diff --git a/Modules/DiffusionImaging/Connectomics/IODataStructures/mitkConnectomicsNetwork.cpp b/Modules/DiffusionImaging/Connectomics/IODataStructures/mitkConnectomicsNetwork.cpp index 6150e1beca..e1dd2ebe39 100644 --- a/Modules/DiffusionImaging/Connectomics/IODataStructures/mitkConnectomicsNetwork.cpp +++ b/Modules/DiffusionImaging/Connectomics/IODataStructures/mitkConnectomicsNetwork.cpp @@ -1,689 +1,689 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkConnectomicsNetwork.h" #include #include /* Constructor and Destructor */ mitk::ConnectomicsNetwork::ConnectomicsNetwork() : m_IsModified( false ) { } mitk::ConnectomicsNetwork::~ConnectomicsNetwork() { } /* Wrapper methods */ bool mitk::ConnectomicsNetwork::EdgeExists( mitk::ConnectomicsNetwork::VertexDescriptorType vertexA, mitk::ConnectomicsNetwork::VertexDescriptorType vertexB ) const { return boost::edge(vertexA, vertexB, m_Network ).second; } void mitk::ConnectomicsNetwork::IncreaseEdgeWeight( mitk::ConnectomicsNetwork::VertexDescriptorType vertexA, mitk::ConnectomicsNetwork::VertexDescriptorType vertexB ) { m_Network[ boost::edge(vertexA, vertexB, m_Network ).first ].weight++; SetIsModified( true ); } void mitk::ConnectomicsNetwork::AddEdge( mitk::ConnectomicsNetwork::VertexDescriptorType vertexA, mitk::ConnectomicsNetwork::VertexDescriptorType vertexB ) { AddEdge(vertexA, vertexB, m_Network[ vertexA ].id, m_Network[ vertexB ].id ); } void mitk::ConnectomicsNetwork::AddEdge( mitk::ConnectomicsNetwork::VertexDescriptorType vertexA, mitk::ConnectomicsNetwork::VertexDescriptorType vertexB, int sourceID, int targetID, int weight ) { boost::add_edge( vertexA, vertexB, m_Network ); m_Network[ boost::edge(vertexA, vertexB, m_Network ).first ].sourceId = sourceID; m_Network[ boost::edge(vertexA, vertexB, m_Network ).first ].targetId = targetID; m_Network[ boost::edge(vertexA, vertexB, m_Network ).first ].weight = weight; m_Network[ boost::edge(vertexA, vertexB, m_Network ).first ].edge_weight = 1.0; SetIsModified( true ); } mitk::ConnectomicsNetwork::VertexDescriptorType mitk::ConnectomicsNetwork::AddVertex( int id ) { VertexDescriptorType vertex = boost::add_vertex( m_Network ); m_Network[vertex].id = id; SetIsModified( true ); return vertex; } void mitk::ConnectomicsNetwork::SetLabel( mitk::ConnectomicsNetwork::VertexDescriptorType vertex, std::string inLabel ) { m_Network[vertex].label = inLabel; SetIsModified( true ); } void mitk::ConnectomicsNetwork::SetCoordinates( mitk::ConnectomicsNetwork::VertexDescriptorType vertex, std::vector< float > inCoordinates ) { m_Network[vertex].coordinates = inCoordinates; SetIsModified( true ); } void mitk::ConnectomicsNetwork::clear() { m_Network.clear(); SetIsModified( true ); } /* Superclass methods, that need to be implemented */ void mitk::ConnectomicsNetwork::UpdateOutputInformation() { } void mitk::ConnectomicsNetwork::SetRequestedRegionToLargestPossibleRegion() { } bool mitk::ConnectomicsNetwork::RequestedRegionIsOutsideOfTheBufferedRegion() { return false; } bool mitk::ConnectomicsNetwork::VerifyRequestedRegion() { return true; } void mitk::ConnectomicsNetwork::SetRequestedRegion( itk::DataObject *data ) { } std::vector< mitk::ConnectomicsNetwork::NetworkNode > mitk::ConnectomicsNetwork::GetVectorOfAllNodes() const { boost::graph_traits::vertex_iterator iterator, end; // sets iterator to start end end to end boost::tie(iterator, end) = boost::vertices( m_Network ); std::vector< NetworkNode > vectorOfNodes; for ( ; iterator != end; ++iterator) { NetworkNode tempNode; // the value of an iterator is a descriptor tempNode = m_Network[ *iterator ]; vectorOfNodes.push_back( tempNode ); } return vectorOfNodes; } std::vector< mitk::ConnectomicsNetwork::VertexDescriptorType > mitk::ConnectomicsNetwork::GetVectorOfAllVertexDescriptors() const { boost::graph_traits::vertex_iterator iterator, end; // sets iterator to start end end to end boost::tie(iterator, end) = boost::vertices( m_Network ); std::vector< VertexDescriptorType > vectorOfDescriptors; for ( ; iterator != end; ++iterator) { vectorOfDescriptors.push_back( *iterator ); } return vectorOfDescriptors; } std::vector< std::pair< std::pair< mitk::ConnectomicsNetwork::NetworkNode, mitk::ConnectomicsNetwork::NetworkNode > , mitk::ConnectomicsNetwork::NetworkEdge > > mitk::ConnectomicsNetwork::GetVectorOfAllEdges() const { boost::graph_traits::edge_iterator iterator, end; // sets iterator to start end end to end boost::tie(iterator, end) = boost::edges( m_Network ); std::vector< std::pair< std::pair< NetworkNode, NetworkNode > , NetworkEdge > > vectorOfEdges; for ( ; iterator != end; ++iterator) { NetworkNode sourceNode, targetNode; NetworkEdge tempEdge; // the value of an iterator is a descriptor tempEdge = m_Network[ *iterator ]; sourceNode = m_Network[ boost::source( *iterator, m_Network ) ]; targetNode = m_Network[ boost::target( *iterator, m_Network ) ]; std::pair< NetworkNode, NetworkNode > nodePair( sourceNode, targetNode ); std::pair< std::pair< NetworkNode, NetworkNode > , NetworkEdge > edgePair( nodePair, tempEdge); vectorOfEdges.push_back( edgePair ); } return vectorOfEdges; } int mitk::ConnectomicsNetwork::GetNumberOfVertices() const { return boost::num_vertices( m_Network ); } int mitk::ConnectomicsNetwork::GetNumberOfEdges() const { return boost::num_edges( m_Network ); } int mitk::ConnectomicsNetwork::GetMaximumWeight() const { int maxWeight( 0 ); boost::graph_traits::edge_iterator iterator, end; // sets iterator to start end end to end boost::tie(iterator, end) = boost::edges( m_Network ); for ( ; iterator != end; ++iterator) { int tempWeight; // the value of an iterator is a descriptor tempWeight = m_Network[ *iterator ].weight; if( tempWeight > maxWeight ) { maxWeight = tempWeight; } } return maxWeight; } int mitk::ConnectomicsNetwork::GetNumberOfSelfLoops() { int noOfSelfLoops( 0 ); std::vector< std::pair< std::pair< NetworkNode, NetworkNode > , NetworkEdge > > edgeVector = GetVectorOfAllEdges(); for( int index = 0; index < edgeVector.size() ; index++ ) { double sourceX, sourceY, sourceZ, targetX, targetY, targetZ; sourceX = edgeVector[ index ].first.first.coordinates[0] ; sourceY = edgeVector[ index ].first.first.coordinates[1] ; sourceZ = edgeVector[ index ].first.first.coordinates[2] ; targetX = edgeVector[ index ].first.second.coordinates[0] ; targetY = edgeVector[ index ].first.second.coordinates[1] ; targetZ = edgeVector[ index ].first.second.coordinates[2] ; // if the coordinates are the same if( sourceX > ( targetX - 0.01 ) && sourceX < ( targetX + 0.01 ) && sourceY > ( targetY - 0.01 ) && sourceY < ( targetY + 0.01 ) && sourceZ > ( targetZ - 0.01 ) && sourceZ < ( targetZ + 0.01 ) ) { noOfSelfLoops++; } } return noOfSelfLoops; } double mitk::ConnectomicsNetwork::GetAverageDegree() { double vertices = (double) GetNumberOfVertices(); double edges = (double) GetNumberOfEdges(); return ( ( edges * 2.0 ) / vertices ); } double mitk::ConnectomicsNetwork::GetConnectionDensity() { double vertices = (double) GetNumberOfVertices(); double edges = (double) GetNumberOfEdges(); double numberOfPossibleEdges = vertices * ( vertices - 1 ) / 2 ; return ( edges / numberOfPossibleEdges ); } std::vector< int > mitk::ConnectomicsNetwork::GetDegreeOfNodes( ) const { std::vector< int > vectorOfDegree; boost::graph_traits::vertex_iterator iterator, end; // sets iterator to start end end to end boost::tie( iterator, end ) = boost::vertices( m_Network ); vectorOfDegree.resize( this->GetNumberOfVertices() ); for ( ; iterator != end; ++iterator) { // the value of an iterator is a descriptor vectorOfDegree[ m_Network[ *iterator ].id ] = GetVectorOfAdjacentNodes( *iterator ).size(); } return vectorOfDegree; } std::vector< mitk::ConnectomicsNetwork::VertexDescriptorType > mitk::ConnectomicsNetwork::GetVectorOfAdjacentNodes( mitk::ConnectomicsNetwork::VertexDescriptorType vertex ) const { std::vector< mitk::ConnectomicsNetwork::VertexDescriptorType > vectorOfAdjacentNodes; boost::graph_traits::adjacency_iterator adjIter, adjEnd; boost::tie( adjIter, adjEnd ) = boost::adjacent_vertices( vertex, m_Network); for ( ; adjIter != adjEnd; ++adjIter) { vectorOfAdjacentNodes.push_back( *adjIter ); } return vectorOfAdjacentNodes; } int mitk::ConnectomicsNetwork::GetMaximumDegree() const { int maximumDegree( 0 ); std::vector< int > vectorOfDegree = GetDegreeOfNodes(); for( int index( 0 ); index < vectorOfDegree.size(); ++index ) { if( maximumDegree < vectorOfDegree[ index ] ) { maximumDegree = vectorOfDegree[ index ]; } } return maximumDegree; } std::vector< double > mitk::ConnectomicsNetwork::GetLocalClusteringCoefficients( ) const { std::vector< double > vectorOfClusteringCoefficients; typedef boost::graph_traits::vertex_iterator vertexIter; vectorOfClusteringCoefficients.resize( this->GetNumberOfVertices() ); std::pair vertexPair; //for every vertex calculate the clustering coefficient for (vertexPair = vertices(m_Network); vertexPair.first != vertexPair.second; ++vertexPair.first) { vectorOfClusteringCoefficients[ m_Network[ *vertexPair.first ].id ] = boost::clustering_coefficient(m_Network,*vertexPair.first) ; } return vectorOfClusteringCoefficients; } std::vector< double > mitk::ConnectomicsNetwork::GetClusteringCoefficientsByDegree( ) { std::vector< double > vectorOfClusteringCoefficients = GetLocalClusteringCoefficients(); std::vector< int > vectorOfDegree = GetDegreeOfNodes(); std::vector< double > vectorOfClusteringCoefficientsByDegree; vectorOfClusteringCoefficientsByDegree.resize( GetMaximumDegree() + 1, 0 ); // c_{mean}(k) = frac{1}_{N_{k}} sum_{i in Y(k)} c_{i} // where N_{k} is the number of vertices of degree k // Y(k) is the set of vertices of degree k // c_{i} is the local clustering coefficient of vertex i for( int degree( 0 ); degree < vectorOfClusteringCoefficientsByDegree.size(); ++degree ) { vectorOfClusteringCoefficientsByDegree[ degree ] = 0; int n_k( 0 ); for( int index( 0 ); index < vectorOfDegree.size(); ++index ) { if( degree == vectorOfDegree[ index ] ) {// if in Y( degree ) vectorOfClusteringCoefficientsByDegree[ degree ] += vectorOfClusteringCoefficients[ index ]; n_k++; } } if( n_k != 0 ) { vectorOfClusteringCoefficientsByDegree[ degree ] = vectorOfClusteringCoefficientsByDegree[ degree ] / n_k; } } return vectorOfClusteringCoefficientsByDegree; } double mitk::ConnectomicsNetwork::GetGlobalClusteringCoefficient( ) { double globalClusteringCoefficient( 0.0 ); std::vector< double > vectorOfClusteringCoefficientsByDegree = GetClusteringCoefficientsByDegree(); std::vector< int > vectorOfDegree = GetDegreeOfNodes(); std::vector< int > degreeDistribution; degreeDistribution.resize( vectorOfClusteringCoefficientsByDegree.size(), 0 ); int normalizationParameter( 0 ); for( int index( 0 ); index < vectorOfDegree.size(); ++index ) { degreeDistribution[ vectorOfDegree[ index ] ]++; normalizationParameter++; } // c_{mean} = sum_{k} P_{k} c_{mean}(k) // where P_{k} is the degree distribution // k is the degree for( int degree( 0 ); degree < degreeDistribution.size(); ++degree ) { globalClusteringCoefficient += degreeDistribution[ degree ] / ( (double) normalizationParameter) * vectorOfClusteringCoefficientsByDegree[ degree ]; } return globalClusteringCoefficient; } mitk::ConnectomicsNetwork::NetworkType* mitk::ConnectomicsNetwork::GetBoostGraph() { return &m_Network; } bool mitk::ConnectomicsNetwork::GetIsModified() const { return m_IsModified; } void mitk::ConnectomicsNetwork::SetIsModified( bool value) { m_IsModified = value; } mitk::ConnectomicsNetwork::NetworkNode mitk::ConnectomicsNetwork::GetNode( VertexDescriptorType vertex ) const { return m_Network[ vertex ]; } mitk::ConnectomicsNetwork::NetworkEdge mitk::ConnectomicsNetwork::GetEdge( VertexDescriptorType vertexA, VertexDescriptorType vertexB ) const { return m_Network[ boost::edge(vertexA, vertexB, m_Network ).first ]; } void mitk::ConnectomicsNetwork::UpdateBounds( ) { float min = itk::NumericTraits::min(); float max = itk::NumericTraits::max(); float bounds[] = {max, min, max, min, max, min}; std::vector< mitk::ConnectomicsNetwork::NetworkNode > nodeVector = this->GetVectorOfAllNodes(); if( nodeVector.size() == 0 ) { bounds[0] = 0; bounds[1] = 1; bounds[2] = 0; bounds[3] = 1; bounds[4] = 0; bounds[5] = 1; } // for each direction, make certain the point is in between for( int index(0), end(nodeVector.size()) ; index < end; index++ ) { for( int direction(0); direction < nodeVector.at( index ).coordinates.size(); direction++ ) { if( nodeVector.at( index ).coordinates.at(direction) < bounds[ 2 * direction ] ) { bounds[ 2 * direction ] = nodeVector.at( index ).coordinates.at(direction); } if( nodeVector.at( index ).coordinates.at(direction) > bounds[ 2 * direction + 1] ) { bounds[ 2 * direction + 1] = nodeVector.at( index ).coordinates.at(direction); } } } // provide some border margin for(int i=0; i<=4; i+=2) { bounds[i] -=10; } for(int i=1; i<=5; i+=2) { bounds[i] +=10; } this->GetGeometry()->SetFloatBounds(bounds); - this->GetTimeSlicedGeometry()->UpdateInformation(); + this->GetTimeGeometry()->Update(); } void mitk::ConnectomicsNetwork::PruneUnconnectedSingleNodes() { boost::graph_traits::vertex_iterator iterator, end; // set to true if iterators are invalidated by deleting a vertex bool vertexHasBeenRemoved( true ); // if no vertex has been removed in the last loop, we are done while( vertexHasBeenRemoved ) { vertexHasBeenRemoved = false; // sets iterator to start and end to end boost::tie(iterator, end) = boost::vertices( m_Network ); for ( ; iterator != end && !vertexHasBeenRemoved; ++iterator) { // If the node has no adjacent vertices it should be deleted if( GetVectorOfAdjacentNodes( *iterator ).size() == 0 ) { vertexHasBeenRemoved = true; // this invalidates all iterators boost::remove_vertex( *iterator, m_Network ); } } } UpdateIDs(); } void mitk::ConnectomicsNetwork::UpdateIDs() { boost::graph_traits::vertex_iterator v_i, v_end; boost::graph_traits::edge_iterator e_i, e_end; // update node ids boost::tie( v_i, v_end ) = boost::vertices( m_Network ); for ( ; v_i != v_end; ++v_i) { m_Network[*v_i].id = *v_i; } // update edge information boost::tie(e_i, e_end) = boost::edges( m_Network ); for ( ; e_i != e_end; ++e_i) { m_Network[ *e_i ].sourceId = m_Network[ boost::source( *e_i, m_Network ) ].id; m_Network[ *e_i ].targetId = m_Network[ boost::target( *e_i, m_Network ) ].id; } this->SetIsModified( true ); } void mitk::ConnectomicsNetwork::PruneEdgesBelowWeight( int targetWeight ) { boost::graph_traits::edge_iterator iterator, end; // set to true if iterators are invalidated by deleting a vertex bool edgeHasBeenRemoved( true ); // if no vertex has been removed in the last loop, we are done while( edgeHasBeenRemoved ) { edgeHasBeenRemoved = false; // sets iterator to start and end to end boost::tie(iterator, end) = boost::edges( m_Network ); for ( ; iterator != end && !edgeHasBeenRemoved; ++iterator) { // If the node has no adjacent edges it should be deleted if( m_Network[ *iterator ].weight < targetWeight ) { edgeHasBeenRemoved = true; // this invalidates all iterators boost::remove_edge( *iterator, m_Network ); } } } // this will remove any nodes which, after deleting edges are now // unconnected, also this calls UpdateIDs() PruneUnconnectedSingleNodes(); } std::vector< double > mitk::ConnectomicsNetwork::GetNodeBetweennessVector() const { std::vector< double > betweennessVector; betweennessVector.clear(); betweennessVector.resize( this->GetNumberOfVertices() ); boost::brandes_betweenness_centrality( m_Network, boost::centrality_map( boost::make_iterator_property_map( betweennessVector.begin(), boost::get( &NetworkNode::id, m_Network ), double() ) ).vertex_index_map( boost::get( &NetworkNode::id, m_Network ) ) ); return betweennessVector; } std::vector< double > mitk::ConnectomicsNetwork::GetEdgeBetweennessVector() const { // std::map used for convenient initialization typedef std::map EdgeIndexStdMap; EdgeIndexStdMap stdEdgeIndex; // associative property map needed for iterator property map-wrapper typedef boost::associative_property_map< EdgeIndexStdMap > EdgeIndexMap; EdgeIndexMap edgeIndex(stdEdgeIndex); boost::graph_traits::edge_iterator iterator, end; // sets iterator to start end end to end boost::tie(iterator, end) = boost::edges( m_Network ); int i(0); for ( ; iterator != end; ++iterator, ++i) { stdEdgeIndex.insert(std::pair< EdgeDescriptorType, int >( *iterator, i)); } // Define EdgeCentralityMap std::vector< double > edgeBetweennessVector(boost::num_edges( m_Network ), 0.0); // Create the external property map boost::iterator_property_map< std::vector< double >::iterator, EdgeIndexMap > e_centrality_map(edgeBetweennessVector.begin(), edgeIndex); // Define VertexCentralityMap typedef boost::property_map< NetworkType, boost::vertex_index_t>::type VertexIndexMap; VertexIndexMap vertexIndex = get(boost::vertex_index, m_Network ); std::vector< double > betweennessVector(boost::num_vertices( m_Network ), 0.0); // Create the external property map boost::iterator_property_map< std::vector< double >::iterator, VertexIndexMap > v_centrality_map(betweennessVector.begin(), vertexIndex); boost::brandes_betweenness_centrality( m_Network, v_centrality_map, e_centrality_map ); return edgeBetweennessVector; } std::vector< double > mitk::ConnectomicsNetwork::GetShortestDistanceVectorFromLabel( std::string targetLabel ) const { std::vector< VertexDescriptorType > predecessorMap( boost::num_vertices( m_Network ) ); int numberOfNodes( boost::num_vertices( m_Network ) ); std::vector< double > distanceMatrix; distanceMatrix.resize( numberOfNodes ); boost::graph_traits::vertex_iterator iterator, end; boost::tie(iterator, end) = boost::vertices( m_Network ); while( (iterator != end) && (m_Network[ *iterator ].label != targetLabel) ) { ++iterator; } if( iterator == end ) { MITK_WARN << "Label not found"; return distanceMatrix; } boost::dijkstra_shortest_paths(m_Network, *iterator, boost::predecessor_map(&predecessorMap[ 0 ]).distance_map(&distanceMatrix[ 0 ]).weight_map( boost::get( &NetworkEdge::edge_weight ,m_Network ) ) ) ; return distanceMatrix; } bool mitk::ConnectomicsNetwork::CheckForLabel( std::string targetLabel ) const { boost::graph_traits::vertex_iterator iterator, end; boost::tie(iterator, end) = boost::vertices( m_Network ); while( (iterator != end) && (m_Network[ *iterator ].label != targetLabel) ) { ++iterator; } if( iterator == end ) { return false; } return true; } diff --git a/Modules/DiffusionImaging/DiffusionCore/Rendering/mitkOdfVtkMapper2D.txx b/Modules/DiffusionImaging/DiffusionCore/Rendering/mitkOdfVtkMapper2D.txx index 444ca013a9..3a0f33f4d5 100644 --- a/Modules/DiffusionImaging/DiffusionCore/Rendering/mitkOdfVtkMapper2D.txx +++ b/Modules/DiffusionImaging/DiffusionCore/Rendering/mitkOdfVtkMapper2D.txx @@ -1,884 +1,885 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef __mitkOdfVtkMapper2D_txx__ #define __mitkOdfVtkMapper2D_txx__ #include "mitkOdfVtkMapper2D.h" #include "mitkDataNode.h" #include "mitkBaseRenderer.h" #include "mitkMatrixConvert.h" #include "mitkGeometry3D.h" +#include "mitkTimeGeometry.h" #include "mitkOdfNormalizationMethodProperty.h" #include "mitkOdfScaleByProperty.h" #include "mitkProperties.h" #include "mitkTensorImage.h" #include "vtkSphereSource.h" #include "vtkPropCollection.h" #include "vtkMaskedGlyph3D.h" #include "vtkGlyph2D.h" #include "vtkGlyph3D.h" #include "vtkMaskedProgrammableGlyphFilter.h" #include "vtkImageData.h" #include "vtkLinearTransform.h" #include "vtkCamera.h" #include "vtkPointData.h" #include "vtkTransformPolyDataFilter.h" #include "vtkTransform.h" #include "vtkOdfSource.h" #include "vtkDoubleArray.h" #include "vtkLookupTable.h" #include "vtkProperty.h" #include "vtkPolyDataNormals.h" #include "vtkLight.h" #include "vtkLightCollection.h" #include "vtkMath.h" #include "vtkFloatArray.h" #include "vtkDelaunay2D.h" #include "vtkMapper.h" #include "vtkRenderer.h" #include "itkOrientationDistributionFunction.h" #include "itkFixedArray.h" #include #include "vtkOpenGLRenderer.h" #define _USE_MATH_DEFINES #include template vtkSmartPointer mitk::OdfVtkMapper2D::m_OdfTransform = vtkSmartPointer::New(); template vtkSmartPointer mitk::OdfVtkMapper2D::m_OdfSource = vtkSmartPointer::New(); template float mitk::OdfVtkMapper2D::m_Scaling; template int mitk::OdfVtkMapper2D::m_Normalization; template int mitk::OdfVtkMapper2D::m_ScaleBy; template float mitk::OdfVtkMapper2D::m_IndexParam1; template float mitk::OdfVtkMapper2D::m_IndexParam2; #define ODF_MAPPER_PI M_PI template mitk::OdfVtkMapper2D::LocalStorage::LocalStorage() { m_PropAssemblies.push_back(vtkPropAssembly::New()); m_PropAssemblies.push_back(vtkPropAssembly::New()); m_PropAssemblies.push_back(vtkPropAssembly::New()); m_OdfsPlanes.push_back(vtkAppendPolyData::New()); m_OdfsPlanes.push_back(vtkAppendPolyData::New()); m_OdfsPlanes.push_back(vtkAppendPolyData::New()); m_OdfsPlanes[0]->AddInput(vtkPolyData::New()); m_OdfsPlanes[1]->AddInput(vtkPolyData::New()); m_OdfsPlanes[2]->AddInput(vtkPolyData::New()); m_OdfsActors.push_back(vtkActor::New()); m_OdfsActors.push_back(vtkActor::New()); m_OdfsActors.push_back(vtkActor::New()); m_OdfsActors[0]->GetProperty()->SetInterpolationToGouraud(); m_OdfsActors[1]->GetProperty()->SetInterpolationToGouraud(); m_OdfsActors[2]->GetProperty()->SetInterpolationToGouraud(); m_OdfsMappers.push_back(vtkPolyDataMapper::New()); m_OdfsMappers.push_back(vtkPolyDataMapper::New()); m_OdfsMappers.push_back(vtkPolyDataMapper::New()); vtkLookupTable *lut = vtkLookupTable::New(); m_OdfsMappers[0]->SetLookupTable(lut); m_OdfsMappers[1]->SetLookupTable(lut); m_OdfsMappers[2]->SetLookupTable(lut); m_OdfsActors[0]->SetMapper(m_OdfsMappers[0]); m_OdfsActors[1]->SetMapper(m_OdfsMappers[1]); m_OdfsActors[2]->SetMapper(m_OdfsMappers[2]); } template mitk::OdfVtkMapper2D ::OdfVtkMapper2D() { m_Planes.push_back(vtkPlane::New()); m_Planes.push_back(vtkPlane::New()); m_Planes.push_back(vtkPlane::New()); m_Cutters.push_back(vtkCutter::New()); m_Cutters.push_back(vtkCutter::New()); m_Cutters.push_back(vtkCutter::New()); m_Cutters[0]->SetCutFunction( m_Planes[0] ); m_Cutters[0]->GenerateValues( 1, 0, 1 ); m_Cutters[1]->SetCutFunction( m_Planes[1] ); m_Cutters[1]->GenerateValues( 1, 0, 1 ); m_Cutters[2]->SetCutFunction( m_Planes[2] ); m_Cutters[2]->GenerateValues( 1, 0, 1 ); // Windowing the cutted planes in direction 1 m_ThickPlanes1.push_back(vtkThickPlane::New()); m_ThickPlanes1.push_back(vtkThickPlane::New()); m_ThickPlanes1.push_back(vtkThickPlane::New()); m_Clippers1.push_back(vtkClipPolyData::New()); m_Clippers1.push_back(vtkClipPolyData::New()); m_Clippers1.push_back(vtkClipPolyData::New()); m_Clippers1[0]->SetClipFunction( m_ThickPlanes1[0] ); m_Clippers1[1]->SetClipFunction( m_ThickPlanes1[1] ); m_Clippers1[2]->SetClipFunction( m_ThickPlanes1[2] ); // Windowing the cutted planes in direction 2 m_ThickPlanes2.push_back(vtkThickPlane::New()); m_ThickPlanes2.push_back(vtkThickPlane::New()); m_ThickPlanes2.push_back(vtkThickPlane::New()); m_Clippers2.push_back(vtkClipPolyData::New()); m_Clippers2.push_back(vtkClipPolyData::New()); m_Clippers2.push_back(vtkClipPolyData::New()); m_Clippers2[0]->SetClipFunction( m_ThickPlanes2[0] ); m_Clippers2[1]->SetClipFunction( m_ThickPlanes2[1] ); m_Clippers2[2]->SetClipFunction( m_ThickPlanes2[2] ); m_ShowMaxNumber = 500; } template mitk::OdfVtkMapper2D ::~OdfVtkMapper2D() { } template mitk::Image* mitk::OdfVtkMapper2D ::GetInput() { return static_cast ( m_DataNode->GetData() ); } template vtkProp* mitk::OdfVtkMapper2D ::GetVtkProp(mitk::BaseRenderer* renderer) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); return localStorage->m_PropAssemblies[GetIndex(renderer)]; } template int mitk::OdfVtkMapper2D ::GetIndex(mitk::BaseRenderer* renderer) { if(!strcmp(renderer->GetName(),"stdmulti.widget1")) return 0; if(!strcmp(renderer->GetName(),"stdmulti.widget2")) return 1; if(!strcmp(renderer->GetName(),"stdmulti.widget3")) return 2; return 0; } template void mitk::OdfVtkMapper2D ::GlyphMethod(void *arg) { vtkMaskedProgrammableGlyphFilter* pfilter=(vtkMaskedProgrammableGlyphFilter*)arg; double point[3]; double debugpoint[3]; pfilter->GetPoint(point); pfilter->GetPoint(debugpoint); itk::Point p(point); Vector3D spacing = pfilter->GetGeometry()->GetSpacing(); p[0] /= spacing[0]; p[1] /= spacing[1]; p[2] /= spacing[2]; mitk::Point3D p2; pfilter->GetGeometry()->IndexToWorld( p, p2 ); point[0] = p2[0]; point[1] = p2[1]; point[2] = p2[2]; vtkPointData* data = pfilter->GetPointData(); vtkDataArray* odfvals = data->GetArray("vector"); vtkIdType id = pfilter->GetPointId(); m_OdfTransform->Identity(); m_OdfTransform->Translate(point[0],point[1],point[2]); typedef itk::OrientationDistributionFunction OdfType; OdfType odf; if(odfvals->GetNumberOfComponents()==6) { float tensorelems[6] = { (float)odfvals->GetComponent(id,0), (float)odfvals->GetComponent(id,1), (float)odfvals->GetComponent(id,2), (float)odfvals->GetComponent(id,3), (float)odfvals->GetComponent(id,4), (float)odfvals->GetComponent(id,5), }; itk::DiffusionTensor3D tensor(tensorelems); odf.InitFromTensor(tensor); } else { for(int i=0; iGetComponent(id,i); } switch(m_ScaleBy) { case ODFSB_NONE: m_OdfSource->SetScale(m_Scaling); break; case ODFSB_GFA: m_OdfSource->SetScale(m_Scaling*odf.GetGeneralizedGFA(m_IndexParam1, m_IndexParam2)); break; case ODFSB_PC: m_OdfSource->SetScale(m_Scaling*odf.GetPrincipleCurvature(m_IndexParam1, m_IndexParam2, 0)); break; } m_OdfSource->SetNormalization(m_Normalization); m_OdfSource->SetOdf(odf); m_OdfSource->Modified(); } template typename mitk::OdfVtkMapper2D::OdfDisplayGeometry mitk::OdfVtkMapper2D ::MeasureDisplayedGeometry(mitk::BaseRenderer* renderer) { Geometry2D::ConstPointer worldGeometry = renderer->GetCurrentWorldGeometry2D(); PlaneGeometry::ConstPointer worldPlaneGeometry = dynamic_cast( worldGeometry.GetPointer() ); // set up the cutter orientation according to the current geometry of // the renderers plane vtkFloatingPointType vp[ 3 ], vnormal[ 3 ]; Point3D point = worldPlaneGeometry->GetOrigin(); Vector3D normal = worldPlaneGeometry->GetNormal(); normal.Normalize(); vnl2vtk( point.Get_vnl_vector(), vp ); vnl2vtk( normal.Get_vnl_vector(), vnormal ); mitk::DisplayGeometry::Pointer dispGeometry = renderer->GetDisplayGeometry(); mitk::Vector2D size = dispGeometry->GetSizeInMM(); mitk::Vector2D origin = dispGeometry->GetOriginInMM(); // // |------O------| // | d2 | // L d1 M | // | | // |-------------| // mitk::Vector2D M; mitk::Vector2D L; mitk::Vector2D O; M[0] = origin[0] + size[0]/2; M[1] = origin[1] + size[1]/2; L[0] = origin[0]; L[1] = origin[1] + size[1]/2; O[0] = origin[0] + size[0]/2; O[1] = origin[1] + size[1]; mitk::Point2D point1; point1[0] = M[0]; point1[1] = M[1]; mitk::Point3D M3D; dispGeometry->Map(point1, M3D); point1[0] = L[0]; point1[1] = L[1]; mitk::Point3D L3D; dispGeometry->Map(point1, L3D); point1[0] = O[0]; point1[1] = O[1]; mitk::Point3D O3D; dispGeometry->Map(point1, O3D); double d1 = sqrt((M3D[0]-L3D[0])*(M3D[0]-L3D[0]) + (M3D[1]-L3D[1])*(M3D[1]-L3D[1]) + (M3D[2]-L3D[2])*(M3D[2]-L3D[2])); double d2 = sqrt((M3D[0]-O3D[0])*(M3D[0]-O3D[0]) + (M3D[1]-O3D[1])*(M3D[1]-O3D[1]) + (M3D[2]-O3D[2])*(M3D[2]-O3D[2])); double d = d1>d2 ? d1 : d2; d = d2; OdfDisplayGeometry retval; retval.vp[0] = vp[0]; retval.vp[1] = vp[1]; retval.vp[2] = vp[2]; retval.vnormal[0] = vnormal[0]; retval.vnormal[1] = vnormal[1]; retval.vnormal[2] = vnormal[2]; retval.normal[0] = normal[0]; retval.normal[1] = normal[1]; retval.normal[2] = normal[2]; retval.d = d; retval.d1 = d1; retval.d2 = d2; retval.M3D[0] = M3D[0]; retval.M3D[1] = M3D[1]; retval.M3D[2] = M3D[2]; retval.L3D[0] = L3D[0]; retval.L3D[1] = L3D[1]; retval.L3D[2] = L3D[2]; retval.O3D[0] = O3D[0]; retval.O3D[1] = O3D[1]; retval.O3D[2] = O3D[2]; retval.vp_original[0] = vp[0]; retval.vp_original[1] = vp[1]; retval.vp_original[2] = vp[2]; retval.vnormal_original[0] = vnormal[0]; retval.vnormal_original[1] = vnormal[1]; retval.vnormal_original[2] = vnormal[2]; retval.size[0] = size[0]; retval.size[1] = size[1]; retval.origin[0] = origin[0]; retval.origin[1] = origin[1]; return retval; } template void mitk::OdfVtkMapper2D ::Slice(mitk::BaseRenderer* renderer, OdfDisplayGeometry dispGeo) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); vtkLinearTransform * vtktransform = this->GetDataNode()->GetVtkTransform(this->GetTimestep()); int index = GetIndex(renderer); vtkSmartPointer inversetransform = vtkSmartPointer::New(); inversetransform->Identity(); inversetransform->Concatenate(vtktransform->GetLinearInverse()); double myscale[3]; ((vtkTransform*)vtktransform)->GetScale(myscale); inversetransform->PostMultiply(); inversetransform->Scale(1*myscale[0],1*myscale[1],1*myscale[2]); inversetransform->TransformPoint( dispGeo.vp, dispGeo.vp ); inversetransform->TransformNormalAtPoint( dispGeo.vp, dispGeo.vnormal, dispGeo.vnormal ); // vtk works in axis align coords // thus the normal also must be axis align, since // we do not allow arbitrary cutting through volume // // vnormal should already be axis align, but in order // to get rid of precision effects, we set the two smaller // components to zero here int dims[3]; m_VtkImage->GetDimensions(dims); double spac[3]; m_VtkImage->GetSpacing(spac); if(fabs(dispGeo.vnormal[0]) > fabs(dispGeo.vnormal[1]) && fabs(dispGeo.vnormal[0]) > fabs(dispGeo.vnormal[2]) ) { if(fabs(dispGeo.vp[0]/spac[0]) < 0.4) dispGeo.vp[0] = 0.4*spac[0]; if(fabs(dispGeo.vp[0]/spac[0]) > (dims[0]-1)-0.4) dispGeo.vp[0] = ((dims[0]-1)-0.4)*spac[0]; dispGeo.vnormal[1] = 0; dispGeo.vnormal[2] = 0; } if(fabs(dispGeo.vnormal[1]) > fabs(dispGeo.vnormal[0]) && fabs(dispGeo.vnormal[1]) > fabs(dispGeo.vnormal[2]) ) { if(fabs(dispGeo.vp[1]/spac[1]) < 0.4) dispGeo.vp[1] = 0.4*spac[1]; if(fabs(dispGeo.vp[1]/spac[1]) > (dims[1]-1)-0.4) dispGeo.vp[1] = ((dims[1]-1)-0.4)*spac[1]; dispGeo.vnormal[0] = 0; dispGeo.vnormal[2] = 0; } if(fabs(dispGeo.vnormal[2]) > fabs(dispGeo.vnormal[1]) && fabs(dispGeo.vnormal[2]) > fabs(dispGeo.vnormal[0]) ) { if(fabs(dispGeo.vp[2]/spac[2]) < 0.4) dispGeo.vp[2] = 0.4*spac[2]; if(fabs(dispGeo.vp[2]/spac[2]) > (dims[2]-1)-0.4) dispGeo.vp[2] = ((dims[2]-1)-0.4)*spac[2]; dispGeo.vnormal[0] = 0; dispGeo.vnormal[1] = 0; } m_Planes[index]->SetTransform( (vtkAbstractTransform*)NULL ); m_Planes[index]->SetOrigin( dispGeo.vp ); m_Planes[index]->SetNormal( dispGeo.vnormal ); vtkSmartPointer points; vtkSmartPointer tmppoints; vtkSmartPointer polydata; vtkSmartPointer pointdata; vtkSmartPointer delaunay; vtkSmartPointer cuttedPlane; // the cutter only works if we do not have a 2D-image // or if we have a 2D-image and want to see the whole image. // // for side views of 2D-images, we need some special treatment if(!( (dims[0] == 1 && dispGeo.vnormal[0] != 0) || (dims[1] == 1 && dispGeo.vnormal[1] != 0) || (dims[2] == 1 && dispGeo.vnormal[2] != 0) )) { m_Cutters[index]->SetCutFunction( m_Planes[index] ); m_Cutters[index]->SetInput( m_VtkImage ); m_Cutters[index]->Update(); cuttedPlane = m_Cutters[index]->GetOutput(); } else { // cutting of a 2D-Volume does not work, // so we have to build up our own polydata object cuttedPlane = vtkPolyData::New(); points = vtkPoints::New(); points->SetNumberOfPoints(m_VtkImage->GetNumberOfPoints()); for(int i=0; iGetNumberOfPoints(); i++) { points->SetPoint(i, m_VtkImage->GetPoint(i)); } cuttedPlane->SetPoints(points); pointdata = vtkFloatArray::New(); int comps = m_VtkImage->GetPointData()->GetScalars()->GetNumberOfComponents(); pointdata->SetNumberOfComponents(comps); int tuples = m_VtkImage->GetPointData()->GetScalars()->GetNumberOfTuples(); pointdata->SetNumberOfTuples(tuples); for(int i=0; iSetTuple(i,m_VtkImage->GetPointData()->GetScalars()->GetTuple(i)); pointdata->SetName( "vector" ); cuttedPlane->GetPointData()->AddArray(pointdata); int nZero1, nZero2; if(dims[0]==1) { nZero1 = 1; nZero2 = 2; } else if(dims[1]==1) { nZero1 = 0; nZero2 = 2; } else { nZero1 = 0; nZero2 = 1; } tmppoints = vtkPoints::New(); for(int j=0; jGetNumberOfPoints(); j++){ double pt[3]; m_VtkImage->GetPoint(j,pt); tmppoints->InsertNextPoint(pt[nZero1],pt[nZero2],0); } polydata = vtkPolyData::New(); polydata->SetPoints( tmppoints ); delaunay = vtkDelaunay2D::New(); delaunay->SetInput( polydata ); delaunay->Update(); vtkCellArray* polys = delaunay->GetOutput()->GetPolys(); cuttedPlane->SetPolys(polys); } if(cuttedPlane->GetNumberOfPoints()) { // WINDOWING HERE inversetransform = vtkTransform::New(); inversetransform->Identity(); inversetransform->Concatenate(vtktransform->GetLinearInverse()); double myscale[3]; ((vtkTransform*)vtktransform)->GetScale(myscale); inversetransform->PostMultiply(); inversetransform->Scale(1*myscale[0],1*myscale[1],1*myscale[2]); dispGeo.vnormal[0] = dispGeo.M3D[0]-dispGeo.O3D[0]; dispGeo.vnormal[1] = dispGeo.M3D[1]-dispGeo.O3D[1]; dispGeo.vnormal[2] = dispGeo.M3D[2]-dispGeo.O3D[2]; vtkMath::Normalize(dispGeo.vnormal); dispGeo.vp[0] = dispGeo.M3D[0]; dispGeo.vp[1] = dispGeo.M3D[1]; dispGeo.vp[2] = dispGeo.M3D[2]; inversetransform->TransformPoint( dispGeo.vp, dispGeo.vp ); inversetransform->TransformNormalAtPoint( dispGeo.vp, dispGeo.vnormal, dispGeo.vnormal ); m_ThickPlanes1[index]->count = 0; m_ThickPlanes1[index]->SetTransform((vtkAbstractTransform*)NULL ); m_ThickPlanes1[index]->SetPose( dispGeo.vnormal, dispGeo.vp ); m_ThickPlanes1[index]->SetThickness(dispGeo.d2); m_Clippers1[index]->SetClipFunction( m_ThickPlanes1[index] ); m_Clippers1[index]->SetInput( cuttedPlane ); m_Clippers1[index]->SetInsideOut(1); m_Clippers1[index]->Update(); dispGeo.vnormal[0] = dispGeo.M3D[0]-dispGeo.L3D[0]; dispGeo.vnormal[1] = dispGeo.M3D[1]-dispGeo.L3D[1]; dispGeo.vnormal[2] = dispGeo.M3D[2]-dispGeo.L3D[2]; vtkMath::Normalize(dispGeo.vnormal); dispGeo.vp[0] = dispGeo.M3D[0]; dispGeo.vp[1] = dispGeo.M3D[1]; dispGeo.vp[2] = dispGeo.M3D[2]; inversetransform->TransformPoint( dispGeo.vp, dispGeo.vp ); inversetransform->TransformNormalAtPoint( dispGeo.vp, dispGeo.vnormal, dispGeo.vnormal ); m_ThickPlanes2[index]->count = 0; m_ThickPlanes2[index]->SetTransform((vtkAbstractTransform*)NULL ); m_ThickPlanes2[index]->SetPose( dispGeo.vnormal, dispGeo.vp ); m_ThickPlanes2[index]->SetThickness(dispGeo.d1); m_Clippers2[index]->SetClipFunction( m_ThickPlanes2[index] ); m_Clippers2[index]->SetInput( m_Clippers1[index]->GetOutput() ); m_Clippers2[index]->SetInsideOut(1); m_Clippers2[index]->Update(); cuttedPlane = m_Clippers2[index]->GetOutput (); if(cuttedPlane->GetNumberOfPoints()) { localStorage->m_OdfsPlanes[index]->RemoveAllInputs(); vtkSmartPointer normals = vtkSmartPointer::New(); normals->SetInputConnection( m_OdfSource->GetOutputPort() ); normals->SplittingOff(); normals->ConsistencyOff(); normals->AutoOrientNormalsOff(); normals->ComputePointNormalsOn(); normals->ComputeCellNormalsOff(); normals->FlipNormalsOff(); normals->NonManifoldTraversalOff(); vtkSmartPointer trans = vtkSmartPointer::New(); trans->SetInputConnection( normals->GetOutputPort() ); trans->SetTransform(m_OdfTransform); vtkSmartPointer glyphGenerator = vtkSmartPointer::New(); glyphGenerator->SetMaximumNumberOfPoints(std::min(m_ShowMaxNumber,(int)cuttedPlane->GetNumberOfPoints())); glyphGenerator->SetRandomMode(0); glyphGenerator->SetUseMaskPoints(1); glyphGenerator->SetSource( trans->GetOutput() ); glyphGenerator->SetInput(cuttedPlane); glyphGenerator->SetColorModeToColorBySource(); glyphGenerator->SetInputArrayToProcess(0,0,0, vtkDataObject::FIELD_ASSOCIATION_POINTS , "vector"); glyphGenerator->SetGeometry(this->GetDataNode()->GetData()->GetGeometry()); glyphGenerator->SetGlyphMethod(&(GlyphMethod),(void *)glyphGenerator); try { glyphGenerator->Update(); } catch( itk::ExceptionObject& err ) { std::cout << err << std::endl; } localStorage->m_OdfsPlanes[index]->AddInput(glyphGenerator->GetOutput()); localStorage->m_OdfsPlanes[index]->Update(); } } localStorage->m_PropAssemblies[index]->VisibilityOn(); if(localStorage->m_PropAssemblies[index]->GetParts()->IsItemPresent(localStorage->m_OdfsActors[index])) localStorage->m_PropAssemblies[index]->RemovePart(localStorage->m_OdfsActors[index]); localStorage->m_OdfsMappers[index]->SetInput(localStorage->m_OdfsPlanes[index]->GetOutput()); localStorage->m_PropAssemblies[index]->AddPart(localStorage->m_OdfsActors[index]); } template bool mitk::OdfVtkMapper2D ::IsVisibleOdfs(mitk::BaseRenderer* renderer) { mitk::Image::Pointer input = const_cast(this->GetInput()); - const TimeSlicedGeometry *inputTimeGeometry = input->GetTimeSlicedGeometry(); - if(inputTimeGeometry==NULL || inputTimeGeometry->GetTimeSteps()==0 || !inputTimeGeometry->IsValidTime(this->GetTimestep())) + const TimeGeometry *inputTimeGeometry = input->GetTimeGeometry(); + if(inputTimeGeometry==NULL || inputTimeGeometry->GetNumberOfTimeSteps()==0 || !inputTimeGeometry->IsValidTimeStep(this->GetTimestep())) return false; if(this->IsPlaneRotated(renderer)) return false; bool retval = false; switch(GetIndex(renderer)) { case 0: GetDataNode()->GetVisibility(retval, renderer, "VisibleOdfs_T"); break; case 1: GetDataNode()->GetVisibility(retval, renderer, "VisibleOdfs_S"); break; case 2: GetDataNode()->GetVisibility(retval, renderer, "VisibleOdfs_C"); break; } return retval; } template void mitk::OdfVtkMapper2D ::MitkRenderOverlay(mitk::BaseRenderer* renderer) { if ( this->IsVisibleOdfs(renderer)==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) this->GetVtkProp(renderer)->RenderOverlay(renderer->GetVtkRenderer()); } template void mitk::OdfVtkMapper2D ::MitkRenderOpaqueGeometry(mitk::BaseRenderer* renderer) { if ( this->IsVisibleOdfs( renderer )==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) { // adapt cam pos OdfDisplayGeometry dispGeo = MeasureDisplayedGeometry( renderer); this->GetVtkProp(renderer)->RenderOpaqueGeometry( renderer->GetVtkRenderer() ); } } template void mitk::OdfVtkMapper2D ::MitkRenderTranslucentGeometry(mitk::BaseRenderer* renderer) { if ( this->IsVisibleOdfs(renderer)==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) this->GetVtkProp(renderer)->RenderTranslucentPolygonalGeometry(renderer->GetVtkRenderer()); } template void mitk::OdfVtkMapper2D ::Update(mitk::BaseRenderer* renderer) { bool visible = true; GetDataNode()->GetVisibility(visible, renderer, "visible"); if ( !visible ) return; mitk::Image::Pointer input = const_cast( this->GetInput() ); if ( input.IsNull() ) return ; std::string classname("TensorImage"); if(classname.compare(input->GetNameOfClass())==0) m_VtkImage = dynamic_cast( this->GetInput() )->GetNonRgbVtkImageData(); std::string qclassname("QBallImage"); if(qclassname.compare(input->GetNameOfClass())==0) m_VtkImage = dynamic_cast( this->GetInput() )->GetNonRgbVtkImageData(); if( m_VtkImage ) { // make sure, that we have point data with more than 1 component (as vectors) vtkPointData* pointData = m_VtkImage->GetPointData(); if ( pointData == NULL ) { itkWarningMacro( << "m_VtkImage->GetPointData() returns NULL!" ); return ; } if ( pointData->GetNumberOfArrays() == 0 ) { itkWarningMacro( << "m_VtkImage->GetPointData()->GetNumberOfArrays() is 0!" ); return ; } else if ( pointData->GetArray(0)->GetNumberOfComponents() != N && pointData->GetArray(0)->GetNumberOfComponents() != 6 /*for tensor visualization*/) { itkWarningMacro( << "number of components != number of directions in ODF!" ); return; } else if ( pointData->GetArrayName( 0 ) == NULL ) { m_VtkImage->GetPointData()->GetArray(0)->SetName("vector"); } GenerateDataForRenderer(renderer); } else { itkWarningMacro( << "m_VtkImage is NULL!" ); return ; } } template void mitk::OdfVtkMapper2D ::GenerateDataForRenderer( mitk::BaseRenderer *renderer ) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); OdfDisplayGeometry dispGeo = MeasureDisplayedGeometry( renderer); if ( (localStorage->m_LastUpdateTime >= m_DataNode->GetMTime()) //was the node modified? && (localStorage->m_LastUpdateTime >= m_DataNode->GetPropertyList()->GetMTime()) //was a property modified? && (localStorage->m_LastUpdateTime >= m_DataNode->GetPropertyList(renderer)->GetMTime()) && dispGeo.Equals(m_LastDisplayGeometry)) return; localStorage->m_LastUpdateTime.Modified(); if(!IsVisibleOdfs(renderer)) { localStorage->m_OdfsActors[0]->VisibilityOff(); localStorage->m_OdfsActors[1]->VisibilityOff(); localStorage->m_OdfsActors[2]->VisibilityOff(); } else { localStorage->m_OdfsActors[0]->VisibilityOn(); localStorage->m_OdfsActors[1]->VisibilityOn(); localStorage->m_OdfsActors[2]->VisibilityOn(); m_OdfSource->SetAdditionalScale(GetMinImageSpacing(GetIndex(renderer))); ApplyPropertySettings(); Slice(renderer, dispGeo); m_LastDisplayGeometry = dispGeo; } } template double mitk::OdfVtkMapper2D::GetMinImageSpacing( int index ) { // Spacing adapted scaling double spacing[3]; m_VtkImage->GetSpacing(spacing); double min; if(index==0) { min = spacing[0]; min = min > spacing[1] ? spacing[1] : min; } if(index==1) { min = spacing[1]; min = min > spacing[2] ? spacing[2] : min; } if(index==2) { min = spacing[0]; min = min > spacing[2] ? spacing[2] : min; } return min; } template void mitk::OdfVtkMapper2D ::ApplyPropertySettings() { this->GetDataNode()->GetFloatProperty( "Scaling", m_Scaling ); this->GetDataNode()->GetIntProperty( "ShowMaxNumber", m_ShowMaxNumber ); OdfNormalizationMethodProperty* nmp = dynamic_cast(this->GetDataNode()->GetProperty( "Normalization" )); if(nmp) m_Normalization = nmp->GetNormalization(); OdfScaleByProperty* sbp = dynamic_cast(this->GetDataNode()->GetProperty( "ScaleBy" )); if(sbp) m_ScaleBy = sbp->GetScaleBy(); this->GetDataNode()->GetFloatProperty( "IndexParam1", m_IndexParam1); this->GetDataNode()->GetFloatProperty( "IndexParam2", m_IndexParam2); } template bool mitk::OdfVtkMapper2D ::IsPlaneRotated(mitk::BaseRenderer* renderer) { Geometry2D::ConstPointer worldGeometry = renderer->GetCurrentWorldGeometry2D(); PlaneGeometry::ConstPointer worldPlaneGeometry = dynamic_cast( worldGeometry.GetPointer() ); vtkFloatingPointType vnormal[ 3 ]; Vector3D normal = worldPlaneGeometry->GetNormal(); normal.Normalize(); vnl2vtk( normal.Get_vnl_vector(), vnormal ); vtkLinearTransform * vtktransform = this->GetDataNode()->GetVtkTransform(this->GetTimestep()); vtkSmartPointer inversetransform = vtkSmartPointer::New(); inversetransform->Identity(); inversetransform->Concatenate(vtktransform->GetLinearInverse()); double* n = inversetransform->TransformNormal(vnormal); int nonZeros = 0; for (int j=0; j<3; j++) { if (fabs(n[j])>mitk::eps){ nonZeros++; } } if(nonZeros>1) return true; return false; } template void mitk::OdfVtkMapper2D ::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* /*renderer*/, bool /*overwrite*/) { node->SetProperty( "ShowMaxNumber", mitk::IntProperty::New( 150 ) ); node->SetProperty( "Scaling", mitk::FloatProperty::New( 1.0 ) ); node->SetProperty( "Normalization", mitk::OdfNormalizationMethodProperty::New()); node->SetProperty( "ScaleBy", mitk::OdfScaleByProperty::New()); node->SetProperty( "IndexParam1", mitk::FloatProperty::New(2)); node->SetProperty( "IndexParam2", mitk::FloatProperty::New(1)); node->SetProperty( "visible", mitk::BoolProperty::New( true ) ); node->SetProperty( "VisibleOdfs_T", mitk::BoolProperty::New( false ) ); node->SetProperty( "VisibleOdfs_C", mitk::BoolProperty::New( false ) ); node->SetProperty( "VisibleOdfs_S", mitk::BoolProperty::New( false ) ); node->SetProperty ("layer", mitk::IntProperty::New(100)); node->SetProperty( "DoRefresh", mitk::BoolProperty::New( true ) ); } #endif // __mitkOdfVtkMapper2D_txx__ diff --git a/Modules/DiffusionImaging/Quantification/IODataStructures/TbssImages/mitkNrrdTbssRoiImageReader.cpp b/Modules/DiffusionImaging/Quantification/IODataStructures/TbssImages/mitkNrrdTbssRoiImageReader.cpp index 73e833b1b3..f8d775402f 100644 --- a/Modules/DiffusionImaging/Quantification/IODataStructures/TbssImages/mitkNrrdTbssRoiImageReader.cpp +++ b/Modules/DiffusionImaging/Quantification/IODataStructures/TbssImages/mitkNrrdTbssRoiImageReader.cpp @@ -1,363 +1,363 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef __mitkNrrdTbssRoiReader_cpp #define __mitkNrrdTbssRoiReader_cpp #include "mitkNrrdTbssRoiImageReader.h" #include "itkImageFileReader.h" #include "itkMetaDataObject.h" #include "itkNrrdImageIO.h" #include "itkNiftiImageIO.h" #include #include #include #include "itksys/SystemTools.hxx" namespace mitk { void NrrdTbssRoiImageReader ::GenerateData() { try { // Change locale if needed const std::string& locale = "C"; const std::string& currLocale = setlocale( LC_ALL, NULL ); if ( locale.compare(currLocale)!=0 ) { try { MITK_INFO << " ** Changing locale from " << setlocale(LC_ALL, NULL) << " to '" << locale << "'"; setlocale(LC_ALL, locale.c_str()); } catch(...) { MITK_INFO << "Could not set locale " << locale; } } // READ IMAGE INFORMATION const unsigned int MINDIM = 3; const unsigned int MAXDIM = 4; MITK_INFO << "loading " << m_FileName << " via mitk::NrrdTbssImageReader... " << std::endl; // Check to see if we can read the file given the name or prefix if ( m_FileName == "" ) { itkWarningMacro( << "Filename is empty!" ) return; } itk::NrrdImageIO::Pointer imageIO = itk::NrrdImageIO::New(); imageIO->SetFileName( m_FileName.c_str() ); imageIO->ReadImageInformation(); unsigned int ndim = imageIO->GetNumberOfDimensions(); if ( ndim < MINDIM || ndim > MAXDIM ) { itkWarningMacro( << "Sorry, only dimensions 3 is supported. The given file has " << ndim << " dimensions!" ) return; } itk::ImageIORegion ioRegion( ndim ); itk::ImageIORegion::SizeType ioSize = ioRegion.GetSize(); itk::ImageIORegion::IndexType ioStart = ioRegion.GetIndex(); unsigned int dimensions[ MAXDIM ]; dimensions[ 0 ] = 0; dimensions[ 1 ] = 0; dimensions[ 2 ] = 0; dimensions[ 3 ] = 0; float spacing[ MAXDIM ]; spacing[ 0 ] = 1.0f; spacing[ 1 ] = 1.0f; spacing[ 2 ] = 1.0f; spacing[ 3 ] = 1.0f; Point3D origin; origin.Fill(0); unsigned int i; for ( i = 0; i < ndim ; ++i ) { ioStart[ i ] = 0; ioSize[ i ] = imageIO->GetDimensions( i ); if(iGetDimensions( i ); spacing[ i ] = imageIO->GetSpacing( i ); if(spacing[ i ] <= 0) spacing[ i ] = 1.0f; } if(i<3) { origin[ i ] = imageIO->GetOrigin( i ); } } ioRegion.SetSize( ioSize ); ioRegion.SetIndex( ioStart ); MITK_INFO << "ioRegion: " << ioRegion << std::endl; imageIO->SetIORegion( ioRegion ); void* buffer = new unsigned char[imageIO->GetImageSizeInBytes()]; imageIO->Read( buffer ); //mitk::Image::Pointer static_cast(this->GetOutput())image = mitk::Image::New(); if((ndim==4) && (dimensions[3]<=1)) ndim = 3; if((ndim==3) && (dimensions[2]<=1)) ndim = 2; mitk::PixelType pixelType = mitk::PixelType(imageIO->GetComponentTypeInfo(), imageIO->GetPixelType(), imageIO->GetComponentSize(), imageIO->GetNumberOfComponents(), imageIO->GetComponentTypeAsString( imageIO->GetComponentType() ).c_str(), imageIO->GetPixelTypeAsString( imageIO->GetPixelType() ).c_str() ); //pixelType.Initialize( imageIO->GetComponentTypeInfo(), imageIO->GetNumberOfComponents(), imageIO->GetPixelType() ); static_cast(this->GetOutput(0))->Initialize( pixelType, ndim, dimensions ); static_cast(this->GetOutput(0))->SetImportChannel( buffer, 0, Image::ManageMemory ); // access direction of itk::Image and include spacing mitk::Matrix3D matrix; matrix.SetIdentity(); unsigned int j, itkDimMax3 = (ndim >= 3? 