diff --git a/Modules/Core/include/mitkPlaneGeometry.h b/Modules/Core/include/mitkPlaneGeometry.h index 4e296c981b..bdb4a0beb2 100644 --- a/Modules/Core/include/mitkPlaneGeometry.h +++ b/Modules/Core/include/mitkPlaneGeometry.h @@ -1,608 +1,611 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ /** * \brief Describes the geometry of a plane object * * Describes a two-dimensional manifold, i.e., to put it simply, * an object that can be described using a 2D coordinate-system. * * PlaneGeometry can map points between 3D world coordinates * (in mm) and the described 2D coordinate-system (in mm) by first projecting * the 3D point onto the 2D manifold and then calculating the 2D-coordinates * (in mm). These 2D-mm-coordinates can be further converted into * 2D-unit-coordinates (e.g., pixels), giving a parameter representation of * the object with parameter values inside a rectangle * (e.g., [0,0]..[width, height]), which is the bounding box (bounding range * in z-direction always [0]..[1]). * * A PlaneGeometry describes the 2D representation within a 3D object (derived from BaseGeometry). For example, * a single CT-image (slice) is 2D in the sense that you can access the * pixels using 2D-coordinates, but is also 3D, as the pixels are really * voxels, thus have an extension (thickness) in the 3rd dimension. * * * Optionally, a reference BaseGeometry can be specified, which usually would * be the geometry associated with the underlying dataset. This is currently * used for calculating the intersection of inclined / rotated planes * (represented as PlaneGeometry) with the bounding box of the associated * BaseGeometry. * * \warning The PlaneGeometry are not necessarily up-to-date and not even * initialized. As described in the previous paragraph, one of the * Generate-/Copy-/UpdateOutputInformation methods have to initialize it. * mitk::BaseData::GetPlaneGeometry() makes sure, that the PlaneGeometry is * up-to-date before returning it (by setting the update extent appropriately * and calling UpdateOutputInformation). * * Rule: everything is in mm (or ms for temporal information) if not * stated otherwise. * \ingroup Geometry */ #ifndef PLANEGEOMETRY_H_HEADER_INCLUDED_C1C68A2C #define PLANEGEOMETRY_H_HEADER_INCLUDED_C1C68A2C #include "mitkBaseGeometry.h" #include "mitkRestorePlanePositionOperation.h" #include #include namespace mitk { template class Line; typedef Line Line3D; class PlaneGeometry; /** \deprecatedSince{2014_10} This class is deprecated. Please use PlaneGeometry instead. */ DEPRECATED(typedef PlaneGeometry Geometry2D); /** * \brief Describes a two-dimensional, rectangular plane * * \ingroup Geometry */ class MITKCORE_EXPORT PlaneGeometry : public BaseGeometry { public: mitkClassMacro(PlaneGeometry, BaseGeometry); /** Method for creation through the object factory. */ itkFactorylessNewMacro(Self) itkCloneMacro(Self) enum PlaneOrientation { Axial, Sagittal, Frontal, // also known as "Coronal" in mitk. None // This defines the PlaneGeometry for the 3D renderWindow which // curiously also needs a PlaneGeometry. This should be reconsidered some time. }; virtual void IndexToWorld(const Point2D &pt_units, Point2D &pt_mm) const; virtual void WorldToIndex(const Point2D &pt_mm, Point2D &pt_units) const; //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em vector //## \a vec_units to world coordinates (in mm) //## @deprecated First parameter (Point2D) is not used. If possible, please use void IndexToWorld(const // mitk::Vector2D& vec_units, mitk::Vector2D& vec_mm) const. //## For further information about coordinates types, please see the Geometry documentation virtual void IndexToWorld(const mitk::Point2D &atPt2d_untis, const mitk::Vector2D &vec_units, mitk::Vector2D &vec_mm) const; //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em vector //## \a vec_units to world coordinates (in mm) //## For further information about coordinates types, please see the Geometry documentation virtual void IndexToWorld(const mitk::Vector2D &vec_units, mitk::Vector2D &vec_mm) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em vector //## \a vec_mm to (continuous!) index coordinates. //## @deprecated First parameter (Point2D) is not used. If possible, please use void WorldToIndex(const // mitk::Vector2D& vec_mm, mitk::Vector2D& vec_units) const. //## For further information about coordinates types, please see the Geometry documentation virtual void WorldToIndex(const mitk::Point2D &atPt2d_mm, const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em vector //## \a vec_mm to (continuous!) index coordinates. //## For further information about coordinates types, please see the Geometry documentation virtual void WorldToIndex(const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units) const; /** * \brief Initialize a plane with orientation \a planeorientation * (default: axial) with respect to \a BaseGeometry (default: identity). * Spacing also taken from \a BaseGeometry. * * \warning A former version of this method created a geometry with unit * spacing. For unit spacing use * * \code * // for in-plane unit spacing: * thisgeometry->SetSizeInUnits(thisgeometry->GetExtentInMM(0), * thisgeometry->GetExtentInMM(1)); * // additionally, for unit spacing in normal direction (former version * // did not do this): * thisgeometry->SetExtentInMM(2, 1.0); * \endcode */ virtual void InitializeStandardPlane(const BaseGeometry *geometry3D, PlaneOrientation planeorientation = Axial, ScalarType zPosition = 0, bool frontside = true, bool rotated = false, bool top = true); /** * \brief Initialize a plane with orientation \a planeorientation * (default: axial) with respect to \a BaseGeometry (default: identity). * Spacing also taken from \a BaseGeometry. * * \param top if \a true, create plane at top, otherwise at bottom * (for PlaneOrientation Axial, for other plane locations respectively) */ virtual void InitializeStandardPlane(const BaseGeometry *geometry3D, bool top, PlaneOrientation planeorientation = Axial, bool frontside = true, bool rotated = false); /** * \brief Initialize a plane with orientation \a planeorientation * (default: axial) with respect to \a transform (default: identity) * given width and height in units. * * \a Rotated means rotated by 180 degrees (1/2 rotation) within the plane. * Rotation by 90 degrees (1/4 rotation) is not implemented as of now. * * \a Frontside/Backside: * Viewed from below = frontside in the axial case; * (radiologist's view versus neuro-surgeon's view, see: * http://www.itk.org/Wiki/images/e/ed/DICOM-OrientationDiagram-Radiologist-vs-NeuroSurgeon.png ) * Viewed from front = frontside in the coronal case; * Viewed from left = frontside in the sagittal case. * * \a Cave/Caution: Currently only RPI, LAI, LPS and RAS in the three standard planes are covered, * i.e. 12 cases of 144: 3 standard planes * 48 coordinate orientations = 144 cases. */ virtual void InitializeStandardPlane(ScalarType width, ScalarType height, const AffineTransform3D *transform = nullptr, PlaneOrientation planeorientation = Axial, ScalarType zPosition = 0, bool frontside = true, bool rotated = false, bool top = true); /** * \brief Initialize plane with orientation \a planeorientation * (default: axial) given width, height and spacing. * */ virtual void InitializeStandardPlane(ScalarType width, ScalarType height, const Vector3D &spacing, PlaneOrientation planeorientation = Axial, ScalarType zPosition = 0, bool frontside = true, bool rotated = false, bool top = true); /** * \brief Initialize plane by width and height in pixels, right-/down-vector * (itk) to describe orientation in world-space (vectors will be normalized) * and spacing (default: 1.0 mm in all directions). * * The vectors are normalized and multiplied by the respective spacing before * they are set in the matrix. * * This overloaded version of InitializeStandardPlane() creates only righthanded * coordinate orientations, unless spacing contains 1 or 3 negative entries. * */ virtual void InitializeStandardPlane(ScalarType width, ScalarType height, const Vector3D &rightVector, const Vector3D &downVector, const Vector3D *spacing = nullptr); /** * \brief Initialize plane by width and height in pixels, * right-/down-vector (vnl) to describe orientation in world-space (vectors * will be normalized) and spacing (default: 1.0 mm in all directions). * * The vectors are normalized and multiplied by the respective spacing * before they are set in the matrix. * * This overloaded version of InitializeStandardPlane() creates only righthanded * coordinate orientations, unless spacing contains 1 or 3 negative entries. * */ virtual void InitializeStandardPlane(ScalarType width, ScalarType height, const VnlVector &rightVector, const VnlVector &downVector, const Vector3D *spacing = nullptr); /** * \brief Initialize plane by right-/down-vector (itk) and spacing * (default: 1.0 mm in all directions). * * The length of the right-/-down-vector is used as width/height in units, * respectively. Then, the vectors are normalized and multiplied by the * respective spacing before they are set in the matrix. */ virtual void InitializeStandardPlane(const Vector3D &rightVector, const Vector3D &downVector, const Vector3D *spacing = nullptr); /** * \brief Initialize plane by right-/down-vector (vnl) and spacing * (default: 1.0 mm in all directions). * * The length of the right-/-down-vector is used as width/height in units, * respectively. Then, the vectors are normalized and multiplied by the * respective spacing before they are set in the matrix. */ virtual void InitializeStandardPlane(const VnlVector &rightVector, const VnlVector &downVector, const Vector3D *spacing = nullptr); /** * \brief Initialize plane by origin and normal (size is 1.0 mm in * all directions, direction of right-/down-vector valid but * undefined). * \warning This function can only produce righthanded coordinate orientation, not lefthanded. */ virtual void InitializePlane(const Point3D &origin, const Vector3D &normal); /** * \brief Initialize plane by right-/down-vector. * * \warning The vectors are set into the matrix as they are, * \em without normalization! * This function creates a righthanded