RequestUpdate(sender->GetRenderWindow()); //InvokeEvent(DisplayZoomEvent(interactionEvent, factor, m_StartCoordinateInMM)); /* auto renWindows = sender->GetRenderingManager()->GetAllRegisteredRenderWindows(); for (auto renWin : renWindows) { if (BaseRenderer::GetInstance(renWin)->GetMapperID() == BaseRenderer::Standard2D && renWin != sender->GetRenderWindow()) { BaseRenderer::GetInstance(renWin)->GetCameraController()->Zoom(factor, m_StartCoordinateInMM); BaseRenderer::GetInstance(renWin)->GetRenderingManager()->RequestUpdate(sender->GetRenderWindow()); } } */ } } void mitk::DisplayInteractor::Scroll(StateMachineAction *, InteractionEvent *interactionEvent) { auto* positionEvent = static_cast(interactionEvent); mitk::SliceNavigationController::Pointer sliceNaviController = interactionEvent->GetSender()->GetSliceNavigationController(); if (sliceNaviController) { int delta = 0; // Scrolling direction if (m_ScrollDirection == "updown") { delta = static_cast(m_LastDisplayCoordinate[1] - positionEvent->GetPointerPositionOnScreen()[1]); } else { delta = static_cast(m_LastDisplayCoordinate[0] - positionEvent->GetPointerPositionOnScreen()[0]); } if (m_InvertScrollDirection) { delta *= -1; } // Set how many pixels the mouse has to be moved to scroll one slice // if we moved less than 'm_IndexToSliceModifier' pixels slice ONE slice only if (delta > 0 && delta < m_IndexToSliceModifier) { delta = m_IndexToSliceModifier; } else if (delta < 0 && delta > -m_IndexToSliceModifier) { delta = -m_IndexToSliceModifier; } delta /= m_IndexToSliceModifier; int newPos = sliceNaviController->GetSlice()->GetPos() + delta; // if auto repeat is on, start at first slice if you reach the last slice and vice versa int maxSlices = sliceNaviController->GetSlice()->GetSteps(); if (m_AutoRepeat) { while (newPos < 0) { newPos += maxSlices; } while (newPos >= maxSlices) { newPos -= maxSlices; } } else { // if the new slice is below 0 we still show slice 0 // due to the stepper using unsigned int we have to do this ourselves if (newPos < 1) { newPos = 0; } } m_LastDisplayCoordinate = m_CurrentDisplayCoordinate; m_CurrentDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); // set the new position sliceNaviController->GetSlice()->SetPos(newPos); /* const BaseRenderer::Pointer sender = interactionEvent->GetSender(); auto renWindows = sender->GetRenderingManager()->GetAllRegisteredRenderWindows(); for (auto renWin : renWindows) { if (BaseRenderer::GetInstance(renWin)->GetMapperID() == BaseRenderer::Standard2D && renWin != sender->GetRenderWindow()) { BaseRenderer::GetInstance(renWin)->GetSliceNavigationController()->GetSlice()->SetPos(newPos); } } */ } } void mitk::DisplayInteractor::ScrollOneDown(StateMachineAction *, InteractionEvent *interactionEvent) { mitk::SliceNavigationController::Pointer sliceNaviController = interactionEvent->GetSender()->GetSliceNavigationController(); if (!sliceNaviController->GetSliceLocked()) { mitk::Stepper *stepper = sliceNaviController->GetSlice(); if (stepper->GetSteps() <= 1) { stepper = sliceNaviController->GetTime(); } stepper->Next(); } } void mitk::DisplayInteractor::ScrollOneUp(StateMachineAction *, InteractionEvent *interactionEvent) { mitk::SliceNavigationController::Pointer sliceNaviController = interactionEvent->GetSender()->GetSliceNavigationController(); if (!sliceNaviController->GetSliceLocked()) { mitk::Stepper *stepper = sliceNaviController->GetSlice(); if (stepper->GetSteps() <= 1) { stepper = sliceNaviController->GetTime(); } stepper->Previous(); } } void mitk::DisplayInteractor::AdjustLevelWindow(StateMachineAction *, InteractionEvent *interactionEvent) { BaseRenderer::Pointer sender = interactionEvent->GetSender(); auto *positionEvent = static_cast(interactionEvent); m_LastDisplayCoordinate = m_CurrentDisplayCoordinate; m_CurrentDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); // search for active image mitk::DataStorage::Pointer storage = sender->GetDataStorage(); mitk::DataNode::Pointer node = nullptr; mitk::DataStorage::SetOfObjects::ConstPointer allImageNodes = storage->GetSubset(mitk::NodePredicateDataType::New("Image")); for (unsigned int i = 0; i < allImageNodes->size(); ++i) { bool isActiveImage = false; bool propFound = allImageNodes->at(i)->GetBoolProperty("imageForLevelWindow", isActiveImage); if (propFound && isActiveImage) { node = allImageNodes->at(i); continue; } } if (node.IsNull()) { node = storage->GetNode(mitk::NodePredicateDataType::New("Image")); } if (node.IsNull()) { return; } mitk::LevelWindow lv = mitk::LevelWindow(); node->GetLevelWindow(lv); ScalarType level = lv.GetLevel(); ScalarType window = lv.GetWindow(); int levelIndex = 0; int windowIndex = 1; if (m_LevelDirection != "leftright") { levelIndex = 1; windowIndex = 0; } int directionModifier = 1; if (m_InvertLevelWindowDirection) { directionModifier = -1; } // calculate adjustments from mouse movements level += (m_CurrentDisplayCoordinate[levelIndex] - m_LastDisplayCoordinate[levelIndex]) * static_cast(2) * directionModifier; window += (m_CurrentDisplayCoordinate[windowIndex] - m_LastDisplayCoordinate[windowIndex]) * static_cast(2) * directionModifier; lv.SetLevelWindow(level, window); dynamic_cast(node->GetProperty("levelwindow"))->SetLevelWindow(lv); sender->GetRenderingManager()->RequestUpdateAll(); } void mitk::DisplayInteractor::StartRotation(mitk::StateMachineAction *, mitk::InteractionEvent *) { this->SetMouseCursor(rotate_cursor_xpm, 0, 0); } void mitk::DisplayInteractor::EndRotation(mitk::StateMachineAction *, mitk::InteractionEvent *) { this->ResetMouseCursor(); } void mitk::DisplayInteractor::Rotate(mitk::StateMachineAction *, mitk::InteractionEvent *event) { const auto *posEvent = dynamic_cast(event); if (posEvent == nullptr) return; Point3D cursor = posEvent->GetPositionInWorld(); Vector3D toProjected = m_LastCursorPosition - m_CenterOfRotation; Vector3D toCursor = cursor - m_CenterOfRotation; // cross product: | A x B | = |A| * |B| * sin(angle) Vector3D axisOfRotation; vnl_vector_fixed vnlDirection = vnl_cross_3d(toCursor.GetVnlVector(), toProjected.GetVnlVector()); axisOfRotation.SetVnlVector(vnlDirection); // scalar product: A * B = |A| * |B| * cos(angle) // tan = sin / cos ScalarType angle = -atan2((double)(axisOfRotation.GetNorm()), (double)(toCursor * toProjected)); angle *= 180.0 / vnl_math::pi; m_LastCursorPosition = cursor; // create RotationOperation and apply to all SNCs that should be rotated RotationOperation rotationOperation(OpROTATE, m_CenterOfRotation, axisOfRotation, angle); // iterate the OTHER slice navigation controllers: these are filled in DoDecideBetweenRotationAndSliceSelection for (auto iter = m_SNCsToBeRotated.begin(); iter != m_SNCsToBeRotated.end(); ++iter) { TimeGeometry *timeGeometry = (*iter)->GetCreatedWorldGeometry(); if (!timeGeometry) continue; timeGeometry->ExecuteOperation(&rotationOperation); (*iter)->SendCreatedWorldGeometryUpdate(); } RenderingManager::GetInstance()->RequestUpdateAll(); } void mitk::DisplayInteractor::Swivel(mitk::StateMachineAction *, mitk::InteractionEvent *event) { const auto *posEvent = dynamic_cast(event); if (!posEvent) return; // Determine relative mouse movement projected onto world space Point2D cursor = posEvent->GetPointerPositionOnScreen(); Vector2D relativeCursor = cursor - m_ReferenceCursor; Vector3D relativeCursorAxis = m_RotationPlaneXVector * relativeCursor[0] + m_RotationPlaneYVector * relativeCursor[1]; // Determine rotation axis (perpendicular to rotation plane and cursor // movement) Vector3D rotationAxis = itk::CrossProduct(m_RotationPlaneNormal, relativeCursorAxis); ScalarType rotationAngle = relativeCursor.GetNorm() / 2.0; // Restore the initial plane pose by undoing the previous rotation // operation RotationOperation op(OpROTATE, m_CenterOfRotation, m_PreviousRotationAxis, -m_PreviousRotationAngle); SNCVector::iterator iter; for (iter = m_SNCsToBeRotated.begin(); iter != m_SNCsToBeRotated.end(); ++iter) { if (!(*iter)->GetSliceRotationLocked()) { TimeGeometry *timeGeometry = (*iter)->GetCreatedWorldGeometry(); if (!timeGeometry) continue; timeGeometry->ExecuteOperation(&op); (*iter)->SendCreatedWorldGeometryUpdate(); } } // Apply new rotation operation to all relevant SNCs RotationOperation op2(OpROTATE, m_CenterOfRotation, rotationAxis, rotationAngle); for (iter = m_SNCsToBeRotated.begin(); iter != m_SNCsToBeRotated.end(); ++iter) { if (!