3 : ndim); for ( i=0; i < itkDimMax3; ++i) for( j=0; j < itkDimMax3; ++j ) matrix[i][j] = imageIO->GetDirection(j)[i]; // re-initialize PlaneGeometry with origin and direction PlaneGeometry* planeGeometry = static_cast (static_cast (this->GetOutput(0))->GetSlicedGeometry(0)->GetGeometry2D(0)); planeGeometry->SetOrigin(origin); planeGeometry->GetIndexToWorldTransform()->SetMatrix(matrix); // re-initialize SlicedGeometry3D SlicedGeometry3D* slicedGeometry = static_cast(this->GetOutput(0))->GetSlicedGeometry(0); slicedGeometry->InitializeEvenlySpaced(planeGeometry, static_cast(this->GetOutput(0))->GetDimension(2)); slicedGeometry->SetSpacing(spacing); // re-initialize TimeSlicedGeometry - static_cast(this->GetOutput(0))->GetTimeSlicedGeometry()->InitializeEvenlyTimed(slicedGeometry, static_cast(this->GetOutput(0))->GetDimension(3)); + dynamic_cast(static_cast(this->GetOutput(0))->GetTimeGeometry())->Initialize(slicedGeometry, static_cast(this->GetOutput(0))->GetDimension(3)); buffer = NULL; MITK_INFO << "number of image components: "<< static_cast(this->GetOutput(0))->GetPixelType().GetNumberOfComponents() << std::endl; // READ TBSS HEADER INFORMATION ImageType::Pointer img; std::string ext = itksys::SystemTools::GetFilenameLastExtension(m_FileName); ext = itksys::SystemTools::LowerCase(ext); if (ext == ".roi") { typedef itk::ImageFileReader FileReaderType; FileReaderType::Pointer reader = FileReaderType::New(); reader->SetFileName(this->m_FileName); reader->SetImageIO(imageIO); reader->Update(); img = reader->GetOutput(); static_cast(this->GetOutput(0))->SetImage(img); itk::MetaDataDictionary imgMetaDictionary = img->GetMetaDataDictionary(); ReadRoiInfo(imgMetaDictionary); } // RESET LOCALE try { MITK_INFO << " ** Changing locale back from " << setlocale(LC_ALL, NULL) << " to '" << currLocale << "'"; setlocale(LC_ALL, currLocale.c_str()); } catch(...) { MITK_INFO << "Could not reset locale " << currLocale; } MITK_INFO << "...finished!" << std::endl; } catch(std::exception& e) { MITK_INFO << "Std::Exception while reading file!!"; MITK_INFO << e.what(); throw itk::ImageFileReaderException(__FILE__, __LINE__, e.what()); } catch(...) { MITK_INFO << "Exception while reading file!!"; throw itk::ImageFileReaderException(__FILE__, __LINE__, "Sorry, an error occurred while reading the requested vessel tree file!"); } } void NrrdTbssRoiImageReader ::ReadRoiInfo(itk::MetaDataDictionary dict) { std::vector imgMetaKeys = dict.GetKeys(); std::vector::const_iterator itKey = imgMetaKeys.begin(); std::string metaString; std::vector< itk::Index<3> > roi; for (; itKey != imgMetaKeys.end(); itKey ++) { double x,y,z; itk::Index<3> ix; itk::ExposeMetaData (dict, *itKey, metaString); if (itKey->find("ROI_index") != std::string::npos) { MITK_INFO << *itKey << " ---> " << metaString; sscanf(metaString.c_str(), "%lf %lf %lf\n", &x, &y, &z); ix[0] = x; ix[1] = y; ix[2] = z; roi.push_back(ix); } else if(itKey->find("preprocessed FA") != std::string::npos) { MITK_INFO << *itKey << " ---> " << metaString; static_cast(this->GetOutput(0))->SetPreprocessedFA(true); static_cast(this->GetOutput(0))->SetPreprocessedFAFile(metaString); } // Name of structure if (itKey->find("structure") != std::string::npos) { MITK_INFO << *itKey << " ---> " << metaString; static_cast(this->GetOutput(0))->SetStructure(metaString); } } static_cast(this->GetOutput(0))->SetRoi(roi); } const char* NrrdTbssRoiImageReader ::GetFileName() const { return m_FileName.c_str(); } void NrrdTbssRoiImageReader ::SetFileName(const char* aFileName) { m_FileName = aFileName; } const char* NrrdTbssRoiImageReader ::GetFilePrefix() const { return m_FilePrefix.c_str(); } void NrrdTbssRoiImageReader ::SetFilePrefix(const char* aFilePrefix) { m_FilePrefix = aFilePrefix; } const char* NrrdTbssRoiImageReader ::GetFilePattern() const { return m_FilePattern.c_str(); } void NrrdTbssRoiImageReader ::SetFilePattern(const char* aFilePattern) { m_FilePattern = aFilePattern; } bool NrrdTbssRoiImageReader ::CanReadFile(const std::string filename, const std::string filePrefix, const std::string filePattern) { // First check the extension if( filename == "" ) return false; // check if image is serie if( filePattern != "" && filePrefix != "" ) return false; std::string ext = itksys::SystemTools::GetFilenameLastExtension(filename); ext = itksys::SystemTools::LowerCase(ext); if (ext == ".roi") { itk::NrrdImageIO::Pointer io = itk::NrrdImageIO::New(); typedef itk::ImageFileReader FileReaderType; FileReaderType::Pointer reader = FileReaderType::New(); reader->SetImageIO(io); reader->SetFileName(filename); try { reader->Update(); } catch(itk::ExceptionObject e) { MITK_INFO << e.GetDescription(); return false; } return true; } return false; } } //namespace MITK #endif diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkControlVisualizationPropertiesView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkControlVisualizationPropertiesView.cpp index f91bcbecf3..82ec15d18a 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkControlVisualizationPropertiesView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkControlVisualizationPropertiesView.cpp @@ -1,1766 +1,1766 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkControlVisualizationPropertiesView.h" #include "mitkNodePredicateDataType.h" #include "mitkDataNodeObject.h" #include "mitkOdfNormalizationMethodProperty.h" #include "mitkOdfScaleByProperty.h" #include "mitkResliceMethodProperty.h" #include "mitkRenderingManager.h" #include "mitkTbssImage.h" #include "mitkPlanarFigure.h" #include "mitkFiberBundleX.h" #include "QmitkDataStorageComboBox.h" #include "QmitkStdMultiWidget.h" #include "mitkFiberBundleInteractor.h" #include "mitkPlanarFigureInteractor.h" #include #include #include #include "mitkGlobalInteraction.h" #include "mitkGeometry2D.h" #include "mitkSegTool2D.h" #include "berryIWorkbenchWindow.h" #include "berryIWorkbenchPage.h" #include "berryISelectionService.h" #include "berryConstants.h" #include "berryPlatformUI.h" #include "itkRGBAPixel.h" #include #include "qwidgetaction.h" #include "qcolordialog.h" const std::string QmitkControlVisualizationPropertiesView::VIEW_ID = "org.mitk.views.controlvisualizationpropertiesview"; using namespace berry; struct CvpSelListener : ISelectionListener { berryObjectMacro(CvpSelListener); CvpSelListener(QmitkControlVisualizationPropertiesView* view) { m_View = view; } void ApplySettings(mitk::DataNode::Pointer node) { bool tex_int; node->GetBoolProperty("texture interpolation", tex_int); if(tex_int) { m_View->m_Controls->m_TextureIntON->setIcon(*m_View->m_IconTexON); m_View->m_Controls->m_TextureIntON->setChecked(true); m_View->m_TexIsOn = true; } else { m_View->m_Controls->m_TextureIntON->setIcon(*m_View->m_IconTexOFF); m_View->m_Controls->m_TextureIntON->setChecked(false); m_View->m_TexIsOn = false; } int val; node->GetIntProperty("ShowMaxNumber", val); m_View->m_Controls->m_ShowMaxNumber->setValue(val); m_View->m_Controls->m_NormalizationDropdown->setCurrentIndex(dynamic_cast(node->GetProperty("Normalization"))->GetValueAsId()); float fval; node->GetFloatProperty("Scaling",fval); m_View->m_Controls->m_ScalingFactor->setValue(fval); m_View->m_Controls->m_AdditionalScaling->setCurrentIndex(dynamic_cast(node->GetProperty("ScaleBy"))->GetValueAsId()); node->GetFloatProperty("IndexParam1",fval); m_View->m_Controls->m_IndexParam1->setValue(fval); node->GetFloatProperty("IndexParam2",fval); m_View->m_Controls->m_IndexParam2->setValue(fval); } void DoSelectionChanged(ISelection::ConstPointer selection) { // save current selection in member variable m_View->m_CurrentSelection = selection.Cast(); m_View->m_Controls->m_VisibleOdfsON_T->setVisible(false); m_View->m_Controls->m_VisibleOdfsON_S->setVisible(false); m_View->m_Controls->m_VisibleOdfsON_C->setVisible(false); m_View->m_Controls->m_TextureIntON->setVisible(false); m_View->m_Controls->m_ImageControlsFrame->setVisible(false); m_View->m_Controls->m_PlanarFigureControlsFrame->setVisible(false); m_View->m_Controls->m_BundleControlsFrame->setVisible(false); m_View->m_SelectedNode = 0; if(m_View->m_CurrentSelection.IsNull()) return; if(m_View->m_CurrentSelection->Size() == 1) { mitk::DataNodeObject::Pointer nodeObj = m_View->m_CurrentSelection->Begin()->Cast(); if(nodeObj.IsNotNull()) { mitk::DataNode::Pointer node = nodeObj->GetDataNode(); // check if node has data, // if some helper nodes are shown in the DataManager, the GetData() returns 0x0 which would lead to SIGSEV mitk::BaseData* nodeData = node->GetData(); if(nodeData != NULL ) { if(dynamic_cast(nodeData) != 0) { m_View->m_Controls->m_PlanarFigureControlsFrame->setVisible(true); m_View->m_SelectedNode = node; float val; node->GetFloatProperty("planarfigure.line.width", val); m_View->m_Controls->m_PFWidth->setValue((int)(val*10.0)); QString label = "Width %1"; label = label.arg(val); m_View->m_Controls->label_pfwidth->setText(label); float color[3]; node->GetColor( color, NULL, "planarfigure.default.line.color"); QString styleSheet = "background-color:rgb("; styleSheet.append(QString::number(color[0]*255.0)); styleSheet.append(","); styleSheet.append(QString::number(color[1]*255.0)); styleSheet.append(","); styleSheet.append(QString::number(color[2]*255.0)); styleSheet.append(")"); m_View->m_Controls->m_PFColor->setAutoFillBackground(true); m_View->m_Controls->m_PFColor->setStyleSheet(styleSheet); node->GetColor( color, NULL, "color"); styleSheet = "background-color:rgb("; styleSheet.append(QString::number(color[0]*255.0)); styleSheet.append(","); styleSheet.append(QString::number(color[1]*255.0)); styleSheet.append(","); styleSheet.append(QString::number(color[2]*255.0)); styleSheet.append(")"); m_View->PlanarFigureFocus(); } if(dynamic_cast(nodeData) != 0) { m_View->m_Controls->m_BundleControlsFrame->setVisible(true); m_View->m_SelectedNode = node; if(m_View->m_CurrentPickingNode != 0 && node.GetPointer() != m_View->m_CurrentPickingNode) { m_View->m_Controls->m_Crosshair->setEnabled(false); } else { m_View->m_Controls->m_Crosshair->setEnabled(true); } float val; node->GetFloatProperty("TubeRadius", val); m_View->m_Controls->m_TubeRadius->setValue((int)(val * 100.0)); QString label = "Radius %1"; label = label.arg(val); m_View->m_Controls->label_tuberadius->setText(label); int width; node->GetIntProperty("LineWidth", width); m_View->m_Controls->m_LineWidth->setValue(width); label = "Width %1"; label = label.arg(width); m_View->m_Controls->label_linewidth->setText(label); float range; node->GetFloatProperty("Fiber2DSliceThickness",range); label = "Range %1"; label = label.arg(range*0.1); m_View->m_Controls->label_range->setText(label); } } // check node data != NULL } } if(m_View->m_CurrentSelection->Size() > 0 && m_View->m_SelectedNode == 0) { m_View->m_Controls->m_ImageControlsFrame->setVisible(true); bool foundDiffusionImage = false; bool foundQBIVolume = false; bool foundTensorVolume = false; bool foundImage = false; bool foundMultipleOdfImages = false; bool foundRGBAImage = false; bool foundTbssImage = false; // do something with the selected items if(m_View->m_CurrentSelection) { // iterate selection for (IStructuredSelection::iterator i = m_View->m_CurrentSelection->Begin(); i != m_View->m_CurrentSelection->End(); ++i) { // extract datatree node if (mitk::DataNodeObject::Pointer nodeObj = i->Cast()) { mitk::DataNode::Pointer node = nodeObj->GetDataNode(); mitk::BaseData* nodeData = node->GetData(); if(nodeData != NULL ) { // only look at interesting types if(QString("DiffusionImage").compare(nodeData->GetNameOfClass())==0) { foundDiffusionImage = true; bool tex_int; node->GetBoolProperty("texture interpolation", tex_int); if(tex_int) { m_View->m_Controls->m_TextureIntON->setIcon(*m_View->m_IconTexON); m_View->m_Controls->m_TextureIntON->setChecked(true); m_View->m_TexIsOn = true; } else { m_View->m_Controls->m_TextureIntON->setIcon(*m_View->m_IconTexOFF); m_View->m_Controls->m_TextureIntON->setChecked(false); m_View->m_TexIsOn = false; } int val; node->GetIntProperty("DisplayChannel", val); m_View->m_Controls->m_DisplayIndex->setValue(val); QString label = "Channel %1"; label = label.arg(val); m_View->m_Controls->label_channel->setText(label); int maxVal = (dynamic_cast* >(nodeData))->GetVectorImage()->GetVectorLength(); m_View->m_Controls->m_DisplayIndex->setMaximum(maxVal-1); } if(QString("TbssImage").compare(nodeData->GetNameOfClass())==0) { foundTbssImage = true; bool tex_int; node->GetBoolProperty("texture interpolation", tex_int); if(tex_int) { m_View->m_Controls->m_TextureIntON->setIcon(*m_View->m_IconTexON); m_View->m_Controls->m_TextureIntON->setChecked(true); m_View->m_TexIsOn = true; } else { m_View->m_Controls->m_TextureIntON->setIcon(*m_View->m_IconTexOFF); m_View->m_Controls->m_TextureIntON->setChecked(false); m_View->m_TexIsOn = false; } int val; node->GetIntProperty("DisplayChannel", val); m_View->m_Controls->m_DisplayIndex->setValue(val); QString label = "Channel %1"; label = label.arg(val); m_View->m_Controls->label_channel->setText(label); int maxVal = (dynamic_cast(nodeData))->GetImage()->GetVectorLength(); m_View->m_Controls->m_DisplayIndex->setMaximum(maxVal-1); } else if(QString("QBallImage").compare(nodeData->GetNameOfClass())==0) { foundMultipleOdfImages = foundQBIVolume || foundTensorVolume; foundQBIVolume = true; ApplySettings(node); } else if(QString("TensorImage").compare(nodeData->GetNameOfClass())==0) { foundMultipleOdfImages = foundQBIVolume || foundTensorVolume; foundTensorVolume = true; ApplySettings(node); } else if(QString("Image").compare(nodeData->GetNameOfClass())==0) { foundImage = true; mitk::Image::Pointer img = dynamic_cast(nodeData); if(img.IsNotNull() && img->GetPixelType().GetPixelTypeId() == itk::ImageIOBase::RGBA && img->GetPixelType().GetTypeId() == typeid(unsigned char) ) { foundRGBAImage = true; } bool tex_int; node->GetBoolProperty("texture interpolation", tex_int); if(tex_int) { m_View->m_Controls->m_TextureIntON->setIcon(*m_View->m_IconTexON); m_View->m_Controls->m_TextureIntON->setChecked(true); m_View->m_TexIsOn = true; } else { m_View->m_Controls->m_TextureIntON->setIcon(*m_View->m_IconTexOFF); m_View->m_Controls->m_TextureIntON->setChecked(false); m_View->m_TexIsOn = false; } } } // END CHECK node != NULL } } } m_View->m_FoundSingleOdfImage = (foundQBIVolume || foundTensorVolume) && !foundMultipleOdfImages; m_View->m_Controls->m_NumberGlyphsFrame->setVisible(m_View->m_FoundSingleOdfImage); m_View->m_Controls->m_NormalizationDropdown->setVisible(m_View->m_FoundSingleOdfImage); m_View->m_Controls->label->setVisible(m_View->m_FoundSingleOdfImage); m_View->m_Controls->m_ScalingFactor->setVisible(m_View->m_FoundSingleOdfImage); m_View->m_Controls->m_AdditionalScaling->setVisible(m_View->m_FoundSingleOdfImage); m_View->m_Controls->m_NormalizationScalingFrame->setVisible(m_View->m_FoundSingleOdfImage); m_View->m_Controls->OpacMinFrame->setVisible(foundRGBAImage || m_View->m_FoundSingleOdfImage); // changed for SPIE paper, Principle curvature scaling //m_View->m_Controls->params_frame->setVisible(m_View->m_FoundSingleOdfImage); m_View->m_Controls->params_frame->setVisible(false); m_View->m_Controls->m_VisibleOdfsON_T->setVisible(m_View->m_FoundSingleOdfImage); m_View->m_Controls->m_VisibleOdfsON_S->setVisible(m_View->m_FoundSingleOdfImage); m_View->m_Controls->m_VisibleOdfsON_C->setVisible(m_View->m_FoundSingleOdfImage); bool foundAnyImage = foundDiffusionImage || foundQBIVolume || foundTensorVolume || foundImage || foundTbssImage; m_View->m_Controls->m_Reinit->setVisible(foundAnyImage); m_View->m_Controls->m_TextureIntON->setVisible(foundAnyImage); m_View->m_Controls->m_TSMenu->setVisible(foundAnyImage); } } void SelectionChanged(IWorkbenchPart::Pointer part, ISelection::ConstPointer selection) { // check, if selection comes from datamanager if (part) { QString partname(part->GetPartName().c_str()); if(partname.compare("Datamanager")==0) { // apply selection DoSelectionChanged(selection); } } } QmitkControlVisualizationPropertiesView* m_View; }; QmitkControlVisualizationPropertiesView::QmitkControlVisualizationPropertiesView() : QmitkFunctionality(), m_Controls(NULL), m_MultiWidget(NULL), m_NodeUsedForOdfVisualization(NULL), m_IconTexOFF(new QIcon(":/QmitkDiffusionImaging/texIntOFFIcon.png")), m_IconTexON(new QIcon(":/QmitkDiffusionImaging/texIntONIcon.png")), m_IconGlyOFF_T(new QIcon(":/QmitkDiffusionImaging/glyphsoff_T.png")), m_IconGlyON_T(new QIcon(":/QmitkDiffusionImaging/glyphson_T.png")), m_IconGlyOFF_C(new QIcon(":/QmitkDiffusionImaging/glyphsoff_C.png")), m_IconGlyON_C(new QIcon(":/QmitkDiffusionImaging/glyphson_C.png")), m_IconGlyOFF_S(new QIcon(":/QmitkDiffusionImaging/glyphsoff_S.png")), m_IconGlyON_S(new QIcon(":/QmitkDiffusionImaging/glyphson_S.png")), m_CurrentSelection(0), m_CurrentPickingNode(0), m_GlyIsOn_S(false), m_GlyIsOn_C(false), m_GlyIsOn_T(false), m_FiberBundleObserverTag(0), m_Color(NULL) { currentThickSlicesMode = 1; m_MyMenu = NULL; } QmitkControlVisualizationPropertiesView::QmitkControlVisualizationPropertiesView(const QmitkControlVisualizationPropertiesView& other) { Q_UNUSED(other) throw std::runtime_error("Copy constructor not implemented"); } QmitkControlVisualizationPropertiesView::~QmitkControlVisualizationPropertiesView() { if(m_SlicesRotationObserverTag1 ) { mitk::SlicesCoordinator* coordinator = m_MultiWidget->GetSlicesRotator(); if( coordinator) coordinator->RemoveObserver(m_SlicesRotationObserverTag1); } if( m_SlicesRotationObserverTag2) { mitk::SlicesCoordinator* coordinator = m_MultiWidget->GetSlicesRotator(); if( coordinator ) coordinator->RemoveObserver(m_SlicesRotationObserverTag1); } this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->RemovePostSelectionListener(/*"org.mitk.views.datamanager",*/ m_SelListener); } void QmitkControlVisualizationPropertiesView::OnThickSlicesModeSelected( QAction* action ) { currentThickSlicesMode = action->data().toInt(); switch(currentThickSlicesMode) { default: case 1: this->m_Controls->m_TSMenu->setText("MIP"); break; case 2: this->m_Controls->m_TSMenu->setText("SUM"); break; case 3: this->m_Controls->m_TSMenu->setText("WEIGH"); break; } mitk::DataNode* n; n = this->m_MultiWidget->GetWidgetPlane1(); if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( currentThickSlicesMode ) ); n = this->m_MultiWidget->GetWidgetPlane2(); if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( currentThickSlicesMode ) ); n = this->m_MultiWidget->GetWidgetPlane3(); if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( currentThickSlicesMode ) ); mitk::BaseRenderer::Pointer renderer = this->GetActiveStdMultiWidget()->GetRenderWindow1()->GetRenderer(); if(renderer.IsNotNull()) { renderer->SendUpdateSlice(); } renderer = this->GetActiveStdMultiWidget()->GetRenderWindow2()->GetRenderer(); if(renderer.IsNotNull()) { renderer->SendUpdateSlice(); } renderer = this->GetActiveStdMultiWidget()->GetRenderWindow3()->GetRenderer(); if(renderer.IsNotNull()) { renderer->SendUpdateSlice(); } renderer->GetRenderingManager()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::OnTSNumChanged(int num) { if(num==0) { mitk::DataNode* n; n = this->m_MultiWidget->GetWidgetPlane1(); if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( 0 ) ); n = this->m_MultiWidget->GetWidgetPlane2(); if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( 0 ) ); n = this->m_MultiWidget->GetWidgetPlane3(); if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( 0 ) ); } else { mitk::DataNode* n; n = this->m_MultiWidget->GetWidgetPlane1(); if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( currentThickSlicesMode ) ); n = this->m_MultiWidget->GetWidgetPlane2(); if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( currentThickSlicesMode ) ); n = this->m_MultiWidget->GetWidgetPlane3(); if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( currentThickSlicesMode ) ); n = this->m_MultiWidget->GetWidgetPlane1(); if(n) n->SetProperty( "reslice.thickslices.num", mitk::IntProperty::New( num ) ); n = this->m_MultiWidget->GetWidgetPlane2(); if(n) n->SetProperty( "reslice.thickslices.num", mitk::IntProperty::New( num ) ); n = this->m_MultiWidget->GetWidgetPlane3(); if(n) n->SetProperty( "reslice.thickslices.num", mitk::IntProperty::New( num ) ); } m_TSLabel->setText(QString::number(num*2+1)); mitk::BaseRenderer::Pointer renderer = this->GetActiveStdMultiWidget()->GetRenderWindow1()->GetRenderer(); if(renderer.IsNotNull()) { renderer->SendUpdateSlice(); } renderer = this->GetActiveStdMultiWidget()->GetRenderWindow2()->GetRenderer(); if(renderer.IsNotNull()) { renderer->SendUpdateSlice(); } renderer = this->GetActiveStdMultiWidget()->GetRenderWindow3()->GetRenderer(); if(renderer.IsNotNull()) { renderer->SendUpdateSlice(); } renderer->GetRenderingManager()->RequestUpdateAll(mitk::RenderingManager::REQUEST_UPDATE_2DWINDOWS); } void QmitkControlVisualizationPropertiesView::CreateQtPartControl(QWidget *parent) { if (!m_Controls) { // create GUI widgets m_Controls = new Ui::QmitkControlVisualizationPropertiesViewControls; m_Controls->setupUi(parent); this->CreateConnections(); // hide warning (ODFs in rotated planes) m_Controls->m_lblRotatedPlanesWarning->hide(); m_MyMenu = new QMenu(parent); connect( m_MyMenu, SIGNAL( aboutToShow() ), this, SLOT(OnMenuAboutToShow()) ); // button for changing rotation mode m_Controls->m_TSMenu->setMenu( m_MyMenu ); //m_CrosshairModeButton->setIcon( QIcon( iconCrosshairMode_xpm ) ); m_Controls->params_frame->setVisible(false); QIcon icon5(":/QmitkDiffusionImaging/Refresh_48.png"); m_Controls->m_Reinit->setIcon(icon5); m_Controls->m_Focus->setIcon(icon5); QIcon iconColor(":/QmitkDiffusionImaging/color24.gif"); m_Controls->m_PFColor->setIcon(iconColor); m_Controls->m_Color->setIcon(iconColor); QIcon iconReset(":/QmitkDiffusionImaging/reset.png"); m_Controls->m_ResetColoring->setIcon(iconReset); m_Controls->m_PFColor->setToolButtonStyle(Qt::ToolButtonTextBesideIcon); QIcon iconCrosshair(":/QmitkDiffusionImaging/crosshair.png"); m_Controls->m_Crosshair->setIcon(iconCrosshair); // was is los QIcon iconPaint(":/QmitkDiffusionImaging/paint2.png"); m_Controls->m_TDI->setIcon(iconPaint); QIcon iconFiberFade(":/QmitkDiffusionImaging/MapperEfx2D.png"); m_Controls->m_FiberFading2D->setIcon(iconFiberFade); m_Controls->m_TextureIntON->setCheckable(true); #ifndef DIFFUSION_IMAGING_EXTENDED int size = m_Controls->m_AdditionalScaling->count(); for(int t=0; tm_AdditionalScaling->itemText(t).toStdString() == "Scale by ASR") { m_Controls->m_AdditionalScaling->removeItem(t); } } #endif m_Controls->m_OpacitySlider->setRange(0.0,1.0); m_Controls->m_OpacitySlider->setLowerValue(0.0); m_Controls->m_OpacitySlider->setUpperValue(0.0); m_Controls->m_ScalingFrame->setVisible(false); m_Controls->m_NormalizationFrame->setVisible(false); m_Controls->frame_tube->setVisible(false); m_Controls->frame_wire->setVisible(false); } m_IsInitialized = false; m_SelListener = berry::ISelectionListener::Pointer(new CvpSelListener(this)); this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->AddPostSelectionListener(/*"org.mitk.views.datamanager",*/ m_SelListener); berry::ISelection::ConstPointer sel( this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); m_CurrentSelection = sel.Cast(); m_SelListener.Cast()->DoSelectionChanged(sel); m_IsInitialized = true; } void QmitkControlVisualizationPropertiesView::OnMenuAboutToShow () { // THICK SLICE SUPPORT QMenu *myMenu = m_MyMenu; myMenu->clear(); QActionGroup* thickSlicesActionGroup = new QActionGroup(myMenu); thickSlicesActionGroup->setExclusive(true); mitk::BaseRenderer::Pointer renderer = this->GetActiveStdMultiWidget()->GetRenderWindow1()->GetRenderer(); int currentTSMode = 0; { mitk::ResliceMethodProperty::Pointer m = dynamic_cast(renderer->GetCurrentWorldGeometry2DNode()->GetProperty( "reslice.thickslices" )); if( m.IsNotNull() ) currentTSMode = m->GetValueAsId(); } const int maxTS = 30; int currentNum = 0; { mitk::IntProperty::Pointer m = dynamic_cast(renderer->GetCurrentWorldGeometry2DNode()->GetProperty( "reslice.thickslices.num" )); if( m.IsNotNull() ) { currentNum = m->GetValue(); if(currentNum < 0) currentNum = 0; if(currentNum > maxTS) currentNum = maxTS; } } if(currentTSMode==0) currentNum=0; QSlider *m_TSSlider = new QSlider(myMenu); m_TSSlider->setMinimum(0); m_TSSlider->setMaximum(maxTS-1); m_TSSlider->setValue(currentNum); m_TSSlider->setOrientation(Qt::Horizontal); connect( m_TSSlider, SIGNAL( valueChanged(int) ), this, SLOT( OnTSNumChanged(int) ) ); QHBoxLayout* _TSLayout = new QHBoxLayout; _TSLayout->setContentsMargins(4,4,4,4); _TSLayout->addWidget(m_TSSlider); _TSLayout->addWidget(m_TSLabel=new QLabel(QString::number(currentNum*2+1),myMenu)); QWidget* _TSWidget = new QWidget; _TSWidget->setLayout(_TSLayout); QActionGroup* thickSliceModeActionGroup = new QActionGroup(myMenu); thickSliceModeActionGroup->setExclusive(true); QWidgetAction *m_TSSliderAction = new QWidgetAction(myMenu); m_TSSliderAction->setDefaultWidget(_TSWidget); myMenu->addAction(m_TSSliderAction); QAction* mipThickSlicesAction = new QAction(myMenu); mipThickSlicesAction->setActionGroup(thickSliceModeActionGroup); mipThickSlicesAction->setText("MIP (max. intensity proj.)"); mipThickSlicesAction->setCheckable(true); mipThickSlicesAction->setChecked(currentThickSlicesMode==1); mipThickSlicesAction->setData(1); myMenu->addAction( mipThickSlicesAction ); QAction* sumThickSlicesAction = new QAction(myMenu); sumThickSlicesAction->setActionGroup(thickSliceModeActionGroup); sumThickSlicesAction->setText("SUM (sum intensity proj.)"); sumThickSlicesAction->setCheckable(true); sumThickSlicesAction->setChecked(currentThickSlicesMode==2); sumThickSlicesAction->setData(2); myMenu->addAction( sumThickSlicesAction ); QAction* weightedThickSlicesAction = new QAction(myMenu); weightedThickSlicesAction->setActionGroup(thickSliceModeActionGroup); weightedThickSlicesAction->setText("WEIGHTED (gaussian proj.)"); weightedThickSlicesAction->setCheckable(true); weightedThickSlicesAction->setChecked(currentThickSlicesMode==3); weightedThickSlicesAction->setData(3); myMenu->addAction( weightedThickSlicesAction ); connect( thickSliceModeActionGroup, SIGNAL(triggered(QAction*)), this, SLOT(OnThickSlicesModeSelected(QAction*)) ); } void QmitkControlVisualizationPropertiesView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; if (m_MultiWidget) { mitk::SlicesCoordinator* coordinator = m_MultiWidget->GetSlicesRotator(); if (coordinator) { itk::ReceptorMemberCommand::Pointer command2 = itk::ReceptorMemberCommand::New(); command2->SetCallbackFunction( this, &QmitkControlVisualizationPropertiesView::SliceRotation ); m_SlicesRotationObserverTag1 = coordinator->AddObserver( mitk::SliceRotationEvent(), command2 ); } coordinator = m_MultiWidget->GetSlicesSwiveller(); if (coordinator) { itk::ReceptorMemberCommand::Pointer command2 = itk::ReceptorMemberCommand::New(); command2->SetCallbackFunction( this, &QmitkControlVisualizationPropertiesView::SliceRotation ); m_SlicesRotationObserverTag2 = coordinator->AddObserver( mitk::SliceRotationEvent(), command2 ); } } } void QmitkControlVisualizationPropertiesView::SliceRotation(const itk::EventObject&) { // test if plane rotated if( m_GlyIsOn_T || m_GlyIsOn_C || m_GlyIsOn_S ) { if( this->IsPlaneRotated() ) { // show label m_Controls->m_lblRotatedPlanesWarning->show(); } else { //hide label m_Controls->m_lblRotatedPlanesWarning->hide(); } } } void QmitkControlVisualizationPropertiesView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } void QmitkControlVisualizationPropertiesView::CreateConnections() { if ( m_Controls ) { connect( (QObject*)(m_Controls->m_DisplayIndex), SIGNAL(valueChanged(int)), this, SLOT(DisplayIndexChanged(int)) ); connect( (QObject*)(m_Controls->m_TextureIntON), SIGNAL(clicked()), this, SLOT(TextIntON()) ); connect( (QObject*)(m_Controls->m_Reinit), SIGNAL(clicked()), this, SLOT(Reinit()) ); connect( (QObject*)(m_Controls->m_VisibleOdfsON_T), SIGNAL(clicked()), this, SLOT(VisibleOdfsON_T()) ); connect( (QObject*)(m_Controls->m_VisibleOdfsON_S), SIGNAL(clicked()), this, SLOT(VisibleOdfsON_S()) ); connect( (QObject*)(m_Controls->m_VisibleOdfsON_C), SIGNAL(clicked()), this, SLOT(VisibleOdfsON_C()) ); connect( (QObject*)(m_Controls->m_ShowMaxNumber), SIGNAL(editingFinished()), this, SLOT(ShowMaxNumberChanged()) ); connect( (QObject*)(m_Controls->m_NormalizationDropdown), SIGNAL(currentIndexChanged(int)), this, SLOT(NormalizationDropdownChanged(int)) ); connect( (QObject*)(m_Controls->m_ScalingFactor), SIGNAL(valueChanged(double)), this, SLOT(ScalingFactorChanged(double)) ); connect( (QObject*)(m_Controls->m_AdditionalScaling), SIGNAL(currentIndexChanged(int)), this, SLOT(AdditionalScaling(int)) ); connect( (QObject*)(m_Controls->m_IndexParam1), SIGNAL(valueChanged(double)), this, SLOT(IndexParam1Changed(double)) ); connect( (QObject*)(m_Controls->m_IndexParam2), SIGNAL(valueChanged(double)), this, SLOT(IndexParam2Changed(double)) ); connect( (QObject*)(m_Controls->m_ScalingCheckbox), SIGNAL(clicked()), this, SLOT(ScalingCheckbox()) ); connect( (QObject*)(m_Controls->m_OpacitySlider), SIGNAL(spanChanged(double,double)), this, SLOT(OpacityChanged(double,double)) ); connect((QObject*) m_Controls->m_Wire, SIGNAL(clicked()), (QObject*) this, SLOT(BundleRepresentationWire())); connect((QObject*) m_Controls->m_Tube, SIGNAL(clicked()), (QObject*) this, SLOT(BundleRepresentationTube())); connect((QObject*) m_Controls->m_Color, SIGNAL(clicked()), (QObject*) this, SLOT(BundleRepresentationColor())); connect((QObject*) m_Controls->m_ResetColoring, SIGNAL(clicked()), (QObject*) this, SLOT(BundleRepresentationResetColoring())); connect((QObject*) m_Controls->m_Focus, SIGNAL(clicked()), (QObject*) this, SLOT(PlanarFigureFocus())); connect((QObject*) m_Controls->m_FiberFading2D, SIGNAL(clicked()), (QObject*) this, SLOT( Fiber2DfadingEFX() ) ); connect((QObject*) m_Controls->m_FiberThicknessSlider, SIGNAL(sliderReleased()), (QObject*) this, SLOT( FiberSlicingThickness2D() ) ); connect((QObject*) m_Controls->m_FiberThicknessSlider, SIGNAL(valueChanged(int)), (QObject*) this, SLOT( FiberSlicingUpdateLabel(int) )); connect((QObject*) m_Controls->m_Crosshair, SIGNAL(clicked()), (QObject*) this, SLOT(SetInteractor())); connect((QObject*) m_Controls->m_PFWidth, SIGNAL(valueChanged(int)), (QObject*) this, SLOT(PFWidth(int))); connect((QObject*) m_Controls->m_PFColor, SIGNAL(clicked()), (QObject*) this, SLOT(PFColor())); connect((QObject*) m_Controls->m_TDI, SIGNAL(clicked()), (QObject*) this, SLOT(GenerateTdi())); connect((QObject*) m_Controls->m_LineWidth, SIGNAL(valueChanged(int)), (QObject*) this, SLOT(LineWidthChanged(int))); connect((QObject*) m_Controls->m_TubeRadius, SIGNAL(valueChanged(int)), (QObject*) this, SLOT(TubeRadiusChanged(int))); } } void QmitkControlVisualizationPropertiesView::Activated() { berry::ISelection::ConstPointer sel( this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); m_CurrentSelection = sel.Cast(); m_SelListener.Cast()->DoSelectionChanged(sel); QmitkFunctionality::Activated(); } void QmitkControlVisualizationPropertiesView::Deactivated() { QmitkFunctionality::Deactivated(); } int QmitkControlVisualizationPropertiesView::GetSizeFlags(bool width) { if(!width) { return berry::Constants::MIN | berry::Constants::MAX | berry::Constants::FILL; } else { return 0; } } int QmitkControlVisualizationPropertiesView::ComputePreferredSize(bool width, int /*availableParallel*/, int /*availablePerpendicular*/, int preferredResult) { if(width==false) { return m_FoundSingleOdfImage ? 120 : 80; } else { return preferredResult; } } // set diffusion image channel to b0 volume void QmitkControlVisualizationPropertiesView::NodeAdded(const mitk::DataNode *node) { mitk::DataNode* notConst = const_cast(node); if (dynamic_cast*>(notConst->GetData())) { mitk::DiffusionImage::Pointer dimg = dynamic_cast*>(notConst->GetData()); // if there is no b0 image in the dataset, the GetB0Indices() returns a vector of size 0 // and hence we cannot set the Property directly to .front() int displayChannelPropertyValue = 0; if( dimg->GetB0Indices().size() > 0) displayChannelPropertyValue = dimg->GetB0Indices().front(); notConst->SetIntProperty("DisplayChannel", displayChannelPropertyValue ); } } /* OnSelectionChanged is registered to SelectionService, therefore no need to implement SelectionService Listener explicitly */ void QmitkControlVisualizationPropertiesView::OnSelectionChanged( std::vector nodes ) { // deactivate channel slider if no diffusion weighted image or tbss image is selected m_Controls->m_DisplayIndex->setVisible(false); m_Controls->label_channel->setVisible(false); for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; // check if node has data, // if some helper nodes are shown in the DataManager, the GetData() returns 0x0 which would lead to SIGSEV mitk::BaseData* nodeData = node->GetData(); if(nodeData == NULL) continue; if (node.IsNotNull() && (dynamic_cast(nodeData) || dynamic_cast*>(nodeData))) { m_Controls->m_DisplayIndex->setVisible(true); m_Controls->label_channel->setVisible(true); } else if (node.IsNotNull() && dynamic_cast(node->GetData())) { if (m_Color.IsNotNull()) m_Color->RemoveObserver(m_FiberBundleObserverTag); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkControlVisualizationPropertiesView::SetFiberBundleCustomColor ); m_Color = dynamic_cast(node->GetProperty("color", NULL)); if (m_Color.IsNotNull()) m_FiberBundleObserverTag = m_Color->AddObserver( itk::ModifiedEvent(), command ); } } for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; // check if node has data, // if some helper nodes are shown in the DataManager, the GetData() returns 0x0 which would lead to SIGSEV mitk::BaseData* nodeData = node->GetData(); if(nodeData == NULL) continue; if( node.IsNotNull() && (dynamic_cast(nodeData) || dynamic_cast(nodeData)) ) { if(m_NodeUsedForOdfVisualization.IsNotNull()) { m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_S", false); m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_C", false); m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_T", false); } m_NodeUsedForOdfVisualization = node; m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_S", m_GlyIsOn_S); m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_C", m_GlyIsOn_C); m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_T", m_GlyIsOn_T); if(m_MultiWidget) m_MultiWidget->RequestUpdate(); m_Controls->m_TSMenu->setVisible(false); // deactivate mip etc. for tensor and q-ball images break; } else m_Controls->m_TSMenu->setVisible(true); } } mitk::DataStorage::SetOfObjects::Pointer QmitkControlVisualizationPropertiesView::ActiveSet(std::string classname) { if (m_CurrentSelection) { mitk::DataStorage::SetOfObjects::Pointer set = mitk::DataStorage::SetOfObjects::New(); int at = 0; for (IStructuredSelection::iterator i = m_CurrentSelection->Begin(); i != m_CurrentSelection->End(); ++i) { if (mitk::DataNodeObject::Pointer nodeObj = i->Cast()) { mitk::DataNode::Pointer node = nodeObj->GetDataNode(); // check if node has data, // if some helper nodes are shown in the DataManager, the GetData() returns 0x0 which would lead to SIGSEV const mitk::BaseData* nodeData = node->GetData(); if(nodeData == NULL) continue; if(QString(classname.c_str()).compare(nodeData->GetNameOfClass())==0) { set->InsertElement(at++, node); } } } return set; } return 0; } void QmitkControlVisualizationPropertiesView::SetBoolProp( mitk::DataStorage::SetOfObjects::Pointer set, std::string name, bool value) { if(set.IsNotNull()) { mitk::DataStorage::SetOfObjects::const_iterator itemiter( set->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( set->end() ); while ( itemiter != itemiterend ) { (*itemiter)->SetBoolProperty(name.c_str(), value); ++itemiter; } } } void QmitkControlVisualizationPropertiesView::SetIntProp( mitk::DataStorage::SetOfObjects::Pointer set, std::string name, int value) { if(set.IsNotNull()) { mitk::DataStorage::SetOfObjects::const_iterator itemiter( set->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( set->end() ); while ( itemiter != itemiterend ) { (*itemiter)->SetIntProperty(name.c_str(), value); ++itemiter; } } } void QmitkControlVisualizationPropertiesView::SetFloatProp( mitk::DataStorage::SetOfObjects::Pointer set, std::string name, float value) { if(set.IsNotNull()) { mitk::DataStorage::SetOfObjects::const_iterator itemiter( set->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( set->end() ); while ( itemiter != itemiterend ) { (*itemiter)->SetFloatProperty(name.c_str(), value); ++itemiter; } } } void QmitkControlVisualizationPropertiesView::SetLevelWindowProp( mitk::DataStorage::SetOfObjects::Pointer set, std::string name, mitk::LevelWindow value) { if(set.IsNotNull()) { mitk::LevelWindowProperty::Pointer prop = mitk::LevelWindowProperty::New(value); mitk::DataStorage::SetOfObjects::const_iterator itemiter( set->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( set->end() ); while ( itemiter != itemiterend ) { (*itemiter)->SetProperty(name.c_str(), prop); ++itemiter; } } } void QmitkControlVisualizationPropertiesView::SetEnumProp( mitk::DataStorage::SetOfObjects::Pointer set, std::string name, mitk::EnumerationProperty::Pointer value) { if(set.IsNotNull()) { mitk::DataStorage::SetOfObjects::const_iterator itemiter( set->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( set->end() ); while ( itemiter != itemiterend ) { (*itemiter)->SetProperty(name.c_str(), value); ++itemiter; } } } void QmitkControlVisualizationPropertiesView::DisplayIndexChanged(int dispIndex) { QString label = "Channel %1"; label = label.arg(dispIndex); m_Controls->label_channel->setText(label); std::vector sets; sets.push_back("DiffusionImage"); sets.push_back("TbssImage"); std::vector::iterator it = sets.begin(); while(it != sets.end()) { std::string s = *it; mitk::DataStorage::SetOfObjects::Pointer set = ActiveSet(s); if(set.IsNotNull()) { mitk::DataStorage::SetOfObjects::const_iterator itemiter( set->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( set->end() ); while ( itemiter != itemiterend ) { (*itemiter)->SetIntProperty("DisplayChannel", dispIndex); ++itemiter; } //m_MultiWidget->RequestUpdate(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } it++; } } void QmitkControlVisualizationPropertiesView::Reinit() { if (m_CurrentSelection) { mitk::DataNodeObject::Pointer nodeObj = m_CurrentSelection->Begin()->Cast(); mitk::DataNode::Pointer node = nodeObj->GetDataNode(); mitk::BaseData::Pointer basedata = node->GetData(); if (basedata.IsNotNull()) { mitk::RenderingManager::GetInstance()->InitializeViews( - basedata->GetTimeSlicedGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); + basedata->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } } void QmitkControlVisualizationPropertiesView::TextIntON() { if(m_TexIsOn) { m_Controls->m_TextureIntON->setIcon(*m_IconTexOFF); } else { m_Controls->m_TextureIntON->setIcon(*m_IconTexON); } mitk::DataStorage::SetOfObjects::Pointer set = ActiveSet("DiffusionImage"); SetBoolProp(set,"texture interpolation", !m_TexIsOn); set = ActiveSet("TensorImage"); SetBoolProp(set,"texture interpolation", !m_TexIsOn); set = ActiveSet("QBallImage"); SetBoolProp(set,"texture interpolation", !m_TexIsOn); set = ActiveSet("Image"); SetBoolProp(set,"texture interpolation", !m_TexIsOn); m_TexIsOn = !m_TexIsOn; if(m_MultiWidget) m_MultiWidget->RequestUpdate(); } void QmitkControlVisualizationPropertiesView::VisibleOdfsON_S() { m_GlyIsOn_S = m_Controls->m_VisibleOdfsON_S->isChecked(); if (m_NodeUsedForOdfVisualization.IsNull()) { MITK_WARN << "ODF visualization activated but m_NodeUsedForOdfVisualization is NULL"; return; } m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_S", m_GlyIsOn_S); VisibleOdfsON(0); } void QmitkControlVisualizationPropertiesView::VisibleOdfsON_T() { m_GlyIsOn_T = m_Controls->m_VisibleOdfsON_T->isChecked(); if (m_NodeUsedForOdfVisualization.IsNull()) { MITK_WARN << "ODF visualization activated but m_NodeUsedForOdfVisualization is NULL"; return; } m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_T", m_GlyIsOn_T); VisibleOdfsON(1); } void QmitkControlVisualizationPropertiesView::VisibleOdfsON_C() { m_GlyIsOn_C = m_Controls->m_VisibleOdfsON_C->isChecked(); if (m_NodeUsedForOdfVisualization.IsNull()) { MITK_WARN << "ODF visualization activated but m_NodeUsedForOdfVisualization is NULL"; return; } m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_C", m_GlyIsOn_C); VisibleOdfsON(2); } bool QmitkControlVisualizationPropertiesView::IsPlaneRotated() { // for all 2D renderwindows of m_MultiWidget check alignment mitk::PlaneGeometry::ConstPointer displayPlane = dynamic_cast( m_MultiWidget->GetRenderWindow1()->GetRenderer()->GetCurrentWorldGeometry2D() ); if (displayPlane.IsNull()) return false; mitk::Image* currentImage = dynamic_cast( m_NodeUsedForOdfVisualization->GetData() ); if( currentImage == NULL ) { MITK_ERROR << " Casting problems. Returning false"; return false; } int affectedDimension(-1); int affectedSlice(-1); return !