IndexToWorldTransform, * only a negative thickness could still make it lefthanded. */ void SetMatrixByVectors(const VnlVector &rightVector, const VnlVector &downVector, ScalarType thickness = 1.0); /** - * \brief Change \a transform so that the third column of the - * transform-martix is perpendicular to the first two columns - * + * \brief Check if matrix is a rotation matrix: + * - determinant is 1? + * - R*R^T is ID? + * Output warning otherwise. */ - static void EnsurePerpendicularNormal(AffineTransform3D *transform); + static bool CheckRotationMatrix(AffineTransform3D *transform, double epsilon=mitk::eps); /** * \brief Normal of the plane * */ Vector3D GetNormal() const; /** * \brief Normal of the plane as VnlVector * */ VnlVector GetNormalVnl() const; virtual ScalarType SignedDistance(const Point3D &pt3d_mm) const; /** * \brief Calculates, whether a point is below or above the plane. There are two different *calculation methods, with or without consideration of the bounding box. */ virtual bool IsAbove(const Point3D &pt3d_mm, bool considerBoundingBox = false) const; /** * \brief Distance of the point from the plane * (bounding-box \em not considered) * */ ScalarType DistanceFromPlane(const Point3D &pt3d_mm) const; /** * \brief Signed distance of the point from the plane * (bounding-box \em not considered) * * > 0 : point is in the direction of the direction vector. */ inline ScalarType SignedDistanceFromPlane(const Point3D &pt3d_mm) const { ScalarType len = GetNormalVnl().two_norm(); if (len == 0) return 0; return (pt3d_mm - GetOrigin()) * GetNormal() / len; } /** * \brief Distance of the plane from another plane * (bounding-box \em not considered) * * Result is 0 if planes are not parallel. */ ScalarType DistanceFromPlane(const PlaneGeometry *plane) const { return fabs(SignedDistanceFromPlane(plane)); } /** * \brief Signed distance of the plane from another plane * (bounding-box \em not considered) * * Result is 0 if planes are not parallel. */ inline ScalarType SignedDistanceFromPlane(const PlaneGeometry *plane) const { if (IsParallel(plane)) { return SignedDistance(plane->GetOrigin()); } return 0; } /** * \brief Calculate the intersecting line of two planes * * \return \a true planes are intersecting * \return \a false planes do not intersect */ bool IntersectionLine(const PlaneGeometry *plane, Line3D &crossline) const; /** * \brief Calculate two points where another plane intersects the border of this plane * * \return number of intersection points (0..2). First interection point (if existing) * is returned in \a lineFrom, second in \a lineTo. */ unsigned int IntersectWithPlane2D(const PlaneGeometry *plane, Point2D &lineFrom, Point2D &lineTo) const; /** * \brief Calculate the angle between two planes * * \return angle in radiants */ double Angle(const PlaneGeometry *plane) const; /** * \brief Calculate the angle between the plane and a line * * \return angle in radiants */ double Angle(const Line3D &line) const; /** * \brief Calculate intersection point between the plane and a line * * \param intersectionPoint intersection point * \return \a true if \em unique intersection exists, i.e., if line * is \em not on or parallel to the plane */ bool IntersectionPoint(const Line3D &line, Point3D &intersectionPoint) const; /** * \brief Calculate line parameter of intersection point between the * plane and a line * * \param t parameter of line: intersection point is * line.GetPoint()+t*line.GetDirection() * \return \a true if \em unique intersection exists, i.e., if line * is \em not on or parallel to the plane */ bool IntersectionPointParam(const Line3D &line, double &t) const; /** * \brief Returns whether the plane is parallel to another plane * * @return true iff the normal vectors both point to the same or exactly oposit direction */ bool IsParallel(const PlaneGeometry *plane) const; /** * \brief Returns whether the point is on the plane * (bounding-box \em not considered) */ bool IsOnPlane(const Point3D &point) const; /** * \brief Returns whether the line is on the plane * (bounding-box \em not considered) */ bool IsOnPlane(const Line3D &line) const; /** * \brief Returns whether the plane is on the plane * (bounding-box \em not considered) * * @return true iff the normal vector of the planes point to the same or the exactly oposit direction and * the distance of the planes is < eps * */ bool IsOnPlane(const PlaneGeometry *plane) const; /** * \brief Returns the lot from the point to the plane */ Point3D ProjectPointOntoPlane(const Point3D &pt) const; itk::LightObject::Pointer InternalClone() const override; /** Implements operation to re-orient the plane */ void ExecuteOperation(Operation *operation) override; /** * \brief Project a 3D point given in mm (\a pt3d_mm) onto the 2D * geometry. The result is a 2D point in mm (\a pt2d_mm). * * The result is a 2D point in mm (\a pt2d_mm) relative to the upper-left * corner of the geometry. To convert this point into units (e.g., pixels * in case of an image), use WorldToIndex. * \return true projection was possible * \sa Project(const mitk::Point3D &pt3d_mm, mitk::Point3D * &projectedPt3d_mm) */ virtual bool Map(const mitk::Point3D &pt3d_mm, mitk::Point2D &pt2d_mm) const; /** * \brief Converts a 2D point given in mm (\a pt2d_mm) relative to the * upper-left corner of the geometry into the corresponding * world-coordinate (a 3D point in mm, \a pt3d_mm). * * To convert a 2D point given in units (e.g., pixels in case of an * image) into a 2D point given in mm (as required by this method), use * IndexToWorld. */ virtual void Map(const mitk::Point2D &pt2d_mm, mitk::Point3D &pt3d_mm) const; /** * \brief Set the width and height of this 2D-geometry in units by calling * SetBounds. This does \a not change the extent in mm! * * For an image, this is the number of pixels in x-/y-direction. * \note In contrast to calling SetBounds directly, this does \a not change * the extent in mm! */ virtual void SetSizeInUnits(mitk::ScalarType width, mitk::ScalarType height); /** * \brief Project a 3D point given in mm (\a pt3d_mm) onto the 2D * geometry. The result is a 3D point in mm (\a projectedPt3d_mm). * * \return true projection was possible */ virtual bool Project(const mitk::Point3D &pt3d_mm, mitk::Point3D &projectedPt3d_mm) const; /** * \brief Project a 3D vector given in mm (\a vec3d_mm) onto the 2D * geometry. The result is a 2D vector in mm (\a vec2d_mm). * * The result is a 2D vector in mm (\a vec2d_mm) relative to the * upper-left * corner of the geometry. To convert this point into units (e.g., pixels * in case of an image), use WorldToIndex. * \return true projection was possible * \sa Project(const mitk::Vector3D &vec3d_mm, mitk::Vector3D * &projectedVec3d_mm) */ virtual bool Map(const mitk::Point3D &atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector2D &vec2d_mm) const; /** * \brief Converts a 2D vector given in mm (\a vec2d_mm) relative to the * upper-left corner of the geometry into the corresponding * world-coordinate (a 3D vector in mm, \a vec3d_mm). * * To convert a 2D vector given in units (e.g., pixels in case of an * image) into a 2D vector given in mm (as required by this method), use * IndexToWorld. */ virtual void Map(const mitk::Point2D &atPt2d_mm, const mitk::Vector2D &vec2d_mm, mitk::Vector3D &vec3d_mm) const; /** * \brief Project a 3D vector given in mm (\a vec3d_mm) onto the 2D * geometry. The result is a 3D vector in mm (\a projectedVec3d_mm). * * DEPRECATED. Use Project(vector,vector) instead * * \return true projection was possible */ virtual bool Project(const mitk::Point3D &atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const; /** * \brief Project a 3D vector given in mm (\a vec3d_mm) onto the 2D * geometry. The result is a 3D vector in mm (\a projectedVec3d_mm). * * \return true projection was possible */ virtual bool Project(const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const; /** * \brief Distance of the point from the geometry * (bounding-box \em not considered) * */ inline ScalarType Distance(const Point3D &pt3d_mm) const { return fabs(SignedDistance(pt3d_mm)); } /** * \brief Set the geometrical frame of reference in which this PlaneGeometry * is placed. * * This would usually be the BaseGeometry of the underlying dataset, but * setting it is optional. */ void SetReferenceGeometry(const mitk::BaseGeometry *geometry); /** * \brief Get the geometrical frame of reference for this PlaneGeometry. */ const BaseGeometry *GetReferenceGeometry() const; bool HasReferenceGeometry() const; + std::vector< int > CalculateDominantAxes(mitk::AffineTransform3D::MatrixType::InternalMatrixType& rotation_matrix); + protected: PlaneGeometry(); PlaneGeometry(const PlaneGeometry &other); ~PlaneGeometry() override; void PrintSelf(std::ostream &os, itk::Indent indent) const override; const mitk::BaseGeometry *m_ReferenceGeometry; //##Documentation //## @brief PreSetSpacing //## //## These virtual function allows a different beahiour in subclasses. //## Do implement them in every subclass of BaseGeometry. If not needed, use //## {Superclass::PreSetSpacing();}; void PreSetSpacing(const mitk::Vector3D &aSpacing) override { Superclass::PreSetSpacing(aSpacing); }; //##Documentation //## @brief CheckBounds //## //## This function is called in SetBounds. Assertions can be implemented in this function (see PlaneGeometry.cpp). //## If you implement this function in a subclass, make sure, that all classes were your class inherits from //## have an implementation of CheckBounds //## (e.g. inheritance BaseGeometry <- A <- B. Implementation of CheckBounds in class B needs implementation in A as // well!) void CheckBounds(const BoundsArrayType &bounds) override; //##Documentation //## @brief CheckIndexToWorldTransform //## //## This function is called in SetIndexToWorldTransform. Assertions can be implemented in this function (see // PlaneGeometry.cpp). //## In Subclasses of BaseGeometry, implement own conditions or call Superclass::CheckBounds(bounds);. void CheckIndexToWorldTransform(mitk::AffineTransform3D *transform) override; private: /** * \brief Compares plane with another plane: \a true if IsOnPlane * (bounding-box \em not considered) */ virtual bool operator==(const PlaneGeometry *) const { return false; }; /** * \brief Compares plane with another plane: \a false if IsOnPlane * (bounding-box \em not considered) */ virtual bool operator!