diff --git a/Modules/ContourModel/IO/mitkContourModelWriter.h b/Modules/ContourModel/IO/mitkContourModelWriter.h index 3a1b587533..0add146a3b 100644 --- a/Modules/ContourModel/IO/mitkContourModelWriter.h +++ b/Modules/ContourModel/IO/mitkContourModelWriter.h @@ -1,171 +1,158 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef _MITK_CONTOURMODEL_WRITER__H_ #define _MITK_CONTOURMODEL_WRITER__H_ #include #include // DEPRECATED #include namespace mitk { /** * @brief XML-based writer for mitk::ContourModels * * XML-based writer for mitk::ContourModels. Multiple ContourModels can be written in * a single XML file by simply setting multiple inputs to the filter. * * The xml file will look like: * * * * * * * * * * * * * * * * * * * * * @ingroup MitkContourModelModule */ - class TimeSlicedGeometry; - class ContourModelWriter : public mitk::AbstractFileWriter { public: explicit ContourModelWriter(bool writeXMLHeader = true); ~ContourModelWriter() override; using AbstractFileWriter::Write; void Write() override; protected: ContourModelWriter(const ContourModelWriter &other); mitk::ContourModelWriter *Clone() const override; /** * Converts an arbitrary type to a string. The type has to * support the << operator. This works fine at least for integral * data types as float, int, long etc. * @param value the value to convert * @returns the string representation of value */ template std::string ConvertToString(T value); /** * Writes an XML representation of the given point set to * an outstream. The XML-Header an root node is not included! * @param contourModel the point set to be converted to xml * @param out the stream to write to. */ void WriteXML(const mitk::ContourModel *contourModel, std::ostream &out); /** * Writes the geometry information of the TimeGeometry to an outstream. * The root tag is not included. * @param geometry the TimeGeometry of the contour. * @param out the stream to write to. */ void WriteGeometryInformation(const mitk::TimeGeometry *geometry, std::ostream &out); - /** - * Writes the geometry information of the TimeGeometry to an outstream. - * The root tag is not included. - * @param geometry the TimeGeometry of the contour. - * @param out the stream to write to. - * - * \deprecatedSince{2013_09} Please use TimeGeometry instead of TimeSlicedGeometry. For more information see - * http://www.mitk.org/Development/Refactoring%20of%20the%20Geometry%20Classes%20-%20Part%201 - */ - DEPRECATED(void WriteGeometryInformation(const mitk::TimeSlicedGeometry *geometry, std::ostream &out)); - /** * Writes an standard xml header to the given stream. * @param file the stream in which the header is written. */ void WriteXMLHeader(std::ostream &file); /** Write a start element tag */ void WriteStartElement(const char *const tag, std::ostream &file); void WriteStartElementWithAttribut(const char *const tag, std::vector attributes, std::vector values, std::ostream &file); /** * Write an end element tag * End-Elements following character data should pass indent = false. */ void WriteEndElement(const char *const tag, std::ostream &file, const bool &indent = true); /** Write character data inside a tag. */ void WriteCharacterData(const char *const data, std::ostream &file); /** Write a start element tag */ void WriteStartElement(std::string &tag, std::ostream &file); /** Write an end element tag */ void WriteEndElement(std::string &tag, std::ostream &file, const bool &indent = true); /** Write character data inside a tag. */ void WriteCharacterData(std::string &data, std::ostream &file); /** Writes empty spaces to the stream according to m_IndentDepth and m_Indent */ void WriteIndent(std::ostream &file); bool m_WriteXMLHeader; unsigned int m_IndentDepth; unsigned int m_Indent; public: static const char *XML_CONTOURMODEL; static const char *XML_HEAD; static const char *XML_GEOMETRY_INFO; static const char *XML_DATA; static const char *XML_TIME_STEP; static const char *XML_CONTROL_POINTS; static const char *XML_POINT; static const char *XML_X; static const char *XML_Y; static const char *XML_Z; }; } #endif diff --git a/Modules/Core/include/mitkBaseData.h b/Modules/Core/include/mitkBaseData.h index 539a9e35fd..c43122796f 100644 --- a/Modules/Core/include/mitkBaseData.h +++ b/Modules/Core/include/mitkBaseData.h @@ -1,422 +1,388 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef BASEDATA_H_HEADER_INCLUDED_C1EBB6FA #define BASEDATA_H_HEADER_INCLUDED_C1EBB6FA #include #include "mitkBaseProcess.h" #include "mitkIdentifiable.h" #include "mitkIPropertyOwner.h" #include "mitkOperationActor.h" #include "mitkPropertyList.h" #include "mitkTimeGeometry.h" #include namespace mitk { // class BaseProcess; //##Documentation //## @brief Base of all data objects //## //## Base of all data objects, e.g., images, contours, surfaces etc. Inherits //## from itk::DataObject and thus can be included in a pipeline. //## Inherits also from OperationActor and can be used as a destination for Undo //## @remark Some derived classes may support the persistence of the Identifiable UID. //** but it is no guaranteed feature and also depends on the format the data is stored in //** as not all formats support storing of meta information. Please check the documentation //** of the IFileReader and IFileWriter classes to see if the ID-persistance is supported. //** MITK SceneIO supports the UID persistance for all BaseData derived classes. //## @ingroup Data class MITKCORE_EXPORT BaseData : public itk::DataObject, public OperationActor, public Identifiable, public IPropertyOwner { public: mitkClassMacroItkParent(BaseData, itk::DataObject); // IPropertyProvider BaseProperty::ConstPointer GetConstProperty(const std::string &propertyKey, const std::string &contextName = "", bool fallBackOnDefaultContext = true) const override; std::vector GetPropertyKeys(const std::string &contextName = "", bool includeDefaultContext = false) const override; std::vector GetPropertyContextNames() const override; // IPropertyOwner BaseProperty * GetNonConstProperty(const std::string &propertyKey, const std::string &contextName = "", bool fallBackOnDefaultContext = true) override; void SetProperty(const std::string &propertyKey, BaseProperty *property, const std::string &contextName = "", bool fallBackOnDefaultContext = false) override; void RemoveProperty(const std::string &propertyKey, const std::string &contextName = "", bool fallBackOnDefaultContext = false) override; /** * \brief Return the TimeGeometry of the data as const pointer. * * \warning No update will be called. Use GetUpdatedGeometry() if you cannot * be sure that the geometry is up-to-date. * * Normally used in GenerateOutputInformation of subclasses of BaseProcess. */ const mitk::TimeGeometry *GetTimeGeometry() const { return m_TimeGeometry.GetPointer(); } - /** - * \brief Return the TimeGeometry of the data as const pointer. - * - * \warning No update will be called. Use GetUpdatedGeometry() if you cannot - * be sure that the geometry is up-to-date. - * - * Normally used in GenerateOutputInformation of subclasses of BaseProcess. - * \deprecatedSince{2013_09} Please use GetTimeGeometry instead: For additional information see - * http://www.mitk.org/Development/Refactoring%20of%20the%20Geometry%20Classes%20-%20Part%201 - */ - DEPRECATED(const mitk::TimeGeometry *GetTimeSlicedGeometry() const) { return GetTimeGeometry(); } /** * @brief Return the TimeGeometry of the data as pointer. * * \warning No update will be called. Use GetUpdatedGeometry() if you cannot * be sure that the geometry is up-to-date. * * Normally used in GenerateOutputInformation of subclasses of BaseProcess. */ mitk::TimeGeometry *GetTimeGeometry() { return m_TimeGeometry.GetPointer(); } /** * @brief Return the TimeGeometry of the data. * * The method does not simply return the value of the m_TimeGeometry * member. Before doing this, it makes sure that the TimeGeometry * is up-to-date (by setting the update extent to largest possible and * calling UpdateOutputInformation). */ const mitk::TimeGeometry *GetUpdatedTimeGeometry(); - /** - * @brief Return the TimeGeometry of the data. - * - * The method does not simply return the value of the m_TimeGeometry - * member. Before doing this, it makes sure that the TimeGeometry - * is up-to-date (by setting the update extent to largest possible and - * calling UpdateOutputInformation). - * \deprecatedSince{2013_09} Please use GetUpdatedTimeGeometry instead: For additional information see - * http://www.mitk.org/Development/Refactoring%20of%20the%20Geometry%20Classes%20-%20Part%201 - */ - DEPRECATED(const mitk::TimeGeometry *GetUpdatedTimeSliceGeometry()) { return GetUpdatedTimeGeometry(); } /** * \brief Expands the TimeGeometry to a number of TimeSteps. * * The method expands the TimeGeometry to the given number of TimeSteps, * filling newly created elements with empty geometries. Sub-classes should override * this method to handle the elongation of their data vectors, too. * Note that a shrinking is neither possible nor intended. */ virtual void Expand(unsigned int timeSteps); /** * \brief Return the BaseGeometry of the data at time \a t. * * The method does not simply return * m_TimeGeometry->GetGeometry(t). * Before doing this, it makes sure that the BaseGeometry is up-to-date * (by setting the update extent appropriately and calling * UpdateOutputInformation). * * @todo Appropriate setting of the update extent is missing. */ const mitk::BaseGeometry *GetUpdatedGeometry(int t = 0); //##Documentation //## @brief Return the geometry, which is a TimeGeometry, of the data //## as non-const pointer. //## //## \warning No update will be called. Use GetUpdatedGeometry() if you cannot //## be sure that the geometry is up-to-date. //## //## Normally used in GenerateOutputInformation of subclasses of BaseProcess. mitk::BaseGeometry *GetGeometry(int t = 0) const { if (m_TimeGeometry.IsNull()) return nullptr; return m_TimeGeometry->GetGeometryForTimeStep(t); } //##Documentation //## @brief Update the information for this BaseData (the geometry in particular) //## so that it can be used as an output of a BaseProcess. //## //## This method is used in the pipeline mechanism to propagate information and //## initialize the meta data associated with a BaseData. Any implementation //## of this method in a derived class is assumed to call its source's //## BaseProcess::UpdateOutputInformation() which determines modified //## times, LargestPossibleRegions, and any extra meta data like spacing, //## origin, etc. Default implementation simply call's it's source's //## UpdateOutputInformation(). //## \note Implementations of this methods in derived classes must take care //## that the geometry is updated by calling //## GetTimeGeometry()->UpdateInformation() //## \em after calling its source's BaseProcess::UpdateOutputInformation(). void UpdateOutputInformation() override; //##Documentation //## @brief Set the RequestedRegion to the LargestPossibleRegion. //## //## This forces a filter to produce all of the output in one execution //## (i.e. not streaming) on the next call to Update(). void SetRequestedRegionToLargestPossibleRegion() override = 0; //##Documentation //## @brief Determine whether the RequestedRegion is outside of the BufferedRegion. //## //## This method returns true if the RequestedRegion //## is outside the BufferedRegion (true if at least one pixel is //## outside). This is used by the pipeline mechanism to determine //## whether a filter needs to re-execute in order to satisfy the //## current request. If the current RequestedRegion is already //## inside the BufferedRegion from the previous execution (and the //## current filter is up to date), then a given filter does not need //## to re-execute bool RequestedRegionIsOutsideOfTheBufferedRegion() override = 0; //##Documentation //## @brief Verify that the RequestedRegion is within the LargestPossibleRegion. //## //## If the RequestedRegion is not within the LargestPossibleRegion, //## then the filter cannot possibly satisfy the request. This method //## returns true if the request can be satisfied (even if it will be //## necessary to process the entire LargestPossibleRegion) and //## returns false otherwise. This method is used by //## PropagateRequestedRegion(). PropagateRequestedRegion() throws a //## InvalidRequestedRegionError exception if the requested region is //## not within the LargestPossibleRegion. bool VerifyRequestedRegion() override = 0; //##Documentation //## @brief Copy information from the specified data set. //## //## This method is part of the pipeline execution model. By default, a //## BaseProcess will copy meta-data from the first input to all of its //## outputs. See ProcessObject::GenerateOutputInformation(). Each //## subclass of DataObject is responsible for being able to copy //## whatever meta-data it needs from another DataObject. //## The default implementation of this method copies the time sliced geometry //## and the property list of an object. If a subclass overrides this //## method, it should always call its superclass' version. void CopyInformation(const itk::DataObject *data) override; //##Documentation //## @brief Check whether the data has been initialized, i.e., //## at least the Geometry and other header data has been set //## //## \warning Set to \a true by default for compatibility reasons. //## Set m_Initialized=false in constructors of sub-classes that //## support distinction between initialized and uninitialized state. virtual bool IsInitialized() const; //##Documentation //## @brief Calls ClearData() and InitializeEmpty(); //## \warning Only use in subclasses that reimplemented these methods. //## Just calling Clear from BaseData will reset an object to a not initialized, //## invalid state. virtual void Clear(); //##Documentation //## @brief Check whether object contains data (at //## a specified time), e.g., a set of points may be empty //## //## \warning Returns IsInitialized()==false by default for //## compatibility reasons. Override in sub-classes that //## support distinction between empty/non-empty state. virtual bool IsEmptyTimeStep(unsigned int t) const; //##Documentation //## @brief Check whether object contains data (at //## least at one point in time), e.g., a set of points //## may be empty //## //## \warning Returns IsInitialized()==false by default for //## compatibility reasons. Override in sub-classes that //## support distinction between empty/non-empty state. virtual bool IsEmpty() const; //##Documentation //## @brief Set the requested region from this data object to match the requested //## region of the data object passed in as a parameter. //## //## This method is implemented in the concrete subclasses of BaseData. void SetRequestedRegion(const itk::DataObject *data) override = 0; //##Documentation //##@brief overwrite if the Data can be called by an Interactor (StateMachine). //## //## Empty by default. Overwrite and implement all the necessary operations here //## and get the necessary information from the parameter operation. void ExecuteOperation(Operation *operation) override; /** * \brief Set the BaseGeometry of the data, which will be referenced (not copied!). * Assumes the data object has only 1 time step ( is a 3D object ) and creates a * new TimeGeometry which saves the given BaseGeometry. If an TimeGeometry has already * been set for the object, it will be replaced after calling this function. * * @warning This method will normally be called internally by the sub-class of BaseData * during initialization. * \sa SetClonedGeometry */ virtual void SetGeometry(BaseGeometry *aGeometry3D); /** * \brief Set the TimeGeometry of the data, which will be referenced (not copied!). * * @warning This method will normally be called internally by the sub-class of BaseData * during initialization. * \sa SetClonedTimeGeometry */ virtual void SetTimeGeometry(TimeGeometry *geometry); /** * \brief Set a clone of the provided Geometry as Geometry of the data. * Assumes the data object has only 1 time step ( is a 3D object ) and * creates a new TimeGeometry. If an TimeGeometry has already * been set for the object, it will be replaced after calling this function. * * \sa SetGeometry */ virtual void SetClonedGeometry(const BaseGeometry *aGeometry3D); /** * \brief Set a clone of the provided TimeGeometry as TimeGeometry of the data. * * \sa SetGeometry */ virtual void SetClonedTimeGeometry(const TimeGeometry *geometry); //##Documentation //## @brief Set a clone of the provided geometry as BaseGeometry of a given time step. //## //## \sa SetGeometry virtual void SetClonedGeometry(const BaseGeometry *aGeometry3D, unsigned int time); //##Documentation //## @brief Get the data's property list //## @sa GetProperty //## @sa m_PropertyList mitk::PropertyList::Pointer GetPropertyList() const; //##Documentation //## @brief Set the data's property list //## @sa SetProperty //## @sa m_PropertyList void SetPropertyList(PropertyList *propertyList); //##Documentation //## @brief Get the property (instance of BaseProperty) with key @a propertyKey from the PropertyList, //## and set it to this, respectively; //## @sa GetPropertyList //## @sa m_PropertyList //## @sa m_MapOfPropertyLists mitk::BaseProperty::Pointer GetProperty(const char *propertyKey) const; void SetProperty(const char *propertyKey, BaseProperty *property); //##Documentation //## @brief Convenience method for setting the origin of //## the BaseGeometry instances of all time steps //## //## \warning Geometries contained in the BaseGeometry will //## \em not be changed, e.g. in case the BaseGeometry is a //## SlicedGeometry3D the origin will \em not be propagated //## to the contained slices. The sub-class SlicedData //## does this for the case that the SlicedGeometry3D is //## evenly spaced. virtual void SetOrigin(const Point3D &origin); /** \brief Get the process object that generated this data object. * * If there is no process object, then the data object has * been disconnected from the pipeline, or the data object * was created manually. (Note: we cannot use the GetObjectMacro() * defined in itkMacro because the mutual dependency of * DataObject and ProcessObject causes compile problems. Also, * a forward reference smart pointer is returned, not a smart pointer, * because of the circular dependency between the process and data object.) * * GetSource() returns a SmartPointer and not a WeakPointer * because it is assumed the code calling GetSource() wants to hold a * long term reference to the source. */ itk::SmartPointer GetSource() const; //##Documentation //## @brief Get the number of time steps from the TimeGeometry //## As the base data has not a data vector given by itself, the number //## of time steps is defined over the time sliced geometry. In sub classes, //## a better implementation could be over the length of the data vector. unsigned int GetTimeSteps() const { return m_TimeGeometry->CountTimeSteps(); } //##Documentation //## @brief Get the modified time of the last change of the contents //## this data object or its geometry. unsigned long GetMTime() const override; /** * \sa itk::ProcessObject::Graft */ void Graft(const DataObject *) override; protected: BaseData(); BaseData(const BaseData &other); ~BaseData() override; //##Documentation //## \brief Initialize the TimeGeometry for a number of time steps. //## The TimeGeometry is initialized empty and evenly timed. //## In many cases it will be necessary to overwrite this in sub-classes. virtual void InitializeTimeGeometry(unsigned int timeSteps = 1); - /** - * \brief Initialize the TimeGeometry for a number of time steps. - * The TimeGeometry is initialized empty and evenly timed. - * In many cases it will be necessary to overwrite this in sub-classes. - * \deprecatedSince{2013_09} Please use GetUpdatedTimeGeometry instead: For additional information see - * http://www.mitk.org/Development/Refactoring%20of%20the%20Geometry%20Classes%20-%20Part%201 - */ - DEPRECATED(virtual void InitializeTimeSlicedGeometry(unsigned int timeSteps = 1)) - { - InitializeTimeGeometry(timeSteps); - } - //##Documentation //## @brief reset to non-initialized state, release memory virtual void ClearData(); //##Documentation //## @brief Pure virtual; Must be used in subclasses to get a data object to a //## valid state. Should at least create one empty object and call //## Superclass::InitializeTimeGeometry() to ensure an existing valid geometry virtual void InitializeEmpty() {} void PrintSelf(std::ostream &os, itk::Indent indent) const override; bool m_LastRequestedRegionWasOutsideOfTheBufferedRegion; mutable unsigned int m_SourceOutputIndexDuplicate; bool m_Initialized; private: //##Documentation //## @brief PropertyList, f.e. to hold pic-tags, tracking-data,.. //## PropertyList::Pointer m_PropertyList; TimeGeometry::Pointer m_TimeGeometry; }; } // namespace mitk #endif /* BASEDATA_H_HEADER_INCLUDED_C1EBB6FA */ diff --git a/Modules/Core/include/mitkBaseRenderer.h b/Modules/Core/include/mitkBaseRenderer.h index b4015ffd7a..909de3a27c 100644 --- a/Modules/Core/include/mitkBaseRenderer.h +++ b/Modules/Core/include/mitkBaseRenderer.h @@ -1,532 +1,523 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef BASERENDERER_H_HEADER_INCLUDED_C1CCA0F4 #define BASERENDERER_H_HEADER_INCLUDED_C1CCA0F4 #include "mitkCameraRotationController.h" #include "mitkDataStorage.h" #include "mitkPlaneGeometry.h" #include "mitkPlaneGeometryData.h" #include "mitkSliceNavigationController.h" #include "mitkTimeGeometry.h" #include "mitkBindDispatcherInteractor.h" #include "mitkDispatcher.h" #include #include #include #include -// DEPRECATED -#include - namespace mitk { class NavigationController; class SliceNavigationController; class CameraRotationController; class CameraController; class DataStorage; class Mapper; class BaseLocalStorageHandler; class KeyEvent; //##Documentation //## @brief Organizes the rendering process //## //## Organizes the rendering process. A Renderer contains a reference to a //## DataStorage and asks the mappers of the data objects to render //## the data into the renderwindow it is associated to. //## //## \#Render() checks if rendering is currently allowed by calling //## RenderWindow::PrepareRendering(). Initialization of a rendering context //## can also be performed in this method. //## //## The actual rendering code has been moved to \#Repaint() //## Both \#Repaint() and \#Update() are declared protected now. //## //## Note: Separation of the Repaint and Update processes (rendering vs //## creating a vtk prop tree) still needs to be worked on. The whole //## rendering process also should be reworked to use VTK based classes for //## both 2D and 3D rendering. //## @ingroup Renderer class MITKCORE_EXPORT BaseRenderer : public itk::Object { public: typedef std::map BaseRendererMapType; static BaseRendererMapType baseRendererMap; static BaseRenderer *GetInstance(vtkRenderWindow *renWin); static void AddInstance(vtkRenderWindow *renWin, BaseRenderer *baseRenderer); static void RemoveInstance(vtkRenderWindow *renWin); static BaseRenderer *GetByName(const std::string &name); static vtkRenderWindow *GetRenderWindowByName(const std::string &name); #pragma GCC visibility push(default) itkEventMacro(RendererResetEvent, itk::AnyEvent); #pragma GCC visibility pop /** Standard class typedefs. */ mitkClassMacroItkParent(BaseRenderer, itk::Object); BaseRenderer(const char *name = nullptr, vtkRenderWindow *renWin = nullptr); //##Documentation //## @brief MapperSlotId defines which kind of mapper (e.g. 2D or 3D) should be used. typedef int MapperSlotId; enum StandardMapperSlot { Standard2D = 1, Standard3D = 2 }; //##Documentation //## @brief Possible view directions for render windows. enum class ViewDirection { AXIAL = 0, SAGITTAL, CORONAL, THREE_D }; virtual void SetDataStorage(DataStorage *storage); ///< set the datastorage that will be used for rendering //##Documentation //## return the DataStorage that is used for rendering virtual DataStorage::Pointer GetDataStorage() const { return m_DataStorage.GetPointer(); } //##Documentation //## @brief Access the RenderWindow into which this renderer renders. vtkRenderWindow *GetRenderWindow() const { return m_RenderWindow; } vtkRenderer *GetVtkRenderer() const { return m_VtkRenderer; } //##Documentation //## @brief Returns the Dispatcher which handles Events for this BaseRenderer Dispatcher::Pointer GetDispatcher() const; //##Documentation //## @brief Default mapper id to use. static const MapperSlotId defaultMapper; //##Documentation //## @brief Do the rendering and flush the result. virtual void Paint(); //##Documentation //## @brief Initialize the RenderWindow. Should only be called from RenderWindow. virtual void Initialize(); //##Documentation //## @brief Called to inform the renderer that the RenderWindow has been resized. virtual void Resize(int w, int h); //##Documentation //## @brief Initialize the renderer with a RenderWindow (@a renderwindow). virtual void InitRenderer(vtkRenderWindow *renderwindow); //##Documentation //## @brief Set the initial size. Called by RenderWindow after it has become //## visible for the first time. virtual void InitSize(int w, int h); //##Documentation //## @brief Draws a point on the widget. //## Should be used during conferences to show the position of the remote mouse virtual void DrawOverlayMouse(Point2D &p2d); //##Documentation //## @brief Set/Get the WorldGeometry (m_WorldGeometry) for 3D and 2D rendering, that describing the //## (maximal) area to be rendered. //## //## Depending of the type of the passed BaseGeometry more or less information can be extracted: //## \li if it is a PlaneGeometry (which is a sub-class of BaseGeometry), m_CurrentWorldPlaneGeometry is //## also set to point to it. m_WorldTimeGeometry is set to nullptr. //## \li if it is a TimeGeometry, m_WorldTimeGeometry is also set to point to it. //## If m_WorldTimeGeometry contains instances of SlicedGeometry3D, m_CurrentWorldPlaneGeometry is set to //## one of geometries stored in the SlicedGeometry3D according to the value of m_Slice; otherwise //## a PlaneGeometry describing the top of the bounding-box of the BaseGeometry is set as the //## m_CurrentWorldPlaneGeometry. //## \li otherwise a PlaneGeometry describing the top of the bounding-box of the BaseGeometry //## is set as the m_CurrentWorldPlaneGeometry. m_WorldTimeGeometry is set to nullptr. //## @todo add calculation of PlaneGeometry describing the top of the bounding-box of the BaseGeometry //## when the passed BaseGeometry is not sliced. //## \sa m_WorldGeometry //## \sa m_WorldTimeGeometry //## \sa m_CurrentWorldPlaneGeometry virtual void SetWorldGeometry3D(const BaseGeometry *geometry); virtual void SetWorldTimeGeometry(const mitk::TimeGeometry *geometry); - /** - * \deprecatedSince{2013_09} Please use TimeGeometry instead of TimeSlicedGeometry. For more information see - * http://www.mitk.org/Development/Refactoring%20of%20the%20Geometry%20Classes%20-%20Part%201 - */ - DEPRECATED(void SetWorldGeometry3D(TimeSlicedGeometry *geometry)); - itkGetConstObjectMacro(WorldTimeGeometry, TimeGeometry); //##Documentation //## @brief Get the current 3D-worldgeometry (m_CurrentWorldGeometry) used for 3D-rendering itkGetConstObjectMacro(CurrentWorldGeometry, BaseGeometry); //##Documentation //## @brief Get the current 2D-worldgeometry (m_CurrentWorldPlaneGeometry) used for 2D-rendering itkGetConstObjectMacro(CurrentWorldPlaneGeometry, PlaneGeometry) /** * \deprecatedSince{2014_10} Please use GetCurrentWorldPlaneGeometry */ DEPRECATED(const PlaneGeometry *GetCurrentWorldGeometry2D()) { return GetCurrentWorldPlaneGeometry(); }; //##Documentation //## Calculates the bounds of the DataStorage (if it contains any valid data), //## creates a geometry from these bounds and sets it as world geometry of the renderer. //## //## Call this method to re-initialize the renderer to the current DataStorage //## (e.g. after loading an additional dataset), to ensure that the view is //## aligned correctly. //## \warning This is not implemented yet. virtual bool SetWorldGeometryToDataStorageBounds() { return false; } //##Documentation //## @brief Set/Get m_Slice which defines together with m_TimeStep the 2D geometry //## stored in m_WorldTimeGeometry used as m_CurrentWorldPlaneGeometry //## //## \sa m_Slice virtual void SetSlice(unsigned int slice); itkGetConstMacro(Slice, unsigned int); //##Documentation //## @brief Set/Get m_TimeStep which defines together with