(mitk::SegTool2D::DetermineAffectedImageSlice( currentImage, displayPlane, affectedDimension, affectedSlice )); } void QmitkControlVisualizationPropertiesView::VisibleOdfsON(int view) { if(m_MultiWidget) m_MultiWidget->RequestUpdate(); } void QmitkControlVisualizationPropertiesView::ShowMaxNumberChanged() { int maxNr = m_Controls->m_ShowMaxNumber->value(); if ( maxNr < 1 ) { m_Controls->m_ShowMaxNumber->setValue( 1 ); maxNr = 1; } mitk::DataStorage::SetOfObjects::Pointer set = ActiveSet("QBallImage"); SetIntProp(set,"ShowMaxNumber", maxNr); set = ActiveSet("TensorImage"); SetIntProp(set,"ShowMaxNumber", maxNr); if(m_MultiWidget) m_MultiWidget->RequestUpdate(); } void QmitkControlVisualizationPropertiesView::NormalizationDropdownChanged(int normDropdown) { typedef mitk::OdfNormalizationMethodProperty PropType; PropType::Pointer normMeth = PropType::New(); switch(normDropdown) { case 0: normMeth->SetNormalizationToMinMax(); break; case 1: normMeth->SetNormalizationToMax(); break; case 2: normMeth->SetNormalizationToNone(); break; case 3: normMeth->SetNormalizationToGlobalMax(); break; default: normMeth->SetNormalizationToMinMax(); } mitk::DataStorage::SetOfObjects::Pointer set = ActiveSet("QBallImage"); SetEnumProp(set,"Normalization", normMeth.GetPointer()); set = ActiveSet("TensorImage"); SetEnumProp(set,"Normalization", normMeth.GetPointer()); // if(m_MultiWidget) // m_MultiWidget->RequestUpdate(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::ScalingFactorChanged(double scalingFactor) { mitk::DataStorage::SetOfObjects::Pointer set = ActiveSet("QBallImage"); SetFloatProp(set,"Scaling", scalingFactor); set = ActiveSet("TensorImage"); SetFloatProp(set,"Scaling", scalingFactor); if(m_MultiWidget) m_MultiWidget->RequestUpdate(); } void QmitkControlVisualizationPropertiesView::AdditionalScaling(int additionalScaling) { typedef mitk::OdfScaleByProperty PropType; PropType::Pointer scaleBy = PropType::New(); switch(additionalScaling) { case 0: scaleBy->SetScaleByNothing(); break; case 1: scaleBy->SetScaleByGFA(); //m_Controls->params_frame->setVisible(true); break; #ifdef DIFFUSION_IMAGING_EXTENDED case 2: scaleBy->SetScaleByPrincipalCurvature(); // commented in for SPIE paper, Principle curvature scaling //m_Controls->params_frame->setVisible(true); break; #endif default: scaleBy->SetScaleByNothing(); } mitk::DataStorage::SetOfObjects::Pointer set = ActiveSet("QBallImage"); SetEnumProp(set,"ScaleBy", scaleBy.GetPointer()); set = ActiveSet("TensorImage"); SetEnumProp(set,"ScaleBy", scaleBy.GetPointer()); if(m_MultiWidget) m_MultiWidget->RequestUpdate(); } void QmitkControlVisualizationPropertiesView::IndexParam1Changed(double param1) { mitk::DataStorage::SetOfObjects::Pointer set = ActiveSet("QBallImage"); SetFloatProp(set,"IndexParam1", param1); set = ActiveSet("TensorImage"); SetFloatProp(set,"IndexParam1", param1); if(m_MultiWidget) m_MultiWidget->RequestUpdate(); } void QmitkControlVisualizationPropertiesView::IndexParam2Changed(double param2) { mitk::DataStorage::SetOfObjects::Pointer set = ActiveSet("QBallImage"); SetFloatProp(set,"IndexParam2", param2); set = ActiveSet("TensorImage"); SetFloatProp(set,"IndexParam2", param2); if(m_MultiWidget) m_MultiWidget->RequestUpdate(); } void QmitkControlVisualizationPropertiesView::OpacityChanged(double l, double u) { mitk::LevelWindow olw; olw.SetRangeMinMax(l*255, u*255); mitk::DataStorage::SetOfObjects::Pointer set = ActiveSet("QBallImage"); SetLevelWindowProp(set,"opaclevelwindow", olw); set = ActiveSet("TensorImage"); SetLevelWindowProp(set,"opaclevelwindow", olw); set = ActiveSet("Image"); SetLevelWindowProp(set,"opaclevelwindow", olw); m_Controls->m_OpacityMinFaLabel->setText(QString::number(l,'f',2) + " : " + QString::number(u,'f',2)); if(m_MultiWidget) m_MultiWidget->RequestUpdate(); } void QmitkControlVisualizationPropertiesView::ScalingCheckbox() { m_Controls->m_ScalingFrame->setVisible( m_Controls->m_ScalingCheckbox->isChecked()); if(!m_Controls->m_ScalingCheckbox->isChecked()) { m_Controls->m_AdditionalScaling->setCurrentIndex(0); m_Controls->m_ScalingFactor->setValue(1.0); } } void QmitkControlVisualizationPropertiesView::Fiber2DfadingEFX() { if (m_SelectedNode) { bool currentMode; m_SelectedNode->GetBoolProperty("Fiber2DfadeEFX", currentMode); m_SelectedNode->SetProperty("Fiber2DfadeEFX", mitk::BoolProperty::New(!currentMode)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); } } void QmitkControlVisualizationPropertiesView::FiberSlicingThickness2D() { if (m_SelectedNode) { float fibThickness = m_Controls->m_FiberThicknessSlider->value() * 0.1; m_SelectedNode->SetProperty("Fiber2DSliceThickness", mitk::FloatProperty::New(fibThickness)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); } } void QmitkControlVisualizationPropertiesView::FiberSlicingUpdateLabel(int value) { QString label = "Range %1"; label = label.arg(value * 0.1); m_Controls->label_range->setText(label); } void QmitkControlVisualizationPropertiesView::BundleRepresentationWire() { if(m_SelectedNode) { int width = m_Controls->m_LineWidth->value(); m_SelectedNode->SetProperty("LineWidth",mitk::IntProperty::New(width)); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(15)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(18)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(1)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(2)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(3)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(4)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(0)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); } } void QmitkControlVisualizationPropertiesView::BundleRepresentationTube() { if(m_SelectedNode) { float radius = m_Controls->m_TubeRadius->value() / 100.0; m_SelectedNode->SetProperty("TubeRadius",mitk::FloatProperty::New(radius)); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(17)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(13)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(16)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(0)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); } } void QmitkControlVisualizationPropertiesView::SetFiberBundleCustomColor(const itk::EventObject& /*e*/) { float color[3]; m_SelectedNode->GetColor(color); m_Controls->m_Color->setAutoFillBackground(true); QString styleSheet = "background-color:rgb("; styleSheet.append(QString::number(color[0]*255.0)); styleSheet.append(","); styleSheet.append(QString::number(color[1]*255.0)); styleSheet.append(","); styleSheet.append(QString::number(color[2]*255.0)); styleSheet.append(")"); m_Controls->m_Color->setStyleSheet(styleSheet); m_SelectedNode->SetProperty("color",mitk::ColorProperty::New(color[0], color[1], color[2])); mitk::FiberBundleX::Pointer fib = dynamic_cast(m_SelectedNode->GetData()); fib->SetColorCoding(mitk::FiberBundleX::COLORCODING_CUSTOM); m_SelectedNode->Modified(); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); } void QmitkControlVisualizationPropertiesView::BundleRepresentationColor() { if(m_SelectedNode) { QColor color = QColorDialog::getColor(); if (!color.isValid()) return; m_Controls->m_Color->setAutoFillBackground(true); QString styleSheet = "background-color:rgb("; styleSheet.append(QString::number(color.red())); styleSheet.append(","); styleSheet.append(QString::number(color.green())); styleSheet.append(","); styleSheet.append(QString::number(color.blue())); styleSheet.append(")"); m_Controls->m_Color->setStyleSheet(styleSheet); m_SelectedNode->SetProperty("color",mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0)); mitk::FiberBundleX::Pointer fib = dynamic_cast(m_SelectedNode->GetData()); fib->SetColorCoding(mitk::FiberBundleX::COLORCODING_CUSTOM); m_SelectedNode->Modified(); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); } } void QmitkControlVisualizationPropertiesView::BundleRepresentationResetColoring() { if(m_SelectedNode) { MITK_INFO << "reset colorcoding to oBased"; m_Controls->m_Color->setAutoFillBackground(true); QString styleSheet = "background-color:rgb(255,255,255)"; m_Controls->m_Color->setStyleSheet(styleSheet); // m_SelectedNode->SetProperty("color",NULL); m_SelectedNode->SetProperty("color",mitk::ColorProperty::New(1.0, 1.0, 1.0)); mitk::FiberBundleX::Pointer fib = dynamic_cast(m_SelectedNode->GetData()); fib->SetColorCoding(mitk::FiberBundleX::COLORCODING_ORIENTATION_BASED); fib->DoColorCodingOrientationBased(); m_SelectedNode->Modified(); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); } } void QmitkControlVisualizationPropertiesView::PlanarFigureFocus() { if(m_SelectedNode) { mitk::PlanarFigure* _PlanarFigure = 0; _PlanarFigure = dynamic_cast (m_SelectedNode->GetData()); if (_PlanarFigure && _PlanarFigure->GetGeometry2D()) { QmitkRenderWindow* selectedRenderWindow = 0; bool PlanarFigureInitializedWindow = false; QmitkRenderWindow* RenderWindow1 = this->GetActiveStdMultiWidget()->GetRenderWindow1(); if (m_SelectedNode->GetBoolProperty("PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow1->GetRenderer())) { selectedRenderWindow = RenderWindow1; } QmitkRenderWindow* RenderWindow2 = this->GetActiveStdMultiWidget()->GetRenderWindow2(); if (!selectedRenderWindow && m_SelectedNode->GetBoolProperty( "PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow2->GetRenderer())) { selectedRenderWindow = RenderWindow2; } QmitkRenderWindow* RenderWindow3 = this->GetActiveStdMultiWidget()->GetRenderWindow3(); if (!selectedRenderWindow && m_SelectedNode->GetBoolProperty( "PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow3->GetRenderer())) { selectedRenderWindow = RenderWindow3; } QmitkRenderWindow* RenderWindow4 = this->GetActiveStdMultiWidget()->GetRenderWindow4(); if (!selectedRenderWindow && m_SelectedNode->GetBoolProperty( "PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow4->GetRenderer())) { selectedRenderWindow = RenderWindow4; } const mitk::PlaneGeometry * _PlaneGeometry = dynamic_cast (_PlanarFigure->GetGeometry2D()); mitk::VnlVector normal = _PlaneGeometry->GetNormalVnl(); mitk::Geometry2D::ConstPointer worldGeometry1 = RenderWindow1->GetRenderer()->GetCurrentWorldGeometry2D(); mitk::PlaneGeometry::ConstPointer _Plane1 = dynamic_cast( worldGeometry1.GetPointer() ); mitk::VnlVector normal1 = _Plane1->GetNormalVnl(); mitk::Geometry2D::ConstPointer worldGeometry2 = RenderWindow2->GetRenderer()->GetCurrentWorldGeometry2D(); mitk::PlaneGeometry::ConstPointer _Plane2 = dynamic_cast( worldGeometry2.GetPointer() ); mitk::VnlVector normal2 = _Plane2->GetNormalVnl(); mitk::Geometry2D::ConstPointer worldGeometry3 = RenderWindow3->GetRenderer()->GetCurrentWorldGeometry2D(); mitk::PlaneGeometry::ConstPointer _Plane3 = dynamic_cast( worldGeometry3.GetPointer() ); mitk::VnlVector normal3 = _Plane3->GetNormalVnl(); normal[0] = fabs(normal[0]); normal[1] = fabs(normal[1]); normal[2] = fabs(normal[2]); normal1[0] = fabs(normal1[0]); normal1[1] = fabs(normal1[1]); normal1[2] = fabs(normal1[2]); normal2[0] = fabs(normal2[0]); normal2[1] = fabs(normal2[1]); normal2[2] = fabs(normal2[2]); normal3[0] = fabs(normal3[0]); normal3[1] = fabs(normal3[1]); normal3[2] = fabs(normal3[2]); double ang1 = angle(normal, normal1); double ang2 = angle(normal, normal2); double ang3 = angle(normal, normal3); if(ang1 < ang2 && ang1 < ang3) { selectedRenderWindow = RenderWindow1; } else { if(ang2 < ang3) { selectedRenderWindow = RenderWindow2; } else { selectedRenderWindow = RenderWindow3; } } // make node visible if (selectedRenderWindow) { const mitk::Point3D& centerP = _PlaneGeometry->GetOrigin(); selectedRenderWindow->GetSliceNavigationController()->ReorientSlices( centerP, _PlaneGeometry->GetNormal()); } } // set interactor for new node (if not already set) mitk::PlanarFigureInteractor::Pointer figureInteractor = dynamic_cast(m_SelectedNode->GetInteractor()); if(figureInteractor.IsNull()) figureInteractor = mitk::PlanarFigureInteractor::New("PlanarFigureInteractor", m_SelectedNode); mitk::GlobalInteraction::GetInstance()->AddInteractor(figureInteractor); m_SelectedNode->SetProperty("planarfigure.iseditable",mitk::BoolProperty::New(true)); } } void QmitkControlVisualizationPropertiesView::SetInteractor() { typedef std::vector Container; Container _NodeSet = this->GetDataManagerSelection(); mitk::DataNode* node = 0; mitk::FiberBundleX* bundle = 0; mitk::FiberBundleInteractor::Pointer bundleInteractor = 0; // finally add all nodes to the model for(Container::const_iterator it=_NodeSet.begin(); it!=_NodeSet.end() ; it++) { node = const_cast(*it); bundle = dynamic_cast(node->GetData()); if(bundle) { bundleInteractor = dynamic_cast(node->GetInteractor()); if(bundleInteractor.IsNotNull()) mitk::GlobalInteraction::GetInstance()->RemoveInteractor(bundleInteractor); if(!m_Controls->m_Crosshair->isChecked()) { m_Controls->m_Crosshair->setChecked(false); this->GetActiveStdMultiWidget()->GetRenderWindow4()->setCursor(Qt::ArrowCursor); m_CurrentPickingNode = 0; } else { m_Controls->m_Crosshair->setChecked(true); bundleInteractor = mitk::FiberBundleInteractor::New("FiberBundleInteractor", node); mitk::GlobalInteraction::GetInstance()->AddInteractor(bundleInteractor); this->GetActiveStdMultiWidget()->GetRenderWindow4()->setCursor(Qt::CrossCursor); m_CurrentPickingNode = node; } } } } void QmitkControlVisualizationPropertiesView::PFWidth(int w) { double width = w/10.0; m_SelectedNode->SetProperty("planarfigure.line.width", mitk::FloatProperty::New(width) ); m_SelectedNode->SetProperty("planarfigure.shadow.widthmodifier", mitk::FloatProperty::New(width) ); m_SelectedNode->SetProperty("planarfigure.outline.width", mitk::FloatProperty::New(width) ); m_SelectedNode->SetProperty("planarfigure.helperline.width", mitk::FloatProperty::New(width) ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QString label = "Width %1"; label = label.arg(width); m_Controls->label_pfwidth->setText(label); } void QmitkControlVisualizationPropertiesView::PFColor() { QColor color = QColorDialog::getColor(); if (!color.isValid()) return; m_Controls->m_PFColor->setAutoFillBackground(true); QString styleSheet = "background-color:rgb("; styleSheet.append(QString::number(color.red())); styleSheet.append(","); styleSheet.append(QString::number(color.green())); styleSheet.append(","); styleSheet.append(QString::number(color.blue())); styleSheet.append(")"); m_Controls->m_PFColor->setStyleSheet(styleSheet); m_SelectedNode->SetProperty( "planarfigure.default.line.color", mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0)); m_SelectedNode->SetProperty( "planarfigure.default.outline.color", mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0)); m_SelectedNode->SetProperty( "planarfigure.default.helperline.color", mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0)); m_SelectedNode->SetProperty( "planarfigure.default.markerline.color", mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0)); m_SelectedNode->SetProperty( "planarfigure.default.marker.color", mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0)); m_SelectedNode->SetProperty( "planarfigure.hover.line.color", mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0) ); m_SelectedNode->SetProperty( "planarfigure.hover.outline.color", mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0) ); m_SelectedNode->SetProperty( "planarfigure.hover.helperline.color", mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0) ); m_SelectedNode->SetProperty( "color", mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0)); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::GenerateTdi() { if(m_SelectedNode) { mitk::FiberBundleX* bundle = dynamic_cast(m_SelectedNode->GetData()); if(!bundle) return; typedef float OutPixType; typedef itk::Image OutImageType; // run generator itk::TractDensityImageFilter< OutImageType >::Pointer generator = itk::TractDensityImageFilter< OutImageType >::New(); generator->SetFiberBundle(bundle); generator->SetOutputAbsoluteValues(true); generator->SetUpsamplingFactor(1); generator->Update(); // get result OutImageType::Pointer outImg = generator->GetOutput(); mitk::Image::Pointer img = mitk::Image::New(); img->InitializeByItk(outImg.GetPointer()); img->SetVolume(outImg->GetBufferPointer()); // to datastorage mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData(img); QString name(m_SelectedNode->GetName().c_str()); name += "_TDI"; node->SetName(name.toStdString()); node->SetVisibility(true); GetDataStorage()->Add(node); } } void QmitkControlVisualizationPropertiesView::LineWidthChanged(int w) { QString label = "Width %1"; label = label.arg(w); m_Controls->label_linewidth->setText(label); BundleRepresentationWire(); } void QmitkControlVisualizationPropertiesView::TubeRadiusChanged(int r) { QString label = "Radius %1"; label = label.arg(r / 100.0); m_Controls->label_tuberadius->setText(label); this->BundleRepresentationTube(); } void QmitkControlVisualizationPropertiesView::Welcome() { berry::PlatformUI::GetWorkbench()->GetIntroManager()->ShowIntro( GetSite()->GetWorkbenchWindow(), false); } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkDiffusionDicomImportView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkDiffusionDicomImportView.cpp index eec63e7d6c..926c574038 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkDiffusionDicomImportView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkDiffusionDicomImportView.cpp @@ -1,800 +1,800 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkDiffusionDicomImportView.h" // qt includes #include // itk includes #include "itkTimeProbesCollectorBase.h" #include "itkGDCMSeriesFileNames.h" #include "itksys/SystemTools.hxx" // mitk includes #include "mitkProgressBar.h" #include "mitkStatusBar.h" #include "mitkProperties.h" #include "mitkRenderingManager.h" #include "mitkMemoryUtilities.h" // diffusion module includes #include "mitkDicomDiffusionImageHeaderReader.h" #include "mitkGroupDiffusionHeadersFilter.h" #include "mitkDicomDiffusionImageReader.h" #include "mitkDiffusionImage.h" #include "mitkNrrdDiffusionImageWriter.h" #include "gdcmDirectory.h" #include "gdcmScanner.h" #include "gdcmSorter.h" #include "gdcmIPPSorter.h" #include "gdcmAttribute.h" #include "gdcmVersion.h" #include const std::string QmitkDiffusionDicomImport::VIEW_ID = "org.mitk.views.diffusiondicomimport"; QmitkDiffusionDicomImport::QmitkDiffusionDicomImport(QObject* /*parent*/, const char* /*name*/) : QmitkFunctionality(), m_Controls(NULL), m_MultiWidget(NULL), m_OutputFolderName(""), m_OutputFolderNameSet(false) { } QmitkDiffusionDicomImport::QmitkDiffusionDicomImport(const QmitkDiffusionDicomImport& other) { Q_UNUSED(other) throw std::runtime_error("Copy constructor not implemented"); } QmitkDiffusionDicomImport::~QmitkDiffusionDicomImport() {} void QmitkDiffusionDicomImport::CreateQtPartControl(QWidget *parent) { m_Parent = parent; if (m_Controls == NULL) { m_Controls = new Ui::QmitkDiffusionDicomImportControls; m_Controls->setupUi(parent); this->CreateConnections(); m_Controls->m_DicomLoadRecursiveCheckbox->setChecked(true); m_Controls->m_DicomLoadAverageDuplicatesCheckbox->setChecked(false); m_Controls->m_DicomLoadRecursiveCheckbox->setVisible(false); m_Controls->m_OverrideOptionCheckbox->setVisible(false); AverageClicked(); } } void QmitkDiffusionDicomImport::CreateConnections() { if ( m_Controls ) { connect( m_Controls->m_AddFoldersButton, SIGNAL(clicked()), this, SLOT(DicomLoadAddFolderNames()) ); connect( m_Controls->m_DeleteFoldersButton, SIGNAL(clicked()), this, SLOT(DicomLoadDeleteFolderNames()) ); connect( m_Controls->m_DicomLoadStartLoadButton, SIGNAL(clicked()), this, SLOT(DicomLoadStartLoad()) ); connect( m_Controls->m_DicomLoadAverageDuplicatesCheckbox, SIGNAL(clicked()), this, SLOT(AverageClicked()) ); connect( m_Controls->m_OutputSetButton, SIGNAL(clicked()), this, SLOT(OutputSet()) ); connect( m_Controls->m_OutputClearButton, SIGNAL(clicked()), this, SLOT(OutputClear()) ); connect( m_Controls->m_Remove, SIGNAL(clicked()), this, SLOT(Remove()) ); } } void QmitkDiffusionDicomImport::Remove() { int i = m_Controls->listWidget->currentRow(); m_Controls->listWidget->takeItem(i); } void QmitkDiffusionDicomImport::OutputSet() { // SELECT FOLDER DIALOG QFileDialog* w = new QFileDialog( m_Parent, QString("Select folders containing DWI data") ); w->setFileMode( QFileDialog::Directory ); // RETRIEVE SELECTION if ( w->exec() != QDialog::Accepted ) return; m_OutputFolderName = w->selectedFiles()[0]; m_OutputFolderNameSet = true; m_Controls->m_OutputLabel->setText(m_OutputFolderName); // show file override option checkbox m_Controls->m_OverrideOptionCheckbox->setVisible(true); } void QmitkDiffusionDicomImport::OutputClear() { m_OutputFolderName = ""; m_OutputFolderNameSet = false; m_Controls->m_OutputLabel->setText("... optional out-folder ..."); // hide file override option checkbox - no output specified m_Controls->m_OverrideOptionCheckbox->setVisible(false); } void QmitkDiffusionDicomImport::AverageClicked() { m_Controls->m_Blur->setEnabled(m_Controls->m_DicomLoadAverageDuplicatesCheckbox->isChecked()); } void QmitkDiffusionDicomImport::Activated() { QmitkFunctionality::Activated(); } void QmitkDiffusionDicomImport::DicomLoadDeleteFolderNames() { m_Controls->listWidget->clear(); } void QmitkDiffusionDicomImport::DicomLoadAddFolderNames() { // SELECT FOLDER DIALOG QFileDialog* w = new QFileDialog( m_Parent, QString("Select folders containing DWI data") ); w->setFileMode( QFileDialog::Directory ); // RETRIEVE SELECTION if ( w->exec() != QDialog::Accepted ) return; m_Controls->listWidget->addItems(w->selectedFiles()); } bool SortBySeriesUID(gdcm::DataSet const & ds1, gdcm::DataSet const & ds2 ) { gdcm::Attribute<0x0020,0x000e> at1; at1.Set( ds1 ); gdcm::Attribute<0x0020,0x000e> at2; at2.Set( ds2 ); return at1 < at2; } bool SortByAcquisitionNumber(gdcm::DataSet const & ds1, gdcm::DataSet const & ds2 ) { gdcm::Attribute<0x0020,0x0012> at1; at1.Set( ds1 ); gdcm::Attribute<0x0020,0x0012> at2; at2.Set( ds2 ); return at1 < at2; } bool SortBySeqName(gdcm::DataSet const & ds1, gdcm::DataSet const & ds2 ) { gdcm::Attribute<0x0018, 0x0024> at1; at1.Set( ds1 ); gdcm::Attribute<0x0018, 0x0024> at2; at2.Set( ds2 ); std::string str1 = at1.GetValue().Trim(); std::string str2 = at2.GetValue().Trim(); return std::lexicographical_compare(str1.begin(), str1.end(), str2.begin(), str2.end() ); } void QmitkDiffusionDicomImport::Status(QString status) { mitk::StatusBar::GetInstance()->DisplayText(status.toAscii()); MITK_INFO << status.toStdString().c_str(); } void QmitkDiffusionDicomImport::Status(std::string status) { mitk::StatusBar::GetInstance()->DisplayText(status.c_str()); MITK_INFO << status.c_str(); } void QmitkDiffusionDicomImport::Status(const char* status) { mitk::StatusBar::GetInstance()->DisplayText(status); MITK_INFO << status; } void QmitkDiffusionDicomImport::Error(QString status) { mitk::StatusBar::GetInstance()->DisplayErrorText(status.toAscii()); MITK_ERROR << status.toStdString().c_str(); } void QmitkDiffusionDicomImport::Error(std::string status) { mitk::StatusBar::GetInstance()->DisplayErrorText(status.c_str()); MITK_ERROR << status.c_str(); } void QmitkDiffusionDicomImport::Error(const char* status) { mitk::StatusBar::GetInstance()->DisplayErrorText(status); MITK_ERROR << status; } void QmitkDiffusionDicomImport::PrintMemoryUsage() { size_t processSize = mitk::MemoryUtilities::GetProcessMemoryUsage(); size_t totalSize = mitk::MemoryUtilities::GetTotalSizeOfPhysicalRam(); float percentage = ( (float) processSize / (float) totalSize ) * 100.0; MITK_INFO << "Current memory usage: " << GetMemoryDescription( processSize, percentage ); } std::string QmitkDiffusionDicomImport::FormatMemorySize( size_t size ) { double val = size; std::string descriptor("B"); if ( val >= 1000.0 ) { val /= 1024.0; descriptor = "KB"; } if ( val >= 1000.0 ) { val /= 1024.0; descriptor = "MB"; } if ( val >= 1000.0 ) { val /= 1024.0; descriptor = "GB"; } std::ostringstream str; str << std::fixed << std::setprecision(2) << val << " " << descriptor; return str.str(); } std::string QmitkDiffusionDicomImport::FormatPercentage( double val ) { std::ostringstream str; str << std::fixed << std::setprecision(2) << val << " " << "%"; return str.str(); } std::string QmitkDiffusionDicomImport::GetMemoryDescription( size_t processSize, float percentage ) { std::ostringstream str; str << FormatMemorySize(processSize) << " (" << FormatPercentage( percentage ) <<")" ; return str.str(); } void QmitkDiffusionDicomImport::DicomLoadStartLoad() { itk::TimeProbesCollectorBase clock; bool imageSuccessfullySaved = true; try { const std::string& locale = "C"; const std::string& currLocale = setlocale( LC_ALL, NULL ); if ( locale.compare(currLocale)!=0 ) { try { MITK_INFO << " ** Changing locale from " << setlocale(LC_ALL, NULL) << " to '" << locale << "'"; setlocale(LC_ALL, locale.c_str()); } catch(...) { MITK_INFO << "Could not set locale " << locale; } } int nrFolders = m_Controls->listWidget->count(); if(!nrFolders) { Error(QString("No input folders were selected. ABORTING.")); return; } Status(QString("GDCM %1 used for DICOM parsing and sorting!").arg(gdcm::Version::GetVersion())); PrintMemoryUsage(); QString status; mitk::DataNode::Pointer node; mitk::ProgressBar::GetInstance()->AddStepsToDo(2*nrFolders); std::string folder = m_Controls->m_OutputLabel->text().toStdString(); if(berry::Platform::IsWindows()) { folder.append("\\import.log"); } else { folder.append("/import.log"); } ofstream logfile; if(m_OutputFolderNameSet) logfile.open(folder.c_str()); while(m_Controls->listWidget->count()) { // RETREIVE FOLDERNAME QListWidgetItem * item = m_Controls->listWidget->takeItem(0); QString folderName = item->text(); if(m_OutputFolderNameSet) logfile << "Reading " << folderName.toStdString() << '\n'; // PARSING DIRECTORY PrintMemoryUsage(); clock.Start(folderName.toAscii()); std::vector seriesUIDs(0); std::vector > seriesFilenames(0); Status("== Initial Directory Scan =="); if(m_OutputFolderNameSet) logfile << "== Initial Directory Scan ==\n"; gdcm::Directory d; d.Load( folderName.toStdString().c_str(), true ); // recursive ! const gdcm::Directory::FilenamesType &l1 = d.GetFilenames(); const unsigned int ntotalfiles = l1.size(); Status(QString(" ... found %1 different files").arg(ntotalfiles)); if(m_OutputFolderNameSet)logfile << "...found " << ntotalfiles << " different files\n"; Status("Scanning Headers"); if(m_OutputFolderNameSet) logfile << "Scanning Headers\n"; gdcm::Scanner s; const gdcm::Tag t1(0x0020,0x000d); // Study Instance UID const gdcm::Tag t2(0x0020,0x000e); // Series Instance UID const gdcm::Tag t5(0x0028, 0x0010); // number rows const gdcm::Tag t6(0x0028, 0x0011); // number cols s.AddTag( t1 ); s.AddTag( t2 ); s.AddTag( t5 ); s.AddTag( t6 ); bool b = s.Scan( d.GetFilenames() ); if( !b ) { Error("Scanner failed"); if(m_OutputFolderNameSet )logfile << "ERROR: scanner failed\n"; continue; } // Only get the DICOM files: gdcm::Directory::FilenamesType l2 = s.GetKeys(); const int nfiles = l2.size(); if(nfiles < 1) { Error("No DICOM files found"); if(m_OutputFolderNameSet)logfile << "ERROR: No DICOM files found\n"; continue; } Status(QString(" ... successfully scanned %1 headers.").arg(nfiles)); if(m_OutputFolderNameSet) logfile << "...succesfully scanned " << nfiles << " headers\n"; Status("Sorting"); if(m_OutputFolderNameSet) logfile << "Sorting\n"; const gdcm::Scanner::ValuesType &values1 = s.GetValues(t1); int nvalues; if(m_Controls->m_DuplicateID->isChecked()) { nvalues = 1; } else { nvalues = values1.size(); } if(nvalues>1) { Error("Multiple sSeries tudies found. Please limit to 1 study per folder"); if(m_OutputFolderNameSet) logfile << "Multiple series found. Limit to one. If you are convinced this is an error use the merge duplicate study IDs option \n"; continue; } const gdcm::Scanner::ValuesType &values5 = s.GetValues(t5); const gdcm::Scanner::ValuesType &values6 = s.GetValues(t6); if(values5.size()>1 || values6.size()>1) { Error("Folder contains images of unequal dimensions that cannot be combined in one 3d volume. ABORTING."); if(m_OutputFolderNameSet) logfile << "Folder contains images of unequal dimensions that cannot be combined in one 3d volume. ABORTING\n."; continue; } const gdcm::Scanner::ValuesType &values2 = s.GetValues(t2); int nSeries; if(m_Controls->m_DuplicateID->isChecked()) { nSeries = 1; } else { nSeries = values2.size(); } gdcm::Directory::FilenamesType files; if(nSeries > 1) { gdcm::Sorter sorter; sorter.SetSortFunction( SortBySeriesUID ); sorter.StableSort( l2 ); files = sorter.GetFilenames(); } else { files = l2; } unsigned int nTotalAcquis = 0; if(nfiles % nSeries != 0) { Error("Number of files in series not equal, ABORTING"); if(m_OutputFolderNameSet) logfile << "Number of files in series not equal, Some volumes are probably incomplete. ABORTING \n"; continue; } int filesPerSeries = nfiles / nSeries; gdcm::Scanner::ValuesType::const_iterator it2 = values2.begin(); for(int i=0; i 1) // More than one element must have this tag (Not != ) { subsorter.SetSortFunction( SortByAcquisitionNumber ); it = values3.begin(); } else if (values4.size() > 1) { nAcquis = values4.size(); subsorter.SetSortFunction( SortBySeqName ); it = values4.begin(); } // Hotfix for Bug 14758, better fix by selecting always availible tags. else { Error("Sorting tags (0x0020,0x0012) and (0x0018,0x0024) missing, ABORTING"); if(m_OutputFolderNameSet) logfile << "Sorting tags (0x0020,0x0012) and (0x0018,0x0024) missing, ABORTING\n"; continue; } nTotalAcquis += nAcquis; subsorter.Sort( sub ); if(filesPerSeries % nAcquis != 0) { Error("Number of files per acquisition not equal, ABORTING"); if(m_OutputFolderNameSet) logfile << "Number of files per acquisition not equal, ABORTING \n"; continue; } int filesPerAcqu = filesPerSeries / nAcquis; gdcm::Directory::FilenamesType subfiles = subsorter.GetFilenames(); for ( unsigned int j = 0 ; j < nAcquis ; ++j ) { std::string identifier = "serie_" + *it2 + "_acquis_" + *it++; gdcm::IPPSorter ippsorter; gdcm::Directory::FilenamesType ipplist((j)*filesPerAcqu+subfiles.begin(),(j+1)*filesPerAcqu+subfiles.begin()); ippsorter.SetComputeZSpacing( true ); if( !ippsorter.Sort( ipplist ) ) { Error(QString("Failed to sort acquisition %1, ABORTING").arg(identifier.c_str())); if(m_OutputFolderNameSet) logfile << "Failed to sort acquisition " << identifier.c_str() << " , Aborting\n"; continue; } const std::vector & list = ippsorter.GetFilenames(); seriesFilenames.push_back(list); seriesUIDs.push_back(identifier.c_str()); } ++it2; } // Hot Fix for Bug 14758, checking if no file is acuired. if (nTotalAcquis < 1) // Test if zero, if true than error because no file was selected { Error("Nno files in acquisitions, ABORTING"); if(m_OutputFolderNameSet) logfile << "Nno files in acquisitions, ABORTING \n"; continue; } if(nfiles % nTotalAcquis != 0) { Error("Number of files per acquisition differs between series, ABORTING"); if(m_OutputFolderNameSet) logfile << "Number of files per acquisition differs between series, ABORTING \n"; continue; } int slices = nfiles/nTotalAcquis; Status(QString("Series is composed of %1 different 3D volumes with %2 slices.").arg(nTotalAcquis).arg(slices)); if(m_OutputFolderNameSet) logfile << "Series is composed of " << nTotalAcquis << " different 3D volumes with " << slices << " slices\n"; // READING HEADER-INFOS PrintMemoryUsage(); Status(QString("Reading Headers %1").arg(folderName)); if(m_OutputFolderNameSet) logfile << "Reading Headers "<< folderName.toStdString() << "\n"; mitk::DicomDiffusionImageHeaderReader::Pointer headerReader; mitk::GroupDiffusionHeadersFilter::InputType inHeaders; unsigned int size2 = seriesUIDs.size(); for ( unsigned int i = 0 ; i < size2 ; ++i ) { // Hot Fix for Bug 14459, catching if no valid data in datafile. try { Status(QString("Reading header image #%1/%2").arg(i+1).arg(size2)); headerReader = mitk::DicomDiffusionImageHeaderReader::New(); headerReader->SetSeriesDicomFilenames(seriesFilenames[i]); headerReader->Update(); inHeaders.push_back(headerReader->GetOutput()); } catch (mitk::Exception e) { Error("Could not read file header, ABORTING"); if(m_OutputFolderNameSet) logfile << e; continue; } //Status(std::endl; } mitk::ProgressBar::GetInstance()->Progress(); // // GROUP HEADERS // mitk::GroupDiffusionHeadersFilter::Pointer grouper // = mitk::GroupDiffusionHeadersFilter::New(); // mitk::GroupDiffusionHeadersFilter::OutputType outHeaders; // grouper->SetInput(inHeaders); // grouper->Update(); // outHeaders = grouper->GetOutput(); // READ VOLUMES PrintMemoryUsage(); if(m_OutputFolderNameSet) logfile << "Loading volumes\n"; Status(QString("Loading Volumes %1").arg(folderName)); typedef short PixelValueType; typedef mitk::DicomDiffusionImageReader< PixelValueType, 3 > VolumesReader; VolumesReader::Pointer vReader = VolumesReader::New(); VolumesReader::HeaderContainer hc = inHeaders; // hc.insert(hc.end(), outHeaders[1].begin(), outHeaders[1].end() ); // hc.insert(hc.end(), outHeaders[2].begin(), outHeaders[2].end() ); if(hc.size()>1) { vReader->SetHeaders(hc); vReader->Update(); VolumesReader::OutputImageType::Pointer vecImage; vecImage = vReader->GetOutput(); Status(QString("Volumes Loaded (%1)").arg(folderName)); // CONSTRUCT CONTAINER WITH DIRECTIONS typedef vnl_vector_fixed< double, 3 > GradientDirectionType; typedef itk::VectorContainer< unsigned int, GradientDirectionType > GradientDirectionContainerType; GradientDirectionContainerType::Pointer directions = GradientDirectionContainerType::New(); std::vector b_vals; double maxb = 0; for(unsigned int i=0; ibValue; if(maxb vect = hc[i]->DiffusionVector; vect.normalize(); vect *= sqrt(b_vals[i]/maxb); directions->push_back(vect); } // DWI TO DATATREE PrintMemoryUsage(); Status(QString("Initializing Diffusion Image")); if(m_OutputFolderNameSet) logfile << "Initializing Diffusion Image\n"; typedef mitk::DiffusionImage DiffVolumesType; DiffVolumesType::Pointer diffImage = DiffVolumesType::New(); diffImage->SetDirections(directions); diffImage->SetVectorImage(vecImage); diffImage->SetB_Value(maxb); diffImage->InitializeFromVectorImage(); diffImage->UpdateBValueList(); Status(QString("Diffusion Image initialized")); if(m_OutputFolderNameSet) logfile << "Diffusion Image initialized\n"; if(m_Controls->m_DicomLoadAverageDuplicatesCheckbox->isChecked()) { PrintMemoryUsage(); Status(QString("Averaging gradient directions")); logfile << "Averaging gradient directions\n"; diffImage->AverageRedundantGradients(m_Controls->m_Blur->value()); } QString descr = QString("%1_%2_%3") .arg(((inHeaders)[0])->seriesDescription.c_str()) .arg(((inHeaders)[0])->seriesNumber) .arg(((inHeaders)[0])->patientName.c_str()); descr = descr.trimmed(); descr = descr.replace(" ", "_"); if(!m_OutputFolderNameSet) { node=mitk::DataNode::New(); node->SetData( diffImage ); GetDefaultDataStorage()->Add(node); SetDwiNodeProperties(node, descr.toStdString().c_str()); Status(QString("Image %1 added to datastorage").arg(descr)); } else { typedef mitk::NrrdDiffusionImageWriter WriterType; WriterType::Pointer writer = WriterType::New(); QString fullpath = QString("%1/%2.dwi") .arg(m_OutputFolderName) .arg(descr); // if the override option is not checked, we need to make sure that the current filepath // does not point to an existing file if( !(m_Controls->m_OverrideOptionCheckbox->isChecked()) ) { QFile outputFile( fullpath ); // generate new filename if file exists int file_counter = 0; while( outputFile.exists() ) { // copy base name QString newdescr = descr; file_counter++; MITK_WARN << "The file "<< fullpath.toStdString() << " exists already."; QString appendix = QString("_%1").arg( QString::number(file_counter) ); newdescr.append(appendix); fullpath = QString("%1/%2.dwi") .arg(m_OutputFolderName) .arg(newdescr); // set the new generated filename for next check outputFile.setFileName( fullpath ); } } writer->SetFileName(fullpath.toStdString()); writer->SetInput(diffImage); try { writer->Update(); } catch (itk::ExceptionObject &ex) { imageSuccessfullySaved = false; Error(QString("%1\n%2\n%3\n%4\n%5\n%6").arg(ex.GetNameOfClass()).arg(ex.GetFile()).arg(ex.GetLine()).arg(ex.GetLocation()).arg(ex.what()).arg(ex.GetDescription())); logfile << QString("%1\n%2\n%3\n%4\n%5\n%6").arg(ex.GetNameOfClass()).arg(ex.GetFile()).arg(ex.GetLine()).arg(ex.GetLocation()).arg(ex.what()).arg(ex.GetDescription()).toStdString() << "\n"; node=mitk::DataNode::New(); node->SetData( diffImage ); GetDefaultDataStorage()->Add(node); SetDwiNodeProperties(node, descr.toStdString().c_str()); Status(QString("Image %1 added to datastorage").arg(descr)); logfile << "Image " << descr.toStdString() << " added to datastorage\n"; continue ; } Status(QString("Image %1 written to disc (%1)").arg(fullpath.toStdString().c_str())); logfile << "Image " << fullpath.toStdString() << "\n"; } } else { Status(QString("No diffusion information found (%1)").arg(folderName)); if(m_OutputFolderNameSet) logfile << "No diffusion information found "<< folderName.toStdString(); } Status(QString("Finished processing %1 with memory:").arg(folderName)); if(m_OutputFolderNameSet) logfile << "Finished processing " << folderName.toStdString() << "\n"; PrintMemoryUsage(); clock.Stop(folderName.toAscii()); mitk::ProgressBar::GetInstance()->Progress(); int lwidget = m_Controls->listWidget->count(); std::cout << lwidget <GetData(); if (basedata.IsNotNull()) { mitk::RenderingManager::GetInstance()->InitializeViews( - basedata->GetTimeSlicedGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); + basedata->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); } } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); try { MITK_INFO << " ** Changing locale back from " << setlocale(LC_ALL, NULL) << " to '" << currLocale << "'"; setlocale(LC_ALL, currLocale.c_str()); } catch(...) { MITK_INFO << "Could not reset locale " << currLocale; } } catch (itk::ExceptionObject &ex) { Error(QString("%1\n%2\n%3\n%4\n%5\n%6").arg(ex.GetNameOfClass()).arg(ex.GetFile()).arg(ex.GetLine()).arg(ex.GetLocation()).arg(ex.what()).arg(ex.GetDescription())); return ; } if (!imageSuccessfullySaved) QMessageBox::warning(NULL,"WARNING","One or more files could not be saved! The according files where moved to the datastorage."); Status(QString("Finished import with memory:")); PrintMemoryUsage(); } void QmitkDiffusionDicomImport::SetDwiNodeProperties(mitk::DataNode::Pointer node, std::string name) { node->SetProperty( "IsDWIRawVolume", mitk::BoolProperty::New( true ) ); // set foldername as string property mitk::StringProperty::Pointer nameProp = mitk::StringProperty::New( name ); node->SetProperty( "name", nameProp ); } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkDwiSoftwarePhantomView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkDwiSoftwarePhantomView.cpp index beca52cd6e..774d8968e3 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkDwiSoftwarePhantomView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkDwiSoftwarePhantomView.cpp @@ -1,496 +1,496 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Qmitk #include "QmitkDwiSoftwarePhantomView.h" // MITK #include #include #include #include #define _USE_MATH_DEFINES #include const std::string QmitkDwiSoftwarePhantomView::VIEW_ID = "org.mitk.views.dwisoftwarephantomview"; QmitkDwiSoftwarePhantomView::QmitkDwiSoftwarePhantomView() : QmitkFunctionality() , m_Controls( 0 ) , m_MultiWidget( NULL ) { } // Destructor QmitkDwiSoftwarePhantomView::~QmitkDwiSoftwarePhantomView() { } void QmitkDwiSoftwarePhantomView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkDwiSoftwarePhantomViewControls; m_Controls->setupUi( parent ); m_Controls->m_SignalRegionBox->setVisible(false); connect((QObject*) m_Controls->m_GeneratePhantomButton, SIGNAL(clicked()), (QObject*) this, SLOT(GeneratePhantom())); connect((QObject*) m_Controls->m_SimulateBaseline, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnSimulateBaselineToggle(int))); } } QmitkDwiSoftwarePhantomView::GradientListType QmitkDwiSoftwarePhantomView::GenerateHalfShell(int NPoints) { NPoints *= 2; vnl_vector theta; theta.set_size(NPoints); vnl_vector phi; phi.set_size(NPoints); double C = sqrt(4*M_PI); phi(0) = 0.0; phi(NPoints-1) = 0.0; for(int i=0; i0 && i std::vector > QmitkDwiSoftwarePhantomView::MakeGradientList() { std::vector > retval; vnl_matrix_fixed* U = itk::PointShell >::DistributePointShell(); // Add 0 vector for B0 int numB0 = ndirs/10; if (numB0==0) numB0=1; itk::Vector v; v.Fill(0.0); for (int i=0; i v; v[0] = U->get(0,i); v[1] = U->get(1,i); v[2] = U->get(2,i); retval.push_back(v); } return retval; } void QmitkDwiSoftwarePhantomView::OnSimulateBaselineToggle(int state) { if (state) { m_Controls->m_NoiseLabel->setText("Noise Variance:"); m_Controls->m_NoiseLevel->setValue(1.0/(m_Controls->m_NoiseLevel->value()*m_Controls->m_NoiseLevel->value())); m_Controls->m_NoiseLevel->setToolTip("Variance of Rician noise."); } else { m_Controls->m_NoiseLabel->setText("SNR:"); if (m_Controls->m_NoiseLevel->value()>0) m_Controls->m_NoiseLevel->setValue(1.0/(sqrt(m_Controls->m_NoiseLevel->value()))); else m_Controls->m_NoiseLevel->setValue(0.0001); m_Controls->m_NoiseLevel->setToolTip("Signal to noise ratio (for values > 99, no noise at all is added to the image)."); } } void QmitkDwiSoftwarePhantomView::GeneratePhantom() { typedef itk::DwiPhantomGenerationFilter< short > FilterType; FilterType::GradientListType gradientList; m_SignalRegions.clear(); for (int i=0; i(m_SignalRegionNodes.at(i)->GetData()); ItkUcharImgType::Pointer signalRegion = ItkUcharImgType::New(); mitk::CastToItkImage(mitkBinaryImg, signalRegion); m_SignalRegions.push_back(signalRegion); } gradientList = GenerateHalfShell(m_Controls->m_NumGradientsBox->value()); // switch(m_Controls->m_NumGradientsBox->value()) // { // case 0: // gradientList = MakeGradientList<12>(); // break; // case 1: // gradientList = MakeGradientList<42>(); // break; // case 2: // gradientList = MakeGradientList<92>(); // break; // case 3: // gradientList = MakeGradientList<162>(); // break; // case 4: // gradientList = MakeGradientList<252>(); // break; // case 5: // gradientList = MakeGradientList<362>(); // break; // case 6: // gradientList = MakeGradientList<492>(); // break; // case 7: // gradientList = MakeGradientList<642>(); // break; // case 8: // gradientList = MakeGradientList<812>(); // break; // case 9: // gradientList = MakeGradientList<1002>(); // break; // default: // gradientList = MakeGradientList<92>(); // } double bVal = m_Controls->m_TensorsToDWIBValueEdit->value(); itk::ImageRegion<3> imageRegion; imageRegion.SetSize(0, m_Controls->m_SizeX->value()); imageRegion.SetSize(1, m_Controls->m_SizeY->value()); imageRegion.SetSize(2, m_Controls->m_SizeZ->value()); mitk::Vector3D spacing; spacing[0] = m_Controls->m_SpacingX->value(); spacing[1] = m_Controls->m_SpacingY->value(); spacing[2] = m_Controls->m_SpacingZ->value(); FilterType::Pointer filter = FilterType::New(); filter->SetGradientList(gradientList); filter->SetBValue(bVal); filter->SetNoiseVariance(m_Controls->m_NoiseLevel->value()); filter->SetImageRegion(imageRegion); filter->SetSpacing(spacing); filter->SetSignalRegions(m_SignalRegions); filter->SetGreyMatterAdc(m_Controls->m_GmAdc->value()); std::vector< float > tensorFA; std::vector< float > tensorADC; std::vector< float > tensorWeight; std::vector< vnl_vector_fixed > tensorDirection; for (int i=0; ivalue()); tensorADC.push_back(m_SpinAdc.at(i)->value()); vnl_vector_fixed dir; dir[0] = m_SpinX.at(i)->value(); dir[1] = m_SpinY.at(i)->value(); dir[2] = m_SpinZ.at(i)->value(); dir.normalize(); tensorDirection.push_back(dir); tensorWeight.push_back(m_SpinWeight.at(i)->value()); } filter->SetTensorFA(tensorFA); filter->SetTensorADC(tensorADC); filter->SetTensorWeight(tensorWeight); filter->SetTensorDirection(tensorDirection); if (!m_Controls->m_SimulateBaseline->isChecked()) filter->SetSimulateBaseline(false); else filter->SetSimulateBaseline(true); filter->Update(); mitk::DiffusionImage::Pointer image = mitk::DiffusionImage::New(); image->SetVectorImage( filter->GetOutput() ); image->SetB_Value(bVal); image->SetDirections(gradientList); image->InitializeFromVectorImage(); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName(m_Controls->m_ImageName->text().toStdString()); GetDataStorage()->Add(node); mitk::BaseData::Pointer basedata = node->GetData(); if (basedata.IsNotNull()) { mitk::RenderingManager::GetInstance()->InitializeViews( - basedata->GetTimeSlicedGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); + basedata->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } if (m_Controls->m_OutputNumDirectionsBox->isChecked()) { ItkUcharImgType::Pointer numDirImage = filter->GetNumDirectionsImage(); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk( numDirImage.GetPointer() ); image->SetVolume( numDirImage->GetBufferPointer() ); mitk::DataNode::Pointer node2 = mitk::DataNode::New(); node2->SetData(image); QString name(m_Controls->m_ImageName->text()); name += "_NumDirections"; node2->SetName(name.toStdString().c_str()); GetDataStorage()->Add(node2); } if (m_Controls->m_OutputSnrImageBox->isChecked()) { ItkFloatImgType::Pointer snrImage = filter->GetSNRImage(); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk( snrImage.GetPointer() ); image->SetVolume( snrImage->GetBufferPointer() ); mitk::DataNode::Pointer node2 = mitk::DataNode::New(); node2->SetData(image); QString name(m_Controls->m_ImageName->text()); name += "_SNR"; node2->SetName(name.toStdString().c_str()); GetDataStorage()->Add(node2); } if (m_SignalRegionNodes.size()==0) return; if (m_Controls->m_OutputDirectionImagesBox->isChecked()) { typedef FilterType::ItkDirectionImageContainer ItkDirectionImageContainer; ItkDirectionImageContainer::Pointer container = filter->GetDirectionImageContainer(); for (int i=0; iSize(); i++) { FilterType::ItkDirectionImage::Pointer itkImg = container->GetElement(i); mitk::Image::Pointer img = mitk::Image::New(); img->InitializeByItk( itkImg.GetPointer() ); img->SetVolume( itkImg->GetBufferPointer() ); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData(img); QString name(m_Controls->m_ImageName->text()); name += "_Direction"; name += QString::number(i+1); node->SetName(name.toStdString().c_str()); GetDataStorage()->Add(node); } } if (m_Controls->m_OutputVectorFieldBox->isChecked()) { mitk::Geometry3D::Pointer geometry = image->GetGeometry(); mitk::Vector3D outImageSpacing = geometry->GetSpacing(); float minSpacing = 1; if(outImageSpacing[0]GetOutputFiberBundle(); directions->SetGeometry(geometry); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData(directions); QString name(m_Controls->m_ImageName->text()); name += "_VectorField"; node->SetName(name.toStdString().c_str()); node->SetProperty("Fiber2DSliceThickness", mitk::FloatProperty::New(minSpacing)); node->SetProperty("Fiber2DfadeEFX", mitk::BoolProperty::New(false)); GetDataStorage()->Add(node); } } void QmitkDwiSoftwarePhantomView::UpdateGui() { if (!m_SignalRegionNodes.empty()) { m_Controls->m_SignalRegionBox->setVisible(true); m_Controls->m_Instruction->setVisible(false); } else { m_Controls->m_SignalRegionBox->setVisible(false); m_Controls->m_Instruction->setVisible(true); } QLayout* layout = m_Controls->m_SignalRegionBox->layout(); for (int i=0; im_SignalRegionBox->setLayout(newlayout); if (!m_SignalRegionNodes.empty()) { QLabel* label1 = new QLabel("Image"); newlayout->addWidget(label1,0,0); m_Labels.push_back(label1); QLabel* label2 = new QLabel("FA"); newlayout->addWidget(label2,0,1); m_Labels.push_back(label2); QLabel* label3 = new QLabel("ADC"); newlayout->addWidget(label3,0,2); m_Labels.push_back(label3); QLabel* label4 = new QLabel("X"); newlayout->addWidget(label4,0,03); m_Labels.push_back(label4); QLabel* label5 = new QLabel("Y"); newlayout->addWidget(label5,0,4); m_Labels.push_back(label5); QLabel* label6 = new QLabel("Z"); newlayout->addWidget(label6,0,5); m_Labels.push_back(label6); QLabel* label7 = new QLabel("Weight"); newlayout->addWidget(label7,0,6); m_Labels.push_back(label7); } for (int i=0; iGetName().c_str()); newlayout->addWidget(label,i+1,0); m_Labels.push_back(label); QDoubleSpinBox* spinFa = new QDoubleSpinBox(); spinFa->setValue(0.7); spinFa->setMinimum(0); spinFa->setMaximum(1); spinFa->setSingleStep(0.1); newlayout->addWidget(spinFa,i+1,1); m_SpinFa.push_back(spinFa); QDoubleSpinBox* spinAdc = new QDoubleSpinBox(); newlayout->addWidget(spinAdc,i+1,2); spinAdc->setMinimum(0); spinAdc->setMaximum(1); spinAdc->setSingleStep(0.001); spinAdc->setDecimals(3); spinAdc->setValue(0.001); ///// ??????????????????????????? m_SpinAdc.push_back(spinAdc); QDoubleSpinBox* spinX = new QDoubleSpinBox(); newlayout->addWidget(spinX,i+1,3); spinX->setValue(1); spinX->setMinimum(-1); spinX->setMaximum(1); spinX->setSingleStep(0.1); m_SpinX.push_back(spinX); QDoubleSpinBox* spinY = new QDoubleSpinBox(); newlayout->addWidget(spinY,i+1,4); spinY->setMinimum(-1); spinY->setMaximum(1); spinY->setSingleStep(0.1); m_SpinY.push_back(spinY); QDoubleSpinBox* spinZ = new QDoubleSpinBox(); newlayout->addWidget(spinZ,i+1,5); spinZ->setMinimum(-1); spinZ->setMaximum(1); spinZ->setSingleStep(0.1); m_SpinZ.push_back(spinZ); QDoubleSpinBox* spinWeight = new QDoubleSpinBox(); newlayout->addWidget(spinWeight,i+1,6); spinWeight->setMinimum(0); spinWeight->setMaximum(1); spinWeight->setSingleStep(0.1); spinWeight->setValue(1.0); m_SpinWeight.push_back(spinWeight); } } void QmitkDwiSoftwarePhantomView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkDwiSoftwarePhantomView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } void QmitkDwiSoftwarePhantomView::OnSelectionChanged( std::vector nodes ) { m_SignalRegionNodes.clear(); // iterate all selected objects, adjust warning visibility for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if( node.IsNotNull() && dynamic_cast(node->GetData()) ) { bool isBinary = false; node->GetPropertyValue("binary", isBinary); if (isBinary) m_SignalRegionNodes.push_back(node); } } UpdateGui(); } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberBundleDeveloperView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberBundleDeveloperView.cpp index 07ec5fdecd..0a42c8e3e5 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberBundleDeveloperView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberBundleDeveloperView.cpp @@ -1,1810 +1,1810 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //=========FOR TESTING========== //random generation, number of points equal requested points // Blueberry application and interaction service #include #include // Qmitk #include "QmitkFiberBundleDeveloperView.h" #include // Qt #include // MITK #include #include #include //===needed when timeSlicedGeometry is null to invoke rendering mechansims ==== #include #include // VTK #include //for randomized FiberStructure #include //for fiberStructure #include //for fiberStructure #include //for geometry //ITK #include //============================================== //======== W O R K E R S ____ S T A R T ======== //============================================== /*=================================================================================== * THIS METHOD IMPLEMENTS THE ACTIONS WHICH SHALL BE EXECUTED by the according THREAD * --generate FiberIDs--*/ QmitkFiberIDWorker::QmitkFiberIDWorker(QThread* hostingThread, Package4WorkingThread itemPackage) : m_itemPackage(itemPackage), m_hostingThread(hostingThread) { } void QmitkFiberIDWorker::run() { if(m_itemPackage.st_Controls->checkBoxMonitorFiberThreads->isChecked()) m_itemPackage.st_fiberThreadMonitorWorker->setThreadStatus(FBX_STATUS_RUNNING); /* MEASUREMENTS AND FANCY GUI EFFECTS * accurate time measurement using ITK timeProbe*/ itk::TimeProbe clock; clock.Start(); //set GUI representation of timer to 0, is essential for correct timer incrementation m_itemPackage.st_Controls->infoTimerGenerateFiberIds->setText(QString::number(0)); m_itemPackage.st_FancyGUITimer1->start(); //do processing m_itemPackage.st_FBX->GenerateFiberIds(); /* MEASUREMENTS AND FANCY GUI EFFECTS CLEANUP */ clock.Stop(); m_itemPackage.st_FancyGUITimer1->stop(); m_itemPackage.st_Controls->infoTimerGenerateFiberIds->setText( QString::number(clock.GetTotal()) ); delete m_itemPackage.st_FancyGUITimer1; // fancy timer is not needed anymore m_hostingThread->quit(); } /*=================================================================================== * THIS METHOD IMPLEMENTS THE ACTIONS WHICH SHALL BE EXECUTED by the according THREAD * -- extract fibers by given PlanarFigure --*/ QmitkFiberExtractorWorker::QmitkFiberExtractorWorker(QThread* hostingThread, Package4WorkingThread itemPackage) : m_itemPackage(itemPackage), m_hostingThread(hostingThread) { } void QmitkFiberExtractorWorker::run() { if(m_itemPackage.st_Controls->checkBoxMonitorFiberThreads->isChecked()) m_itemPackage.st_fiberThreadMonitorWorker->setThreadStatus(FBX_STATUS_RUNNING); /* MEASUREMENTS AND FANCY GUI EFFECTS * accurate time measurement using ITK timeProbe*/ itk::TimeProbe clock; clock.Start(); //set GUI representation of timer to 0, is essential for correct timer incrementation m_itemPackage.st_Controls->infoTimerExtractFibers->setText(QString::number(0)); m_itemPackage.st_FancyGUITimer1->start(); //do processing std::vector fibIds = m_itemPackage.st_FBX->ExtractFiberIdSubset(m_itemPackage.st_PlanarFigure); //generate new fiberbundle by fiber iDs vtkSmartPointer newFBPolyData = m_itemPackage.st_FBX->GeneratePolyDataByIds(fibIds); // call function to convert fiberstructure into fiberbundleX and pass it to datastorage (m_itemPackage.st_host->*m_itemPackage.st_pntr_to_Method_PutFibersToDataStorage)(newFBPolyData); /* MEASUREMENTS AND FANCY GUI EFFECTS CLEANUP */ clock.Stop(); m_itemPackage.st_FancyGUITimer1->stop(); m_itemPackage.st_Controls->infoTimerExtractFibers->setText( QString::number(clock.GetTotal()) ); delete m_itemPackage.st_FancyGUITimer1; // fancy timer is not needed anymore m_hostingThread->quit(); } /*=================================================================================== * THIS METHOD IMPLEMENTS THE ACTIONS WHICH SHALL BE EXECUTED by the according THREAD * --set FA values to fiberbundle--*/ QmitkFiberColoringWorker::QmitkFiberColoringWorker(QThread* hostingThread, Package4WorkingThread itemPackage) : m_itemPackage(itemPackage) , m_hostingThread(hostingThread) { } void QmitkFiberColoringWorker::run() { if(m_itemPackage.st_Controls->checkBoxMonitorFiberThreads->isChecked()) m_itemPackage.st_fiberThreadMonitorWorker->setThreadStatus(FBX_STATUS_RUNNING); /* MEASUREMENTS AND FANCY GUI EFFECTS * accurate time measurement using ITK timeProbe*/ itk::TimeProbe clock; clock.Start(); //set GUI representation of timer to 0, is essential for correct timer incrementation m_itemPackage.st_Controls->infoTimerColorCoding->setText(QString::number(0)); m_itemPackage.st_FancyGUITimer1->start(); //do processing if(m_itemPackage.st_Controls->radioButton_ColorOrient->isChecked()) { m_itemPackage.st_FBX->DoColorCodingOrientationBased(); } else if(m_itemPackage.st_Controls->radioButton_ColorFA->isChecked()) { m_itemPackage.st_FBX->DoColorCodingFaBased(); } else if(m_itemPackage.st_Controls->radioButton_OpacityFA->isChecked()) { // m_itemPackage.st_FBX->SetColorCoding(""); m_itemPackage.st_PassedDataNode->SetOpacity(0.999); m_itemPackage.st_FBX->DoUseFaFiberOpacity(); } else if(m_itemPackage.st_Controls->radioButton_ColorCustom->isChecked()){ m_itemPackage.st_FBX->SetColorCoding(mitk::FiberBundleX::COLORCODING_CUSTOM); } /* MEASUREMENTS AND FANCY GUI EFFECTS CLEANUP */ clock.Stop(); m_itemPackage.st_FancyGUITimer1->stop(); m_itemPackage.st_Controls->infoTimerColorCoding->setText( QString::number(clock.GetTotal()) ); delete m_itemPackage.st_FancyGUITimer1; // fancy timer is not needed anymore m_hostingThread->quit(); } QmitkFiberFeederFAWorker::QmitkFiberFeederFAWorker(QThread* hostingThread, Package4WorkingThread itemPackage) : m_itemPackage(itemPackage), m_hostingThread(hostingThread) { } void QmitkFiberFeederFAWorker::run() { if(m_itemPackage.st_Controls->checkBoxMonitorFiberThreads->isChecked()) m_itemPackage.st_fiberThreadMonitorWorker->setThreadStatus(FBX_STATUS_RUNNING); /* MEASUREMENTS AND FANCY GUI EFFECTS * accurate time measurement using ITK timeProbe */ itk::TimeProbe clock; clock.Start(); //set GUI representation of timer to 0, is essential for correct timer incrementation m_itemPackage.st_Controls->infoTimerSetFA->setText(QString::number(0)); m_itemPackage.st_FancyGUITimer1->start(); //do processing mitk::Image::Pointer FAImg = dynamic_cast(m_itemPackage.st_PassedDataNode->GetData()); if(FAImg.IsNotNull()) m_itemPackage.st_FBX->SetFAMap(FAImg); /* MEASUREMENTS AND FANCY GUI EFFECTS CLEANUP */ clock.Stop(); m_itemPackage.st_FancyGUITimer1->stop(); m_itemPackage.st_Controls->infoTimerSetFA->setText( QString::number(clock.GetTotal()) ); disconnect(m_itemPackage.st_FancyGUITimer1); delete m_itemPackage.st_FancyGUITimer1; // fancy timer is not needed anymore m_hostingThread->quit(); } /*=================================================================================== * THIS METHOD IMPLEMENTS THE ACTIONS WHICH SHALL BE EXECUTED by the according THREAD * --generate random fibers--*/ QmitkFiberGenerateRandomWorker::QmitkFiberGenerateRandomWorker(QThread* hostingThread, Package4WorkingThread itemPackage) : m_itemPackage(itemPackage), m_hostingThread(hostingThread) { } void QmitkFiberGenerateRandomWorker::run() { if(m_itemPackage.st_Controls->checkBoxMonitorFiberThreads->isChecked()) m_itemPackage.st_fiberThreadMonitorWorker->setThreadStatus(FBX_STATUS_RUNNING); /* MEASUREMENTS AND FANCY GUI EFFECTS */ //MAKE SURE by yourself THAT NOTHING ELSE THAN A NUMBER IS SET IN THAT LABEL m_itemPackage.st_Controls->infoTimerGenerateFiberBundle->setText(QString::number(0)); m_itemPackage.st_FancyGUITimer1->start(); //do processing, generateRandomFibers int numOfFibers = m_itemPackage.st_Controls->boxFiberNumbers->value(); int distrRadius = m_itemPackage.st_Controls->boxDistributionRadius->value(); int numOfPoints = numOfFibers * distrRadius; std::vector< std::vector > fiberStorage; for (int i=0; i a; fiberStorage.push_back( a ); } /* Generate Point Cloud */ vtkSmartPointer randomPoints = vtkSmartPointer::New(); randomPoints->SetCenter(0.0, 0.0, 0.0); randomPoints->SetNumberOfPoints(numOfPoints); randomPoints->SetRadius(distrRadius); randomPoints->Update(); vtkPoints* pnts = randomPoints->GetOutput()->GetPoints(); /* ASSIGN EACH POINT TO A RANDOM FIBER */ srand((unsigned)time(0)); // init randomizer for (int i=0; iGetNumberOfPoints(); ++i) { //generate random number between 0 and numOfFibers-1 int random_integer; random_integer = (rand()%numOfFibers); //add current point to random fiber fiberStorage.at(random_integer).push_back(i); // MITK_INFO << "point" << i << " |" << pnts->GetPoint(random_integer)[0] << "|" << pnts->GetPoint(random_integer)[1]<< "|" << pnts->GetPoint(random_integer)[2] << "| into fiber" << random_integer; } // initialize accurate time measurement itk::TimeProbe clock; clock.Start(); /* GENERATE VTK POLYLINES OUT OF FIBERSTORAGE */ vtkSmartPointer linesCell = vtkSmartPointer::New(); // Host vtkPolyLines linesCell->Allocate(pnts->GetNumberOfPoints()*2); //allocate for each cellindex also space for the pointId, e.g. [idx | pntID] for (long i=0; i singleFiber = fiberStorage.at(i); vtkSmartPointer fiber = vtkSmartPointer::New(); fiber->GetPointIds()->SetNumberOfIds((int)singleFiber.size()); for (long si=0; siGetPointIds()->SetId( si, singleFiber.at(si) ); } linesCell->InsertNextCell(fiber); } /* checkpoint for cellarray allocation */ if ( (linesCell->GetSize()/pnts->GetNumberOfPoints()) != 2 ) //e.g. size: 12, number of points:6 .... each cell hosts point ids (6 ids) + cell index for each idPoint. 