=(const PlaneGeometry *) const { return false; }; }; } // namespace mitk #endif /* PLANEGEOMETRY_H_HEADER_INCLUDED_C1C68A2C */ diff --git a/Modules/Core/src/DataManagement/mitkPlaneGeometry.cpp b/Modules/Core/src/DataManagement/mitkPlaneGeometry.cpp index b0868e59b5..f1d1afbc86 100644 --- a/Modules/Core/src/DataManagement/mitkPlaneGeometry.cpp +++ b/Modules/Core/src/DataManagement/mitkPlaneGeometry.cpp @@ -1,984 +1,975 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlaneGeometry.h" #include "mitkInteractionConst.h" #include "mitkLine.h" #include "mitkPlaneOperation.h" #include #include #include namespace mitk { PlaneGeometry::PlaneGeometry() : Superclass(), m_ReferenceGeometry(nullptr) { Initialize(); } PlaneGeometry::~PlaneGeometry() {} PlaneGeometry::PlaneGeometry(const PlaneGeometry &other) : Superclass(other), m_ReferenceGeometry(other.m_ReferenceGeometry) { } - void PlaneGeometry::EnsurePerpendicularNormal(mitk::AffineTransform3D *transform) + bool PlaneGeometry::CheckRotationMatrix(mitk::AffineTransform3D *transform, double epsilon) { - /** \brief ensure column(2) of indexToWorldTransform-matrix to be perpendicular to plane, keep length and - * handedness. - */ + bool rotation = true; - VnlVector normal = vnl_cross_3d(transform->GetMatrix().GetVnlMatrix().get_column(0), - transform->GetMatrix().GetVnlMatrix().get_column(1)); - normal.normalize(); // Now normal is a righthand normal unit vector, perpendicular to the plane. + auto matrix = transform->GetMatrix().GetVnlMatrix(); + matrix.normalize_columns(); - ScalarType len = transform->GetMatrix().GetVnlMatrix().get_column(2).two_norm(); - if (len == 0) + auto det = vnl_determinant(matrix); + if (fabs(det-1.0) > epsilon) { - len = 1; + MITK_WARN << "Matrix is not a rotation matrix! Determinant≠1 (" << det << ")"; + rotation = false; } - normal *= len; - // Get the existing normal vector zed: - vnl_vector_fixed zed = transform->GetMatrix().GetVnlMatrix().get_column(2); - - /** If det(matrix)<0, multiply normal vector by (-1) to keep geometry lefthanded. */ - if (vnl_determinant(transform->GetMatrix().GetVnlMatrix()) < 0) + vnl_matrix_fixed id; id.set_identity(); + auto should_be_id = matrix*matrix.transpose(); + should_be_id -= id; + auto max = should_be_id.absolute_value_max(); + if (max > epsilon) { - MITK_DEBUG << "EnsurePerpendicularNormal(): Lefthanded geometry preserved, rh-normal: [ " << normal << " ],"; - normal *= (-1.0); - MITK_DEBUG << "lh-normal: [ " << normal << " ], original vector zed is: [ " << zed << " ]"; + MITK_WARN << "Matrix is not a rotation matrix! R*R^T≠ID. Max value: " << max << " (should be 0)"; + rotation = false; } - // Now lets compare and only replace if necessary and only then warn the user: - - // float epsilon is precise enough here, but we need to respect numerical condition: - // Higham, N., 2002, Accuracy and Stability of Numerical Algorithms, - // SIAM, page 37, 2nd edition: - double feps = std::numeric_limits::epsilon(); - double zedsMagnitude = zed.two_norm(); - feps = feps * zedsMagnitude * 2; - - /** Check if normal (3. column) was perpendicular: If not, replace with calculated normal vector: */ - if (normal != zed) - { - vnl_vector_fixed parallel; - for (unsigned int i = 0; i < 3; ++i) - { - parallel[i] = normal[i] / zed[i]; // Remember linear algebra: checking for parallelity. - } - // Checking if really not paralell i.e. non-colinear vectors by comparing these floating point numbers: - if ((parallel[0] + feps < parallel[1] || feps + parallel[1] < parallel[0]) && - (parallel[0] + feps < parallel[2] || feps + parallel[2] < parallel[0])) - { - MITK_WARN - << "EnsurePerpendicularNormal(): Plane geometry was _/askew/_, so here it gets rectified by substituting" - << " the 3rd column of the indexToWorldMatrix with an appropriate normal vector: [ " << normal - << " ], original vector zed was: [ " << zed << " ]."; - - Matrix3D matrix = transform->GetMatrix(); - matrix.GetVnlMatrix().set_column(2, normal); - transform->SetMatrix(matrix); - } - } - else - { - // Nothing to do, 3rd column of indexToWorldTransformMatrix already was perfectly perpendicular. - } + return rotation; } void PlaneGeometry::CheckIndexToWorldTransform(mitk::AffineTransform3D *transform) { - EnsurePerpendicularNormal(transform); + CheckRotationMatrix(transform); } void PlaneGeometry::CheckBounds(const BoundingBox::BoundsArrayType &bounds) { // error: unused parameter 'bounds' // this happens in release mode, where the assert macro is defined empty // hence we "use" the parameter: (void)bounds; // currently the unit rectangle must be starting at the origin [0,0] assert(bounds[0] == 0); assert(bounds[2] == 0); // the unit rectangle must be two-dimensional assert(bounds[1] > 0); assert(bounds[3] > 0); } void PlaneGeometry::IndexToWorld(const Point2D &pt_units, Point2D &pt_mm) const { pt_mm[0] = GetExtentInMM(0) / GetExtent(0) * pt_units[0]; pt_mm[1] = GetExtentInMM(1) / GetExtent(1) * pt_units[1]; } void PlaneGeometry::WorldToIndex(const Point2D &pt_mm, Point2D &pt_units) const { pt_units[0] = pt_mm[0] * (1.0 / (GetExtentInMM(0) / GetExtent(0))); pt_units[1] = pt_mm[1] * (1.0 / (GetExtentInMM(1) / GetExtent(1))); } void PlaneGeometry::IndexToWorld(const Point2D & /*atPt2d_units*/, const Vector2D &vec_units, Vector2D &vec_mm) const { MITK_WARN << "Warning! Call of the deprecated function PlaneGeometry::IndexToWorld(point, vec, vec). Use " "PlaneGeometry::IndexToWorld(vec, vec) instead!"; this->IndexToWorld(vec_units, vec_mm); } void PlaneGeometry::IndexToWorld(const Vector2D &vec_units, Vector2D &vec_mm) const { vec_mm[0] = (GetExtentInMM(0) / GetExtent(0)) * vec_units[0]; vec_mm[1] = (GetExtentInMM(1) / GetExtent(1)) * vec_units[1]; } void PlaneGeometry::WorldToIndex(const Point2D & /*atPt2d_mm*/, const Vector2D &vec_mm, Vector2D &vec_units) const { MITK_WARN << "Warning! Call of the deprecated function PlaneGeometry::WorldToIndex(point, vec, vec). Use " "PlaneGeometry::WorldToIndex(vec, vec) instead!"; this->WorldToIndex(vec_mm, vec_units); } void PlaneGeometry::WorldToIndex(const Vector2D &vec_mm, Vector2D &vec_units) const { vec_units[0] = vec_mm[0] * (1.0 / (GetExtentInMM(0) / GetExtent(0))); vec_units[1] = vec_mm[1] * (1.0 / (GetExtentInMM(1) / GetExtent(1))); } void PlaneGeometry::InitializeStandardPlane(mitk::ScalarType width, ScalarType height, const Vector3D &spacing, PlaneGeometry::PlaneOrientation planeorientation, ScalarType zPosition, bool frontside, bool rotated, bool top) { AffineTransform3D::Pointer transform; transform = AffineTransform3D::New(); AffineTransform3D::MatrixType matrix; AffineTransform3D::MatrixType::InternalMatrixType &vnlmatrix = matrix.GetVnlMatrix(); vnlmatrix.set_identity(); vnlmatrix(0, 0) = spacing[0]; vnlmatrix(1, 1) = spacing[1]; vnlmatrix(2, 2) = spacing[2]; transform->SetIdentity(); transform->SetMatrix(matrix); InitializeStandardPlane(width, height, transform.GetPointer(), planeorientation, zPosition, frontside, rotated, top); } void PlaneGeometry::InitializeStandardPlane(mitk::ScalarType width, mitk::ScalarType height, const AffineTransform3D *transform /* = nullptr */, PlaneGeometry::PlaneOrientation planeorientation /* = Axial */, mitk::ScalarType zPosition /* = 0 */, bool frontside /* = true */, bool rotated /* = false */, bool top /* = true */) { Superclass::Initialize(); /// construct standard view. // We define at the moment "frontside" as: axial from above, // coronal from front (nose), saggital from right. // TODO: Double check with medicals doctors or radiologists [ ]. // We define the orientation in patient's view, e.g. LAI is in a axial cut // (parallel to the triangle ear-ear-nose): // first axis: To the left ear of the patient // seecond axis: To the nose of the patient // third axis: To the legs of the patient. // Options are: L/R left/right; A/P anterior/posterior; I/S inferior/superior // (AKA caudal/cranial). // We note on all cases in the following switch block r.h. for right handed // or l.h. for left handed to describe the different cases. // However, which system is chosen is defined at the end of the switch block. // CAVE / be careful: the vectors right and bottom are relative to the plane // and do NOT describe e.g. the right side of the patient. Point3D origin; /** Bottom means downwards, DV means Direction Vector. Both relative to the image! */ VnlVector rightDV(3), bottomDV(3); /** Origin of this plane is by default a zero vector and implicitly in the top-left corner: */ origin.Fill(0); /** This is different to all definitions in MITK, except the QT mouse clicks. * But it is like this here and we don't want to change a running system. * Just be aware, that IN THIS FUNCTION we define the origin at the top left (e.g. your screen). */ /** NormalDirection defines which axis (i.e. column index in the transform matrix) * is perpendicular to the plane: */ int normalDirection; switch (planeorientation) // Switch through our limited choice of standard planes: { case None: /** Orientation 'None' shall be done like the axial plane orientation, * for whatever reasons. */ case Axial: if (frontside) // Radiologist's view from below. A cut along the triangle ear-ear-nose. { if (rotated == false) /** Origin in the top-left corner, x=[1; 0; 0], y=[0; 1; 0], z=[0; 0; 1], * origin=[0,0,zpos]: LAI (r.h.) * * 0---rightDV----> | * | | * | Picture of a finite, rectangular plane | * | ( insert LOLCAT-scan here ^_^ ) | * | | * v _________________________________________| * */ { FillVector3D(origin, 0, 0, zPosition); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, 1, 0); } else // Origin rotated to the bottom-right corner, x=[-1; 0; 0], y=[0; -1; 0], z=[0; 0; 1], // origin=[w,h,zpos]: RPI (r.h.) { // Caveat emptor: Still using top-left as origin of index coordinate system! FillVector3D(origin, width, height, zPosition); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, -1, 0); } } else // 'Backside, not frontside.' Neuro-Surgeons's view from above patient. { if (rotated == false) // x=[-1; 