m_Slice the 2D geometry //## stored in m_WorldTimeGeometry used as m_CurrentWorldPlaneGeometry //## //## \sa m_TimeStep virtual void SetTimeStep(unsigned int timeStep); itkGetConstMacro(TimeStep, unsigned int); //##Documentation //## @brief Get the time-step of a BaseData object which //## exists at the time of the currently displayed content //## //## Returns -1 or mitk::BaseData::m_TimeSteps if there //## is no data at the current time. //## \sa GetTimeStep, m_TimeStep TimeStepType GetTimeStep(const BaseData *data) const; //##Documentation //## @brief Get the time in ms of the currently displayed content //## //## \sa GetTimeStep, m_TimeStep ScalarType GetTime() const; //##Documentation //## @brief SetWorldGeometry is called according to the geometrySliceEvent, //## which is supposed to be a SliceNavigationController::GeometrySendEvent virtual void SetGeometry(const itk::EventObject &geometrySliceEvent); //##Documentation //## @brief UpdateWorldGeometry is called to re-read the 2D geometry from the //## slice navigation controller virtual void UpdateGeometry(const itk::EventObject &geometrySliceEvent); //##Documentation //## @brief SetSlice is called according to the geometrySliceEvent, //## which is supposed to be a SliceNavigationController::GeometrySliceEvent virtual void SetGeometrySlice(const itk::EventObject &geometrySliceEvent); //##Documentation //## @brief SetTimeStep is called according to the geometrySliceEvent, //## which is supposed to be a SliceNavigationController::GeometryTimeEvent virtual void SetGeometryTime(const itk::EventObject &geometryTimeEvent); //##Documentation //## @brief Get a DataNode pointing to a data object containing the current 2D-worldgeometry // m_CurrentWorldPlaneGeometry (for 2D rendering) itkGetObjectMacro(CurrentWorldPlaneGeometryNode, DataNode) /** * \deprecatedSince{2014_10} Please use GetCurrentWorldPlaneGeometryNode */ DEPRECATED(DataNode *GetCurrentWorldGeometry2DNode()) { return GetCurrentWorldPlaneGeometryNode(); }; //##Documentation //## @brief Sets timestamp of CurrentWorldPlaneGeometry and forces so reslicing in that renderwindow void SendUpdateSlice(); //##Documentation //## @brief Get timestamp of last call of SetCurrentWorldPlaneGeometry unsigned long GetCurrentWorldPlaneGeometryUpdateTime() { return m_CurrentWorldPlaneGeometryUpdateTime; } /** * \deprecatedSince{2014_10} Please use GetCurrentWorldPlaneGeometryUpdateTime */ DEPRECATED(unsigned long GetCurrentWorldGeometry2DUpdateTime()) { return GetCurrentWorldPlaneGeometryUpdateTime(); }; //##Documentation //## @brief Get timestamp of last change of current TimeStep unsigned long GetTimeStepUpdateTime() { return m_TimeStepUpdateTime; } //##Documentation //## @brief Perform a picking: find the x,y,z world coordinate of a //## display x,y coordinate. //## @warning Has to be overwritten in subclasses for the 3D-case. //## //## Implemented here only for 2D-rendering virtual void PickWorldPoint(const Point2D &diplayPosition, Point3D &worldPosition) const = 0; /** \brief Determines the object (mitk::DataNode) closest to the current * position by means of picking * * \warning Implementation currently empty for 2D rendering; intended to be * implemented for 3D renderers */ virtual DataNode *PickObject(const Point2D & /*displayPosition*/, Point3D & /*worldPosition*/) const { return nullptr; } //##Documentation //## @brief Get the MapperSlotId to use. itkGetMacro(MapperID, MapperSlotId); itkGetConstMacro(MapperID, MapperSlotId); //##Documentation //## @brief Set the MapperSlotId to use. virtual void SetMapperID(MapperSlotId id); virtual int *GetSize() const; virtual int *GetViewportSize() const; void SetSliceNavigationController(SliceNavigationController *SlicenavigationController); itkGetObjectMacro(CameraController, CameraController); itkGetObjectMacro(SliceNavigationController, SliceNavigationController); itkGetObjectMacro(CameraRotationController, CameraRotationController); itkGetMacro(EmptyWorldGeometry, bool); //##Documentation //## @brief Tells if the displayed region is shifted and rescaled if the render window is resized. itkGetMacro(KeepDisplayedRegion, bool) //##Documentation //## @brief Tells if the displayed region should be shifted and rescaled if the render window is resized. itkSetMacro(KeepDisplayedRegion, bool); //##Documentation //## @brief get the name of the Renderer //## @note const char *GetName() const { return m_Name.c_str(); } //##Documentation //## @brief get the x_size of the RendererWindow //## @note int GetSizeX() const { return GetSize()[0]; } //##Documentation //## @brief get the y_size of the RendererWindow //## @note int GetSizeY() const { return GetSize()[1]; } const double *GetBounds() const; void RequestUpdate(); void ForceImmediateUpdate(); /** Returns number of mappers which are visible and have level-of-detail * rendering enabled */ unsigned int GetNumberOfVisibleLODEnabledMappers() const; //##Documentation //## @brief This method converts a display point to the 3D world index //## using the geometry of the renderWindow. void DisplayToWorld(const Point2D &displayPoint, Point3D &worldIndex) const; //##Documentation //## @brief This method converts a display point to the 2D world index, mapped onto the display plane //## using the geometry of the renderWindow. void DisplayToPlane(const Point2D &displayPoint, Point2D &planePointInMM) const; //##Documentation //## @brief This method converts a 3D world index to the display point //## using the geometry of the renderWindow. void WorldToDisplay(const Point3D &worldIndex, Point2D &displayPoint) const; //##Documentation //## @brief This method converts a 3D world index to the point on the viewport //## using the geometry of the renderWindow. void WorldToView(const Point3D &worldIndex, Point2D &viewPoint) const; //##Documentation //## @brief This method converts a 2D plane coordinate to the display point //## using the geometry of the renderWindow. void PlaneToDisplay(const Point2D &planePointInMM, Point2D &displayPoint) const; //##Documentation //## @brief This method converts a 2D plane coordinate to the point on the viewport //## using the geometry of the renderWindow. void PlaneToView(const Point2D &planePointInMM, Point2D &viewPoint) const; double GetScaleFactorMMPerDisplayUnit() const; Point2D GetDisplaySizeInMM() const; Point2D GetViewportSizeInMM() const; Point2D GetOriginInMM() const; itkGetConstMacro(ConstrainZoomingAndPanning, bool) virtual void SetConstrainZoomingAndPanning(bool constrain); /** * \brief Provides (1) world coordinates for a given mouse position and (2) * translates mousePosition to Display coordinates * \deprecated Map2DRendererPositionTo3DWorldPosition is deprecated. Please use DisplayToWorld instead. */ DEPRECATED(virtual Point3D Map2DRendererPositionTo3DWorldPosition(const Point2D &mousePosition) const); protected: ~BaseRenderer() override; //##Documentation //## @brief Call update of all mappers. To be implemented in subclasses. virtual void Update() = 0; vtkRenderWindow *m_RenderWindow; vtkRenderer *m_VtkRenderer; //##Documentation //## @brief MapperSlotId to use. Defines which kind of mapper (e.g., 2D or 3D) shoud be used. MapperSlotId m_MapperID; //##Documentation //## @brief The DataStorage that is used for rendering. DataStorage::Pointer m_DataStorage; //##Documentation //## @brief Timestamp of last call of Update(). unsigned long m_LastUpdateTime; //##Documentation //## @brief CameraController for 3D rendering //## @note preliminary. itk::SmartPointer m_CameraController; SliceNavigationController::Pointer m_SliceNavigationController; CameraRotationController::Pointer m_CameraRotationController; //##Documentation //## @brief Sets m_CurrentWorldPlaneGeometry virtual void SetCurrentWorldPlaneGeometry(const PlaneGeometry *geometry2d); /** * \deprecatedSince{2014_10} Please use SetCurrentWorldPlaneGeometry */ DEPRECATED(void SetCurrentWorldGeometry2D(PlaneGeometry *geometry2d)) { SetCurrentWorldPlaneGeometry(geometry2d); }; //##Documentation //## @brief Sets m_CurrentWorldGeometry virtual void SetCurrentWorldGeometry(const BaseGeometry *geometry); private: //##Documentation //## m_WorldTimeGeometry is set by SetWorldGeometry if the passed BaseGeometry is a //## TimeGeometry (or a sub-class of it). If it contains instances of SlicedGeometry3D, //## m_Slice and m_TimeStep (set via SetSlice and SetTimeStep, respectively) define //## which 2D geometry stored in m_WorldTimeGeometry (if available) //## is used as m_CurrentWorldPlaneGeometry. //## \sa m_CurrentWorldPlaneGeometry TimeGeometry::ConstPointer m_WorldTimeGeometry; //##Documentation //## Pointer to the current 3D-worldgeometry. BaseGeometry::ConstPointer m_CurrentWorldGeometry; //##Documentation //## Pointer to the current 2D-worldgeometry. The 2D-worldgeometry //## describes the maximal area (2D manifold) to be rendered in case we //## are doing 2D-rendering. //## It is const, since we are not allowed to change it (it may be taken //## directly from the geometry of an image-slice and thus it would be //## very strange when suddenly the image-slice changes its geometry). PlaneGeometry::Pointer m_CurrentWorldPlaneGeometry; //##Documentation //## Defines together with m_Slice which 2D geometry stored in m_WorldTimeGeometry //## is used as m_CurrentWorldPlaneGeometry: m_WorldTimeGeometry->GetPlaneGeometry(m_Slice, m_TimeStep). //## \sa m_WorldTimeGeometry unsigned int m_Slice; //##Documentation //## Defines together with m_TimeStep which 2D geometry stored in m_WorldTimeGeometry //## is used as m_CurrentWorldPlaneGeometry: m_WorldTimeGeometry->GetPlaneGeometry(m_Slice, m_TimeStep). //## \sa m_WorldTimeGeometry unsigned int m_TimeStep; //##Documentation //## @brief timestamp of last call of SetWorldGeometry itk::TimeStamp m_CurrentWorldPlaneGeometryUpdateTime; //##Documentation //## @brief timestamp of last change of the current time step itk::TimeStamp m_TimeStepUpdateTime; //##Documentation //## @brief Helper class which establishes connection between Interactors and Dispatcher via a common DataStorage. BindDispatcherInteractor *m_BindDispatcherInteractor; //##Documentation //## @brief Tells if the displayed region should be shifted or rescaled if the render window is resized. bool m_KeepDisplayedRegion; protected: void PrintSelf(std::ostream &os, itk::Indent indent) const override; //##Documentation //## Data object containing the m_CurrentWorldPlaneGeometry defined above. PlaneGeometryData::Pointer m_CurrentWorldPlaneGeometryData; //##Documentation //## DataNode objects containing the m_CurrentWorldPlaneGeometryData defined above. DataNode::Pointer m_CurrentWorldPlaneGeometryNode; //##Documentation //## @brief test only unsigned long m_CurrentWorldPlaneGeometryTransformTime; std::string m_Name; double m_Bounds[6]; bool m_EmptyWorldGeometry; typedef std::set LODEnabledMappersType; /** Number of mappers which are visible and have level-of-detail * rendering enabled */ unsigned int m_NumberOfVisibleLODEnabledMappers; // Local Storage Handling for mappers protected: std::list m_RegisteredLocalStorageHandlers; bool m_ConstrainZoomingAndPanning; public: void RemoveAllLocalStorages(); void RegisterLocalStorageHandler(mitk::BaseLocalStorageHandler *lsh); void UnregisterLocalStorageHandler(mitk::BaseLocalStorageHandler *lsh); }; } // namespace mitk #endif /* BASERENDERER_H_HEADER_INCLUDED_C1CCA0F4 */ diff --git a/Modules/Core/include/mitkImage.h b/Modules/Core/include/mitkImage.h index fe8e646ebc..359b536d87 100644 --- a/Modules/Core/include/mitkImage.h +++ b/Modules/Core/include/mitkImage.h @@ -1,799 +1,644 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef MITKIMAGE_H_HEADER_INCLUDED_C1C2FCD2 #define MITKIMAGE_H_HEADER_INCLUDED_C1C2FCD2 #include "mitkBaseData.h" #include "mitkImageAccessorBase.h" #include "mitkImageDataItem.h" #include "mitkImageDescriptor.h" #include "mitkImageVtkAccessor.h" #include "mitkLevelWindow.h" #include "mitkPlaneGeometry.h" #include "mitkSlicedData.h" #include #include -// DEPRECATED -#include - #ifndef __itkHistogram_h #include #endif class vtkImageData; namespace itk { template class MutexLockHolder; } namespace mitk { class SubImageSelector; class ImageTimeSelector; class ImageStatisticsHolder; /** * @brief Image class for storing images * * Can be asked for header information, the data vector, * the mitkIpPicDescriptor struct or vtkImageData objects. If not the complete * data is required, the appropriate SubImageSelector class should be used * for access. * Image organizes sets of slices (s x 2D), volumes (t x 3D) and channels (n * x ND). Channels are for different kind of data, e.g., morphology in * channel 0, velocities in channel 1. All channels must have the same Geometry! In * particular, the dimensions of all channels are the same, only the pixel-type * may differ between channels. * * For importing ITK images use of mitk::ITKImageImport is recommended, see * \ref Adaptor. * * For ITK v3.8 and older: Converting coordinates from the ITK physical * coordinate system (which does not support rotated images) to the MITK world * coordinate system should be performed via the BaseGeometry of the Image, see * BaseGeometry::WorldToItkPhysicalPoint. * * For more information, see \ref MitkImagePage . * @ingroup Data */ class MITKCORE_EXPORT Image : public SlicedData { friend class SubImageSelector; friend class ImageAccessorBase; friend class ImageVtkAccessor; friend class ImageVtkReadAccessor; friend class ImageVtkWriteAccessor; friend class ImageReadAccessor; friend class ImageWriteAccessor; public: mitkClassMacro(Image, SlicedData); itkFactorylessNewMacro(Self); itkCloneMacro(Self); /** Smart Pointer type to a ImageDataItem. */ typedef itk::SmartPointer ImageDataItemPointer; typedef itk::Statistics::Histogram HistogramType; typedef mitk::ImageStatisticsHolder *StatisticsHolderPointer; /** This enum is evaluated when setting new data to an image. */ enum ImportMemoryManagementType { CopyMemory, /**< Data to be set is copied and assigned to a new memory block. Data memory block will be freed on deletion of mitk::Image. */ ManageMemory, /**< Data to be set will be referenced, and Data memory block will be freed on deletion of mitk::Image. */ ReferenceMemory, /**< Data to be set will be referenced, but Data memory block will not be freed on deletion of mitk::Image. */ DontManageMemory = ReferenceMemory }; /** * @brief Vector container of SmartPointers to ImageDataItems; * Class is only for internal usage to allow convenient access to all slices over iterators; * See documentation of ImageDataItem for details. */ typedef std::vector ImageDataItemPointerArray; public: /** * @brief Returns the PixelType of channel @a n. */ const mitk::PixelType GetPixelType(int n = 0) const; /** * @brief Get dimension of the image */ unsigned int GetDimension() const; /** * @brief Get the size of dimension @a i (e.g., i=0 results in the number of pixels in x-direction). * * @sa GetDimensions() */ unsigned int GetDimension(int i) const; - /** @brief Get the data vector of the complete image, i.e., of all channels linked together. - - If you only want to access a slice, volume at a specific time or single channel - use one of the SubImageSelector classes. - \deprecatedSince{2012_09} Please use image accessors instead: See Doxygen/Related-Pages/Concepts/Image. This method - can be replaced by ImageWriteAccessor::GetData() or ImageReadAccessor::GetData() */ - DEPRECATED(virtual void *GetData()); - public: - /** @brief Get the pixel value at one specific index position. - - The pixel type is always being converted to double. - \deprecatedSince{2012_09} Please use image accessors instead: See Doxygen/Related-Pages/Concepts/Image. This method - can be replaced by a method from ImagePixelWriteAccessor or ImagePixelReadAccessor */ - DEPRECATED(double GetPixelValueByIndex(const itk::Index<3> &position, - unsigned int timestep = 0, - unsigned int component = 0)); - - /** @brief Get the pixel value at one specific world position. - - The pixel type is always being converted to double. - Please consider using image accessors instead: See Doxygen/Related-Pages/Concepts/Image. This method - can be replaced by a templated method from ImagePixelWriteAccessor or ImagePixelReadAccessor */ - double GetPixelValueByWorldCoordinate(const mitk::Point3D &position, - unsigned int timestep = 0, - unsigned int component = 0); - /** * @brief Get a volume at a specific time @a t of channel @a n as a vtkImageData. */ virtual vtkImageData *GetVtkImageData(int t = 0, int n = 0); virtual const vtkImageData *GetVtkImageData(int t = 0, int n = 0) const; /** * @brief Check whether slice @a s at time @a t in channel @a n is set */ bool IsSliceSet(int s = 0, int t = 0, int n = 0) const override; /** * @brief Check whether volume at time @a t in channel @a n is set */ bool IsVolumeSet(int t = 0, int n = 0) const override; /** * @brief Check whether the channel @a n is set */ bool IsChannelSet(int n = 0) const override; /** * @brief Set @a data as slice @a s at time @a t in channel @a n. It is in * the responsibility of the caller to ensure that the data vector @a data * is really a slice (at least is not smaller than a slice), since there is * no chance to check this. * * The data is copied to an array managed by the image. If the image shall * reference the data, use SetImportSlice with ImportMemoryManagementType * set to ReferenceMemory. For importing ITK images use of mitk:: * ITKImageImport is recommended. * @sa SetPicSlice, SetImportSlice, SetImportVolume */ virtual bool SetSlice(const void *data, int s = 0, int t = 0, int n = 0); /** * @brief Set @a data as volume at time @a t in channel @a n. It is in * the responsibility of the caller to ensure that the data vector @a data * is really a volume (at least is not smaller than a volume), since there is * no chance to check this. * * The data is copied to an array managed by the image. If the image shall * reference the data, use SetImportVolume with ImportMemoryManagementType * set to ReferenceMemory. For importing ITK images use of mitk:: * ITKImageImport is recommended. * @sa SetPicVolume, SetImportVolume */ virtual bool SetVolume(const void *data, int t = 0, int n = 0); /** * @brief Set @a data in channel @a n. It is in * the responsibility of the caller to ensure that the data vector @a data * is really a channel (at least is not smaller than a channel), since there is * no chance to check this. * * The data is copied to an array managed by the image. If the image shall * reference the data, use SetImportChannel with ImportMemoryManagementType * set to ReferenceMemory. For importing ITK images use of mitk:: * ITKImageImport is recommended. * @sa SetPicChannel, SetImportChannel */ virtual bool SetChannel(const void *data, int n = 0); /** * @brief Set @a data as slice @a s at time @a t in channel @a n. It is in * the responsibility of the caller to ensure that the data vector @a data * is really a slice (at least is not smaller than a slice), since there is * no chance to check this. * * The data is managed according to the parameter \a importMemoryManagement. * @sa SetPicSlice */ virtual bool SetImportSlice( void *data, int s = 0, int t = 0, int n = 0, ImportMemoryManagementType importMemoryManagement = CopyMemory); /** * @brief Set @a data as volume at time @a t in channel @a n. It is in * the responsibility of the caller to ensure that the data vector @a data * is really a volume (at least is not smaller than a volume), since there is * no chance to check this. * * The data is managed according to the parameter \a importMemoryManagement. * @sa SetPicVolume */ virtual bool SetImportVolume(void *data, int t = 0, int n = 0, ImportMemoryManagementType importMemoryManagement = CopyMemory); virtual bool SetImportVolume(const void *const_data, int t = 0, int n = 0); /** * @brief Set @a data in channel @a n. It is in * the responsibility of the caller to ensure that the data vector @a data * is really a channel (at least is not smaller than a channel), since there is * no chance to check this. * * The data is managed according to the parameter \a importMemoryManagement. * @sa SetPicChannel */ virtual bool SetImportChannel(void *data, int n = 0, ImportMemoryManagementType importMemoryManagement = CopyMemory); /** * initialize new (or re-initialize) image information * @warning Initialize() by pic assumes a plane, evenly spaced geometry starting at (0,0,0). */ virtual void Initialize(const mitk::PixelType &type, unsigned int dimension, const unsigned int *dimensions, unsigned int channels = 1); /** * initialize new (or re-initialize) image information by a BaseGeometry * * \param type * \param geometry * \param channels * @param tDim defines the number of time steps for which the Image should be initialized */ virtual void Initialize(const mitk::PixelType &type, const mitk::BaseGeometry &geometry, unsigned int channels = 1, int tDim = 1); - /** - * initialize new (or re-initialize) image information by a TimeGeometry - * - * \deprecatedSince{2013_09} Please use TimeGeometry instead of TimeSlicedGeometry. For more information see - * http://www.mitk.org/Development/Refactoring%20of%20the%20Geometry%20Classes%20-%20Part%201 - */ - DEPRECATED(virtual void Initialize(const mitk::PixelType & /*type*/, - const mitk::TimeSlicedGeometry * /*geometry*/, - unsigned int /*channels = 1*/, - int /*tDim=1*/)) - { - } - /** * \brief Initialize new (or re-initialize) image information by a TimeGeometry * * \param type * \param geometry * \param channels * \param tDim override time dimension if the value is bigger than 0 (Default -1) */ virtual void Initialize(const mitk::PixelType &type, const mitk::TimeGeometry &geometry, unsigned int channels = 1, int tDim = -1); /** * initialize new (or re-initialize) image information by a PlaneGeometry and number of slices * * Initializes the bounding box according to the width/height of the * PlaneGeometry and @a sDim via SlicedGeometry3D::InitializeEvenlySpaced. * The spacing is calculated from the PlaneGeometry. * \sa SlicedGeometry3D::InitializeEvenlySpaced - * \deprecatedSince{2016_11} Use a left-handed or right-handed PlaneGeometry to define the - * direction of the image stack instead of the flipped parameter */ - DEPRECATED(virtual void Initialize(const mitk::PixelType &type, - int sDim, - const mitk::PlaneGeometry &geometry2d, - bool flipped, - unsigned int channels = 1, - int tDim = 1)); - virtual void Initialize(const mitk::PixelType &type, int sDim, const mitk::PlaneGeometry &geometry2d, unsigned int channels = 1, int tDim = 1); /** * initialize new (or re-initialize) image information by another * mitk-image. * Only the header is used, not the data vector! */ virtual void Initialize(const mitk::Image *image); virtual void Initialize(const mitk::ImageDescriptor::Pointer inDesc); /** * initialize new (or re-initialize) image information by @a vtkimagedata, * a vtk-image. * Only the header is used, not the data vector! Use * SetVolume(vtkimage->GetScalarPointer()) to set the data vector. * * @param vtkimagedata * @param channels * @param tDim override time dimension in @a vtkimagedata (if >0 and <) * @param sDim override z-space dimension in @a vtkimagedata (if >0 and <) * @param pDim override y-space dimension in @a vtkimagedata (if >0 and <) */ virtual void Initialize(vtkImageData *vtkimagedata, int channels = 1, int tDim = -1, int sDim = -1, int pDim = -1); /** * initialize new (or re-initialize) image information by @a itkimage, * a templated itk-image. * Only the header is used, not the data vector! Use * SetVolume(itkimage->GetBufferPointer()) to set the data vector. * * @param itkimage * @param channels * @param tDim override time dimension in @a itkimage (if >0 and <) * @param sDim override z-space dimension in @a itkimage (if >0 and <) */ template void InitializeByItk(const itkImageType *itkimage, int channels = 1, int tDim = -1, int sDim = -1) { if (itkimage == nullptr) return; MITK_DEBUG << "Initializing MITK image from ITK image."; // build array with dimensions in each direction with at least 4 entries m_Dimension = itkimage->GetImageDimension(); unsigned int i, *tmpDimensions = new unsigned int[m_Dimension > 4 ? m_Dimension : 4]; for (i = 0; i < m_Dimension; ++i) tmpDimensions[i] = itkimage->GetLargestPossibleRegion().GetSize().GetSize()[i]; if (m_Dimension < 4) { unsigned int *p; for (i = 0, p = tmpDimensions + m_Dimension; i < 4 - m_Dimension; ++i, ++p) *p = 1; } // overwrite number of slices if sDim is set if ((m_Dimension > 2) && (sDim >= 0)) tmpDimensions[2] = sDim; // overwrite number of time points if tDim is set if ((m_Dimension > 3) && (tDim >= 0)) tmpDimensions[3] = tDim; // rough initialization of Image // mitk::PixelType importType = ImportItkPixelType( itkimage::PixelType ); Initialize( MakePixelType(itkimage->GetNumberOfComponentsPerPixel()), m_Dimension, tmpDimensions, channels); const typename itkImageType::SpacingType &itkspacing = itkimage->GetSpacing(); MITK_DEBUG << "ITK spacing " << itkspacing; // access spacing of itk::Image Vector3D spacing; FillVector3D(spacing, itkspacing[0], 1.0, 1.0); if (m_Dimension >= 2) spacing[1] = itkspacing[1]; if (m_Dimension >= 3) spacing[2] = itkspacing[2]; // access origin of itk::Image Point3D origin; const typename itkImageType::PointType &itkorigin = itkimage->GetOrigin(); MITK_DEBUG << "ITK origin " << itkorigin; FillVector3D(origin, itkorigin[0], 0.0, 0.0); if (m_Dimension >= 2) origin[1] = itkorigin[1]; if (m_Dimension >= 3) origin[2] = itkorigin[2]; // access direction of itk::Imagm_PixelType = new mitk::PixelType(type);e and include spacing const typename itkImageType::DirectionType &itkdirection = itkimage->GetDirection(); MITK_DEBUG << "ITK direction " << itkdirection; mitk::Matrix3D matrix; matrix.SetIdentity(); unsigned int j, itkDimMax3 = (m_Dimension >= 3 ? 