6 * 2 = 12 { MITK_INFO << "RANDOM FIBER ALLOCATION CAN NOT BE TRUSTED ANYMORE! Correct leak or remove command: linesCell->Allocate(pnts->GetNumberOfPoints()*2) but be aware of possible loss in performance."; } /* HOSTING POLYDATA FOR RANDOM FIBERSTRUCTURE */ vtkSmartPointer PDRandom = vtkSmartPointer::New(); //could also be a standard pointer instead of smartpointer cuz ther is no need to delete because data is managed in datastorage. PDRandom->SetPoints(pnts); PDRandom->SetLines(linesCell); // accurate timer measurement stop clock.Stop(); //MITK_INFO << "=====Assambling random Fibers to Polydata======\nMean: " << clock.GetMean() << " Total: " << clock.GetTotal() << std::endl; // call function to convert fiberstructure into fiberbundleX and pass it to datastorage (m_itemPackage.st_host->*m_itemPackage.st_pntr_to_Method_PutFibersToDataStorage)(PDRandom); /* MEASUREMENTS AND FANCY GUI EFFECTS CLEANUP */ m_itemPackage.st_FancyGUITimer1->stop(); m_itemPackage.st_Controls->infoTimerGenerateFiberBundle->setText( QString::number(clock.GetTotal()) ); delete m_itemPackage.st_FancyGUITimer1; // fancy timer is not needed anymore m_hostingThread->quit(); } /*=================================================================================== * THIS METHOD IMPLEMENTS THE ACTIONS WHICH SHALL BE EXECUTED by the according THREAD * --update GUI elements of thread monitor-- * implementation not thread safe, not needed so far because * there exists only 1 thread for fiberprocessing * for threadsafety, you need to implement checking mechanisms in methods "::threadFor...." */ QmitkFiberThreadMonitorWorker::QmitkFiberThreadMonitorWorker( QThread* hostingThread, Package4WorkingThread itemPackage ) : m_itemPackage(itemPackage) , m_hostingThread(hostingThread) , m_pixelstepper(10) //for next rendering call, move object 10px , m_steppingDistance(220) //use only a multiple value of pixelstepper, x-axis border for fancy stuff { //set timers m_thtimer_initMonitor = new QTimer; m_thtimer_initMonitor->setInterval(10); m_thtimer_initMonitorSetFinalPosition = new QTimer; m_thtimer_initMonitorSetFinalPosition->setInterval(10); m_thtimer_initMonitorSetMasks = new QTimer; m_thtimer_initMonitorSetFinalPosition->setInterval(10); m_thtimer_threadStarted = new QTimer; m_thtimer_threadStarted->setInterval(50); m_thtimer_threadFinished = new QTimer; m_thtimer_threadFinished->setInterval(50); m_thtimer_threadTerminated = new QTimer; m_thtimer_threadTerminated->setInterval(50); connect (m_thtimer_initMonitor, SIGNAL( timeout()), this, SLOT( fancyMonitorInitialization() ) ); connect ( m_thtimer_initMonitorSetFinalPosition, SIGNAL( timeout() ), this, SLOT( fancyMonitorInitializationFinalPos() ) ); connect ( m_thtimer_initMonitorSetMasks, SIGNAL( timeout() ), this, SLOT( fancyMonitorInitializationMask() ) ); connect (m_thtimer_threadStarted, SIGNAL( timeout()), this, SLOT( fancyTextFading_threadStarted() ) ); connect (m_thtimer_threadFinished, SIGNAL( timeout()), this, SLOT( fancyTextFading_threadFinished() ) ); connect (m_thtimer_threadTerminated, SIGNAL( timeout()), this, SLOT( fancyTextFading_threadTerminated() ) ); //first, the current text shall turn transparent m_decreaseOpacity_threadStarted = true; m_decreaseOpacity_threadFinished = true; m_decreaseOpacity_threadTerminated = true; } void QmitkFiberThreadMonitorWorker::run() { } void QmitkFiberThreadMonitorWorker::initializeMonitor() { //fancy configuration of animation start mitk::Point2D pntOpen; pntOpen[0] = 118; pntOpen[1] = 10; mitk::Point2D headPos; headPos[0] = 19; headPos[1] = 10; mitk::Point2D statusPos; statusPos[0] = 105; statusPos[1] = 23; mitk::Point2D startedPos; startedPos[0] = 68; startedPos[1] = 10; mitk::Point2D finishedPos; finishedPos[0] = 143; finishedPos[1] = 10; mitk::Point2D terminatedPos; terminatedPos[0] = 240; terminatedPos[1] = 10; m_itemPackage.st_FBX_Monitor->setBracketClosePosition(pntOpen); m_itemPackage.st_FBX_Monitor->setBracketOpenPosition(pntOpen); m_itemPackage.st_FBX_Monitor->setHeadingPosition(headPos); m_itemPackage.st_FBX_Monitor->setMaskPosition(headPos); m_itemPackage.st_FBX_Monitor->setStatusPosition(statusPos); m_itemPackage.st_FBX_Monitor->setStartedPosition(startedPos); m_itemPackage.st_FBX_Monitor->setFinishedPosition(finishedPos); m_itemPackage.st_FBX_Monitor->setTerminatedPosition(terminatedPos); m_thtimer_initMonitor->start(); } void QmitkFiberThreadMonitorWorker::setThreadStatus(QString status) { m_itemPackage.st_FBX_Monitor->setStatus(status); m_itemPackage.st_ThreadMonitorDataNode->Modified(); m_itemPackage.st_MultiWidget->RequestUpdate(); } /* Methods to set status of running threads * Following three methods are usually called - before a thread starts and - a thread is finished or terminated */ void QmitkFiberThreadMonitorWorker::threadForFiberProcessingStarted() { if(!m_thtimer_threadStarted->isActive()) { m_thtimer_threadStarted->start(); } else { //fast change without fancy stuff, needed to keep threaddebugger info up to date int counter = m_itemPackage.st_FBX_Monitor->getStarted(); m_itemPackage.st_FBX_Monitor->setStarted(++counter); } } void QmitkFiberThreadMonitorWorker::threadForFiberProcessingFinished() { if(!m_thtimer_threadFinished->isActive()) { m_thtimer_threadFinished->start(); } else { //fast change without fancy stuff int counter = m_itemPackage.st_FBX_Monitor->getFinished(); m_itemPackage.st_FBX_Monitor->setFinished(++counter); } } void QmitkFiberThreadMonitorWorker::threadForFiberProcessingTerminated() { if(!m_thtimer_threadTerminated->isActive()) { m_thtimer_threadTerminated->start(); } else { //fast change without fancy stuff int counter = m_itemPackage.st_FBX_Monitor->getTerminated(); m_itemPackage.st_FBX_Monitor->setTerminated(++counter); } } /* Helper methods for fancy fading efx for thread monitor */ void QmitkFiberThreadMonitorWorker::fancyTextFading_threadStarted() { if (m_decreaseOpacity_threadStarted) { int startedOpacity = m_itemPackage.st_FBX_Monitor->getStartedOpacity(); m_itemPackage.st_FBX_Monitor->setStartedOpacity( --startedOpacity ); if (startedOpacity == 0) { int counter = m_itemPackage.st_FBX_Monitor->getStarted(); m_itemPackage.st_FBX_Monitor->setStarted(++counter); m_decreaseOpacity_threadStarted = false; } m_itemPackage.st_ThreadMonitorDataNode->Modified(); m_itemPackage.st_MultiWidget->RequestUpdate(); } else { int startedOpacity = m_itemPackage.st_FBX_Monitor->getStartedOpacity(); m_itemPackage.st_FBX_Monitor->setStartedOpacity( ++startedOpacity ); if (startedOpacity >= 10) { m_thtimer_threadStarted->stop(); m_decreaseOpacity_threadStarted = true; //set back to true, cuz next iteration shall decrease opacity as well } m_itemPackage.st_ThreadMonitorDataNode->Modified(); m_itemPackage.st_MultiWidget->RequestUpdate(); } } void QmitkFiberThreadMonitorWorker::fancyTextFading_threadFinished() { if (m_decreaseOpacity_threadFinished) { int finishedOpacity = m_itemPackage.st_FBX_Monitor->getFinishedOpacity(); m_itemPackage.st_FBX_Monitor->setFinishedOpacity( --finishedOpacity ); if (finishedOpacity == 0) { int counter = m_itemPackage.st_FBX_Monitor->getFinished(); m_itemPackage.st_FBX_Monitor->setFinished(++counter); m_decreaseOpacity_threadFinished = false; } m_itemPackage.st_ThreadMonitorDataNode->Modified(); m_itemPackage.st_MultiWidget->RequestUpdate(); } else { int finishedOpacity = m_itemPackage.st_FBX_Monitor->getFinishedOpacity(); m_itemPackage.st_FBX_Monitor->setFinishedOpacity( ++finishedOpacity ); if (finishedOpacity >= 10) { m_thtimer_threadFinished->stop(); m_decreaseOpacity_threadFinished = true; //set back to true, cuz next iteration shall decrease opacity as well } m_itemPackage.st_ThreadMonitorDataNode->Modified(); m_itemPackage.st_MultiWidget->RequestUpdate(); } } void QmitkFiberThreadMonitorWorker::fancyTextFading_threadTerminated() { if (m_decreaseOpacity_threadTerminated) { int terminatedOpacity = m_itemPackage.st_FBX_Monitor->getTerminatedOpacity(); m_itemPackage.st_FBX_Monitor->setTerminatedOpacity( --terminatedOpacity ); if (terminatedOpacity == 0) { int counter = m_itemPackage.st_FBX_Monitor->getTerminated(); m_itemPackage.st_FBX_Monitor->setTerminated(++counter); m_decreaseOpacity_threadTerminated = false; } m_itemPackage.st_ThreadMonitorDataNode->Modified(); m_itemPackage.st_MultiWidget->RequestUpdate(); } else { int terminatedOpacity = m_itemPackage.st_FBX_Monitor->getTerminatedOpacity(); m_itemPackage.st_FBX_Monitor->setTerminatedOpacity( ++terminatedOpacity ); if (terminatedOpacity >= 10) { m_thtimer_threadTerminated->stop(); m_decreaseOpacity_threadTerminated = true; //set back to true, cuz next iteration shall decrease opacity as well } m_itemPackage.st_ThreadMonitorDataNode->Modified(); m_itemPackage.st_MultiWidget->RequestUpdate(); } } void QmitkFiberThreadMonitorWorker::fancyMonitorInitialization() { mitk::Point2D pntClose = m_itemPackage.st_FBX_Monitor->getBracketClosePosition(); //possible bottleneck, set pntClose to member mitk::Point2D pntOpen = m_itemPackage.st_FBX_Monitor->getBracketOpenPosition(); //possible bottleneck, set pntClose to member pntClose[0] += m_pixelstepper; pntOpen[0] -= m_pixelstepper; //MITK_INFO << pntClose[0] << " " << pntOpen[0]; m_itemPackage.st_FBX_Monitor->setBracketClosePosition(pntClose); m_itemPackage.st_FBX_Monitor->setBracketOpenPosition(pntOpen); int opacity = m_itemPackage.st_FBX_Monitor->getHeadingOpacity() + 1; if (opacity > 10) opacity = 10; m_itemPackage.st_FBX_Monitor->setHeadingOpacity(opacity); if (pntClose[0] >= m_steppingDistance) { if (m_itemPackage.st_FBX_Monitor->getHeadingOpacity() != 10 ) { m_itemPackage.st_FBX_Monitor->setHeadingOpacity(10); m_itemPackage.st_ThreadMonitorDataNode->Modified(); m_itemPackage.st_MultiWidget->RequestUpdate(); } m_thtimer_initMonitor->stop(); //position them to obt y=25 m_thtimer_initMonitorSetFinalPosition->start(); } m_itemPackage.st_ThreadMonitorDataNode->Modified(); m_itemPackage.st_MultiWidget->RequestUpdate(); } void QmitkFiberThreadMonitorWorker::fancyMonitorInitializationFinalPos() { //get y pos of mitk::Point2D pntClose = m_itemPackage.st_FBX_Monitor->getBracketClosePosition(); mitk::Point2D pntOpen = m_itemPackage.st_FBX_Monitor->getBracketOpenPosition(); mitk::Point2D pntHead = m_itemPackage.st_FBX_Monitor->getHeadingPosition(); pntClose[1] += 5; pntOpen[1] += 5; pntHead[1] += 5; m_itemPackage.st_FBX_Monitor->setBracketClosePosition(pntClose); m_itemPackage.st_FBX_Monitor->setBracketOpenPosition(pntOpen); m_itemPackage.st_FBX_Monitor->setHeadingPosition(pntHead); if (pntClose[1] >= 35) { //35 = y position m_thtimer_initMonitorSetFinalPosition->stop(); //now init mask of labels m_thtimer_initMonitorSetMasks->start(); } m_itemPackage.st_ThreadMonitorDataNode->Modified(); m_itemPackage.st_MultiWidget->RequestUpdate(); } void QmitkFiberThreadMonitorWorker::fancyMonitorInitializationMask() { //increase opacity int opacity = m_itemPackage.st_FBX_Monitor->getMaskOpacity(); opacity++; m_itemPackage.st_FBX_Monitor->setMaskOpacity(opacity); m_itemPackage.st_FBX_Monitor->setStartedOpacity(opacity); m_itemPackage.st_FBX_Monitor->setFinishedOpacity(opacity); m_itemPackage.st_FBX_Monitor->setTerminatedOpacity(opacity); m_itemPackage.st_FBX_Monitor->setStatusOpacity(opacity); if (opacity >=10) { m_thtimer_initMonitorSetMasks->stop(); } m_itemPackage.st_ThreadMonitorDataNode->Modified(); m_itemPackage.st_MultiWidget->RequestUpdate(); } //============================================== //======== W O R K E R S ________ E N D ======== //============================================== //========#########################===============###########################=====================######################### //========#########################===============###########################=====================######################### //========#########################===============###########################=====================######################### //========#########################===============###########################=====================######################### //========#########################===============###########################=====================######################### // HERE STARTS THE ACTUAL FIBERBUNDLE DEVELOPER VIEW IMPLEMENTATION //========#########################===============###########################=====================######################### //========#########################===============###########################=====================######################### //========#########################===============###########################=====================######################### //========#########################===============###########################=====================######################### const std::string QmitkFiberBundleDeveloperView::VIEW_ID = "org.mitk.views.fiberbundledeveloper"; const std::string id_DataManager = "org.mitk.views.datamanager"; using namespace berry; QmitkFiberBundleDeveloperView::QmitkFiberBundleDeveloperView() : QmitkFunctionality() , m_Controls( 0 ) , m_MultiWidget( NULL ) , m_FiberIDGenerator( NULL) , m_GeneratorFibersRandom( NULL ) , m_FiberFeederFASlave( NULL ) , m_FiberColoringSlave(NULL) , m_FiberExtractor(NULL) , m_fiberMonitorIsOn( false ) , m_CircleCounter( 0 ) , m_suppressSignal(false) { m_hostThread = new QThread; m_threadInProgress = false; } // Destructor QmitkFiberBundleDeveloperView::~QmitkFiberBundleDeveloperView() { //m_FiberBundleX->Delete(); using weakPointer, therefore no delete necessary delete m_hostThread; } void QmitkFiberBundleDeveloperView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done in QtDesigner, etc. if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkFiberBundleDeveloperViewControls; m_Controls->setupUi( parent ); /*=========INITIALIZE BUTTON CONFIGURATION ================*/ m_Controls->radioButton_directionX->setEnabled(false); m_Controls->radioButton_directionY->setEnabled(false); m_Controls->radioButton_directionZ->setEnabled(false); m_Controls->buttonGenerateFiberIds->setEnabled(false); m_Controls->buttonGenerateFibers->setEnabled(true); m_Controls->buttonColorFibers->setEnabled(false); m_Controls->ddAvailableColorcodings->setEnabled(false); m_Controls->buttonExtractFibers->setEnabled(false); m_Controls->button_FAMap->setEnabled(true); m_Controls->buttonSMFibers->setEnabled(false);//not yet implemented m_Controls->buttonVtkDecimatePro->setEnabled(false);//not yet implemented m_Controls->buttonVtkSmoothPD->setEnabled(false);//not yet implemented m_Controls->buttonGenerateTubes->setEnabled(false);//not yet implemented connect( m_Controls->buttonGenerateFibers, SIGNAL(clicked()), this, SLOT(DoGenerateFibers()) ); connect( m_Controls->buttonGenerateFiberIds, SIGNAL(clicked()), this, SLOT(DoGenerateFiberIDs()) ); connect( m_Controls->button_FAMapExecute, SIGNAL(clicked()), this, SLOT(DoSetFAValues()) ); connect( m_Controls->button_FAMap, SIGNAL(clicked()), this, SLOT(DoSetFAMap()) ); connect( m_Controls->buttonExtractFibers, SIGNAL(clicked()), this, SLOT(DoExtractFibers()) ); connect( m_Controls->radioButton_directionRandom, SIGNAL(clicked()), this, SLOT(DoUpdateGenerateFibersWidget()) ); connect( m_Controls->radioButton_directionX, SIGNAL(clicked()), this, SLOT(DoUpdateGenerateFibersWidget()) ); connect( m_Controls->radioButton_directionY, SIGNAL(clicked()), this, SLOT(DoUpdateGenerateFibersWidget()) ); connect( m_Controls->radioButton_directionZ, SIGNAL(clicked()), this, SLOT(DoUpdateGenerateFibersWidget()) ); connect( m_Controls->toolBox, SIGNAL(currentChanged ( int ) ), this, SLOT(SelectionChangedToolBox(int)) ); connect( m_Controls->m_CircleButton, SIGNAL( clicked() ), this, SLOT( ActionDrawEllipseTriggered() ) ); connect( m_Controls->buttonColorFibers, SIGNAL(clicked()), this, SLOT(DoColorFibers()) ); // connect( m_Controls->ddAvailableColorcodings, SIGNAL(currentIndexChanged(int)), this, SLOT(SetCurrentColorCoding(int) )); connect( m_Controls->ddAvailableColorcodings, SIGNAL(currentIndexChanged(int)), this, SLOT(SetCurrentColorCoding(int) )); connect( m_Controls->checkBoxMonitorFiberThreads, SIGNAL(stateChanged(int)), this, SLOT(DoMonitorFiberThreads(int)) ); } // Checkpoint for fiber ORIENTATION if ( m_DirectionRadios.empty() ) { m_DirectionRadios.insert(0, m_Controls->radioButton_directionRandom); m_DirectionRadios.insert(1, m_Controls->radioButton_directionX); m_DirectionRadios.insert(2, m_Controls->radioButton_directionY); m_DirectionRadios.insert(3, m_Controls->radioButton_directionZ); } // set GUI elements of FiberGenerator to according configuration DoUpdateGenerateFibersWidget(); } /* THIS METHOD UPDATES ALL GUI ELEMENTS OF QGroupBox DEPENDING ON CURRENTLY SELECTED * RADIO BUTTONS */ void QmitkFiberBundleDeveloperView::DoUpdateGenerateFibersWidget() { //get selected radioButton QString fibDirection; //stores the object_name of selected radiobutton QVector::const_iterator i; for (i = m_DirectionRadios.begin(); i != m_DirectionRadios.end(); ++i) { QRadioButton* rdbtn = *i; if (rdbtn->isChecked()) fibDirection = rdbtn->objectName(); } if ( fibDirection == FIB_RADIOBUTTON_DIRECTION_RANDOM ) { // disable radiobuttons if (m_Controls->boxFiberMinLength->isEnabled()) m_Controls->boxFiberMinLength->setEnabled(false); if (m_Controls->labelFiberMinLength->isEnabled()) m_Controls->labelFiberMinLength->setEnabled(false); if (m_Controls->boxFiberMaxLength->isEnabled()) m_Controls->boxFiberMaxLength->setEnabled(false); if (m_Controls->labelFiberMaxLength->isEnabled()) m_Controls->labelFiberMaxLength->setEnabled(false); //enable radiobuttons if (!m_Controls->labelFibersTotal->isEnabled()) m_Controls->labelFibersTotal->setEnabled(true); if (!m_Controls->boxFiberNumbers->isEnabled()) m_Controls->boxFiberNumbers->setEnabled(true); if (!m_Controls->labelDistrRadius->isEnabled()) m_Controls->labelDistrRadius->setEnabled(true); if (!m_Controls->boxDistributionRadius->isEnabled()) m_Controls->boxDistributionRadius->setEnabled(true); } else { // disable radiobuttons if (m_Controls->labelDistrRadius->isEnabled()) m_Controls->labelDistrRadius->setEnabled(false); if (m_Controls->boxDistributionRadius->isEnabled()) m_Controls->boxDistributionRadius->setEnabled(false); //enable radiobuttons if (!m_Controls->labelFibersTotal->isEnabled()) m_Controls->labelFibersTotal->setEnabled(true); if (!m_Controls->boxFiberNumbers->isEnabled()) m_Controls->boxFiberNumbers->setEnabled(true); if (!m_Controls->boxFiberMinLength->isEnabled()) m_Controls->boxFiberMinLength->setEnabled(true); if (!m_Controls->labelFiberMinLength->isEnabled()) m_Controls->labelFiberMinLength->setEnabled(true); if (!m_Controls->boxFiberMaxLength->isEnabled()) m_Controls->boxFiberMaxLength->setEnabled(true); if (!m_Controls->labelFiberMaxLength->isEnabled()) m_Controls->labelFiberMaxLength->setEnabled(true); } } void QmitkFiberBundleDeveloperView::DoGenerateFibers() { // GET SELECTED FIBER DIRECTION QString fibDirection; //stores the object_name of selected radiobutton QVector::const_iterator i; for (i = m_DirectionRadios.begin(); i != m_DirectionRadios.end(); ++i) { QRadioButton* rdbtn = *i; if (rdbtn->isChecked()) fibDirection = rdbtn->objectName(); } // vtkPolyData* output; // FiberPD stores the generated PolyData... going to be generated in thread if ( fibDirection == FIB_RADIOBUTTON_DIRECTION_RANDOM ) { // build polydata with random lines and fibers // output = GenerateVtkFibersRandom(); } else if ( fibDirection == FIB_RADIOBUTTON_DIRECTION_X ) { // build polydata with XDirection fibers //output = GenerateVtkFibersDirectionX(); } else if ( fibDirection == FIB_RADIOBUTTON_DIRECTION_Y ) { // build polydata with YDirection fibers // output = GenerateVtkFibersDirectionY(); } else if ( fibDirection == FIB_RADIOBUTTON_DIRECTION_Z ) { // build polydata with ZDirection fibers // output = GenerateVtkFibersDirectionZ(); } } void QmitkFiberBundleDeveloperView::DoExtractFibers() { /* ===== TIMER CONFIGURATIONS for visual effect ====== * start and stop is called in Thread */ QTimer *localTimer = new QTimer; // timer must be initialized here, otherwise timer is not fancy enough localTimer->setInterval( 10 ); connect( localTimer, SIGNAL(timeout()), this, SLOT( UpdateExtractFibersTimer()) ); struct Package4WorkingThread ItemPackageForExtractor; ItemPackageForExtractor.st_FBX = m_FiberBundleX; ItemPackageForExtractor.st_Controls = m_Controls; ItemPackageForExtractor.st_FancyGUITimer1 = localTimer; ItemPackageForExtractor.st_host = this; //needed to access method "PutFibersToDataStorage()" ItemPackageForExtractor.st_pntr_to_Method_PutFibersToDataStorage = &QmitkFiberBundleDeveloperView::PutFibersToDataStorage; //actual functor calling method putFibersToDataStorage ItemPackageForExtractor.st_PlanarFigure = m_PlanarFigure; //set element for thread monitoring if (m_fiberMonitorIsOn) ItemPackageForExtractor.st_fiberThreadMonitorWorker = m_fiberThreadMonitorWorker; if (m_threadInProgress) return; //maybe popup window saying, working thread still in progress...pls wait m_FiberExtractor = new QmitkFiberExtractorWorker(m_hostThread, ItemPackageForExtractor); m_FiberExtractor->moveToThread(m_hostThread); //connections connect(m_hostThread, SIGNAL(started()), this, SLOT( BeforeThread_FiberExtraction() )); connect(m_hostThread, SIGNAL(started()), m_FiberExtractor, SLOT( run() )); connect(m_hostThread, SIGNAL(finished()), this, SLOT( AfterThread_FiberExtraction() )); connect(m_hostThread, SIGNAL(terminated()), this, SLOT( AfterThread_FiberExtraction() )); m_hostThread->start(QThread::HighestPriority) ; } void QmitkFiberBundleDeveloperView::UpdateExtractFibersTimer() { // Make sure that thread has set according info-label to number! here we do not check if value is numeric! shall be done in beforeThreadstarted() QString crntValue = m_Controls->infoTimerExtractFibers->text(); int tmpVal = crntValue.toInt(); m_Controls->infoTimerExtractFibers->setText(QString::number(++tmpVal)); m_Controls->infoTimerExtractFibers->update(); } void QmitkFiberBundleDeveloperView::BeforeThread_FiberExtraction() { m_threadInProgress = true; if (m_fiberMonitorIsOn){ m_fiberThreadMonitorWorker->threadForFiberProcessingStarted(); //m_fiberThreadMonitorWorker->setThreadStatus(FBX_STATUS_STARTED); } } void QmitkFiberBundleDeveloperView::AfterThread_FiberExtraction() { m_threadInProgress = false; if (m_fiberMonitorIsOn){ m_fiberThreadMonitorWorker->threadForFiberProcessingFinished(); m_fiberThreadMonitorWorker->setThreadStatus(FBX_STATUS_IDLE); } // disconnect(m_hostThread, 0, 0, 0); m_hostThread->disconnect(); // m_FiberExtractor->disconnect(); delete m_FiberExtractor; m_FiberBundleNode->Modified(); m_MultiWidget->RequestUpdate(); } void QmitkFiberBundleDeveloperView::PutFibersToDataStorage( vtkSmartPointer threadOutput) { MITK_INFO << "lines: " << threadOutput->GetNumberOfLines() << "pnts: " << threadOutput->GetNumberOfPoints(); //qthread mutex lock mitk::FiberBundleX::Pointer FB = mitk::FiberBundleX::New(threadOutput); mitk::DataNode::Pointer FBNode; FBNode = mitk::DataNode::New(); FBNode->SetName("FiberBundleX"); FBNode->SetData(FB); FBNode->SetVisibility(true); FBNode->SetOpacity(1.0); GetDataStorage()->Add(FBNode); FBNode->Modified(); const mitk::PlaneGeometry * tsgeo = m_MultiWidget->GetTimeNavigationController()->GetCurrentPlaneGeometry(); if (tsgeo == NULL) { /* GetDataStorage()->Modified etc. have no effect, therefore proceed as followed below */ // get all nodes that have not set "includeInBoundingBox" to false mitk::NodePredicateNot::Pointer pred = mitk::NodePredicateNot::New(mitk::NodePredicateProperty::New("includeInBoundingBox" , mitk::BoolProperty::New(false))); mitk::DataStorage::SetOfObjects::ConstPointer rs = GetDataStorage()->GetSubset(pred); // calculate bounding geometry of these nodes - mitk::TimeSlicedGeometry::Pointer bounds = GetDataStorage()->ComputeBoundingGeometry3D(rs); + mitk::TimeGeometry::Pointer bounds = GetDataStorage()->ComputeBoundingGeometry3D(rs); // initialize the views to the bounding geometry mitk::RenderingManager::GetInstance()->InitializeViews(bounds); } else { GetDataStorage()->Modified(); m_MultiWidget->RequestUpdate(); //necessary?? } //qthread mutex unlock } void QmitkFiberBundleDeveloperView::PutFigureToDataStorage(mitk::PlanarFigure* figure, const QString& name) { mitk::DataNode::Pointer newNode = mitk::DataNode::New(); newNode->SetName(name.toStdString()); newNode->SetData(figure); std::vector selectedNodes = GetDataManagerSelection(); for(unsigned int i = 0; i < selectedNodes.size(); i++) { selectedNodes[i]->SetSelected(false); } newNode->SetSelected(true); newNode->AddProperty( "planarfigure.default.line.color", mitk::ColorProperty::New(1.0,0.0,0.0)); newNode->AddProperty( "planarfigure.line.width", mitk::FloatProperty::New(2.0)); newNode->AddProperty( "planarfigure.drawshadow", mitk::BoolProperty::New(true)); newNode->AddProperty( "selected", mitk::BoolProperty::New(true) ); newNode->AddProperty( "planarfigure.ishovering", mitk::BoolProperty::New(true) ); newNode->AddProperty( "planarfigure.drawoutline", mitk::BoolProperty::New(true) ); newNode->AddProperty( "planarfigure.drawquantities", mitk::BoolProperty::New(false) ); newNode->AddProperty( "planarfigure.drawshadow", mitk::BoolProperty::New(true) ); newNode->AddProperty( "planarfigure.line.width", mitk::FloatProperty::New(3.0) ); newNode->AddProperty( "planarfigure.shadow.widthmodifier", mitk::FloatProperty::New(2.0) ); newNode->AddProperty( "planarfigure.outline.width", mitk::FloatProperty::New(2.0) ); newNode->AddProperty( "planarfigure.helperline.width", mitk::FloatProperty::New(2.0) ); newNode->AddProperty( "planarfigure.default.line.color", mitk::ColorProperty::New(1.0,1.0,1.0) ); newNode->AddProperty( "planarfigure.default.line.opacity", mitk::FloatProperty::New(2.0) ); newNode->AddProperty( "planarfigure.default.outline.color", mitk::ColorProperty::New(1.0,0.0,0.0) ); newNode->AddProperty( "planarfigure.default.outline.opacity", mitk::FloatProperty::New(2.0) ); newNode->AddProperty( "planarfigure.default.helperline.color", mitk::ColorProperty::New(1.0,0.0,0.0) ); newNode->AddProperty( "planarfigure.default.helperline.opacity", mitk::FloatProperty::New(2.0) ); newNode->AddProperty( "planarfigure.default.markerline.color", mitk::ColorProperty::New(0.0,0.0,0.0) ); newNode->AddProperty( "planarfigure.default.markerline.opacity", mitk::FloatProperty::New(2.0) ); newNode->AddProperty( "planarfigure.default.marker.color", mitk::ColorProperty::New(1.0,1.0,1.0) ); newNode->AddProperty( "planarfigure.default.marker.opacity",mitk::FloatProperty::New(2.0) ); newNode->AddProperty( "planarfigure.hover.line.color", mitk::ColorProperty::New(1.0,0.0,0.0) ); newNode->AddProperty( "planarfigure.hover.line.opacity", mitk::FloatProperty::New(2.0) ); newNode->AddProperty( "planarfigure.hover.outline.color", mitk::ColorProperty::New(1.0,0.0,0.0) ); newNode->AddProperty( "planarfigure.hover.outline.opacity", mitk::FloatProperty::New(2.0) ); newNode->AddProperty( "planarfigure.hover.helperline.color", mitk::ColorProperty::New(1.0,0.0,0.0) ); newNode->AddProperty( "planarfigure.hover.helperline.opacity", mitk::FloatProperty::New(2.0) ); newNode->AddProperty( "planarfigure.hover.markerline.color", mitk::ColorProperty::New(1.0,0.0,0.0) ); newNode->AddProperty( "planarfigure.hover.markerline.opacity", mitk::FloatProperty::New(2.0) ); newNode->AddProperty( "planarfigure.hover.marker.color", mitk::ColorProperty::New(1.0,0.0,0.0) ); newNode->AddProperty( "planarfigure.hover.marker.opacity", mitk::FloatProperty::New(2.0) ); newNode->AddProperty( "planarfigure.selected.line.color", mitk::ColorProperty::New(1.0,0.0,0.0) ); newNode->AddProperty( "planarfigure.selected.line.opacity",mitk::FloatProperty::New(2.0) ); newNode->AddProperty( "planarfigure.selected.outline.color", mitk::ColorProperty::New(1.0,0.0,0.0) ); newNode->AddProperty( "planarfigure.selected.outline.opacity", mitk::FloatProperty::New(2.0)); newNode->AddProperty( "planarfigure.selected.helperline.color", mitk::ColorProperty::New(1.0,0.0,0.0) ); newNode->AddProperty( "planarfigure.selected.helperline.opacity",mitk::FloatProperty::New(2.0) ); newNode->AddProperty( "planarfigure.selected.markerline.color", mitk::ColorProperty::New(1.0,0.0,0.0) ); newNode->AddProperty( "planarfigure.selected.markerline.opacity", mitk::FloatProperty::New(2.0) ); newNode->AddProperty( "planarfigure.selected.marker.color", mitk::ColorProperty::New(1.0,0.0,0.0) ); newNode->AddProperty( "planarfigure.selected.marker.opacity",mitk::FloatProperty::New(2.0)); // figure drawn on the topmost layer / image this->GetDataStorage()->Add(newNode); } /* * Generate polydata of random fibers */ void QmitkFiberBundleDeveloperView::GenerateVtkFibersRandom() { /* ===== TIMER CONFIGURATIONS for visual effect ====== * start and stop is called in Thread */ QTimer *localTimer = new QTimer; // timer must be initialized here, otherwise timer is not fancy enough localTimer->setInterval( 10 ); connect( localTimer, SIGNAL(timeout()), this, SLOT(UpdateGenerateRandomFibersTimer()) ); struct Package4WorkingThread ItemPackageForRandomGenerator; ItemPackageForRandomGenerator.st_FBX = m_FiberBundleX; ItemPackageForRandomGenerator.st_Controls = m_Controls; ItemPackageForRandomGenerator.st_FancyGUITimer1 = localTimer; ItemPackageForRandomGenerator.st_host = this; //needed to access method "PutFibersToDataStorage()" ItemPackageForRandomGenerator.st_pntr_to_Method_PutFibersToDataStorage = &QmitkFiberBundleDeveloperView::PutFibersToDataStorage; //actual functor calling method putFibersToDataStorage //set element for thread monitoring if (m_fiberMonitorIsOn) ItemPackageForRandomGenerator.st_fiberThreadMonitorWorker = m_fiberThreadMonitorWorker; if (m_threadInProgress) return; //maybe popup window saying, working thread still in progress...pls wait m_GeneratorFibersRandom = new QmitkFiberGenerateRandomWorker(m_hostThread, ItemPackageForRandomGenerator); m_GeneratorFibersRandom->moveToThread(m_hostThread); connect(m_hostThread, SIGNAL(started()), this, SLOT( BeforeThread_GenerateFibersRandom()) ); connect(m_hostThread, SIGNAL(started()), m_GeneratorFibersRandom, SLOT(run()) ); connect(m_hostThread, SIGNAL(finished()), this, SLOT(AfterThread_GenerateFibersRandom()) ); connect(m_hostThread, SIGNAL(terminated()), this, SLOT(AfterThread_GenerateFibersRandom()) ); m_hostThread->start(QThread::LowestPriority); } void QmitkFiberBundleDeveloperView::UpdateColorFibersTimer() { // Make sure that thread has set according info-label to number! here we do not check if value is numeric! QString crntValue = m_Controls->infoTimerColorCoding->text(); int tmpVal = crntValue.toInt(); m_Controls->infoTimerColorCoding->setText(QString::number(++tmpVal)); m_Controls->infoTimerColorCoding->update(); } void QmitkFiberBundleDeveloperView::UpdateGenerateRandomFibersTimer() { // Make sure that thread has set according info-label to number! here we do not check if value is numeric! QString crntValue = m_Controls->infoTimerGenerateFiberBundle->text(); int tmpVal = crntValue.toInt(); m_Controls->infoTimerGenerateFiberBundle->setText(QString::number(++tmpVal)); m_Controls->infoTimerGenerateFiberBundle->update(); } void QmitkFiberBundleDeveloperView::UpdateSetFAValuesTimer() { // Make sure that thread has set according info-label to number! here we do not check if value is numeric! QString crntValue = m_Controls->infoTimerSetFA->text(); int tmpVal = crntValue.toInt(); m_Controls->infoTimerSetFA->setText(QString::number(++tmpVal)); m_Controls->infoTimerSetFA->update(); } void QmitkFiberBundleDeveloperView::BeforeThread_GenerateFibersRandom() { m_threadInProgress = true; if (m_fiberMonitorIsOn){ m_fiberThreadMonitorWorker->threadForFiberProcessingStarted(); //m_fiberThreadMonitorWorker->setThreadStatus(FBX_STATUS_STARTED); } } void QmitkFiberBundleDeveloperView::AfterThread_GenerateFibersRandom() { m_threadInProgress = false; if (m_fiberMonitorIsOn){ m_fiberThreadMonitorWorker->threadForFiberProcessingFinished(); m_fiberThreadMonitorWorker->setThreadStatus(FBX_STATUS_IDLE); } // disconnect(m_hostThread, 0, 0, 0); m_hostThread->disconnect(); delete m_GeneratorFibersRandom; } vtkSmartPointer QmitkFiberBundleDeveloperView::GenerateVtkFibersDirectionX() { int numOfFibers = m_Controls->boxFiberNumbers->value(); vtkSmartPointer linesCell = vtkSmartPointer::New(); vtkSmartPointer points = vtkSmartPointer::New(); //insert Origin point, this point has index 0 in point array double originX = 0.0; double originY = 0.0; double originZ = 0.0; //after each iteration the origin of the new fiber increases //here you set which direction is affected. double increaseX = 0.0; double increaseY = 1.0; double increaseZ = 0.0; //walk along X axis //length of fibers increases in each iteration for (int i=0; i newFiber = vtkSmartPointer::New(); newFiber->GetPointIds()->SetNumberOfIds(i+2); //create starting point and add it to pointset points->InsertNextPoint(originX + (double)i * increaseX , originY + (double)i * increaseY, originZ + (double)i * increaseZ); //add starting point to fiber newFiber->GetPointIds()->SetId(0,points->GetNumberOfPoints()-1); //insert remaining points for fiber for (int pj=0; pj<=i ; ++pj) { //generate next point on X axis points->InsertNextPoint( originX + (double)pj+1 , originY + (double)i * increaseY, originZ + (double)i * increaseZ ); newFiber->GetPointIds()->SetId(pj+1,points->GetNumberOfPoints()-1); } linesCell->InsertNextCell(newFiber); } vtkSmartPointer PDX = vtkSmartPointer::New(); PDX->SetPoints(points); PDX->SetLines(linesCell); return PDX; } vtkSmartPointer QmitkFiberBundleDeveloperView::GenerateVtkFibersDirectionY() { vtkSmartPointer PDY = vtkSmartPointer::New(); //todo return PDY; } vtkSmartPointer QmitkFiberBundleDeveloperView::GenerateVtkFibersDirectionZ() { vtkSmartPointer PDZ = vtkSmartPointer::New(); //todo return PDZ; } void QmitkFiberBundleDeveloperView::DoSetFAValues() { QTimer *localTimer = new QTimer; // timer must be initialized here, otherwise timer is not fancy enough localTimer->setInterval( 10 ); connect( localTimer, SIGNAL(timeout()), this, SLOT( UpdateSetFAValuesTimer() ) ); // pack items which are needed by thread processing struct Package4WorkingThread ItemPackageToSetFAMap; ItemPackageToSetFAMap.st_FBX = m_FiberBundleX; ItemPackageToSetFAMap.st_FancyGUITimer1 = localTimer; ItemPackageToSetFAMap.st_PassedDataNode = m_FANode; ItemPackageToSetFAMap.st_Controls = m_Controls; if (m_fiberMonitorIsOn) ItemPackageToSetFAMap.st_fiberThreadMonitorWorker = m_fiberThreadMonitorWorker; if (m_threadInProgress) return; //maybe popup window saying, working thread still in progress...pls wait m_FiberFeederFASlave = new QmitkFiberFeederFAWorker(m_hostThread, ItemPackageToSetFAMap); m_FiberFeederFASlave->moveToThread(m_hostThread); connect(m_hostThread, SIGNAL(started()), this, SLOT( BeforeThread_FiberSetFA()) ); connect(m_hostThread, SIGNAL(started()), m_FiberFeederFASlave, SLOT(run()) ); connect(m_hostThread, SIGNAL(finished()), this, SLOT(AfterThread_FiberSetFA())); connect(m_hostThread, SIGNAL(terminated()), this, SLOT(AfterThread_FiberSetFA())); m_hostThread->start(QThread::LowestPriority); } void QmitkFiberBundleDeveloperView::DoSetFAMap() { std::vector nodes = GetDataManagerSelection(); if (nodes.empty()) { m_Controls->lineEdit_FAMap->setText("N/A"); return; } for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if (node.IsNotNull() && dynamic_cast(node->GetData())) { // this node is what we want m_FANode = node; m_Controls->lineEdit_FAMap->setText(node->GetName().c_str()); return; } } } void QmitkFiberBundleDeveloperView::BeforeThread_FiberSetFA() { m_threadInProgress = true; if (m_fiberMonitorIsOn){ m_fiberThreadMonitorWorker->threadForFiberProcessingStarted(); } } void QmitkFiberBundleDeveloperView::AfterThread_FiberSetFA() { m_threadInProgress = false; if (m_fiberMonitorIsOn){ m_fiberThreadMonitorWorker->threadForFiberProcessingFinished(); m_fiberThreadMonitorWorker->setThreadStatus(FBX_STATUS_IDLE); } disconnect(m_hostThread, 0, 0, 0); m_hostThread->disconnect(); //update renderer m_FiberBundleNode->Modified(); m_MultiWidget->ForceImmediateUpdate(); //update QComboBox(dropDown menu) in view of available ColorCodings this->DoGatherColorCodings(); delete m_FiberFeederFASlave; } void QmitkFiberBundleDeveloperView::DoColorFibers() { // MITK_INFO << "call fibercoloring in fiberBundleX"; QTimer *localTimer = new QTimer; // timer must be initialized here, otherwise timer is not fancy enough localTimer->setInterval( 10 ); connect( localTimer, SIGNAL(timeout()), this, SLOT( UpdateColorFibersTimer() ) ); // pack items which are needed by thread processing struct Package4WorkingThread ItemPackageForFiberColoring; ItemPackageForFiberColoring.st_FBX = m_FiberBundleX; ItemPackageForFiberColoring.st_PassedDataNode = m_FiberBundleNode; ItemPackageForFiberColoring.st_FancyGUITimer1 = localTimer; ItemPackageForFiberColoring.st_Controls = m_Controls; //needed to catch up some selections and set options in GUI if (m_fiberMonitorIsOn) ItemPackageForFiberColoring.st_fiberThreadMonitorWorker = m_fiberThreadMonitorWorker; if (m_threadInProgress) return; //maybe popup window saying, working thread still in progress...pls wait m_FiberColoringSlave = new QmitkFiberColoringWorker(m_hostThread, ItemPackageForFiberColoring); m_FiberColoringSlave->moveToThread(m_hostThread); connect(m_hostThread, SIGNAL(started()), this, SLOT( BeforeThread_FiberColorCoding()) ); connect(m_hostThread, SIGNAL(started()), m_FiberColoringSlave, SLOT(run()) ); connect(m_hostThread, SIGNAL(finished()), this, SLOT(AfterThread_FiberColorCoding())); connect(m_hostThread, SIGNAL(terminated()), this, SLOT(AfterThread_FiberColorCoding())); m_hostThread->start(QThread::LowestPriority); } void QmitkFiberBundleDeveloperView::BeforeThread_FiberColorCoding() { m_threadInProgress = true; if (m_fiberMonitorIsOn){ m_fiberThreadMonitorWorker->threadForFiberProcessingStarted(); } } void QmitkFiberBundleDeveloperView::AfterThread_FiberColorCoding() { m_threadInProgress = false; if (m_fiberMonitorIsOn){ m_fiberThreadMonitorWorker->threadForFiberProcessingFinished(); m_fiberThreadMonitorWorker->setThreadStatus(FBX_STATUS_IDLE); } disconnect(m_hostThread, 0, 0, 0); m_hostThread->disconnect(); //update renderer m_FiberBundleNode->Modified(); m_MultiWidget->ForceImmediateUpdate(); //update QComboBox(dropDown menu) in view of available ColorCodings this->DoGatherColorCodings(); delete m_FiberColoringSlave; } void QmitkFiberBundleDeveloperView::DoGatherColorCodings() { QStringList fbxColorCodings = m_FiberBundleX->GetAvailableColorCodings(); //update dropDown Menu //remove all items from menu m_suppressSignal = true; int ddItems = m_Controls->ddAvailableColorcodings->count(); for(int i=ddItems-1; i>=0; i--) { //note, after each item remove, index in QComboBox is updated. sending signal: index changed m_Controls->ddAvailableColorcodings->removeItem(i); } //fill new data into menu m_Controls->ddAvailableColorcodings->addItems(fbxColorCodings); m_Controls->ddAvailableColorcodings->addItem(m_FiberBundleX->COLORCODING_CUSTOM); //highlight current colorcoding QString cc = m_FiberBundleX->GetCurrentColorCoding(); MITK_INFO << cc.toStdString().c_str() << " is at idx: " << m_Controls->ddAvailableColorcodings->findText(cc); m_Controls->ddAvailableColorcodings->setCurrentIndex( m_Controls->ddAvailableColorcodings->findText(cc) ); m_Controls->ddAvailableColorcodings->update(); m_suppressSignal = false; } void QmitkFiberBundleDeveloperView::SetCurrentColorCoding(int idx) { if(!m_suppressSignal){ QString selectedColorCoding = m_Controls->ddAvailableColorcodings->itemText(idx); m_FiberBundleX->SetColorCoding(selectedColorCoding.toStdString().c_str() ); //QString to char // update rendering m_FiberBundleNode->Modified(); m_MultiWidget->ForceImmediateUpdate(); } } /* === OutSourcedMethod: THIS METHOD GENERATES ESSENTIAL GEOMETRY PARAMETERS FOR THE MITK FRAMEWORK === * WITHOUT, the rendering mechanism will ignore objects without valid Geometry * for each object, MITK requires: ORIGIN, SPACING, TRANSFORM MATRIX, BOUNDING-BOX */ mitk::Geometry3D::Pointer QmitkFiberBundleDeveloperView::GenerateStandardGeometryForMITK() { mitk::Geometry3D::Pointer geometry = mitk::Geometry3D::New(); // generate origin mitk::Point3D origin; origin[0] = 0; origin[1] = 0; origin[2] = 0; geometry->SetOrigin(origin); // generate spacing float spacing[3] = {1,1,1}; geometry->SetSpacing(spacing); // generate identity transform-matrix vtkSmartPointer m = vtkSmartPointer::New(); geometry->SetIndexToWorldTransformByVtkMatrix(m); // generate boundingbox // for an usable bounding-box use gui parameters to estimate the boundingbox float bounds[] = {500, 500, 500, -500, -500, -500}; // GET SELECTED FIBER DIRECTION QString fibDirection; //stores the object_name of selected radiobutton QVector::const_iterator i; for (i = m_DirectionRadios.begin(); i != m_DirectionRadios.end(); ++i) { QRadioButton* rdbtn = *i; if (rdbtn->isChecked()) fibDirection = rdbtn->objectName(); } if ( fibDirection == FIB_RADIOBUTTON_DIRECTION_RANDOM ) { // use information about distribution parameter to calculate bounding box int distrRadius = m_Controls->boxDistributionRadius->value(); bounds[0] = distrRadius; bounds[1] = distrRadius; bounds[2] = distrRadius; bounds[3] = -distrRadius; bounds[4] = -distrRadius; bounds[5] = -distrRadius; } else { // so far only X,Y,Z directions are available MITK_INFO << "_______GEOMETRY ISSUE_____\n***BoundingBox for X, Y, Z fiber directions are not optimized yet!