0; 0], y=[0; 1; 0], z=[0; 0; 1], origin=[w,0,zpos]: RAS (r.h.) { FillVector3D(origin, width, 0, zPosition); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, 1, 0); } else // Origin in the bottom-left corner, x=[1; 0; 0], y=[0; -1; 0], z=[0; 0; 1], // origin=[0,h,zpos]: LPS (r.h.) { FillVector3D(origin, 0, height, zPosition); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, -1, 0); } } normalDirection = 2; // That is S=Superior=z=third_axis=middlefinger in righthanded LPS-system. break; // Frontal is known as Coronal in mitk. Plane cuts through patient's ear-ear-heel-heel: case Frontal: if (frontside) { if (rotated == false) // x=[1; 0; 0], y=[0; 0; 1], z=[0; 1; 0], origin=[0,zpos,0]: LAI (r.h.) { FillVector3D(origin, 0, zPosition, 0); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, 0, 1); } else // x=[-1;0;0], y=[0;0;-1], z=[0;1;0], origin=[w,zpos,h]: RAS (r.h.) { FillVector3D(origin, width, zPosition, height); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, 0, -1); } } else { if (rotated == false) // x=[-1;0;0], y=[0;0;1], z=[0;1;0], origin=[w,zpos,0]: RPI (r.h.) { FillVector3D(origin, width, zPosition, 0); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, 0, 1); } else // x=[1;0;0], y=[0;1;0], z=[0;0;-1], origin=[0,zpos,h]: LPS (r.h.) { FillVector3D(origin, 0, zPosition, height); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, 0, -1); } } normalDirection = 1; // Normal vector = posterior direction. break; case Sagittal: // Sagittal=Medial plane, the symmetry-plane mirroring your face. if (frontside) { if (rotated == false) // x=[0;1;0], y=[0;0;1], z=[1;0;0], origin=[zpos,0,0]: LAI (r.h.) { FillVector3D(origin, zPosition, 0, 0); FillVector3D(rightDV, 0, 1, 0); FillVector3D(bottomDV, 0, 0, 1); } else // x=[0;-1;0], y=[0;0;-1], z=[1;0;0], origin=[zpos,w,h]: LPS (r.h.) { FillVector3D(origin, zPosition, width, height); FillVector3D(rightDV, 0, -1, 0); FillVector3D(bottomDV, 0, 0, -1); } } else { if (rotated == false) // x=[0;-1;0], y=[0;0;1], z=[1;0;0], origin=[zpos,w,0]: RPI (r.h.) { FillVector3D(origin, zPosition, width, 0); FillVector3D(rightDV, 0, -1, 0); FillVector3D(bottomDV, 0, 0, 1); } else // x=[0;1;0], y=[0;0;-1], z=[1;0;0], origin=[zpos,0,h]: RAS (r.h.) { FillVector3D(origin, zPosition, 0, height); FillVector3D(rightDV, 0, 1, 0); FillVector3D(bottomDV, 0, 0, -1); } } normalDirection = 0; // Normal vector = Lateral direction: Left in a LPS-system. break; default: itkExceptionMacro("unknown PlaneOrientation"); } VnlVector normal(3); FillVector3D(normal, 0, 0, 0); normal[normalDirection] = top ? 1 : -1; if ( transform != nullptr ) { origin = transform->TransformPoint( origin ); rightDV = transform->TransformVector( rightDV ); bottomDV = transform->TransformVector( bottomDV ); normal = transform->TransformVector( normal ); } ScalarType bounds[6] = {0, width, 0, height, 0, 1}; this->SetBounds(bounds); AffineTransform3D::Pointer planeTransform = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, rightDV); matrix.GetVnlMatrix().set_column(1, bottomDV); matrix.GetVnlMatrix().set_column(2, normal); planeTransform->SetMatrix(matrix); planeTransform->SetOffset(this->GetIndexToWorldTransform()->GetOffset()); this->SetIndexToWorldTransform(planeTransform); this->SetOrigin(origin); } + std::vector< int > PlaneGeometry::CalculateDominantAxes(mitk::AffineTransform3D::MatrixType::InternalMatrixType& rotation_matrix) + { + std::vector< int > axes; + + bool dominant_axis_error = false; + for (int i = 0; i < 3; ++i) + { + int dominantAxis = itk::Function::Max3( + rotation_matrix[0][i], + rotation_matrix[1][i], + rotation_matrix[2][i] + ); + + for (int j=0; jSetReferenceGeometry(geometry3D); ScalarType width, height; // Inspired by: // http://www.na-mic.org/Wiki/index.php/Coordinate_System_Conversion_Between_ITK_and_Slicer3 mitk::AffineTransform3D::MatrixType matrix = geometry3D->GetIndexToWorldTransform()->GetMatrix(); matrix.GetVnlMatrix().normalize_columns(); - mitk::AffineTransform3D::MatrixType::InternalMatrixType inverseMatrix = matrix.GetInverse(); + mitk::AffineTransform3D::MatrixType::InternalMatrixType inverseMatrix = matrix.GetTranspose(); /// The index of the sagittal, coronal and axial axes in the reference geometry. - int axes[3]; + auto axes = CalculateDominantAxes(inverseMatrix); /// The direction of the sagittal, coronal and axial axes in the reference geometry. /// +1 means that the direction is straight, i.e. greater index translates to greater /// world coordinate. -1 means that the direction is inverted. int directions[3]; ScalarType extents[3]; ScalarType spacings[3]; - for (int i = 0; i < 3; ++i) + for (int i=0; i<3; ++i) { - int dominantAxis = itk::Function::Max3( - inverseMatrix[0][i], - inverseMatrix[1][i], - inverseMatrix[2][i] - ); - axes[i] = dominantAxis; + int dominantAxis = axes.at(i); directions[i] = itk::Function::Sign(inverseMatrix[dominantAxis][i]); extents[i] = geometry3D->GetExtent(dominantAxis); spacings[i] = geometry3D->GetSpacing()[dominantAxis]; } // matrix(column) = inverseTransformMatrix(row) * flippedAxes * spacing matrix[0][0] = inverseMatrix[axes[0]][0] * directions[0] * spacings[0]; matrix[1][0] = inverseMatrix[axes[0]][1] * directions[0] * spacings[0]; matrix[2][0] = inverseMatrix[axes[0]][2] * directions[0] * spacings[0]; matrix[0][1] = inverseMatrix[axes[1]][0] * directions[1] * spacings[1]; matrix[1][1] = inverseMatrix[axes[1]][1] * directions[1] * spacings[1]; matrix[2][1] = inverseMatrix[axes[1]][2] * directions[1] * spacings[1]; matrix[0][2] = inverseMatrix[axes[2]][0] * directions[2] * spacings[2]; matrix[1][2] = inverseMatrix[axes[2]][1] * directions[2] * spacings[2]; matrix[2][2] = inverseMatrix[axes[2]][2] * directions[2] * spacings[2]; /// The "world origin" is the corner with the lowest physical coordinates. /// We use it as a reference point so that we get the correct anatomical /// orientations. Point3D worldOrigin = geometry3D->GetOrigin(); for (int i = 0; i < 3; ++i) { /// The distance of the plane origin from the world origin in voxels. double offset = directions[i] > 0 ? 0.0 : extents[i]; if (geometry3D->GetImageGeometry()) { offset += directions[i] * 0.5; } for (int j = 0; j < 3; ++j) { worldOrigin[j] -= offset * matrix[j][i]; } } switch(planeorientation) { case None: /** Orientation 'None' shall be done like the axial plane orientation, * for whatever reasons. */ case Axial: width = extents[0]; height = extents[1]; break; case Frontal: width = extents[0]; height = extents[2]; break; case Sagittal: width = extents[1]; height = extents[2]; break; default: itkExceptionMacro("unknown PlaneOrientation"); } ScalarType bounds[6]= { 0, width, 0, height, 0, 1 }; this->SetBounds( bounds ); AffineTransform3D::Pointer transform = AffineTransform3D::New(); transform->SetMatrix(matrix); transform->SetOffset(worldOrigin.GetVectorFromOrigin()); InitializeStandardPlane( width, height, transform, planeorientation, zPosition, frontside, rotated, top); } void PlaneGeometry::InitializeStandardPlane( const BaseGeometry *geometry3D, bool top, PlaneOrientation planeorientation, bool frontside, bool rotated) { /// The index of the sagittal, coronal and axial axes in world coordinate system. int worldAxis; switch(planeorientation) { case None: /** Orientation 'None' shall be done like the axial plane orientation, * for whatever reasons. */ case Axial: worldAxis = 2; break; case Frontal: worldAxis = 1; break; case Sagittal: worldAxis = 0; break; default: itkExceptionMacro("unknown PlaneOrientation"); } // Inspired by: // http://www.na-mic.org/Wiki/index.php/Coordinate_System_Conversion_Between_ITK_and_Slicer3 mitk::AffineTransform3D::ConstPointer affineTransform = geometry3D->GetIndexToWorldTransform(); mitk::AffineTransform3D::MatrixType matrix = affineTransform->GetMatrix(); matrix.GetVnlMatrix().normalize_columns(); mitk::AffineTransform3D::MatrixType::InternalMatrixType inverseMatrix = matrix.GetInverse(); /// The index of the sagittal, coronal and axial axes in the reference geometry. - int dominantAxis = itk::Function::Max3( - inverseMatrix[0][worldAxis], - inverseMatrix[1][worldAxis], - inverseMatrix[2][worldAxis]); + int dominantAxis = CalculateDominantAxes(inverseMatrix).at(worldAxis); ScalarType zPosition = top ? 0.5 : geometry3D->GetExtent(dominantAxis) - 0.5; InitializeStandardPlane(geometry3D, planeorientation, zPosition, frontside, rotated, top); } void PlaneGeometry::InitializeStandardPlane(const Vector3D &rightVector, const Vector3D &downVector, const Vector3D *spacing) { InitializeStandardPlane(rightVector.GetVnlVector(), downVector.GetVnlVector(), spacing); } void PlaneGeometry::InitializeStandardPlane(const VnlVector &rightVector, const VnlVector &downVector, const Vector3D *spacing) { ScalarType width = rightVector.two_norm(); ScalarType height = downVector.two_norm(); InitializeStandardPlane(width, height, rightVector, downVector, spacing); } void PlaneGeometry::InitializeStandardPlane(mitk::ScalarType width, ScalarType height, const Vector3D &rightVector, const Vector3D &downVector, const Vector3D *spacing) { InitializeStandardPlane(width, height, rightVector.GetVnlVector(), downVector.GetVnlVector(), spacing); } void PlaneGeometry::InitializeStandardPlane(mitk::ScalarType width, ScalarType height, const VnlVector &rightVector, const VnlVector &downVector, const Vector3D *spacing) { assert(width > 0); assert(height > 0); VnlVector rightDV = rightVector; rightDV.normalize(); VnlVector downDV = downVector; downDV.normalize(); VnlVector normal = vnl_cross_3d(rightVector, downVector); normal.normalize(); // Crossproduct vnl_cross_3d is always righthanded, but that is okay here // because in this method we create a new IndexToWorldTransform and // spacing with 1 or 3 negative components could still make it lefthanded. if (spacing != nullptr) { rightDV *= (*spacing)[0]; downDV *= (*spacing)[1]; normal *= (*spacing)[2]; } AffineTransform3D::Pointer transform = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, rightDV); matrix.GetVnlMatrix().set_column(1, downDV); matrix.GetVnlMatrix().set_column(2, normal); transform->SetMatrix(matrix); transform->SetOffset(this->GetIndexToWorldTransform()->GetOffset()); ScalarType