3 : m_Dimension); // check if spacing has no zero entry and itkdirection has no zero columns bool itkdirectionOk = true; mitk::ScalarType columnSum; for (j = 0; j < itkDimMax3; ++j) { columnSum = 0.0; for (i = 0; i < itkDimMax3; ++i) { columnSum += fabs(itkdirection[i][j]); } if (columnSum < mitk::eps) { itkdirectionOk = false; } if ((spacing[j] < -mitk::eps) // (normally sized) negative value && (j == 2) && (m_Dimensions[2] == 1)) { // Negative spacings can occur when reading single DICOM slices with ITK via GDCMIO // In these cases spacing is not determind by ITK correctly (because it distinguishes correctly // between slice thickness and inter slice distance -- slice distance is meaningless for // single slices). // I experienced that ITK produced something meaningful nonetheless because is is // evaluating the tag "(0018,0088) Spacing between slices" as a fallback. This tag is not // reliable (http://www.itk.org/pipermail/insight-users/2005-September/014711.html) // but gives at least a hint. // In real world cases I experienced that this tag contained the correct inter slice distance // with a negative sign, so we just invert such negative spacings. MITK_WARN << "Illegal value of itk::Image::GetSpacing()[" << j << "]=" << spacing[j] << ". Using inverted value " << -spacing[j]; spacing[j] = -spacing[j]; } else if (spacing[j] < mitk::eps) // value near zero { MITK_ERROR << "Illegal value of itk::Image::GetSpacing()[" << j << "]=" << spacing[j] << ". Using 1.0 instead."; spacing[j] = 1.0; } } if (itkdirectionOk == false) { MITK_ERROR << "Illegal matrix returned by itk::Image::GetDirection():" << itkdirection << " Using identity instead."; for (i = 0; i < itkDimMax3; ++i) for (j = 0; j < itkDimMax3; ++j) if (i == j) matrix[i][j] = spacing[j]; else matrix[i][j] = 0.0; } else { for (i = 0; i < itkDimMax3; ++i) for (j = 0; j < itkDimMax3; ++j) matrix[i][j] = itkdirection[i][j] * spacing[j]; } // re-initialize PlaneGeometry with origin and direction PlaneGeometry *planeGeometry = static_cast(GetSlicedGeometry(0)->GetPlaneGeometry(0)); planeGeometry->SetOrigin(origin); planeGeometry->GetIndexToWorldTransform()->SetMatrix(matrix); // re-initialize SlicedGeometry3D SlicedGeometry3D *slicedGeometry = GetSlicedGeometry(0); slicedGeometry->InitializeEvenlySpaced(planeGeometry, m_Dimensions[2]); slicedGeometry->SetSpacing(spacing); // re-initialize TimeGeometry ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); SetTimeGeometry(timeGeometry); // clean-up delete[] tmpDimensions; this->Initialize(); } /** * @brief Check whether slice @a s at time @a t in channel @a n is valid, i.e., * is (or can be) inside of the image */ virtual bool IsValidSlice(int s = 0, int t = 0, int n = 0) const; /** * @brief Check whether volume at time @a t in channel @a n is valid, i.e., * is (or can be) inside of the image */ virtual bool IsValidVolume(int t = 0, int n = 0) const; /** * @brief Check whether the channel @a n is valid, i.e., * is (or can be) inside of the image */ virtual bool IsValidChannel(int n = 0) const; /** * @brief Returns true if an image is rotated, i.e. its geometry's * transformation matrix has nonzero elements besides the diagonal. * Non-diagonal elements are checked if larger then 1/1000 of the matrix' trace. */ bool IsRotated() const; /** * @brief Get the sizes of all dimensions as an integer-array. * * @sa GetDimension(int i); */ unsigned int *GetDimensions() const; ImageDescriptor::Pointer GetImageDescriptor() const { return m_ImageDescriptor; } ChannelDescriptor GetChannelDescriptor(int id = 0) const { return m_ImageDescriptor->GetChannelDescriptor(id); } /** \brief Sets a geometry to an image. */ void SetGeometry(BaseGeometry *aGeometry3D) override; /** * @warning for internal use only */ virtual ImageDataItemPointer GetSliceData(int s = 0, int t = 0, int n = 0, void *data = nullptr, ImportMemoryManagementType importMemoryManagement = CopyMemory) const; /** * @warning for internal use only */ virtual ImageDataItemPointer GetVolumeData(int t = 0, int n = 0, void *data = nullptr, ImportMemoryManagementType importMemoryManagement = CopyMemory) const; /** * @warning for internal use only */ virtual ImageDataItemPointer GetChannelData(int n = 0, void *data = nullptr, ImportMemoryManagementType importMemoryManagement = CopyMemory) const; - /** - \brief (DEPRECATED) Get the minimum for scalar images - */ - DEPRECATED(ScalarType GetScalarValueMin(int t = 0) const); - - /** - \brief (DEPRECATED) Get the maximum for scalar images - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(ScalarType GetScalarValueMax(int t = 0) const); - - /** - \brief (DEPRECATED) Get the second smallest value for scalar images - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(ScalarType GetScalarValue2ndMin(int t = 0) const); - - /** - \brief (DEPRECATED) Get the smallest value for scalar images, but do not recompute it first - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(ScalarType GetScalarValueMinNoRecompute(unsigned int t = 0) const); - - /** - \brief (DEPRECATED) Get the second smallest value for scalar images, but do not recompute it first - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(ScalarType GetScalarValue2ndMinNoRecompute(unsigned int t = 0) const); - - /** - \brief (DEPRECATED) Get the second largest value for scalar images - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(ScalarType GetScalarValue2ndMax(int t = 0) const); - - /** - \brief (DEPRECATED) Get the largest value for scalar images, but do not recompute it first - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(ScalarType GetScalarValueMaxNoRecompute(unsigned int t = 0) const); - - /** - \brief (DEPRECATED) Get the second largest value for scalar images, but do not recompute it first - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(ScalarType GetScalarValue2ndMaxNoRecompute(unsigned int t = 0) const); - - /** - \brief (DEPRECATED) Get the count of voxels with the smallest scalar value in the dataset - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(ScalarType GetCountOfMinValuedVoxels(int t = 0) const); - - /** - \brief (DEPRECATED) Get the count of voxels with the largest scalar value in the dataset - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(ScalarType GetCountOfMaxValuedVoxels(int t = 0) const); - - /** - \brief (DEPRECATED) Get the count of voxels with the largest scalar value in the dataset - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(unsigned int GetCountOfMaxValuedVoxelsNoRecompute(unsigned int t = 0) const); - - /** - \brief (DEPRECATED) Get the count of voxels with the smallest scalar value in the dataset - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(unsigned int GetCountOfMinValuedVoxelsNoRecompute(unsigned int t = 0) const); - /** \brief Returns a pointer to the ImageStatisticsHolder object that holds all statistics information for the image. All Get-methods for statistics properties formerly accessible directly from an Image object are now moved to the new \a ImageStatisticsHolder object. */ StatisticsHolderPointer GetStatistics() const { return m_ImageStatistics; } + protected: mitkCloneMacro(Self); typedef itk::MutexLockHolder MutexHolder; int GetSliceIndex(int s = 0, int t = 0, int n = 0) const; int GetVolumeIndex(int t = 0, int n = 0) const; void ComputeOffsetTable(); virtual bool IsValidTimeStep(int t) const; void Expand(unsigned int timeSteps) override; virtual ImageDataItemPointer AllocateSliceData( int s = 0, int t = 0, int n = 0, void *data = nullptr, ImportMemoryManagementType importMemoryManagement = CopyMemory) const; virtual ImageDataItemPointer AllocateVolumeData( int t = 0, int n = 0, void *data = nullptr, ImportMemoryManagementType importMemoryManagement = CopyMemory) const; virtual ImageDataItemPointer AllocateChannelData( int n = 0, void *data = nullptr, ImportMemoryManagementType importMemoryManagement = CopyMemory) const; Image(); Image(const Image &other); ~Image() override; void Clear() override; /** @warning Has to be called by every Initialize method! */ void Initialize() override; void PrintSelf(std::ostream &os, itk::Indent indent) const override; mutable ImageDataItemPointerArray m_Channels; mutable ImageDataItemPointerArray m_Volumes; mutable ImageDataItemPointerArray m_Slices; mutable itk::SimpleFastMutexLock m_ImageDataArraysLock; unsigned int m_Dimension; unsigned int *m_Dimensions; ImageDescriptor::Pointer m_ImageDescriptor; size_t *m_OffsetTable; ImageDataItemPointer m_CompleteData; // Image statistics Holder replaces the former implementation directly inside this class friend class ImageStatisticsHolder; StatisticsHolderPointer m_ImageStatistics; private: ImageDataItemPointer GetSliceData_unlocked( int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const; ImageDataItemPointer GetVolumeData_unlocked(int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const; ImageDataItemPointer GetChannelData_unlocked(int n, void *data, ImportMemoryManagementType importMemoryManagement) const; ImageDataItemPointer AllocateSliceData_unlocked( int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const; ImageDataItemPointer AllocateVolumeData_unlocked(int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const; ImageDataItemPointer AllocateChannelData_unlocked(int n, void *data, ImportMemoryManagementType importMemoryManagement) const; bool IsSliceSet_unlocked(int s, int t, int n) const; bool IsVolumeSet_unlocked(int t, int n) const; bool IsChannelSet_unlocked(int n) const; /** Stores all existing ImageReadAccessors */ mutable std::vector m_Readers; /** Stores all existing ImageWriteAccessors */ mutable std::vector m_Writers; /** Stores all existing ImageVtkAccessors */ mutable std::vector m_VtkReaders; /** A mutex, which needs to be locked to manage m_Readers and m_Writers */ itk::SimpleFastMutexLock m_ReadWriteLock; /** A mutex, which needs to be locked to manage m_VtkReaders */ itk::SimpleFastMutexLock m_VtkReadersLock; }; - /** - * @brief Equal A function comparing two images for beeing equal in meta- and imagedata - * @warning This method is deprecated and will not be available in the future. Use the \a bool mitk::Equal(const - * mitk::Image& i1, const mitk::Image& i2) instead. - * - * @ingroup MITKTestingAPI - * - * Following aspects are tested for equality: - * - dimension of the images - * - size of the images - * - pixel type - * - pixel values : pixel values are expected to be identical at each position ( for other options see - * mitk::CompareImageFilter ) - * - * @param rightHandSide An image to be compared - * @param leftHandSide An image to be compared - * @param eps Tolarence for comparison. You can use mitk::eps in most cases. - * @param verbose Flag indicating if the user wants detailed console output or not. - * @return true, if all subsequent comparisons are true, false otherwise - */ - DEPRECATED(MITKCORE_EXPORT bool Equal( - const mitk::Image *leftHandSide, const mitk::Image *rightHandSide, ScalarType eps, bool verbose)); - /** * @brief Equal A function comparing two images for beeing equal in meta- and imagedata * * @ingroup MITKTestingAPI * * Following aspects are tested for equality: * - dimension of the images * - size of the images * - pixel type * - pixel values : pixel values are expected to be identical at each position ( for other options see * mitk::CompareImageFilter ) * * @param rightHandSide An image to be compared * @param leftHandSide An image to be compared * @param eps Tolarence for comparison. You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return true, if all subsequent comparisons are true, false otherwise */ MITKCORE_EXPORT bool Equal(const mitk::Image &leftHandSide, const mitk::Image &rightHandSide, ScalarType eps, bool verbose); } // namespace mitk #endif /* MITKIMAGE_H_HEADER_INCLUDED_C1C2FCD2 */ diff --git a/Modules/Core/include/mitkImageDataItem.h b/Modules/Core/include/mitkImageDataItem.h index f221d344a8..946879ff55 100644 --- a/Modules/Core/include/mitkImageDataItem.h +++ b/Modules/Core/include/mitkImageDataItem.h @@ -1,163 +1,166 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef IMAGEDATAITEM_H #define IMAGEDATAITEM_H #include "mitkCommon.h" #include //#include //#include "mitkPixelType.h" #include "mitkImageDescriptor.h" //#include "mitkImageVtkAccessor.h" class vtkImageData; namespace mitk { class PixelType; class ImageVtkReadAccessor; class ImageVtkWriteAccessor; class Image; //##Documentation //## @brief Internal class for managing references on sub-images //## //## ImageDataItem is a container for image data which is used internal in //## mitk::Image to handle the communication between the different data types for images //## used in MITK (ipPicDescriptor, mitk::Image, vtkImageData). Common for these image data //## types is the actual image data, but they differ in representation of pixel type etc. //## The class is also used to convert ipPic images to vtkImageData. //## //## The class is mainly used to extract sub-images inside of mitk::Image, like single slices etc. //## It should not be used outside of this. //## //## @param manageMemory Determines if image data is removed while destruction of ImageDataItem or not. //## @ingroup Data class MITKCORE_EXPORT ImageDataItem : public itk::LightObject { friend class ImageAccessorBase; friend class ImageWriteAccessor; friend class ImageReadAccessor; template friend class ImagePixelAccessor; friend class Image; // template // friend class ImageToItk; public: typedef itk::SmartPointer ImagePointer; typedef itk::SmartPointer ImageConstPointer; mitkClassMacroItkParent(ImageDataItem, itk::LightObject); itkCloneMacro(ImageDataItem); itk::LightObject::Pointer InternalClone() const override; ImageDataItem(const ImageDataItem &aParent, const mitk::ImageDescriptor::Pointer desc, int timestep, unsigned int dimension, void *data = nullptr, bool manageMemory = false, size_t offset = 0); ~ImageDataItem() override; ImageDataItem(const mitk::ImageDescriptor::Pointer desc, int timestep, void *data, bool manageMemory); ImageDataItem(const mitk::PixelType &type, int timestep, unsigned int dimension, unsigned int *dimensions, void *data, bool manageMemory); ImageDataItem(const ImageDataItem &other); - /** - \deprecatedSince{2012_09} Please use image accessors instead: See Doxygen/Related-Pages/Concepts/Image. This method - can be replaced by ImageWriteAccessor::GetData() or ImageReadAccessor::GetData() */ - DEPRECATED(void *GetData() const) { return m_Data; } bool IsComplete() const { return m_IsComplete; } void SetComplete(bool complete) { m_IsComplete = complete; } int GetOffset() const { return m_Offset; } PixelType GetPixelType() const { return *m_PixelType; } void SetTimestep(int t) { m_Timestep = t; } void SetManageMemory(bool b) { m_ManageMemory = b; } int GetDimension() const { return m_Dimension; } int GetDimension(int i) const { int returnValue = 0; // return the true size if dimension available if (i < (int)m_Dimension) returnValue = m_Dimensions[i]; return returnValue; } ImageDataItem::ConstPointer GetParent() const { return m_Parent; } /** * @brief GetVtkImageAccessor Returns a vtkImageDataItem, if none is present, a new one is constructed by the * ConstructVtkImageData method. * Due to historical development of MITK and VTK, the vtkImage origin is explicitly set * to * (0, 0, 0) for 3D images. * See bug 5050 for detailed information. * @return Pointer of type ImageVtkReadAccessor */ ImageVtkReadAccessor *GetVtkImageAccessor(ImageConstPointer) const; ImageVtkWriteAccessor *GetVtkImageAccessor(ImagePointer); // Returns if image data should be deleted on destruction of ImageDataItem. bool GetManageMemory() const { return m_ManageMemory; } virtual void ConstructVtkImageData(ImageConstPointer) const; size_t GetSize() const { return m_Size; } virtual void Modified() const; protected: + + /**Helper function to allow friend classes to access m_Data without changing their code. + * Moved to protected visibility because only friends are allowed to access m_Data directly. + * Other classes should used ImageWriteAccessor::GetData() or ImageReadAccessor::GetData() + * to get access.*/ + void* GetData() const { return m_Data; } + unsigned char *m_Data; PixelType *m_PixelType; bool m_ManageMemory; mutable vtkImageData *m_VtkImageData; mutable ImageVtkReadAccessor *m_VtkImageReadAccessor; ImageVtkWriteAccessor *m_VtkImageWriteAccessor; int m_Offset; bool m_IsComplete; size_t m_Size; private: void ComputeItemSize(const unsigned int *dimensions, unsigned int dimension); ImageDataItem::ConstPointer m_Parent; unsigned int m_Dimension; unsigned int m_Dimensions[MAX_IMAGE_DIMENSIONS]; int m_Timestep; }; } // namespace mitk #endif /* IMAGEDATAITEM_H */ diff --git a/Modules/Core/include/mitkPointSetVtkMapper2D.h b/Modules/Core/include/mitkPointSetVtkMapper2D.h index 08a0524cc5..f8520be771 100644 --- a/Modules/Core/include/mitkPointSetVtkMapper2D.h +++ b/Modules/Core/include/mitkPointSetVtkMapper2D.h @@ -1,238 +1,238 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef mitkPointSetVtkMapper2D_h #define mitkPointSetVtkMapper2D_h #include "mitkBaseRenderer.h" #include "mitkLocalStorageHandler.h" #include "mitkVtkMapper.h" #include #include // VTK #include class vtkActor; class vtkPropAssembly; class vtkPolyData; class vtkPolyDataMapper; class vtkGlyphSource2D; class vtkGlyph3D; class vtkFloatArray; class vtkCellArray; namespace mitk { class PointSet; /** * @brief Vtk-based 2D mapper for PointSet * * Due to the need of different colors for selected * and unselected points and the facts, that we also have a contour and * labels for the points, the vtk structure is build up the following way: * * We have three PolyData, one selected, and one unselected and one * for a contour between the points. Each one is connected to an own * PolyDataMapper and an Actor. The different color for the unselected and * selected state and for the contour is read from properties. * * This mapper has several additional functionalities, such as rendering * a contour between points, calculating and displaying distances or angles * between points. * * @section mitkPointSetVtkMapper2D_point_rep Point Representation * * The points are displayed as small glyphs of configurable shape * (see property "PointSet.2D.shape"). The size of these glyphs * is given in world units. That means, the size or shape of those * glyphs is independent of the BaseGeometry object that you assign * to the PointSet. As for all other objects, _positions_ of points * will be transformed into the world via the Geometry's index-to-world * transform. * * Then the three Actors are combined inside a vtkPropAssembly and this * object is returned in GetProp() and so hooked up into the rendering * pipeline. * * @section mitkPointSetVtkMapper2D_propertires Applicable Properties * * Properties that can be set for point sets and influence the PointSetVTKMapper2D are: * * - \b "line width": (IntProperty 2) // line width of the line from one point to another * - \b "point line width": (IntProperty 1) // line width of the cross marking a point * - \b "point 2D size": (FloatProperty 6) // size of the glyph marking a point (diameter, in world * units!) * - \b "show contour": (BoolProperty false) // enable contour rendering between points (lines) * - \b "close contour": (BoolProperty false) // if enabled, the open strip is closed (first point * connected with last point) * - \b "show points": (BoolProperty true) // show or hide points * - \b "show distances": (BoolProperty false) // show or hide distance measure * - \b "distance decimal digits": (IntProperty 2) // set the number of decimal digits to be shown when * rendering the distance information * - \b "show angles": (BoolProperty false) // show or hide angle measurement * - \b "show distant lines": (BoolProperty false) // show the line between to points from a distant view * (equals "always on top" option) * - \b "layer": (IntProperty 1) // default is drawing pointset above images (they have a * default layer of 0) * - \b "PointSet.2D.shape" (EnumerationProperty Cross) // provides different shapes marking a point * 0 = "None", 1 = "Vertex", 2 = "Dash", 3 = "Cross", 4 = "ThickCross", 5 = "Triangle", 6 = "Square", 7 = * "Circle", * 8 = "Diamond", 9 = "Arrow", 10 = "ThickArrow", 11 = "HookedArrow", 12 = "Cross" * - \b "PointSet.2D.fill shape": (BoolProperty false) // fill or do not fill the glyph shape * - \b "Pointset.2D.distance to plane": (FloatProperty 4.0) //In the 2D render window, points are rendered which lie * within a certain distance * to the current plane. They are projected on the current * plane and scaled according to their distance. * Point markers appear smaller as the plane moves away * from * their true location. * The distance threshold can be adjusted by this float * property, which ables the user to delineate the points * that lie exactly on the plane. (+/- rounding error) * * Other Properties used here but not defined in this class: * * - \b "selectedcolor": (ColorProperty (1.0f, 0.0f, 0.0f)) // default color of the selected pointset e.g. the * current * point is red * - \b "contourcolor" : (ColorProperty (1.0f, 0.0f, 0.0f)) // default color for the contour is red * - \b "color": (ColorProperty (1.0f, 1.0f, 0.0f)) // default color of the (unselected) pointset is yellow * - \b "opacity": (FloatProperty 1.0) // opacity of point set, contours * - \b "label": (StringProperty nullptr) // a label can be defined for each point, which is rendered in proximity * to * the point * * @ingroup Mapper */ class MITKCORE_EXPORT PointSetVtkMapper2D : public VtkMapper { public: mitkClassMacro(PointSetVtkMapper2D, VtkMapper); itkFactorylessNewMacro(Self); itkCloneMacro(Self); virtual const mitk::PointSet *GetInput() const; /** \brief returns the a prop assembly */ vtkProp *GetVtkProp(mitk::BaseRenderer *renderer) override; /** \brief set the default properties for this mapper */ static void SetDefaultProperties(mitk::DataNode *node, mitk::BaseRenderer *renderer = nullptr, bool overwrite = false); /** \brief Internal class holding the mapper, actor, etc. for each of the 3 2D render windows */ class LocalStorage : public mitk::Mapper::BaseLocalStorage { public: /* constructor */ LocalStorage(); /* destructor */ ~LocalStorage() override; // points vtkSmartPointer m_UnselectedPoints; vtkSmartPointer m_SelectedPoints; vtkSmartPointer m_ContourPoints; // scales vtkSmartPointer m_UnselectedScales; vtkSmartPointer m_SelectedScales; // distances vtkSmartPointer m_DistancesBetweenPoints; // lines vtkSmartPointer m_ContourLines; // glyph source (provides different shapes for the points) vtkSmartPointer m_UnselectedGlyphSource2D; vtkSmartPointer m_SelectedGlyphSource2D; // glyph vtkSmartPointer m_UnselectedGlyph3D; vtkSmartPointer m_SelectedGlyph3D; // polydata vtkSmartPointer m_VtkUnselectedPointListPolyData; vtkSmartPointer m_VtkSelectedPointListPolyData; vtkSmartPointer m_VtkContourPolyData; // actor vtkSmartPointer m_UnselectedActor; vtkSmartPointer m_SelectedActor; vtkSmartPointer m_ContourActor; vtkSmartPointer m_VtkTextActor; std::vector> m_VtkTextLabelActors; std::vector> m_VtkTextDistanceActors; std::vector> m_VtkTextAngleActors; // mappers vtkSmartPointer m_VtkUnselectedPolyDataMapper; vtkSmartPointer m_VtkSelectedPolyDataMapper; vtkSmartPointer m_VtkContourPolyDataMapper; // propassembly vtkSmartPointer m_PropAssembly; }; /** \brief The LocalStorageHandler holds all (three) LocalStorages for the three 2D render windows. */ mitk::LocalStorageHandler m_LSH; protected: /* constructor */ PointSetVtkMapper2D(); /* destructor */ ~PointSetVtkMapper2D() override; /* \brief Applies the color and opacity properties and calls CreateVTKRenderObjects */ void GenerateDataForRenderer(mitk::BaseRenderer *renderer) override; /* \brief Called in mitk::Mapper::Update - * If TimeSlicedGeometry or time step is not valid of point set: reset mapper so that nothing is + * If TimeGeometry or time step is not valid of point set: reset mapper so that nothing is * displayed e.g. toggle visiblity of the propassembly */ void ResetMapper(BaseRenderer *renderer) override; /* \brief Fills the vtk objects, thus it is only called when the point set has been changed. * This function iterates over the input point set and determines the glyphs which lie in a specific * range around the current slice. Those glyphs are rendered using a specific shape defined in vtk glyph source * to mark each point. The shape can be changed in MITK using the property "PointSet.2D.shape". * * There were issues when rendering vtk glyphs in the 2D-render windows. By default, the glyphs are * rendered within the x-y plane in each 2D-render window, so you would only see them from the * side in the saggital and coronal 2D-render window. The solution to this is to rotate the glyphs in order * to be ortogonal to the current view vector. To achieve this, the rotation (vtktransform) of the current * PlaneGeometry is applied to the orienation of the glyphs. */ virtual void CreateVTKRenderObjects(mitk::BaseRenderer *renderer); // member variables holding the current value of the properties used in this mapper bool m_ShowContour; // "show contour" property bool m_CloseContour; // "close contour" property bool m_ShowPoints; // "show points" property bool m_ShowDistances; // "show distances" property int m_DistancesDecimalDigits; // "distance decimal digits" property bool m_ShowAngles; // "show angles" property bool m_ShowDistantLines; // "show distant lines" property int m_LineWidth; // "line width" property int m_PointLineWidth; // "point line width" property float m_Point2DSize; // "point 2D size" property int m_IDShapeProperty; // ID for mitkPointSetShape Enumeration Property "Pointset.2D.shape" bool m_FillShape; // "Pointset.2D.fill shape" property float m_DistanceToPlane; // "Pointset.2D.distance to plane" property }; } // namespace mitk #endif /* mitkPointSetVtkMapper2D_h */ diff --git a/Modules/Core/include/mitkSurfaceVtkMapper2D.h b/Modules/Core/include/mitkSurfaceVtkMapper2D.h index 1a0e357f42..9e52cbc226 100644 --- a/Modules/Core/include/mitkSurfaceVtkMapper2D.h +++ b/Modules/Core/include/mitkSurfaceVtkMapper2D.h @@ -1,215 +1,215 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef mitkSurfaceVtkMapper2D_h #define mitkSurfaceVtkMapper2D_h #include "mitkBaseRenderer.h" #include "mitkLocalStorageHandler.h" #include "mitkVtkMapper.h" #include // VTK #include class vtkAssembly; class vtkCutter; class vtkPlane; class vtkLookupTable; class vtkGlyph3D; class vtkArrowSource; class vtkReverseSense; namespace mitk { class Surface; /** * @brief Vtk-based mapper for cutting 2D slices out of Surfaces. * * The mapper uses a vtkCutter filter to cut out slices (contours) of the 3D * volume and render these slices as vtkPolyData. The data is transformed * according to its geometry before cutting, to support the geometry concept * of MITK. * * Properties: * \b Surface.2D.Line Width: Thickness of the rendered lines in 2D. * \b Surface.2D.Normals.Draw Normals: enables drawing of normals as 3D arrows * in the 2D render window. The normals are created with a vtkGlyph3D from * the vtkPolyData. * \b Surface.2D.Normals.Draw Inverse Normals: same as normals, but in the * other direction. The inverse normals are computed with a vtkReverseSense * filter. * \b Surface.2D.Normals.(Inverse) Normals Color: Color of the (inverse) normals. * \b Surface.2D.Normals.