***"; int maxFibLength = m_Controls->boxFiberMaxLength->value(); bounds[0] = maxFibLength; bounds[1] = maxFibLength; bounds[2] = maxFibLength; bounds[3] = -maxFibLength; bounds[4] = -maxFibLength; bounds[5] = -maxFibLength; } geometry->SetFloatBounds(bounds); geometry->SetImageGeometry(true); //?? return geometry; } void QmitkFiberBundleDeveloperView::UpdateFiberIDTimer() { //MAKE SURE by yourself THAT NOTHING ELSE THAN A NUMBER IS SET IN THAT LABEL QString crntValue = m_Controls->infoTimerGenerateFiberIds->text(); int tmpVal = crntValue.toInt(); m_Controls->infoTimerGenerateFiberIds->setText(QString::number(++tmpVal)); m_Controls->infoTimerGenerateFiberIds->update(); } /* Initialie ID dataset in FiberBundleX */ void QmitkFiberBundleDeveloperView::DoGenerateFiberIDs() { /* ===== TIMER CONFIGURATIONS for visual effect ====== * start and stop is called in Thread */ QTimer *localTimer = new QTimer; // timer must be initialized here, otherwise timer is not fancy enough localTimer->setInterval( 10 ); connect( localTimer, SIGNAL(timeout()), this, SLOT(UpdateFiberIDTimer()) ); // pack items which are needed by thread processing struct Package4WorkingThread FiberIdPackage; FiberIdPackage.st_FBX = m_FiberBundleX; FiberIdPackage.st_FancyGUITimer1 = localTimer; FiberIdPackage.st_Controls = m_Controls; //set element for thread monitoring if (m_fiberMonitorIsOn) FiberIdPackage.st_fiberThreadMonitorWorker = m_fiberThreadMonitorWorker; if (m_threadInProgress) return; //maybe popup window saying, working thread still in progress...pls wait // THREAD CONFIGURATION m_FiberIDGenerator = new QmitkFiberIDWorker(m_hostThread, FiberIdPackage); m_FiberIDGenerator->moveToThread(m_hostThread); connect(m_hostThread, SIGNAL(started()), this, SLOT( BeforeThread_IdGenerate()) ); connect(m_hostThread, SIGNAL(started()), m_FiberIDGenerator, SLOT(run())); connect(m_hostThread, SIGNAL(finished()), this, SLOT(AfterThread_IdGenerate())); connect(m_hostThread, SIGNAL(terminated()), this, SLOT(AfterThread_IdGenerate())); m_hostThread->start(QThread::LowestPriority); // m_Controls->infoTimerGenerateFiberIds->setText(QString::number(clock.GetTotal())); } void QmitkFiberBundleDeveloperView::BeforeThread_IdGenerate() { m_threadInProgress = true; if (m_fiberMonitorIsOn){ m_fiberThreadMonitorWorker->threadForFiberProcessingStarted(); m_fiberThreadMonitorWorker->setThreadStatus(FBX_STATUS_STARTED); } } void QmitkFiberBundleDeveloperView::AfterThread_IdGenerate() { m_threadInProgress = false; if (m_fiberMonitorIsOn){ m_fiberThreadMonitorWorker->threadForFiberProcessingFinished(); m_fiberThreadMonitorWorker->setThreadStatus(FBX_STATUS_IDLE); } disconnect(m_hostThread, 0, 0, 0); m_hostThread->disconnect(); delete m_FiberIDGenerator; } void QmitkFiberBundleDeveloperView::ResetFiberInfoWidget() { if (m_Controls->infoAnalyseNumOfFibers->isEnabled()) { m_Controls->infoAnalyseNumOfFibers->setText("-"); m_Controls->infoAnalyseNumOfPoints->setText("-"); m_Controls->infoAnalyseNumOfFibers->setEnabled(false); } } void QmitkFiberBundleDeveloperView::FeedFiberInfoWidget() { if (!m_Controls->infoAnalyseNumOfFibers->isEnabled()) m_Controls->infoAnalyseNumOfFibers->setEnabled(true); QString numOfFibers; numOfFibers.setNum( m_FiberBundleX->GetFiberPolyData()->GetNumberOfLines() ); QString numOfPoints; numOfPoints.setNum( m_FiberBundleX->GetFiberPolyData()->GetNumberOfPoints() ); m_Controls->infoAnalyseNumOfFibers->setText( numOfFibers ); m_Controls->infoAnalyseNumOfPoints->setText( numOfPoints ); } void QmitkFiberBundleDeveloperView::SelectionChangedToolBox(int idx) { // show/reset items of selected toolbox page FiberInfo if (m_Controls->page_FiberInfo->isVisible()) { if (m_FiberBundleX != NULL) { FeedFiberInfoWidget(); } else { //if infolables are disabled: return //else set info back to - and set label and info to disabled ResetFiberInfoWidget(); } } // show/reset items of selected toolbox page FiberProcessing if (m_Controls->page_FiberProcessing->isVisible()) { if (m_FiberBundleX.IsNotNull() && m_PlanarFigure.IsNotNull() ) { //show fiber extraction button m_Controls->buttonExtractFibers->setEnabled(true); } else { m_Controls->buttonExtractFibers->setEnabled(false); } if (m_FiberBundleX.IsNotNull()) { //show button colorCoding m_Controls->buttonColorFibers->setEnabled(true); m_Controls->ddAvailableColorcodings->setEnabled(true); m_Controls->buttonGenerateFiberIds->setEnabled(true); // m_Controls->buttonSMFibers->setEnabled(true); // m_Controls->buttonVtkDecimatePro->setEnabled(true); // m_Controls->buttonVtkSmoothPD->setEnabled(true); // m_Controls->buttonGenerateTubes->setEnabled(true); } else { m_Controls->buttonColorFibers->setEnabled(false); m_Controls->ddAvailableColorcodings->setEnabled(false); m_Controls->buttonGenerateFiberIds->setEnabled(false); m_Controls->buttonSMFibers->setEnabled(false); m_Controls->buttonVtkDecimatePro->setEnabled(false); m_Controls->buttonVtkSmoothPD->setEnabled(false); m_Controls->buttonGenerateTubes->setEnabled(true); } } } void QmitkFiberBundleDeveloperView::FBXDependendGUIElementsConfigurator() { // ==== FIBER PROCESSING ELEMENTS and ALL ELEMENTS WHICH NEED A FBX DATANODE====== // m_Controls->buttonGenerateFiberIds->setEnabled(isVisible); moved to selectionChangedToolBox SelectionChangedToolBox(-1); //set gui elements with respect to active tab, widget, etc. -1 has no effect } void QmitkFiberBundleDeveloperView::DoMonitorFiberThreads(int checkStatus) { //check if in datanode exists already a node of type mitkFiberBundleXThreadMonitor //if not then put node to datastorage //if checkStatus is 1 then start qtimer using fading in starting text in datanode //if checkStatus is 0 then fade out dataNode using qtimer if (checkStatus) { m_fiberMonitorIsOn = true; // Generate Node hosting thread information mitk::FiberBundleXThreadMonitor::Pointer FBXThreadMonitor = mitk::FiberBundleXThreadMonitor::New(); FBXThreadMonitor->SetGeometry(this->GenerateStandardGeometryForMITK()); m_MonitorNode = mitk::DataNode::New(); m_MonitorNode->SetName("FBX_threadMonitor"); m_MonitorNode->SetData(FBXThreadMonitor); m_MonitorNode->SetVisibility(true); m_MonitorNode->SetOpacity(1.0); GetDataStorage()->Add(m_MonitorNode); //following code is needed for rendering text in mitk! without geometry nothing is rendered const mitk::PlaneGeometry * tsgeo = m_MultiWidget->GetTimeNavigationController()->GetCurrentPlaneGeometry(); if (tsgeo == NULL) { /* GetDataStorage()->Modified etc. have no effect, therefore proceed as followed below */ // get all nodes that have not set "includeInBoundingBox" to false mitk::NodePredicateNot::Pointer pred = mitk::NodePredicateNot::New(mitk::NodePredicateProperty::New( "includeInBoundingBox" , mitk::BoolProperty::New(false))); mitk::DataStorage::SetOfObjects::ConstPointer rs = GetDataStorage()->GetSubset(pred); // calculate bounding geometry of these nodes - mitk::TimeSlicedGeometry::Pointer bounds = GetDataStorage()->ComputeBoundingGeometry3D(rs); + mitk::TimeGeometry::Pointer bounds = GetDataStorage()->ComputeBoundingGeometry3D(rs); // initialize the views to the bounding geometry mitk::RenderingManager::GetInstance()->InitializeViews(bounds); } else { GetDataStorage()->Modified(); m_MultiWidget->RequestUpdate(); //necessary?? } //__GEOMETRY FOR THREADMONITOR GENERATED /* ====== initialize thread for managing fiberThread information ========= */ m_monitorThread = new QThread; // the package needs datastorage, MonitorDatanode, standardmultiwidget, struct Package4WorkingThread ItemPackageForThreadMonitor; ItemPackageForThreadMonitor.st_DataStorage = GetDataStorage(); ItemPackageForThreadMonitor.st_ThreadMonitorDataNode = m_MonitorNode; ItemPackageForThreadMonitor.st_MultiWidget = m_MultiWidget; ItemPackageForThreadMonitor.st_FBX_Monitor = FBXThreadMonitor; m_fiberThreadMonitorWorker = new QmitkFiberThreadMonitorWorker(m_monitorThread, ItemPackageForThreadMonitor); m_fiberThreadMonitorWorker->moveToThread(m_monitorThread); connect ( m_monitorThread, SIGNAL( started() ), m_fiberThreadMonitorWorker, SLOT( run() ) ); m_monitorThread->start(QThread::LowestPriority); m_fiberThreadMonitorWorker->initializeMonitor();//do some init animation ;-) } else { m_fiberMonitorIsOn = false; m_monitorThread->quit(); //think about outsourcing following lines to quit / terminate slot of thread GetDataStorage()->Remove(m_MonitorNode); GetDataStorage()->Modified(); m_MultiWidget->RequestUpdate(); //necessary?? } } void QmitkFiberBundleDeveloperView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkFiberBundleDeveloperView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } /* OnSelectionChanged is registered to SelectionService, therefore no need to implement SelectionService Listener explicitly */ void QmitkFiberBundleDeveloperView::OnSelectionChanged( std::vector nodes ) { if (nodes.empty()) return; /* ==== reset everyhing related to FiberBundleX ====== * - variable m_FiberBundleX * - visualization of analysed fiberbundle */ m_FiberBundleNode = NULL; m_FiberBundleX = NULL; //reset pointer, so that member does not point to depricated locations m_PlanarFigure = NULL; ResetFiberInfoWidget(); //timer reset only when no thread is in progress if (!m_threadInProgress) { m_Controls->infoTimerGenerateFiberIds->setText("-"); //set GUI representation of timer to - m_Controls->infoTimerGenerateFiberBundle->setText( "-" ); m_Controls->infoTimerColorCoding->setText( "-" ); } //==================================================== for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; /* CHECKPOINT: FIBERBUNDLE*/ if( node.IsNotNull() && dynamic_cast(node->GetData()) ) { m_FiberBundleNode = node; m_FiberBundleX = dynamic_cast(node->GetData()); if (m_FiberBundleX.IsNull()){ MITK_INFO << "========ATTENTION=========\n unable to load selected FiberBundleX to FiberBundleDeveloper-plugin \n"; m_FiberBundleNode = NULL; } // ==== FIBERBUNDLE_INFO ELEMENTS ==== if ( m_Controls->page_FiberInfo->isVisible() ) FeedFiberInfoWidget(); // enable FiberBundleX related Gui Elements, such as buttons etc. this->FBXDependendGUIElementsConfigurator(); this->DoGatherColorCodings(); } /* CHECKPOINT: PLANARFIGURE */ else if ( node.IsNotNull() && dynamic_cast(node->GetData()) ) { m_PlanarFigure = dynamic_cast(node->GetData()); MITK_INFO << "PF selected"; if (m_PlanarFigure.IsNull()) MITK_INFO << "========ATTENTION=========\n unable to load selected Planarfigure to FiberBundleDeveloper-plugin \n"; } } //update gui elements depending on given nodes FBXDependendGUIElementsConfigurator(); //every gui element which needs a FBX for processing is disabled } void QmitkFiberBundleDeveloperView::ActionDrawEllipseTriggered() { // bool checked = m_Controls->m_CircleButton->isChecked(); mitk::PlanarCircle::Pointer figure = mitk::PlanarCircle::New(); this->PutFigureToDataStorage(figure, QString("Circle%1").arg(++m_CircleCounter)); MITK_INFO << "PlanarCircle created ..."; mitk::DataStorage::SetOfObjects::ConstPointer _NodeSet = this->GetDefaultDataStorage()->GetAll(); mitk::DataNode* node = 0; mitk::PlanarFigureInteractor::Pointer figureInteractor = 0; mitk::PlanarFigure* figureP = 0; for(mitk::DataStorage::SetOfObjects::ConstIterator it=_NodeSet->Begin(); it!=_NodeSet->End() ; it++) { node = const_cast(it->Value().GetPointer()); figureP = dynamic_cast(node->GetData()); if(figureP) { figureInteractor = dynamic_cast(node->GetInteractor()); if(figureInteractor.IsNull()) figureInteractor = mitk::PlanarFigureInteractor::New("PlanarFigureInteractor", node); mitk::GlobalInteraction::GetInstance()->AddInteractor(figureInteractor); } } } void QmitkFiberBundleDeveloperView::Activated() { MITK_INFO << "FB DevelopersV ACTIVATED()"; } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.cpp index 23b8a8c7ab..f49ec407b3 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.cpp @@ -1,1594 +1,1594 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //misc #define _USE_MATH_DEFINES #include // Blueberry #include #include // Qmitk #include "QmitkFiberfoxView.h" // MITK #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include const std::string QmitkFiberfoxView::VIEW_ID = "org.mitk.views.fiberfoxview"; QmitkFiberfoxView::QmitkFiberfoxView() : QmitkAbstractView() , m_Controls( 0 ) , m_SelectedImage( NULL ) { } // Destructor QmitkFiberfoxView::~QmitkFiberfoxView() { } void QmitkFiberfoxView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkFiberfoxViewControls; m_Controls->setupUi( parent ); m_Controls->m_StickWidget1->setVisible(true); m_Controls->m_StickWidget2->setVisible(false); m_Controls->m_ZeppelinWidget1->setVisible(false); m_Controls->m_ZeppelinWidget2->setVisible(false); m_Controls->m_TensorWidget1->setVisible(false); m_Controls->m_TensorWidget2->setVisible(false); m_Controls->m_BallWidget1->setVisible(true); m_Controls->m_BallWidget2->setVisible(false); m_Controls->m_AstrosticksWidget1->setVisible(false); m_Controls->m_AstrosticksWidget2->setVisible(false); m_Controls->m_DotWidget1->setVisible(false); m_Controls->m_DotWidget2->setVisible(false); m_Controls->m_Comp4FractionFrame->setVisible(false); m_Controls->m_DiffusionPropsMessage->setVisible(false); m_Controls->m_GeometryMessage->setVisible(false); m_Controls->m_AdvancedSignalOptionsFrame->setVisible(false); m_Controls->m_AdvancedFiberOptionsFrame->setVisible(false); m_Controls->m_VarianceBox->setVisible(false); m_Controls->m_KspaceParamFrame->setVisible(false); connect((QObject*) m_Controls->m_GenerateImageButton, SIGNAL(clicked()), (QObject*) this, SLOT(GenerateImage())); connect((QObject*) m_Controls->m_GenerateFibersButton, SIGNAL(clicked()), (QObject*) this, SLOT(GenerateFibers())); connect((QObject*) m_Controls->m_CircleButton, SIGNAL(clicked()), (QObject*) this, SLOT(OnDrawROI())); connect((QObject*) m_Controls->m_FlipButton, SIGNAL(clicked()), (QObject*) this, SLOT(OnFlipButton())); connect((QObject*) m_Controls->m_JoinBundlesButton, SIGNAL(clicked()), (QObject*) this, SLOT(JoinBundles())); connect((QObject*) m_Controls->m_VarianceBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnVarianceChanged(double))); connect((QObject*) m_Controls->m_DistributionBox, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(OnDistributionChanged(int))); connect((QObject*) m_Controls->m_FiberDensityBox, SIGNAL(valueChanged(int)), (QObject*) this, SLOT(OnFiberDensityChanged(int))); connect((QObject*) m_Controls->m_FiberSamplingBox, SIGNAL(valueChanged(int)), (QObject*) this, SLOT(OnFiberSamplingChanged(int))); connect((QObject*) m_Controls->m_TensionBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnTensionChanged(double))); connect((QObject*) m_Controls->m_ContinuityBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnContinuityChanged(double))); connect((QObject*) m_Controls->m_BiasBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnBiasChanged(double))); connect((QObject*) m_Controls->m_AddGibbsRinging, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddGibbsRinging(int))); connect((QObject*) m_Controls->m_ConstantRadiusBox, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnConstantRadius(int))); connect((QObject*) m_Controls->m_CopyBundlesButton, SIGNAL(clicked()), (QObject*) this, SLOT(CopyBundles())); connect((QObject*) m_Controls->m_TransformBundlesButton, SIGNAL(clicked()), (QObject*) this, SLOT(ApplyTransform())); connect((QObject*) m_Controls->m_AlignOnGrid, SIGNAL(clicked()), (QObject*) this, SLOT(AlignOnGrid())); connect((QObject*) m_Controls->m_Compartment1Box, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(Comp1ModelFrameVisibility(int))); connect((QObject*) m_Controls->m_Compartment2Box, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(Comp2ModelFrameVisibility(int))); connect((QObject*) m_Controls->m_Compartment3Box, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(Comp3ModelFrameVisibility(int))); connect((QObject*) m_Controls->m_Compartment4Box, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(Comp4ModelFrameVisibility(int))); connect((QObject*) m_Controls->m_AdvancedOptionsBox, SIGNAL( stateChanged(int)), (QObject*) this, SLOT(ShowAdvancedOptions(int))); connect((QObject*) m_Controls->m_AdvancedOptionsBox_2, SIGNAL( stateChanged(int)), (QObject*) this, SLOT(ShowAdvancedOptions(int))); } } void QmitkFiberfoxView::ShowAdvancedOptions(int state) { if (state) { m_Controls->m_AdvancedFiberOptionsFrame->setVisible(true); m_Controls->m_AdvancedSignalOptionsFrame->setVisible(true); m_Controls->m_AdvancedOptionsBox->setChecked(true); m_Controls->m_AdvancedOptionsBox_2->setChecked(true); } else { m_Controls->m_AdvancedFiberOptionsFrame->setVisible(false); m_Controls->m_AdvancedSignalOptionsFrame->setVisible(false); m_Controls->m_AdvancedOptionsBox->setChecked(false); m_Controls->m_AdvancedOptionsBox_2->setChecked(false); } } void QmitkFiberfoxView::Comp1ModelFrameVisibility(int index) { m_Controls->m_StickWidget1->setVisible(false); m_Controls->m_ZeppelinWidget1->setVisible(false); m_Controls->m_TensorWidget1->setVisible(false); switch (index) { case 0: m_Controls->m_StickWidget1->setVisible(true); break; case 1: m_Controls->m_ZeppelinWidget1->setVisible(true); break; case 2: m_Controls->m_TensorWidget1->setVisible(true); break; } } void QmitkFiberfoxView::Comp2ModelFrameVisibility(int index) { m_Controls->m_StickWidget2->setVisible(false); m_Controls->m_ZeppelinWidget2->setVisible(false); m_Controls->m_TensorWidget2->setVisible(false); switch (index) { case 0: break; case 1: m_Controls->m_StickWidget2->setVisible(true); break; case 2: m_Controls->m_ZeppelinWidget2->setVisible(true); break; case 3: m_Controls->m_TensorWidget2->setVisible(true); break; } } void QmitkFiberfoxView::Comp3ModelFrameVisibility(int index) { m_Controls->m_BallWidget1->setVisible(false); m_Controls->m_AstrosticksWidget1->setVisible(false); m_Controls->m_DotWidget1->setVisible(false); switch (index) { case 0: m_Controls->m_BallWidget1->setVisible(true); break; case 1: m_Controls->m_AstrosticksWidget1->setVisible(true); break; case 2: m_Controls->m_DotWidget1->setVisible(true); break; } } void QmitkFiberfoxView::Comp4ModelFrameVisibility(int index) { m_Controls->m_BallWidget2->setVisible(false); m_Controls->m_AstrosticksWidget2->setVisible(false); m_Controls->m_DotWidget2->setVisible(false); m_Controls->m_Comp4FractionFrame->setVisible(false); switch (index) { case 0: break; case 1: m_Controls->m_BallWidget2->setVisible(true); m_Controls->m_Comp4FractionFrame->setVisible(true); break; case 2: m_Controls->m_AstrosticksWidget2->setVisible(true); m_Controls->m_Comp4FractionFrame->setVisible(true); break; case 3: m_Controls->m_DotWidget2->setVisible(true); m_Controls->m_Comp4FractionFrame->setVisible(true); break; } } void QmitkFiberfoxView::OnConstantRadius(int value) { if (value>0 && m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnAddGibbsRinging(int value) { if (value>0) m_Controls->m_KspaceParamFrame->setVisible(true); else m_Controls->m_KspaceParamFrame->setVisible(false); } void QmitkFiberfoxView::OnDistributionChanged(int value) { if (value==1) m_Controls->m_VarianceBox->setVisible(true); else m_Controls->m_VarianceBox->setVisible(false); if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnVarianceChanged(double value) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnFiberDensityChanged(int value) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnFiberSamplingChanged(int value) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnTensionChanged(double value) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnContinuityChanged(double value) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnBiasChanged(double value) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::AlignOnGrid() { for (int i=0; i(m_SelectedFiducials.at(i)->GetData()); mitk::Point3D wc0 = pe->GetWorldControlPoint(0); mitk::DataStorage::SetOfObjects::ConstPointer parentFibs = GetDataStorage()->GetSources(m_SelectedFiducials.at(i)); for( mitk::DataStorage::SetOfObjects::const_iterator it = parentFibs->begin(); it != parentFibs->end(); ++it ) { mitk::DataNode::Pointer pFibNode = *it; if ( pFibNode.IsNotNull() && dynamic_cast(pFibNode->GetData()) ) { mitk::DataStorage::SetOfObjects::ConstPointer parentImgs = GetDataStorage()->GetSources(pFibNode); for( mitk::DataStorage::SetOfObjects::const_iterator it2 = parentImgs->begin(); it2 != parentImgs->end(); ++it2 ) { mitk::DataNode::Pointer pImgNode = *it2; if ( pImgNode.IsNotNull() && dynamic_cast(pImgNode->GetData()) ) { mitk::Image::Pointer img = dynamic_cast(pImgNode->GetData()); mitk::Geometry3D::Pointer geom = img->GetGeometry(); itk::Index<3> idx; geom->WorldToIndex(wc0, idx); mitk::Point3D cIdx; cIdx[0]=idx[0]; cIdx[1]=idx[1]; cIdx[2]=idx[2]; mitk::Point3D world; geom->IndexToWorld(cIdx,world); mitk::Vector3D trans = world - wc0; pe->GetGeometry()->Translate(trans); break; } } break; } } } for( int i=0; iGetSources(fibNode); for( mitk::DataStorage::SetOfObjects::const_iterator it = sources->begin(); it != sources->end(); ++it ) { mitk::DataNode::Pointer imgNode = *it; if ( imgNode.IsNotNull() && dynamic_cast(imgNode->GetData()) ) { mitk::DataStorage::SetOfObjects::ConstPointer derivations = GetDataStorage()->GetDerivations(fibNode); for( mitk::DataStorage::SetOfObjects::const_iterator it2 = derivations->begin(); it2 != derivations->end(); ++it2 ) { mitk::DataNode::Pointer fiducialNode = *it2; if ( fiducialNode.IsNotNull() && dynamic_cast(fiducialNode->GetData()) ) { mitk::PlanarEllipse::Pointer pe = dynamic_cast(fiducialNode->GetData()); mitk::Point3D wc0 = pe->GetWorldControlPoint(0); mitk::Image::Pointer img = dynamic_cast(imgNode->GetData()); mitk::Geometry3D::Pointer geom = img->GetGeometry(); itk::Index<3> idx; geom->WorldToIndex(wc0, idx); mitk::Point3D cIdx; cIdx[0]=idx[0]; cIdx[1]=idx[1]; cIdx[2]=idx[2]; mitk::Point3D world; geom->IndexToWorld(cIdx,world); mitk::Vector3D trans = world - wc0; pe->GetGeometry()->Translate(trans); } } break; } } } for( int i=0; i(m_SelectedImages.at(i)->GetData()); mitk::DataStorage::SetOfObjects::ConstPointer derivations = GetDataStorage()->GetDerivations(m_SelectedImages.at(i)); for( mitk::DataStorage::SetOfObjects::const_iterator it = derivations->begin(); it != derivations->end(); ++it ) { mitk::DataNode::Pointer fibNode = *it; if ( fibNode.IsNotNull() && dynamic_cast(fibNode->GetData()) ) { mitk::DataStorage::SetOfObjects::ConstPointer derivations2 = GetDataStorage()->GetDerivations(fibNode); for( mitk::DataStorage::SetOfObjects::const_iterator it2 = derivations2->begin(); it2 != derivations2->end(); ++it2 ) { mitk::DataNode::Pointer fiducialNode = *it2; if ( fiducialNode.IsNotNull() && dynamic_cast(fiducialNode->GetData()) ) { mitk::PlanarEllipse::Pointer pe = dynamic_cast(fiducialNode->GetData()); mitk::Point3D wc0 = pe->GetWorldControlPoint(0); mitk::Geometry3D::Pointer geom = img->GetGeometry(); itk::Index<3> idx; geom->WorldToIndex(wc0, idx); mitk::Point3D cIdx; cIdx[0]=idx[0]; cIdx[1]=idx[1]; cIdx[2]=idx[2]; mitk::Point3D world; geom->IndexToWorld(cIdx,world); mitk::Vector3D trans = world - wc0; pe->GetGeometry()->Translate(trans); } } } } } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnFlipButton() { if (m_SelectedFiducial.IsNull()) return; std::map::iterator it = m_DataNodeToPlanarFigureData.find(m_SelectedFiducial.GetPointer()); if( it != m_DataNodeToPlanarFigureData.end() ) { QmitkPlanarFigureData& data = it->second; data.m_Flipped += 1; data.m_Flipped %= 2; } if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } QmitkFiberfoxView::GradientListType QmitkFiberfoxView::GenerateHalfShell(int NPoints) { NPoints *= 2; GradientListType pointshell; int numB0 = NPoints/20; if (numB0==0) numB0=1; GradientType g; g.Fill(0.0); for (int i=0; i theta; theta.set_size(NPoints); vnl_vector phi; phi.set_size(NPoints); double C = sqrt(4*M_PI); phi(0) = 0.0; phi(NPoints-1) = 0.0; for(int i=0; i0 && i std::vector > QmitkFiberfoxView::MakeGradientList() { std::vector > retval; vnl_matrix_fixed* U = itk::PointShell >::DistributePointShell(); // Add 0 vector for B0 int numB0 = ndirs/10; if (numB0==0) numB0=1; itk::Vector v; v.Fill(0.0); for (int i=0; i v; v[0] = U->get(0,i); v[1] = U->get(1,i); v[2] = U->get(2,i); retval.push_back(v); } return retval; } void QmitkFiberfoxView::OnAddBundle() { if (m_SelectedImage.IsNull()) return; mitk::DataStorage::SetOfObjects::ConstPointer children = GetDataStorage()->GetDerivations(m_SelectedImage); mitk::FiberBundleX::Pointer bundle = mitk::FiberBundleX::New(); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( bundle ); QString name = QString("Bundle_%1").arg(children->size()); node->SetName(name.toStdString()); m_SelectedBundles.push_back(node); UpdateGui(); GetDataStorage()->Add(node, m_SelectedImage); } void QmitkFiberfoxView::OnDrawROI() { if (m_SelectedBundles.empty()) OnAddBundle(); if (m_SelectedBundles.empty()) return; mitk::DataStorage::SetOfObjects::ConstPointer children = GetDataStorage()->GetDerivations(m_SelectedBundles.at(0)); mitk::PlanarEllipse::Pointer figure = mitk::PlanarEllipse::New(); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( figure ); QList nodes = this->GetDataManagerSelection(); for( int i=0; iSetSelected(false); m_SelectedFiducial = node; QString name = QString("Fiducial_%1").arg(children->size()); node->SetName(name.toStdString()); node->SetSelected(true); GetDataStorage()->Add(node, m_SelectedBundles.at(0)); this->DisableCrosshairNavigation(); mitk::PlanarFigureInteractor::Pointer figureInteractor = dynamic_cast(node->GetInteractor()); if(figureInteractor.IsNull()) figureInteractor = mitk::PlanarFigureInteractor::New("PlanarFigureInteractor", node); mitk::GlobalInteraction::GetInstance()->AddInteractor(figureInteractor); UpdateGui(); } bool CompareLayer(mitk::DataNode::Pointer i,mitk::DataNode::Pointer j) { int li = -1; i->GetPropertyValue("layer", li); int lj = -1; j->GetPropertyValue("layer", lj); return liGetSources(m_SelectedFiducial); for( mitk::DataStorage::SetOfObjects::const_iterator it = parents->begin(); it != parents->end(); ++it ) if(dynamic_cast((*it)->GetData())) m_SelectedBundles.push_back(*it); if (m_SelectedBundles.empty()) return; } vector< vector< mitk::PlanarEllipse::Pointer > > fiducials; vector< vector< unsigned int > > fliplist; for (int i=0; iGetDerivations(m_SelectedBundles.at(i)); std::vector< mitk::DataNode::Pointer > childVector; for( mitk::DataStorage::SetOfObjects::const_iterator it = children->begin(); it != children->end(); ++it ) childVector.push_back(*it); sort(childVector.begin(), childVector.end(), CompareLayer); vector< mitk::PlanarEllipse::Pointer > fib; vector< unsigned int > flip; float radius = 1; int count = 0; for( std::vector< mitk::DataNode::Pointer >::const_iterator it = childVector.begin(); it != childVector.end(); ++it ) { mitk::DataNode::Pointer node = *it; if ( node.IsNotNull() && dynamic_cast(node->GetData()) ) { mitk::PlanarEllipse* ellipse = dynamic_cast(node->GetData()); if (m_Controls->m_ConstantRadiusBox->isChecked()) { ellipse->SetTreatAsCircle(true); mitk::Point2D c = ellipse->GetControlPoint(0); mitk::Point2D p = ellipse->GetControlPoint(1); mitk::Vector2D v = p-c; if (count==0) { radius = v.GetVnlVector().magnitude(); ellipse->SetControlPoint(1, p); } else { v.Normalize(); v *= radius; ellipse->SetControlPoint(1, c+v); } } fib.push_back(ellipse); std::map::iterator it = m_DataNodeToPlanarFigureData.find(node.GetPointer()); if( it != m_DataNodeToPlanarFigureData.end() ) { QmitkPlanarFigureData& data = it->second; flip.push_back(data.m_Flipped); } else flip.push_back(0); } count++; } if (fib.size()>1) { fiducials.push_back(fib); fliplist.push_back(flip); } else if (fib.size()>0) m_SelectedBundles.at(i)->SetData( mitk::FiberBundleX::New() ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } itk::FibersFromPlanarFiguresFilter::Pointer filter = itk::FibersFromPlanarFiguresFilter::New(); filter->SetFiducials(fiducials); filter->SetFlipList(fliplist); switch(m_Controls->m_DistributionBox->currentIndex()){ case 0: filter->SetFiberDistribution(itk::FibersFromPlanarFiguresFilter::DISTRIBUTE_UNIFORM); break; case 1: filter->SetFiberDistribution(itk::FibersFromPlanarFiguresFilter::DISTRIBUTE_GAUSSIAN); filter->SetVariance(m_Controls->m_VarianceBox->value()); break; } filter->SetDensity(m_Controls->m_FiberDensityBox->value()); filter->SetTension(m_Controls->m_TensionBox->value()); filter->SetContinuity(m_Controls->m_ContinuityBox->value()); filter->SetBias(m_Controls->m_BiasBox->value()); filter->SetFiberSampling(m_Controls->m_FiberSamplingBox->value()); filter->Update(); vector< mitk::FiberBundleX::Pointer > fiberBundles = filter->GetFiberBundles(); for (int i=0; iSetData( fiberBundles.at(i) ); if (fiberBundles.at(i)->GetNumFibers()>50000) m_SelectedBundles.at(i)->SetVisibility(false); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberfoxView::GenerateImage() { itk::ImageRegion<3> imageRegion; imageRegion.SetSize(0, m_Controls->m_SizeX->value()); imageRegion.SetSize(1, m_Controls->m_SizeY->value()); imageRegion.SetSize(2, m_Controls->m_SizeZ->value()); mitk::Vector3D spacing; spacing[0] = m_Controls->m_SpacingX->value(); spacing[1] = m_Controls->m_SpacingY->value(); spacing[2] = m_Controls->m_SpacingZ->value(); mitk::Point3D origin; origin[0] = spacing[0]/2; origin[1] = spacing[1]/2; origin[2] = spacing[2]/2; itk::Matrix directionMatrix; directionMatrix.SetIdentity(); if (m_SelectedBundles.empty()) { mitk::Image::Pointer image = mitk::ImageGenerator::GenerateGradientImage( m_Controls->m_SizeX->value(), m_Controls->m_SizeY->value(), m_Controls->m_SizeZ->value(), m_Controls->m_SpacingX->value(), m_Controls->m_SpacingY->value(), m_Controls->m_SpacingZ->value()); mitk::Geometry3D* geom = image->GetGeometry(); geom->SetOrigin(origin); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("Dummy"); unsigned int window = m_Controls->m_SizeX->value()*m_Controls->m_SizeY->value()*m_Controls->m_SizeZ->value(); unsigned int level = window/2; mitk::LevelWindow lw; lw.SetLevelWindow(level, window); node->SetProperty( "levelwindow", mitk::LevelWindowProperty::New( lw ) ); GetDataStorage()->Add(node); m_SelectedImage = node; mitk::BaseData::Pointer basedata = node->GetData(); if (basedata.IsNotNull()) { mitk::RenderingManager::GetInstance()->InitializeViews( - basedata->GetTimeSlicedGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); + basedata->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } UpdateGui(); return; } if (m_SelectedImage.IsNotNull()) { mitk::Image* img = dynamic_cast(m_SelectedImage->GetData()); itk::Image< float, 3 >::Pointer itkImg = itk::Image< float, 3 >::New(); CastToItkImage< itk::Image< float, 3 > >(img, itkImg); imageRegion = itkImg->GetLargestPossibleRegion(); spacing = itkImg->GetSpacing(); origin = itkImg->GetOrigin(); directionMatrix = itkImg->GetDirection(); } DiffusionSignalModel::GradientListType gradientList; double bVal = 1000; if (m_SelectedDWI.IsNull()) { gradientList = GenerateHalfShell(m_Controls->m_NumGradientsBox->value());; bVal = m_Controls->m_BvalueBox->value(); } else { mitk::DiffusionImage::Pointer dwi = dynamic_cast*>(m_SelectedDWI->GetData()); imageRegion = dwi->GetVectorImage()->GetLargestPossibleRegion(); spacing = dwi->GetVectorImage()->GetSpacing(); origin = dwi->GetVectorImage()->GetOrigin(); directionMatrix = dwi->GetVectorImage()->GetDirection(); bVal = dwi->GetB_Value(); mitk::DiffusionImage::GradientDirectionContainerType::Pointer dirs = dwi->GetDirections(); for (int i=0; iSize(); i++) { DiffusionSignalModel::GradientType g; g[0] = dirs->at(i)[0]; g[1] = dirs->at(i)[1]; g[2] = dirs->at(i)[2]; gradientList.push_back(g); } } for (int i=0; im_Compartment4Box->currentIndex()>0) { comp4Weight = m_Controls->m_Comp4FractionBox->value(); comp3Weight -= comp4Weight; } mitk::StickModel stickModel1; mitk::StickModel stickModel2; mitk::TensorModel zeppelinModel1; mitk::TensorModel zeppelinModel2; mitk::TensorModel tensorModel1; mitk::TensorModel tensorModel2; mitk::BallModel ballModel1; mitk::BallModel ballModel2; mitk::AstroStickModel astrosticksModel1; mitk::AstroStickModel astrosticksModel2; mitk::DotModel dotModel1; mitk::DotModel dotModel2; // compartment 1 switch (m_Controls->m_Compartment1Box->currentIndex()) { case 0: MITK_INFO << "Using stick model"; stickModel1.SetGradientList(gradientList); stickModel1.SetDiffusivity(m_Controls->m_StickWidget1->GetD()); stickModel1.SetT2(m_Controls->m_StickWidget1->GetT2()); fiberModelList.push_back(&stickModel1); signalModelString += "Stick"; resultNode->AddProperty("Fiberfox.Compartment1.Description", StringProperty::New("Intra-axonal compartment") ); resultNode->AddProperty("Fiberfox.Compartment1.Model", StringProperty::New("Stick") ); resultNode->AddProperty("Fiberfox.Compartment1.D", DoubleProperty::New(m_Controls->m_StickWidget1->GetD()) ); resultNode->AddProperty("Fiberfox.Compartment1.T2", DoubleProperty::New(stickModel1.GetT2()) ); break; case 1: MITK_INFO << "Using zeppelin model"; zeppelinModel1.SetGradientList(gradientList); zeppelinModel1.SetBvalue(bVal); zeppelinModel1.SetDiffusivity1(m_Controls->m_ZeppelinWidget1->GetD1()); zeppelinModel1.SetDiffusivity2(m_Controls->m_ZeppelinWidget1->GetD2()); zeppelinModel1.SetDiffusivity3(m_Controls->m_ZeppelinWidget1->GetD2()); zeppelinModel1.SetT2(m_Controls->m_ZeppelinWidget1->GetT2()); fiberModelList.push_back(&zeppelinModel1); signalModelString += "Zeppelin"; resultNode->AddProperty("Fiberfox.Compartment1.Description", StringProperty::New("Intra-axonal compartment") ); resultNode->AddProperty("Fiberfox.Compartment1.Model", StringProperty::New("Zeppelin") ); resultNode->AddProperty("Fiberfox.Compartment1.D1", DoubleProperty::New(m_Controls->m_ZeppelinWidget1->GetD1()) ); resultNode->AddProperty("Fiberfox.Compartment1.D2", DoubleProperty::New(m_Controls->m_ZeppelinWidget1->GetD2()) ); resultNode->AddProperty("Fiberfox.Compartment1.T2", DoubleProperty::New(zeppelinModel1.GetT2()) ); break; case 2: MITK_INFO << "Using tensor model"; tensorModel1.SetGradientList(gradientList); tensorModel1.SetBvalue(bVal); tensorModel1.SetDiffusivity1(m_Controls->m_TensorWidget1->GetD1()); tensorModel1.SetDiffusivity2(m_Controls->m_TensorWidget1->GetD2()); tensorModel1.SetDiffusivity3(m_Controls->m_TensorWidget1->GetD3()); tensorModel1.SetT2(m_Controls->m_TensorWidget1->GetT2()); fiberModelList.push_back(&tensorModel1); signalModelString += "Tensor"; resultNode->AddProperty("Fiberfox.Compartment1.Description", StringProperty::New("Intra-axonal compartment") ); resultNode->AddProperty("Fiberfox.Compartment1.Model", StringProperty::New("Tensor") ); resultNode->AddProperty("Fiberfox.Compartment1.D1", DoubleProperty::New(m_Controls->m_TensorWidget1->GetD1()) ); resultNode->AddProperty("Fiberfox.Compartment1.D2", DoubleProperty::New(m_Controls->m_TensorWidget1->GetD2()) ); resultNode->AddProperty("Fiberfox.Compartment1.D3", DoubleProperty::New(m_Controls->m_TensorWidget1->GetD3()) ); resultNode->AddProperty("Fiberfox.Compartment1.T2", DoubleProperty::New(zeppelinModel1.GetT2()) ); break; } // compartment 2 switch (m_Controls->m_Compartment2Box->currentIndex()) { case 0: break; case 1: stickModel2.SetGradientList(gradientList); stickModel2.SetDiffusivity(m_Controls->m_StickWidget2->GetD()); stickModel2.SetT2(m_Controls->m_StickWidget2->GetT2()); fiberModelList.push_back(&stickModel2); signalModelString += "Stick"; resultNode->AddProperty("Fiberfox.Compartment2.Description", StringProperty::New("Inter-axonal compartment") ); resultNode->AddProperty("Fiberfox.Compartment2.Model", StringProperty::New("Stick") ); resultNode->AddProperty("Fiberfox.Compartment2.D", DoubleProperty::New(m_Controls->m_StickWidget2->GetD()) ); resultNode->AddProperty("Fiberfox.Compartment2.T2", DoubleProperty::New(stickModel2.GetT2()) ); break; case 2: zeppelinModel2.SetGradientList(gradientList); zeppelinModel2.SetBvalue(bVal); zeppelinModel2.SetDiffusivity1(m_Controls->m_ZeppelinWidget2->GetD1()); zeppelinModel2.SetDiffusivity2(m_Controls->m_ZeppelinWidget2->GetD2()); zeppelinModel2.SetDiffusivity3(m_Controls->m_ZeppelinWidget2->GetD2()); zeppelinModel2.SetT2(m_Controls->m_ZeppelinWidget2->GetT2()); fiberModelList.push_back(&zeppelinModel2); signalModelString += "Zeppelin"; resultNode->AddProperty("Fiberfox.Compartment2.Description", StringProperty::New("Inter-axonal compartment") ); resultNode->AddProperty("Fiberfox.Compartment2.Model", StringProperty::New("Zeppelin") ); resultNode->AddProperty("Fiberfox.Compartment2.D1", DoubleProperty::New(m_Controls->m_ZeppelinWidget2->GetD1()) ); resultNode->AddProperty("Fiberfox.Compartment2.D2", DoubleProperty::New(m_Controls->m_ZeppelinWidget2->GetD2()) ); resultNode->AddProperty("Fiberfox.Compartment2.T2", DoubleProperty::New(zeppelinModel2.GetT2()) ); break; case 3: tensorModel2.SetGradientList(gradientList); tensorModel2.SetBvalue(bVal); tensorModel2.SetDiffusivity1(m_Controls->m_TensorWidget2->GetD1()); tensorModel2.SetDiffusivity2(m_Controls->m_TensorWidget2->GetD2()); tensorModel2.SetDiffusivity3(m_Controls->m_TensorWidget2->GetD3()); tensorModel2.SetT2(m_Controls->m_TensorWidget2->GetT2()); fiberModelList.push_back(&tensorModel2); signalModelString += "Tensor"; resultNode->AddProperty("Fiberfox.Compartment2.Description", StringProperty::New("Inter-axonal compartment") ); resultNode->AddProperty("Fiberfox.Compartment2.Model", StringProperty::New("Tensor") ); resultNode->AddProperty("Fiberfox.Compartment2.D1", DoubleProperty::New(m_Controls->m_TensorWidget2->GetD1()) ); resultNode->AddProperty("Fiberfox.Compartment2.D2", DoubleProperty::New(m_Controls->m_TensorWidget2->GetD2()) ); resultNode->AddProperty("Fiberfox.Compartment2.D3", DoubleProperty::New(m_Controls->m_TensorWidget2->GetD3()) ); resultNode->AddProperty("Fiberfox.Compartment2.T2", DoubleProperty::New(zeppelinModel2.GetT2()) ); break; } // compartment 3 switch (m_Controls->m_Compartment3Box->currentIndex()) { case 0: ballModel1.SetGradientList(gradientList); ballModel1.SetBvalue(bVal); ballModel1.SetDiffusivity(m_Controls->m_BallWidget1->GetD()); ballModel1.SetT2(m_Controls->m_BallWidget1->GetT2()); ballModel1.SetWeight(comp3Weight); nonFiberModelList.push_back(&ballModel1); signalModelString += "Ball"; resultNode->AddProperty("Fiberfox.Compartment3.Description", StringProperty::New("Extra-axonal compartment 1") ); resultNode->AddProperty("Fiberfox.Compartment3.Model", StringProperty::New("Ball") ); resultNode->AddProperty("Fiberfox.Compartment3.D", DoubleProperty::New(m_Controls->m_BallWidget1->GetD()) ); resultNode->AddProperty("Fiberfox.Compartment3.T2", DoubleProperty::New(ballModel1.GetT2()) ); break; case 1: astrosticksModel1.SetGradientList(gradientList); astrosticksModel1.SetBvalue(bVal); astrosticksModel1.SetDiffusivity(m_Controls->m_AstrosticksWidget1->GetD()); astrosticksModel1.SetT2(m_Controls->m_AstrosticksWidget1->GetT2()); astrosticksModel1.SetRandomizeSticks(m_Controls->m_AstrosticksWidget1->GetRandomizeSticks()); astrosticksModel1.SetWeight(comp3Weight); nonFiberModelList.push_back(&astrosticksModel1); signalModelString += "Astrosticks"; resultNode->AddProperty("Fiberfox.Compartment3.Description", StringProperty::New("Extra-axonal compartment 1") ); resultNode->AddProperty("Fiberfox.Compartment3.Model", StringProperty::New("Astrosticks") ); resultNode->AddProperty("Fiberfox.Compartment3.D", DoubleProperty::New(m_Controls->m_AstrosticksWidget1->GetD()) ); resultNode->AddProperty("Fiberfox.Compartment3.T2", DoubleProperty::New(astrosticksModel1.GetT2()) ); resultNode->AddProperty("Fiberfox.Compartment3.RandomSticks", BoolProperty::New(m_Controls->m_AstrosticksWidget1->GetRandomizeSticks()) ); break; case 2: dotModel1.SetGradientList(gradientList); dotModel1.SetT2(m_Controls->m_DotWidget1->GetT2()); dotModel1.SetWeight(comp3Weight); nonFiberModelList.push_back(&dotModel1); signalModelString += "Dot"; resultNode->AddProperty("Fiberfox.Compartment3.Description", StringProperty::New("Extra-axonal compartment 1") ); resultNode->AddProperty("Fiberfox.Compartment3.Model", StringProperty::New("Dot") ); resultNode->AddProperty("Fiberfox.Compartment3.T2", DoubleProperty::New(dotModel1.GetT2()) ); break; } // compartment 4 switch (m_Controls->m_Compartment4Box->currentIndex()) { case 0: break; case 1: ballModel2.SetGradientList(gradientList); ballModel2.SetBvalue(bVal); ballModel2.SetDiffusivity(m_Controls->m_BallWidget2->GetD()); ballModel2.SetT2(m_Controls->m_BallWidget2->GetT2()); ballModel2.SetWeight(comp4Weight); nonFiberModelList.push_back(&ballModel2); signalModelString += "Ball"; resultNode->AddProperty("Fiberfox.Compartment4.Description", StringProperty::New("Extra-axonal compartment 2") ); resultNode->AddProperty("Fiberfox.Compartment4.Model", StringProperty::New("Ball") ); resultNode->AddProperty("Fiberfox.Compartment4.D", DoubleProperty::New(m_Controls->m_BallWidget2->GetD()) ); resultNode->AddProperty("Fiberfox.Compartment4.T2", DoubleProperty::New(ballModel2.GetT2()) ); break; case 2: astrosticksModel2.SetGradientList(gradientList); astrosticksModel2.SetBvalue(bVal); astrosticksModel2.SetDiffusivity(m_Controls->m_AstrosticksWidget2->GetD()); astrosticksModel2.SetT2(m_Controls->m_AstrosticksWidget2->GetT2()); astrosticksModel2.SetRandomizeSticks(m_Controls->m_AstrosticksWidget2->GetRandomizeSticks()); astrosticksModel2.SetWeight(comp4Weight); nonFiberModelList.push_back(&astrosticksModel2); signalModelString += "Astrosticks"; resultNode->AddProperty("Fiberfox.Compartment4.Description", StringProperty::New("Extra-axonal compartment 2") ); resultNode->AddProperty("Fiberfox.Compartment4.Model", StringProperty::New("Astrosticks") ); resultNode->AddProperty("Fiberfox.Compartment4.D", DoubleProperty::New(m_Controls->m_AstrosticksWidget2->GetD()) ); resultNode->AddProperty("Fiberfox.Compartment4.T2", DoubleProperty::New(astrosticksModel2.GetT2()) ); resultNode->AddProperty("Fiberfox.Compartment4.RandomSticks", BoolProperty::New(m_Controls->m_AstrosticksWidget2->GetRandomizeSticks()) ); break; case 3: dotModel2.SetGradientList(gradientList); dotModel2.SetT2(m_Controls->m_DotWidget2->GetT2()); dotModel2.SetWeight(comp4Weight); nonFiberModelList.push_back(&dotModel2); signalModelString += "Dot"; resultNode->AddProperty("Fiberfox.Compartment4.Description", StringProperty::New("Extra-axonal compartment 2") ); resultNode->AddProperty("Fiberfox.Compartment4.Model", StringProperty::New("Dot") ); resultNode->AddProperty("Fiberfox.Compartment4.T2", DoubleProperty::New(dotModel2.GetT2()) ); break; } itk::TractsToDWIImageFilter::KspaceArtifactList artifactList; // noise model double noiseVariance = m_Controls->m_NoiseLevel->value(); mitk::RicianNoiseModel noiseModel; noiseModel.SetNoiseVariance(noiseVariance); // artifact models QString artifactModelString(""); mitk::GibbsRingingArtifact gibbsModel; if (m_Controls->m_AddGibbsRinging->isChecked()) { artifactModelString += "_Gibbs-ringing"; resultNode->AddProperty("Fiberfox.k-Space-Undersampling", IntProperty::New(m_Controls->m_KspaceUndersamplingBox->currentText().toInt())); gibbsModel.SetKspaceCropping((double)m_Controls->m_KspaceUndersamplingBox->currentText().toInt()); artifactList.push_back(&gibbsModel); } if ( this->m_Controls->m_TEbox->value() < imageRegion.GetSize(1)*m_Controls->m_LineReadoutTimeBox->value() ) { this->m_Controls->m_TEbox->setValue( imageRegion.GetSize(1)*m_Controls->m_LineReadoutTimeBox->value() ); QMessageBox::information( NULL, "Warning", "Echo time is too short! Time not sufficient to read slice. Automaticall adjusted to "+QString::number(this->m_Controls->m_TEbox->value())+" ms"); } double lineReadoutTime = m_Controls->m_LineReadoutTimeBox->value(); // adjusting line readout time to the adapted image size needed for the FFT int y=2; while (yimageRegion.GetSize(1)) lineReadoutTime *= (double)imageRegion.GetSize(1)/y; mitk::SignalDecay contrastModel; contrastModel.SetTinhom(this->m_Controls->m_T2starBox->value()); contrastModel.SetTE(this->m_Controls->m_TEbox->value()); contrastModel.SetTline(lineReadoutTime); artifactList.push_back(&contrastModel); mitk::FiberBundleX::Pointer fiberBundle = dynamic_cast(m_SelectedBundles.at(i)->GetData()); if (fiberBundle->GetNumFibers()<=0) continue; itk::TractsToDWIImageFilter::Pointer filter = itk::TractsToDWIImageFilter::New(); filter->SetImageRegion(imageRegion); filter->SetSpacing(spacing); filter->SetOrigin(origin); filter->SetDirectionMatrix(directionMatrix); filter->SetFiberBundle(fiberBundle); filter->SetFiberModels(fiberModelList); filter->SetNonFiberModels(nonFiberModelList); filter->SetNoiseModel(&noiseModel); filter->SetKspaceArtifacts(artifactList); filter->SetNumberOfRepetitions(m_Controls->m_RepetitionsBox->value()); filter->SetEnforcePureFiberVoxels(m_Controls->m_EnforcePureFiberVoxelsBox->isChecked()); filter->SetInterpolationShrink(m_Controls->m_InterpolationShrink->value()); filter->SetFiberRadius(m_Controls->m_FiberRadius->value()); filter->SetSignalScale(m_Controls->m_SignalScaleBox->value()); if (m_TissueMask.IsNotNull()) { ItkUcharImgType::Pointer mask = ItkUcharImgType::New(); mitk::CastToItkImage(m_TissueMask, mask); filter->SetTissueMask(mask); } filter->Update(); mitk::DiffusionImage::Pointer image = mitk::DiffusionImage::New(); image->SetVectorImage( filter->GetOutput() ); image->SetB_Value(bVal); image->SetDirections(gradientList); image->InitializeFromVectorImage(); resultNode->SetData( image ); resultNode->SetName(m_SelectedBundles.at(i)->GetName() +"_D"+QString::number(imageRegion.GetSize(0)).toStdString() +"-"+QString::number(imageRegion.GetSize(1)).toStdString() +"-"+QString::number(imageRegion.GetSize(2)).toStdString() +"_S"+QString::number(spacing[0]).toStdString() +"-"+QString::number(spacing[1]).toStdString() +"-"+QString::number(spacing[2]).toStdString() +"_b"+QString::number(bVal).toStdString() +"_NOISE"+QString::number(noiseVariance).toStdString() +"_"+signalModelString.toStdString() +artifactModelString.toStdString()); GetDataStorage()->Add(resultNode, m_SelectedBundles.at(i)); resultNode->AddProperty("Fiberfox.InterpolationShrink", IntProperty::New(m_Controls->m_InterpolationShrink->value())); resultNode->AddProperty("Fiberfox.SignalScale", IntProperty::New(m_Controls->m_SignalScaleBox->value())); resultNode->AddProperty("Fiberfox.FiberRadius", IntProperty::New(m_Controls->m_FiberRadius->value())); resultNode->AddProperty("Fiberfox.Tinhom", IntProperty::New(m_Controls->m_T2starBox->value())); resultNode->AddProperty("Fiberfox.Noise-Variance", DoubleProperty::New(noiseVariance)); resultNode->AddProperty("Fiberfox.Repetitions", IntProperty::New(m_Controls->m_RepetitionsBox->value())); resultNode->AddProperty("Fiberfox.b-value", DoubleProperty::New(bVal)); resultNode->AddProperty("Fiberfox.Model", StringProperty::New(signalModelString.toStdString())); resultNode->AddProperty("Fiberfox.PureFiberVoxels", BoolProperty::New(m_Controls->m_EnforcePureFiberVoxelsBox->isChecked())); resultNode->AddProperty("binary", BoolProperty::New(false)); resultNode->SetProperty( "levelwindow", mitk::LevelWindowProperty::New(filter->GetLevelWindow()) ); if (m_Controls->m_KspaceImageBox->isChecked()) { itk::Image::Pointer kspace = filter->GetKspaceImage(); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(kspace.GetPointer()); image->SetVolume(kspace->GetBufferPointer()); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName(m_SelectedBundles.at(i)->GetName()+"_k-space"); GetDataStorage()->Add(node, m_SelectedBundles.at(i)); } mitk::BaseData::Pointer basedata = resultNode->GetData(); if (basedata.IsNotNull()) { mitk::RenderingManager::GetInstance()->InitializeViews( - basedata->GetTimeSlicedGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); + basedata->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } } void QmitkFiberfoxView::ApplyTransform() { vector< mitk::DataNode::Pointer > selectedBundles; for( int i=0; iGetDerivations(m_SelectedImages.at(i)); for( mitk::DataStorage::SetOfObjects::const_iterator it = derivations->begin(); it != derivations->end(); ++it ) { mitk::DataNode::Pointer fibNode = *it; if ( fibNode.IsNotNull() && dynamic_cast(fibNode->GetData()) ) selectedBundles.push_back(fibNode); } } if (selectedBundles.empty()) selectedBundles = m_SelectedBundles2; if (!selectedBundles.empty()) { std::vector::const_iterator it = selectedBundles.begin(); for (it; it!