bounds[6] = {0, width, 0, height, 0, 1}; this->SetBounds(bounds); this->SetIndexToWorldTransform(transform); } void PlaneGeometry::InitializePlane(const Point3D &origin, const Vector3D &normal) { VnlVector rightVectorVnl(3), downVectorVnl; if (Equal(normal[1], 0.0f) == false) { FillVector3D(rightVectorVnl, 1.0f, -normal[0] / normal[1], 0.0f); rightVectorVnl.normalize(); } else { FillVector3D(rightVectorVnl, 0.0f, 1.0f, 0.0f); } downVectorVnl = vnl_cross_3d(normal.GetVnlVector(), rightVectorVnl); downVectorVnl.normalize(); // Crossproduct vnl_cross_3d is always righthanded. InitializeStandardPlane(rightVectorVnl, downVectorVnl); SetOrigin(origin); } void PlaneGeometry::SetMatrixByVectors(const VnlVector &rightVector, const VnlVector &downVector, ScalarType thickness /* = 1.0 */) { VnlVector normal = vnl_cross_3d(rightVector, downVector); normal.normalize(); normal *= thickness; // Crossproduct vnl_cross_3d is always righthanded, but that is okay here // because in this method we create a new IndexToWorldTransform and // a negative thickness could still make it lefthanded. AffineTransform3D::Pointer transform = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, rightVector); matrix.GetVnlMatrix().set_column(1, downVector); matrix.GetVnlMatrix().set_column(2, normal); transform->SetMatrix(matrix); transform->SetOffset(this->GetIndexToWorldTransform()->GetOffset()); SetIndexToWorldTransform(transform); } Vector3D PlaneGeometry::GetNormal() const { Vector3D frontToBack; frontToBack.SetVnlVector(this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(2)); return frontToBack; } VnlVector PlaneGeometry::GetNormalVnl() const { return this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(2); } ScalarType PlaneGeometry::DistanceFromPlane(const Point3D &pt3d_mm) const { return fabs(SignedDistance(pt3d_mm)); } ScalarType PlaneGeometry::SignedDistance(const Point3D &pt3d_mm) const { return SignedDistanceFromPlane(pt3d_mm); } bool PlaneGeometry::IsAbove(const Point3D &pt3d_mm, bool considerBoundingBox) const { if (considerBoundingBox) { Point3D pt3d_units; BaseGeometry::WorldToIndex(pt3d_mm, pt3d_units); return (pt3d_units[2] > this->GetBoundingBox()->GetBounds()[4]); } else return SignedDistanceFromPlane(pt3d_mm) > 0; } bool PlaneGeometry::IntersectionLine(const PlaneGeometry *plane, Line3D &crossline) const { Vector3D normal = this->GetNormal(); normal.Normalize(); Vector3D planeNormal = plane->GetNormal(); planeNormal.Normalize(); Vector3D direction = itk::CrossProduct(normal, planeNormal); if (direction.GetSquaredNorm() < eps) return false; crossline.SetDirection(direction); double N1dN2 = normal * planeNormal; double determinant = 1.0 - N1dN2 * N1dN2; Vector3D origin = this->GetOrigin().GetVectorFromOrigin(); Vector3D planeOrigin = plane->GetOrigin().GetVectorFromOrigin(); double d1 = normal * origin; double d2 = planeNormal * planeOrigin; double c1 = (d1 - d2 * N1dN2) / determinant; double c2 = (d2 - d1 * N1dN2) / determinant; Vector3D p = normal * c1 + planeNormal * c2; crossline.GetPoint().GetVnlVector() = p.GetVnlVector(); return true; } unsigned int PlaneGeometry::IntersectWithPlane2D(const PlaneGeometry *plane, Point2D &lineFrom, Point2D &lineTo) const { Line3D crossline; if (this->IntersectionLine(plane, crossline) == false) return 0; Point2D point2; Vector2D direction2; this->Map(crossline.GetPoint(), point2); this->Map(crossline.GetPoint(), crossline.GetDirection(), direction2); return Line3D::RectangleLineIntersection( 0, 0, GetExtentInMM(0), GetExtentInMM(1), point2, direction2, lineFrom, lineTo); } double PlaneGeometry::Angle(const PlaneGeometry *plane) const { return angle(plane->GetMatrixColumn(2), GetMatrixColumn(2)); } double PlaneGeometry::Angle(const Line3D &line) const { return vnl_math::pi_over_2 - angle(line.GetDirection().GetVnlVector(), GetMatrixColumn(2)); } bool PlaneGeometry::IntersectionPoint(const Line3D &line, Point3D &intersectionPoint) const { Vector3D planeNormal = this->GetNormal(); planeNormal.Normalize(); Vector3D lineDirection = line.GetDirection(); lineDirection.Normalize(); double t = planeNormal * lineDirection; if (fabs(t) < eps) { return false; } Vector3D diff; diff = this->GetOrigin() - line.GetPoint(); t = (planeNormal * diff) / t; intersectionPoint = line.GetPoint() + lineDirection * t; return true; } bool PlaneGeometry::IntersectionPointParam(const Line3D &line, double &t) const { Vector3D planeNormal = this->GetNormal(); Vector3D lineDirection = line.GetDirection(); t = planeNormal * lineDirection; if (fabs(t) < eps) { return false; } Vector3D diff; diff = this->GetOrigin() - line.GetPoint(); t = (planeNormal * diff) / t; return true; } bool PlaneGeometry::IsParallel(const PlaneGeometry *plane) const { return ((Angle(plane) < 10.0 * mitk::sqrteps) || (Angle(plane) > (vnl_math::pi - 10.0 * sqrteps))); } bool PlaneGeometry::IsOnPlane(const Point3D &point) const { return Distance(point) < eps; } bool PlaneGeometry::IsOnPlane(const Line3D &line) const { return ((Distance(line.GetPoint()) < eps) && (Distance(line.GetPoint2()) < eps)); } bool PlaneGeometry::IsOnPlane(const PlaneGeometry *plane) const { return (IsParallel(plane) && (Distance(plane->GetOrigin()) < eps)); } Point3D PlaneGeometry::ProjectPointOntoPlane(const Point3D &pt) const { ScalarType len = this->GetNormalVnl().two_norm(); return pt - this->GetNormal() * this->SignedDistanceFromPlane(pt) / len; } itk::LightObject::Pointer PlaneGeometry::InternalClone() const { Self::Pointer newGeometry = new PlaneGeometry(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } void PlaneGeometry::ExecuteOperation(Operation *operation) { vtkTransform *transform = vtkTransform::New(); transform->SetMatrix(this->GetVtkMatrix()); switch (operation->GetOperationType()) { case OpORIENT: { auto *planeOp = dynamic_cast(operation); if (planeOp == nullptr) { return; } Point3D center = planeOp->GetPoint(); Vector3D orientationVector = planeOp->GetNormal(); Vector3D defaultVector; FillVector3D(defaultVector, 0.0, 0.0, 1.0); Vector3D rotationAxis = itk::CrossProduct(orientationVector, defaultVector); // double rotationAngle = acos( orientationVector[2] / orientationVector.GetNorm() ); double rotationAngle = atan2((double)rotationAxis.GetNorm(), (double)(orientationVector * defaultVector)); rotationAngle *= 180.0 / vnl_math::pi; transform->PostMultiply(); transform->Identity(); transform->Translate(center[0], center[1], center[2]); transform->RotateWXYZ(rotationAngle, rotationAxis[0], rotationAxis[1], rotationAxis[2]); transform->Translate(-center[0], -center[1], -center[2]); break; } case OpRESTOREPLANEPOSITION: { auto *op = dynamic_cast(operation); if (op == nullptr) { return; } AffineTransform3D::Pointer transform2 = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, op->GetTransform()->GetMatrix().GetVnlMatrix().get_column(0)); matrix.GetVnlMatrix().set_column(1, op->GetTransform()->GetMatrix().GetVnlMatrix().get_column(1)); matrix.GetVnlMatrix().set_column(2, op->GetTransform()->GetMatrix().GetVnlMatrix().get_column(2)); transform2->SetMatrix(matrix); Vector3D offset = op->GetTransform()->GetOffset(); transform2->SetOffset(offset); this->SetIndexToWorldTransform(transform2); ScalarType bounds[6] = {0, op->GetWidth(), 0, op->GetHeight(), 0, 1}; this->SetBounds(bounds); this->Modified(); transform->Delete(); return; } default: Superclass::ExecuteOperation(operation); transform->Delete(); return; } this->SetVtkMatrixDeepCopy(transform); this->Modified(); transform->Delete(); } void PlaneGeometry::PrintSelf(std::ostream &os, itk::Indent indent) const { Superclass::PrintSelf(os, indent); os << indent << " ScaleFactorMMPerUnitX: " << GetExtentInMM(0) / GetExtent(0) << std::endl; os << indent << " ScaleFactorMMPerUnitY: " << GetExtentInMM(1) / GetExtent(1) << std::endl; os << indent << " Normal: " << GetNormal() << std::endl; } bool PlaneGeometry::Map(const mitk::Point3D &pt3d_mm, mitk::Point2D &pt2d_mm) const { assert(this->IsBoundingBoxNull() == false); Point3D pt3d_units; Superclass::WorldToIndex(pt3d_mm, pt3d_units); pt2d_mm[0] = pt3d_units[0] * GetExtentInMM(0) / GetExtent(0); pt2d_mm[1] = pt3d_units[1] * GetExtentInMM(1) / GetExtent(1); pt3d_units[2] = 0; return this->GetBoundingBox()->IsInside(pt3d_units); } void PlaneGeometry::Map(const mitk::Point2D &pt2d_mm, mitk::Point3D &pt3d_mm) const { // pt2d_mm is measured from the origin of the world geometry (at leats it called form BaseRendere::Mouse...Event) Point3D pt3d_units; pt3d_units[0] = pt2d_mm[0] / (GetExtentInMM(0) / GetExtent(0)); pt3d_units[1] = pt2d_mm[1] / (GetExtentInMM(1) / GetExtent(1)); pt3d_units[2] = 0; // pt3d_units is a continuos index. We divided it with the Scale Factor (= spacing in x and y) to convert it from mm // to index units. // pt3d_mm = GetIndexToWorldTransform()->TransformPoint(pt3d_units); // now we convert the 3d index to a 3D world point in mm. We could have used IndexToWorld as well as // GetITW->Transform... } void PlaneGeometry::SetSizeInUnits(mitk::ScalarType width, mitk::ScalarType height) { ScalarType bounds[6] = {0, width, 0, height, 0, 1}; ScalarType extent, newextentInMM; if (GetExtent(0) > 0) { extent = GetExtent(0); if (width > extent) newextentInMM = GetExtentInMM(0) / width * extent; else newextentInMM = GetExtentInMM(0) * extent / width; SetExtentInMM(0, newextentInMM); } if (GetExtent(1) > 0) { extent = GetExtent(1); if (width > extent) newextentInMM = GetExtentInMM(1) / height * extent; else newextentInMM = GetExtentInMM(1) * extent / height; SetExtentInMM(1, newextentInMM); } SetBounds(bounds); } bool PlaneGeometry::Project(const mitk::Point3D &pt3d_mm, mitk::Point3D &projectedPt3d_mm) const { assert(this->IsBoundingBoxNull() == false); Point3D pt3d_units; Superclass::WorldToIndex(pt3d_mm, pt3d_units); pt3d_units[2] = 0; projectedPt3d_mm = GetIndexToWorldTransform()->TransformPoint(pt3d_units); return this->GetBoundingBox()->IsInside(pt3d_units); } bool PlaneGeometry::Project(const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const { assert(this->IsBoundingBoxNull() == false); Vector3D vec3d_units; Superclass::WorldToIndex(vec3d_mm, vec3d_units); vec3d_units[2] = 0; projectedVec3d_mm = GetIndexToWorldTransform()->TransformVector(vec3d_units); return true; } bool PlaneGeometry::Project(const mitk::Point3D &atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const { MITK_WARN << "Deprecated function! Call Project(vec3D,vec3D) instead."; assert(this->IsBoundingBoxNull() == false); Vector3D vec3d_units; Superclass::WorldToIndex(atPt3d_mm, vec3d_mm, vec3d_units); vec3d_units[2] = 0; projectedVec3d_mm = GetIndexToWorldTransform()->TransformVector(vec3d_units); Point3D pt3d_units; Superclass::WorldToIndex(atPt3d_mm, pt3d_units); return this->GetBoundingBox()->IsInside(pt3d_units); } bool PlaneGeometry::Map(const mitk::Point3D &atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector2D &vec2d_mm) const { Point2D pt2d_mm_start, pt2d_mm_end; Point3D pt3d_mm_end; bool inside = Map(atPt3d_mm, pt2d_mm_start); pt3d_mm_end = atPt3d_mm + vec3d_mm; inside &= Map(pt3d_mm_end, pt2d_mm_end); vec2d_mm = pt2d_mm_end - pt2d_mm_start; return inside; } void PlaneGeometry::Map(const mitk::Point2D & /*atPt2d_mm*/, const mitk::Vector2D & /*vec2d_mm*/, mitk::Vector3D & /*vec3d_mm*/) const { //@todo implement parallel to the other Map method! assert(false); } void PlaneGeometry::SetReferenceGeometry(const mitk::BaseGeometry *geometry) { m_ReferenceGeometry = geometry; } const mitk::BaseGeometry *PlaneGeometry::GetReferenceGeometry() const { return m_ReferenceGeometry; } bool PlaneGeometry::HasReferenceGeometry() const { return (m_ReferenceGeometry != nullptr); } } // namespace diff --git a/Modules/Core/src/DataManagement/mitkSlicedGeometry3D.cpp b/Modules/Core/src/DataManagement/mitkSlicedGeometry3D.cpp index 9a3a8e1e4e..4e4cd940a1 100644 --- a/Modules/Core/src/DataManagement/mitkSlicedGeometry3D.cpp +++ b/Modules/Core/src/DataManagement/mitkSlicedGeometry3D.cpp @@ -1,970 +1,966 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include "mitkSlicedGeometry3D.h" #include "mitkAbstractTransformGeometry.h" #include "mitkApplyTransformMatrixOperation.h" #include "mitkInteractionConst.h" #include "mitkPlaneGeometry.h" #include "mitkPlaneOperation.h" #include "mitkRestorePlanePositionOperation.h" #include "mitkRotationOperation.h" #include "mitkSliceNavigationController.h" const mitk::ScalarType PI = 3.14159265359; mitk::SlicedGeometry3D::SlicedGeometry3D() : m_EvenlySpaced(true), m_Slices(0), m_ReferenceGeometry(nullptr), m_SliceNavigationController(nullptr) { m_DirectionVector.Fill(0); this->InitializeSlicedGeometry(m_Slices); } mitk::SlicedGeometry3D::SlicedGeometry3D(const SlicedGeometry3D &other) : Superclass(other), m_EvenlySpaced(other.m_EvenlySpaced), m_Slices(other.m_Slices), m_ReferenceGeometry(other.m_ReferenceGeometry), m_SliceNavigationController(other.m_SliceNavigationController) { m_DirectionVector.Fill(0); SetSpacing(other.GetSpacing()); SetDirectionVector(other.GetDirectionVector()); if (m_EvenlySpaced) { assert(!other.m_PlaneGeometries.empty() && "This may happen when you use one of the old Initialize methods, which had a bool parameter that is implicitly casted to the number of slices now."); PlaneGeometry::Pointer geometry = other.m_PlaneGeometries[0]->Clone(); assert(geometry.IsNotNull()); SetPlaneGeometry(geometry, 0); } else { unsigned int s; for (s = 0; s < other.m_Slices; ++s) { if (other.m_PlaneGeometries[s].IsNull()) { assert(other.m_EvenlySpaced); m_PlaneGeometries[s] = nullptr; } else { PlaneGeometry *geometry2D = other.m_PlaneGeometries[s]->Clone(); assert(geometry2D != nullptr); SetPlaneGeometry(geometry2D, s); } } } } mitk::SlicedGeometry3D::~SlicedGeometry3D() { } mitk::PlaneGeometry *mitk::SlicedGeometry3D::GetPlaneGeometry(int s) const { mitk::PlaneGeometry::Pointer geometry2D = nullptr; if (this->IsValidSlice(s)) { geometry2D = m_PlaneGeometries[s]; // If (a) m_EvenlySpaced==true, (b) we don't have a PlaneGeometry stored // for the requested slice, and (c) the first slice (s=0) // is a PlaneGeometry instance, then we calculate the geometry of the // requested as the plane of the first slice shifted by m_Spacing[2]*s // in the direction of m_DirectionVector. if ((m_EvenlySpaced) && (geometry2D.IsNull())) { PlaneGeometry *firstSlice = m_PlaneGeometries[0]; if (firstSlice != nullptr && dynamic_cast(m_PlaneGeometries[0].GetPointer()) == nullptr) { if ((m_DirectionVector[0] == 0.0) && (m_DirectionVector[1] == 0.0) && (m_DirectionVector[2] == 0.0)) { m_DirectionVector = firstSlice->GetNormal(); m_DirectionVector.Normalize(); } Vector3D direction; direction = m_DirectionVector * this->GetSpacing()[2]; mitk::PlaneGeometry::Pointer requestedslice; requestedslice = static_cast(firstSlice->Clone().GetPointer()); requestedslice->SetOrigin(requestedslice->GetOrigin() + direction * s); geometry2D = requestedslice; m_PlaneGeometries[s] = geometry2D; } } return geometry2D; } else { return nullptr; } } const mitk::BoundingBox *mitk::SlicedGeometry3D::GetBoundingBox() const { assert(this->IsBoundingBoxNull() == false); return Superclass::GetBoundingBox(); } bool mitk::SlicedGeometry3D::SetPlaneGeometry(mitk::PlaneGeometry *geometry2D, int s) { if (this->IsValidSlice(s)) { m_PlaneGeometries[s] = geometry2D; m_PlaneGeometries[s]->SetReferenceGeometry(m_ReferenceGeometry); return true; } return false; } void mitk::SlicedGeometry3D::InitializeSlicedGeometry(unsigned int slices) { Superclass::Initialize(); m_Slices = slices; PlaneGeometry::Pointer gnull = nullptr; m_PlaneGeometries.assign(m_Slices, gnull); Vector3D spacing; spacing.Fill(1.0); this->SetSpacing(spacing); m_DirectionVector.Fill(0); } void mitk::SlicedGeometry3D::InitializeEvenlySpaced(mitk::PlaneGeometry *geometry2D, unsigned int slices) { assert(geometry2D != nullptr); this->InitializeEvenlySpaced(geometry2D, geometry2D->GetExtentInMM(2) / geometry2D->GetExtent(2), slices); } void mitk::SlicedGeometry3D::InitializeEvenlySpaced(mitk::PlaneGeometry *geometry2D, mitk::ScalarType zSpacing, unsigned int slices) { assert(geometry2D != nullptr); assert(geometry2D->GetExtent(0) > 0); assert(geometry2D->GetExtent(1) > 0); geometry2D->Register(); Superclass::Initialize(); m_Slices = slices; BoundingBox::BoundsArrayType bounds = geometry2D->GetBounds(); bounds[4] = 0; bounds[5] = slices; // clear and reserve PlaneGeometry::Pointer gnull = nullptr; m_PlaneGeometries.assign(m_Slices, gnull); Vector3D directionVector = geometry2D->GetAxisVector(2); directionVector.Normalize(); directionVector *= zSpacing; // Normally we should use the following four lines to create a copy of // the transform contrained in geometry2D, because it may not be changed // by us. But we know that SetSpacing creates a new transform without // changing the old (coming from geometry2D), so we can use the fifth // line instead. We check this at (**). // // AffineTransform3D::Pointer transform = AffineTransform3D::New(); // transform->SetMatrix(geometry2D->GetIndexToWorldTransform()->GetMatrix()); // transform->SetOffset(geometry2D->GetIndexToWorldTransform()->GetOffset()); // SetIndexToWorldTransform(transform); this->SetIndexToWorldTransform(geometry2D->GetIndexToWorldTransform()); mitk::Vector3D spacing; FillVector3D(spacing, geometry2D->GetExtentInMM(0) / bounds[1], geometry2D->GetExtentInMM(1) / bounds[3], zSpacing); this->SetDirectionVector(directionVector); this->SetBounds(bounds); this->SetPlaneGeometry(geometry2D, 0); this->SetSpacing(spacing, true); this->SetEvenlySpaced(); // this->SetTimeBounds( geometry2D->GetTimeBounds() ); assert(this->GetIndexToWorldTransform() != geometry2D->GetIndexToWorldTransform()); // (**) see above. this->SetFrameOfReferenceID(geometry2D->GetFrameOfReferenceID()); this->SetImageGeometry(geometry2D->GetImageGeometry()); geometry2D->UnRegister(); } void mitk::SlicedGeometry3D::InitializePlanes(const mitk::BaseGeometry *geometry3D, mitk::PlaneGeometry::PlaneOrientation planeorientation, bool top, bool frontside, bool rotated) { m_ReferenceGeometry = geometry3D; PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->InitializeStandardPlane(geometry3D, top, planeorientation, frontside, rotated); int worldAxis = planeorientation == PlaneGeometry::Sagittal ? 0 : planeorientation == PlaneGeometry::Frontal ? 1 : 2; // Inspired by: // http://www.na-mic.org/Wiki/index.php/Coordinate_System_Conversion_Between_ITK_and_Slicer3 mitk::AffineTransform3D::MatrixType matrix = geometry3D->GetIndexToWorldTransform()->GetMatrix(); matrix.GetVnlMatrix().normalize_columns(); - mitk::AffineTransform3D::MatrixType::InternalMatrixType inverseMatrix = matrix.GetInverse(); - - int dominantAxis = itk::Function::Max3( - inverseMatrix[0][worldAxis], - inverseMatrix[1][worldAxis], - inverseMatrix[2][worldAxis]); + mitk::AffineTransform3D::MatrixType::InternalMatrixType inverseMatrix = matrix.GetTranspose(); + int dominantAxis = planeGeometry->CalculateDominantAxes(inverseMatrix).at(worldAxis); ScalarType viewSpacing = geometry3D->GetSpacing()[dominantAxis]; /// Although the double value returned by GetExtent() holds a round number, /// you need to add 0.5 to safely convert it to unsigned it. I have seen a /// case when the result was less by one without this. auto slices = static_cast(geometry3D->GetExtent(dominantAxis) + 0.5); if ( slices == 0 && geometry3D->GetExtent(dominantAxis) > 0) { // require at least one slice if there is _some_ extent slices = 1; } #ifndef NDEBUG int upDirection = itk::Function::Sign(inverseMatrix[dominantAxis][worldAxis]); /// The normal vector of an imaginary plane that points from the world origin (bottom left back /// corner or the world, with the lowest physical coordinates) towards the inside of the volume, /// along the renderer axis. Length is the slice thickness. Vector3D worldPlaneNormal = inverseMatrix.get_row(dominantAxis) * (upDirection * viewSpacing); /// The normal of the standard plane geometry just created. Vector3D standardPlaneNormal = planeGeometry->GetNormal(); /// The standard plane must be parallel to the 'world plane'. The normal of the standard plane /// must point against the world plane if and only if 'top' is 'false'. The length of the /// standard plane normal must be equal to the slice thickness. assert((standardPlaneNormal - (top ? 