(*iter)->GetSliceRotationLocked()) { // Retrieve the TimeGeometry of this SliceNavigationController TimeGeometry *timeGeometry = (*iter)->GetCreatedWorldGeometry(); if (!timeGeometry) continue; // Execute the new rotation timeGeometry->ExecuteOperation(&op2); // Notify listeners (*iter)->SendCreatedWorldGeometryUpdate(); } } m_PreviousRotationAxis = rotationAxis; m_PreviousRotationAngle = rotationAngle; RenderingManager::GetInstance()->RequestUpdateAll(); return; } void mitk::DisplayInteractor::UpdateStatusbar(mitk::StateMachineAction *, mitk::InteractionEvent *event) { const auto *posEvent = dynamic_cast(event); - - if (!posEvent) + if (nullptr == posEvent) + { return; + } - std::string statusText; - TNodePredicateDataType::Pointer isImageData = TNodePredicateDataType::New(); + mitk::BaseRenderer::Pointer renderer = posEvent->GetSender(); - mitk::DataStorage::SetOfObjects::ConstPointer nodes = - posEvent->GetSender()->GetDataStorage()->GetSubset(isImageData).GetPointer(); + TNodePredicateDataType::Pointer isImageData = TNodePredicateDataType::New(); + mitk::DataStorage::SetOfObjects::ConstPointer nodes = renderer->GetDataStorage()->GetSubset(isImageData).GetPointer(); + if (nodes.IsNull()) + { + return; + } // posEvent->GetPositionInWorld() would return the world position at the // time of initiating the interaction. However, we need to update the // status bar with the position after changing slice. Therefore, we // translate the same display position with the renderer again to // get the new world position. Point3D worldposition; - event->GetSender()->DisplayToWorld(posEvent->GetPointerPositionOnScreen(), worldposition); + renderer->DisplayToWorld(posEvent->GetPointerPositionOnScreen(), worldposition); mitk::Image::Pointer image3D; mitk::DataNode::Pointer node; mitk::DataNode::Pointer topSourceNode; int component = 0; node = this->GetTopLayerNode(nodes, worldposition, posEvent->GetSender()); - if (node.IsNotNull()) + if (node.IsNull()) + { + return; + } + + bool isBinary(false); + node->GetBoolProperty("binary", isBinary); + if (isBinary) { - bool isBinary(false); - node->GetBoolProperty("binary", isBinary); - if (isBinary) + mitk::DataStorage::SetOfObjects::ConstPointer sourcenodes = + posEvent->GetSender()->GetDataStorage()->GetSources(node, nullptr, true); + if (!sourcenodes->empty()) { - mitk::DataStorage::SetOfObjects::ConstPointer sourcenodes = - posEvent->GetSender()->GetDataStorage()->GetSources(node, nullptr, true); - if (!sourcenodes->empty()) - { - topSourceNode = this->GetTopLayerNode(sourcenodes, worldposition, posEvent->GetSender()); - } - if (topSourceNode.IsNotNull()) - { - image3D = dynamic_cast(topSourceNode->GetData()); - topSourceNode->GetIntProperty("Image.Displayed Component", component); - } - else - { - image3D = dynamic_cast(node->GetData()); - node->GetIntProperty("Image.Displayed Component", component); - } + topSourceNode = this->GetTopLayerNode(sourcenodes, worldposition, posEvent->GetSender()); + } + if (topSourceNode.IsNotNull()) + { + image3D = dynamic_cast(topSourceNode->GetData()); + topSourceNode->GetIntProperty("Image.Displayed Component", component); } else { image3D = dynamic_cast(node->GetData()); node->GetIntProperty("Image.Displayed Component", component); } } + else + { + image3D = dynamic_cast(node->GetData()); + node->GetIntProperty("Image.Displayed Component", component); + } // get the position and gray value from the image and build up status bar text auto statusBar = StatusBar::GetInstance(); - if (image3D.IsNotNull() && statusBar != nullptr) { itk::Index<3> p; image3D->GetGeometry()->WorldToIndex(worldposition, p); auto pixelType = image3D->GetChannelDescriptor().GetPixelType().GetPixelType(); - if (pixelType == itk::ImageIOBase::RGB || pixelType == itk::ImageIOBase::RGBA) { std::string pixelValue = "Pixel RGB(A) value: "; pixelValue.append(ConvertCompositePixelValueToString(image3D, p)); statusBar->DisplayImageInfo(worldposition, p, posEvent->GetSender()->GetTime(), pixelValue.c_str()); } - else if ( pixelType == itk::ImageIOBase::DIFFUSIONTENSOR3D || pixelType == itk::ImageIOBase::SYMMETRICSECONDRANKTENSOR ) + else if (pixelType == itk::ImageIOBase::DIFFUSIONTENSOR3D || pixelType == itk::ImageIOBase::SYMMETRICSECONDRANKTENSOR) { std::string pixelValue = "See ODF Details view. "; statusBar->DisplayImageInfo(worldposition, p, posEvent->GetSender()->GetTime(), pixelValue.c_str()); } else { mitk::ScalarType pixelValue; mitkPixelTypeMultiplex5(mitk::FastSinglePixelAccess, image3D->GetChannelDescriptor().GetPixelType(), image3D, image3D->GetVolumeData(posEvent->GetSender()->GetTimeStep()), p, pixelValue, component); statusBar->DisplayImageInfo(worldposition, p, posEvent->GetSender()->GetTime(), pixelValue); } } else { statusBar->DisplayImageInfoInvalid(); } } void mitk::DisplayInteractor::ConfigurationChanged() { mitk::PropertyList::Pointer properties = GetAttributes(); // auto repeat std::string strAutoRepeat = ""; if (properties->GetStringProperty("autoRepeat", strAutoRepeat)) { if (strAutoRepeat == "true") { m_AutoRepeat = true; } else { m_AutoRepeat = false; } } // pixel movement for scrolling one slice std::string strPixelPerSlice = ""; if (properties->GetStringProperty("pixelPerSlice", strPixelPerSlice)) { m_IndexToSliceModifier = atoi(strPixelPerSlice.c_str()); } else { m_IndexToSliceModifier = 4; } // scroll direction if (!properties->GetStringProperty("scrollDirection", m_ScrollDirection)) { m_ScrollDirection = "updown"; } m_InvertScrollDirection = GetBoolProperty(properties, "invertScrollDirection", false); // zoom direction if (!properties->GetStringProperty("zoomDirection", m_ZoomDirection)) { m_ZoomDirection = "updown"; } m_InvertZoomDirection = GetBoolProperty(properties, "invertZoomDirection", false); m_InvertMoveDirection = GetBoolProperty(properties, "invertMoveDirection", false); if (!properties->GetStringProperty("levelWindowDirection", m_LevelDirection)) { m_LevelDirection = "leftright"; } m_InvertLevelWindowDirection = GetBoolProperty(properties, "invertLevelWindowDirection", false); // coupled rotation std::string strCoupled = ""; if (properties->GetStringProperty("coupled", strCoupled)) { if (strCoupled == "true") m_LinkPlanes = true; else m_LinkPlanes = false; } // zoom factor std::string strZoomFactor = ""; properties->GetStringProperty("zoomFactor", strZoomFactor); m_ZoomFactor = .05; if (atoi(strZoomFactor.c_str()) > 0) { m_ZoomFactor = 1.0 + (atoi(strZoomFactor.c_str()) / 100.0); } // allwaysReact std::string strAlwaysReact = ""; if (properties->GetStringProperty("alwaysReact", strAlwaysReact)) { if (strAlwaysReact == "true") { m_AlwaysReact = true; } else { m_AlwaysReact = false; } } else { m_AlwaysReact = false; } } bool mitk::DisplayInteractor::FilterEvents(InteractionEvent *interactionEvent, DataNode * /*dataNode*/) { if (interactionEvent->GetSender() == nullptr) return false; if (interactionEvent->GetSender()->GetMapperID() == BaseRenderer::Standard3D) return false; return true; } bool mitk::DisplayInteractor::GetBoolProperty(mitk::PropertyList::Pointer propertyList, const char *propertyName, bool defaultValue) { std::string valueAsString; if (!propertyList->GetStringProperty(propertyName, valueAsString)) { return defaultValue; } else { if (valueAsString == "true") { return true; } else { return false; } } } mitk::DataNode::Pointer mitk::DisplayInteractor::GetTopLayerNode(mitk::DataStorage::SetOfObjects::ConstPointer nodes, mitk::Point3D worldposition, BaseRenderer *ren) { mitk::DataNode::Pointer node; if (nodes.IsNotNull()) { int maxlayer = -32768; bool isHelper(false); for (unsigned int x = 0; x < nodes->size(); x++) { nodes->at(x)->GetBoolProperty("helper object", isHelper); if (nodes->at(x)->GetData()->GetGeometry()->IsInside(worldposition) && isHelper == false) { int layer = 0; if (!(nodes->at(x)->GetIntProperty("layer", layer))) continue; if (layer > maxlayer) { if (static_cast(nodes->at(x))->IsVisible(ren)) { node = nodes->at(x); maxlayer = layer; } } } } } return node; }