=selectedBundles.end(); ++it) { mitk::FiberBundleX::Pointer fib = dynamic_cast((*it)->GetData()); fib->RotateAroundAxis(m_Controls->m_XrotBox->value(), m_Controls->m_YrotBox->value(), m_Controls->m_ZrotBox->value()); fib->TranslateFibers(m_Controls->m_XtransBox->value(), m_Controls->m_YtransBox->value(), m_Controls->m_ZtransBox->value()); fib->ScaleFibers(m_Controls->m_XscaleBox->value(), m_Controls->m_YscaleBox->value(), m_Controls->m_ZscaleBox->value()); // handle child fiducials if (m_Controls->m_IncludeFiducials->isChecked()) { mitk::DataStorage::SetOfObjects::ConstPointer derivations = GetDataStorage()->GetDerivations(*it); for( mitk::DataStorage::SetOfObjects::const_iterator it2 = derivations->begin(); it2 != derivations->end(); ++it2 ) { mitk::DataNode::Pointer fiducialNode = *it2; if ( fiducialNode.IsNotNull() && dynamic_cast(fiducialNode->GetData()) ) { mitk::PlanarEllipse* pe = dynamic_cast(fiducialNode->GetData()); mitk::Geometry3D* geom = pe->GetGeometry(); // translate mitk::Vector3D world; world[0] = m_Controls->m_XtransBox->value(); world[1] = m_Controls->m_YtransBox->value(); world[2] = m_Controls->m_ZtransBox->value(); geom->Translate(world); // calculate rotation matrix double x = m_Controls->m_XrotBox->value()*M_PI/180; double y = m_Controls->m_YrotBox->value()*M_PI/180; double z = m_Controls->m_ZrotBox->value()*M_PI/180; itk::Matrix< float, 3, 3 > rotX; rotX.SetIdentity(); rotX[1][1] = cos(x); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(x); rotX[2][1] = -rotX[1][2]; itk::Matrix< float, 3, 3 > rotY; rotY.SetIdentity(); rotY[0][0] = cos(y); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(y); rotY[2][0] = -rotY[0][2]; itk::Matrix< float, 3, 3 > rotZ; rotZ.SetIdentity(); rotZ[0][0] = cos(z); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(z); rotZ[1][0] = -rotZ[0][1]; itk::Matrix< float, 3, 3 > rot = rotZ*rotY*rotX; // transform control point coordinate into geometry translation geom->SetOrigin(pe->GetWorldControlPoint(0)); mitk::Point2D cp; cp.Fill(0.0); pe->SetControlPoint(0, cp); // rotate fiducial geom->GetIndexToWorldTransform()->SetMatrix(rot*geom->GetIndexToWorldTransform()->GetMatrix()); // implicit translation mitk::Vector3D trans; trans[0] = geom->GetOrigin()[0]-fib->GetGeometry()->GetCenter()[0]; trans[1] = geom->GetOrigin()[1]-fib->GetGeometry()->GetCenter()[1]; trans[2] = geom->GetOrigin()[2]-fib->GetGeometry()->GetCenter()[2]; mitk::Vector3D newWc = rot*trans; newWc = newWc-trans; geom->Translate(newWc); } } } } } else { for (int i=0; i(m_SelectedFiducials.at(i)->GetData()); mitk::Geometry3D* geom = pe->GetGeometry(); // translate mitk::Vector3D world; world[0] = m_Controls->m_XtransBox->value(); world[1] = m_Controls->m_YtransBox->value(); world[2] = m_Controls->m_ZtransBox->value(); geom->Translate(world); // calculate rotation matrix double x = m_Controls->m_XrotBox->value()*M_PI/180; double y = m_Controls->m_YrotBox->value()*M_PI/180; double z = m_Controls->m_ZrotBox->value()*M_PI/180; itk::Matrix< float, 3, 3 > rotX; rotX.SetIdentity(); rotX[1][1] = cos(x); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(x); rotX[2][1] = -rotX[1][2]; itk::Matrix< float, 3, 3 > rotY; rotY.SetIdentity(); rotY[0][0] = cos(y); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(y); rotY[2][0] = -rotY[0][2]; itk::Matrix< float, 3, 3 > rotZ; rotZ.SetIdentity(); rotZ[0][0] = cos(z); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(z); rotZ[1][0] = -rotZ[0][1]; itk::Matrix< float, 3, 3 > rot = rotZ*rotY*rotX; // transform control point coordinate into geometry translation geom->SetOrigin(pe->GetWorldControlPoint(0)); mitk::Point2D cp; cp.Fill(0.0); pe->SetControlPoint(0, cp); // rotate fiducial geom->GetIndexToWorldTransform()->SetMatrix(rot*geom->GetIndexToWorldTransform()->GetMatrix()); } if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberfoxView::CopyBundles() { if ( m_SelectedBundles.size()<1 ){ QMessageBox::information( NULL, "Warning", "Select at least one fiber bundle!"); MITK_WARN("QmitkFiberProcessingView") << "Select at least one fiber bundle!"; return; } std::vector::const_iterator it = m_SelectedBundles.begin(); for (it; it!=m_SelectedBundles.end(); ++it) { // find parent image mitk::DataNode::Pointer parentNode; mitk::DataStorage::SetOfObjects::ConstPointer parentImgs = GetDataStorage()->GetSources(*it); for( mitk::DataStorage::SetOfObjects::const_iterator it2 = parentImgs->begin(); it2 != parentImgs->end(); ++it2 ) { mitk::DataNode::Pointer pImgNode = *it2; if ( pImgNode.IsNotNull() && dynamic_cast(pImgNode->GetData()) ) { parentNode = pImgNode; break; } } mitk::FiberBundleX::Pointer fib = dynamic_cast((*it)->GetData()); mitk::FiberBundleX::Pointer newBundle = fib->GetDeepCopy(); QString name((*it)->GetName().c_str()); name += "_copy"; mitk::DataNode::Pointer fbNode = mitk::DataNode::New(); fbNode->SetData(newBundle); fbNode->SetName(name.toStdString()); fbNode->SetVisibility(true); if (parentNode.IsNotNull()) GetDataStorage()->Add(fbNode, parentNode); else GetDataStorage()->Add(fbNode); // copy child fiducials if (m_Controls->m_IncludeFiducials->isChecked()) { mitk::DataStorage::SetOfObjects::ConstPointer derivations = GetDataStorage()->GetDerivations(*it); for( mitk::DataStorage::SetOfObjects::const_iterator it2 = derivations->begin(); it2 != derivations->end(); ++it2 ) { mitk::DataNode::Pointer fiducialNode = *it2; if ( fiducialNode.IsNotNull() && dynamic_cast(fiducialNode->GetData()) ) { mitk::PlanarEllipse::Pointer pe = mitk::PlanarEllipse::New(); pe->DeepCopy(dynamic_cast(fiducialNode->GetData())); mitk::DataNode::Pointer newNode = mitk::DataNode::New(); newNode->SetData(pe); newNode->SetName(fiducialNode->GetName()); GetDataStorage()->Add(newNode, fbNode); } } } } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberfoxView::JoinBundles() { if ( m_SelectedBundles.size()<2 ){ QMessageBox::information( NULL, "Warning", "Select at least two fiber bundles!"); MITK_WARN("QmitkFiberProcessingView") << "Select at least two fiber bundles!"; return; } std::vector::const_iterator it = m_SelectedBundles.begin(); mitk::FiberBundleX::Pointer newBundle = dynamic_cast((*it)->GetData()); QString name(""); name += QString((*it)->GetName().c_str()); ++it; for (it; it!=m_SelectedBundles.end(); ++it) { newBundle = newBundle->AddBundle(dynamic_cast((*it)->GetData())); name += "+"+QString((*it)->GetName().c_str()); } mitk::DataNode::Pointer fbNode = mitk::DataNode::New(); fbNode->SetData(newBundle); fbNode->SetName(name.toStdString()); fbNode->SetVisibility(true); GetDataStorage()->Add(fbNode); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberfoxView::UpdateGui() { m_Controls->m_FiberBundleLabel->setText("mandatory"); m_Controls->m_GeometryFrame->setEnabled(true); m_Controls->m_GeometryMessage->setVisible(false); m_Controls->m_DiffusionPropsMessage->setVisible(false); m_Controls->m_FiberGenMessage->setVisible(true); m_Controls->m_TransformBundlesButton->setEnabled(false); m_Controls->m_CopyBundlesButton->setEnabled(false); m_Controls->m_GenerateFibersButton->setEnabled(false); m_Controls->m_FlipButton->setEnabled(false); m_Controls->m_CircleButton->setEnabled(false); m_Controls->m_BvalueBox->setEnabled(true); m_Controls->m_NumGradientsBox->setEnabled(true); m_Controls->m_JoinBundlesButton->setEnabled(false); m_Controls->m_AlignOnGrid->setEnabled(false); if (m_SelectedFiducial.IsNotNull()) { m_Controls->m_TransformBundlesButton->setEnabled(true); m_Controls->m_FlipButton->setEnabled(true); m_Controls->m_AlignOnGrid->setEnabled(true); } if (m_SelectedImage.IsNotNull() || !m_SelectedBundles.empty()) { m_Controls->m_TransformBundlesButton->setEnabled(true); m_Controls->m_CircleButton->setEnabled(true); m_Controls->m_FiberGenMessage->setVisible(false); m_Controls->m_AlignOnGrid->setEnabled(true); } if (m_TissueMask.IsNotNull() || m_SelectedImage.IsNotNull()) { m_Controls->m_GeometryMessage->setVisible(true); m_Controls->m_GeometryFrame->setEnabled(false); } if (m_SelectedDWI.IsNotNull()) { m_Controls->m_DiffusionPropsMessage->setVisible(true); m_Controls->m_BvalueBox->setEnabled(false); m_Controls->m_NumGradientsBox->setEnabled(false); m_Controls->m_GeometryMessage->setVisible(true); m_Controls->m_GeometryFrame->setEnabled(false); } if (!m_SelectedBundles.empty()) { m_Controls->m_CopyBundlesButton->setEnabled(true); m_Controls->m_GenerateFibersButton->setEnabled(true); m_Controls->m_FiberBundleLabel->setText(m_SelectedBundles.at(0)->GetName().c_str()); if (m_SelectedBundles.size()>1) m_Controls->m_JoinBundlesButton->setEnabled(true); } } void QmitkFiberfoxView::OnSelectionChanged( berry::IWorkbenchPart::Pointer, const QList& nodes ) { m_SelectedBundles2.clear(); m_SelectedImages.clear(); m_SelectedFiducials.clear(); m_SelectedFiducial = NULL; m_TissueMask = NULL; m_SelectedBundles.clear(); m_SelectedImage = NULL; m_SelectedDWI = NULL; m_Controls->m_TissueMaskLabel->setText("optional"); // iterate all selected objects, adjust warning visibility for( int i=0; i*>(node->GetData()) ) { m_SelectedDWI = node; m_SelectedImage = node; m_SelectedImages.push_back(node); } else if( node.IsNotNull() && dynamic_cast(node->GetData()) ) { m_SelectedImages.push_back(node); m_SelectedImage = node; bool isBinary = false; node->GetPropertyValue("binary", isBinary); if (isBinary) { m_TissueMask = dynamic_cast(node->GetData()); m_Controls->m_TissueMaskLabel->setText(node->GetName().c_str()); } } else if ( node.IsNotNull() && dynamic_cast(node->GetData()) ) { m_SelectedBundles2.push_back(node); if (m_Controls->m_RealTimeFibers->isChecked()) { m_SelectedBundles.push_back(node); mitk::FiberBundleX::Pointer newFib = dynamic_cast(node->GetData()); if (newFib->GetNumFibers()!=m_Controls->m_FiberDensityBox->value()) GenerateFibers(); } else m_SelectedBundles.push_back(node); } else if ( node.IsNotNull() && dynamic_cast(node->GetData()) ) { m_SelectedFiducials.push_back(node); m_SelectedFiducial = node; m_SelectedBundles.clear(); mitk::DataStorage::SetOfObjects::ConstPointer parents = GetDataStorage()->GetSources(node); for( mitk::DataStorage::SetOfObjects::const_iterator it = parents->begin(); it != parents->end(); ++it ) { mitk::DataNode::Pointer pNode = *it; if ( pNode.IsNotNull() && dynamic_cast(pNode->GetData()) ) m_SelectedBundles.push_back(pNode); } } } UpdateGui(); } void QmitkFiberfoxView::EnableCrosshairNavigation() { MITK_DEBUG << "EnableCrosshairNavigation"; // enable the crosshair navigation if (mitk::ILinkedRenderWindowPart* linkedRenderWindow = dynamic_cast(this->GetRenderWindowPart())) { MITK_DEBUG << "enabling linked navigation"; linkedRenderWindow->EnableLinkedNavigation(true); // linkedRenderWindow->EnableSlicingPlanes(true); } if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::DisableCrosshairNavigation() { MITK_DEBUG << "DisableCrosshairNavigation"; // disable the crosshair navigation during the drawing if (mitk::ILinkedRenderWindowPart* linkedRenderWindow = dynamic_cast(this->GetRenderWindowPart())) { MITK_DEBUG << "disabling linked navigation"; linkedRenderWindow->EnableLinkedNavigation(false); // linkedRenderWindow->EnableSlicingPlanes(false); } } void QmitkFiberfoxView::NodeRemoved(const mitk::DataNode* node) { mitk::DataNode* nonConstNode = const_cast(node); std::map::iterator it = m_DataNodeToPlanarFigureData.find(nonConstNode); if( it != m_DataNodeToPlanarFigureData.end() ) { QmitkPlanarFigureData& data = it->second; // remove observers data.m_Figure->RemoveObserver( data.m_EndPlacementObserverTag ); data.m_Figure->RemoveObserver( data.m_SelectObserverTag ); data.m_Figure->RemoveObserver( data.m_StartInteractionObserverTag ); data.m_Figure->RemoveObserver( data.m_EndInteractionObserverTag ); m_DataNodeToPlanarFigureData.erase( it ); } } void QmitkFiberfoxView::NodeAdded( const mitk::DataNode* node ) { // add observer for selection in renderwindow mitk::PlanarFigure* figure = dynamic_cast(node->GetData()); bool isPositionMarker (false); node->GetBoolProperty("isContourMarker", isPositionMarker); if( figure && !isPositionMarker ) { MITK_DEBUG << "figure added. will add interactor if needed."; mitk::PlanarFigureInteractor::Pointer figureInteractor = dynamic_cast(node->GetInteractor()); mitk::DataNode* nonConstNode = const_cast( node ); if(figureInteractor.IsNull()) { figureInteractor = mitk::PlanarFigureInteractor::New("PlanarFigureInteractor", nonConstNode); } else { // just to be sure that the interactor is not added twice mitk::GlobalInteraction::GetInstance()->RemoveInteractor(figureInteractor); } MITK_DEBUG << "adding interactor to globalinteraction"; mitk::GlobalInteraction::GetInstance()->AddInteractor(figureInteractor); MITK_DEBUG << "will now add observers for planarfigure"; QmitkPlanarFigureData data; data.m_Figure = figure; // // add observer for event when figure has been placed typedef itk::SimpleMemberCommand< QmitkFiberfoxView > SimpleCommandType; // SimpleCommandType::Pointer initializationCommand = SimpleCommandType::New(); // initializationCommand->SetCallbackFunction( this, &QmitkFiberfoxView::PlanarFigureInitialized ); // data.m_EndPlacementObserverTag = figure->AddObserver( mitk::EndPlacementPlanarFigureEvent(), initializationCommand ); // add observer for event when figure is picked (selected) typedef itk::MemberCommand< QmitkFiberfoxView > MemberCommandType; MemberCommandType::Pointer selectCommand = MemberCommandType::New(); selectCommand->SetCallbackFunction( this, &QmitkFiberfoxView::PlanarFigureSelected ); data.m_SelectObserverTag = figure->AddObserver( mitk::SelectPlanarFigureEvent(), selectCommand ); // add observer for event when interaction with figure starts SimpleCommandType::Pointer startInteractionCommand = SimpleCommandType::New(); startInteractionCommand->SetCallbackFunction( this, &QmitkFiberfoxView::DisableCrosshairNavigation); data.m_StartInteractionObserverTag = figure->AddObserver( mitk::StartInteractionPlanarFigureEvent(), startInteractionCommand ); // add observer for event when interaction with figure starts SimpleCommandType::Pointer endInteractionCommand = SimpleCommandType::New(); endInteractionCommand->SetCallbackFunction( this, &QmitkFiberfoxView::EnableCrosshairNavigation); data.m_EndInteractionObserverTag = figure->AddObserver( mitk::EndInteractionPlanarFigureEvent(), endInteractionCommand ); m_DataNodeToPlanarFigureData[nonConstNode] = data; } } void QmitkFiberfoxView::PlanarFigureSelected( itk::Object* object, const itk::EventObject& ) { mitk::TNodePredicateDataType::Pointer isPf = mitk::TNodePredicateDataType::New(); mitk::DataStorage::SetOfObjects::ConstPointer allPfs = this->GetDataStorage()->GetSubset( isPf ); for ( mitk::DataStorage::SetOfObjects::const_iterator it = allPfs->begin(); it!=allPfs->end(); ++it) { mitk::DataNode* node = *it; if( node->GetData() == object ) { node->SetSelected(true); m_SelectedFiducial = node; } else node->SetSelected(false); } UpdateGui(); this->RequestRenderWindowUpdate(); } void QmitkFiberfoxView::SetFocus() { m_Controls->m_CircleButton->setFocus(); } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkIVIMView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkIVIMView.cpp index 6ecdb77b95..737b6dd2df 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkIVIMView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkIVIMView.cpp @@ -1,815 +1,815 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Blueberry #include #include // Qmitk #include "QmitkIVIMView.h" #include "QmitkStdMultiWidget.h" // qt #include "qmessagebox.h" #include "qclipboard.h" // mitk #include "mitkDiffusionImage.h" #include "mitkImageCast.h" // itk #include "itkScalarImageToHistogramGenerator.h" #include "itkRegionOfInterestImageFilter.h" #include "itkImageRegionConstIteratorWithIndex.h" // itk/mitk #include "itkDiffusionIntravoxelIncoherentMotionReconstructionImageFilter.h" #include "itkRegularizedIVIMReconstructionFilter.h" #include "mitkImageCast.h" const std::string QmitkIVIMView::VIEW_ID = "org.mitk.views.ivim"; QmitkIVIMView::QmitkIVIMView() : QmitkFunctionality() , m_Controls( 0 ) , m_MultiWidget( NULL ) , m_Active(false) , m_SliceObserverTag1(0), m_SliceObserverTag2(0), m_SliceObserverTag3(0) , m_DiffusionImageNode(NULL) , m_MaskImageNode(NULL) { } QmitkIVIMView::~QmitkIVIMView() { // QmitkStdMultiWidget* MultiWidget = this->GetActiveStdMultiWidget(false); // if(MultiWidget) // { // //unregister observers when view is destroyed // if( MultiWidget->mitkWidget1 != NULL && m_SliceObserverTag1 != 0) // { // mitk::SliceNavigationController* slicer = MultiWidget->mitkWidget1->GetSliceNavigationController(); // slicer->RemoveObserver( m_SliceObserverTag1 ); // } // if( MultiWidget->mitkWidget2 != NULL && m_SliceObserverTag2 != 0) // { // mitk::SliceNavigationController* slicer = MultiWidget->mitkWidget2->GetSliceNavigationController(); // slicer->RemoveObserver( m_SliceObserverTag2 ); // } // if( MultiWidget->mitkWidget3!= NULL && m_SliceObserverTag3 != 0) // { // mitk::SliceNavigationController* slicer = MultiWidget->mitkWidget3->GetSliceNavigationController(); // slicer->RemoveObserver( m_SliceObserverTag3 ); // } // } } void QmitkIVIMView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkIVIMViewControls; m_Controls->setupUi( parent ); connect( m_Controls->m_ButtonStart, SIGNAL(clicked()), this, SLOT(FittIVIMStart()) ); connect( m_Controls->m_ButtonAutoThres, SIGNAL(clicked()), this, SLOT(AutoThreshold()) ); connect( m_Controls->m_MethodCombo, SIGNAL(currentIndexChanged(int)), this, SLOT(MethodCombo(int)) ); connect( m_Controls->m_DStarSlider, SIGNAL(valueChanged(int)), this, SLOT(DStarSlider(int)) ); connect( m_Controls->m_BThreshSlider, SIGNAL(valueChanged(int)), this, SLOT(BThreshSlider(int)) ); connect( m_Controls->m_S0ThreshSlider, SIGNAL(valueChanged(int)), this, SLOT(S0ThreshSlider(int)) ); connect( m_Controls->m_NumItSlider, SIGNAL(valueChanged(int)), this, SLOT(NumItsSlider(int)) ); connect( m_Controls->m_LambdaSlider, SIGNAL(valueChanged(int)), this, SLOT(LambdaSlider(int)) ); connect( m_Controls->m_CheckDStar, SIGNAL(clicked()), this, SLOT(Checkbox()) ); connect( m_Controls->m_CheckD, SIGNAL(clicked()), this, SLOT(Checkbox()) ); connect( m_Controls->m_Checkf, SIGNAL(clicked()), this, SLOT(Checkbox()) ); connect( m_Controls->m_ChooseMethod, SIGNAL(clicked()), this, SLOT(ChooseMethod()) ); connect( m_Controls->m_CurveClipboard, SIGNAL(clicked()), this, SLOT(ClipboardCurveButtonClicked()) ); connect( m_Controls->m_ValuesClipboard, SIGNAL(clicked()), this, SLOT(ClipboardStatisticsButtonClicked()) ); } QString dstar = QString::number(m_Controls->m_DStarSlider->value()/1000.0); m_Controls->m_DStarLabel->setText(dstar); QString bthresh = QString::number(m_Controls->m_BThreshSlider->value()*5.0); m_Controls->m_BThreshLabel->setText(bthresh); QString s0thresh = QString::number(m_Controls->m_S0ThreshSlider->value()*0.5); m_Controls->m_S0ThreshLabel->setText(s0thresh); QString numits = QString::number(m_Controls->m_NumItSlider->value()); m_Controls->m_NumItsLabel->setText(numits); QString lambda = QString::number(m_Controls->m_LambdaSlider->value()*.00001); m_Controls->m_LambdaLabel->setText(lambda); m_Controls->m_MethodCombo->setVisible(m_Controls->m_ChooseMethod->isChecked()); m_Controls->m_Warning->setVisible(false); MethodCombo(m_Controls->m_MethodCombo->currentIndex()); } void QmitkIVIMView::Checkbox() { itk::StartEvent dummy; OnSliceChanged(dummy); } void QmitkIVIMView::MethodCombo(int val) { switch(val) { case 0: m_Controls->m_DstarFrame->setVisible(false); m_Controls->m_NeglSiFrame->setVisible(true); m_Controls->m_NeglBframe->setVisible(false); m_Controls->m_IterationsFrame->setVisible(false); m_Controls->m_LambdaFrame->setVisible(false); break; case 1: m_Controls->m_DstarFrame->setVisible(true); m_Controls->m_NeglSiFrame->setVisible(true); m_Controls->m_NeglBframe->setVisible(false); m_Controls->m_IterationsFrame->setVisible(false); m_Controls->m_LambdaFrame->setVisible(false); break; case 2: m_Controls->m_DstarFrame->setVisible(false); m_Controls->m_NeglSiFrame->setVisible(true); m_Controls->m_NeglBframe->setVisible(true); m_Controls->m_IterationsFrame->setVisible(false); m_Controls->m_LambdaFrame->setVisible(false); break; case 3: m_Controls->m_DstarFrame->setVisible(false); m_Controls->m_NeglSiFrame->setVisible(true); m_Controls->m_NeglBframe->setVisible(true); m_Controls->m_IterationsFrame->setVisible(false); m_Controls->m_LambdaFrame->setVisible(false); break; case 4: m_Controls->m_DstarFrame->setVisible(false); m_Controls->m_NeglSiFrame->setVisible(false); m_Controls->m_NeglBframe->setVisible(false); m_Controls->m_IterationsFrame->setVisible(false); m_Controls->m_LambdaFrame->setVisible(false); break; } itk::StartEvent dummy; OnSliceChanged(dummy); } void QmitkIVIMView::DStarSlider (int val) { QString sval = QString::number(val/1000.0); m_Controls->m_DStarLabel->setText(sval); itk::StartEvent dummy; OnSliceChanged(dummy); } void QmitkIVIMView::BThreshSlider (int val) { QString sval = QString::number(val*5.0); m_Controls->m_BThreshLabel->setText(sval); itk::StartEvent dummy; OnSliceChanged(dummy); } void QmitkIVIMView::S0ThreshSlider (int val) { QString sval = QString::number(val*0.5); m_Controls->m_S0ThreshLabel->setText(sval); itk::StartEvent dummy; OnSliceChanged(dummy); } void QmitkIVIMView::NumItsSlider (int val) { QString sval = QString::number(val); m_Controls->m_NumItsLabel->setText(sval); itk::StartEvent dummy; OnSliceChanged(dummy); } void QmitkIVIMView::LambdaSlider (int val) { QString sval = QString::number(val*.00001); m_Controls->m_LambdaLabel->setText(sval); itk::StartEvent dummy; OnSliceChanged(dummy); } void QmitkIVIMView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget1->GetSliceNavigationController(); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkIVIMView::OnSliceChanged ); m_SliceObserverTag1 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(NULL, 0), command ); } { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget2->GetSliceNavigationController(); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkIVIMView::OnSliceChanged ); m_SliceObserverTag2 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(NULL, 0), command ); } { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget3->GetSliceNavigationController(); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkIVIMView::OnSliceChanged ); m_SliceObserverTag3 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(NULL, 0), command ); } } void QmitkIVIMView::StdMultiWidgetNotAvailable() { { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget1->GetSliceNavigationController(); slicer->RemoveObserver( m_SliceObserverTag1 ); } { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget2->GetSliceNavigationController(); slicer->RemoveObserver( m_SliceObserverTag2 ); } { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget3->GetSliceNavigationController(); slicer->RemoveObserver( m_SliceObserverTag3 ); } m_MultiWidget = NULL; } void QmitkIVIMView::OnSelectionChanged( std::vector nodes ) { bool foundOneDiffusionImage = false; m_Controls->m_InputData->setTitle("Please Select Input Data"); m_Controls->m_DiffusionImageLabel->setText("mandatory"); m_Controls->m_MaskImageLabel->setText("optional"); m_MaskImageNode = NULL; m_DiffusionImageNode = NULL; // iterate all selected objects, adjust warning visibility for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if( node.IsNotNull() && dynamic_cast(node->GetData()) ) { if( dynamic_cast*>(node->GetData()) ) { m_DiffusionImageNode = node; foundOneDiffusionImage = true; m_Controls->m_DiffusionImageLabel->setText(node->GetName().c_str()); } else { bool isBinary = false; node->GetPropertyValue("binary", isBinary); if (isBinary) { m_MaskImageNode = node; m_Controls->m_MaskImageLabel->setText(node->GetName().c_str()); } } } } if (m_DiffusionImageNode.IsNotNull()) { m_Controls->m_VisualizeResultsWidget->setVisible(true); m_Controls->m_InputData->setTitle("Input Data"); } else m_Controls->m_VisualizeResultsWidget->setVisible(false); m_Controls->m_ButtonStart->setEnabled( foundOneDiffusionImage ); m_Controls->m_ButtonAutoThres->setEnabled( foundOneDiffusionImage ); m_Controls->m_ControlsFrame->setEnabled( foundOneDiffusionImage ); m_Controls->m_BottomControlsFrame->setEnabled( foundOneDiffusionImage ); itk::StartEvent dummy; OnSliceChanged(dummy); } void QmitkIVIMView::AutoThreshold() { std::vector nodes = this->GetDataManagerSelection(); if (nodes.empty()) return; if (!nodes.front()) { // Nothing selected. Inform the user and return QMessageBox::information( NULL, "Template", "Please load and select a diffusion image before starting image processing."); return; } typedef mitk::DiffusionImage DiffImgType; DiffImgType* dimg = dynamic_cast(nodes.front()->GetData()); if (!dimg) { // Nothing selected. Inform the user and return QMessageBox::information( NULL, "Template", "No valid diffusion image was found."); return; } // find bzero index int index = -1; DiffImgType::GradientDirectionContainerType::Pointer directions = dimg->GetDirections(); for(DiffImgType::GradientDirectionContainerType::ConstIterator it = directions->Begin(); it != directions->End(); ++it) { index++; DiffImgType::GradientDirectionType g = it.Value(); if(g[0] == 0 && g[1] == 0 && g[2] == 0 ) break; } typedef itk::VectorImage VecImgType; VecImgType::Pointer vecimg = dimg->GetVectorImage(); int vecLength = vecimg->GetVectorLength(); index = index > vecLength-1 ? vecLength-1 : index; MITK_INFO << "Performing Histogram Analysis on Channel" << index; typedef itk::Image ImgType; ImgType::Pointer img = ImgType::New(); mitk::CastToItkImage(dimg, img); itk::ImageRegionIterator itw (img, img->GetLargestPossibleRegion() ); itw = itw.Begin(); itk::ImageRegionConstIterator itr (vecimg, vecimg->GetLargestPossibleRegion() ); itr = itr.Begin(); while(!itr.IsAtEnd()) { itw.Set(itr.Get().GetElement(index)); ++itr; ++itw; } typedef itk::Statistics::ScalarImageToHistogramGenerator< ImgType > HistogramGeneratorType; typedef HistogramGeneratorType::HistogramType HistogramType; HistogramGeneratorType::Pointer histogramGenerator = HistogramGeneratorType::New(); histogramGenerator->SetInput( img ); histogramGenerator->SetMarginalScale( 10 ); // Defines y-margin width of histogram histogramGenerator->SetNumberOfBins( 100 ); // CT range [-1024, +2048] --> bin size 4 values histogramGenerator->SetHistogramMin( dimg->GetScalarValueMin() ); histogramGenerator->SetHistogramMax( dimg->GetScalarValueMax() * .5 ); histogramGenerator->Compute(); HistogramType::ConstIterator iter = histogramGenerator->GetOutput()->Begin(); float maxFreq = 0; float maxValue = 0; while ( iter != histogramGenerator->GetOutput()->End() ) { if(iter.GetFrequency() > maxFreq) { maxFreq = iter.GetFrequency(); maxValue = iter.GetMeasurementVector()[0]; } ++iter; } maxValue *= 2; int sliderPos = maxValue * 2; m_Controls->m_S0ThreshSlider->setValue(sliderPos); S0ThreshSlider(sliderPos); } void QmitkIVIMView::FittIVIMStart() { std::vector nodes = this->GetDataManagerSelection(); mitk::DiffusionImage* img = 0; for ( int i=0; i*>(nodes.at(i)->GetData()); if (img) break; } if (!img) { QMessageBox::information( NULL, "Template", "No valid diffusion image was found."); return; } typedef itk::VectorImage VecImgType; VecImgType::Pointer vecimg = img->GetVectorImage(); OutImgType::IndexType dummy; FittIVIM(vecimg, img->GetDirections(), img->GetB_Value(), true, dummy); OutputToDatastorage(nodes); } void QmitkIVIMView::OnSliceChanged(const itk::EventObject& /*e*/) { if(!m_Visible) return; m_Controls->m_Warning->setVisible(false); if(!m_Controls || m_DiffusionImageNode.IsNull()) return; m_Controls->m_VisualizeResultsWidget->setVisible(false); mitk::DiffusionImage::Pointer diffusionImg = dynamic_cast*>(m_DiffusionImageNode->GetData()); mitk::Image::Pointer maskImg = NULL; if (m_MaskImageNode.IsNotNull()) maskImg = dynamic_cast(m_MaskImageNode->GetData()); if (!m_MultiWidget) return; typedef itk::VectorImage VecImgType; VecImgType::Pointer vecimg = (VecImgType*)diffusionImg->GetVectorImage().GetPointer(); VecImgType::Pointer roiImage = VecImgType::New(); bool success = false; if(maskImg.IsNull()) { int roisize = 0; if(m_Controls->m_MethodCombo->currentIndex() == 4) roisize = 5; mitk::Point3D pos = m_MultiWidget->GetCrossPosition(); VecImgType::IndexType crosspos; - diffusionImg->GetTimeSlicedGeometry()->WorldToIndex(pos, crosspos); + diffusionImg->GetGeometry()->WorldToIndex(pos, crosspos); if (!vecimg->GetLargestPossibleRegion().IsInside(crosspos)) { m_Controls->m_Warning->setText(QString("Crosshair position not inside of selected diffusion weighted image. Reinit needed!")); m_Controls->m_Warning->setVisible(true); return; } else m_Controls->m_Warning->setVisible(false); VecImgType::IndexType index; index[0] = crosspos[0] - roisize; index[0] = index[0] < 0 ? 0 : index[0]; index[1] = crosspos[1] - roisize; index[1] = index[1] < 0 ? 0 : index[1]; index[2] = crosspos[2] - roisize; index[2] = index[2] < 0 ? 0 : index[2]; VecImgType::SizeType size; size[0] = roisize*2+1; size[1] = roisize*2+1; size[2] = roisize*2+1; VecImgType::SizeType maxSize = vecimg->GetLargestPossibleRegion().GetSize(); size[0] = index[0]+size[0] > maxSize[0] ? maxSize[0]-index[0] : size[0]; size[1] = index[1]+size[1] > maxSize[1] ? maxSize[1]-index[1] : size[1]; size[2] = index[2]+size[2] > maxSize[2] ? maxSize[2]-index[2] : size[2]; VecImgType::RegionType region; region.SetSize( size ); region.SetIndex( index ); vecimg->SetRequestedRegion( region ); VecImgType::IndexType newstart; newstart.Fill(0); VecImgType::RegionType newregion; newregion.SetSize( size ); newregion.SetIndex( newstart ); roiImage->CopyInformation( vecimg ); roiImage->SetRegions( newregion ); roiImage->SetOrigin( pos ); roiImage->Allocate(); roiImage->SetPixel(newstart, vecimg->GetPixel(index)); success = FittIVIM(roiImage, diffusionImg->GetDirections(), diffusionImg->GetB_Value(), false, crosspos); } else { typedef itk::Image MaskImgType; MaskImgType::Pointer maskItk; CastToItkImage( maskImg, maskItk ); mitk::Point3D pos; pos[0] = 0; pos[1] = 0; pos[2] = 0; VecImgType::IndexType index; index[0] = 0; index[1] = 0; index[2] = 0; VecImgType::SizeType size; size[0] = 1; size[1] = 1; size[2] = 1; VecImgType::RegionType region; region.SetSize( size ); region.SetIndex( index ); vecimg->SetRequestedRegion( region ); // iterators over output and input itk::ImageRegionConstIteratorWithIndex vecit(vecimg, vecimg->GetLargestPossibleRegion()); itk::VariableLengthVector avg(vecimg->GetVectorLength()); avg.Fill(0); float numPixels = 0; while ( ! vecit.IsAtEnd() ) { VecImgType::PointType point; vecimg->TransformIndexToPhysicalPoint(vecit.GetIndex(), point); MaskImgType::IndexType index; maskItk->TransformPhysicalPointToIndex(point, index); if(maskItk->GetPixel(index) != 0) { avg += vecit.Get(); numPixels += 1.0; } // update iterators ++vecit; } avg /= numPixels; m_Controls->m_Warning->setText(QString("Averaging ")+QString::number((int)numPixels)+QString(" voxels!")); m_Controls->m_Warning->setVisible(true); roiImage->CopyInformation( vecimg ); roiImage->SetRegions( region ); roiImage->SetOrigin( pos ); roiImage->Allocate(); roiImage->SetPixel(index, avg); success = FittIVIM(roiImage, diffusionImg->GetDirections(), diffusionImg->GetB_Value(), false, index); } vecimg->SetRegions( vecimg->GetLargestPossibleRegion() ); if (success) { m_Controls->m_VisualizeResultsWidget->setVisible(true); m_Controls->m_VisualizeResultsWidget->SetParameters(m_Snap); } } bool QmitkIVIMView::FittIVIM(itk::VectorImage* vecimg, DirContainerType* dirs, float bval, bool multivoxel, OutImgType::IndexType &crosspos) { IVIMFilterType::Pointer filter = IVIMFilterType::New(); filter->SetInput(vecimg); filter->SetGradientDirections(dirs); filter->SetBValue(bval); switch(m_Controls->m_MethodCombo->currentIndex()) { case 0: filter->SetMethod(IVIMFilterType::IVIM_FIT_ALL); filter->SetS0Thres(m_Controls->m_S0ThreshLabel->text().toDouble()); break; case 1: filter->SetMethod(IVIMFilterType::IVIM_DSTAR_FIX); filter->SetDStar(m_Controls->m_DStarLabel->text().toDouble()); filter->SetS0Thres(m_Controls->m_S0ThreshLabel->text().toDouble()); break; case 2: filter->SetMethod(IVIMFilterType::IVIM_D_THEN_DSTAR); filter->SetBThres(m_Controls->m_BThreshLabel->text().toDouble()); filter->SetS0Thres(m_Controls->m_S0ThreshLabel->text().toDouble()); filter->SetFitDStar(m_Controls->m_CheckDStar->isChecked()); break; case 3: filter->SetMethod(IVIMFilterType::IVIM_LINEAR_D_THEN_F); filter->SetBThres(m_Controls->m_BThreshLabel->text().toDouble()); filter->SetS0Thres(m_Controls->m_S0ThreshLabel->text().toDouble()); filter->SetFitDStar(m_Controls->m_CheckDStar->isChecked()); break; case 4: filter->SetMethod(IVIMFilterType::IVIM_REGULARIZED); filter->SetBThres(m_Controls->m_BThreshLabel->text().toDouble()); filter->SetS0Thres(m_Controls->m_S0ThreshLabel->text().toDouble()); filter->SetNumberIterations(m_Controls->m_NumItsLabel->text().toInt()); filter->SetLambda(m_Controls->m_LambdaLabel->text().toDouble()); filter->SetFitDStar(m_Controls->m_CheckDStar->isChecked()); break; } if(!multivoxel) { filter->SetFitDStar(true); } filter->SetNumberOfThreads(1); filter->SetVerbose(false); filter->SetCrossPosition(crosspos); try{ filter->Update(); m_Snap = filter->GetSnapshot(); m_DStarMap = filter->GetOutput(2); m_DMap = filter->GetOutput(1); m_fMap = filter->GetOutput(0); } catch (itk::ExceptionObject &ex) { MITK_INFO << ex ; m_Controls->m_Warning->setText(QString("IVIM fit not possible: ")+ex.GetDescription()); m_Controls->m_Warning->setVisible(true); return false; } return true; } void QmitkIVIMView::OutputToDatastorage(std::vector nodes) { // Outputs to Datastorage QString basename(nodes.front()->GetName().c_str()); if(m_Controls->m_CheckDStar->isChecked()) { mitk::Image::Pointer dstarimage = mitk::Image::New(); dstarimage->InitializeByItk(m_DStarMap.GetPointer()); dstarimage->SetVolume(m_DStarMap->GetBufferPointer()); QString newname2 = basename; newname2 = newname2.append("_DStarMap_%1").arg(m_Controls->m_MethodCombo->currentText()); mitk::DataNode::Pointer node2=mitk::DataNode::New(); node2->SetData( dstarimage ); node2->SetName(newname2.toAscii()); GetDefaultDataStorage()->Add(node2); } if(m_Controls->m_CheckD->isChecked()) { mitk::Image::Pointer dimage = mitk::Image::New(); dimage->InitializeByItk(m_DMap.GetPointer()); dimage->SetVolume(m_DMap->GetBufferPointer()); QString newname1 = basename; newname1 = newname1.append("_DMap_%1").arg(m_Controls->m_MethodCombo->currentText()); mitk::DataNode::Pointer node1=mitk::DataNode::New(); node1->SetData( dimage ); node1->SetName(newname1.toAscii()); GetDefaultDataStorage()->Add(node1); } if(m_Controls->m_Checkf->isChecked()) { mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(m_fMap.GetPointer()); image->SetVolume(m_fMap->GetBufferPointer()); QString newname0 = basename; newname0 = newname0.append("_fMap_%1").arg(m_Controls->m_MethodCombo->currentText()); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( image ); node->SetName(newname0.toAscii()); GetDefaultDataStorage()->Add(node); } m_MultiWidget->RequestUpdate(); } void QmitkIVIMView::ChooseMethod() { m_Controls->m_MethodCombo->setVisible(m_Controls->m_ChooseMethod->isChecked()); } void QmitkIVIMView::ClipboardCurveButtonClicked() { if(true) { QString clipboard("Measurement Points\n"); for ( int i=0; isetText( clipboard, QClipboard::Clipboard ); } else { QApplication::clipboard()->clear(); } } void QmitkIVIMView::ClipboardStatisticsButtonClicked() { if ( true ) { QString clipboard( "f \t D \t D* \n" ); clipboard = clipboard.append( "%L1 \t %L2 \t %L3" ) .arg( m_Snap.currentF, 0, 'f', 10 ) .arg( m_Snap.currentD, 0, 'f', 10 ) .arg( m_Snap.currentDStar, 0, 'f', 10 ) ; QApplication::clipboard()->setText( clipboard, QClipboard::Clipboard ); } else { QApplication::clipboard()->clear(); } } void QmitkIVIMView::Activated() { m_Active = true; } void QmitkIVIMView::Deactivated() { m_Active = false; } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkODFDetailsView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkODFDetailsView.cpp index 91fb6a4289..89fa93dd37 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkODFDetailsView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkODFDetailsView.cpp @@ -1,366 +1,366 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Blueberry #include #include // Qmitk #include "QmitkODFDetailsView.h" #include #include #include #include #include #include #include #include #include #include #include #include const std::string QmitkODFDetailsView::VIEW_ID = "org.mitk.views.odfdetails"; QmitkODFDetailsView::QmitkODFDetailsView() : QmitkFunctionality() , m_Controls( 0 ) , m_MultiWidget( NULL ) , m_OdfNormalization(0) , m_ImageNode(NULL) { m_VtkActor = vtkActor::New(); m_VtkMapper = vtkPolyDataMapper::New(); m_Renderer = vtkRenderer::New(); m_VtkRenderWindow = vtkRenderWindow::New(); m_RenderWindowInteractor = vtkRenderWindowInteractor::New(); m_Camera = vtkCamera::New(); m_VtkRenderWindow->SetSize(300,300); } QmitkODFDetailsView::~QmitkODFDetailsView() { } void QmitkODFDetailsView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkODFDetailsViewControls; m_Controls->setupUi( parent ); m_Controls->m_OdfBox->setVisible(false); m_Controls->m_ODFRenderWidget->setVisible(false); } } void QmitkODFDetailsView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget1->GetSliceNavigationController(); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkODFDetailsView::OnSliceChanged ); m_SliceObserverTag1 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(NULL, 0), command ); } { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget2->GetSliceNavigationController(); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkODFDetailsView::OnSliceChanged ); m_SliceObserverTag2 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(NULL, 0), command ); } { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget3->GetSliceNavigationController(); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkODFDetailsView::OnSliceChanged ); m_SliceObserverTag3 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(NULL, 0), command ); } } void QmitkODFDetailsView::StdMultiWidgetNotAvailable() { { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget1->GetSliceNavigationController(); slicer->RemoveObserver( m_SliceObserverTag1 ); } { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget2->GetSliceNavigationController(); slicer->RemoveObserver( m_SliceObserverTag2 ); } { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget3->GetSliceNavigationController(); slicer->RemoveObserver( m_SliceObserverTag3 ); } m_MultiWidget = NULL; } void QmitkODFDetailsView::OnSelectionChanged( std::vector nodes ) { if (m_ImageNode.IsNotNull()) m_ImageNode->RemoveObserver( m_PropertyObserverTag ); m_Controls->m_InputData->setTitle("Please Select Input Data"); m_Controls->m_InputImageLabel->setText("mandatory"); m_ImageNode = NULL; // iterate selection for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if( node.IsNotNull() && (dynamic_cast(node->GetData()) || dynamic_cast(node->GetData())) ) { m_Controls->m_InputImageLabel->setText(node->GetName().c_str()); m_ImageNode = node; } } UpdateOdf(); if (m_ImageNode.IsNotNull()) { itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkODFDetailsView::OnSliceChanged ); m_PropertyObserverTag = m_ImageNode->AddObserver( itk::ModifiedEvent(), command ); m_Controls->m_InputData->setTitle("Input Data"); } } void QmitkODFDetailsView::UpdateOdf() { try { m_Controls->m_OverviewBox->setVisible(true); if (m_ImageNode.IsNull() || !m_MultiWidget) { m_Controls->m_ODFRenderWidget->setVisible(false); m_Controls->m_OdfBox->setVisible(false); m_Controls->m_OverviewBox->setVisible(false); return; } // restore the input image label ( needed in case the last run resulted into an exception ) m_Controls->m_InputImageLabel->setText(m_ImageNode->GetName().c_str()); // ODF Normalization Property mitk::OdfNormalizationMethodProperty* nmp = dynamic_cast(m_ImageNode->GetProperty( "Normalization" )); if(nmp) m_OdfNormalization = nmp->GetNormalization(); m_TemplateOdf = itk::OrientationDistributionFunction::GetBaseMesh(); m_OdfTransform = vtkSmartPointer::New(); m_OdfTransform->Identity(); m_OdfVals = vtkSmartPointer::New(); m_OdfSource = vtkSmartPointer::New(); itk::OrientationDistributionFunction odf; mitk::Point3D world = m_MultiWidget->GetCrossPosition(); mitk::Point3D index; mitk::Image::Pointer img = dynamic_cast(m_ImageNode->GetData()); unsigned int *img_dimension = img->GetDimensions(); - img->GetTimeSlicedGeometry()->WorldToIndex(world, index); + img->GetGeometry()->WorldToIndex(world, index); float sum = 0; float max = itk::NumericTraits::NonpositiveMin(); float min = itk::NumericTraits::max(); QString values; QString overviewText; // check if dynamic_cast successfull and if the crosshair position is inside of the geometry of the ODF data // otherwise possible crash for a scenario with multiple nodes if (dynamic_cast(m_ImageNode->GetData()) && ( m_ImageNode->GetData()->GetGeometry()->IsInside(world) ) ) { m_Controls->m_ODFRenderWidget->setVisible(true); m_Controls->m_OdfBox->setVisible(true); try { mitk::QBallImage* qball_image = dynamic_cast< mitk::QBallImage* >( m_ImageNode->GetData() ); // get access to the qball image data with explicitely allowing exceptions if memory locked mitk::ImageReadAccessor readAccess( qball_image, qball_image->GetVolumeData(0), mitk::ImageAccessorBase::ExceptionIfLocked ); const float* qball_cPtr = static_cast< const float*>(readAccess.GetData()); OdfVectorImgType::IndexType ind; ind[0] = (int)(index[0]+0.5); ind[1] = (int)(index[1]+0.5); ind[2] = (int)(index[2]+0.5); // pixel size = QBALL_ODFSIZE // position offset = standard offset unsigned int offset_to_data = QBALL_ODFSIZE * (ind[2] * img_dimension[1] * img_dimension[0] + ind[1] * img_dimension[0] + ind[0]); const float *pixel_data = qball_cPtr + offset_to_data; for (int i=0; imax) max = val; if (val pd = odf.GetDirection(odf.GetPrincipleDiffusionDirection()); overviewText += "Main Diffusion:\n "+QString::number(pd[0])+"\n "+QString::number(pd[1])+"\n "+QString::number(pd[2])+"\n"; m_Controls->m_OdfValuesTextEdit->setText(values); m_Controls->m_OverviewTextEdit->setVisible(true); } catch( mitk::Exception &e ) { MITK_WARN << "LOCKED : " << e.what(); m_Controls->m_ODFRenderWidget->setVisible(false); m_Controls->m_OdfBox->setVisible(false); m_Controls->m_OverviewTextEdit->setVisible(false); // reset the selection m_Controls->m_InputImageLabel->setText("Click image to restore rendering!"); } } else if (dynamic_cast(m_ImageNode->GetData())) { m_Controls->m_ODFRenderWidget->setVisible(true); m_Controls->m_OdfBox->setVisible(false); mitk::TensorImage* qball_image = dynamic_cast< mitk::TensorImage*>(m_ImageNode->GetData()); // pixel access block try { // get access to the qball image data with explicitely allowing exceptions if memory locked mitk::ImageReadAccessor readAccess( qball_image, qball_image->GetVolumeData(0), mitk::ImageAccessorBase::ExceptionIfLocked ); const float* qball_cPtr = static_cast< const float*>(readAccess.GetData()); TensorImageType::IndexType ind; ind[0] = (int)(index[0]+0.5); ind[1] = (int)(index[1]+0.5); ind[2] = (int)(index[2]+0.5); // 6 - tensorsize // remaining computation - standard offset unsigned int offset_to_data = 6 * (ind[2] * img_dimension[1] * img_dimension[0] + ind[1] * img_dimension[0] + ind[0]); const float *pixel_data = qball_cPtr + offset_to_data; float tensorelems[6] = { *(pixel_data ), *(pixel_data + 1), *(pixel_data + 2), *(pixel_data + 3), *(pixel_data + 4), *(pixel_data + 5), }; itk::DiffusionTensor3D tensor(tensorelems); odf.InitFromTensor(tensor); /** Array of eigen-values. */ typedef itk::FixedArray EigenValuesArrayType; /** Matrix of eigen-vectors. */ typedef itk::Matrix MatrixType; typedef itk::Matrix EigenVectorsMatrixType; EigenValuesArrayType eigenValues; EigenVectorsMatrixType eigenVectors; QString pos = QString::number(ind[0])+", "+QString::number(ind[1])+", "+QString::number(ind[2]); overviewText += "Coordinates: "+pos+"\n"; overviewText += "FA: "+QString::number(tensor.GetFractionalAnisotropy())+"\n"; overviewText += "RA: "+QString::number(tensor.GetRelativeAnisotropy())+"\n"; overviewText += "Trace: "+QString::number(tensor.GetTrace())+"\n"; tensor.ComputeEigenAnalysis(eigenValues,eigenVectors); overviewText += "Eigenvalues:\n "+QString::number(eigenValues[2])+"\n "+QString::number(eigenValues[1])+"\n "+QString::number(eigenValues[0])+"\n"; overviewText += "Main Diffusion:\n "+QString::number(eigenVectors[0][0])+"\n "+QString::number(eigenVectors[1][0])+"\n "+QString::number(eigenVectors[2][0])+"\n"; overviewText += "Values:\n "+QString::number(tensorelems[0])+"\n "+QString::number(tensorelems[1])+"\n "+QString::number(tensorelems[2])+"\n "+QString::number(tensorelems[3])+"\n "+QString::number(tensorelems[4])+"\n "+QString::number(tensorelems[5])+"\n "+"\n"; m_Controls->m_OverviewTextEdit->setVisible(true); } // end pixel access block catch(mitk::Exception &e ) { MITK_WARN << "LOCKED : " << e.what(); m_Controls->m_ODFRenderWidget->setVisible(false); m_Controls->m_OdfBox->setVisible(false); m_Controls->m_OverviewTextEdit->setVisible(false); // reset the selection m_Controls->m_InputImageLabel->setText("Click image to restore rendering!"); } } else { m_Controls->m_ODFRenderWidget->setVisible(false); m_Controls->m_OdfBox->setVisible(false); overviewText += "Please reinit image geometry.