(Inverse) Normals Scale Factor: Regulates the size of the normals. * * @ingroup Mapper */ class MITKCORE_EXPORT SurfaceVtkMapper2D : public VtkMapper { public: mitkClassMacro(SurfaceVtkMapper2D, VtkMapper); itkFactorylessNewMacro(Self); itkCloneMacro(Self); virtual const mitk::Surface *GetInput() const; /** \brief returns the prop assembly */ vtkProp *GetVtkProp(mitk::BaseRenderer *renderer) override; /** \brief set the default properties for this mapper */ static void SetDefaultProperties(mitk::DataNode *node, mitk::BaseRenderer *renderer = nullptr, bool overwrite = false); /** \brief Internal class holding the mapper, actor, etc. for each of the 3 2D render windows */ class LocalStorage : public mitk::Mapper::BaseLocalStorage { public: /** \brief Timestamp of last update of stored data. */ itk::TimeStamp m_LastUpdateTime; /** * @brief m_PropAssembly Contains all vtkProps for the final rendering. * * Consists of 3 actors: * The surface cut (the slice from the 3D surface). * The normals and the inverse normals. */ vtkSmartPointer m_PropAssembly; /** * @brief m_Actor actor for the surface cut. */ vtkSmartPointer m_Actor; /** * @brief m_NormalActor actor for the normals. */ vtkSmartPointer m_NormalActor; /** * @brief m_InverseNormalActor actor for the inverse normals. */ vtkSmartPointer m_InverseNormalActor; /** * @brief m_Mapper VTK mapper for all types of 2D polydata e.g. werewolves. */ vtkSmartPointer m_Mapper; /** * @brief m_Cutter Filter to cut out the 2D slice. */ vtkSmartPointer m_Cutter; /** * @brief m_CuttingPlane The plane where to cut off the 2D slice. */ vtkSmartPointer m_CuttingPlane; /** * @brief m_NormalMapper Mapper for the normals. */ vtkSmartPointer m_NormalMapper; /** * @brief m_InverseNormalMapper Mapper for the inverse normals. */ vtkSmartPointer m_InverseNormalMapper; /** * @brief m_NormalGlyph Glyph for creating normals. */ vtkSmartPointer m_NormalGlyph; /** * @brief m_InverseNormalGlyph Glyph for creating inverse normals. */ vtkSmartPointer m_InverseNormalGlyph; /** * @brief m_ArrowSource Arrow representation of the normals. */ vtkSmartPointer m_ArrowSource; /** * @brief m_ReverseSense Filter to invert the normals. */ vtkSmartPointer m_ReverseSense; /** \brief Default constructor of the local storage. */ LocalStorage(); /** \brief Default deconstructor of the local storage. */ ~LocalStorage() override; }; /** \brief The LocalStorageHandler holds all (three) LocalStorages for the three 2D render windows. */ mitk::LocalStorageHandler m_LSH; /** * @brief UpdateVtkTransform Overwrite the method of the base class. * * The base class transforms the actor according to the respective * geometry which is correct for most cases. This mapper, however, * uses a vtkCutter to cut out a contour. To cut out the correct * contour, the data has to be transformed beforehand. Else the * current plane geometry will point the cutter to en empty location * (if the surface does have a geometry, which is a rather rare case). */ void UpdateVtkTransform(mitk::BaseRenderer * /*renderer*/) override {} protected: /** * @brief SurfaceVtkMapper2D default constructor. */ SurfaceVtkMapper2D(); /** * @brief ~SurfaceVtkMapper2D default destructor. */ ~SurfaceVtkMapper2D() override; /** * @brief GenerateDataForRenderer produces all the data. * @param renderer The respective renderer of the mitkRenderWindow. */ void GenerateDataForRenderer(mitk::BaseRenderer *renderer) override; /** * @brief ResetMapper Called in mitk::Mapper::Update to hide objects. - * If TimeSlicedGeometry or time step is not valid, reset the mapper. + * If TimeGeometry or time step is not valid, reset the mapper. * so that nothing is displayed e.g. toggle visiblity of the propassembly. * * @param renderer The respective renderer of the mitkRenderWindow. */ void ResetMapper(BaseRenderer *renderer) override; /** * @brief Updates legacy properties to current behavior/interpretation. * @param properties The property list which should be adapted to new behaviour. * * Whenever a mapper decides to change its property types or its * interpretation of certain values, it should add something to this * method and call it before methods like ApplyProperties(); * * This is particularly helpful when dealing with data from * archive/scene files that were created before changes. */ virtual void FixupLegacyProperties(PropertyList *properties); /** * @brief ApplyAllProperties Pass all the properties to VTK. * @param renderer The respective renderer of the mitkRenderWindow. */ void ApplyAllProperties(BaseRenderer *renderer); /** * @brief Update Check if data should be generated. * @param renderer The respective renderer of the mitkRenderWindow. */ void Update(BaseRenderer *renderer) override; }; } // namespace mitk #endif /* mitkSurfaceVtkMapper2D_h */ diff --git a/Modules/Core/include/mitkTimeSlicedGeometry.h b/Modules/Core/include/mitkTimeSlicedGeometry.h deleted file mode 100644 index 6d350b4689..0000000000 --- a/Modules/Core/include/mitkTimeSlicedGeometry.h +++ /dev/null @@ -1,30 +0,0 @@ -/*============================================================================ - -The Medical Imaging Interaction Toolkit (MITK) - -Copyright (c) German Cancer Research Center (DKFZ) -All rights reserved. - -Use of this source code is governed by a 3-clause BSD license that can be -found in the LICENSE file. - -============================================================================*/ - -#ifndef mitkTimeSlicedGeometry_h -#define mitkTimeSlicedGeometry_h - -#include - -namespace mitk -{ - /** - * \deprecatedSince{2013_09} Please use TimeGeometry instead. For more information see - * http://www.mitk.org/Development/Refactoring%20of%20the%20Geometry%20Classes%20-%20Part%201 - */ - class TimeSlicedGeometry - { - DEPRECATED(TimeSlicedGeometry()); - }; -} - -#endif diff --git a/Modules/Core/src/DataManagement/mitkImage.cpp b/Modules/Core/src/DataManagement/mitkImage.cpp index 4ed855b751..251e1ca36f 100644 --- a/Modules/Core/src/DataManagement/mitkImage.cpp +++ b/Modules/Core/src/DataManagement/mitkImage.cpp @@ -1,1547 +1,1369 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ // MITK #include "mitkImage.h" #include "mitkCompareImageDataFilter.h" #include "mitkImageStatisticsHolder.h" #include "mitkImageVtkReadAccessor.h" #include "mitkImageVtkWriteAccessor.h" #include "mitkPixelTypeMultiplex.h" #include // VTK #include // ITK #include // Other #include #define FILL_C_ARRAY(_arr, _size, _value) \ for (unsigned int i = 0u; i < _size; i++) \ \ { \ _arr[i] = _value; \ } mitk::Image::Image() : m_Dimension(0), m_Dimensions(nullptr), m_ImageDescriptor(nullptr), m_OffsetTable(nullptr), m_CompleteData(nullptr), m_ImageStatistics(nullptr) { m_Dimensions = new unsigned int[MAX_IMAGE_DIMENSIONS]; FILL_C_ARRAY(m_Dimensions, MAX_IMAGE_DIMENSIONS, 0u); m_Initialized = false; } mitk::Image::Image(const Image &other) : SlicedData(other), m_Dimension(0), m_Dimensions(nullptr), m_ImageDescriptor(nullptr), m_OffsetTable(nullptr), m_CompleteData(nullptr), m_ImageStatistics(nullptr) { m_Dimensions = new unsigned int[MAX_IMAGE_DIMENSIONS]; FILL_C_ARRAY(m_Dimensions, MAX_IMAGE_DIMENSIONS, 0u); this->Initialize(other.GetPixelType(), other.GetDimension(), other.GetDimensions()); // Since the above called "Initialize" method doesn't take the geometry into account we need to set it // here manually TimeGeometry::Pointer cloned = other.GetTimeGeometry()->Clone(); this->SetTimeGeometry(cloned.GetPointer()); if (this->GetDimension() > 3) { const unsigned int time_steps = this->GetDimension(3); for (unsigned int i = 0u; i < time_steps; ++i) { ImageDataItemPointer volume = other.GetVolumeData(i); this->SetVolume(volume->GetData(), i); } } else { ImageDataItemPointer volume = other.GetVolumeData(0); this->SetVolume(volume->GetData(), 0); } } mitk::Image::~Image() { this->Clear(); m_ReferenceCount = 3; m_ReferenceCount = 0; delete[] m_OffsetTable; delete m_ImageStatistics; } const mitk::PixelType mitk::Image::GetPixelType(int n) const { return this->m_ImageDescriptor->GetChannelTypeById(n); } unsigned int mitk::Image::GetDimension() const { return m_Dimension; } unsigned int mitk::Image::GetDimension(int i) const { if ((i >= 0) && (i < (int)m_Dimension)) return m_Dimensions[i]; return 1; } -void *mitk::Image::GetData() -{ - if (m_Initialized == false) - { - if (GetSource().IsNull()) - return nullptr; - if (GetSource()->Updating() == false) - GetSource()->UpdateOutputInformation(); - } - m_CompleteData = GetChannelData(); - - // update channel's data - // if data was not available at creation point, the m_Data of channel descriptor is nullptr - // if data present, it won't be overwritten - m_ImageDescriptor->GetChannelDescriptor(0).SetData(m_CompleteData->GetData()); - - return m_CompleteData->GetData(); -} - template void AccessPixel(const mitk::PixelType ptype, void *data, const unsigned int offset, double &value) { value = 0.0; if (data == nullptr) return; if (ptype.GetBpe() != 24) { value = (double)(((T *)data)[offset]); } else { const unsigned int rgboffset = offset; double returnvalue = (((T *)data)[rgboffset]); returnvalue += (((T *)data)[rgboffset + 1]); returnvalue += (((T *)data)[rgboffset + 2]); value = returnvalue; } } -double mitk::Image::GetPixelValueByIndex(const itk::Index<3> &position, unsigned int timestep, unsigned int component) -{ - double value = 0; - if (this->GetTimeSteps() < timestep) - { - timestep = this->GetTimeSteps(); - } - - value = 0.0; - - const unsigned int *imageDims = this->m_ImageDescriptor->GetDimensions(); - const mitk::PixelType ptype = this->m_ImageDescriptor->GetChannelTypeById(0); - - // Comparison ?>=0 not needed since all position[i] and timestep are unsigned int - // (position[0]>=0 && position[1] >=0 && position[2]>=0 && timestep>=0) - // bug-11978 : we still need to catch index with negative values - if (position[0] < 0 || position[1] < 0 || position[2] < 0) - { - MITK_WARN << "Given position (" << position << ") is out of image range, returning 0."; - } - // check if the given position is inside the index range of the image, the 3rd dimension needs to be compared only if - // the dimension is not 0 - else if ((unsigned int)position[0] >= imageDims[0] || (unsigned int)position[1] >= imageDims[1] || - (imageDims[2] && (unsigned int)position[2] >= imageDims[2])) - { - MITK_WARN << "Given position (" << position << ") is out of image range, returning 0."; - } - else - { - const unsigned int offset = component + - ptype.GetNumberOfComponents() * (position[0] + position[1] * imageDims[0] + - position[2] * imageDims[0] * imageDims[1] + - timestep * imageDims[0] * imageDims[1] * imageDims[2]); - - mitkPixelTypeMultiplex3(AccessPixel, ptype, this->GetData(), offset, value); - } - - return value; -} - -double mitk::Image::GetPixelValueByWorldCoordinate(const mitk::Point3D &position, - unsigned int timestep, - unsigned int component) -{ - double value = 0.0; - if (this->GetTimeSteps() < timestep) - { - timestep = this->GetTimeSteps(); - } - - itk::Index<3> itkIndex; - this->GetGeometry()->WorldToIndex(position, itkIndex); - - value = this->GetPixelValueByIndex(itkIndex, timestep, component); - - return value; -} - vtkImageData *mitk::Image::GetVtkImageData(int t, int n) { if (m_Initialized == false) { if (GetSource().IsNull()) return nullptr; if (GetSource()->Updating() == false) GetSource()->UpdateOutputInformation(); } ImageDataItemPointer volume = GetVolumeData(t, n); return volume.GetPointer() == nullptr ? nullptr : volume->GetVtkImageAccessor(this)->GetVtkImageData(); } const vtkImageData *mitk::Image::GetVtkImageData(int t, int n) const { if (m_Initialized == false) { if (GetSource().IsNull()) return nullptr; if (GetSource()->Updating() == false) GetSource()->UpdateOutputInformation(); } ImageDataItemPointer volume = GetVolumeData(t, n); return volume.GetPointer() == nullptr ? nullptr : volume->GetVtkImageAccessor(this)->GetVtkImageData(); } mitk::Image::ImageDataItemPointer mitk::Image::GetSliceData( int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const { MutexHolder lock(m_ImageDataArraysLock); return GetSliceData_unlocked(s, t, n, data, importMemoryManagement); } mitk::Image::ImageDataItemPointer mitk::Image::GetSliceData_unlocked( int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const { if (IsValidSlice(s, t, n) == false) return nullptr; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // slice directly available? int pos = GetSliceIndex(s, t, n); if (m_Slices[pos].GetPointer() != nullptr) { return m_Slices[pos]; } // is slice available as part of a volume that is available? ImageDataItemPointer sl, ch, vol; vol = m_Volumes[GetVolumeIndex(t, n)]; if ((vol.GetPointer() != nullptr) && (vol->IsComplete())) { sl = new ImageDataItem(*vol, m_ImageDescriptor, t, 2, data, importMemoryManagement == ManageMemory, ((size_t)s) * m_OffsetTable[2] * (ptypeSize)); sl->SetComplete(true); return m_Slices[pos] = sl; } // is slice available as part of a channel that is available? ch = m_Channels[n]; if ((ch.GetPointer() != nullptr) && (ch->IsComplete())) { sl = new ImageDataItem(*ch, m_ImageDescriptor, t, 2, data, importMemoryManagement == ManageMemory, (((size_t)s) * m_OffsetTable[2] + ((size_t)t) * m_OffsetTable[3]) * (ptypeSize)); sl->SetComplete(true); return m_Slices[pos] = sl; } // slice is unavailable. Can we calculate it? if ((GetSource().IsNotNull()) && (GetSource()->Updating() == false)) { // ... wir mussen rechnen!!! .... m_RequestedRegion.SetIndex(0, 0); m_RequestedRegion.SetIndex(1, 0); m_RequestedRegion.SetIndex(2, s); m_RequestedRegion.SetIndex(3, t); m_RequestedRegion.SetIndex(4, n); m_RequestedRegion.SetSize(0, m_Dimensions[0]); m_RequestedRegion.SetSize(1, m_Dimensions[1]); m_RequestedRegion.SetSize(2, 1); m_RequestedRegion.SetSize(3, 1); m_RequestedRegion.SetSize(4, 1); m_RequestedRegionInitialized = true; GetSource()->Update(); if (IsSliceSet_unlocked(s, t, n)) // yes: now we can call ourselves without the risk of a endless loop (see "if" above) return GetSliceData_unlocked(s, t, n, data, importMemoryManagement); else return nullptr; } else { ImageDataItemPointer item = AllocateSliceData_unlocked(s, t, n, data, importMemoryManagement); item->SetComplete(true); return item; } } mitk::Image::ImageDataItemPointer mitk::Image::GetVolumeData(int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const { MutexHolder lock(m_ImageDataArraysLock); return GetVolumeData_unlocked(t, n, data, importMemoryManagement); } mitk::Image::ImageDataItemPointer mitk::Image::GetVolumeData_unlocked( int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const { if (IsValidVolume(t, n) == false) return nullptr; ImageDataItemPointer ch, vol; // volume directly available? int pos = GetVolumeIndex(t, n); vol = m_Volumes[pos]; if ((vol.GetPointer() != nullptr) && (vol->IsComplete())) return vol; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // is volume available as part of a channel that is available? ch = m_Channels[n]; if ((ch.GetPointer() != nullptr) && (ch->IsComplete())) { vol = new ImageDataItem(*ch, m_ImageDescriptor, t, 3, data, importMemoryManagement == ManageMemory, (((size_t)t) * m_OffsetTable[3]) * (ptypeSize)); vol->SetComplete(true); return m_Volumes[pos] = vol; } // let's see if all slices of the volume are set, so that we can (could) combine them to a volume bool complete = true; unsigned int s; for (s = 0; s < m_Dimensions[2]; ++s) { if (m_Slices[GetSliceIndex(s, t, n)].GetPointer() == nullptr) { complete = false; break; } } if (complete) { // if there is only single slice we do not need to combine anything if (m_Dimensions[2] <= 1) { ImageDataItemPointer sl; sl = GetSliceData_unlocked(0, t, n, data, importMemoryManagement); vol = new ImageDataItem(*sl, m_ImageDescriptor, t, 3, data, importMemoryManagement == ManageMemory); vol->SetComplete(true); } else { mitk::PixelType chPixelType = this->m_ImageDescriptor->GetChannelTypeById(n); vol = m_Volumes[pos]; // ok, let's combine the slices! if (vol.GetPointer() == nullptr) { vol = new ImageDataItem(chPixelType, t, 3, m_Dimensions, nullptr, true); } vol->SetComplete(true); size_t size = m_OffsetTable[2] * (ptypeSize); for (s = 0; s < m_Dimensions[2]; ++s) { int posSl; ImageDataItemPointer sl; posSl = GetSliceIndex(s, t, n); sl = m_Slices[posSl]; if (sl->GetParent() != vol) { // copy data of slices in volume size_t offset = ((size_t)s) * size; std::memcpy(static_cast(vol->GetData()) + offset, sl->GetData(), size); // FIXME mitkIpPicDescriptor * pic = sl->GetPicDescriptor(); // replace old slice with reference to volume sl = new ImageDataItem( *vol, m_ImageDescriptor, t, 2, data, importMemoryManagement == ManageMemory, ((size_t)s) * size); sl->SetComplete(true); // mitkIpFuncCopyTags(sl->GetPicDescriptor(), pic); m_Slices[posSl] = sl; } } // if(vol->GetPicDescriptor()->info->tags_head==nullptr) // mitkIpFuncCopyTags(vol->GetPicDescriptor(), m_Slices[GetSliceIndex(0,t,n)]->GetPicDescriptor()); } return m_Volumes[pos] = vol; } // volume is unavailable. Can we calculate it? if ((GetSource().IsNotNull()) && (GetSource()->Updating() == false)) { // ... wir muessen rechnen!!! .... m_RequestedRegion.SetIndex(0, 0); m_RequestedRegion.SetIndex(1, 0); m_RequestedRegion.SetIndex(2, 0); m_RequestedRegion.SetIndex(3, t); m_RequestedRegion.SetIndex(4, n); m_RequestedRegion.SetSize(0, m_Dimensions[0]); m_RequestedRegion.SetSize(1, m_Dimensions[1]); m_RequestedRegion.SetSize(2, m_Dimensions[2]); m_RequestedRegion.SetSize(3, 1); m_RequestedRegion.SetSize(4, 1); m_RequestedRegionInitialized = true; GetSource()->Update(); if (IsVolumeSet_unlocked(t, n)) // yes: now we can call ourselves without the risk of a endless loop (see "if" above) return GetVolumeData_unlocked(t, n, data, importMemoryManagement); else return nullptr; } else { ImageDataItemPointer item = AllocateVolumeData_unlocked(t, n, data, importMemoryManagement); item->SetComplete(true); return item; } } mitk::Image::ImageDataItemPointer mitk::Image::GetChannelData(int n, void *data, ImportMemoryManagementType importMemoryManagement) const { MutexHolder lock(m_ImageDataArraysLock); return GetChannelData_unlocked(n, data, importMemoryManagement); } mitk::Image::ImageDataItemPointer mitk::Image::GetChannelData_unlocked( int n, void *data, ImportMemoryManagementType importMemoryManagement) const { if (IsValidChannel(n) == false) return nullptr; ImageDataItemPointer ch, vol; ch = m_Channels[n]; if ((ch.GetPointer() != nullptr) && (ch->IsComplete())) return ch; // let's see if all volumes are set, so that we can (could) combine them to a channel if (IsChannelSet_unlocked(n)) { // if there is only one time frame we do not need to combine anything if (m_Dimensions[3] <= 1) { vol = GetVolumeData_unlocked(0, n, data, importMemoryManagement); ch = new ImageDataItem(*vol, m_ImageDescriptor, 0, m_ImageDescriptor->GetNumberOfDimensions(), data, importMemoryManagement == ManageMemory); ch->SetComplete(true); } else { const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ch = m_Channels[n]; // ok, let's combine the volumes! if (ch.GetPointer() == nullptr) ch = new ImageDataItem(this->m_ImageDescriptor, -1, nullptr, true); ch->SetComplete(true); size_t size = m_OffsetTable[m_Dimension - 1] * (ptypeSize); unsigned int t; auto slicesIt = m_Slices.begin() + n * m_Dimensions[2] * m_Dimensions[3]; for (t = 0; t < m_Dimensions[3]; ++t) { int posVol; ImageDataItemPointer vol; posVol = GetVolumeIndex(t, n); vol = GetVolumeData_unlocked(t, n, data, importMemoryManagement); if (vol->GetParent() != ch) { // copy data of volume in channel size_t offset = ((size_t)t) * m_OffsetTable[3] * (ptypeSize); std::memcpy(static_cast(ch->GetData()) + offset, vol->GetData(), size); // REVEIW FIX mitkIpPicDescriptor * pic = vol->GetPicDescriptor(); // replace old volume with reference to channel vol = new ImageDataItem(*ch, m_ImageDescriptor, t, 3, data, importMemoryManagement == ManageMemory, offset); vol->SetComplete(true); // mitkIpFuncCopyTags(vol->GetPicDescriptor(), pic); m_Volumes[posVol] = vol; // get rid of slices - they may point to old volume ImageDataItemPointer dnull = nullptr; for (unsigned int i = 0; i < m_Dimensions[2]; ++i, ++slicesIt) { assert(slicesIt != m_Slices.end()); *slicesIt = dnull; } } } // REVIEW FIX // if(ch->GetPicDescriptor()->info->tags_head==nullptr) // mitkIpFuncCopyTags(ch->GetPicDescriptor(), m_Volumes[GetVolumeIndex(0,n)]->GetPicDescriptor()); } return m_Channels[n] = ch; } // channel is unavailable. Can we calculate it? if ((GetSource().IsNotNull()) && (GetSource()->Updating() == false)) { // ... wir muessen rechnen!!! .... m_RequestedRegion.SetIndex(0, 0); m_RequestedRegion.SetIndex(1, 0); m_RequestedRegion.SetIndex(2, 0); m_RequestedRegion.SetIndex(3, 0); m_RequestedRegion.SetIndex(4, n); m_RequestedRegion.SetSize(0, m_Dimensions[0]); m_RequestedRegion.SetSize(1, m_Dimensions[1]); m_RequestedRegion.SetSize(2, m_Dimensions[2]); m_RequestedRegion.SetSize(3, m_Dimensions[3]); m_RequestedRegion.SetSize(4, 1); m_RequestedRegionInitialized = true; GetSource()->Update(); // did it work? if (IsChannelSet_unlocked(n)) // yes: now we can call ourselves without the risk of a endless loop (see "if" above) return GetChannelData_unlocked(n, data, importMemoryManagement); else return nullptr; } else { ImageDataItemPointer item = AllocateChannelData_unlocked(n, data, importMemoryManagement); item->SetComplete(true); return item; } } bool mitk::Image::IsSliceSet(int s, int t, int n) const { MutexHolder lock(m_ImageDataArraysLock); return IsSliceSet_unlocked(s, t, n); } bool mitk::Image::IsSliceSet_unlocked(int s, int t, int n) const { if (IsValidSlice(s, t, n) == false) return false; if (m_Slices[GetSliceIndex(s, t, n)].GetPointer() != nullptr) { return true; } ImageDataItemPointer ch, vol; vol = m_Volumes[GetVolumeIndex(t, n)]; if ((vol.GetPointer() != nullptr) && (vol->IsComplete())) { return true; } ch = m_Channels[n]; if ((ch.GetPointer() != nullptr) && (ch->IsComplete())) { return true; } return false; } bool mitk::Image::IsVolumeSet(int t, int n) const { MutexHolder lock(m_ImageDataArraysLock); return IsVolumeSet_unlocked(t, n); } bool mitk::Image::IsVolumeSet_unlocked(int t, int n) const { if (IsValidVolume(t, n) == false) return false; ImageDataItemPointer ch, vol; // volume directly available? vol = m_Volumes[GetVolumeIndex(t, n)]; if ((vol.GetPointer() != nullptr) && (vol->IsComplete())) return true; // is volume available as part of a channel that is available? ch = m_Channels[n]; if ((ch.GetPointer() != nullptr) && (ch->IsComplete())) return true; // let's see if all slices of the volume are set, so that we can (could) combine them to a volume unsigned int s; for (s = 0; s < m_Dimensions[2]; ++s) { if (m_Slices[GetSliceIndex(s, t, n)].GetPointer() == nullptr) { return false; } } return true; } bool mitk::Image::IsChannelSet(int n) const { MutexHolder lock(m_ImageDataArraysLock); return IsChannelSet_unlocked(n); } bool mitk::Image::IsChannelSet_unlocked(int n) const { if (IsValidChannel(n) == false) return false; ImageDataItemPointer ch, vol; ch = m_Channels[n]; if ((ch.GetPointer() != nullptr) && (ch->IsComplete())) return true; // let's see if all volumes are set, so that we can (could) combine them to a channel unsigned int t; for (t = 0; t < m_Dimensions[3]; ++t) { if (IsVolumeSet_unlocked(t, n) == false) { return false; } } return true; } bool mitk::Image::SetSlice(const void *data, int s, int t, int n) { // const_cast is no risk for ImportMemoryManagementType == CopyMemory return SetImportSlice(const_cast(data), s, t, n, CopyMemory); } bool mitk::Image::SetVolume(const void *data, int t, int n) { // const_cast is no risk for ImportMemoryManagementType == CopyMemory return SetImportVolume(const_cast(data), t, n, CopyMemory); } bool mitk::Image::SetChannel(const void *data, int n) { // const_cast is no risk for ImportMemoryManagementType == CopyMemory return SetImportChannel(const_cast(data), n, CopyMemory); } bool mitk::Image::SetImportSlice(void *data, int s, int t, int n, ImportMemoryManagementType importMemoryManagement) { if (IsValidSlice(s, t, n) == false) return false; ImageDataItemPointer sl; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); if (IsSliceSet(s, t, n)) { sl = GetSliceData(s, t, n, data, importMemoryManagement); if (sl->GetManageMemory() == false) { sl = AllocateSliceData(s, t, n, data, importMemoryManagement); if (sl.GetPointer() == nullptr) return false; } if (sl->GetData() != data) std::memcpy(sl->GetData(), data, m_OffsetTable[2] * (ptypeSize)); sl->Modified(); // we have changed the data: call Modified()! Modified(); } else { sl = AllocateSliceData(s, t, n, data, importMemoryManagement); if (sl.GetPointer() == nullptr) return false; if (sl->GetData() != data) std::memcpy(sl->GetData(), data, m_OffsetTable[2] * (ptypeSize)); // we just added a missing slice, which is not regarded as modification. // Therefore, we do not call Modified()! } return true; } bool mitk::Image::SetImportVolume(void *data, int t, int n, ImportMemoryManagementType importMemoryManagement) { if (IsValidVolume(t, n) == false) return false; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ImageDataItemPointer vol; if (IsVolumeSet(t, n)) { vol = GetVolumeData(t, n, data, importMemoryManagement); if (vol->GetManageMemory() == false) { vol = AllocateVolumeData(t, n, data, importMemoryManagement); if (vol.GetPointer() == nullptr) return false; } if (vol->GetData() != data) std::memcpy(vol->GetData(), data, m_OffsetTable[3] * (ptypeSize)); vol->Modified(); vol->SetComplete(true); // we have changed the data: call Modified()! Modified(); } else { vol = AllocateVolumeData(t, n, data, importMemoryManagement); if (vol.GetPointer() == nullptr) return false; if (vol->GetData() != data) { std::memcpy(vol->GetData(), data, m_OffsetTable[3] * (ptypeSize)); } vol->SetComplete(true); this->m_ImageDescriptor->GetChannelDescriptor(n).SetData(vol->GetData()); // we just added a missing Volume, which is not regarded as modification. // Therefore, we do not call Modified()! } return true; } bool mitk::Image::SetImportVolume(const void *const_data, int t, int n) { return this->SetImportVolume(const_cast(const_data), t, n, CopyMemory); } bool mitk::Image::SetImportChannel(void *data, int n, ImportMemoryManagementType importMemoryManagement) { if (IsValidChannel(n) == false) return false; // channel descriptor const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ImageDataItemPointer ch; if (IsChannelSet(n)) { ch = GetChannelData(n, data, importMemoryManagement); if (ch->GetManageMemory() == false) { ch = AllocateChannelData(n, data, importMemoryManagement); if (ch.GetPointer() == nullptr) return false; } if (ch->GetData() != data) std::memcpy(ch->GetData(), data, m_OffsetTable[4] * (ptypeSize)); ch->Modified(); ch->SetComplete(true); // we have changed the data: call Modified()! Modified(); } else { ch = AllocateChannelData(n, data, importMemoryManagement); if (ch.GetPointer() == nullptr) return false; if (ch->GetData() != data) std::memcpy(ch->GetData(), data, m_OffsetTable[4] * (ptypeSize)); ch->SetComplete(true); this->m_ImageDescriptor->GetChannelDescriptor(n).SetData(ch->GetData()); // we just added a missing Channel, which is not regarded as modification. // Therefore, we do not call Modified()! } return true; } void mitk::Image::Initialize() { ImageDataItemPointerArray::iterator it, end; for (it = m_Slices.begin(), end = m_Slices.end(); it != end; ++it) { (*it) = nullptr; } for (it = m_Volumes.begin(), end = m_Volumes.end(); it != end; ++it) { (*it) = nullptr; } for (it = m_Channels.begin(), end = m_Channels.end(); it != end; ++it) { (*it) = nullptr; } m_CompleteData = nullptr; if (m_ImageStatistics == nullptr) { m_ImageStatistics = new mitk::ImageStatisticsHolder(this); } SetRequestedRegionToLargestPossibleRegion(); } void mitk::Image::Initialize(const mitk::ImageDescriptor::Pointer inDesc) { // store the descriptor this->m_ImageDescriptor = inDesc; // initialize image this->Initialize( inDesc->GetChannelDescriptor(0).GetPixelType(), inDesc->GetNumberOfDimensions(), inDesc->GetDimensions(), 1); } void mitk::Image::Initialize(const mitk::PixelType &type, unsigned int dimension, const unsigned int *dimensions, unsigned int channels) { Clear(); m_Dimension = dimension; if (!dimensions) itkExceptionMacro(<< "invalid zero dimension image"); unsigned int i; for (i = 0; i < dimension; ++i) { if (dimensions[i] < 1) itkExceptionMacro(<< "invalid dimension[" << i << "]: " << dimensions[i]); } // create new array since the old was deleted m_Dimensions = new unsigned int[MAX_IMAGE_DIMENSIONS]; // initialize the first four dimensions to 1, the remaining 4 to 0 FILL_C_ARRAY(m_Dimensions, 4, 1u); FILL_C_ARRAY((m_Dimensions + 4), 4, 0u); // copy in the passed dimension information std::memcpy(m_Dimensions, dimensions, sizeof(unsigned int) * m_Dimension); this->m_ImageDescriptor = mitk::ImageDescriptor::New(); this->m_ImageDescriptor->Initialize(this->m_Dimensions, this->m_Dimension); for (i = 0; i < 4; ++i) { m_LargestPossibleRegion.SetIndex(i, 0); m_LargestPossibleRegion.SetSize(i, m_Dimensions[i]); } m_LargestPossibleRegion.SetIndex(i, 0); m_LargestPossibleRegion.SetSize(i, channels); if (m_LargestPossibleRegion.GetNumberOfPixels() == 0) { delete[] m_Dimensions; m_Dimensions = nullptr; return; } for (unsigned int i = 0u; i < channels; i++) { this->m_ImageDescriptor->AddNewChannel(type); } PlaneGeometry::Pointer planegeometry = PlaneGeometry::New(); planegeometry->InitializeStandardPlane(m_Dimensions[0], m_Dimensions[1]); SlicedGeometry3D::Pointer slicedGeometry = SlicedGeometry3D::New(); slicedGeometry->InitializeEvenlySpaced(planegeometry, m_Dimensions[2]); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); for (TimeStepType step = 0; step < timeGeometry->CountTimeSteps(); ++step) { timeGeometry->GetGeometryForTimeStep(step)->ImageGeometryOn(); } SetTimeGeometry(timeGeometry); ImageDataItemPointer dnull = nullptr; m_Channels.assign(GetNumberOfChannels(), dnull); m_Volumes.assign(GetNumberOfChannels() * m_Dimensions[3], dnull); m_Slices.assign(GetNumberOfChannels() * m_Dimensions[3] * m_Dimensions[2], dnull); ComputeOffsetTable(); Initialize(); m_Initialized = true; } void mitk::Image::Initialize(const mitk::PixelType &type, const mitk::BaseGeometry &geometry, unsigned int channels, int tDim) { mitk::ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(geometry.Clone(), tDim); this->Initialize(type, *timeGeometry, channels, tDim); } void mitk::Image::Initialize(const mitk::PixelType &type, const mitk::TimeGeometry &geometry, unsigned int channels, int tDim) { unsigned int dimensions[5]; dimensions[0] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(0) + 0.5); dimensions[1] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(1) + 0.5); dimensions[2] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(2) + 0.5); dimensions[3] = (tDim > 0) ? tDim : geometry.CountTimeSteps(); dimensions[4] = 0; unsigned int dimension = 2; if (dimensions[2] > 1) dimension = 3; if (dimensions[3] > 1) dimension = 4; Initialize(type, dimension, dimensions, channels); if (geometry.CountTimeSteps() > 1) { TimeGeometry::Pointer cloned = geometry.Clone(); SetTimeGeometry(cloned.GetPointer()); // make sure the image geometry flag is properly set for all time steps for (TimeStepType step = 0; step < cloned->CountTimeSteps(); ++step) { if (!cloned->GetGeometryCloneForTimeStep(step)->GetImageGeometry()) { MITK_WARN("Image.3DnT.Initialize") << " Attempt to initialize an image with a non-image geometry. " "Re-interpretting the initialization geometry for timestep " << step << " as image geometry, the original geometry remains unchanged."; cloned->GetGeometryForTimeStep(step)->ImageGeometryOn(); } } } else { // make sure the image geometry coming from outside has proper value of the image geometry flag BaseGeometry::Pointer cloned = geometry.GetGeometryCloneForTimeStep(0)->Clone(); if (!cloned->GetImageGeometry()) { MITK_WARN("Image.Initialize") << " Attempt to initialize an image with a non-image geometry. Re-interpretting " "the initialization geometry as image geometry, the original geometry remains " "unchanged."; cloned->ImageGeometryOn(); } Superclass::SetGeometry(cloned); } - /* //Old //TODO_GOETZ Really