1.0 : -1.0) * worldPlaneNormal).GetSquaredNorm() < 0.000001); #endif this->InitializeEvenlySpaced(planeGeometry, viewSpacing, slices); #ifndef NDEBUG /// The standard plane normal and the z axis vector of the sliced geometry must point in /// the same direction. Vector3D zAxisVector = this->GetAxisVector(2); Vector3D upscaledStandardPlaneNormal = standardPlaneNormal; upscaledStandardPlaneNormal *= slices; assert((zAxisVector - upscaledStandardPlaneNormal).GetSquaredNorm() < 0.000001); /// You can use this test is to check the handedness of the coordinate system of the current /// geometry. In principle, you can use either left- or right-handed coordinate systems, but /// you normally want it to be consistent, that is the handedness should be the same across /// the renderers of the same viewer. // ScalarType det = vnl_det(this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix()); // MITK_DEBUG << "world axis: " << worldAxis << (det > 0 ? " ; right-handed" : " ; left-handed"); #endif } void mitk::SlicedGeometry3D::ReinitializePlanes(const Point3D ¢er, const Point3D &referencePoint) { // Need a reference frame to align the rotated planes if (!m_ReferenceGeometry) { return; } // Get first plane of plane stack PlaneGeometry *firstPlane = m_PlaneGeometries[0]; // If plane stack is empty, exit if (!firstPlane || dynamic_cast(firstPlane)) { return; } // Calculate the "directed" spacing when taking the plane (defined by its axes // vectors and normal) as the reference coordinate frame. // // This is done by calculating the radius of the ellipsoid defined by the // original volume spacing axes, in the direction of the respective axis of the // reference frame. mitk::Vector3D axis0 = firstPlane->GetAxisVector(0); mitk::Vector3D axis1 = firstPlane->GetAxisVector(1); mitk::Vector3D normal = firstPlane->GetNormal(); normal.Normalize(); Vector3D spacing; spacing[0] = this->CalculateSpacing(axis0); spacing[1] = this->CalculateSpacing(axis1); spacing[2] = this->CalculateSpacing(normal); Superclass::SetSpacing(spacing); // Now we need to calculate the number of slices in the plane's normal // direction, so that the entire volume is covered. This is done by first // calculating the dot product between the volume diagonal (the maximum // distance inside the volume) and the normal, and dividing this value by // the directed spacing calculated above. ScalarType directedExtent = std::abs(m_ReferenceGeometry->GetExtentInMM(0) * normal[0]) + std::abs(m_ReferenceGeometry->GetExtentInMM(1) * normal[1]) + std::abs(m_ReferenceGeometry->GetExtentInMM(2) * normal[2]); if (directedExtent >= spacing[2]) { m_Slices = static_cast(directedExtent / spacing[2] + 0.5); } else { m_Slices = 1; } // The origin of our "first plane" needs to be adapted to this new extent. // To achieve this, we first calculate the current distance to the volume's // center, and then shift the origin in the direction of the normal by the // difference between this distance and half of the new extent. double centerOfRotationDistance = firstPlane->SignedDistanceFromPlane(center); if (centerOfRotationDistance > 0) { firstPlane->SetOrigin(firstPlane->GetOrigin() + normal * (centerOfRotationDistance - directedExtent / 2.0)); m_DirectionVector = normal; } else { firstPlane->SetOrigin(firstPlane->GetOrigin() + normal * (directedExtent / 2.0 + centerOfRotationDistance)); m_DirectionVector = -normal; } // Now we adjust this distance according with respect to the given reference // point: we need to make sure that the point is touched by one slice of the // new slice stack. double referencePointDistance = firstPlane->SignedDistanceFromPlane(referencePoint); auto referencePointSlice = static_cast(referencePointDistance / spacing[2]); double alignmentValue = referencePointDistance / spacing[2] - referencePointSlice; firstPlane->SetOrigin(firstPlane->GetOrigin() + normal * alignmentValue * spacing[2]); // Finally, we can clear the previous geometry stack and initialize it with // our re-initialized "first plane". m_PlaneGeometries.assign(m_Slices, PlaneGeometry::Pointer(nullptr)); if (m_Slices > 0) { m_PlaneGeometries[0] = firstPlane; } // Reinitialize SNC with new number of slices m_SliceNavigationController->GetSlice()->SetSteps(m_Slices); this->Modified(); } double mitk::SlicedGeometry3D::CalculateSpacing(const mitk::Vector3D &d) const { // Need the spacing of the underlying dataset / geometry if (!m_ReferenceGeometry) { return 1.0; } const mitk::Vector3D &spacing = m_ReferenceGeometry->GetSpacing(); return SlicedGeometry3D::CalculateSpacing(spacing, d); } double mitk::SlicedGeometry3D::CalculateSpacing(const mitk::Vector3D &spacing, const mitk::Vector3D &d) { // The following can be derived from the ellipsoid equation // // 1 = x^2/a^2 + y^2/b^2 + z^2/c^2 // // where (a,b,c) = spacing of original volume (ellipsoid radii) // and (x,y,z) = scaled coordinates of vector d (according to ellipsoid) // double scaling = d[0] * d[0] / (spacing[0] * spacing[0]) + d[1] * d[1] / (spacing[1] * spacing[1]) + d[2] * d[2] / (spacing[2] * spacing[2]); scaling = sqrt(scaling); return (sqrt(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]) / scaling); } mitk::Vector3D mitk::SlicedGeometry3D::AdjustNormal(const mitk::Vector3D &normal) const { TransformType::Pointer inverse = TransformType::New(); m_ReferenceGeometry->GetIndexToWorldTransform()->GetInverse(inverse); Vector3D transformedNormal = inverse->TransformVector(normal); transformedNormal.Normalize(); return transformedNormal; } void mitk::SlicedGeometry3D::SetImageGeometry(const bool isAnImageGeometry) { Superclass::SetImageGeometry(isAnImageGeometry); unsigned int s; for (s = 0; s < m_Slices; ++s) { mitk::BaseGeometry *geometry = m_PlaneGeometries[s]; if (geometry != nullptr) { geometry->SetImageGeometry(isAnImageGeometry); } } } void mitk::SlicedGeometry3D::ChangeImageGeometryConsideringOriginOffset(const bool isAnImageGeometry) { unsigned int s; for (s = 0; s < m_Slices; ++s) { mitk::BaseGeometry *geometry = m_PlaneGeometries[s]; if (geometry != nullptr) { geometry->ChangeImageGeometryConsideringOriginOffset(isAnImageGeometry); } } Superclass::ChangeImageGeometryConsideringOriginOffset(isAnImageGeometry); } bool mitk::SlicedGeometry3D::IsValidSlice(int s) const { return ((s >= 0) && (s < (int)m_Slices)); } const mitk::BaseGeometry *mitk::SlicedGeometry3D::GetReferenceGeometry() const { return m_ReferenceGeometry; } void mitk::SlicedGeometry3D::SetReferenceGeometry(const BaseGeometry *referenceGeometry) { m_ReferenceGeometry = referenceGeometry; std::vector::iterator it; for (it = m_PlaneGeometries.begin(); it != m_PlaneGeometries.end(); ++it) { (*it)->SetReferenceGeometry(referenceGeometry); } } bool mitk::SlicedGeometry3D::HasReferenceGeometry() const { return ( m_ReferenceGeometry != nullptr ); } void mitk::SlicedGeometry3D::PreSetSpacing(const mitk::Vector3D &aSpacing) { bool hasEvenlySpacedPlaneGeometry = false; mitk::Point3D origin; mitk::Vector3D rightDV, bottomDV; BoundingBox::BoundsArrayType bounds; // Check for valid spacing if (!(aSpacing[0] > 0 && aSpacing[1] > 0 && aSpacing[2] > 0)) { mitkThrow() << "You try to set a spacing with at least one element equal or " "smaller to \"0\". This might lead to a crash during rendering. Please double" " check your data!"; } // In case of evenly-spaced data: re-initialize instances of PlaneGeometry, // since the spacing influences them if ((m_EvenlySpaced) && (m_PlaneGeometries.size() > 0)) { const PlaneGeometry *planeGeometry = m_PlaneGeometries[0]; if (planeGeometry && !dynamic_cast(planeGeometry)) { this->WorldToIndex(planeGeometry->GetOrigin(), origin); this->WorldToIndex(planeGeometry->GetAxisVector(0), rightDV); this->WorldToIndex(planeGeometry->GetAxisVector(1), bottomDV); bounds = planeGeometry->GetBounds(); hasEvenlySpacedPlaneGeometry = true; } } BaseGeometry::_SetSpacing(aSpacing); mitk::PlaneGeometry::Pointer firstGeometry; // In case of evenly-spaced data: re-initialize instances of PlaneGeometry, // since the spacing influences them if (hasEvenlySpacedPlaneGeometry) { // create planeGeometry according to new spacing this->IndexToWorld(origin, origin); this->IndexToWorld(rightDV, rightDV); this->IndexToWorld(bottomDV, bottomDV); mitk::PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->SetImageGeometry(this->GetImageGeometry()); planeGeometry->SetReferenceGeometry(m_ReferenceGeometry); // Store spacing, as Initialize... needs a pointer mitk::Vector3D lokalSpacing = this->GetSpacing(); planeGeometry->InitializeStandardPlane(rightDV.GetVnlVector(), bottomDV.GetVnlVector(), &lokalSpacing); planeGeometry->SetOrigin(origin); planeGeometry->SetBounds(bounds); firstGeometry = planeGeometry; } else if ((m_EvenlySpaced) && (m_PlaneGeometries.size() > 0)) { firstGeometry = m_PlaneGeometries[0].GetPointer(); } // clear and reserve PlaneGeometry::Pointer gnull = nullptr; m_PlaneGeometries.assign(m_Slices, gnull); if (m_Slices > 0) { m_PlaneGeometries[0] = firstGeometry; } this->Modified(); } void mitk::SlicedGeometry3D::SetSliceNavigationController(SliceNavigationController *snc) { m_SliceNavigationController = snc; } mitk::SliceNavigationController *mitk::SlicedGeometry3D::GetSliceNavigationController() { return m_SliceNavigationController; } void mitk::SlicedGeometry3D::SetEvenlySpaced(bool on) { if (m_EvenlySpaced != on) { m_EvenlySpaced = on; this->Modified(); } } void mitk::SlicedGeometry3D::SetDirectionVector(const mitk::Vector3D &directionVector) { Vector3D newDir = directionVector; newDir.Normalize(); if (newDir != m_DirectionVector) { m_DirectionVector = newDir; this->Modified(); } } // void // mitk::SlicedGeometry3D::SetTimeBounds( const mitk::TimeBounds& timebounds ) //{ // Superclass::SetTimeBounds( timebounds ); // // unsigned int s; // for ( s = 0; s < m_Slices; ++s ) // { // if(m_Geometry2Ds[s].IsNotNull()) // { // m_Geometry2Ds[s]->SetTimeBounds( timebounds ); // } // } // m_TimeBounds = timebounds; //} itk::LightObject::Pointer mitk::SlicedGeometry3D::InternalClone() const { Self::Pointer newGeometry = new SlicedGeometry3D(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } void mitk::SlicedGeometry3D::PrintSelf(std::ostream &os, itk::Indent indent) const { Superclass::PrintSelf(os, indent); os << indent << " EvenlySpaced: " << m_EvenlySpaced << std::endl; if (m_EvenlySpaced) { os << indent << " DirectionVector: " << m_DirectionVector << std::endl; } os << indent << " Slices: " << m_Slices << std::endl; os << std::endl; os << indent << " GetPlaneGeometry(0): "; if (this->GetPlaneGeometry(0) == nullptr) { os << "nullptr" << std::endl; } else { this->GetPlaneGeometry(0)->Print(os, indent); } } void mitk::SlicedGeometry3D::ExecuteOperation(Operation *operation) { PlaneGeometry::Pointer geometry2D; ApplyTransformMatrixOperation *applyMatrixOp; Point3D center; switch (operation->GetOperationType()) { case OpNOTHING: break; case OpROTATE: if (m_EvenlySpaced) { // Need a reference frame to align the rotation if (m_ReferenceGeometry) { // Clear all generated geometries and then rotate only the first slice. // The other slices will be re-generated on demand // Save first slice PlaneGeometry::Pointer geometry2D = m_PlaneGeometries[0]; auto *rotOp = dynamic_cast(operation); // Generate a RotationOperation using the dataset center instead of // the supplied rotation center. This is necessary so that the rotated // zero-plane does not shift away. The supplied center is instead used // to adjust the slice stack afterwards. Point3D center = m_ReferenceGeometry->GetCenter(); RotationOperation centeredRotation( rotOp->GetOperationType(), center, rotOp->GetVectorOfRotation(), rotOp->GetAngleOfRotation()); // Rotate first slice geometry2D->ExecuteOperation(¢eredRotation); // Clear the slice stack and adjust it according to the center of // the dataset and the supplied rotation center (see documentation of // ReinitializePlanes) this->ReinitializePlanes(center, rotOp->GetCenterOfRotation()); geometry2D->SetSpacing(this->GetSpacing()); if (m_SliceNavigationController) { m_SliceNavigationController->SelectSliceByPoint(rotOp->GetCenterOfRotation()); m_SliceNavigationController->AdjustSliceStepperRange(); } BaseGeometry::ExecuteOperation(¢eredRotation); } else { // we also have to consider the case, that there is no reference geometry available. if (m_PlaneGeometries.size() > 0) { // Reach through to all slices in my container for (auto iter = m_PlaneGeometries.begin(); iter != m_PlaneGeometries.end(); ++iter) { // Test for empty slices, which can happen if evenly spaced geometry if ((*iter).IsNotNull()) { (*iter)->ExecuteOperation(operation); } } // rotate overall geometry auto *rotOp = dynamic_cast(operation); BaseGeometry::ExecuteOperation(rotOp); } } } else { // Reach through to all slices for (auto iter = m_PlaneGeometries.begin(); iter != m_PlaneGeometries.end(); ++iter) { (*iter)->ExecuteOperation(operation); } } break; case OpORIENT: if (m_EvenlySpaced) { // get operation data auto *planeOp = dynamic_cast(operation); // Get first slice PlaneGeometry::Pointer planeGeometry = m_PlaneGeometries[0]; // Need a PlaneGeometry, a PlaneOperation and a reference frame to // carry out the re-orientation. If not all avaialble, stop here if (!m_ReferenceGeometry || (!planeGeometry || dynamic_cast(planeGeometry.GetPointer())) || !planeOp) { break; } // General Behavior: // Clear all generated geometries and then rotate only the first slice. // The other slices will be re-generated on demand // // 1st Step: Reorient Normal Vector of first plane // Point3D center = planeOp->GetPoint(); // m_ReferenceGeometry->GetCenter(); mitk::Vector3D currentNormal = planeGeometry->GetNormal(); mitk::Vector3D newNormal; if (planeOp->AreAxisDefined()) { // If planeOp was defined by one centerpoint and two axis vectors newNormal = CrossProduct(planeOp->GetAxisVec0(), planeOp->GetAxisVec1()); } else { // If planeOp was defined by one centerpoint and one normal vector newNormal = planeOp->GetNormal(); } // Get Rotation axis und angle currentNormal.Normalize(); newNormal.Normalize(); ScalarType rotationAngle = angle(currentNormal.GetVnlVector(), newNormal.GetVnlVector()); rotationAngle *= 180.0 / vnl_math::pi; // from rad to deg Vector3D rotationAxis = itk::CrossProduct(currentNormal, newNormal); if (std::abs(rotationAngle - 180) < mitk::eps) { // current Normal and desired normal are not linear independent!!(e.g 1,0,0 and -1,0,0). // Rotation Axis should be ANY vector that is 90� to current Normal mitk::Vector3D helpNormal; helpNormal = currentNormal; helpNormal[0] += 1; helpNormal[1] -= 1; helpNormal[2] += 1; helpNormal.Normalize(); rotationAxis = itk::CrossProduct(helpNormal, currentNormal); } RotationOperation centeredRotation(mitk::OpROTATE, center, rotationAxis, rotationAngle); // Rotate first slice planeGeometry->ExecuteOperation(¢eredRotation); // Reinitialize planes and select slice, if my rotations are all done. if (!planeOp->AreAxisDefined()) { // Clear the slice stack and adjust it according to the center of // rotation and plane position (see documentation of ReinitializePlanes) this->ReinitializePlanes(center, planeOp->GetPoint()); planeGeometry->SetSpacing(this->GetSpacing()); if (m_SliceNavigationController) { m_SliceNavigationController->SelectSliceByPoint(planeOp->GetPoint()); m_SliceNavigationController->AdjustSliceStepperRange(); } } // Also apply rotation on the slicedGeometry - Geometry3D (Bounding geometry) BaseGeometry::ExecuteOperation(¢eredRotation); // // 2nd step. If axis vectors were defined, rotate the plane around its normal to fit these // if (planeOp->AreAxisDefined()) { mitk::Vector3D vecAxixNew = planeOp->GetAxisVec0(); vecAxixNew.Normalize(); mitk::Vector3D VecAxisCurr = planeGeometry->GetAxisVector(0); VecAxisCurr.Normalize(); ScalarType rotationAngle = angle(VecAxisCurr.GetVnlVector(), vecAxixNew.GetVnlVector()); rotationAngle = rotationAngle * 180 / PI; // Rad to Deg // we rotate around the normal of the plane, but we do not know, if we need to rotate clockwise // or anti-clockwise. So we rotate around the crossproduct of old and new Axisvector. // Since both axis vectors lie in the plane, the crossproduct is the planes normal or the negative planes // normal rotationAxis = itk::CrossProduct(VecAxisCurr, vecAxixNew); if (std::abs(rotationAngle - 180) < mitk::eps) { // current axisVec and desired axisVec are not linear independent!!(e.g 1,0,0 and -1,0,0). // Rotation Axis can be just plane Normal. (have to rotate by 180�) rotationAxis = newNormal; } // Perfom Rotation mitk::RotationOperation op(mitk::OpROTATE, center, rotationAxis, rotationAngle); planeGeometry->ExecuteOperation(&op); // Apply changes on first slice to whole slice stack this->ReinitializePlanes(center, planeOp->GetPoint()); planeGeometry->SetSpacing(this->GetSpacing()); if (m_SliceNavigationController) { m_SliceNavigationController->SelectSliceByPoint(planeOp->GetPoint()); m_SliceNavigationController->AdjustSliceStepperRange(); } // Also apply rotation on the slicedGeometry - Geometry3D (Bounding geometry) BaseGeometry::ExecuteOperation(&op); } } else { // Reach through to all slices for (auto iter = m_PlaneGeometries.begin(); iter != m_PlaneGeometries.end(); ++iter) { (*iter)->ExecuteOperation(operation); } } break; case OpRESTOREPLANEPOSITION: if (m_EvenlySpaced) { // Save first slice PlaneGeometry::Pointer planeGeometry = m_PlaneGeometries[0]; auto *restorePlaneOp = dynamic_cast(operation); // Need a PlaneGeometry, a PlaneOperation and a reference frame to // carry out the re-orientation if (m_ReferenceGeometry && (planeGeometry && dynamic_cast(planeGeometry.GetPointer()) == nullptr) && restorePlaneOp) { // Clear all generated geometries and then rotate only the first slice. // The other slices will be re-generated on demand // Rotate first slice planeGeometry->ExecuteOperation(restorePlaneOp); m_DirectionVector = restorePlaneOp->GetDirectionVector(); double centerOfRotationDistance = planeGeometry->SignedDistanceFromPlane(m_ReferenceGeometry->GetCenter()); if (centerOfRotationDistance <= 0) { m_DirectionVector = -m_DirectionVector; } Vector3D spacing = restorePlaneOp->GetSpacing(); Superclass::SetSpacing(spacing); // /*Now we need to calculate the number of slices in the plane's normal // direction, so that the entire volume is covered. This is done by first // calculating the dot product between the volume diagonal (the maximum // distance inside the volume) and the normal, and dividing this value by // the directed spacing calculated above.*/ ScalarType directedExtent = std::abs(m_ReferenceGeometry->GetExtentInMM(0) * m_DirectionVector[0]) + std::abs(m_ReferenceGeometry->GetExtentInMM(1) * m_DirectionVector[1]) + std::abs(m_ReferenceGeometry->GetExtentInMM(2) * m_DirectionVector[2]); if (directedExtent >= spacing[2]) { m_Slices = static_cast(directedExtent / spacing[2] + 0.5); } else { m_Slices = 1; } m_PlaneGeometries.assign(m_Slices, PlaneGeometry::Pointer(nullptr)); if (m_Slices > 0) { m_PlaneGeometries[0] = planeGeometry; } m_SliceNavigationController->GetSlice()->SetSteps(m_Slices); this->Modified(); // End Reinitialization if (m_SliceNavigationController) { m_SliceNavigationController->GetSlice()->SetPos(restorePlaneOp->GetPos()); m_SliceNavigationController->AdjustSliceStepperRange(); } BaseGeometry::ExecuteOperation(restorePlaneOp); } } else { // Reach through to all slices for (auto iter = m_PlaneGeometries.begin(); iter != m_PlaneGeometries.end(); ++iter) { (*iter)->ExecuteOperation(operation); } } break; case OpAPPLYTRANSFORMMATRIX: // Clear all generated geometries and then transform only the first slice. // The other slices will be re-generated on demand // Save first slice geometry2D = m_PlaneGeometries[0]; applyMatrixOp = dynamic_cast(operation); // Apply transformation to first plane geometry2D->ExecuteOperation(applyMatrixOp); // Generate a ApplyTransformMatrixOperation using the dataset center instead of // the supplied rotation center. The supplied center is instead used to adjust the // slice stack afterwards (see OpROTATE). center = m_ReferenceGeometry->GetCenter(); // Clear the slice stack and adjust it according to the center of // the dataset and the supplied rotation center (see documentation of // ReinitializePlanes) this->ReinitializePlanes(center, applyMatrixOp->GetReferencePoint()); BaseGeometry::ExecuteOperation(applyMatrixOp); break; default: // let handle by base class if we don't do anything BaseGeometry::ExecuteOperation(operation); } this->Modified(); }