\n"; } // proceed only if the render widget is visible which indicates that the // predecessing computations were successfull if( m_Controls->m_ODFRenderWidget->isVisible() ) { m_Controls->m_ODFDetailsWidget->SetParameters(odf); switch(m_OdfNormalization) { case 0: odf = odf.MinMaxNormalize(); break; case 1: odf = odf.MaxNormalize(); break; case 2: odf = odf.MaxNormalize(); break; default: odf = odf.MinMaxNormalize(); } m_Controls->m_ODFRenderWidget->GenerateODF(odf); m_Controls->m_OverviewTextEdit->setText(overviewText.toStdString().c_str()); } } catch(...) { QMessageBox::critical(0, "Error", "Data could not be analyzed. The image might be corrupted."); } } void QmitkODFDetailsView::OnSliceChanged(const itk::EventObject& /*e*/) { UpdateOdf(); } diff --git a/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkPointBasedRegistrationView.cpp b/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkPointBasedRegistrationView.cpp index 0f62da5d3b..697c66ac8b 100644 --- a/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkPointBasedRegistrationView.cpp +++ b/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkPointBasedRegistrationView.cpp @@ -1,1359 +1,1359 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkPointBasedRegistrationView.h" #include "ui_QmitkPointBasedRegistrationViewControls.h" #include "QmitkPointListWidget.h" #include #include #include #include #include #include "QmitkCommonFunctionality.h" #include "qradiobutton.h" #include "qapplication.h" #include #include #include #include #include "qmessagebox.h" #include "mitkLandmarkWarping.h" #include #include #include "mitkOperationEvent.h" #include "mitkUndoController.h" #include #include #include "mitkNodePredicateDataType.h" #include "mitkNodePredicateProperty.h" #include "mitkNodePredicateAnd.h" #include "mitkNodePredicateNot.h" #include #include #include "mitkDataNodeObject.h" #include "berryIWorkbenchWindow.h" #include "berryISelectionService.h" const std::string QmitkPointBasedRegistrationView::VIEW_ID = "org.mitk.views.pointbasedregistration"; using namespace berry; struct SelListenerPointBasedRegistration : ISelectionListener { berryObjectMacro(SelListenerPointBasedRegistration); SelListenerPointBasedRegistration(QmitkPointBasedRegistrationView* view) { m_View = view; } void DoSelectionChanged(ISelection::ConstPointer selection) { // if(!m_View->IsVisible()) // return; // save current selection in member variable m_View->m_CurrentSelection = selection.Cast(); // do something with the selected items if(m_View->m_CurrentSelection) { if (m_View->m_CurrentSelection->Size() != 2) { if (m_View->m_FixedNode.IsNull() || m_View->m_MovingNode.IsNull()) { m_View->m_Controls.m_StatusLabel->show(); m_View->m_Controls.TextLabelFixed->hide(); m_View->m_Controls.m_FixedLabel->hide(); m_View->m_Controls.line2->hide(); m_View->m_Controls.m_FixedPointListWidget->hide(); m_View->m_Controls.TextLabelMoving->hide(); m_View->m_Controls.m_MovingLabel->hide(); m_View->m_Controls.line1->hide(); m_View->m_Controls.m_MovingPointListWidget->hide(); m_View->m_Controls.m_OpacityLabel->hide(); m_View->m_Controls.m_OpacitySlider->hide(); m_View->m_Controls.label->hide(); m_View->m_Controls.label_2->hide(); m_View->m_Controls.m_SwitchImages->hide(); m_View->m_Controls.m_ShowRedGreenValues->setEnabled(false); } } else { m_View->m_Controls.m_StatusLabel->hide(); bool foundFixedImage = false; mitk::DataNode::Pointer fixedNode; // iterate selection for (IStructuredSelection::iterator i = m_View->m_CurrentSelection->Begin(); i != m_View->m_CurrentSelection->End(); ++i) { // extract datatree node if (mitk::DataNodeObject::Pointer nodeObj = i->Cast()) { mitk::TNodePredicateDataType::Pointer isBaseData(mitk::TNodePredicateDataType::New()); mitk::TNodePredicateDataType::Pointer isPointSet(mitk::TNodePredicateDataType::New()); mitk::NodePredicateNot::Pointer notPointSet = mitk::NodePredicateNot::New(isPointSet); mitk::TNodePredicateDataType::Pointer isGeometry2DData(mitk::TNodePredicateDataType::New()); mitk::NodePredicateNot::Pointer notGeometry2DData = mitk::NodePredicateNot::New(isGeometry2DData); mitk::NodePredicateAnd::Pointer notPointSetAndNotGeometry2DData = mitk::NodePredicateAnd::New( notPointSet, notGeometry2DData ); mitk::NodePredicateAnd::Pointer predicate = mitk::NodePredicateAnd::New( isBaseData, notPointSetAndNotGeometry2DData ); mitk::DataStorage::SetOfObjects::ConstPointer setOfObjects = m_View->GetDataStorage()->GetSubset(predicate); mitk::DataNode::Pointer node = nodeObj->GetDataNode(); // only look at interesting types for (mitk::DataStorage::SetOfObjects::ConstIterator nodeIt = setOfObjects->Begin() ; nodeIt != setOfObjects->End(); ++nodeIt) // for each node { if(nodeIt->Value().GetPointer() == node.GetPointer()) { // was - compare() // use contain to allow other Image types to be selected, i.e. a diffusion image if (QString( node->GetData()->GetNameOfClass() ).contains("Image") ) { // verify that the node selected by name is really an image or derived class mitk::Image* _image = dynamic_cast(node->GetData()); if (_image != NULL) { if( _image->GetDimension() == 4) { m_View->m_Controls.m_StatusLabel->show(); QMessageBox::information( NULL, "PointBasedRegistration", "Only 2D or 3D images can be processed.", QMessageBox::Ok ); return; } if (foundFixedImage == false) { fixedNode = node; foundFixedImage = true; } else { m_View->SetImagesVisible(selection); m_View->FixedSelected(fixedNode); m_View->MovingSelected(node); m_View->m_Controls.m_StatusLabel->hide(); m_View->m_Controls.TextLabelFixed->show(); m_View->m_Controls.m_FixedLabel->show(); m_View->m_Controls.line2->show(); m_View->m_Controls.m_FixedPointListWidget->show(); m_View->m_Controls.TextLabelMoving->show(); m_View->m_Controls.m_MovingLabel->show(); m_View->m_Controls.line1->show(); m_View->m_Controls.m_MovingPointListWidget->show(); m_View->m_Controls.m_OpacityLabel->show(); m_View->m_Controls.m_OpacitySlider->show(); m_View->m_Controls.label->show(); m_View->m_Controls.label_2->show(); m_View->m_Controls.m_SwitchImages->show(); m_View->m_Controls.m_ShowRedGreenValues->setEnabled(true); } } } else { m_View->m_Controls.m_StatusLabel->show(); return; } } } } } if (m_View->m_FixedNode.IsNull() || m_View->m_MovingNode.IsNull()) { m_View->m_Controls.m_StatusLabel->show(); } } } else if (m_View->m_FixedNode.IsNull() || m_View->m_MovingNode.IsNull()) { m_View->m_Controls.m_StatusLabel->show(); } } void SelectionChanged(IWorkbenchPart::Pointer part, ISelection::ConstPointer selection) { // check, if selection comes from datamanager if (part) { QString partname(part->GetPartName().c_str()); if(partname.compare("Datamanager")==0) { // apply selection DoSelectionChanged(selection); } } } QmitkPointBasedRegistrationView* m_View; }; QmitkPointBasedRegistrationView::QmitkPointBasedRegistrationView(QObject * /*parent*/, const char * /*name*/) : QmitkFunctionality(), m_SelListener(0), m_MultiWidget(NULL), m_FixedLandmarks(NULL), m_MovingLandmarks(NULL), m_MovingNode(NULL), m_FixedNode(NULL), m_ShowRedGreen(false), m_Opacity(0.5), m_OriginalOpacity(1.0), m_Transformation(0), m_HideFixedImage(false), m_HideMovingImage(false), m_OldFixedLabel(""), m_OldMovingLabel(""), m_Deactivated (false), m_CurrentFixedLandmarksObserverID(0), m_CurrentMovingLandmarksObserverID(0) { m_FixedLandmarksChangedCommand = itk::SimpleMemberCommand::New(); m_FixedLandmarksChangedCommand->SetCallbackFunction(this, &QmitkPointBasedRegistrationView::updateFixedLandmarksList); m_MovingLandmarksChangedCommand = itk::SimpleMemberCommand::New(); m_MovingLandmarksChangedCommand->SetCallbackFunction(this, &QmitkPointBasedRegistrationView::updateMovingLandmarksList); this->GetDataStorage()->RemoveNodeEvent.AddListener(mitk::MessageDelegate1 ( this, &QmitkPointBasedRegistrationView::DataNodeHasBeenRemoved )); } QmitkPointBasedRegistrationView::~QmitkPointBasedRegistrationView() { if(m_SelListener.IsNotNull()) { berry::ISelectionService* s = GetSite()->GetWorkbenchWindow()->GetSelectionService(); if(s) s->RemovePostSelectionListener(m_SelListener); m_SelListener = NULL; } if (m_FixedPointSetNode.IsNotNull()) { m_Controls.m_FixedPointListWidget->DeactivateInteractor(true); m_FixedPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldFixedLabel)); } if (m_MovingPointSetNode.IsNotNull()) { m_Controls.m_MovingPointListWidget->DeactivateInteractor(true); m_MovingPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldMovingLabel)); } m_Controls.m_FixedPointListWidget->SetPointSetNode(NULL); m_Controls.m_MovingPointListWidget->SetPointSetNode(NULL); } void QmitkPointBasedRegistrationView::CreateQtPartControl(QWidget* parent) { m_Controls.setupUi(parent); m_Parent->setEnabled(false); m_Controls.m_MeanErrorLCD->hide(); m_Controls.m_MeanError->hide(); m_Controls.TextLabelFixed->hide(); m_Controls.line2->hide(); m_Controls.m_FixedPointListWidget->hide(); m_Controls.m_FixedLabel->hide(); m_Controls.TextLabelMoving->hide(); m_Controls.m_MovingLabel->hide(); m_Controls.line1->hide(); m_Controls.m_MovingPointListWidget->hide(); m_Controls.m_OpacityLabel->hide(); m_Controls.m_OpacitySlider->hide(); m_Controls.label->hide(); m_Controls.label_2->hide(); m_Controls.m_SwitchImages->hide(); m_Controls.m_ShowRedGreenValues->setEnabled(false); this->CreateConnections(); // let the point set widget know about the multi widget (cross hair updates) m_Controls.m_FixedPointListWidget->SetMultiWidget( m_MultiWidget ); m_Controls.m_MovingPointListWidget->SetMultiWidget( m_MultiWidget ); } void QmitkPointBasedRegistrationView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_Parent->setEnabled(true); m_MultiWidget = &stdMultiWidget; m_MultiWidget->SetWidgetPlanesVisibility(true); m_Controls.m_FixedPointListWidget->SetMultiWidget( m_MultiWidget ); m_Controls.m_MovingPointListWidget->SetMultiWidget( m_MultiWidget ); } void QmitkPointBasedRegistrationView::StdMultiWidgetNotAvailable() { m_Parent->setEnabled(false); m_MultiWidget = NULL; m_Controls.m_FixedPointListWidget->SetMultiWidget( NULL ); m_Controls.m_MovingPointListWidget->SetMultiWidget( NULL ); } void QmitkPointBasedRegistrationView::CreateConnections() { connect( (QObject*)(m_Controls.m_FixedPointListWidget), SIGNAL(EditPointSets(bool)), (QObject*)(m_Controls.m_MovingPointListWidget), SLOT(DeactivateInteractor(bool))); connect( (QObject*)(m_Controls.m_MovingPointListWidget), SIGNAL(EditPointSets(bool)), (QObject*)(m_Controls.m_FixedPointListWidget), SLOT(DeactivateInteractor(bool))); connect( (QObject*)(m_Controls.m_FixedPointListWidget), SIGNAL(EditPointSets(bool)), this, SLOT(HideMovingImage(bool))); connect( (QObject*)(m_Controls.m_MovingPointListWidget), SIGNAL(EditPointSets(bool)), this, SLOT(HideFixedImage(bool))); connect( (QObject*)(m_Controls.m_FixedPointListWidget), SIGNAL(PointListChanged()), this, SLOT(updateFixedLandmarksList())); connect( (QObject*)(m_Controls.m_MovingPointListWidget), SIGNAL(PointListChanged()), this, SLOT(updateMovingLandmarksList())); connect((QObject*)(m_Controls.m_Calculate),SIGNAL(clicked()),this,SLOT(calculate())); connect((QObject*)(m_Controls.m_SwitchImages),SIGNAL(clicked()),this,SLOT(SwitchImages())); connect((QObject*)(m_Controls.m_UndoTransformation),SIGNAL(clicked()),this,SLOT(UndoTransformation())); connect((QObject*)(m_Controls.m_RedoTransformation),SIGNAL(clicked()),this,SLOT(RedoTransformation())); connect((QObject*)(m_Controls.m_ShowRedGreenValues),SIGNAL(toggled(bool)),this,SLOT(showRedGreen(bool))); connect((QObject*)(m_Controls.m_OpacitySlider),SIGNAL(valueChanged(int)),this,SLOT(OpacityUpdate(int))); connect((QObject*)(m_Controls.m_SelectedTransformationClass),SIGNAL(activated(int)), this,SLOT(transformationChanged(int))); connect((QObject*)(m_Controls.m_UseICP),SIGNAL(toggled(bool)), this,SLOT(checkCalculateEnabled())); connect((QObject*)(m_Controls.m_UseICP),SIGNAL(toggled(bool)), this,SLOT(checkLandmarkError())); } void QmitkPointBasedRegistrationView::Activated() { m_Deactivated = false; mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QmitkFunctionality::Activated(); this->clearTransformationLists(); if (m_SelListener.IsNull()) { m_SelListener = berry::ISelectionListener::Pointer(new SelListenerPointBasedRegistration(this)); this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->AddPostSelectionListener(/*"org.mitk.views.datamanager",*/ m_SelListener); berry::ISelection::ConstPointer sel( this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); m_CurrentSelection = sel.Cast(); m_SelListener.Cast()->DoSelectionChanged(sel); } this->OpacityUpdate(m_Controls.m_OpacitySlider->value()); this->showRedGreen(m_Controls.m_ShowRedGreenValues->isChecked()); } void QmitkPointBasedRegistrationView::Visible() { } void QmitkPointBasedRegistrationView::Deactivated() { m_Deactivated = true; if (m_FixedPointSetNode.IsNotNull()) m_FixedPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldFixedLabel)); m_Controls.m_FixedPointListWidget->SetPointSetNode(NULL); m_Controls.m_FixedPointListWidget->DeactivateInteractor(true); if (m_MovingPointSetNode.IsNotNull()) m_MovingPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldMovingLabel)); m_Controls.m_MovingPointListWidget->SetPointSetNode(NULL); m_Controls.m_MovingPointListWidget->DeactivateInteractor(true); this->setImageColor(false); if (m_FixedNode.IsNotNull()) m_FixedNode->SetOpacity(1.0); if (m_MovingNode.IsNotNull()) { m_MovingNode->SetOpacity(m_OriginalOpacity); } this->clearTransformationLists(); if (m_FixedPointSetNode.IsNotNull() && m_FixedLandmarks.IsNotNull() && m_FixedLandmarks->GetSize() == 0) { this->GetDataStorage()->Remove(m_FixedPointSetNode); } if (m_MovingPointSetNode.IsNotNull() && m_MovingLandmarks.IsNotNull() && m_MovingLandmarks->GetSize() == 0) { this->GetDataStorage()->Remove(m_MovingPointSetNode); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); m_FixedNode = NULL; m_MovingNode = NULL; if(m_FixedLandmarks.IsNotNull()) m_FixedLandmarks->RemoveObserver(m_CurrentFixedLandmarksObserverID); m_FixedLandmarks = NULL; if(m_MovingLandmarks.IsNotNull()) m_MovingLandmarks->RemoveObserver(m_CurrentMovingLandmarksObserverID); m_MovingLandmarks = NULL; m_FixedPointSetNode = NULL; m_MovingPointSetNode = NULL; m_Controls.m_FixedLabel->hide(); m_Controls.TextLabelFixed->hide(); m_Controls.line2->hide(); m_Controls.m_FixedPointListWidget->hide(); m_Controls.m_MovingLabel->hide(); m_Controls.TextLabelMoving->hide(); m_Controls.line1->hide(); m_Controls.m_MovingPointListWidget->hide(); m_Controls.m_OpacityLabel->hide(); m_Controls.m_OpacitySlider->hide(); m_Controls.label->hide(); m_Controls.label_2->hide(); m_Controls.m_SwitchImages->hide(); berry::ISelectionService* s = GetSite()->GetWorkbenchWindow()->GetSelectionService(); if(s) s->RemovePostSelectionListener(m_SelListener); m_SelListener = NULL; } void QmitkPointBasedRegistrationView::Hidden() { /* m_Deactivated = true; if (m_FixedPointSetNode.IsNotNull()) m_FixedPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldFixedLabel)); m_Controls.m_FixedPointListWidget->SetPointSetNode(NULL); m_Controls.m_FixedPointListWidget->DeactivateInteractor(true); if (m_MovingPointSetNode.IsNotNull()) m_MovingPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldMovingLabel)); m_Controls.m_MovingPointListWidget->SetPointSetNode(NULL); m_Controls.m_MovingPointListWidget->DeactivateInteractor(true); this->setImageColor(false); if (m_MovingNode.IsNotNull()) { m_MovingNode->SetOpacity(m_OriginalOpacity); } this->clearTransformationLists(); if (m_FixedPointSetNode.IsNotNull() && m_FixedLandmarks.IsNotNull() && m_FixedLandmarks->GetSize() == 0) { this->GetDataStorage()->Remove(m_FixedPointSetNode); } if (m_MovingPointSetNode.IsNotNull() && m_MovingLandmarks.IsNotNull() && m_MovingLandmarks->GetSize() == 0) { this->GetDataStorage()->Remove(m_MovingPointSetNode); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); m_FixedNode = NULL; m_MovingNode = NULL; if(m_FixedLandmarks.IsNotNull()) m_FixedLandmarks->RemoveObserver(m_CurrentFixedLandmarksObserverID); m_FixedLandmarks = NULL; if(m_MovingLandmarks.IsNotNull()) m_MovingLandmarks->RemoveObserver(m_CurrentMovingLandmarksObserverID); m_MovingLandmarks = NULL; m_FixedPointSetNode = NULL; m_MovingPointSetNode = NULL; m_Controls.m_FixedLabel->hide(); m_Controls.TextLabelFixed->hide(); m_Controls.line2->hide(); m_Controls.m_FixedPointListWidget->hide(); m_Controls.m_MovingLabel->hide(); m_Controls.TextLabelMoving->hide(); m_Controls.line1->hide(); m_Controls.m_MovingPointListWidget->hide(); m_Controls.m_OpacityLabel->hide(); m_Controls.m_OpacitySlider->hide(); m_Controls.label->hide(); m_Controls.label_2->hide(); m_Controls.m_SwitchImages->hide(); berry::ISelectionService* s = GetSite()->GetWorkbenchWindow()->GetSelectionService(); if(s) s->RemovePostSelectionListener(m_SelListener); m_SelListener = NULL; //mitk::RenderingManager::GetInstance()->RequestUpdateAll(); //QmitkFunctionality::Deactivated();*/ } void QmitkPointBasedRegistrationView::DataNodeHasBeenRemoved(const mitk::DataNode* node) { if(node == m_FixedNode || node == m_MovingNode) { m_Controls.m_StatusLabel->show(); m_Controls.TextLabelFixed->hide(); m_Controls.m_FixedLabel->hide(); m_Controls.line2->hide(); m_Controls.m_FixedPointListWidget->hide(); m_Controls.TextLabelMoving->hide(); m_Controls.m_MovingLabel->hide(); m_Controls.line1->hide(); m_Controls.m_MovingPointListWidget->hide(); m_Controls.m_OpacityLabel->hide(); m_Controls.m_OpacitySlider->hide(); m_Controls.label->hide(); m_Controls.label_2->hide(); m_Controls.m_SwitchImages->hide(); m_Controls.m_ShowRedGreenValues->setEnabled(false); } } void QmitkPointBasedRegistrationView::FixedSelected(mitk::DataNode::Pointer fixedImage) { if(m_FixedLandmarks.IsNotNull()) m_FixedLandmarks->RemoveObserver(m_CurrentFixedLandmarksObserverID); if (fixedImage.IsNotNull()) { if (m_FixedNode != fixedImage) { // remove changes on previous selected node if (m_FixedNode.IsNotNull()) { this->setImageColor(false); m_FixedNode->SetOpacity(1.0); if (m_FixedPointSetNode.IsNotNull()) { m_FixedPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldFixedLabel)); } } // get selected node m_FixedNode = fixedImage; m_FixedNode->SetOpacity(0.5); m_FixedNode->SetVisibility(true); m_Controls.m_FixedLabel->setText(QString::fromStdString(m_FixedNode->GetName())); m_Controls.m_FixedLabel->show(); m_Controls.m_SwitchImages->show(); m_Controls.TextLabelFixed->show(); m_Controls.line2->show(); m_Controls.m_FixedPointListWidget->show(); mitk::ColorProperty::Pointer colorProperty; colorProperty = dynamic_cast(m_FixedNode->GetProperty("color")); if ( colorProperty.IsNotNull() ) { m_FixedColor = colorProperty->GetColor(); } this->setImageColor(m_ShowRedGreen); bool hasPointSetNode = false; mitk::DataStorage::SetOfObjects::ConstPointer children = this->GetDataStorage()->GetDerivations(m_FixedNode); unsigned long size; size = children->Size(); for (unsigned long i = 0; i < size; ++i) { mitk::StringProperty::Pointer nameProp = dynamic_cast(children->GetElement(i)->GetProperty("name")); if(nameProp.IsNotNull() && nameProp->GetValueAsString()=="PointBasedRegistrationNode") { m_FixedPointSetNode=children->GetElement(i); m_FixedLandmarks = dynamic_cast (m_FixedPointSetNode->GetData()); this->GetDataStorage()->Remove(m_FixedPointSetNode); hasPointSetNode = true; break; } } if (!hasPointSetNode) { m_FixedLandmarks = mitk::PointSet::New(); m_FixedPointSetNode = mitk::DataNode::New(); m_FixedPointSetNode->SetData(m_FixedLandmarks); m_FixedPointSetNode->SetProperty("name", mitk::StringProperty::New("PointBasedRegistrationNode")); } m_FixedPointSetNode->GetStringProperty("label", m_OldFixedLabel); m_FixedPointSetNode->SetProperty("label", mitk::StringProperty::New("F ")); m_FixedPointSetNode->SetProperty("color", mitk::ColorProperty::New(0.0f, 1.0f, 1.0f)); m_FixedPointSetNode->SetVisibility(true); m_Controls.m_FixedPointListWidget->SetPointSetNode(m_FixedPointSetNode); this->GetDataStorage()->Add(m_FixedPointSetNode, m_FixedNode); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } if (m_FixedPointSetNode.IsNull()) { m_FixedLandmarks = mitk::PointSet::New(); m_FixedPointSetNode = mitk::DataNode::New(); m_FixedPointSetNode->SetData(m_FixedLandmarks); m_FixedPointSetNode->SetProperty("name", mitk::StringProperty::New("PointBasedRegistrationNode")); m_FixedPointSetNode->GetStringProperty("label", m_OldFixedLabel); m_FixedPointSetNode->SetProperty("label", mitk::StringProperty::New("F ")); m_FixedPointSetNode->SetProperty("color", mitk::ColorProperty::New(0.0f, 1.0f, 1.0f)); m_FixedPointSetNode->SetVisibility(true); m_Controls.m_FixedPointListWidget->SetPointSetNode(m_FixedPointSetNode); this->GetDataStorage()->Add(m_FixedPointSetNode, m_FixedNode); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } else { m_FixedNode = NULL; if (m_FixedPointSetNode.IsNotNull()) m_FixedPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldFixedLabel)); m_FixedPointSetNode = NULL; m_FixedLandmarks = NULL; m_Controls.m_FixedPointListWidget->SetPointSetNode(m_FixedPointSetNode); m_Controls.m_FixedLabel->hide(); m_Controls.TextLabelFixed->hide(); m_Controls.line2->hide(); m_Controls.m_FixedPointListWidget->hide(); m_Controls.m_SwitchImages->hide(); } if(m_FixedLandmarks.IsNotNull()) m_CurrentFixedLandmarksObserverID = m_FixedLandmarks->AddObserver(itk::ModifiedEvent(), m_FixedLandmarksChangedCommand); } void QmitkPointBasedRegistrationView::MovingSelected(mitk::DataNode::Pointer movingImage) { if(m_MovingLandmarks.IsNotNull()) m_MovingLandmarks->RemoveObserver(m_CurrentMovingLandmarksObserverID); if (movingImage.IsNotNull()) { if (m_MovingNode != movingImage) { if (m_MovingNode.IsNotNull()) { m_MovingNode->SetOpacity(m_OriginalOpacity); if (m_FixedNode == m_MovingNode) m_FixedNode->SetOpacity(0.5); this->setImageColor(false); if (m_MovingNode != m_FixedNode) { m_MovingPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldMovingLabel)); } else { m_OldFixedLabel = m_OldMovingLabel; } } if (m_MovingPointSetNode.IsNotNull()) m_MovingPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldMovingLabel)); m_MovingNode = movingImage; m_MovingNode->SetVisibility(true); m_Controls.m_MovingLabel->setText(QString::fromStdString(m_MovingNode->GetName())); m_Controls.m_MovingLabel->show(); m_Controls.TextLabelMoving->show(); m_Controls.line1->show(); m_Controls.m_MovingPointListWidget->show(); m_Controls.m_OpacityLabel->show(); m_Controls.m_OpacitySlider->show(); m_Controls.label->show(); m_Controls.label_2->show(); mitk::ColorProperty::Pointer colorProperty; colorProperty = dynamic_cast(m_MovingNode->GetProperty("color")); if ( colorProperty.IsNotNull() ) { m_MovingColor = colorProperty->GetColor(); } this->setImageColor(m_ShowRedGreen); m_MovingNode->GetFloatProperty("opacity", m_OriginalOpacity); this->OpacityUpdate(m_Opacity); bool hasPointSetNode = false; mitk::DataStorage::SetOfObjects::ConstPointer children = this->GetDataStorage()->GetDerivations(m_MovingNode); unsigned long size; size = children->Size(); for (unsigned long i = 0; i < size; ++i) { mitk::StringProperty::Pointer nameProp = dynamic_cast(children->GetElement(i)->GetProperty("name")); if(nameProp.IsNotNull() && nameProp->GetValueAsString()=="PointBasedRegistrationNode") { m_MovingPointSetNode=children->GetElement(i); m_MovingLandmarks = dynamic_cast (m_MovingPointSetNode->GetData()); this->GetDataStorage()->Remove(m_MovingPointSetNode); hasPointSetNode = true; break; } } if (!hasPointSetNode) { m_MovingLandmarks = mitk::PointSet::New(); m_MovingPointSetNode = mitk::DataNode::New(); m_MovingPointSetNode->SetData(m_MovingLandmarks); m_MovingPointSetNode->SetProperty("name", mitk::StringProperty::New("PointBasedRegistrationNode")); } this->GetDataStorage()->Add(m_MovingPointSetNode, m_MovingNode); m_MovingPointSetNode->GetStringProperty("label", m_OldMovingLabel); m_MovingPointSetNode->SetProperty("label", mitk::StringProperty::New("M ")); m_MovingPointSetNode->SetProperty("color", mitk::ColorProperty::New(1.0f, 1.0f, 0.0f)); m_MovingPointSetNode->SetVisibility(true); m_Controls.m_MovingPointListWidget->SetPointSetNode(m_MovingPointSetNode); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->clearTransformationLists(); this->OpacityUpdate(m_Opacity); } if (m_MovingPointSetNode.IsNull()) { m_MovingLandmarks = mitk::PointSet::New(); m_MovingPointSetNode = mitk::DataNode::New(); m_MovingPointSetNode->SetData(m_MovingLandmarks); m_MovingPointSetNode->SetProperty("name", mitk::StringProperty::New("PointBasedRegistrationNode")); m_MovingPointSetNode->GetStringProperty("label", m_OldMovingLabel); m_MovingPointSetNode->SetProperty("label", mitk::StringProperty::New("M ")); m_MovingPointSetNode->SetProperty("color", mitk::ColorProperty::New(1.0f, 1.0f, 0.0f)); m_MovingPointSetNode->SetVisibility(true); m_Controls.m_MovingPointListWidget->SetPointSetNode(m_MovingPointSetNode); this->GetDataStorage()->Add(m_MovingPointSetNode, m_MovingNode); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } else { m_MovingNode = NULL; if (m_MovingPointSetNode.IsNotNull()) m_MovingPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldMovingLabel)); m_MovingPointSetNode = NULL; m_MovingLandmarks = NULL; m_Controls.m_MovingPointListWidget->SetPointSetNode(m_MovingPointSetNode); m_Controls.m_MovingLabel->hide(); m_Controls.TextLabelMoving->hide(); m_Controls.line1->hide(); m_Controls.m_MovingPointListWidget->hide(); m_Controls.m_OpacityLabel->hide(); m_Controls.m_OpacitySlider->hide(); m_Controls.label->hide(); m_Controls.label_2->hide(); } if(m_MovingLandmarks.IsNotNull()) m_CurrentMovingLandmarksObserverID = m_MovingLandmarks->AddObserver(itk::ModifiedEvent(), m_MovingLandmarksChangedCommand); } void QmitkPointBasedRegistrationView::updateMovingLandmarksList() { // mitk::PointSet* ps = mitk::PointSet::New(); // ps = dynamic_cast(m_MovingPointSetNode->GetData()); // mitk::DataNode::Pointer tmpPtr = m_MovingPointSetNode; // m_MovingLandmarks = 0; // m_MovingLandmarks = (ps); m_MovingLandmarks = dynamic_cast(m_MovingPointSetNode->GetData()); // m_Controls.m_MovingPointListWidget->SetPointSetNode(m_MovingPointSetNode); //Workaround: m_MovingPointListWidget->m_PointListView->m_PointListModel loses the pointer on the pointsetnode this->checkLandmarkError(); this->CheckCalculate(); } void QmitkPointBasedRegistrationView::updateFixedLandmarksList() { m_FixedLandmarks = dynamic_cast(m_FixedPointSetNode->GetData()); this->checkLandmarkError(); this->CheckCalculate(); } void QmitkPointBasedRegistrationView::HideFixedImage(bool hide) { m_HideFixedImage = hide; if(m_FixedNode.IsNotNull()) { m_FixedNode->SetVisibility(!hide); } if (hide) { //this->reinitMovingClicked(); } if (!m_HideMovingImage && !m_HideFixedImage) { //this->globalReinitClicked(); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkPointBasedRegistrationView::HideMovingImage(bool hide) { m_HideMovingImage = hide; if(m_MovingNode.IsNotNull()) { m_MovingNode->SetVisibility(!hide); } if (hide) { //this->reinitFixedClicked(); } if (!m_HideMovingImage && !m_HideFixedImage) { //this->globalReinitClicked(); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } bool QmitkPointBasedRegistrationView::CheckCalculate() { if((m_MovingPointSetNode.IsNull())||(m_FixedPointSetNode.IsNull()||m_FixedLandmarks.IsNull()||m_MovingLandmarks.IsNull())) return false; if(m_MovingNode==m_FixedNode) return false; return this->checkCalculateEnabled(); } void QmitkPointBasedRegistrationView::UndoTransformation() { if(!m_UndoPointsGeometryList.empty()) { mitk::AffineGeometryFrame3D::Pointer movingLandmarksGeometry = m_MovingLandmarks->GetGeometry(0)->Clone(); m_RedoPointsGeometryList.push_back(static_cast(movingLandmarksGeometry.GetPointer())); m_MovingLandmarks->SetGeometry(m_UndoPointsGeometryList.back()); m_UndoPointsGeometryList.pop_back(); //\FIXME when geometry is substituted the matrix referenced by the actor created by the mapper //is still pointing to the old one. Workaround: delete mapper m_MovingPointSetNode->SetMapper(1, NULL); mitk::BaseData::Pointer movingData = m_MovingNode->GetData(); mitk::AffineGeometryFrame3D::Pointer movingGeometry = movingData->GetGeometry(0)->Clone(); m_RedoGeometryList.push_back(static_cast(movingGeometry.GetPointer())); movingData->SetGeometry(m_UndoGeometryList.back()); m_UndoGeometryList.pop_back(); //\FIXME when geometry is substituted the matrix referenced by the actor created by the mapper //is still pointing to the old one. Workaround: delete mapper m_MovingNode->SetMapper(1, NULL); mitk::RenderingManager::GetInstance()->RequestUpdate(m_MultiWidget->mitkWidget4->GetRenderWindow()); - movingData->GetTimeSlicedGeometry()->UpdateInformation(); - m_MovingLandmarks->GetTimeSlicedGeometry()->UpdateInformation(); + movingData->GetTimeGeometry()->Update(); + m_MovingLandmarks->GetTimeGeometry()->Update(); m_Controls.m_RedoTransformation->setEnabled(true); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->checkLandmarkError(); } if(!m_UndoPointsGeometryList.empty()) { m_Controls.m_UndoTransformation->setEnabled(true); } else { m_Controls.m_UndoTransformation->setEnabled(false); } } void QmitkPointBasedRegistrationView::RedoTransformation() { if(!m_RedoPointsGeometryList.empty()) { mitk::AffineGeometryFrame3D::Pointer movingLandmarksGeometry = m_MovingLandmarks->GetGeometry(0)->Clone(); m_UndoPointsGeometryList.push_back(static_cast(movingLandmarksGeometry.GetPointer())); m_MovingLandmarks->SetGeometry(m_RedoPointsGeometryList.back()); m_RedoPointsGeometryList.pop_back(); //\FIXME when geometry is substituted the matrix referenced by the actor created by the mapper //is still pointing to the old one. Workaround: delete mapper m_MovingPointSetNode->SetMapper(1, NULL); mitk::BaseData::Pointer movingData = m_MovingNode->GetData(); mitk::AffineGeometryFrame3D::Pointer movingGeometry = movingData->GetGeometry(0)->Clone(); m_UndoGeometryList.push_back(static_cast(movingGeometry.GetPointer())); movingData->SetGeometry(m_RedoGeometryList.back()); m_RedoGeometryList.pop_back(); //\FIXME when geometry is substituted the matrix referenced by the actor created by the mapper //is still pointing to the old one. Workaround: delete mapper m_MovingNode->SetMapper(1, NULL); mitk::RenderingManager::GetInstance()->RequestUpdate(m_MultiWidget->mitkWidget4->GetRenderWindow()); - movingData->GetTimeSlicedGeometry()->UpdateInformation(); - m_MovingLandmarks->GetTimeSlicedGeometry()->UpdateInformation(); + movingData->GetTimeGeometry()->Update(); + m_MovingLandmarks->GetTimeGeometry()->Update(); m_Controls.m_UndoTransformation->setEnabled(true); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->checkLandmarkError(); } if(!m_RedoPointsGeometryList.empty()) { m_Controls.m_RedoTransformation->setEnabled(true); } else { m_Controls.m_RedoTransformation->setEnabled(false); } } void QmitkPointBasedRegistrationView::showRedGreen(bool redGreen) { m_ShowRedGreen = redGreen; this->setImageColor(m_ShowRedGreen); } void QmitkPointBasedRegistrationView::setImageColor(bool redGreen) { if (!redGreen && m_FixedNode.IsNotNull()) { m_FixedNode->SetColor(m_FixedColor); } if (!redGreen && m_MovingNode.IsNotNull()) { m_MovingNode->SetColor(m_MovingColor); } if (redGreen && m_FixedNode.IsNotNull()) { m_FixedNode->SetColor(1.0f, 0.0f, 0.0f); } if (redGreen && m_MovingNode.IsNotNull()) { m_MovingNode->SetColor(0.0f, 1.0f, 0.0f); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkPointBasedRegistrationView::OpacityUpdate(float opacity) { if (opacity > 1) { opacity = opacity/100.0f; } m_Opacity = opacity; if (m_MovingNode.IsNotNull()) { m_MovingNode->SetOpacity(m_Opacity); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkPointBasedRegistrationView::OpacityUpdate(int opacity) { float fValue = ((float)opacity)/100.0f; this->OpacityUpdate(fValue); } void QmitkPointBasedRegistrationView::clearTransformationLists() { m_Controls.m_UndoTransformation->setEnabled(false); m_Controls.m_RedoTransformation->setEnabled(false); m_Controls.m_MeanErrorLCD->hide(); m_Controls.m_MeanError->hide(); m_UndoGeometryList.clear(); m_UndoPointsGeometryList.clear(); m_RedoGeometryList.clear(); m_RedoPointsGeometryList.clear(); } void QmitkPointBasedRegistrationView::checkLandmarkError() { double totalDist = 0, dist = 0, dist2 = 0; mitk::Point3D point1, point2, point3; double p1[3], p2[3]; if(m_Transformation < 3) { if (m_Controls.m_UseICP->isChecked()) { if (m_MovingLandmarks.IsNotNull() && m_FixedLandmarks.IsNotNull()&& m_MovingLandmarks->GetSize() != 0 && m_FixedLandmarks->GetSize() != 0) { for(int pointId = 0; pointId < m_MovingLandmarks->GetSize(); ++pointId) { point1 = m_MovingLandmarks->GetPoint(pointId); point2 = m_FixedLandmarks->GetPoint(0); p1[0] = point1[0]; p1[1] = point1[1]; p1[2] = point1[2]; p2[0] = point2[0]; p2[1] = point2[1]; p2[2] = point2[2]; dist = vtkMath::Distance2BetweenPoints(p1, p2); for(int pointId2 = 1; pointId2 < m_FixedLandmarks->GetSize(); ++pointId2) { point2 = m_FixedLandmarks->GetPoint(pointId2); p1[0] = point1[0]; p1[1] = point1[1]; p1[2] = p1[2]; p2[0] = point2[0]; p2[1] = point2[1]; p2[2] = p2[2]; dist2 = vtkMath::Distance2BetweenPoints(p1, p2); if (dist2 < dist) { dist = dist2; } } totalDist += dist; } m_Controls.m_MeanErrorLCD->display(sqrt(totalDist/m_FixedLandmarks->GetSize())); m_Controls.m_MeanErrorLCD->show(); m_Controls.m_MeanError->show(); } else { m_Controls.m_MeanErrorLCD->hide(); m_Controls.m_MeanError->hide(); } } else { if (m_MovingLandmarks.IsNotNull() && m_FixedLandmarks.IsNotNull() && m_MovingLandmarks->GetSize() != 0 && m_FixedLandmarks->GetSize() != 0 && m_MovingLandmarks->GetSize() == m_FixedLandmarks->GetSize()) { for(int pointId = 0; pointId < m_MovingLandmarks->GetSize(); ++pointId) { point1 = m_MovingLandmarks->GetPoint(pointId); point2 = m_FixedLandmarks->GetPoint(pointId); p1[0] = point1[0]; p1[1] = point1[1]; p1[2] = point1[2]; p2[0] = point2[0]; p2[1] = point2[1]; p2[2] = point2[2]; totalDist += vtkMath::Distance2BetweenPoints(p1, p2); } m_Controls.m_MeanErrorLCD->display(sqrt(totalDist/m_FixedLandmarks->GetSize())); m_Controls.m_MeanErrorLCD->show(); m_Controls.m_MeanError->show(); } else { m_Controls.m_MeanErrorLCD->hide(); m_Controls.m_MeanError->hide(); } } } else { if (m_MovingLandmarks.IsNotNull() && m_FixedLandmarks.IsNotNull() && m_MovingLandmarks->GetSize() != 0 && m_FixedLandmarks->GetSize() != 0 && m_MovingLandmarks->GetSize() == m_FixedLandmarks->GetSize()) { for(int pointId = 0; pointId < m_MovingLandmarks->GetSize(); ++pointId) { point1 = m_MovingLandmarks->GetPoint(pointId); point2 = m_FixedLandmarks->GetPoint(pointId); p1[0] = point1[0]; p1[1] = point1[1]; p1[2] = point1[2]; p2[0] = point2[0]; p2[1] = point2[1]; p2[2] = point2[2]; totalDist += vtkMath::Distance2BetweenPoints(p1, p2); } m_Controls.m_MeanErrorLCD->display(sqrt(totalDist/m_FixedLandmarks->GetSize())); m_Controls.m_MeanErrorLCD->show(); m_Controls.m_MeanError->show(); } else { m_Controls.m_MeanErrorLCD->hide(); m_Controls.m_MeanError->hide(); } } } void QmitkPointBasedRegistrationView::transformationChanged(int transform) { m_Transformation = transform; this->checkCalculateEnabled(); this->checkLandmarkError(); } // ICP with vtkLandmarkTransformation void QmitkPointBasedRegistrationView::calculateLandmarkbasedWithICP() { if(CheckCalculate()) { mitk::Geometry3D::Pointer pointsGeometry = m_MovingLandmarks->GetGeometry(0); mitk::AffineGeometryFrame3D::Pointer movingLandmarksGeometry = m_MovingLandmarks->GetGeometry(0)->Clone(); m_UndoPointsGeometryList.push_back(static_cast(movingLandmarksGeometry.GetPointer())); mitk::BaseData::Pointer originalData = m_MovingNode->GetData(); mitk::AffineGeometryFrame3D::Pointer originalDataGeometry = originalData->GetGeometry(0)->Clone(); m_UndoGeometryList.push_back(static_cast(originalDataGeometry.GetPointer())); vtkIdType pointId; vtkPoints* vPointsSource=vtkPoints::New(); vtkCellArray* vCellsSource=vtkCellArray::New(); for(pointId=0; pointIdGetSize();++pointId) { mitk::Point3D pointSource=m_MovingLandmarks->GetPoint(pointId); vPointsSource->InsertNextPoint(pointSource[0],pointSource[1],pointSource[2]); vCellsSource->InsertNextCell(1, &pointId); } vtkPoints* vPointsTarget=vtkPoints::New(); vtkCellArray* vCellsTarget = vtkCellArray::New(); for(pointId=0; pointIdGetSize();++pointId) { mitk::Point3D pointTarget=m_FixedLandmarks->GetPoint(pointId); vPointsTarget->InsertNextPoint(pointTarget[0],pointTarget[1],pointTarget[2]); vCellsTarget->InsertNextCell(1, &pointId); } vtkPolyData* vPointSetSource=vtkPolyData::New(); vtkPolyData* vPointSetTarget=vtkPolyData::New(); vPointSetTarget->SetPoints(vPointsTarget); vPointSetTarget->SetVerts(vCellsTarget); vPointSetSource->SetPoints(vPointsSource); vPointSetSource->SetVerts(vCellsSource); vtkIterativeClosestPointTransform * icp=vtkIterativeClosestPointTransform::New(); icp->SetCheckMeanDistance(1); icp->SetSource(vPointSetSource); icp->SetTarget(vPointSetTarget); icp->SetMaximumNumberOfIterations(50); icp->StartByMatchingCentroidsOn(); vtkLandmarkTransform * transform=icp->GetLandmarkTransform(); if(m_Transformation==0) { transform->SetModeToRigidBody(); } if(m_Transformation==1) { transform->SetModeToSimilarity(); } if(m_Transformation==2) { transform->SetModeToAffine(); } vtkMatrix4x4 * matrix=icp->GetMatrix(); double determinant = fabs(matrix->Determinant()); if((determinant < mitk::eps) || (determinant > 100) || (determinant < 0.01) || (determinant==itk::NumericTraits::infinity()) || (determinant==itk::NumericTraits::quiet_NaN()) || (determinant==itk::NumericTraits::signaling_NaN()) || (determinant==-itk::NumericTraits::infinity()) || (determinant==-itk::NumericTraits::quiet_NaN()) || (determinant==-itk::NumericTraits::signaling_NaN()) || (!(determinant <= 0) && !(determinant > 0))) { QMessageBox msgBox; msgBox.setText("Suspicious determinant of matrix calculated by ICP.\n" "Please select more points or other points!" ); msgBox.exec(); return; } pointsGeometry->Compose(matrix); - m_MovingLandmarks->GetTimeSlicedGeometry()->UpdateInformation(); + m_MovingLandmarks->GetTimeGeometry()->Update(); mitk::BaseData::Pointer movingData = m_MovingNode->GetData(); mitk::Geometry3D::Pointer movingGeometry = movingData->GetGeometry(0); movingGeometry->Compose(matrix); - movingData->GetTimeSlicedGeometry()->UpdateInformation(); + movingData->GetTimeGeometry()->Update(); m_Controls.m_UndoTransformation->setEnabled(true); m_Controls.m_RedoTransformation->setEnabled(false); m_RedoGeometryList.clear(); m_RedoPointsGeometryList.clear(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->checkLandmarkError(); } } // only vtkLandmarkTransformation void QmitkPointBasedRegistrationView::calculateLandmarkbased() { if(CheckCalculate()) { mitk::Geometry3D::Pointer pointsGeometry = m_MovingLandmarks->GetGeometry(0); mitk::AffineGeometryFrame3D::Pointer movingLandmarksGeometry = m_MovingLandmarks->GetGeometry(0)->Clone(); m_UndoPointsGeometryList.push_back(static_cast(movingLandmarksGeometry.GetPointer())); mitk::BaseData::Pointer originalData = m_MovingNode->GetData(); mitk::AffineGeometryFrame3D::Pointer originalDataGeometry = originalData->GetGeometry(0)->Clone(); m_UndoGeometryList.push_back(static_cast(originalDataGeometry.GetPointer())); vtkIdType pointId; vtkPoints* vPointsSource=vtkPoints::New(); for(pointId = 0; pointId < m_MovingLandmarks->GetSize(); ++pointId) { mitk::Point3D sourcePoint = m_MovingLandmarks->GetPoint(pointId); vPointsSource->InsertNextPoint(sourcePoint[0],sourcePoint[1],sourcePoint[2]); } vtkPoints* vPointsTarget=vtkPoints::New(); for(pointId=0; pointIdGetSize();++pointId) { mitk::Point3D targetPoint=m_FixedLandmarks->GetPoint(pointId); vPointsTarget->InsertNextPoint(targetPoint[0],targetPoint[1],targetPoint[2]); } vtkLandmarkTransform * transform= vtkLandmarkTransform::New(); transform->SetSourceLandmarks(vPointsSource); transform->SetTargetLandmarks(vPointsTarget); if(m_Transformation==0) { transform->SetModeToRigidBody(); } if(m_Transformation==1) { transform->SetModeToSimilarity(); } if(m_Transformation==2) { transform->SetModeToAffine(); } vtkMatrix4x4 * matrix=transform->GetMatrix(); double determinant = fabs(matrix->Determinant()); if((determinant < mitk::eps) || (determinant > 100) || (determinant < 0.01) || (determinant==itk::NumericTraits::infinity()) || (determinant==itk::NumericTraits::quiet_NaN()) || (determinant==itk::NumericTraits::signaling_NaN()) || (determinant==-itk::NumericTraits::infinity()) || (determinant==-itk::NumericTraits::quiet_NaN()) || (determinant==-itk::NumericTraits::signaling_NaN()) || (!(determinant <= 0) && !(determinant > 0))) { QMessageBox msgBox; msgBox.setText("Suspicious determinant of matrix calculated.