necessary? - mitk::BoundingBox::BoundsArrayType bounds = geometry.GetBoundingBoxInWorld()->GetBounds(); - if( (bounds[0] != 0.0) || (bounds[2] != 0.0) || (bounds[4] != 0.0) ) - { - SlicedGeometry3D* slicedGeometry = GetSlicedGeometry(0); - - mitk::Point3D origin; origin.Fill(0.0); - slicedGeometry->IndexToWorld(origin, origin); - - bounds[1]-=bounds[0]; bounds[3]-=bounds[2]; bounds[5]-=bounds[4]; - bounds[0] = 0.0; bounds[2] = 0.0; bounds[4] = 0.0; - this->m_ImageDescriptor->Initialize( this->m_Dimensions, this->m_Dimension ); - slicedGeometry->SetBounds(bounds); - slicedGeometry->GetIndexToWorldTransform()->SetOffset(origin.GetVnlVector().data_block()); - - ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); - timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); - SetTimeGeometry(timeGeometry); - }*/ -} - -void mitk::Image::Initialize(const mitk::PixelType &, - int, - const mitk::PlaneGeometry &, - bool, - unsigned int, - int) -{ - mitkThrow() << "Use this method without the flipped parameter (direction is specified by the handedness of the PlaneGeometry instead)."; } void mitk::Image::Initialize(const mitk::PixelType &type, int sDim, const mitk::PlaneGeometry &geometry2d, unsigned int channels, int tDim) { SlicedGeometry3D::Pointer slicedGeometry = SlicedGeometry3D::New(); slicedGeometry->InitializeEvenlySpaced(geometry2d.Clone(), sDim); Initialize(type, *slicedGeometry, channels, tDim); } void mitk::Image::Initialize(const mitk::Image *image) { Initialize(image->GetPixelType(), *image->GetTimeGeometry()); } void mitk::Image::Initialize(vtkImageData *vtkimagedata, int channels, int tDim, int sDim, int pDim) { if (vtkimagedata == nullptr) return; m_Dimension = vtkimagedata->GetDataDimension(); unsigned int i, *tmpDimensions = new unsigned int[m_Dimension > 4 ? m_Dimension : 4]; for (i = 0; i < m_Dimension; ++i) tmpDimensions[i] = vtkimagedata->GetDimensions()[i]; if (m_Dimension < 4) { unsigned int *p; for (i = 0, p = tmpDimensions + m_Dimension; i < 4 - m_Dimension; ++i, ++p) *p = 1; } if (pDim >= 0) { tmpDimensions[1] = pDim; if (m_Dimension < 2) m_Dimension = 2; } if (sDim >= 0) { tmpDimensions[2] = sDim; if (m_Dimension < 3) m_Dimension = 3; } if (tDim >= 0) { tmpDimensions[3] = tDim; if (m_Dimension < 4) m_Dimension = 4; } mitk::PixelType pixelType(MakePixelType(vtkimagedata)); Initialize(pixelType, m_Dimension, tmpDimensions, channels); const double *spacinglist = vtkimagedata->GetSpacing(); Vector3D spacing; FillVector3D(spacing, spacinglist[0], 1.0, 1.0); if (m_Dimension >= 2) spacing[1] = spacinglist[1]; if (m_Dimension >= 3) spacing[2] = spacinglist[2]; // access origin of vtkImage Point3D origin; double vtkorigin[3]; vtkimagedata->GetOrigin(vtkorigin); FillVector3D(origin, vtkorigin[0], 0.0, 0.0); if (m_Dimension >= 2) origin[1] = vtkorigin[1]; if (m_Dimension >= 3) origin[2] = vtkorigin[2]; SlicedGeometry3D *slicedGeometry = GetSlicedGeometry(0); // re-initialize PlaneGeometry with origin and direction auto *planeGeometry = static_cast(slicedGeometry->GetPlaneGeometry(0)); planeGeometry->SetOrigin(origin); // re-initialize SlicedGeometry3D slicedGeometry->SetOrigin(origin); slicedGeometry->SetSpacing(spacing); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); SetTimeGeometry(timeGeometry); delete[] tmpDimensions; } bool mitk::Image::IsValidSlice(int s, int t, int n) const { if (m_Initialized) return ((s >= 0) && (s < (int)m_Dimensions[2]) && (t >= 0) && (t < (int)m_Dimensions[3]) && (n >= 0) && (n < (int)GetNumberOfChannels())); else return false; } bool mitk::Image::IsValidVolume(int t, int n) const { if (m_Initialized) return IsValidSlice(0, t, n); else return false; } bool mitk::Image::IsValidChannel(int n) const { if (m_Initialized) return IsValidSlice(0, 0, n); else return false; } void mitk::Image::ComputeOffsetTable() { if (m_OffsetTable != nullptr) delete[] m_OffsetTable; m_OffsetTable = new size_t[m_Dimension > 4 ? m_Dimension + 1 : 4 + 1]; unsigned int i; size_t num = 1; m_OffsetTable[0] = 1; for (i = 0; i < m_Dimension; ++i) { num *= m_Dimensions[i]; m_OffsetTable[i + 1] = num; } for (; i < 4; ++i) m_OffsetTable[i + 1] = num; } bool mitk::Image::IsValidTimeStep(int t) const { return ((m_Dimension >= 4 && t <= (int)m_Dimensions[3] && t > 0) || (t == 0)); } void mitk::Image::Expand(unsigned int timeSteps) { if (timeSteps < 1) itkExceptionMacro(<< "Invalid timestep in Image!"); Superclass::Expand(timeSteps); } int mitk::Image::GetSliceIndex(int s, int t, int n) const { if (IsValidSlice(s, t, n) == false) return false; return ((size_t)s) + ((size_t)t) * m_Dimensions[2] + ((size_t)n) * m_Dimensions[3] * m_Dimensions[2]; //?? } int mitk::Image::GetVolumeIndex(int t, int n) const { if (IsValidVolume(t, n) == false) return false; return ((size_t)t) + ((size_t)n) * m_Dimensions[3]; //?? } mitk::Image::ImageDataItemPointer mitk::Image::AllocateSliceData( int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const { MutexHolder lock(m_ImageDataArraysLock); return AllocateSliceData_unlocked(s, t, n, data, importMemoryManagement); } mitk::Image::ImageDataItemPointer mitk::Image::AllocateSliceData_unlocked( int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const { int pos; pos = GetSliceIndex(s, t, n); const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // is slice available as part of a volume that is available? ImageDataItemPointer sl, ch, vol; vol = m_Volumes[GetVolumeIndex(t, n)]; if (vol.GetPointer() != nullptr) { sl = new ImageDataItem(*vol, m_ImageDescriptor, t, 2, data, importMemoryManagement == ManageMemory, ((size_t)s) * m_OffsetTable[2] * (ptypeSize)); sl->SetComplete(true); return m_Slices[pos] = sl; } // is slice available as part of a channel that is available? ch = m_Channels[n]; if (ch.GetPointer() != nullptr) { sl = new ImageDataItem(*ch, m_ImageDescriptor, t, 2, data, importMemoryManagement == ManageMemory, (((size_t)s) * m_OffsetTable[2] + ((size_t)t) * m_OffsetTable[3]) * (ptypeSize)); sl->SetComplete(true); return m_Slices[pos] = sl; } // allocate new volume (instead of a single slice to keep data together!) m_Volumes[GetVolumeIndex(t, n)] = vol = AllocateVolumeData_unlocked(t, n, nullptr, importMemoryManagement); sl = new ImageDataItem(*vol, m_ImageDescriptor, t, 2, data, importMemoryManagement == ManageMemory, ((size_t)s) * m_OffsetTable[2] * (ptypeSize)); sl->SetComplete(true); return m_Slices[pos] = sl; ////ALTERNATIVE: //// allocate new slice // sl=new ImageDataItem(*m_PixelType, 2, m_Dimensions); // m_Slices[pos]=sl; // return vol; } mitk::Image::ImageDataItemPointer mitk::Image::AllocateVolumeData( int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const { MutexHolder lock(m_ImageDataArraysLock); return AllocateVolumeData_unlocked(t, n, data, importMemoryManagement); } mitk::Image::ImageDataItemPointer mitk::Image::AllocateVolumeData_unlocked( int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const { int pos; pos = GetVolumeIndex(t, n); const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // is volume available as part of a channel that is available? ImageDataItemPointer ch, vol; ch = m_Channels[n]; if (ch.GetPointer() != nullptr) { vol = new ImageDataItem(*ch, m_ImageDescriptor, t, 3, data, importMemoryManagement == ManageMemory, (((size_t)t) * m_OffsetTable[3]) * (ptypeSize)); return m_Volumes[pos] = vol; } mitk::PixelType chPixelType = this->m_ImageDescriptor->GetChannelTypeById(n); // allocate new volume if (importMemoryManagement == CopyMemory) { vol = new ImageDataItem(chPixelType, t, 3, m_Dimensions, nullptr, true); if (data != nullptr) std::memcpy(vol->GetData(), data, m_OffsetTable[3] * (ptypeSize)); } else { vol = new ImageDataItem(chPixelType, t, 3, m_Dimensions, data, importMemoryManagement == ManageMemory); } m_Volumes[pos] = vol; return vol; } mitk::Image::ImageDataItemPointer mitk::Image::AllocateChannelData( int n, void *data, ImportMemoryManagementType importMemoryManagement) const { MutexHolder lock(m_ImageDataArraysLock); return AllocateChannelData_unlocked(n, data, importMemoryManagement); } mitk::Image::ImageDataItemPointer mitk::Image::AllocateChannelData_unlocked( int n, void *data, ImportMemoryManagementType importMemoryManagement) const { ImageDataItemPointer ch; // allocate new channel if (importMemoryManagement == CopyMemory) { const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ch = new ImageDataItem(this->m_ImageDescriptor, -1, nullptr, true); if (data != nullptr) std::memcpy(ch->GetData(), data, m_OffsetTable[4] * (ptypeSize)); } else { ch = new ImageDataItem(this->m_ImageDescriptor, -1, data, importMemoryManagement == ManageMemory); } m_Channels[n] = ch; return ch; } unsigned int *mitk::Image::GetDimensions() const { return m_Dimensions; } void mitk::Image::Clear() { Superclass::Clear(); delete[] m_Dimensions; m_Dimensions = nullptr; } void mitk::Image::SetGeometry(BaseGeometry *aGeometry3D) { // Please be aware of the 0.5 offset/pixel-center issue! See Geometry documentation for further information if (aGeometry3D->GetImageGeometry() == false) { MITK_INFO << "WARNING: Applied a non-image geometry onto an image. Please be SURE that this geometry is " "pixel-center-based! If it is not, you need to call " "Geometry3D->ChangeImageGeometryConsideringOriginOffset(true) before calling image->setGeometry(..)\n"; } Superclass::SetGeometry(aGeometry3D); for (TimeStepType step = 0; step < GetTimeGeometry()->CountTimeSteps(); ++step) GetTimeGeometry()->GetGeometryForTimeStep(step)->ImageGeometryOn(); } void mitk::Image::PrintSelf(std::ostream &os, itk::Indent indent) const { if (m_Initialized) { unsigned char i; os << indent << " Dimension: " << m_Dimension << std::endl; os << indent << " Dimensions: "; for (i = 0; i < m_Dimension; ++i) os << GetDimension(i) << " "; os << std::endl; for (unsigned int ch = 0; ch < this->m_ImageDescriptor->GetNumberOfChannels(); ch++) { mitk::PixelType chPixelType = this->m_ImageDescriptor->GetChannelTypeById(ch); os << indent << " Channel: " << this->m_ImageDescriptor->GetChannelName(ch) << std::endl; os << indent << " PixelType: " << chPixelType.GetPixelTypeAsString() << std::endl; os << indent << " BytesPerElement: " << chPixelType.GetSize() << std::endl; os << indent << " ComponentType: " << chPixelType.GetComponentTypeAsString() << std::endl; os << indent << " NumberOfComponents: " << chPixelType.GetNumberOfComponents() << std::endl; os << indent << " BitsPerComponent: " << chPixelType.GetBitsPerComponent() << std::endl; } } else { os << indent << " Image not initialized: m_Initialized: false" << std::endl; } Superclass::PrintSelf(os, indent); } bool mitk::Image::IsRotated() const { const mitk::BaseGeometry *geo = this->GetGeometry(); bool ret = false; if (geo) { const vnl_matrix_fixed &mx = geo->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix(); mitk::ScalarType ref = 0; for (short k = 0; k < 3; ++k) ref += mx[k][k]; ref /= 1000; // Arbitrary value; if a non-diagonal (nd) element is bigger then this, matrix is considered nd. for (short i = 0; i < 3; ++i) { for (short j = 0; j < 3; ++j) { if (i != j) { if (std::abs(mx[i][j]) > ref) // matrix is nd ret = true; } } } } return ret; } -mitk::ScalarType mitk::Image::GetScalarValueMin(int t) const -{ - return m_ImageStatistics->GetScalarValueMin(t); -} - -//## \brief Get the maximum for scalar images -mitk::ScalarType mitk::Image::GetScalarValueMax(int t) const -{ - return m_ImageStatistics->GetScalarValueMax(t); -} - -//## \brief Get the second smallest value for scalar images -mitk::ScalarType mitk::Image::GetScalarValue2ndMin(int t) const -{ - return m_ImageStatistics->GetScalarValue2ndMin(t); -} - -mitk::ScalarType mitk::Image::GetScalarValueMinNoRecompute(unsigned int t) const -{ - return m_ImageStatistics->GetScalarValueMinNoRecompute(t); -} - -mitk::ScalarType mitk::Image::GetScalarValue2ndMinNoRecompute(unsigned int t) const -{ - return m_ImageStatistics->GetScalarValue2ndMinNoRecompute(t); -} - -mitk::ScalarType mitk::Image::GetScalarValue2ndMax(int t) const -{ - return m_ImageStatistics->GetScalarValue2ndMax(t); -} - -mitk::ScalarType mitk::Image::GetScalarValueMaxNoRecompute(unsigned int t) const -{ - return m_ImageStatistics->GetScalarValueMaxNoRecompute(t); -} - -mitk::ScalarType mitk::Image::GetScalarValue2ndMaxNoRecompute(unsigned int t) const -{ - return m_ImageStatistics->GetScalarValue2ndMaxNoRecompute(t); -} - -mitk::ScalarType mitk::Image::GetCountOfMinValuedVoxels(int t) const -{ - return m_ImageStatistics->GetCountOfMinValuedVoxels(t); -} - -mitk::ScalarType mitk::Image::GetCountOfMaxValuedVoxels(int t) const -{ - return m_ImageStatistics->GetCountOfMaxValuedVoxels(t); -} - -unsigned int mitk::Image::GetCountOfMaxValuedVoxelsNoRecompute(unsigned int t) const -{ - return m_ImageStatistics->GetCountOfMaxValuedVoxelsNoRecompute(t); -} - -unsigned int mitk::Image::GetCountOfMinValuedVoxelsNoRecompute(unsigned int t) const -{ - return m_ImageStatistics->GetCountOfMinValuedVoxelsNoRecompute(t); -} - -bool mitk::Equal(const mitk::Image *leftHandSide, const mitk::Image *rightHandSide, ScalarType eps, bool verbose) -{ - if ((leftHandSide == nullptr) || (rightHandSide == nullptr)) - { - MITK_ERROR << "mitk::Equal(const mitk::Image* leftHandSide, const mitk::Image* rightHandSide, ScalarType eps, bool " - "verbose) does not work with nullptr pointer input."; - return false; - } - return mitk::Equal(*leftHandSide, *rightHandSide, eps, verbose); -} bool mitk::Equal(const mitk::Image &leftHandSide, const mitk::Image &rightHandSide, ScalarType eps, bool verbose) { bool returnValue = true; // Dimensionality if (rightHandSide.GetDimension() != leftHandSide.GetDimension()) { if (verbose) { MITK_INFO << "[( Image )] Dimensionality differs."; MITK_INFO << "leftHandSide is " << leftHandSide.GetDimension() << "rightHandSide is " << rightHandSide.GetDimension(); } returnValue = false; } // Pair-wise dimension (size) comparison unsigned int minDimensionality = std::min(rightHandSide.GetDimension(), leftHandSide.GetDimension()); for (unsigned int i = 0; i < minDimensionality; ++i) { if (rightHandSide.GetDimension(i) != leftHandSide.GetDimension(i)) { returnValue = false; if (verbose) { MITK_INFO << "[( Image )] dimension differs."; MITK_INFO << "leftHandSide->GetDimension(" << i << ") is " << leftHandSide.GetDimension(i) << "rightHandSide->GetDimension(" << i << ") is " << rightHandSide.GetDimension(i); } } } // Pixeltype mitk::PixelType pixelTypeRightHandSide = rightHandSide.GetPixelType(); mitk::PixelType pixelTypeLeftHandSide = leftHandSide.GetPixelType(); if (!(pixelTypeRightHandSide == pixelTypeLeftHandSide)) { if (verbose) { MITK_INFO << "[( Image )] PixelType differs."; MITK_INFO << "leftHandSide is " << pixelTypeLeftHandSide.GetTypeAsString() << "rightHandSide is " << pixelTypeRightHandSide.GetTypeAsString(); } returnValue = false; } // Geometries if (!mitk::Equal(*leftHandSide.GetGeometry(), *rightHandSide.GetGeometry(), eps, verbose)) { if (verbose) { MITK_INFO << "[( Image )] Geometries differ."; } returnValue = false; } // Pixel values - default mode [ 0 threshold in difference ] // compare only if all previous checks were successfull, otherwise the ITK filter will throw an exception if (returnValue) { mitk::CompareImageDataFilter::Pointer compareFilter = mitk::CompareImageDataFilter::New(); compareFilter->SetInput(0, &rightHandSide); compareFilter->SetInput(1, &leftHandSide); compareFilter->SetTolerance(eps); compareFilter->Update(); if ((!compareFilter->GetResult())) { returnValue = false; if (verbose) { MITK_INFO << "[(Image)] Pixel values differ: "; compareFilter->GetCompareResults().PrintSelf(); } } } return returnValue; } diff --git a/Modules/Multilabel/mitkLabelSetImageVtkMapper2D.cpp b/Modules/Multilabel/mitkLabelSetImageVtkMapper2D.cpp index 56069a2be9..beb6d792ce 100644 --- a/Modules/Multilabel/mitkLabelSetImageVtkMapper2D.cpp +++ b/Modules/Multilabel/mitkLabelSetImageVtkMapper2D.cpp @@ -1,650 +1,649 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkLabelSetImageVtkMapper2D.h" // MITK #include #include #include #include #include #include #include #include #include #include #include -#include #include #include // MITK Rendering #include "vtkMitkLevelWindowFilter.h" #include "vtkMitkThickSlicesFilter.h" #include "vtkNeverTranslucentTexture.h" // VTK #include #include #include #include #include #include #include #include #include #include #include #include //#include // ITK #include #include mitk::LabelSetImageVtkMapper2D::LabelSetImageVtkMapper2D() { } mitk::LabelSetImageVtkMapper2D::~LabelSetImageVtkMapper2D() { } vtkProp *mitk::LabelSetImageVtkMapper2D::GetVtkProp(mitk::BaseRenderer *renderer) { // return the actor corresponding to the renderer return m_LSH.GetLocalStorage(renderer)->m_Actors; } mitk::LabelSetImageVtkMapper2D::LocalStorage *mitk::LabelSetImageVtkMapper2D::GetLocalStorage( mitk::BaseRenderer *renderer) { return m_LSH.GetLocalStorage(renderer); } void mitk::LabelSetImageVtkMapper2D::GenerateDataForRenderer(mitk::BaseRenderer *renderer) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); mitk::DataNode *node = this->GetDataNode(); auto *image = dynamic_cast(node->GetData()); assert(image && image->IsInitialized()); // check if there is a valid worldGeometry const PlaneGeometry *worldGeometry = renderer->GetCurrentWorldPlaneGeometry(); if ((worldGeometry == nullptr) || (!worldGeometry->IsValid()) || (!worldGeometry->HasReferenceGeometry())) return; image->Update(); int numberOfLayers = image->GetNumberOfLayers(); int activeLayer = image->GetActiveLayer(); float opacity = 1.0f; node->GetOpacity(opacity, renderer, "opacity"); if (numberOfLayers != localStorage->m_NumberOfLayers) { localStorage->m_NumberOfLayers = numberOfLayers; localStorage->m_ReslicedImageVector.clear(); localStorage->m_ReslicerVector.clear(); localStorage->m_LayerTextureVector.clear(); localStorage->m_LevelWindowFilterVector.clear(); localStorage->m_LayerMapperVector.clear(); localStorage->m_LayerActorVector.clear(); localStorage->m_Actors = vtkSmartPointer::New(); for (int lidx = 0; lidx < numberOfLayers; ++lidx) { localStorage->m_ReslicedImageVector.push_back(vtkSmartPointer::New()); localStorage->m_ReslicerVector.push_back(mitk::ExtractSliceFilter::New()); localStorage->m_LayerTextureVector.push_back(vtkSmartPointer::New()); localStorage->m_LevelWindowFilterVector.push_back(vtkSmartPointer::New()); localStorage->m_LayerMapperVector.push_back(vtkSmartPointer::New()); localStorage->m_LayerActorVector.push_back(vtkSmartPointer::New()); // do not repeat the texture (the image) localStorage->m_LayerTextureVector[lidx]->RepeatOff(); // set corresponding mappers for the actors localStorage->m_LayerActorVector[lidx]->SetMapper(localStorage->m_LayerMapperVector[lidx]); localStorage->m_Actors->AddPart(localStorage->m_LayerActorVector[lidx]); } localStorage->m_Actors->AddPart(localStorage->m_OutlineShadowActor); localStorage->m_Actors->AddPart(localStorage->m_OutlineActor); } // early out if there is no intersection of the current rendering geometry // and the geometry of the image that is to be rendered. if (!RenderingGeometryIntersectsImage(worldGeometry, image->GetSlicedGeometry())) { // set image to nullptr, to clear the texture in 3D, because // the latest image is used there if the plane is out of the geometry // see bug-13275 for (int lidx = 0; lidx < numberOfLayers; ++lidx) { localStorage->m_ReslicedImageVector[lidx] = nullptr; localStorage->m_LayerMapperVector[lidx]->SetInputData(localStorage->m_EmptyPolyData); localStorage->m_OutlineActor->SetVisibility(false); localStorage->m_OutlineShadowActor->SetVisibility(false); } return; } for (int lidx = 0; lidx < numberOfLayers; ++lidx) { mitk::Image *layerImage = nullptr; // set main input for ExtractSliceFilter if (lidx == activeLayer) layerImage = image; else layerImage = image->GetLayerImage(lidx); localStorage->m_ReslicerVector[lidx]->SetInput(layerImage); localStorage->m_ReslicerVector[lidx]->SetWorldGeometry(worldGeometry); localStorage->m_ReslicerVector[lidx]->SetTimeStep(this->GetTimestep()); // set the transformation of the image to adapt reslice axis localStorage->m_ReslicerVector[lidx]->SetResliceTransformByGeometry( layerImage->GetTimeGeometry()->GetGeometryForTimeStep(this->GetTimestep())); // is the geometry of the slice based on the image image or the worldgeometry? bool inPlaneResampleExtentByGeometry = false; node->GetBoolProperty("in plane resample extent by geometry", inPlaneResampleExtentByGeometry, renderer); localStorage->m_ReslicerVector[lidx]->SetInPlaneResampleExtentByGeometry(inPlaneResampleExtentByGeometry); localStorage->m_ReslicerVector[lidx]->SetInterpolationMode(ExtractSliceFilter::RESLICE_NEAREST); localStorage->m_ReslicerVector[lidx]->SetVtkOutputRequest(true); // this is needed when thick mode was enabled before. These variables have to be reset to default values localStorage->m_ReslicerVector[lidx]->SetOutputDimensionality(2); localStorage->m_ReslicerVector[lidx]->SetOutputSpacingZDirection(1.0); localStorage->m_ReslicerVector[lidx]->SetOutputExtentZDirection(0, 0); // Bounds information for reslicing (only required if reference geometry is present) // this used for generating a vtkPLaneSource with the right size double sliceBounds[6]; sliceBounds[0] = 0.0; sliceBounds[1] = 0.0; sliceBounds[2] = 0.0; sliceBounds[3] = 0.0; sliceBounds[4] = 0.0; sliceBounds[5] = 0.0; localStorage->m_ReslicerVector[lidx]->GetClippedPlaneBounds(sliceBounds); // setup the textured plane this->GeneratePlane(renderer, sliceBounds); // get the spacing of the slice localStorage->m_mmPerPixel = localStorage->m_ReslicerVector[lidx]->GetOutputSpacing(); localStorage->m_ReslicerVector[lidx]->Modified(); // start the pipeline with updating the largest possible, needed if the geometry of the image has changed localStorage->m_ReslicerVector[lidx]->UpdateLargestPossibleRegion(); localStorage->m_ReslicedImageVector[lidx] = localStorage->m_ReslicerVector[lidx]->GetVtkOutput(); const auto *planeGeometry = dynamic_cast(worldGeometry); double textureClippingBounds[6]; for (auto &textureClippingBound : textureClippingBounds) { textureClippingBound = 0.0; } // Calculate the actual bounds of the transformed plane clipped by the // dataset bounding box; this is required for drawing the texture at the // correct position during 3D mapping. mitk::PlaneClipping::CalculateClippedPlaneBounds(layerImage->GetGeometry(), planeGeometry, textureClippingBounds); textureClippingBounds[0] = static_cast(textureClippingBounds[0] / localStorage->m_mmPerPixel[0] + 0.5); textureClippingBounds[1] = static_cast(textureClippingBounds[1] / localStorage->m_mmPerPixel[0] + 0.5); textureClippingBounds[2] = static_cast(textureClippingBounds[2] / localStorage->m_mmPerPixel[1] + 0.5); textureClippingBounds[3] = static_cast(textureClippingBounds[3] / localStorage->m_mmPerPixel[1] + 0.5); // clipping bounds for cutting the imageLayer localStorage->m_LevelWindowFilterVector[lidx]->SetClippingBounds(textureClippingBounds); localStorage->m_LevelWindowFilterVector[lidx]->SetLookupTable( image->GetLabelSet(lidx)->GetLookupTable()->GetVtkLookupTable()); // do not use a VTK lookup table (we do that ourselves in m_LevelWindowFilter) localStorage->m_LayerTextureVector[lidx]->SetColorModeToDirectScalars(); // connect the imageLayer with the levelwindow filter localStorage->m_LevelWindowFilterVector[lidx]->SetInputData(localStorage->m_ReslicedImageVector[lidx]); // connect the texture with the output of the levelwindow filter // check for texture interpolation property bool textureInterpolation = false; node->GetBoolProperty("texture interpolation", textureInterpolation, renderer); // set the interpolation modus according to the property localStorage->m_LayerTextureVector[lidx]->SetInterpolate(textureInterpolation); localStorage->m_LayerTextureVector[lidx]->SetInputConnection( localStorage->m_LevelWindowFilterVector[lidx]->GetOutputPort()); this->TransformActor(renderer); // set the plane as input for the mapper localStorage->m_LayerMapperVector[lidx]->SetInputConnection(localStorage->m_Plane->GetOutputPort()); // set the texture for the actor localStorage->m_LayerActorVector[lidx]->SetTexture(localStorage->m_LayerTextureVector[lidx]); localStorage->m_LayerActorVector[lidx]->GetProperty()->SetOpacity(opacity); } mitk::Label* activeLabel = image->GetActiveLabel(activeLayer); if (nullptr != activeLabel) { bool contourActive = false; node->GetBoolProperty("labelset.contour.active", contourActive, renderer); if (contourActive && activeLabel->GetVisible()) //contour rendering { //generate contours/outlines localStorage->m_OutlinePolyData = this->CreateOutlinePolyData(renderer, localStorage->m_ReslicedImageVector[activeLayer], activeLabel->GetValue()); localStorage->m_OutlineActor->SetVisibility(true); localStorage->m_OutlineShadowActor->SetVisibility(true); const mitk::Color& color = activeLabel->GetColor(); localStorage->m_OutlineActor->GetProperty()->SetColor(color.GetRed(), color.GetGreen(), color.GetBlue()); localStorage->m_OutlineShadowActor->GetProperty()->SetColor(0, 0, 0); float contourWidth(2.0); node->GetFloatProperty("labelset.contour.width", contourWidth, renderer); localStorage->m_OutlineActor->GetProperty()->SetLineWidth(contourWidth); localStorage->m_OutlineShadowActor->GetProperty()->SetLineWidth(contourWidth * 1.5); localStorage->m_OutlineActor->GetProperty()->SetOpacity(opacity); localStorage->m_OutlineShadowActor->GetProperty()->SetOpacity(opacity); localStorage->m_OutlineMapper->SetInputData(localStorage->m_OutlinePolyData); return; } } localStorage->m_OutlineActor->SetVisibility(false); localStorage->m_OutlineShadowActor->SetVisibility(false); } bool mitk::LabelSetImageVtkMapper2D::RenderingGeometryIntersectsImage(const PlaneGeometry *renderingGeometry, SlicedGeometry3D *imageGeometry) { // if either one of the two geometries is nullptr we return true // for safety reasons if (renderingGeometry == nullptr || imageGeometry == nullptr) return true; // get the distance for the first cornerpoint ScalarType initialDistance = renderingGeometry->SignedDistance(imageGeometry->GetCornerPoint(0)); for (int i = 1; i < 8; i++) { mitk::Point3D cornerPoint = imageGeometry->GetCornerPoint(i); // get the distance to the other cornerpoints ScalarType distance = renderingGeometry->SignedDistance(cornerPoint); // if it has not the same signing as the distance of the first point if (initialDistance * distance < 0) { // we have an intersection and return true return true; } } // all distances have the same sign, no intersection and we return false return false; } vtkSmartPointer mitk::LabelSetImageVtkMapper2D::CreateOutlinePolyData(mitk::BaseRenderer *renderer, vtkImageData *image, int pixelValue) { LocalStorage *localStorage = this->GetLocalStorage(renderer); // get the min and max index values of each direction int *extent = image->GetExtent(); int xMin = extent[0]; int xMax = extent[1]; int yMin = extent[2]; int yMax = extent[3]; int *dims = image->GetDimensions(); // dimensions of the image int line = dims[0]; // how many pixels per line? int x = xMin; // pixel index x int y = yMin; // pixel index y // get the depth for each contour float depth = this->CalculateLayerDepth(renderer); vtkSmartPointer points = vtkSmartPointer::New(); // the points to draw vtkSmartPointer lines = vtkSmartPointer::New(); // the lines to connect the points // We take the pointer to the first pixel of the image auto *currentPixel = static_cast(image->GetScalarPointer()); while (y <= yMax) { // if the current pixel value is set to something if ((currentPixel) && (*currentPixel == pixelValue)) { // check in which direction a line is necessary // a line is added if the neighbor of the current pixel has the value 0 // and if the pixel is located at the edge of the image // if vvvvv not the first line vvvvv if (y > yMin && *(currentPixel - line) != pixelValue) { // x direction - bottom edge of the pixel // add the 2 points vtkIdType p1 = points->InsertNextPoint(x * localStorage->m_mmPerPixel[0], y * localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint((x + 1) * localStorage->m_mmPerPixel[0], y * localStorage->m_mmPerPixel[1], depth); // add the line between both points lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } // if vvvvv not the last line vvvvv if (y < yMax && *(currentPixel + line) != pixelValue) { // x direction - top edge of the pixel vtkIdType p1 = points->InsertNextPoint(x * localStorage->m_mmPerPixel[0], (y + 1) * localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint( (x + 1) * localStorage->m_mmPerPixel[0], (y + 1) * localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } // if vvvvv not the first pixel vvvvv if ((x > xMin || y > yMin) && *(currentPixel - 1) != pixelValue) { // y direction - left edge of the pixel vtkIdType p1 = points->InsertNextPoint(x * localStorage->m_mmPerPixel[0], y * localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint(x * localStorage->m_mmPerPixel[0], (y + 1) * localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } // if vvvvv not the last pixel vvvvv if ((y < yMax || (x < xMax)) && *(currentPixel + 1) != pixelValue) { // y direction - right edge of the pixel vtkIdType p1 = points->InsertNextPoint((x + 1) * localStorage->m_mmPerPixel[0], y * localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint( (x + 1) * localStorage->m_mmPerPixel[0], (y + 1) * localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } /* now consider pixels at the edge of the image */ // if vvvvv left edge of image vvvvv if (x == xMin) { // draw left edge of the pixel vtkIdType p1 = points->InsertNextPoint(x * localStorage->m_mmPerPixel[0], y * localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint(x * localStorage->m_mmPerPixel[0], (y + 1) * localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } // if vvvvv right edge of image vvvvv if (x == xMax) { // draw right edge of the pixel vtkIdType p1 = points->InsertNextPoint((x + 1) * localStorage->m_mmPerPixel[0], y * localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint( (x + 1) * localStorage->m_mmPerPixel[0], (y + 1) * localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } // if vvvvv bottom edge of image vvvvv if (y == yMin) { // draw bottom edge of the pixel vtkIdType p1 = points->InsertNextPoint(x * localStorage->m_mmPerPixel[0], y * localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint((x + 1) * localStorage->m_mmPerPixel[0], y * localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } // if vvvvv top edge of image vvvvv if (y == yMax) { // draw top edge of the pixel vtkIdType p1 = points->InsertNextPoint(x * localStorage->m_mmPerPixel[0], (y + 1) * localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint( (x + 1) * localStorage->m_mmPerPixel[0], (y + 1) * localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } } // end if currentpixel is set x++; if (x > xMax) { // reached end of line x = xMin; y++; } // Increase the pointer-position to the next pixel. // This is safe, as the while-loop and the x-reset logic above makes // sure we do not exceed the bounds of the image currentPixel++; } // end of while // Create a polydata to store everything in vtkSmartPointer polyData = vtkSmartPointer::New(); // Add the points to the dataset polyData->SetPoints(points); // Add the lines to the dataset polyData->SetLines(lines); return polyData; } void mitk::LabelSetImageVtkMapper2D::ApplyColor(mitk::BaseRenderer *renderer, const mitk::Color &color) { LocalStorage *localStorage = this->GetLocalStorage(renderer); localStorage->m_OutlineActor->GetProperty()->SetColor(color.GetRed(), color.GetGreen(), color.GetBlue()); localStorage->m_OutlineShadowActor->GetProperty()->SetColor(0, 0, 0); } void mitk::LabelSetImageVtkMapper2D::ApplyOpacity(mitk::BaseRenderer *renderer, int layer) { LocalStorage *localStorage = this->GetLocalStorage(renderer); float opacity = 1.0f; this->GetDataNode()->GetOpacity(opacity, renderer, "opacity"); localStorage->m_LayerActorVector[layer]->GetProperty()->SetOpacity(opacity); localStorage->m_OutlineActor->GetProperty()->SetOpacity(opacity); localStorage->m_OutlineShadowActor->GetProperty()->SetOpacity(opacity); } void mitk::LabelSetImageVtkMapper2D::ApplyLookuptable(mitk::BaseRenderer *renderer, int layer) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); auto *input = dynamic_cast(this->GetDataNode()->GetData()); localStorage->m_LevelWindowFilterVector[layer]->SetLookupTable( input->GetLabelSet(layer)->GetLookupTable()->GetVtkLookupTable()); } void mitk::LabelSetImageVtkMapper2D::Update(mitk::BaseRenderer *renderer) { bool visible = true; const DataNode *node = this->GetDataNode(); node->GetVisibility(visible, renderer, "visible"); if (!visible) return; auto *image = dynamic_cast(node->GetData()); if (image == nullptr || image->IsInitialized() == false) return; // Calculate time step of the image data for the specified renderer (integer value) this->CalculateTimeStep(renderer); // Check if time step is valid const TimeGeometry *dataTimeGeometry = image->GetTimeGeometry(); if ((dataTimeGeometry == nullptr) || (dataTimeGeometry->CountTimeSteps() == 0) || (!dataTimeGeometry->IsValidTimeStep(this->GetTimestep()))) { return; } image->UpdateOutputInformation(); LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); // check if something important has changed and we need to re-render if ((localStorage->m_LastDataUpdateTime < image->GetMTime()) || (localStorage->m_LastDataUpdateTime < image->GetPipelineMTime()) || (localStorage->m_LastDataUpdateTime < renderer->GetCurrentWorldPlaneGeometryUpdateTime()) || (localStorage->m_LastDataUpdateTime < renderer->GetCurrentWorldPlaneGeometry()->GetMTime())) { this->GenerateDataForRenderer(renderer); localStorage->m_LastDataUpdateTime.Modified(); } else if ((localStorage->m_LastPropertyUpdateTime < node->GetPropertyList()->GetMTime()) || (localStorage->m_LastPropertyUpdateTime < node->GetPropertyList(renderer)->GetMTime()) || (localStorage->m_LastPropertyUpdateTime < image->GetPropertyList()->GetMTime())) { this->GenerateDataForRenderer(renderer); localStorage->m_LastPropertyUpdateTime.Modified(); } } // set the two points defining the textured plane according to the dimension and spacing void mitk::LabelSetImageVtkMapper2D::GeneratePlane(mitk::BaseRenderer *renderer, double planeBounds[6]) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); float depth = this->CalculateLayerDepth(renderer); // Set the origin to (xMin; yMin; depth) of the plane. This is necessary for obtaining the correct // plane size in crosshair rotation and swivel mode. localStorage->m_Plane->SetOrigin(planeBounds[0], planeBounds[2], depth); // These two points define the axes of the plane in combination with the origin. // Point 1 is the x-axis and point 2 the y-axis. // Each plane is transformed according to the view (axial, coronal and saggital) afterwards. localStorage->m_Plane->SetPoint1(planeBounds[1], planeBounds[2], depth); // P1: (xMax, yMin, depth) localStorage->m_Plane->SetPoint2(planeBounds[0], planeBounds[3], depth); // P2: (xMin, yMax, depth) } float mitk::LabelSetImageVtkMapper2D::CalculateLayerDepth(mitk::BaseRenderer *renderer) { // get the clipping range to check how deep into z direction we can render images double maxRange = renderer->GetVtkRenderer()->GetActiveCamera()->GetClippingRange()[1]; // Due to a VTK bug, we cannot use the whole clipping range. /100 is empirically determined float depth = -maxRange * 0.01; // divide by 100 int layer = 0; GetDataNode()->GetIntProperty("layer", layer, renderer); // add the layer property for each image to render images with a higher layer on top of the others depth += layer * 10; //*10: keep some room for each image (e.g. for ODFs in between) if (depth > 0.0f) { depth = 0.0f; MITK_WARN << "Layer value exceeds clipping range. Set to minimum instead."; } return depth; } void mitk::LabelSetImageVtkMapper2D::TransformActor(mitk::BaseRenderer *renderer) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); // get the transformation matrix of the reslicer in order to render the slice as axial, coronal or saggital vtkSmartPointer trans = vtkSmartPointer::New(); vtkSmartPointer matrix = localStorage->m_ReslicerVector[0]->GetResliceAxes(); // same for all layers trans->SetMatrix(matrix); for (int lidx = 0; lidx < localStorage->m_NumberOfLayers; ++lidx) { // transform the plane/contour (the actual actor) to the corresponding view (axial, coronal or saggital) localStorage->m_LayerActorVector[lidx]->SetUserTransform(trans); // transform the origin to center based coordinates, because MITK is center based. localStorage->m_LayerActorVector[lidx]->SetPosition( -0.5 * localStorage->m_mmPerPixel[0], -0.5 * localStorage->m_mmPerPixel[1], 0.0); } // same for outline actor localStorage->m_OutlineActor->SetUserTransform(trans); localStorage->m_OutlineActor->SetPosition( -0.5 * localStorage->m_mmPerPixel[0], -0.5 * localStorage->m_mmPerPixel[1], 0.0); // same for outline shadow actor localStorage->m_OutlineShadowActor->SetUserTransform(trans); localStorage->m_OutlineShadowActor->SetPosition( -0.5 * localStorage->m_mmPerPixel[0], -0.5 * localStorage->m_mmPerPixel[1], 0.0); } void mitk::LabelSetImageVtkMapper2D::SetDefaultProperties(mitk::DataNode *node, mitk::BaseRenderer *renderer, bool overwrite) { // add/replace the following properties node->SetProperty("opacity", FloatProperty::New(1.0f), renderer); node->SetProperty("binary", BoolProperty::New(false), renderer); mitk::RenderingModeProperty::Pointer renderingModeProperty = mitk::RenderingModeProperty::New(RenderingModeProperty::LOOKUPTABLE_LEVELWINDOW_COLOR); node->SetProperty("Image Rendering.Mode", renderingModeProperty, renderer); mitk::LevelWindow levelwindow(32767.5, 65535); mitk::LevelWindowProperty::Pointer levWinProp = mitk::LevelWindowProperty::New(levelwindow); levWinProp->SetLevelWindow(levelwindow); node->SetProperty("levelwindow", levWinProp, renderer); node->SetProperty("labelset.contour.active", BoolProperty::New(true), renderer); node->SetProperty("labelset.contour.width", FloatProperty::New(2.0), renderer); Superclass::SetDefaultProperties(node, renderer, overwrite); } mitk::LabelSetImageVtkMapper2D::LocalStorage::~LocalStorage() { } mitk::LabelSetImageVtkMapper2D::LocalStorage::LocalStorage() { // Do as much actions as possible in here to avoid double executions. m_Plane = vtkSmartPointer::New(); m_Actors = vtkSmartPointer::New(); m_OutlinePolyData = vtkSmartPointer::New(); m_EmptyPolyData = vtkSmartPointer::New(); m_OutlineActor = vtkSmartPointer::New(); m_OutlineMapper = vtkSmartPointer::New(); m_OutlineShadowActor = vtkSmartPointer::New(); m_NumberOfLayers = 0; m_mmPerPixel = nullptr; m_OutlineActor->SetMapper(m_OutlineMapper); m_OutlineShadowActor->SetMapper(m_OutlineMapper); m_OutlineActor->SetVisibility(false); m_OutlineShadowActor->SetVisibility(false); } diff --git a/Modules/Segmentation/Interactions/mitkAutoMLSegmentationWithPreviewTool.cpp b/Modules/Segmentation/Interactions/mitkAutoMLSegmentationWithPreviewTool.cpp index 64df08bc8b..63c827db0c 100644 --- a/Modules/Segmentation/Interactions/mitkAutoMLSegmentationWithPreviewTool.cpp +++ b/Modules/Segmentation/Interactions/mitkAutoMLSegmentationWithPreviewTool.cpp @@ -1,204 +1,205 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ // MITK #include "mitkAutoMLSegmentationWithPreviewTool.h" #include "mitkImageAccessByItk.h" #include "mitkToolManager.h" #include #include #include #include #include #include +#include // ITK #include #include mitk::AutoMLSegmentationWithPreviewTool::AutoMLSegmentationWithPreviewTool() : AutoSegmentationWithPreviewTool(true) { } void mitk::AutoMLSegmentationWithPreviewTool::SetSelectedLabels(const SelectedLabelVectorType& regions) { if (m_SelectedLabels != regions) { m_SelectedLabels = regions; //Note: we do not call this->Modified() on puprose. Reason: changing the //selected regions should not force to run otsu filter in DoUpdatePreview due to changed MTime. } } const mitk::LabelSetImage* mitk::AutoMLSegmentationWithPreviewTool::GetMLPreview() const { if (m_MLPreviewNode.IsNotNull()) { const auto mlPreviewImage = dynamic_cast(this->m_MLPreviewNode->GetData()); return mlPreviewImage; } return nullptr; } mitk::AutoMLSegmentationWithPreviewTool::SelectedLabelVectorType mitk::AutoMLSegmentationWithPreviewTool::GetSelectedLabels() const { return this->m_SelectedLabels; } void mitk::AutoMLSegmentationWithPreviewTool::Activated() { Superclass::Activated(); m_SelectedLabels = {}; m_MLPreviewNode = mitk::DataNode::New(); m_MLPreviewNode->SetProperty("name", StringProperty::New(std::string(this->GetName()) + "ML preview")); m_MLPreviewNode->SetProperty("helper object", BoolProperty::New(true)); m_MLPreviewNode->SetVisibility(true); m_MLPreviewNode->SetOpacity(1.0); this->GetToolManager()->GetDataStorage()->Add(m_MLPreviewNode); } void mitk::AutoMLSegmentationWithPreviewTool::Deactivated() { this->GetToolManager()->GetDataStorage()->Remove(m_MLPreviewNode); m_MLPreviewNode = nullptr; Superclass::Deactivated(); } void mitk::AutoMLSegmentationWithPreviewTool::UpdateCleanUp() { if (m_MLPreviewNode.IsNotNull()) m_MLPreviewNode->SetVisibility(m_SelectedLabels.empty()); if (nullptr != this->GetPreviewSegmentationNode()) this->GetPreviewSegmentationNode()->SetVisibility(!m_SelectedLabels.empty()); if (m_SelectedLabels.empty()) { this->ResetPreviewNode(); } } void mitk::AutoMLSegmentationWithPreviewTool::DoUpdatePreview(const Image* inputAtTimeStep, const Image* /*oldSegAtTimeStep*/, Image* previewImage, TimeStepType timeStep) { const auto timePoint = mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); if (nullptr == m_MLPreviewNode->GetData() || this->GetMTime() > m_MLPreviewNode->GetData()->GetMTime() || this->m_LastMLTimeStep != timeStep //this covers the case where dynamic //segmentations have to compute a preview //for all time steps on confirmation || this->GetLastTimePointOfUpdate() != timePoint //this ensures that static seg //previews work with dynamic images //with avoiding unnecessary other computations ) { if (nullptr == inputAtTimeStep) { MITK_WARN << "Cannot run segementation. Currently selected input image is not set."; return; } this->m_LastMLTimeStep = timeStep; auto newMLPreview = ComputeMLPreview(inputAtTimeStep, timeStep); if (newMLPreview.IsNotNull()) { this->m_MLPreviewNode->SetData(newMLPreview); this->m_MLPreviewNode->SetProperty("binary", mitk::BoolProperty::New(false)); mitk::RenderingModeProperty::Pointer renderingMode = mitk::RenderingModeProperty::New(); renderingMode->SetValue(mitk::RenderingModeProperty::LOOKUPTABLE_LEVELWINDOW_COLOR); this->m_MLPreviewNode->SetProperty("Image Rendering.Mode", renderingMode); mitk::LookupTable::Pointer lut = mitk::LookupTable::New(); mitk::LookupTableProperty::Pointer prop = mitk::LookupTableProperty::New(lut); vtkSmartPointer lookupTable = vtkSmartPointer::New(); lookupTable->SetHueRange(1.0, 0.0); lookupTable->SetSaturationRange(1.0, 1.0); lookupTable->SetValueRange(1.0, 1.0); lookupTable->SetTableRange(-1.0, 1.0); lookupTable->Build(); lut->SetVtkLookupTable(lookupTable); prop->SetLookupTable(lut); this->m_MLPreviewNode->SetProperty("LookupTable", prop); mitk::LevelWindowProperty::Pointer levWinProp = mitk::LevelWindowProperty::New(); mitk::LevelWindow levelwindow; - levelwindow.SetRangeMinMax(0, newMLPreview->GetScalarValueMax()); + levelwindow.SetRangeMinMax(0, newMLPreview->GetStatistics()->GetScalarValueMax()); levWinProp->SetLevelWindow(levelwindow); this->m_MLPreviewNode->SetProperty("levelwindow", levWinProp); } } if (!m_SelectedLabels.empty()) { const auto mlPreviewImage = this->GetMLPreview(); if (nullptr != mlPreviewImage) { AccessByItk_n(mlPreviewImage, CalculateMergedSimplePreview, (previewImage, timeStep)); } } } template void mitk::AutoMLSegmentationWithPreviewTool::CalculateMergedSimplePreview(const itk::Image* itkImage, mitk::Image* segmentation, unsigned int timeStep) { typedef itk::Image InputImageType; typedef itk::Image OutputImageType; typedef itk::BinaryThresholdImageFilter FilterType; typename FilterType::Pointer filter = FilterType::New(); // InputImageType::Pointer itkImage; typename OutputImageType::Pointer itkBinaryResultImage; filter->SetInput(itkImage); filter->SetLowerThreshold(m_SelectedLabels[0]); filter->SetUpperThreshold(m_SelectedLabels[0]); filter->SetInsideValue(1); filter->SetOutsideValue(0); filter->AddObserver(itk::ProgressEvent(), m_ProgressCommand); filter->Update(); itkBinaryResultImage = filter->GetOutput(); itkBinaryResultImage->DisconnectPipeline(); // if more than one region id is used compute the union of all given binary regions for (const auto labelID : m_SelectedLabels) { if (labelID != m_SelectedLabels[0]) { filter->SetLowerThreshold(labelID); filter->SetUpperThreshold(labelID); filter->SetInsideValue(1); filter->SetOutsideValue(0); filter->Update(); typename OutputImageType::Pointer tempImage = filter->GetOutput(); typename itk::OrImageFilter::Pointer orFilter = itk::OrImageFilter::New(); orFilter->SetInput1(tempImage); orFilter->SetInput2(itkBinaryResultImage); orFilter->AddObserver(itk::ProgressEvent(), m_ProgressCommand); orFilter->UpdateLargestPossibleRegion(); itkBinaryResultImage = orFilter->GetOutput(); } } //---------------------------------------------------------------------------------------------------- segmentation->SetVolume((void*)(itkBinaryResultImage->GetPixelContainer()->GetBufferPointer()), timeStep); } diff --git a/Modules/Segmentation/Interactions/mitkSegmentationInteractor.cpp b/Modules/Segmentation/Interactions/mitkSegmentationInteractor.cpp index 1b67d32f1f..f14f92c7a4 100644 --- a/Modules/Segmentation/Interactions/mitkSegmentationInteractor.cpp +++ b/Modules/Segmentation/Interactions/mitkSegmentationInteractor.cpp @@ -1,63 +1,65 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkSegmentationInteractor.h" #include "mitkInteractionPositionEvent.h" #include "mitkLabelSetImage.h" #include "mitkToolManager.h" #include "mitkToolManagerProvider.h" #include #include void mitk::SegmentationInteractor::ConnectActionsAndFunctions() { Superclass::ConnectActionsAndFunctions(); // CONNECT_FUNCTION("change_active_label", ChangeActiveLabel); } bool mitk::SegmentationInteractor::ChangeActiveLabel(StateMachineAction *, InteractionEvent *interactionEvent) { BaseRenderer::Pointer sender = interactionEvent->GetSender(); - auto *positionEvent = static_cast(interactionEvent); + auto positionEvent = static_cast(interactionEvent); - // MLI TODO - // m_LastDisplayCoordinate = m_CurrentDisplayCoordinate; - // m_CurrentDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); - - auto *toolManager = mitk::ToolManagerProvider::GetInstance()->GetToolManager( + auto toolManager = mitk::ToolManagerProvider::GetInstance()->GetToolManager( mitk::ToolManagerProvider::MULTILABEL_SEGMENTATION); assert(toolManager); DataNode *workingNode(toolManager->GetWorkingData(0)); - if (workingNode) + if (workingNode && positionEvent) { - auto *workingImage = dynamic_cast(workingNode->GetData()); - assert(workingImage); + //TODO T28561 + //Code uses a deprecated method. deactivated whole code until the refactorization is done. + throw "TODO T28561. Was forgot to refactor in context of T28524. The new MultiLabelSegmentation class will have a dedicated function for querying the label of world position."; + + //auto *workingImage = dynamic_cast(workingNode->GetData()); + //assert(workingImage); + + //const auto timestep = positionEvent->GetSender()->GetTimeStep(workingImage); - const auto timestep = positionEvent->GetSender()->GetTimeStep(workingImage); - int pixelValue = static_cast(workingImage->GetPixelValueByWorldCoordinate(positionEvent->GetPositionInWorld(), timestep)); + //int pixelValue = static_cast(workingImage->GetPixelValueByWorldCoordinate(positionEvent->GetPositionInWorld(), timestep)); + //workingImage->GetActiveLabelSet()->SetActiveLabel(pixelValue); // can be the background - workingImage->GetActiveLabelSet()->SetActiveLabel(pixelValue); // can be the background + // // Call Events + // // workingImage->ActiveLabelEvent.Send(pixelValue); - // Call Events - // workingImage->ActiveLabelEvent.Send(pixelValue); + // // MLI TODO + // // toolManager->WorkingDataModified.Send(); - // MLI TODO - // toolManager->WorkingDataModified.Send(); + //TODO END Refactor with T28524 } RenderingManager::GetInstance()->RequestUpdateAll(); return true; } diff --git a/Modules/SegmentationUI/Qmitk/QmitkSliceBasedInterpolatorWidget.cpp b/Modules/SegmentationUI/Qmitk/QmitkSliceBasedInterpolatorWidget.cpp index 81080382e7..d731966d1f 100644 --- a/Modules/SegmentationUI/Qmitk/QmitkSliceBasedInterpolatorWidget.cpp +++ b/Modules/SegmentationUI/Qmitk/QmitkSliceBasedInterpolatorWidget.cpp @@ -1,710 +1,710 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "QmitkSliceBasedInterpolatorWidget.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "QmitkStdMultiWidget.h" #include #include #include #include #include QmitkSliceBasedInterpolatorWidget::QmitkSliceBasedInterpolatorWidget(QWidget *parent, const char * /*name*/) : QWidget(parent), m_SliceInterpolatorController(mitk::SliceBasedInterpolationController::New()), m_ToolManager(nullptr), m_Activated(false), m_DataStorage(nullptr), m_LastSNC(nullptr), m_LastSliceIndex(0) { m_Controls.setupUi(this); m_ToolManager = mitk::ToolManagerProvider::GetInstance()->GetToolManager(mitk::ToolManagerProvider::MULTILABEL_SEGMENTATION); m_ToolManager->WorkingDataChanged += mitk::MessageDelegate( this, &QmitkSliceBasedInterpolatorWidget::OnToolManagerWorkingDataModified); connect(m_Controls.m_btStart, SIGNAL(toggled(bool)), this, SLOT(OnToggleWidgetActivation(bool))); connect(m_Controls.m_btApplyForCurrentSlice, SIGNAL(clicked()), this, SLOT(OnAcceptInterpolationClicked())); connect(m_Controls.m_btApplyForAllSlices, SIGNAL(clicked()), this, SLOT(OnAcceptAllInterpolationsClicked())); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction(this, &QmitkSliceBasedInterpolatorWidget::OnSliceInterpolationInfoChanged); m_InterpolationInfoChangedObserverTag = m_SliceInterpolatorController->AddObserver(itk::ModifiedEvent(), command); // feedback node and its visualization properties m_PreviewNode = mitk::DataNode::New(); m_PreviewNode->SetName("3D tool preview"); m_PreviewNode->SetProperty("texture interpolation", mitk::BoolProperty::New(false)); m_PreviewNode->SetProperty("layer", mitk::IntProperty::New(100)); m_PreviewNode->SetProperty("binary", mitk::BoolProperty::New(true)); m_PreviewNode->SetProperty("outline binary", mitk::BoolProperty::New(true)); m_PreviewNode->SetProperty("outline binary shadow", mitk::BoolProperty::New(true)); m_PreviewNode->SetProperty("helper object", mitk::BoolProperty::New(true)); m_PreviewNode->SetOpacity(1.0); m_PreviewNode->SetColor(0.0, 1.0, 0.0); m_Controls.m_btApplyForCurrentSlice->setEnabled(false); m_Controls.m_btApplyForAllSlices->setEnabled(false); this->setEnabled(false); } QmitkSliceBasedInterpolatorWidget::~QmitkSliceBasedInterpolatorWidget() { m_ToolManager->WorkingDataChanged -= mitk::MessageDelegate( this, &QmitkSliceBasedInterpolatorWidget::OnToolManagerWorkingDataModified); foreach (mitk::SliceNavigationController *slicer, m_ControllerToSliceObserverTag.keys()) { slicer->RemoveObserver(m_ControllerToDeleteObserverTag.take(slicer)); slicer->RemoveObserver(m_ControllerToTimeObserverTag.take(slicer)); slicer->RemoveObserver(m_ControllerToSliceObserverTag.take(slicer)); } m_ActionToSliceDimensionMap.clear(); // remove observer m_SliceInterpolatorController->RemoveObserver(m_InterpolationInfoChangedObserverTag); } const QmitkSliceBasedInterpolatorWidget::ActionToSliceDimensionMapType QmitkSliceBasedInterpolatorWidget::CreateActionToSliceDimension() { ActionToSliceDimensionMapType actionToSliceDimension; foreach (mitk::SliceNavigationController *slicer, m_ControllerToDeleteObserverTag.keys()) { std::string name = slicer->GetRenderer()->GetName(); if (name == "stdmulti.widget0") name = "Axial (red window)"; else if (name == "stdmulti.widget1") name = "Sagittal (green window)"; else if (name == "stdmulti.widget2") name = "Coronal (blue window)"; actionToSliceDimension[new QAction(QString::fromStdString(name), nullptr)] = slicer; } return actionToSliceDimension; } void QmitkSliceBasedInterpolatorWidget::SetDataStorage(mitk::DataStorage &storage) { m_DataStorage = &storage; } void QmitkSliceBasedInterpolatorWidget::SetSliceNavigationControllers( const QList &controllers) { Q_ASSERT(!controllers.empty()); // connect to the slice navigation controller. after each change, call the interpolator foreach (mitk::SliceNavigationController *slicer, controllers) { // Has to be initialized m_LastSNC = slicer; m_TimePoints.insert(slicer, slicer->GetSelectedTimePoint()); itk::MemberCommand::Pointer deleteCommand = itk::MemberCommand::New(); deleteCommand->SetCallbackFunction(this, &QmitkSliceBasedInterpolatorWidget::OnSliceNavigationControllerDeleted); m_ControllerToDeleteObserverTag.insert(slicer, slicer->AddObserver(itk::DeleteEvent(), deleteCommand)); itk::MemberCommand::Pointer timeChangedCommand = itk::MemberCommand::New(); timeChangedCommand->SetCallbackFunction(this, &QmitkSliceBasedInterpolatorWidget::OnTimeChanged); m_ControllerToTimeObserverTag.insert( slicer, slicer->AddObserver(mitk::SliceNavigationController::TimeGeometryEvent(nullptr, 0), timeChangedCommand)); itk::MemberCommand::Pointer sliceChangedCommand = itk::MemberCommand::New(); sliceChangedCommand->SetCallbackFunction(this, &QmitkSliceBasedInterpolatorWidget::OnSliceChanged); m_ControllerToSliceObserverTag.insert( slicer, slicer->AddObserver(mitk::SliceNavigationController::GeometrySliceEvent(nullptr, 0), sliceChangedCommand)); } m_ActionToSliceDimensionMap = this->CreateActionToSliceDimension(); } void QmitkSliceBasedInterpolatorWidget::OnToolManagerWorkingDataModified() { mitk::DataNode *workingNode = this->m_ToolManager->GetWorkingData(0); if (!workingNode) { this->setEnabled(false); return; } mitk::LabelSetImage *workingImage = dynamic_cast(workingNode->GetData()); // TODO adapt tool manager so that this check is done there, e.g. convenience function // Q_ASSERT(workingImage); if (!workingImage) { this->setEnabled(false); return; } if (workingImage->GetDimension() > 4 || workingImage->GetDimension() < 3) { this->setEnabled(false); return; } m_WorkingImage = workingImage; this->setEnabled(true); } void QmitkSliceBasedInterpolatorWidget::OnTimeChanged(itk::Object *sender, const itk::EventObject &e) { // Check if we really have a GeometryTimeEvent if (!dynamic_cast(&e)) return; mitk::SliceNavigationController *slicer = dynamic_cast(sender); Q_ASSERT(slicer); m_TimePoints[slicer] = slicer->GetSelectedTimePoint(); // TODO Macht das hier wirklich Sinn???? if (m_LastSNC == slicer) { slicer->SendSlice(); // will trigger a new interpolation } } void QmitkSliceBasedInterpolatorWidget::OnSliceChanged(itk::Object *sender, const itk::EventObject &e) { if (m_Activated && m_WorkingImage.IsNotNull()) { // Check whether we really have a GeometrySliceEvent if (!dynamic_cast(&e)) return; mitk::SliceNavigationController *slicer = dynamic_cast(sender); if (slicer) { this->TranslateAndInterpolateChangedSlice(e, slicer); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); // slicer->GetRenderer()->RequestUpdate(); } } } void QmitkSliceBasedInterpolatorWidget::TranslateAndInterpolateChangedSlice(const itk::EventObject &e, mitk::SliceNavigationController *slicer) { if (m_Activated && m_WorkingImage.IsNotNull()) { const mitk::SliceNavigationController::GeometrySliceEvent &geometrySliceEvent = dynamic_cast(e); mitk::TimeGeometry *timeGeometry = geometrySliceEvent.GetTimeGeometry(); if (timeGeometry && m_TimePoints.contains(slicer) && timeGeometry->IsValidTimePoint(m_TimePoints[slicer])) { mitk::SlicedGeometry3D *slicedGeometry = dynamic_cast(timeGeometry->GetGeometryForTimePoint(m_TimePoints[slicer]).GetPointer()); if (slicedGeometry) { mitk::PlaneGeometry *plane = slicedGeometry->GetPlaneGeometry(geometrySliceEvent.GetPos()); if (plane) { m_LastSNC = slicer; this->Interpolate(plane, m_TimePoints[slicer], slicer); } } } } } void QmitkSliceBasedInterpolatorWidget::Interpolate(mitk::PlaneGeometry *plane, mitk::TimePointType timePoint, mitk::SliceNavigationController *slicer) { int clickedSliceDimension(-1); int clickedSliceIndex(-1); if (!m_WorkingImage->GetTimeGeometry()->IsValidTimePoint(timePoint)) { MITK_WARN << "Cannot interpolate WorkingImage. Passed time point is not within the time bounds of WorkingImage. Time point: " << timePoint; return; } const auto timeStep = m_WorkingImage->GetTimeGeometry()->TimePointToTimeStep(timePoint); - // calculate real slice position, i.e. slice of the image and not slice of the TimeSlicedGeometry + // calculate real slice position, i.e. slice of the image // see if timestep is needed here mitk::SegTool2D::DetermineAffectedImageSlice(m_WorkingImage, plane, clickedSliceDimension, clickedSliceIndex); mitk::Image::Pointer interpolation = m_SliceInterpolatorController->Interpolate(clickedSliceDimension, clickedSliceIndex, plane, timeStep); m_PreviewNode->SetData(interpolation); const mitk::Color &color = m_WorkingImage->GetActiveLabel()->GetColor(); m_PreviewNode->SetColor(color); m_LastSNC = slicer; m_LastSliceIndex = clickedSliceIndex; } mitk::Image::Pointer QmitkSliceBasedInterpolatorWidget::GetWorkingSlice(const mitk::PlaneGeometry *planeGeometry) { const auto timePoint = m_LastSNC->GetSelectedTimePoint(); if (!m_WorkingImage->GetTimeGeometry()->IsValidTimePoint(timePoint)) { MITK_WARN << "Cannot get slice of WorkingImage. Time point selected by SliceNavigationController is not within the time bounds of WorkingImage. Time point: " << timePoint; return nullptr; } // Make sure that for reslicing and overwriting the same alogrithm is used. We can specify the mode of the vtk // reslicer vtkSmartPointer reslice = vtkSmartPointer::New(); // set to false to extract a slice reslice->SetOverwriteMode(false); reslice->Modified(); // use ExtractSliceFilter with our specific vtkImageReslice for overwriting and extracting mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(reslice); extractor->SetInput(m_WorkingImage); const auto timeStep = m_WorkingImage->GetTimeGeometry()->TimePointToTimeStep(timePoint); extractor->SetTimeStep(timeStep); extractor->SetWorldGeometry(planeGeometry); extractor->SetVtkOutputRequest(false); extractor->SetResliceTransformByGeometry(m_WorkingImage->GetTimeGeometry()->GetGeometryForTimeStep(timeStep)); extractor->Modified(); try { extractor->Update(); } catch (itk::ExceptionObject &excep) { MITK_ERROR << "Exception caught: " << excep.GetDescription(); return nullptr; } mitk::Image::Pointer slice = extractor->GetOutput(); // specify the undo operation with the non edited slice // MLI TODO added code starts here mitk::SlicedGeometry3D *sliceGeometry = dynamic_cast(slice->GetGeometry()); // m_undoOperation = new mitk::DiffSliceOperation(m_WorkingImage, extractor->GetVtkOutput(), slice->GetGeometry(), // timeStep, const_cast(planeGeometry)); // added code ends here m_undoOperation = new mitk::DiffSliceOperation( m_WorkingImage, extractor->GetOutput(), sliceGeometry, timeStep, const_cast(planeGeometry)); slice->DisconnectPipeline(); return slice; } void QmitkSliceBasedInterpolatorWidget::OnToggleWidgetActivation(bool enabled) { Q_ASSERT(m_ToolManager); mitk::DataNode *workingNode = m_ToolManager->GetWorkingData(0); if (!workingNode) return; m_Controls.m_btApplyForCurrentSlice->setEnabled(enabled); m_Controls.m_btApplyForAllSlices->setEnabled(enabled); if (enabled) m_Controls.m_btStart->setText("Stop"); else m_Controls.m_btStart->setText("Start"); unsigned int numberOfExistingTools = m_ToolManager->GetTools().size(); for (unsigned int i = 0; i < numberOfExistingTools; i++) { // mitk::SegTool2D* tool = dynamic_cast(m_ToolManager->GetToolById(i)); // MLI TODO // if (tool) tool->SetEnable2DInterpolation( enabled ); } if (enabled) { if (!m_DataStorage->Exists(m_PreviewNode)) { m_DataStorage->Add(m_PreviewNode); } m_SliceInterpolatorController->SetWorkingImage(m_WorkingImage); this->UpdateVisibleSuggestion(); } else { if (m_DataStorage->Exists(m_PreviewNode)) { m_DataStorage->Remove(m_PreviewNode); } mitk::UndoController::GetCurrentUndoModel()->Clear(); } m_Activated = enabled; mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } template void QmitkSliceBasedInterpolatorWidget::WritePreviewOnWorkingImage(itk::Image *targetSlice, const mitk::Image *sourceSlice, int overwritevalue) { typedef itk::Image ImageType; typename ImageType::Pointer sourceSliceITK; mitk::CastToItkImage(sourceSlice, sourceSliceITK); // now the original slice and the ipSegmentation-painted slice are in the same format, and we can just copy all pixels // that are non-zero typedef itk::ImageRegionIterator OutputIteratorType; typedef itk::ImageRegionConstIterator InputIteratorType; InputIteratorType inputIterator(sourceSliceITK, sourceSliceITK->GetLargestPossibleRegion()); OutputIteratorType outputIterator(targetSlice, targetSlice->GetLargestPossibleRegion()); outputIterator.GoToBegin(); inputIterator.GoToBegin(); int activePixelValue = m_WorkingImage->GetActiveLabel()->GetValue(); if (activePixelValue == 0) // if exterior is the active label { while (!outputIterator.IsAtEnd()) { if (inputIterator.Get() != 0) { outputIterator.Set(overwritevalue); } ++outputIterator; ++inputIterator; } } else if (overwritevalue != 0) // if we are not erasing { while (!outputIterator.IsAtEnd()) { int targetValue = static_cast(outputIterator.Get()); if (inputIterator.Get() != 0) { if (!m_WorkingImage->GetLabel(targetValue)->GetLocked()) outputIterator.Set(overwritevalue); } ++outputIterator; ++inputIterator; } } else // if we are erasing { while (!outputIterator.IsAtEnd()) { const int targetValue = outputIterator.Get(); if (inputIterator.Get() != 0) { if (targetValue == activePixelValue) outputIterator.Set(overwritevalue); } ++outputIterator; ++inputIterator; } } } void QmitkSliceBasedInterpolatorWidget::OnAcceptInterpolationClicked() { if (m_WorkingImage.IsNotNull() && m_PreviewNode->GetData()) { const mitk::PlaneGeometry *planeGeometry = m_LastSNC->GetCurrentPlaneGeometry(); if (!planeGeometry) return; mitk::Image::Pointer sliceImage = this->GetWorkingSlice(planeGeometry); if (sliceImage.IsNull()) return; mitk::Image::Pointer previewSlice = dynamic_cast(m_PreviewNode->GetData()); AccessFixedDimensionByItk_2( sliceImage, WritePreviewOnWorkingImage, 2, previewSlice, m_WorkingImage->GetActiveLabel()->GetValue()); // Make sure that for reslicing and overwriting the same alogrithm is used. We can specify the mode of the vtk // reslicer vtkSmartPointer overwrite = vtkSmartPointer::New(); overwrite->SetInputSlice(sliceImage->GetVtkImageData()); // set overwrite mode to true to write back to the image volume overwrite->SetOverwriteMode(true); overwrite->Modified(); const auto timePoint = m_LastSNC->GetSelectedTimePoint(); if (!m_WorkingImage->GetTimeGeometry()->IsValidTimePoint(timePoint)) { MITK_WARN << "Cannot accept interpolation. Time point selected by SliceNavigationController is not within the time bounds of WorkingImage. Time point: " << timePoint; return; } mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(overwrite); extractor->SetInput(m_WorkingImage); const auto timeStep = m_WorkingImage->GetTimeGeometry()->TimePointToTimeStep(timePoint); extractor->SetTimeStep(timeStep); extractor->SetWorldGeometry(planeGeometry); extractor->SetVtkOutputRequest(false); extractor->SetResliceTransformByGeometry(m_WorkingImage->GetTimeGeometry()->GetGeometryForTimeStep(timeStep)); extractor->Modified(); try { extractor->Update(); } catch (itk::ExceptionObject &excep) { MITK_ERROR << "Exception caught: " << excep.GetDescription(); return; } // the image was modified within the pipeline, but not marked so m_WorkingImage->Modified(); int clickedSliceDimension(-1); int clickedSliceIndex(-1); mitk::SegTool2D::DetermineAffectedImageSlice( m_WorkingImage, planeGeometry, clickedSliceDimension, clickedSliceIndex); m_SliceInterpolatorController->SetChangedSlice(sliceImage, clickedSliceDimension, clickedSliceIndex, timeStep); // specify the undo operation with the edited slice // MLI TODO added code starts here mitk::SlicedGeometry3D *sliceGeometry = dynamic_cast(sliceImage->GetGeometry()); // m_undoOperation = new mitk::DiffSliceOperation(m_WorkingImage, extractor->GetVtkOutput(), slice->GetGeometry(), // timeStep, const_cast(planeGeometry)); // added code ends here m_doOperation = new mitk::DiffSliceOperation(m_WorkingImage, extractor->GetOutput(), sliceGeometry, timeStep, const_cast(planeGeometry)); // create an operation event for the undo stack mitk::OperationEvent *undoStackItem = new mitk::OperationEvent( mitk::DiffSliceOperationApplier::GetInstance(), m_doOperation, m_undoOperation, "Slice Interpolation"); // add it to the undo controller mitk::UndoController::GetCurrentUndoModel()->SetOperationEvent(undoStackItem); // clear the pointers as the operation are stored in the undo controller and also deleted from there m_undoOperation = nullptr; m_doOperation = nullptr; m_PreviewNode->SetData(nullptr); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkSliceBasedInterpolatorWidget::AcceptAllInterpolations(mitk::SliceNavigationController *slicer) { // Since we need to shift the plane it must be clone so that the original plane isn't altered mitk::PlaneGeometry::Pointer reslicePlane = slicer->GetCurrentPlaneGeometry()->Clone(); const auto timePoint = slicer->GetSelectedTimePoint(); if (!m_WorkingImage->GetTimeGeometry()->IsValidTimePoint(timePoint)) { MITK_WARN << "Cannot accept all interpolations. Time point selected by SliceNavigationController is not within the time bounds of WorkingImage. Time point: " << timePoint; return; } const auto timeStep = m_WorkingImage->GetTimeGeometry()->TimePointToTimeStep(timePoint); int sliceDimension(-1); int sliceIndex(-1); mitk::SegTool2D::DetermineAffectedImageSlice(m_WorkingImage, reslicePlane, sliceDimension, sliceIndex); unsigned int zslices = m_WorkingImage->GetDimension(sliceDimension); mitk::ProgressBar::GetInstance()->Reset(); mitk::ProgressBar::GetInstance()->AddStepsToDo(zslices); mitk::Point3D origin = reslicePlane->GetOrigin(); for (unsigned int idx = 0; idx < zslices; ++idx) { // Transforming the current origin of the reslice plane // so that it matches the one of the next slice m_WorkingImage->GetSlicedGeometry()->WorldToIndex(origin, origin); origin[sliceDimension] = idx; m_WorkingImage->GetSlicedGeometry()->IndexToWorld(origin, origin); reslicePlane->SetOrigin(origin); mitk::Image::Pointer interpolation = m_SliceInterpolatorController->Interpolate(sliceDimension, idx, reslicePlane, timeStep); if (interpolation.IsNotNull()) { m_PreviewNode->SetData(interpolation); mitk::Image::Pointer sliceImage = this->GetWorkingSlice(reslicePlane); if (sliceImage.IsNull()) return; AccessFixedDimensionByItk_2( sliceImage, WritePreviewOnWorkingImage, 2, interpolation, m_WorkingImage->GetActiveLabel()->GetValue()); // Make sure that for reslicing and overwriting the same alogrithm is used. We can specify the mode of the vtk // reslicer vtkSmartPointer overwrite = vtkSmartPointer::New(); overwrite->SetInputSlice(sliceImage->GetVtkImageData()); // set overwrite mode to true to write back to the image volume overwrite->SetOverwriteMode(true); overwrite->Modified(); mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(overwrite); extractor->SetInput(m_WorkingImage); extractor->SetTimeStep(timeStep); extractor->SetWorldGeometry(reslicePlane); extractor->SetVtkOutputRequest(true); extractor->SetResliceTransformByGeometry(m_WorkingImage->GetTimeGeometry()->GetGeometryForTimeStep(timeStep)); extractor->Modified(); try { extractor->Update(); } catch (itk::ExceptionObject &excep) { MITK_ERROR << "Exception caught: " << excep.GetDescription(); return; } m_WorkingImage->Modified(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(mitk::RenderingManager::REQUEST_UPDATE_2DWINDOWS); } mitk::ProgressBar::GetInstance()->Progress(); } m_SliceInterpolatorController->SetWorkingImage(m_WorkingImage); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkSliceBasedInterpolatorWidget::OnAcceptAllInterpolationsClicked() { QMenu orientationPopup(this); std::map::const_iterator it; for (it = m_ActionToSliceDimensionMap.begin(); it != m_ActionToSliceDimensionMap.end(); it++) orientationPopup.addAction(it->first); connect(&orientationPopup, SIGNAL(triggered(QAction *)), this, SLOT(OnAcceptAllPopupActivated(QAction *))); orientationPopup.exec(QCursor::pos()); } void QmitkSliceBasedInterpolatorWidget::OnAcceptAllPopupActivated(QAction *action) { ActionToSliceDimensionMapType::const_iterator iter = m_ActionToSliceDimensionMap.find(action); if (iter != m_ActionToSliceDimensionMap.end()) { mitk::SliceNavigationController *slicer = iter->second; this->AcceptAllInterpolations(slicer); } } void QmitkSliceBasedInterpolatorWidget::UpdateVisibleSuggestion() { if (m_Activated && m_LastSNC) { // determine which one is the current view, try to do an initial interpolation mitk::BaseRenderer *renderer = m_LastSNC->GetRenderer(); if (renderer && renderer->GetMapperID() == mitk::BaseRenderer::Standard2D) { const mitk::TimeGeometry *timeGeometry = dynamic_cast(renderer->GetWorldTimeGeometry()); if (timeGeometry) { mitk::SliceNavigationController::GeometrySliceEvent event(const_cast(timeGeometry), renderer->GetSlice()); this->TranslateAndInterpolateChangedSlice(event, m_LastSNC); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } } } void QmitkSliceBasedInterpolatorWidget::OnSliceInterpolationInfoChanged(const itk::EventObject & /*e*/) { // something (e.g. undo) changed the interpolation info, we should refresh our display this->UpdateVisibleSuggestion(); } void QmitkSliceBasedInterpolatorWidget::OnSliceNavigationControllerDeleted(const itk::Object *sender, const itk::EventObject & /*e*/) { // Don't know how to avoid const_cast here?! mitk::SliceNavigationController *slicer = dynamic_cast(const_cast(sender)); if (slicer) { m_ControllerToTimeObserverTag.remove(slicer); m_ControllerToSliceObserverTag.remove(slicer); m_ControllerToDeleteObserverTag.remove(slicer); } } void QmitkSliceBasedInterpolatorWidget::WaitCursorOn() { QApplication::setOverrideCursor(QCursor(Qt::WaitCursor)); } void QmitkSliceBasedInterpolatorWidget::WaitCursorOff() { this->RestoreOverrideCursor(); } void QmitkSliceBasedInterpolatorWidget::RestoreOverrideCursor() { QApplication::restoreOverrideCursor(); } diff --git a/Modules/SegmentationUI/Qmitk/QmitkSlicesInterpolator.cpp b/Modules/SegmentationUI/Qmitk/QmitkSlicesInterpolator.cpp index 6820efbc3b..8353719169 100644 --- a/Modules/SegmentationUI/Qmitk/QmitkSlicesInterpolator.cpp +++ b/Modules/SegmentationUI/Qmitk/QmitkSlicesInterpolator.cpp @@ -1,1405 +1,1405 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "QmitkSlicesInterpolator.h" #include "QmitkSelectableGLWidget.h" #include "QmitkStdMultiWidget.h" #include "mitkApplyDiffImageOperation.h" #include "mitkColorProperty.h" #include "mitkCoreObjectFactory.h" #include "mitkDiffImageApplier.h" #include "mitkInteractionConst.h" #include "mitkLevelWindowProperty.h" #include "mitkOperationEvent.h" #include "mitkOverwriteSliceImageFilter.h" #include "mitkProgressBar.h" #include "mitkProperties.h" #include "mitkRenderingManager.h" #include "mitkSegTool2D.h" #include "mitkSliceNavigationController.h" #include "mitkSurfaceToImageFilter.h" #include "mitkToolManager.h" #include "mitkUndoController.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { template itk::SmartPointer GetData(const mitk::DataNode* dataNode) { return nullptr != dataNode ? dynamic_cast(dataNode->GetData()) : nullptr; } } float SURFACE_COLOR_RGB[3] = {0.49f, 1.0f, 0.16f}; const std::map QmitkSlicesInterpolator::createActionToSliceDimension() { std::map actionToSliceDimension; foreach (mitk::SliceNavigationController *slicer, m_ControllerToDeleteObserverTag.keys()) { actionToSliceDimension[new QAction(QString::fromStdString(slicer->GetViewDirectionAsString()), nullptr)] = slicer; } return actionToSliceDimension; } QmitkSlicesInterpolator::QmitkSlicesInterpolator(QWidget *parent, const char * /*name*/) : QWidget(parent), // ACTION_TO_SLICEDIMENSION( createActionToSliceDimension() ), m_Interpolator(mitk::SegmentationInterpolationController::New()), m_SurfaceInterpolator(mitk::SurfaceInterpolationController::GetInstance()), m_ToolManager(nullptr), m_Initialized(false), m_LastSNC(nullptr), m_LastSliceIndex(0), m_2DInterpolationEnabled(false), m_3DInterpolationEnabled(false), m_FirstRun(true) { m_GroupBoxEnableExclusiveInterpolationMode = new QGroupBox("Interpolation", this); QVBoxLayout *vboxLayout = new QVBoxLayout(m_GroupBoxEnableExclusiveInterpolationMode); m_EdgeDetector = mitk::FeatureBasedEdgeDetectionFilter::New(); m_PointScorer = mitk::PointCloudScoringFilter::New(); m_CmbInterpolation = new QComboBox(m_GroupBoxEnableExclusiveInterpolationMode); m_CmbInterpolation->addItem("Disabled"); m_CmbInterpolation->addItem("2-Dimensional"); m_CmbInterpolation->addItem("3-Dimensional"); vboxLayout->addWidget(m_CmbInterpolation); m_BtnApply2D = new QPushButton("Confirm for single slice", m_GroupBoxEnableExclusiveInterpolationMode); vboxLayout->addWidget(m_BtnApply2D); m_BtnApplyForAllSlices2D = new QPushButton("Confirm for all slices", m_GroupBoxEnableExclusiveInterpolationMode); vboxLayout->addWidget(m_BtnApplyForAllSlices2D); m_BtnApply3D = new QPushButton("Confirm", m_GroupBoxEnableExclusiveInterpolationMode); vboxLayout->addWidget(m_BtnApply3D); // T28261 // m_BtnSuggestPlane = new QPushButton("Suggest a plane", m_GroupBoxEnableExclusiveInterpolationMode); // vboxLayout->addWidget(m_BtnSuggestPlane); m_BtnReinit3DInterpolation = new QPushButton("Reinit Interpolation", m_GroupBoxEnableExclusiveInterpolationMode); vboxLayout->addWidget(m_BtnReinit3DInterpolation); m_ChkShowPositionNodes = new QCheckBox("Show Position Nodes", m_GroupBoxEnableExclusiveInterpolationMode); vboxLayout->addWidget(m_ChkShowPositionNodes); this->HideAllInterpolationControls(); connect(m_CmbInterpolation, SIGNAL(currentIndexChanged(int)), this, SLOT(OnInterpolationMethodChanged(int))); connect(m_BtnApply2D, SIGNAL(clicked()), this, SLOT(OnAcceptInterpolationClicked())); connect(m_BtnApplyForAllSlices2D, SIGNAL(clicked()), this, SLOT(OnAcceptAllInterpolationsClicked())); connect(m_BtnApply3D, SIGNAL(clicked()), this, SLOT(OnAccept3DInterpolationClicked())); // T28261 // connect(m_BtnSuggestPlane, SIGNAL(clicked()), this, SLOT(OnSuggestPlaneClicked())); connect(m_BtnReinit3DInterpolation, SIGNAL(clicked()), this, SLOT(OnReinit3DInterpolation())); connect(m_ChkShowPositionNodes, SIGNAL(toggled(bool)), this, SLOT(OnShowMarkers(bool))); connect(m_ChkShowPositionNodes, SIGNAL(toggled(bool)), this, SIGNAL(SignalShowMarkerNodes(bool))); QHBoxLayout *layout = new QHBoxLayout(this); layout->addWidget(m_GroupBoxEnableExclusiveInterpolationMode); this->setLayout(layout); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction(this, &QmitkSlicesInterpolator::OnInterpolationInfoChanged); InterpolationInfoChangedObserverTag = m_Interpolator->AddObserver(itk::ModifiedEvent(), command); itk::ReceptorMemberCommand::Pointer command2 = itk::ReceptorMemberCommand::New(); command2->SetCallbackFunction(this, &QmitkSlicesInterpolator::OnSurfaceInterpolationInfoChanged); SurfaceInterpolationInfoChangedObserverTag = m_SurfaceInterpolator->AddObserver(itk::ModifiedEvent(), command2); // feedback node and its visualization properties m_FeedbackNode = mitk::DataNode::New(); mitk::CoreObjectFactory::GetInstance()->SetDefaultProperties(m_FeedbackNode); m_FeedbackNode->SetProperty("binary", mitk::BoolProperty::New(true)); m_FeedbackNode->SetProperty("outline binary", mitk::BoolProperty::New(true)); m_FeedbackNode->SetProperty("color", mitk::ColorProperty::New(255.0, 255.0, 0.0)); m_FeedbackNode->SetProperty("texture interpolation", mitk::BoolProperty::New(false)); m_FeedbackNode->SetProperty("layer", mitk::IntProperty::New(20)); m_FeedbackNode->SetProperty("levelwindow", mitk::LevelWindowProperty::New(mitk::LevelWindow(0, 1))); m_FeedbackNode->SetProperty("name", mitk::StringProperty::New("Interpolation feedback")); m_FeedbackNode->SetProperty("opacity", mitk::FloatProperty::New(0.8)); m_FeedbackNode->SetProperty("helper object", mitk::BoolProperty::New(true)); m_InterpolatedSurfaceNode = mitk::DataNode::New(); m_InterpolatedSurfaceNode->SetProperty("color", mitk::ColorProperty::New(SURFACE_COLOR_RGB)); m_InterpolatedSurfaceNode->SetProperty("name", mitk::StringProperty::New("Surface Interpolation feedback")); m_InterpolatedSurfaceNode->SetProperty("opacity", mitk::FloatProperty::New(0.5)); m_InterpolatedSurfaceNode->SetProperty("line width", mitk::FloatProperty::New(4.0f)); m_InterpolatedSurfaceNode->SetProperty("includeInBoundingBox", mitk::BoolProperty::New(false)); m_InterpolatedSurfaceNode->SetProperty("helper object", mitk::BoolProperty::New(true)); m_InterpolatedSurfaceNode->SetVisibility(false); m_3DContourNode = mitk::DataNode::New(); m_3DContourNode->SetProperty("color", mitk::ColorProperty::New(0.0, 0.0, 0.0)); m_3DContourNode->SetProperty("hidden object", mitk::BoolProperty::New(true)); m_3DContourNode->SetProperty("name", mitk::StringProperty::New("Drawn Contours")); m_3DContourNode->SetProperty("material.representation", mitk::VtkRepresentationProperty::New(VTK_WIREFRAME)); m_3DContourNode->SetProperty("material.wireframeLineWidth", mitk::FloatProperty::New(2.0f)); m_3DContourNode->SetProperty("3DContourContainer", mitk::BoolProperty::New(true)); m_3DContourNode->SetProperty("includeInBoundingBox", mitk::BoolProperty::New(false)); m_3DContourNode->SetVisibility( false, mitk::BaseRenderer::GetInstance(mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget0"))); m_3DContourNode->SetVisibility( false, mitk::BaseRenderer::GetInstance(mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget1"))); m_3DContourNode->SetVisibility( false, mitk::BaseRenderer::GetInstance(mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget2"))); m_3DContourNode->SetVisibility( false, mitk::BaseRenderer::GetInstance(mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget3"))); QWidget::setContentsMargins(0, 0, 0, 0); if (QWidget::layout() != nullptr) { QWidget::layout()->setContentsMargins(0, 0, 0, 0); } // For running 3D Interpolation in background // create a QFuture and a QFutureWatcher connect(&m_Watcher, SIGNAL(started()), this, SLOT(StartUpdateInterpolationTimer())); connect(&m_Watcher, SIGNAL(finished()), this, SLOT(OnSurfaceInterpolationFinished())); connect(&m_Watcher, SIGNAL(finished()), this, SLOT(StopUpdateInterpolationTimer())); m_Timer = new QTimer(this); connect(m_Timer, SIGNAL(timeout()), this, SLOT(ChangeSurfaceColor())); } void QmitkSlicesInterpolator::SetDataStorage(mitk::DataStorage::Pointer storage) { if (m_DataStorage == storage) { return; } if (m_DataStorage.IsNotNull()) { m_DataStorage->RemoveNodeEvent.RemoveListener( mitk::MessageDelegate1(this, &QmitkSlicesInterpolator::NodeRemoved) ); } m_DataStorage = storage; m_SurfaceInterpolator->SetDataStorage(storage); if (m_DataStorage.IsNotNull()) { m_DataStorage->RemoveNodeEvent.AddListener( mitk::MessageDelegate1(this, &QmitkSlicesInterpolator::NodeRemoved) ); } } mitk::DataStorage *QmitkSlicesInterpolator::GetDataStorage() { if (m_DataStorage.IsNotNull()) { return m_DataStorage; } else { return nullptr; } } void QmitkSlicesInterpolator::Initialize(mitk::ToolManager *toolManager, const QList &controllers) { Q_ASSERT(!controllers.empty()); if (m_Initialized) { // remove old observers Uninitialize(); } m_ToolManager = toolManager; if (m_ToolManager) { // set enabled only if a segmentation is selected mitk::DataNode *node = m_ToolManager->GetWorkingData(0); QWidget::setEnabled(node != nullptr); // react whenever the set of selected segmentation changes m_ToolManager->WorkingDataChanged += mitk::MessageDelegate(this, &QmitkSlicesInterpolator::OnToolManagerWorkingDataModified); m_ToolManager->ReferenceDataChanged += mitk::MessageDelegate( this, &QmitkSlicesInterpolator::OnToolManagerReferenceDataModified); // connect to the slice navigation controller. after each change, call the interpolator foreach (mitk::SliceNavigationController *slicer, controllers) { // Has to be initialized m_LastSNC = slicer; m_TimePoints.insert(slicer, slicer->GetSelectedTimePoint()); itk::MemberCommand::Pointer deleteCommand = itk::MemberCommand::New(); deleteCommand->SetCallbackFunction(this, &QmitkSlicesInterpolator::OnSliceNavigationControllerDeleted); m_ControllerToDeleteObserverTag.insert(slicer, slicer->AddObserver(itk::DeleteEvent(), deleteCommand)); itk::MemberCommand::Pointer timeChangedCommand = itk::MemberCommand::New(); timeChangedCommand->SetCallbackFunction(this, &QmitkSlicesInterpolator::OnTimeChanged); m_ControllerToTimeObserverTag.insert( slicer, slicer->AddObserver(mitk::SliceNavigationController::TimeGeometryEvent(nullptr, 0), timeChangedCommand)); itk::MemberCommand::Pointer sliceChangedCommand = itk::MemberCommand::New(); sliceChangedCommand->SetCallbackFunction(this, &QmitkSlicesInterpolator::OnSliceChanged); m_ControllerToSliceObserverTag.insert( slicer, slicer->AddObserver(mitk::SliceNavigationController::GeometrySliceEvent(nullptr, 0), sliceChangedCommand)); } ACTION_TO_SLICEDIMENSION = createActionToSliceDimension(); } m_Initialized = true; } void QmitkSlicesInterpolator::Uninitialize() { if (m_ToolManager.IsNotNull()) { m_ToolManager->WorkingDataChanged -= mitk::MessageDelegate(this, &QmitkSlicesInterpolator::OnToolManagerWorkingDataModified); m_ToolManager->ReferenceDataChanged -= mitk::MessageDelegate( this, &QmitkSlicesInterpolator::OnToolManagerReferenceDataModified); } foreach (mitk::SliceNavigationController *slicer, m_ControllerToSliceObserverTag.keys()) { slicer->RemoveObserver(m_ControllerToDeleteObserverTag.take(slicer)); slicer->RemoveObserver(m_ControllerToTimeObserverTag.take(slicer)); slicer->RemoveObserver(m_ControllerToSliceObserverTag.take(slicer)); } ACTION_TO_SLICEDIMENSION.clear(); m_ToolManager = nullptr; m_Initialized = false; } QmitkSlicesInterpolator::~QmitkSlicesInterpolator() { if (m_Initialized) { // remove old observers Uninitialize(); } WaitForFutures(); if (m_DataStorage.IsNotNull()) { m_DataStorage->RemoveNodeEvent.RemoveListener( mitk::MessageDelegate1(this, &QmitkSlicesInterpolator::NodeRemoved) ); if (m_DataStorage->Exists(m_3DContourNode)) m_DataStorage->Remove(m_3DContourNode); if (m_DataStorage->Exists(m_InterpolatedSurfaceNode)) m_DataStorage->Remove(m_InterpolatedSurfaceNode); } // remove observer m_Interpolator->RemoveObserver(InterpolationInfoChangedObserverTag); m_SurfaceInterpolator->RemoveObserver(SurfaceInterpolationInfoChangedObserverTag); delete m_Timer; } /** External enableization... */ void QmitkSlicesInterpolator::setEnabled(bool enable) { QWidget::setEnabled(enable); // Set the gui elements of the different interpolation modi enabled if (enable) { if (m_2DInterpolationEnabled) { this->Show2DInterpolationControls(true); m_Interpolator->Activate2DInterpolation(true); } else if (m_3DInterpolationEnabled) { this->Show3DInterpolationControls(true); this->Show3DInterpolationResult(true); } } // Set all gui elements of the interpolation disabled else { this->HideAllInterpolationControls(); this->Show3DInterpolationResult(false); } } void QmitkSlicesInterpolator::On2DInterpolationEnabled(bool status) { OnInterpolationActivated(status); m_Interpolator->Activate2DInterpolation(status); } void QmitkSlicesInterpolator::On3DInterpolationEnabled(bool status) { On3DInterpolationActivated(status); } void QmitkSlicesInterpolator::OnInterpolationDisabled(bool status) { if (status) { OnInterpolationActivated(!status); On3DInterpolationActivated(!status); this->Show3DInterpolationResult(false); } } void QmitkSlicesInterpolator::HideAllInterpolationControls() { this->Show2DInterpolationControls(false); this->Show3DInterpolationControls(false); } void QmitkSlicesInterpolator::Show2DInterpolationControls(bool show) { m_BtnApply2D->setVisible(show); m_BtnApplyForAllSlices2D->setVisible(show); } void QmitkSlicesInterpolator::Show3DInterpolationControls(bool show) { m_BtnApply3D->setVisible(show); // T28261 // m_BtnSuggestPlane->setVisible(show); m_ChkShowPositionNodes->setVisible(show); m_BtnReinit3DInterpolation->setVisible(show); } void QmitkSlicesInterpolator::OnInterpolationMethodChanged(int index) { switch (index) { case 0: // Disabled m_GroupBoxEnableExclusiveInterpolationMode->setTitle("Interpolation"); this->HideAllInterpolationControls(); this->OnInterpolationActivated(false); this->On3DInterpolationActivated(false); this->Show3DInterpolationResult(false); m_Interpolator->Activate2DInterpolation(false); break; case 1: // 2D m_GroupBoxEnableExclusiveInterpolationMode->setTitle("Interpolation (Enabled)"); this->HideAllInterpolationControls(); this->Show2DInterpolationControls(true); this->OnInterpolationActivated(true); this->On3DInterpolationActivated(false); m_Interpolator->Activate2DInterpolation(true); break; case 2: // 3D m_GroupBoxEnableExclusiveInterpolationMode->setTitle("Interpolation (Enabled)"); this->HideAllInterpolationControls(); this->Show3DInterpolationControls(true); this->OnInterpolationActivated(false); this->On3DInterpolationActivated(true); m_Interpolator->Activate2DInterpolation(false); break; default: MITK_ERROR << "Unknown interpolation method!"; m_CmbInterpolation->setCurrentIndex(0); break; } } void QmitkSlicesInterpolator::OnShowMarkers(bool state) { mitk::DataStorage::SetOfObjects::ConstPointer allContourMarkers = m_DataStorage->GetSubset(mitk::NodePredicateProperty::New("isContourMarker", mitk::BoolProperty::New(true))); for (mitk::DataStorage::SetOfObjects::ConstIterator it = allContourMarkers->Begin(); it != allContourMarkers->End(); ++it) { it->Value()->SetProperty("helper object", mitk::BoolProperty::New(!state)); } } void QmitkSlicesInterpolator::OnToolManagerWorkingDataModified() { if (m_ToolManager->GetWorkingData(0) != nullptr) { m_Segmentation = dynamic_cast(m_ToolManager->GetWorkingData(0)->GetData()); m_BtnReinit3DInterpolation->setEnabled(true); } else { // If no workingdata is set, remove the interpolation feedback this->GetDataStorage()->Remove(m_FeedbackNode); m_FeedbackNode->SetData(nullptr); this->GetDataStorage()->Remove(m_3DContourNode); m_3DContourNode->SetData(nullptr); this->GetDataStorage()->Remove(m_InterpolatedSurfaceNode); m_InterpolatedSurfaceNode->SetData(nullptr); m_BtnReinit3DInterpolation->setEnabled(false); return; } // Updating the current selected segmentation for the 3D interpolation SetCurrentContourListID(); if (m_2DInterpolationEnabled) { OnInterpolationActivated(true); // re-initialize if needed } this->CheckSupportedImageDimension(); } void QmitkSlicesInterpolator::OnToolManagerReferenceDataModified() { } void QmitkSlicesInterpolator::OnTimeChanged(itk::Object *sender, const itk::EventObject &e) { // Check if we really have a GeometryTimeEvent if (!dynamic_cast(&e)) return; mitk::SliceNavigationController *slicer = dynamic_cast(sender); Q_ASSERT(slicer); const auto timePoint = slicer->GetSelectedTimePoint(); m_TimePoints[slicer] = timePoint; m_SurfaceInterpolator->SetCurrentTimePoint(timePoint); if (m_LastSNC == slicer) { slicer->SendSlice(); // will trigger a new interpolation } } void QmitkSlicesInterpolator::OnSliceChanged(itk::Object *sender, const itk::EventObject &e) { // Check whether we really have a GeometrySliceEvent if (!dynamic_cast(&e)) return; mitk::SliceNavigationController *slicer = dynamic_cast(sender); if (TranslateAndInterpolateChangedSlice(e, slicer)) { slicer->GetRenderer()->RequestUpdate(); } } bool QmitkSlicesInterpolator::TranslateAndInterpolateChangedSlice(const itk::EventObject &e, mitk::SliceNavigationController *slicer) { if (!m_2DInterpolationEnabled) return false; try { const mitk::SliceNavigationController::GeometrySliceEvent &event = dynamic_cast(e); mitk::TimeGeometry *tsg = event.GetTimeGeometry(); if (tsg && m_TimePoints.contains(slicer) && tsg->IsValidTimePoint(m_TimePoints[slicer])) { mitk::SlicedGeometry3D *slicedGeometry = dynamic_cast(tsg->GetGeometryForTimePoint(m_TimePoints[slicer]).GetPointer()); if (slicedGeometry) { m_LastSNC = slicer; mitk::PlaneGeometry *plane = dynamic_cast(slicedGeometry->GetPlaneGeometry(event.GetPos())); if (plane) Interpolate(plane, m_TimePoints[slicer], slicer); return true; } } } catch (const std::bad_cast &) { return false; // so what } return false; } void QmitkSlicesInterpolator::Interpolate(mitk::PlaneGeometry *plane, mitk::TimePointType timePoint, mitk::SliceNavigationController *slicer) { if (m_ToolManager) { mitk::DataNode *node = m_ToolManager->GetWorkingData(0); if (node) { m_Segmentation = dynamic_cast(node->GetData()); if (m_Segmentation) { if (!m_Segmentation->GetTimeGeometry()->IsValidTimePoint(timePoint)) { MITK_WARN << "Cannot interpolate segmentation. Passed time point is not within the time bounds of WorkingImage. Time point: " << timePoint; return; } const auto timeStep = m_Segmentation->GetTimeGeometry()->TimePointToTimeStep(timePoint); int clickedSliceDimension(-1); int clickedSliceIndex(-1); - // calculate real slice position, i.e. slice of the image and not slice of the TimeSlicedGeometry + // calculate real slice position, i.e. slice of the image mitk::SegTool2D::DetermineAffectedImageSlice(m_Segmentation, plane, clickedSliceDimension, clickedSliceIndex); mitk::Image::Pointer interpolation = m_Interpolator->Interpolate(clickedSliceDimension, clickedSliceIndex, plane, timeStep); m_FeedbackNode->SetData(interpolation); m_LastSNC = slicer; m_LastSliceIndex = clickedSliceIndex; } } } } void QmitkSlicesInterpolator::OnSurfaceInterpolationFinished() { mitk::Surface::Pointer interpolatedSurface = m_SurfaceInterpolator->GetInterpolationResult(); mitk::DataNode *workingNode = m_ToolManager->GetWorkingData(0); if (interpolatedSurface.IsNotNull() && workingNode && workingNode->IsVisible( mitk::BaseRenderer::GetInstance(mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget2")))) { m_BtnApply3D->setEnabled(true); // T28261 // m_BtnSuggestPlane->setEnabled(true); m_InterpolatedSurfaceNode->SetData(interpolatedSurface); m_3DContourNode->SetData(m_SurfaceInterpolator->GetContoursAsSurface()); this->Show3DInterpolationResult(true); if (!m_DataStorage->Exists(m_InterpolatedSurfaceNode)) { m_DataStorage->Add(m_InterpolatedSurfaceNode); } if (!m_DataStorage->Exists(m_3DContourNode)) { m_DataStorage->Add(m_3DContourNode, workingNode); } } else if (interpolatedSurface.IsNull()) { m_BtnApply3D->setEnabled(false); // T28261 // m_BtnSuggestPlane->setEnabled(false); if (m_DataStorage->Exists(m_InterpolatedSurfaceNode)) { this->Show3DInterpolationResult(false); } } m_BtnReinit3DInterpolation->setEnabled(true); foreach (mitk::SliceNavigationController *slicer, m_ControllerToTimeObserverTag.keys()) { slicer->GetRenderer()->RequestUpdate(); } } void QmitkSlicesInterpolator::OnAcceptInterpolationClicked() { if (m_Segmentation && m_FeedbackNode->GetData()) { // Make sure that for reslicing and overwriting the same alogrithm is used. We can specify the mode of the vtk // reslicer vtkSmartPointer reslice = vtkSmartPointer::New(); // Set slice as input mitk::Image::Pointer slice = dynamic_cast(m_FeedbackNode->GetData()); reslice->SetInputSlice(slice->GetSliceData()->GetVtkImageAccessor(slice)->GetVtkImageData()); // set overwrite mode to true to write back to the image volume reslice->SetOverwriteMode(true); reslice->Modified(); const auto timePoint = m_LastSNC->GetSelectedTimePoint(); if (!m_Segmentation->GetTimeGeometry()->IsValidTimePoint(timePoint)) { MITK_WARN << "Cannot accept interpolation. Time point selected by SliceNavigationController is not within the time bounds of segmentation. Time point: " << timePoint; return; } mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(reslice); extractor->SetInput(m_Segmentation); const auto timeStep = m_Segmentation->GetTimeGeometry()->TimePointToTimeStep(timePoint); extractor->SetTimeStep(timeStep); extractor->SetWorldGeometry(m_LastSNC->GetCurrentPlaneGeometry()); extractor->SetVtkOutputRequest(true); extractor->SetResliceTransformByGeometry(m_Segmentation->GetTimeGeometry()->GetGeometryForTimeStep(timeStep)); extractor->Modified(); extractor->Update(); // the image was modified within the pipeline, but not marked so m_Segmentation->Modified(); m_Segmentation->GetVtkImageData()->Modified(); m_FeedbackNode->SetData(nullptr); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkSlicesInterpolator::AcceptAllInterpolations(mitk::SliceNavigationController *slicer) { /* * What exactly is done here: * 1. We create an empty diff image for the current segmentation * 2. All interpolated slices are written into the diff image * 3. Then the diffimage is applied to the original segmentation */ if (m_Segmentation) { mitk::Image::Pointer image3D = m_Segmentation; unsigned int timeStep(0); const auto timePoint = slicer->GetSelectedTimePoint(); if (m_Segmentation->GetDimension() == 4) { if (!m_Segmentation->GetTimeGeometry()->IsValidTimePoint(timePoint)) { MITK_WARN << "Cannot accept all interpolations. Time point selected by passed SliceNavigationController is not within the time bounds of segmentation. Time point: " << timePoint; return; } timeStep = m_Segmentation->GetTimeGeometry()->TimePointToTimeStep(timePoint); mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); timeSelector->SetInput(m_Segmentation); timeSelector->SetTimeNr(timeStep); timeSelector->Update(); image3D = timeSelector->GetOutput(); } // create a empty diff image for the undo operation mitk::Image::Pointer diffImage = mitk::Image::New(); diffImage->Initialize(image3D); // Create scope for ImageWriteAccessor so that the accessor is destroyed // after the image is initialized. Otherwise later image access will lead to an error { mitk::ImageWriteAccessor imAccess(diffImage); // Set all pixels to zero mitk::PixelType pixelType(mitk::MakeScalarPixelType()); // For legacy purpose support former pixel type of segmentations (before multilabel) if (m_Segmentation->GetImageDescriptor()->GetChannelDescriptor().GetPixelType().GetComponentType() == itk::ImageIOBase::UCHAR) { pixelType = mitk::MakeScalarPixelType(); } memset(imAccess.GetData(), 0, (pixelType.GetBpe() >> 3) * diffImage->GetDimension(0) * diffImage->GetDimension(1) * diffImage->GetDimension(2)); } // Since we need to shift the plane it must be clone so that the original plane isn't altered mitk::PlaneGeometry::Pointer reslicePlane = slicer->GetCurrentPlaneGeometry()->Clone(); int sliceDimension(-1); int sliceIndex(-1); mitk::SegTool2D::DetermineAffectedImageSlice(m_Segmentation, reslicePlane, sliceDimension, sliceIndex); unsigned int zslices = m_Segmentation->GetDimension(sliceDimension); mitk::ProgressBar::GetInstance()->AddStepsToDo(zslices); mitk::Point3D origin = reslicePlane->GetOrigin(); unsigned int totalChangedSlices(0); for (unsigned int sliceIndex = 0; sliceIndex < zslices; ++sliceIndex) { // Transforming the current origin of the reslice plane // so that it matches the one of the next slice m_Segmentation->GetSlicedGeometry()->WorldToIndex(origin, origin); origin[sliceDimension] = sliceIndex; m_Segmentation->GetSlicedGeometry()->IndexToWorld(origin, origin); reslicePlane->SetOrigin(origin); // Set the slice as 'input' mitk::Image::Pointer interpolation = m_Interpolator->Interpolate(sliceDimension, sliceIndex, reslicePlane, timeStep); if (interpolation.IsNotNull()) // we don't check if interpolation is necessary/sensible - but m_Interpolator does { // Setting up the reslicing pipeline which allows us to write the interpolation results back into // the image volume vtkSmartPointer reslice = vtkSmartPointer::New(); // set overwrite mode to true to write back to the image volume reslice->SetInputSlice(interpolation->GetSliceData()->GetVtkImageAccessor(interpolation)->GetVtkImageData()); reslice->SetOverwriteMode(true); reslice->Modified(); mitk::ExtractSliceFilter::Pointer diffslicewriter = mitk::ExtractSliceFilter::New(reslice); diffslicewriter->SetInput(diffImage); diffslicewriter->SetTimeStep(0); diffslicewriter->SetWorldGeometry(reslicePlane); diffslicewriter->SetVtkOutputRequest(true); diffslicewriter->SetResliceTransformByGeometry(diffImage->GetTimeGeometry()->GetGeometryForTimeStep(0)); diffslicewriter->Modified(); diffslicewriter->Update(); ++totalChangedSlices; } mitk::ProgressBar::GetInstance()->Progress(); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); if (totalChangedSlices > 0) { // store undo stack items if (true) { // create do/undo operations mitk::ApplyDiffImageOperation *doOp = new mitk::ApplyDiffImageOperation(mitk::OpTEST, m_Segmentation, diffImage, timeStep); mitk::ApplyDiffImageOperation *undoOp = new mitk::ApplyDiffImageOperation(mitk::OpTEST, m_Segmentation, diffImage, timeStep); undoOp->SetFactor(-1.0); std::stringstream comment; comment << "Confirm all interpolations (" << totalChangedSlices << ")"; mitk::OperationEvent *undoStackItem = new mitk::OperationEvent(mitk::DiffImageApplier::GetInstanceForUndo(), doOp, undoOp, comment.str()); mitk::OperationEvent::IncCurrGroupEventId(); mitk::OperationEvent::IncCurrObjectEventId(); mitk::UndoController::GetCurrentUndoModel()->SetOperationEvent(undoStackItem); // acutally apply the changes here to the original image mitk::DiffImageApplier::GetInstanceForUndo()->ExecuteOperation(doOp); } } m_FeedbackNode->SetData(nullptr); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkSlicesInterpolator::FinishInterpolation(mitk::SliceNavigationController *slicer) { // this redirect is for calling from outside if (slicer == nullptr) OnAcceptAllInterpolationsClicked(); else AcceptAllInterpolations(slicer); } void QmitkSlicesInterpolator::OnAcceptAllInterpolationsClicked() { QMenu orientationPopup(this); std::map::const_iterator it; for (it = ACTION_TO_SLICEDIMENSION.begin(); it != ACTION_TO_SLICEDIMENSION.end(); it++) orientationPopup.addAction(it->first); connect(&orientationPopup, SIGNAL(triggered(QAction *)), this, SLOT(OnAcceptAllPopupActivated(QAction *))); orientationPopup.exec(QCursor::pos()); } void QmitkSlicesInterpolator::OnAccept3DInterpolationClicked() { auto referenceImage = GetData(m_ToolManager->GetReferenceData(0)); auto* segmentationDataNode = m_ToolManager->GetWorkingData(0); auto segmentation = GetData(segmentationDataNode); if (referenceImage.IsNull() || segmentation.IsNull()) return; const auto* segmentationGeometry = segmentation->GetTimeGeometry(); const auto timePoint = m_LastSNC->GetSelectedTimePoint(); if (!referenceImage->GetTimeGeometry()->IsValidTimePoint(timePoint) || !segmentationGeometry->IsValidTimePoint(timePoint)) { MITK_WARN << "Cannot accept interpolation. Current time point is not within the time bounds of the patient image and segmentation."; return; } auto interpolatedSurface = GetData(m_InterpolatedSurfaceNode); if (interpolatedSurface.IsNull()) return; auto surfaceToImageFilter = mitk::SurfaceToImageFilter::New(); surfaceToImageFilter->SetImage(referenceImage); surfaceToImageFilter->SetMakeOutputBinary(true); surfaceToImageFilter->SetUShortBinaryPixelType(itk::ImageIOBase::USHORT == segmentation->GetPixelType().GetComponentType()); surfaceToImageFilter->SetInput(interpolatedSurface); surfaceToImageFilter->Update(); mitk::Image::Pointer interpolatedSegmentation = surfaceToImageFilter->GetOutput(); auto timeStep = interpolatedSegmentation->GetTimeGeometry()->TimePointToTimeStep(timePoint); mitk::ImageReadAccessor readAccessor(interpolatedSegmentation, interpolatedSegmentation->GetVolumeData(timeStep)); const auto* dataPointer = readAccessor.GetData(); if (nullptr == dataPointer) return; timeStep = segmentationGeometry->TimePointToTimeStep(timePoint); segmentation->SetVolume(dataPointer, timeStep, 0); m_CmbInterpolation->setCurrentIndex(0); this->Show3DInterpolationResult(false); std::string name = segmentationDataNode->GetName() + "_3D-interpolation"; mitk::TimeBounds timeBounds; if (1 < interpolatedSurface->GetTimeSteps()) { name += "_t" + std::to_string(timeStep); auto* polyData = vtkPolyData::New(); polyData->DeepCopy(interpolatedSurface->GetVtkPolyData(timeStep)); auto surface = mitk::Surface::New(); surface->SetVtkPolyData(polyData); interpolatedSurface = surface; timeBounds = segmentationGeometry->GetTimeBounds(timeStep); } else { timeBounds = segmentationGeometry->GetTimeBounds(0); } auto* surfaceGeometry = static_cast(interpolatedSurface->GetTimeGeometry()); surfaceGeometry->SetFirstTimePoint(timeBounds[0]); surfaceGeometry->SetStepDuration(timeBounds[1] - timeBounds[0]); // Typical file formats for surfaces do not save any time-related information. As a workaround at least for MITK scene files, we have the // possibility to seralize this information as properties. interpolatedSurface->SetProperty("ProportionalTimeGeometry.FirstTimePoint", mitk::FloatProperty::New(surfaceGeometry->GetFirstTimePoint())); interpolatedSurface->SetProperty("ProportionalTimeGeometry.StepDuration", mitk::FloatProperty::New(surfaceGeometry->GetStepDuration())); auto interpolatedSurfaceDataNode = mitk::DataNode::New(); interpolatedSurfaceDataNode->SetData(interpolatedSurface); interpolatedSurfaceDataNode->SetName(name); interpolatedSurfaceDataNode->SetOpacity(0.7f); std::array rgb; segmentationDataNode->GetColor(rgb.data()); interpolatedSurfaceDataNode->SetColor(rgb.data()); m_DataStorage->Add(interpolatedSurfaceDataNode, segmentationDataNode); } void ::QmitkSlicesInterpolator::OnSuggestPlaneClicked() { if (m_PlaneWatcher.isRunning()) m_PlaneWatcher.waitForFinished(); m_PlaneFuture = QtConcurrent::run(this, &QmitkSlicesInterpolator::RunPlaneSuggestion); m_PlaneWatcher.setFuture(m_PlaneFuture); } void ::QmitkSlicesInterpolator::RunPlaneSuggestion() { if (m_FirstRun) mitk::ProgressBar::GetInstance()->AddStepsToDo(7); else mitk::ProgressBar::GetInstance()->AddStepsToDo(3); m_EdgeDetector->SetSegmentationMask(m_Segmentation); m_EdgeDetector->SetInput(dynamic_cast(m_ToolManager->GetReferenceData(0)->GetData())); m_EdgeDetector->Update(); mitk::UnstructuredGrid::Pointer uGrid = mitk::UnstructuredGrid::New(); uGrid->SetVtkUnstructuredGrid(m_EdgeDetector->GetOutput()->GetVtkUnstructuredGrid()); mitk::ProgressBar::GetInstance()->Progress(); mitk::Surface::Pointer surface = dynamic_cast(m_InterpolatedSurfaceNode->GetData()); vtkSmartPointer vtkpoly = surface->GetVtkPolyData(); vtkSmartPointer vtkpoints = vtkpoly->GetPoints(); vtkSmartPointer vGrid = vtkSmartPointer::New(); vtkSmartPointer verts = vtkSmartPointer::New(); verts->GetPointIds()->SetNumberOfIds(vtkpoints->GetNumberOfPoints()); for (int i = 0; i < vtkpoints->GetNumberOfPoints(); i++) { verts->GetPointIds()->SetId(i, i); } vGrid->Allocate(1); vGrid->InsertNextCell(verts->GetCellType(), verts->GetPointIds()); vGrid->SetPoints(vtkpoints); mitk::UnstructuredGrid::Pointer interpolationGrid = mitk::UnstructuredGrid::New(); interpolationGrid->SetVtkUnstructuredGrid(vGrid); m_PointScorer->SetInput(0, uGrid); m_PointScorer->SetInput(1, interpolationGrid); m_PointScorer->Update(); mitk::UnstructuredGrid::Pointer scoredGrid = mitk::UnstructuredGrid::New(); scoredGrid = m_PointScorer->GetOutput(); mitk::ProgressBar::GetInstance()->Progress(); double spacing = mitk::SurfaceInterpolationController::GetInstance()->GetDistanceImageSpacing(); mitk::UnstructuredGridClusteringFilter::Pointer clusterFilter = mitk::UnstructuredGridClusteringFilter::New(); clusterFilter->SetInput(scoredGrid); clusterFilter->SetMeshing(false); clusterFilter->SetMinPts(4); clusterFilter->Seteps(spacing); clusterFilter->Update(); mitk::ProgressBar::GetInstance()->Progress(); // Create plane suggestion mitk::BaseRenderer::Pointer br = mitk::BaseRenderer::GetInstance(mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget0")); mitk::PlaneProposer planeProposer; std::vector grids = clusterFilter->GetAllClusters(); planeProposer.SetUnstructuredGrids(grids); mitk::SliceNavigationController::Pointer snc = br->GetSliceNavigationController(); planeProposer.SetSliceNavigationController(snc); planeProposer.SetUseDistances(true); try { planeProposer.CreatePlaneInfo(); } catch (const mitk::Exception &e) { MITK_ERROR << e.what(); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); m_FirstRun = false; } void QmitkSlicesInterpolator::OnReinit3DInterpolation() { mitk::NodePredicateProperty::Pointer pred = mitk::NodePredicateProperty::New("3DContourContainer", mitk::BoolProperty::New(true)); mitk::DataStorage::SetOfObjects::ConstPointer contourNodes = m_DataStorage->GetDerivations(m_ToolManager->GetWorkingData(0), pred); if (contourNodes->Size() != 0) { m_BtnApply3D->setEnabled(true); m_3DContourNode = contourNodes->at(0); mitk::Surface::Pointer contours = dynamic_cast(m_3DContourNode->GetData()); if (contours) mitk::SurfaceInterpolationController::GetInstance()->ReinitializeInterpolation(contours); m_BtnReinit3DInterpolation->setEnabled(false); } else { m_BtnApply3D->setEnabled(false); QMessageBox errorInfo; errorInfo.setWindowTitle("Reinitialize surface interpolation"); errorInfo.setIcon(QMessageBox::Information); errorInfo.setText("No contours available for the selected segmentation!"); errorInfo.exec(); } } void QmitkSlicesInterpolator::OnAcceptAllPopupActivated(QAction *action) { try { std::map::const_iterator iter = ACTION_TO_SLICEDIMENSION.find(action); if (iter != ACTION_TO_SLICEDIMENSION.end()) { mitk::SliceNavigationController *slicer = iter->second; AcceptAllInterpolations(slicer); } } catch (...) { /* Showing message box with possible memory error */ QMessageBox errorInfo; errorInfo.setWindowTitle("Interpolation Process"); errorInfo.setIcon(QMessageBox::Critical); errorInfo.setText("An error occurred during interpolation. Possible cause: Not enough memory!"); errorInfo.exec(); // additional error message on std::cerr std::cerr << "Ill construction in " __FILE__ " l. " << __LINE__ << std::endl; } } void QmitkSlicesInterpolator::OnInterpolationActivated(bool on) { m_2DInterpolationEnabled = on; try { if (m_DataStorage.IsNotNull()) { if (on && !m_DataStorage->Exists(m_FeedbackNode)) { m_DataStorage->Add(m_FeedbackNode); } } } catch (...) { // don't care (double add/remove) } if (m_ToolManager) { mitk::DataNode *workingNode = m_ToolManager->GetWorkingData(0); mitk::DataNode *referenceNode = m_ToolManager->GetReferenceData(0); QWidget::setEnabled(workingNode != nullptr); m_BtnApply2D->setEnabled(on); m_FeedbackNode->SetVisibility(on); if (!on) { mitk::RenderingManager::GetInstance()->RequestUpdateAll(); return; } if (workingNode) { mitk::Image *segmentation = dynamic_cast(workingNode->GetData()); if (segmentation) { m_Interpolator->SetSegmentationVolume(segmentation); if (referenceNode) { mitk::Image *referenceImage = dynamic_cast(referenceNode->GetData()); m_Interpolator->SetReferenceVolume(referenceImage); // may be nullptr } } } } UpdateVisibleSuggestion(); } void QmitkSlicesInterpolator::Run3DInterpolation() { m_SurfaceInterpolator->Interpolate(); } void QmitkSlicesInterpolator::StartUpdateInterpolationTimer() { m_Timer->start(500); } void QmitkSlicesInterpolator::StopUpdateInterpolationTimer() { m_Timer->stop(); m_InterpolatedSurfaceNode->SetProperty("color", mitk::ColorProperty::New(SURFACE_COLOR_RGB)); mitk::RenderingManager::GetInstance()->RequestUpdate( mitk::BaseRenderer::GetInstance(mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget3"))->GetRenderWindow()); } void QmitkSlicesInterpolator::ChangeSurfaceColor() { float currentColor[3]; m_InterpolatedSurfaceNode->GetColor(currentColor); if (currentColor[2] == SURFACE_COLOR_RGB[2]) { m_InterpolatedSurfaceNode->SetProperty("color", mitk::ColorProperty::New(1.0f, 1.0f, 1.0f)); } else { m_InterpolatedSurfaceNode->SetProperty("color", mitk::ColorProperty::New(SURFACE_COLOR_RGB)); } m_InterpolatedSurfaceNode->Update(); mitk::RenderingManager::GetInstance()->RequestUpdate( mitk::BaseRenderer::GetInstance(mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget3"))->GetRenderWindow()); } void QmitkSlicesInterpolator::On3DInterpolationActivated(bool on) { m_3DInterpolationEnabled = on; this->CheckSupportedImageDimension(); try { if (m_DataStorage.IsNotNull() && m_ToolManager && m_3DInterpolationEnabled) { mitk::DataNode *workingNode = m_ToolManager->GetWorkingData(0); if (workingNode) { if ((workingNode->IsVisible(mitk::BaseRenderer::GetInstance(mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget2"))))) { int ret = QMessageBox::Yes; if (m_SurfaceInterpolator->EstimatePortionOfNeededMemory() > 0.5) { QMessageBox msgBox; msgBox.setText("Due to short handed system memory the 3D interpolation may be very slow!"); msgBox.setInformativeText("Are you sure you want to activate the 3D interpolation?"); msgBox.setStandardButtons(QMessageBox::No | QMessageBox::Yes); ret = msgBox.exec(); } if (m_Watcher.isRunning()) m_Watcher.waitForFinished(); if (ret == QMessageBox::Yes) { m_Future = QtConcurrent::run(this, &QmitkSlicesInterpolator::Run3DInterpolation); m_Watcher.setFuture(m_Future); } else { m_CmbInterpolation->setCurrentIndex(0); } } } else { QWidget::setEnabled(false); m_ChkShowPositionNodes->setEnabled(m_3DInterpolationEnabled); } } if (!m_3DInterpolationEnabled) { this->Show3DInterpolationResult(false); m_BtnApply3D->setEnabled(m_3DInterpolationEnabled); // T28261 // m_BtnSuggestPlane->setEnabled(m_3DInterpolationEnabled); } } catch (...) { MITK_ERROR << "Error with 3D surface interpolation!"; } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkSlicesInterpolator::EnableInterpolation(bool on) { // only to be called from the outside world // just a redirection to OnInterpolationActivated OnInterpolationActivated(on); } void QmitkSlicesInterpolator::Enable3DInterpolation(bool on) { // only to be called from the outside world // just a redirection to OnInterpolationActivated On3DInterpolationActivated(on); } void QmitkSlicesInterpolator::UpdateVisibleSuggestion() { mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkSlicesInterpolator::OnInterpolationInfoChanged(const itk::EventObject & /*e*/) { // something (e.g. undo) changed the interpolation info, we should refresh our display UpdateVisibleSuggestion(); } void QmitkSlicesInterpolator::OnSurfaceInterpolationInfoChanged(const itk::EventObject & /*e*/) { if (m_3DInterpolationEnabled) { if (m_Watcher.isRunning()) m_Watcher.waitForFinished(); m_Future = QtConcurrent::run(this, &QmitkSlicesInterpolator::Run3DInterpolation); m_Watcher.setFuture(m_Future); } } void QmitkSlicesInterpolator::SetCurrentContourListID() { // New ContourList = hide current interpolation Show3DInterpolationResult(false); if (m_DataStorage.IsNotNull() && m_ToolManager && m_LastSNC) { mitk::DataNode *workingNode = m_ToolManager->GetWorkingData(0); if (workingNode) { QWidget::setEnabled(true); const auto timePoint = m_LastSNC->GetSelectedTimePoint(); // In case the time is not valid use 0 to access the time geometry of the working node unsigned int time_position = 0; if (!workingNode->GetData()->GetTimeGeometry()->IsValidTimePoint(timePoint)) { MITK_WARN << "Cannot accept interpolation. Time point selected by SliceNavigationController is not within the time bounds of WorkingImage. Time point: " << timePoint; return; } time_position = workingNode->GetData()->GetTimeGeometry()->TimePointToTimeStep(timePoint); mitk::Vector3D spacing = workingNode->GetData()->GetGeometry(time_position)->GetSpacing(); double minSpacing(100); double maxSpacing(0); for (int i = 0; i < 3; i++) { if (spacing[i] < minSpacing) { minSpacing = spacing[i]; } if (spacing[i] > maxSpacing) { maxSpacing = spacing[i]; } } m_SurfaceInterpolator->SetMaxSpacing(maxSpacing); m_SurfaceInterpolator->SetMinSpacing(minSpacing); m_SurfaceInterpolator->SetDistanceImageVolume(50000); mitk::Image *segmentationImage = dynamic_cast(workingNode->GetData()); m_SurfaceInterpolator->SetCurrentInterpolationSession(segmentationImage); m_SurfaceInterpolator->SetCurrentTimePoint(timePoint); if (m_3DInterpolationEnabled) { if (m_Watcher.isRunning()) m_Watcher.waitForFinished(); m_Future = QtConcurrent::run(this, &QmitkSlicesInterpolator::Run3DInterpolation); m_Watcher.setFuture(m_Future); } } else { QWidget::setEnabled(false); } } } void QmitkSlicesInterpolator::Show3DInterpolationResult(bool status) { if (m_InterpolatedSurfaceNode.IsNotNull()) m_InterpolatedSurfaceNode->SetVisibility(status); if (m_3DContourNode.IsNotNull()) m_3DContourNode->SetVisibility( status, mitk::BaseRenderer::GetInstance(mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget3"))); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkSlicesInterpolator::CheckSupportedImageDimension() { if (m_ToolManager->GetWorkingData(0)) m_Segmentation = dynamic_cast(m_ToolManager->GetWorkingData(0)->GetData()); /*if (m_3DInterpolationEnabled && m_Segmentation && m_Segmentation->GetDimension() != 3) { QMessageBox info; info.setWindowTitle("3D Interpolation Process"); info.setIcon(QMessageBox::Information); info.setText("3D Interpolation is only supported for 3D images at the moment!"); info.exec(); m_CmbInterpolation->setCurrentIndex(0); }*/ } void QmitkSlicesInterpolator::OnSliceNavigationControllerDeleted(const itk::Object *sender, const itk::EventObject & /*e*/) { // Don't know how to avoid const_cast here?! mitk::SliceNavigationController *slicer = dynamic_cast(const_cast(sender)); if (slicer) { m_ControllerToTimeObserverTag.remove(slicer); m_ControllerToSliceObserverTag.remove(slicer); m_ControllerToDeleteObserverTag.remove(slicer); } } void QmitkSlicesInterpolator::WaitForFutures() { if (m_Watcher.isRunning()) { m_Watcher.waitForFinished(); } if (m_PlaneWatcher.isRunning()) { m_PlaneWatcher.waitForFinished(); } } void QmitkSlicesInterpolator::NodeRemoved(const mitk::DataNode* node) { if ((m_ToolManager && m_ToolManager->GetWorkingData(0) == node) || node == m_3DContourNode || node == m_FeedbackNode || node == m_InterpolatedSurfaceNode) { WaitForFutures(); } }