\n" "Please select more points or other points!" ); msgBox.exec(); return; } pointsGeometry->Compose(matrix); - m_MovingLandmarks->GetTimeSlicedGeometry()->UpdateInformation(); + m_MovingLandmarks->GetTimeGeometry()->Update(); mitk::BaseData::Pointer movingData = m_MovingNode->GetData(); mitk::Geometry3D::Pointer movingGeometry = movingData->GetGeometry(0); movingGeometry->Compose(matrix); - movingData->GetTimeSlicedGeometry()->UpdateInformation(); + movingData->GetTimeGeometry()->Update(); m_Controls.m_UndoTransformation->setEnabled(true); m_Controls.m_RedoTransformation->setEnabled(false); m_RedoGeometryList.clear(); m_RedoPointsGeometryList.clear(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->checkLandmarkError(); } } void QmitkPointBasedRegistrationView::calculateLandmarkWarping() { mitk::LandmarkWarping* registration = new mitk::LandmarkWarping(); mitk::LandmarkWarping::FixedImageType::Pointer fixedImage = mitk::LandmarkWarping::FixedImageType::New(); mitk::Image::Pointer fimage = dynamic_cast(m_FixedNode->GetData()); mitk::LandmarkWarping::MovingImageType::Pointer movingImage = mitk::LandmarkWarping::MovingImageType::New(); mitk::Image::Pointer mimage = dynamic_cast(m_MovingNode->GetData()); if (fimage.IsNotNull() && /*fimage->GetDimension() == 2 || */ fimage->GetDimension() == 3 && mimage.IsNotNull() && mimage->GetDimension() == 3) { mitk::CastToItkImage(fimage, fixedImage); mitk::CastToItkImage(mimage, movingImage); registration->SetFixedImage(fixedImage); registration->SetMovingImage(movingImage); unsigned int pointId; mitk::Point3D sourcePoint, targetPoint; mitk::LandmarkWarping::LandmarkContainerType::Pointer fixedLandmarks = mitk::LandmarkWarping::LandmarkContainerType::New(); mitk::LandmarkWarping::LandmarkPointType point; for(pointId = 0; pointId < (unsigned int)m_FixedLandmarks->GetSize(); ++pointId) { fimage->GetGeometry(0)->WorldToItkPhysicalPoint(m_FixedLandmarks->GetPoint(pointId), point); fixedLandmarks->InsertElement( pointId, point); } mitk::LandmarkWarping::LandmarkContainerType::Pointer movingLandmarks = mitk::LandmarkWarping::LandmarkContainerType::New(); for(pointId = 0; pointId < (unsigned int)m_MovingLandmarks->GetSize(); ++pointId) { mitk::BaseData::Pointer fixedData = m_FixedNode->GetData(); mitk::Geometry3D::Pointer fixedGeometry = fixedData->GetGeometry(0); fixedGeometry->WorldToItkPhysicalPoint(m_MovingLandmarks->GetPoint(pointId), point); movingLandmarks->InsertElement( pointId, point); } registration->SetLandmarks(fixedLandmarks.GetPointer(), movingLandmarks.GetPointer()); mitk::LandmarkWarping::MovingImageType::Pointer output = registration->Register(); if (output.IsNotNull()) { mitk::Image::Pointer image = mitk::Image::New(); mitk::CastToMitkImage(output, image); m_MovingNode->SetData(image); mitk::LevelWindowProperty::Pointer levWinProp = mitk::LevelWindowProperty::New(); mitk::LevelWindow levelWindow; levelWindow.SetAuto( image ); levWinProp->SetLevelWindow(levelWindow); m_MovingNode->GetPropertyList()->SetProperty("levelwindow",levWinProp); movingLandmarks = registration->GetTransformedTargetLandmarks(); mitk::PointSet::PointDataIterator it; it = m_MovingLandmarks->GetPointSet()->GetPointData()->Begin(); //increase the eventId to encapsulate the coming operations mitk::OperationEvent::IncCurrObjectEventId(); mitk::OperationEvent::ExecuteIncrement(); for(pointId=0; pointIdSize();++pointId, ++it) { int position = it->Index(); mitk::PointSet::PointType pt = m_MovingLandmarks->GetPoint(position); mitk::Point3D undoPoint = ( pt ); point = movingLandmarks->GetElement(pointId); fimage->GetGeometry(0)->ItkPhysicalPointToWorld(point, pt); mitk::PointOperation* doOp = new mitk::PointOperation(mitk::OpMOVE, pt, position); //undo operation mitk::PointOperation* undoOp = new mitk::PointOperation(mitk::OpMOVE, undoPoint, position); mitk::OperationEvent* operationEvent = new mitk::OperationEvent(m_MovingLandmarks, doOp, undoOp, "Move point"); mitk::UndoController::GetCurrentUndoModel()->SetOperationEvent(operationEvent); //execute the Operation m_MovingLandmarks->ExecuteOperation(doOp); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->clearTransformationLists(); this->checkLandmarkError(); } } } bool QmitkPointBasedRegistrationView::checkCalculateEnabled() { if (m_FixedLandmarks.IsNotNull() && m_MovingLandmarks.IsNotNull()) { int fixedPoints = m_FixedLandmarks->GetSize(); int movingPoints = m_MovingLandmarks->GetSize(); if (m_Transformation == 0 || m_Transformation == 1 || m_Transformation == 2) { if (m_Controls.m_UseICP->isChecked()) { if((movingPoints > 0 && fixedPoints > 0)) { m_Controls.m_Calculate->setEnabled(true); return true; } else { m_Controls.m_Calculate->setEnabled(false); return false; } } else { if ((movingPoints == fixedPoints) && movingPoints > 0) { m_Controls.m_Calculate->setEnabled(true); return true; } else { m_Controls.m_Calculate->setEnabled(false); return false; } } } else { m_Controls.m_Calculate->setEnabled(true); return true; } } else { return false; } } void QmitkPointBasedRegistrationView::calculate() { if (m_Transformation == 0 || m_Transformation == 1 || m_Transformation == 2) { if (m_Controls.m_UseICP->isChecked()) { if (m_MovingLandmarks->GetSize() == 1 && m_FixedLandmarks->GetSize() == 1) { this->calculateLandmarkbased(); } else { this->calculateLandmarkbasedWithICP(); } } else { this->calculateLandmarkbased(); } } else { this->calculateLandmarkWarping(); } } void QmitkPointBasedRegistrationView::SetImagesVisible(berry::ISelection::ConstPointer /*selection*/) { if (this->m_CurrentSelection->Size() == 0) { // show all images mitk::DataStorage::SetOfObjects::ConstPointer setOfObjects = this->GetDataStorage()->GetAll(); for (mitk::DataStorage::SetOfObjects::ConstIterator nodeIt = setOfObjects->Begin() ; nodeIt != setOfObjects->End(); ++nodeIt) // for each node { if ( (nodeIt->Value().IsNotNull()) && (nodeIt->Value()->GetProperty("visible")) && dynamic_cast(nodeIt->Value()->GetData())==NULL) { nodeIt->Value()->SetVisibility(true); } } } else { // hide all images mitk::DataStorage::SetOfObjects::ConstPointer setOfObjects = this->GetDataStorage()->GetAll(); for (mitk::DataStorage::SetOfObjects::ConstIterator nodeIt = setOfObjects->Begin() ; nodeIt != setOfObjects->End(); ++nodeIt) // for each node { if ( (nodeIt->Value().IsNotNull()) && (nodeIt->Value()->GetProperty("visible")) && dynamic_cast(nodeIt->Value()->GetData())==NULL) { nodeIt->Value()->SetVisibility(false); } } } } void QmitkPointBasedRegistrationView::SwitchImages() { mitk::DataNode::Pointer newMoving = m_FixedNode; mitk::DataNode::Pointer newFixed = m_MovingNode; this->FixedSelected(newFixed); this->MovingSelected(newMoving); } diff --git a/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkRigidRegistrationView.cpp b/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkRigidRegistrationView.cpp index 3e74f9aba4..fcb0699c2a 100644 --- a/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkRigidRegistrationView.cpp +++ b/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkRigidRegistrationView.cpp @@ -1,1410 +1,1410 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkRigidRegistrationView.h" #include "QmitkStdMultiWidget.h" #include "QmitkCommonFunctionality.h" #include "qinputdialog.h" #include "qmessagebox.h" #include "qcursor.h" #include "qapplication.h" #include "qradiobutton.h" #include "qslider.h" #include "qtooltip.h" #include #include "mitkDataNodeObject.h" #include "berryIWorkbenchWindow.h" #include "berryISelectionService.h" #include #include "mitkManualSegmentationToSurfaceFilter.h" #include #include #include const std::string QmitkRigidRegistrationView::VIEW_ID = "org.mitk.views.rigidregistration"; using namespace berry; struct SelListenerRigidRegistration : ISelectionListener { berryObjectMacro(SelListenerRigidRegistration); SelListenerRigidRegistration(QmitkRigidRegistrationView* view) { m_View = view; } void DoSelectionChanged(ISelection::ConstPointer selection) { // if (!m_View->IsVisible()) // return; // save current selection in member variable m_View->m_CurrentSelection = selection.Cast(); // do something with the selected items if(m_View->m_CurrentSelection) { if (m_View->m_CurrentSelection->Size() != 2) { if (m_View->m_FixedNode.IsNull() || m_View->m_MovingNode.IsNull()) { m_View->m_Controls.m_StatusLabel->show(); m_View->m_Controls.TextLabelFixed->hide(); m_View->m_Controls.m_FixedLabel->hide(); m_View->m_Controls.TextLabelMoving->hide(); m_View->m_Controls.m_MovingLabel->hide(); m_View->m_Controls.m_OpacityLabel->setEnabled(false); m_View->m_Controls.m_OpacitySlider->setEnabled(false); m_View->m_Controls.label->setEnabled(false); m_View->m_Controls.label_2->setEnabled(false); m_View->m_Controls.m_ShowRedGreenValues->setEnabled(false); m_View->m_Controls.m_SwitchImages->hide(); } } else { m_View->m_Controls.m_StatusLabel->hide(); bool foundFixedImage = false; mitk::DataNode::Pointer fixedNode; // iterate selection for (IStructuredSelection::iterator i = m_View->m_CurrentSelection->Begin(); i != m_View->m_CurrentSelection->End(); ++i) { // extract datatree node if (mitk::DataNodeObject::Pointer nodeObj = i->Cast()) { mitk::DataNode::Pointer node = nodeObj->GetDataNode(); // only look at interesting types if(QString("Image").compare(node->GetData()->GetNameOfClass())==0) { if (dynamic_cast(node->GetData())->GetDimension() == 4) { m_View->m_Controls.m_StatusLabel->show(); QMessageBox::information( NULL, "RigidRegistration", "Only 2D or 3D images can be processed.", QMessageBox::Ok ); return; } if (foundFixedImage == false) { fixedNode = node; foundFixedImage = true; } else { m_View->SetImagesVisible(selection); m_View->FixedSelected(fixedNode); m_View->MovingSelected(node); m_View->m_Controls.m_StatusLabel->hide(); m_View->m_Controls.TextLabelFixed->show(); m_View->m_Controls.m_FixedLabel->show(); m_View->m_Controls.TextLabelMoving->show(); m_View->m_Controls.m_MovingLabel->show(); m_View->m_Controls.m_OpacityLabel->setEnabled(true); m_View->m_Controls.m_OpacitySlider->setEnabled(true); m_View->m_Controls.label->setEnabled(true); m_View->m_Controls.label_2->setEnabled(true); m_View->m_Controls.m_ShowRedGreenValues->setEnabled(true); } } else { m_View->m_Controls.m_StatusLabel->show(); return; } } } } } else if (m_View->m_FixedNode.IsNull() || m_View->m_MovingNode.IsNull()) { m_View->m_Controls.m_StatusLabel->show(); } } void SelectionChanged(IWorkbenchPart::Pointer part, ISelection::ConstPointer selection) { // check, if selection comes from datamanager if (part) { QString partname(part->GetPartName().c_str()); if(partname.compare("Datamanager")==0) { // apply selection DoSelectionChanged(selection); } } } QmitkRigidRegistrationView* m_View; }; QmitkRigidRegistrationView::QmitkRigidRegistrationView(QObject * /*parent*/, const char * /*name*/) : QmitkFunctionality(), m_MultiWidget(NULL), m_MovingNode(NULL), m_MovingMaskNode(NULL), m_FixedNode(NULL), m_FixedMaskNode(NULL), m_ShowRedGreen(false), m_Opacity(0.5), m_OriginalOpacity(1.0), m_Deactivated(false),m_FixedDimension(0), m_MovingDimension(0) { m_TranslateSliderPos[0] = 0; m_TranslateSliderPos[1] = 0; m_TranslateSliderPos[2] = 0; m_RotateSliderPos[0] = 0; m_RotateSliderPos[1] = 0; m_RotateSliderPos[2] = 0; m_ScaleSliderPos[0] = 0; m_ScaleSliderPos[1] = 0; m_ScaleSliderPos[2] = 0; translationParams = new int[3]; rotationParams = new int[3]; scalingParams = new int[3]; m_TimeStepperAdapter = NULL; this->GetDataStorage()->RemoveNodeEvent.AddListener(mitk::MessageDelegate1 ( this, &QmitkRigidRegistrationView::DataNodeHasBeenRemoved )); } QmitkRigidRegistrationView::~QmitkRigidRegistrationView() { if(m_SelListener.IsNotNull()) { berry::ISelectionService* s = GetSite()->GetWorkbenchWindow()->GetSelectionService(); if(s) s->RemovePostSelectionListener(m_SelListener); m_SelListener = NULL; } } void QmitkRigidRegistrationView::CreateQtPartControl(QWidget* parent) { m_Controls.setupUi(parent); m_Controls.m_ManualFrame->hide(); m_Controls.timeSlider->hide(); m_Controls.TextLabelFixed->hide(); m_Controls.m_FixedLabel->hide(); m_Controls.TextLabelMoving->hide(); m_Controls.m_MovingLabel->hide(); m_Controls.m_UseFixedImageMask->hide(); m_Controls.m_UseMovingImageMask->hide(); m_Controls.m_OpacityLabel->setEnabled(false); m_Controls.m_OpacitySlider->setEnabled(false); m_Controls.label->setEnabled(false); m_Controls.label_2->setEnabled(false); m_Controls.m_ShowRedGreenValues->setEnabled(false); m_Controls.m_SwitchImages->hide(); if (m_Controls.m_RigidTransform->currentIndex() == 1) { m_Controls.frame->show(); } else { m_Controls.frame->hide(); } m_Controls.m_ManualFrame->setEnabled(false); m_Parent->setEnabled(false); this->CreateConnections(); this->CheckCalculateEnabled(); } void QmitkRigidRegistrationView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_Parent->setEnabled(true); m_MultiWidget = &stdMultiWidget; m_MultiWidget->SetWidgetPlanesVisibility(true); } void QmitkRigidRegistrationView::StdMultiWidgetNotAvailable() { m_Parent->setEnabled(false); m_MultiWidget = NULL; } void QmitkRigidRegistrationView::CreateConnections() { connect( m_Controls.m_ManualRegistrationCheckbox, SIGNAL(toggled(bool)), this, SLOT(ShowManualRegistrationFrame(bool))); connect((QObject*)(m_Controls.m_SwitchImages),SIGNAL(clicked()),this,SLOT(SwitchImages())); connect(m_Controls.m_ShowRedGreenValues, SIGNAL(toggled(bool)), this, SLOT(ShowRedGreen(bool))); connect(m_Controls.m_ShowContour, SIGNAL(toggled(bool)), this, SLOT(EnableContour(bool))); connect(m_Controls.m_UseFixedImageMask, SIGNAL(toggled(bool)), this, SLOT(UseFixedMaskImageChecked(bool))); connect(m_Controls.m_UseMovingImageMask, SIGNAL(toggled(bool)), this, SLOT(UseMovingMaskImageChecked(bool))); connect(m_Controls.m_RigidTransform, SIGNAL(currentChanged(int)), this, SLOT(TabChanged(int))); connect(m_Controls.m_OpacitySlider, SIGNAL(valueChanged(int)), this, SLOT(OpacityUpdate(int))); connect(m_Controls.m_ContourSlider, SIGNAL(sliderReleased()), this, SLOT(ShowContour())); connect(m_Controls.m_CalculateTransformation, SIGNAL(clicked()), this, SLOT(Calculate())); connect(m_Controls.m_UndoTransformation,SIGNAL(clicked()),this,SLOT(UndoTransformation())); connect(m_Controls.m_RedoTransformation,SIGNAL(clicked()),this,SLOT(RedoTransformation())); connect(m_Controls.m_AutomaticTranslation,SIGNAL(clicked()),this,SLOT(AlignCenters())); connect(m_Controls.m_StopOptimization,SIGNAL(clicked()), this , SLOT(StopOptimizationClicked())); connect(m_Controls.m_XTransSlider, SIGNAL(valueChanged(int)), this, SLOT(xTrans_valueChanged(int))); connect(m_Controls.m_YTransSlider, SIGNAL(valueChanged(int)), this, SLOT(yTrans_valueChanged(int))); connect(m_Controls.m_ZTransSlider, SIGNAL(valueChanged(int)), this, SLOT(zTrans_valueChanged(int))); connect(m_Controls.m_XRotSlider, SIGNAL(valueChanged(int)), this, SLOT(xRot_valueChanged(int))); connect(m_Controls.m_YRotSlider, SIGNAL(valueChanged(int)), this, SLOT(yRot_valueChanged(int))); connect(m_Controls.m_ZRotSlider, SIGNAL(valueChanged(int)), this, SLOT(zRot_valueChanged(int))); connect(m_Controls.m_XScaleSlider, SIGNAL(valueChanged(int)), this, SLOT(xScale_valueChanged(int))); connect(m_Controls.m_YScaleSlider, SIGNAL(valueChanged(int)), this, SLOT(yScale_valueChanged(int))); connect(m_Controls.m_ZScaleSlider, SIGNAL(valueChanged(int)), this, SLOT(zScale_valueChanged(int))); connect(m_Controls.m_LoadRigidRegistrationParameter, SIGNAL(clicked()), m_Controls.qmitkRigidRegistrationSelector1, SLOT(LoadRigidRegistrationParameter())); connect(m_Controls.m_SaveRigidRegistrationParameter, SIGNAL(clicked()), m_Controls.qmitkRigidRegistrationSelector1, SLOT(SaveRigidRegistrationParameter())); connect(m_Controls.m_LoadRigidRegistrationTestParameter, SIGNAL(clicked()), m_Controls.qmitkRigidRegistrationSelector1, SLOT(LoadRigidRegistrationTestParameter())); connect(m_Controls.m_SaveRigidRegistrationTestParameter, SIGNAL(clicked()), m_Controls.qmitkRigidRegistrationSelector1, SLOT(SaveRigidRegistrationTestParameter())); connect(m_Controls.qmitkRigidRegistrationSelector1,SIGNAL(OptimizerChanged(double)),this,SLOT(SetOptimizerValue( double ))); connect(m_Controls.qmitkRigidRegistrationSelector1,SIGNAL(TransformChanged()),this,SLOT(CheckCalculateEnabled())); connect(m_Controls.qmitkRigidRegistrationSelector1,SIGNAL(AddNewTransformationToUndoList()),this,SLOT(AddNewTransformationToUndoList())); } void QmitkRigidRegistrationView::Activated() { m_Deactivated = false; mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QmitkFunctionality::Activated(); if (m_SelListener.IsNull()) { m_SelListener = berry::ISelectionListener::Pointer(new SelListenerRigidRegistration(this)); this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->AddPostSelectionListener(/*"org.mitk.views.datamanager",*/ m_SelListener); berry::ISelection::ConstPointer sel( this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); m_CurrentSelection = sel.Cast(); m_SelListener.Cast()->DoSelectionChanged(sel); } this->OpacityUpdate(m_Controls.m_OpacitySlider->value()); this->ShowRedGreen(m_Controls.m_ShowRedGreenValues->isChecked()); this->ClearTransformationLists(); this->CheckCalculateEnabled(); /* m_Deactivated = false; mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QmitkFunctionality::Activated(); if (m_SelListener.IsNull()) { m_SelListener = berry::ISelectionListener::Pointer(new SelListenerRigidRegistration(this)); this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->AddPostSelectionListener(/ *"org.mitk.views.datamanager",* / m_SelListener); berry::ISelection::ConstPointer sel( this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); m_CurrentSelection = sel.Cast(); m_SelListener.Cast()->DoSelectionChanged(sel); } this->OpacityUpdate(m_Controls.m_OpacitySlider->value()); this->ShowRedGreen(m_Controls.m_ShowRedGreenValues->isChecked()); this->ClearTransformationLists(); this->CheckCalculateEnabled();*/ } void QmitkRigidRegistrationView::Visible() { /* m_Deactivated = false; mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QmitkFunctionality::Activated(); if (m_SelListener.IsNull()) { m_SelListener = berry::ISelectionListener::Pointer(new SelListenerRigidRegistration(this)); this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->AddPostSelectionListener("org.mitk.views.datamanager", m_SelListener); berry::ISelection::ConstPointer sel( this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); m_CurrentSelection = sel.Cast(); m_SelListener.Cast()->DoSelectionChanged(sel); } this->OpacityUpdate(m_Controls.m_OpacitySlider->value()); this->ShowRedGreen(m_Controls.m_ShowRedGreenValues->isChecked()); this->ClearTransformationLists(); this->CheckCalculateEnabled();*/ } void QmitkRigidRegistrationView::Deactivated() { m_Deactivated = true; this->SetImageColor(false); if (m_FixedNode.IsNotNull()) m_FixedNode->SetOpacity(1.0); m_FixedNode = NULL; m_MovingNode = NULL; this->ClearTransformationLists(); berry::ISelectionService* s = GetSite()->GetWorkbenchWindow()->GetSelectionService(); if(s) s->RemovePostSelectionListener(m_SelListener); m_SelListener = NULL; /* m_Deactivated = true; this->SetImageColor(false); m_FixedNode = NULL; m_MovingNode = NULL; this->ClearTransformationLists(); berry::ISelectionService* s = GetSite()->GetWorkbenchWindow()->GetSelectionService(); if(s) s->RemovePostSelectionListener(m_SelListener); m_SelListener = NULL; mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QmitkFunctionality::Deactivated();*/ } void QmitkRigidRegistrationView::Hidden() { /*m_Deactivated = true; this->SetImageColor(false); m_FixedNode = NULL; m_MovingNode = NULL; this->ClearTransformationLists(); berry::ISelectionService* s = GetSite()->GetWorkbenchWindow()->GetSelectionService(); if(s) s->RemovePostSelectionListener(m_SelListener); m_SelListener = NULL; //mitk::RenderingManager::GetInstance()->RequestUpdateAll(); //QmitkFunctionality::Deactivated();*/ } void QmitkRigidRegistrationView::DataNodeHasBeenRemoved(const mitk::DataNode* node) { if(node == m_FixedNode || node == m_MovingNode) { m_Controls.m_StatusLabel->show(); m_Controls.TextLabelFixed->hide(); m_Controls.m_FixedLabel->hide(); m_Controls.TextLabelMoving->hide(); m_Controls.m_MovingLabel->hide(); m_Controls.m_OpacityLabel->setEnabled(false); m_Controls.m_OpacitySlider->setEnabled(false); m_Controls.label->setEnabled(false); m_Controls.label_2->setEnabled(false); m_Controls.m_ShowRedGreenValues->setEnabled(false); m_Controls.m_SwitchImages->hide(); } else if(node == m_ContourHelperNode) { // can this cause a memory leak? m_ContourHelperNode = NULL; } } void QmitkRigidRegistrationView::FixedSelected(mitk::DataNode::Pointer fixedImage) { if (m_FixedNode.IsNotNull()) { this->SetImageColor(false); m_FixedNode->SetOpacity(1.0); } m_FixedNode = fixedImage; if (m_FixedNode.IsNotNull()) { m_FixedNode->SetOpacity(0.5); m_FixedNode->SetVisibility(true); m_Controls.TextLabelFixed->setText(QString::fromStdString(m_FixedNode->GetName())); m_Controls.m_FixedLabel->show(); m_Controls.TextLabelFixed->show(); m_Controls.m_SwitchImages->show(); mitk::ColorProperty::Pointer colorProperty; colorProperty = dynamic_cast(m_FixedNode->GetProperty("color")); if ( colorProperty.IsNotNull() ) { m_FixedColor = colorProperty->GetColor(); } this->SetImageColor(m_ShowRedGreen); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); if (dynamic_cast(m_FixedNode->GetData())) { m_FixedDimension = dynamic_cast(m_FixedNode->GetData())->GetDimension(); m_Controls.qmitkRigidRegistrationSelector1->SetFixedDimension(m_FixedDimension); m_Controls.qmitkRigidRegistrationSelector1->SetFixedNode(m_FixedNode); } bool hasMask = false; mitk::DataStorage::SetOfObjects::ConstPointer children = this->GetDataStorage()->GetDerivations(m_FixedNode); unsigned long size; size = children->Size(); for (unsigned long i = 0; i < size; ++i) { mitk::BoolProperty::Pointer isMaskProp = dynamic_cast(children->GetElement(i)->GetProperty("binary")); if(isMaskProp.IsNotNull() && isMaskProp->GetValue() == true) { m_FixedMaskNode = children->GetElement(i); hasMask = true; this->CheckForMaskImages(); break; } } if (!hasMask) { this->CheckForMaskImages(); m_FixedMaskNode = NULL; } // Modify slider range mitk::Image::Pointer image = dynamic_cast(m_FixedNode->GetData()); int min = (int)image->GetStatistics()->GetScalarValueMin(); int max = (int)image->GetStatistics()->GetScalarValueMax(); m_Controls.m_ContourSlider->setRange(min, max); // Set slider to a default value int avg = (min+max) / 2; m_Controls.m_ContourSlider->setSliderPosition(avg); m_Controls.m_ThresholdLabel->setText(QString::number(avg)); } else { m_Controls.m_FixedLabel->hide(); m_Controls.TextLabelFixed->hide(); m_Controls.m_SwitchImages->hide(); } this->CheckCalculateEnabled(); if(this->GetActiveStdMultiWidget()) { m_TimeStepperAdapter = new QmitkStepperAdapter((QObject*) m_Controls.timeSlider, m_MultiWidget->GetTimeNavigationController()->GetTime(), "sliceNavigatorTimeFromRigidRegistration"); connect( m_TimeStepperAdapter, SIGNAL( Refetch() ), this, SLOT( UpdateTimestep() ) ); } } void QmitkRigidRegistrationView::MovingSelected(mitk::DataNode::Pointer movingImage) { if (m_MovingNode.IsNotNull()) { m_MovingNode->SetOpacity(m_OriginalOpacity); if (m_FixedNode == m_MovingNode) m_FixedNode->SetOpacity(0.5); this->SetImageColor(false); } m_MovingNode = movingImage; if (m_MovingNode.IsNotNull()) { m_MovingNode->SetVisibility(true); m_Controls.TextLabelMoving->setText(QString::fromStdString(m_MovingNode->GetName())); m_Controls.m_MovingLabel->show(); m_Controls.TextLabelMoving->show(); mitk::ColorProperty::Pointer colorProperty; colorProperty = dynamic_cast(m_MovingNode->GetProperty("color")); if ( colorProperty.IsNotNull() ) { m_MovingColor = colorProperty->GetColor(); } this->SetImageColor(m_ShowRedGreen); m_MovingNode->GetFloatProperty("opacity", m_OriginalOpacity); this->OpacityUpdate(m_Opacity); bool hasMask = false; mitk::DataStorage::SetOfObjects::ConstPointer children = this->GetDataStorage()->GetDerivations(m_MovingNode); m_Controls.qmitkRigidRegistrationSelector1->SetMovingNodeChildren(children); unsigned long size; size = children->Size(); for (unsigned long i = 0; i < size; ++i) { mitk::BoolProperty::Pointer isMaskProp = dynamic_cast(children->GetElement(i)->GetProperty("binary")); if(isMaskProp.IsNotNull() && isMaskProp->GetValue() == true) { m_MovingMaskNode = children->GetElement(i); hasMask = true; this->CheckForMaskImages(); break; } } if (!hasMask) { m_MovingMaskNode = NULL; this->CheckForMaskImages(); } } else { m_Controls.m_MovingLabel->hide(); m_Controls.TextLabelMoving->hide(); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->MovingImageChanged(); this->CheckCalculateEnabled(); } bool QmitkRigidRegistrationView::CheckCalculate() { if(m_MovingNode==m_FixedNode) return false; return true; } void QmitkRigidRegistrationView::AddNewTransformationToUndoList() { mitk::BaseData::Pointer movingData = m_MovingNode->GetData(); m_UndoGeometryList.push_back(static_cast(movingData->GetGeometry(0)->Clone().GetPointer())); unsigned long size; mitk::DataStorage::SetOfObjects::ConstPointer children = this->GetDataStorage()->GetDerivations(m_MovingNode); size = children->Size(); std::map childGeometries; for (unsigned long i = 0; i < size; ++i) { childGeometries.insert(std::pair(children->GetElement(i), children->GetElement(i)->GetData()->GetGeometry())); } m_UndoChildGeometryList.push_back(childGeometries); m_RedoGeometryList.clear(); m_RedoChildGeometryList.clear(); this->SetUndoEnabled(true); this->SetRedoEnabled(false); } void QmitkRigidRegistrationView::UndoTransformation() { if(!m_UndoGeometryList.empty()) { mitk::BaseData::Pointer movingData = m_MovingNode->GetData(); m_RedoGeometryList.push_back(static_cast(movingData->GetGeometry(0)->Clone().GetPointer())); unsigned long size; mitk::DataStorage::SetOfObjects::ConstPointer children = this->GetDataStorage()->GetDerivations(m_MovingNode); size = children->Size(); std::map childGeometries; for (unsigned long i = 0; i < size; ++i) { childGeometries.insert(std::pair(children->GetElement(i), children->GetElement(i)->GetData()->GetGeometry())); } m_RedoChildGeometryList.push_back(childGeometries); movingData->SetGeometry(m_UndoGeometryList.back()); m_UndoGeometryList.pop_back(); std::map oldChildGeometries; oldChildGeometries = m_UndoChildGeometryList.back(); m_UndoChildGeometryList.pop_back(); std::map::iterator iter; for (unsigned long j = 0; j < size; ++j) { iter = oldChildGeometries.find(children->GetElement(j)); children->GetElement(j)->GetData()->SetGeometry((*iter).second); } //\FIXME when geometry is substituted the matrix referenced by the actor created by the mapper //is still pointing to the old one. Workaround: delete mapper m_MovingNode->SetMapper(1, NULL); mitk::RenderingManager::GetInstance()->RequestUpdate(m_MultiWidget->mitkWidget4->GetRenderWindow()); - movingData->GetTimeSlicedGeometry()->UpdateInformation(); + movingData->GetTimeGeometry()->Update(); this->SetRedoEnabled(true); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } if(!m_UndoGeometryList.empty()) { this->SetUndoEnabled(true); } else { this->SetUndoEnabled(false); } this->CheckCalculateEnabled(); } void QmitkRigidRegistrationView::RedoTransformation() { if(!m_RedoGeometryList.empty()) { mitk::BaseData::Pointer movingData = m_MovingNode->GetData(); m_UndoGeometryList.push_back(static_cast(movingData->GetGeometry(0)->Clone().GetPointer())); unsigned long size; mitk::DataStorage::SetOfObjects::ConstPointer children = this->GetDataStorage()->GetDerivations(m_MovingNode); size = children->Size(); std::map childGeometries; for (unsigned long i = 0; i < size; ++i) { childGeometries.insert(std::pair(children->GetElement(i), children->GetElement(i)->GetData()->GetGeometry())); } m_UndoChildGeometryList.push_back(childGeometries); movingData->SetGeometry(m_RedoGeometryList.back()); m_RedoGeometryList.pop_back(); std::map oldChildGeometries; oldChildGeometries = m_RedoChildGeometryList.back(); m_RedoChildGeometryList.pop_back(); std::map::iterator iter; for (unsigned long j = 0; j < size; ++j) { iter = oldChildGeometries.find(children->GetElement(j)); children->GetElement(j)->GetData()->SetGeometry((*iter).second); } //\FIXME when geometry is substituted the matrix referenced by the actor created by the mapper //is still pointing to the old one. Workaround: delete mapper m_MovingNode->SetMapper(1, NULL); mitk::RenderingManager::GetInstance()->RequestUpdate(m_MultiWidget->mitkWidget4->GetRenderWindow()); - movingData->GetTimeSlicedGeometry()->UpdateInformation(); + movingData->GetTimeGeometry()->Update(); this->SetUndoEnabled(true); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } if(!m_RedoGeometryList.empty()) { this->SetRedoEnabled(true); } else { this->SetRedoEnabled(false); } } void QmitkRigidRegistrationView::ShowRedGreen(bool redGreen) { m_ShowRedGreen = redGreen; this->SetImageColor(m_ShowRedGreen); } void QmitkRigidRegistrationView::EnableContour(bool show) { if(show) ShowContour(); // Can happen when the m_ContourHelperNode was deleted before and now the show contour checkbox is turned off if(m_ContourHelperNode.IsNull()) return; m_Controls.m_ContourSlider->setEnabled(show); m_ContourHelperNode->SetProperty("visible", mitk::BoolProperty::New(show)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); } void QmitkRigidRegistrationView::ShowContour() { int threshold = m_Controls.m_ContourSlider->value(); bool show = m_Controls.m_ShowContour->isChecked(); if(m_FixedNode.IsNull() || !show) return; // Update the label next to the slider m_Controls.m_ThresholdLabel->setText(QString::number(threshold)); mitk::Image::Pointer image = dynamic_cast(m_FixedNode->GetData()); typedef itk::Image FloatImageType; typedef itk::Image ShortImageType; // Create a binary image using the given treshold typedef itk::BinaryThresholdImageFilter ThresholdFilterType; FloatImageType::Pointer floatImage = FloatImageType::New(); mitk::CastToItkImage(image, floatImage); ThresholdFilterType::Pointer thresholdFilter = ThresholdFilterType::New(); thresholdFilter->SetInput(floatImage); thresholdFilter->SetLowerThreshold(threshold); thresholdFilter->SetUpperThreshold((int)image->GetStatistics()->GetScalarValueMax()); thresholdFilter->SetInsideValue(1); thresholdFilter->SetOutsideValue(0); thresholdFilter->Update(); ShortImageType::Pointer binaryImage = thresholdFilter->GetOutput(); mitk::Image::Pointer mitkBinaryImage = mitk::Image::New(); mitk::CastToMitkImage(binaryImage, mitkBinaryImage); // Create a contour from the binary image mitk::ManualSegmentationToSurfaceFilter::Pointer surfaceFilter = mitk::ManualSegmentationToSurfaceFilter::New(); surfaceFilter->SetInput( mitkBinaryImage ); surfaceFilter->SetThreshold( 1 ); //expects binary image with zeros and ones surfaceFilter->SetUseGaussianImageSmooth(false); // apply gaussian to thresholded image ? surfaceFilter->SetMedianFilter3D(false); // apply median to segmentation before marching cubes ? surfaceFilter->SetDecimate( mitk::ImageToSurfaceFilter::NoDecimation ); surfaceFilter->UpdateLargestPossibleRegion(); // calculate normals for nicer display mitk::Surface::Pointer surface = surfaceFilter->GetOutput(); if(m_ContourHelperNode.IsNull()) { m_ContourHelperNode = mitk::DataNode::New(); m_ContourHelperNode->SetData(surface); m_ContourHelperNode->SetProperty("opacity", mitk::FloatProperty::New(1.0) ); m_ContourHelperNode->SetProperty("line width", mitk::IntProperty::New(2) ); m_ContourHelperNode->SetProperty("scalar visibility", mitk::BoolProperty::New(false) ); m_ContourHelperNode->SetProperty( "name", mitk::StringProperty::New("surface") ); m_ContourHelperNode->SetProperty("color", mitk::ColorProperty::New(1.0, 0.0, 0.0)); m_ContourHelperNode->SetBoolProperty("helper object", true); this->GetDataStorage()->Add(m_ContourHelperNode); } else { m_ContourHelperNode->SetData(surface); } mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); } void QmitkRigidRegistrationView::SetImageColor(bool redGreen) { if (!redGreen && m_FixedNode.IsNotNull()) { m_FixedNode->SetColor(m_FixedColor); } if (!redGreen && m_MovingNode.IsNotNull()) { m_MovingNode->SetColor(m_MovingColor); } if (redGreen && m_FixedNode.IsNotNull()) { m_FixedNode->SetColor(1.0f, 0.0f, 0.0f); } if (redGreen && m_MovingNode.IsNotNull()) { m_MovingNode->SetColor(0.0f, 1.0f, 0.0f); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkRigidRegistrationView::OpacityUpdate(float opacity) { m_Opacity = opacity; if (m_MovingNode.IsNotNull()) { m_MovingNode->SetOpacity(m_Opacity); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkRigidRegistrationView::OpacityUpdate(int opacity) { float fValue = ((float)opacity)/100.0f; this->OpacityUpdate(fValue); } void QmitkRigidRegistrationView::ClearTransformationLists() { this->SetUndoEnabled(false); this->SetRedoEnabled(false); m_UndoGeometryList.clear(); m_UndoChildGeometryList.clear(); m_RedoGeometryList.clear(); m_RedoChildGeometryList.clear(); } void QmitkRigidRegistrationView::Translate(int* translateVector) { if (m_MovingNode.IsNotNull()) { mitk::Vector3D translateVec; translateVec[0] = translateVector[0] - m_TranslateSliderPos[0]; translateVec[1] = translateVector[1] - m_TranslateSliderPos[1]; translateVec[2] = translateVector[2] - m_TranslateSliderPos[2]; m_TranslateSliderPos[0] = translateVector[0]; m_TranslateSliderPos[1] = translateVector[1]; m_TranslateSliderPos[2] = translateVector[2]; vtkMatrix4x4* translationMatrix = vtkMatrix4x4::New(); translationMatrix->Identity(); double (*transMatrix)[4] = translationMatrix->Element; transMatrix[0][3] = -translateVec[0]; transMatrix[1][3] = -translateVec[1]; transMatrix[2][3] = -translateVec[2]; translationMatrix->Invert(); m_MovingNode->GetData()->GetGeometry()->Compose( translationMatrix ); m_MovingNode->GetData()->Modified(); mitk::DataStorage::SetOfObjects::ConstPointer children = this->GetDataStorage()->GetDerivations(m_MovingNode); unsigned long size; size = children->Size(); mitk::DataNode::Pointer childNode; for (unsigned long i = 0; i < size; ++i) { childNode = children->GetElement(i); childNode->GetData()->GetGeometry()->Compose( translationMatrix ); childNode->GetData()->Modified(); } m_RedoGeometryList.clear(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkRigidRegistrationView::Rotate(int* rotateVector) { if (m_MovingNode.IsNotNull()) { mitk::Vector3D rotateVec; rotateVec[0] = rotateVector[0] - m_RotateSliderPos[0]; rotateVec[1] = rotateVector[1] - m_RotateSliderPos[1]; rotateVec[2] = rotateVector[2] - m_RotateSliderPos[2]; m_RotateSliderPos[0] = rotateVector[0]; m_RotateSliderPos[1] = rotateVector[1]; m_RotateSliderPos[2] = rotateVector[2]; vtkMatrix4x4* rotationMatrix = vtkMatrix4x4::New(); vtkMatrix4x4* translationMatrix = vtkMatrix4x4::New(); rotationMatrix->Identity(); translationMatrix->Identity(); double (*rotMatrix)[4] = rotationMatrix->Element; double (*transMatrix)[4] = translationMatrix->Element; mitk::Point3D centerBB = m_MovingNode->GetData()->GetGeometry()->GetCenter(); transMatrix[0][3] = centerBB[0]; transMatrix[1][3] = centerBB[1]; transMatrix[2][3] = centerBB[2]; translationMatrix->Invert(); m_MovingNode->GetData()->GetGeometry()->Compose( translationMatrix ); mitk::DataStorage::SetOfObjects::ConstPointer children = this->GetDataStorage()->GetDerivations(m_MovingNode); unsigned long size; size = children->Size(); mitk::DataNode::Pointer childNode; for (unsigned long i = 0; i < size; ++i) { childNode = children->GetElement(i); childNode->GetData()->GetGeometry()->Compose( translationMatrix ); childNode->GetData()->Modified(); } double radianX = rotateVec[0] * vnl_math::pi / 180; double radianY = rotateVec[1] * vnl_math::pi / 180; double radianZ = rotateVec[2] * vnl_math::pi / 180; if ( rotateVec[0] != 0 ) { rotMatrix[1][1] = cos( radianX ); rotMatrix[1][2] = -sin( radianX ); rotMatrix[2][1] = sin( radianX ); rotMatrix[2][2] = cos( radianX ); } else if ( rotateVec[1] != 0 ) { rotMatrix[0][0] = cos( radianY ); rotMatrix[0][2] = sin( radianY ); rotMatrix[2][0] = -sin( radianY ); rotMatrix[2][2] = cos( radianY ); } else if ( rotateVec[2] != 0 ) { rotMatrix[0][0] = cos( radianZ ); rotMatrix[0][1] = -sin( radianZ ); rotMatrix[1][0] = sin( radianZ ); rotMatrix[1][1] = cos( radianZ ); } m_MovingNode->GetData()->GetGeometry()->Compose( rotationMatrix ); for (unsigned long i = 0; i < size; ++i) { childNode = children->GetElement(i); childNode->GetData()->GetGeometry()->Compose( rotationMatrix ); childNode->GetData()->Modified(); } translationMatrix->Invert(); m_MovingNode->GetData()->GetGeometry()->Compose( translationMatrix ); for (unsigned long i = 0; i < size; ++i) { childNode = children->GetElement(i); childNode->GetData()->GetGeometry()->Compose( rotationMatrix ); childNode->GetData()->Modified(); } m_MovingNode->GetData()->Modified(); m_RedoGeometryList.clear(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkRigidRegistrationView::Scale(int* scaleVector) { if (m_MovingNode.IsNotNull()) { mitk::Vector3D scaleVec; scaleVec[0] = scaleVector[0] - m_ScaleSliderPos[0]; scaleVec[1] = scaleVector[1] - m_ScaleSliderPos[1]; scaleVec[2] = scaleVector[2] - m_ScaleSliderPos[2]; m_ScaleSliderPos[0] = scaleVector[0]; m_ScaleSliderPos[1] = scaleVector[1]; m_ScaleSliderPos[2] = scaleVector[2]; vtkMatrix4x4* scalingMatrix = vtkMatrix4x4::New(); scalingMatrix->Identity(); double (*scaleMatrix)[4] = scalingMatrix->Element; if (scaleVec[0] >= 0) { for(int i = 0; i= 0) { for(int i = 0; i= 0) { for(int i = 0; iInvert(); m_MovingNode->GetData()->GetGeometry()->Compose( scalingMatrix ); m_MovingNode->GetData()->Modified(); mitk::DataStorage::SetOfObjects::ConstPointer children = this->GetDataStorage()->GetDerivations(m_MovingNode); unsigned long size; size = children->Size(); mitk::DataNode::Pointer childNode; for (unsigned long i = 0; i < size; ++i) { childNode = children->GetElement(i); childNode->GetData()->GetGeometry()->Compose( scalingMatrix ); childNode->GetData()->Modified(); } m_RedoGeometryList.clear(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkRigidRegistrationView::AlignCenters() { if (m_FixedNode.IsNotNull() && m_MovingNode.IsNotNull()) { mitk::Point3D fixedPoint = m_FixedNode->GetData()->GetGeometry()->GetCenter(); mitk::Point3D movingPoint = m_MovingNode->GetData()->GetGeometry()->GetCenter(); mitk::Vector3D translateVec; translateVec = fixedPoint - movingPoint; m_Controls.m_XTransSlider->setValue((int)m_Controls.m_XTransSlider->value() + (int)translateVec[0]); m_Controls.m_YTransSlider->setValue((int)m_Controls.m_YTransSlider->value() + (int)translateVec[1]); m_Controls.m_ZTransSlider->setValue((int)m_Controls.m_ZTransSlider->value() + (int)translateVec[2]); } } void QmitkRigidRegistrationView::SetUndoEnabled( bool enable ) { m_Controls.m_UndoTransformation->setEnabled(enable); } void QmitkRigidRegistrationView::SetRedoEnabled( bool enable ) { m_Controls.m_RedoTransformation->setEnabled(enable); } void QmitkRigidRegistrationView::CheckCalculateEnabled() { if (m_FixedNode.IsNotNull() && m_MovingNode.IsNotNull()) { m_Controls.m_ManualFrame->setEnabled(true); m_Controls.m_CalculateTransformation->setEnabled(true); if ( (m_FixedDimension != m_MovingDimension && std::max(m_FixedDimension, m_MovingDimension) != 4) || m_FixedDimension < 2 /*|| m_FixedDimension > 3*/) { m_Controls.m_CalculateTransformation->setEnabled(false); } else if (m_Controls.qmitkRigidRegistrationSelector1->GetSelectedTransform() < 5 && (m_FixedDimension < 2) /*|| m_FixedDimension > 3)*/) { m_Controls.m_CalculateTransformation->setEnabled(false); } else if ((m_Controls.qmitkRigidRegistrationSelector1->GetSelectedTransform() > 4 && m_Controls.qmitkRigidRegistrationSelector1->GetSelectedTransform() < 13) && !(m_FixedDimension > 2)) { m_Controls.m_CalculateTransformation->setEnabled(false); } else if (m_Controls.qmitkRigidRegistrationSelector1->GetSelectedTransform() > 12 && m_FixedDimension != 2) { m_Controls.m_CalculateTransformation->setEnabled(false); } } else { m_Controls.m_CalculateTransformation->setEnabled(false); m_Controls.m_ManualFrame->setEnabled(false); } } void QmitkRigidRegistrationView::xTrans_valueChanged( int v ) { if (m_MovingNode.IsNotNull()) { translationParams[0]=v; translationParams[1]=m_Controls.m_YTransSlider->value(); translationParams[2]=m_Controls.m_ZTransSlider->value(); Translate(translationParams); } else { MovingImageChanged(); } } void QmitkRigidRegistrationView::yTrans_valueChanged( int v ) { if (m_MovingNode.IsNotNull()) { translationParams[0]=m_Controls.m_XTransSlider->value(); translationParams[1]=v; translationParams[2]=m_Controls.m_ZTransSlider->value(); Translate(translationParams); } else { MovingImageChanged(); } } void QmitkRigidRegistrationView::zTrans_valueChanged( int v ) { if (m_MovingNode.IsNotNull()) { translationParams[0]=m_Controls.m_XTransSlider->value(); translationParams[1]=m_Controls.m_YTransSlider->value(); translationParams[2]=v; Translate(translationParams); } else { MovingImageChanged(); } } void QmitkRigidRegistrationView::xRot_valueChanged( int v ) { if (m_MovingNode.IsNotNull()) { rotationParams[0]=v; rotationParams[1]=m_Controls.m_YRotSlider->value(); rotationParams[2]=m_Controls.m_ZRotSlider->value(); Rotate(rotationParams); } else { MovingImageChanged(); } } void QmitkRigidRegistrationView::yRot_valueChanged( int v ) { if (m_MovingNode.IsNotNull()) { rotationParams[0]=m_Controls.m_XRotSlider->value(); rotationParams[1]=v; rotationParams[2]=m_Controls.m_ZRotSlider->value(); Rotate(rotationParams); } else { MovingImageChanged(); } } void QmitkRigidRegistrationView::zRot_valueChanged( int v ) { if (m_MovingNode.IsNotNull()) { rotationParams[0]=m_Controls.m_XRotSlider->value(); rotationParams[1]=m_Controls.m_YRotSlider->value(); rotationParams[2]=v; Rotate(rotationParams); } else { MovingImageChanged(); } } void QmitkRigidRegistrationView::xScale_valueChanged( int v ) { if (m_MovingNode.IsNotNull()) { scalingParams[0]=v; scalingParams[1]=m_Controls.m_YScaleSlider->value(); scalingParams[2]=m_Controls.m_ZScaleSlider->value(); Scale(scalingParams); } else { MovingImageChanged(); } } void QmitkRigidRegistrationView::yScale_valueChanged( int v ) { if (m_MovingNode.IsNotNull()) { scalingParams[0]=m_Controls.m_XScaleSlider->value(); scalingParams[1]=v; scalingParams[2]=m_Controls.m_ZScaleSlider->value(); Scale(scalingParams); } else { MovingImageChanged(); } } void QmitkRigidRegistrationView::zScale_valueChanged( int v ) { if (m_MovingNode.IsNotNull()) { scalingParams[0]=m_Controls.m_XScaleSlider->value(); scalingParams[1]=m_Controls.m_YScaleSlider->value(); scalingParams[2]=v; Scale(scalingParams); } else { MovingImageChanged(); } } void QmitkRigidRegistrationView::MovingImageChanged() { if (dynamic_cast(m_MovingNode->GetData())) { m_Controls.m_XTransSlider->setValue(0); m_Controls.m_YTransSlider->setValue(0); m_Controls.m_ZTransSlider->setValue(0); translationParams[0]=0; translationParams[1]=0; translationParams[2]=0; m_Controls.m_XRotSlider->setValue(0); m_Controls.m_YRotSlider->setValue(0); m_Controls.m_ZRotSlider->setValue(0); rotationParams[0]=0; rotationParams[1]=0; rotationParams[2]=0; m_Controls.m_XScaleSlider->setValue(0); m_Controls.m_YScaleSlider->setValue(0); m_Controls.m_ZScaleSlider->setValue(0); scalingParams[0]=0; scalingParams[1]=0; scalingParams[2]=0; m_MovingDimension = dynamic_cast(m_MovingNode->GetData())->GetDimension(); m_Controls.qmitkRigidRegistrationSelector1->SetMovingDimension(m_MovingDimension); m_Controls.qmitkRigidRegistrationSelector1->SetMovingNode(m_MovingNode); this->CheckCalculateEnabled(); } } void QmitkRigidRegistrationView::Calculate() { m_Controls.qmitkRigidRegistrationSelector1->SetFixedNode(m_FixedNode); m_Controls.qmitkRigidRegistrationSelector1->SetMovingNode(m_MovingNode); if (m_FixedMaskNode.IsNotNull() && m_Controls.m_UseFixedImageMask->isChecked()) { m_Controls.qmitkRigidRegistrationSelector1->SetFixedMaskNode(m_FixedMaskNode); } else { m_Controls.qmitkRigidRegistrationSelector1->SetFixedMaskNode(NULL); } if (m_MovingMaskNode.IsNotNull() && m_Controls.m_UseMovingImageMask->isChecked()) { m_Controls.qmitkRigidRegistrationSelector1->SetMovingMaskNode(m_MovingMaskNode); } else { m_Controls.qmitkRigidRegistrationSelector1->SetMovingMaskNode(NULL); } m_Controls.frame_2->setEnabled(false); m_Controls.frame_3->setEnabled(false); m_Controls.m_CalculateTransformation->setEnabled(false); m_Controls.m_StopOptimization->setEnabled(true); m_Controls.qmitkRigidRegistrationSelector1->CalculateTransformation(((QmitkSliderNavigatorWidget*)m_Controls.timeSlider)->GetPos()); m_Controls.m_StopOptimization->setEnabled(false); m_Controls.frame_2->setEnabled(true); m_Controls.frame_3->setEnabled(true); m_Controls.m_CalculateTransformation->setEnabled(true); m_Controls.qmitkRigidRegistrationSelector1->StopOptimization(false); } void QmitkRigidRegistrationView::SetOptimizerValue( double value ) { m_Controls.m_OptimizerValueLCD->display(value); } void QmitkRigidRegistrationView::StopOptimizationClicked() { m_Controls.qmitkRigidRegistrationSelector1->StopOptimization(true); } void QmitkRigidRegistrationView::UpdateTimestep() { mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkRigidRegistrationView::ShowManualRegistrationFrame(bool show) { if (show) { m_Controls.m_ManualFrame->show(); } else { m_Controls.m_ManualFrame->hide(); } } void QmitkRigidRegistrationView::SetImagesVisible(berry::ISelection::ConstPointer /*selection*/) { if (this->m_CurrentSelection->Size() == 0) { // show all images mitk::DataStorage::SetOfObjects::ConstPointer setOfObjects = this->GetDataStorage()->GetAll(); for (mitk::DataStorage::SetOfObjects::ConstIterator nodeIt = setOfObjects->Begin() ; nodeIt != setOfObjects->End(); ++nodeIt) // for each node { if ( (nodeIt->Value().IsNotNull()) && (nodeIt->Value()->GetProperty("visible")) && dynamic_cast(nodeIt->Value()->GetData())==NULL) { nodeIt->Value()->SetVisibility(true); } } } else { // hide all images mitk::DataStorage::SetOfObjects::ConstPointer setOfObjects = this->GetDataStorage()->GetAll(); for (mitk::DataStorage::SetOfObjects::ConstIterator nodeIt = setOfObjects->Begin() ; nodeIt != setOfObjects->End(); ++nodeIt) // for each node { if ( (nodeIt->Value().IsNotNull()) && (nodeIt->Value()->GetProperty("visible")) && dynamic_cast(nodeIt->Value()->GetData())==NULL) { nodeIt->Value()->SetVisibility(false); } } } } void QmitkRigidRegistrationView::CheckForMaskImages() { if (m_FixedMaskNode.IsNotNull()) { m_Controls.m_UseFixedImageMask->show(); } else { m_Controls.m_UseFixedImageMask->hide(); } if (m_MovingMaskNode.IsNotNull()) { m_Controls.m_UseMovingImageMask->show(); } else { m_Controls.m_UseMovingImageMask->hide(); } } void QmitkRigidRegistrationView::UseFixedMaskImageChecked(bool checked) { if (checked) { m_FixedMaskNode->SetVisibility(true); } else { m_FixedMaskNode->SetVisibility(false); } } void QmitkRigidRegistrationView::UseMovingMaskImageChecked(bool checked) { if (checked) { m_MovingMaskNode->SetVisibility(true); } else { m_MovingMaskNode->SetVisibility(false); } } void QmitkRigidRegistrationView::TabChanged(int index) { if (index == 0) { m_Controls.frame->hide(); } else { m_Controls.frame->show(); } } void QmitkRigidRegistrationView::SwitchImages() { mitk::DataNode::Pointer newMoving = m_FixedNode; mitk::DataNode::Pointer newFixed = m_MovingNode; this->FixedSelected(newFixed); this->MovingSelected(newMoving); if(m_ContourHelperNode.IsNotNull()) { // Update the contour ShowContour(); } } diff --git a/Plugins/org.mitk.gui.qt.segmentation/src/internal/QmitkAutocropAction.cpp b/Plugins/org.mitk.gui.qt.segmentation/src/internal/QmitkAutocropAction.cpp index a659c3c1df..fd4f8096f7 100644 --- a/Plugins/org.mitk.gui.qt.segmentation/src/internal/QmitkAutocropAction.cpp +++ b/Plugins/org.mitk.gui.qt.segmentation/src/internal/QmitkAutocropAction.cpp @@ -1,196 +1,196 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkAutocropAction.h" #include "mitkAutoCropImageFilter.h" #include "mitkImageCast.h" #include "mitkRenderingManager.h" #include "mitkProgressBar.h" #include //needed for qApp #include QmitkAutocropAction::QmitkAutocropAction() { } QmitkAutocropAction::~QmitkAutocropAction() { } void QmitkAutocropAction::Run( const QList &selectedNodes ) { foreach ( mitk::DataNode::Pointer node, selectedNodes ) { if (node) { mitk::Image::Pointer image = dynamic_cast( node->GetData() ); if (image.IsNull()) return; mitk::ProgressBar::GetInstance()->AddStepsToDo(10); mitk::ProgressBar::GetInstance()->Progress(2); qApp->processEvents(); mitk::AutoCropImageFilter::Pointer cropFilter = mitk::AutoCropImageFilter::New(); cropFilter->SetInput( image ); cropFilter->SetBackgroundValue( 0 ); try { cropFilter->Update(); image = cropFilter->GetOutput(); if (image.IsNotNull()) { if (image->GetDimension() == 4) { MITK_INFO << "4D AUTOCROP DOES NOT WORK AT THE MOMENT"; throw "4D AUTOCROP DOES NOT WORK AT THE MOMENT"; unsigned int timesteps = image->GetDimension(3); for (unsigned int i = 0; i < timesteps; i++) { mitk::ImageTimeSelector::Pointer imageTimeSelector = mitk::ImageTimeSelector::New(); imageTimeSelector->SetInput(image); imageTimeSelector->SetTimeNr(i); imageTimeSelector->UpdateLargestPossibleRegion(); // We split a long nested code line into separate calls for debugging: mitk::ImageSource::OutputImageType *_3dSlice = imageTimeSelector->GetOutput(); mitk::Image::Pointer _cropped3dSlice = this->IncreaseCroppedImageSize(_3dSlice); // +++ BUG +++ BUG +++ BUG +++ BUG +++ BUG +++ BUG +++ BUG +++ void *_data = _cropped3dSlice->GetData(); // // We write some stripes into the image if ((i & 1) == 0) { int depth = _cropped3dSlice->GetDimension(2); int height = _cropped3dSlice->GetDimension(1); int width = _cropped3dSlice->GetDimension(0); for (int z = 0; z < depth; ++z) for (int y = 0; y < height; ++y) for (int x = 0; x < width; ++x) reinterpret_cast(_data)[(width * height * z) + (width * y) + x] = x & 1; // } image->SetVolume(_data, i); } node->SetData( image ); // bug fix 3145 } else { node->SetData( this->IncreaseCroppedImageSize(image) ); // bug fix 3145 } // Reinit node mitk::RenderingManager::GetInstance()->InitializeViews( - node->GetData()->GetTimeSlicedGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); + node->GetData()->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } catch(...) { MITK_ERROR << "Cropping image failed..."; } mitk::ProgressBar::GetInstance()->Progress(8); } else { MITK_INFO << " a NULL node selected"; } } } mitk::Image::Pointer QmitkAutocropAction::IncreaseCroppedImageSize( mitk::Image::Pointer image ) { typedef itk::Image< short, 3 > ImageType; typedef itk::Image< unsigned char, 3 > PADOutputImageType; ImageType::Pointer itkTransformImage = ImageType::New(); mitk::CastToItkImage( image, itkTransformImage ); typedef itk::ConstantPadImageFilter< ImageType, PADOutputImageType > PadFilterType; PadFilterType::Pointer padFilter = PadFilterType::New(); unsigned long upperPad[3]; unsigned long lowerPad[3]; int borderLiner = 3; mitk::Point3D mitkOriginPoint; double origin[3]; origin[0]=0; origin[1]=0; origin[2]=0; itkTransformImage->SetOrigin(origin); lowerPad[0]=borderLiner; lowerPad[1]=borderLiner; lowerPad[2]=borderLiner; upperPad[0]=borderLiner; upperPad[1]=borderLiner; upperPad[2]=borderLiner; padFilter->SetInput(itkTransformImage); padFilter->SetConstant(0); padFilter->SetPadUpperBound(upperPad); padFilter->SetPadLowerBound(lowerPad); padFilter->UpdateLargestPossibleRegion(); mitk::Image::Pointer paddedImage = mitk::Image::New(); paddedImage->InitializeByItk(padFilter->GetOutput()); mitk::CastToMitkImage(padFilter->GetOutput(), paddedImage); //calculate translation according to padding to get the new origin mitk::Point3D paddedOrigin = image->GetGeometry()->GetOrigin(); mitk::Vector3D spacing = image->GetGeometry()->GetSpacing(); paddedOrigin[0] -= (borderLiner)*spacing[0]; paddedOrigin[1] -= (borderLiner)*spacing[1]; paddedOrigin[2] -= (borderLiner)*spacing[2]; paddedImage->GetGeometry()->SetOrigin( paddedOrigin ); return paddedImage; } void QmitkAutocropAction::SetSmoothed(bool /*smoothed*/) { //not needed } void QmitkAutocropAction::SetDecimated(bool /*decimated*/) { //not needed } void QmitkAutocropAction::SetDataStorage(mitk::DataStorage* /*dataStorage*/) { //not needed } void QmitkAutocropAction::SetFunctionality(berry::QtViewPart* /*functionality*/) { //not needed } diff --git a/Plugins/org.mitk.gui.qt.segmentation/src/internal/QmitkSegmentationView.cpp b/Plugins/org.mitk.gui.qt.segmentation/src/internal/QmitkSegmentationView.cpp index e0410c695d..bed480f319 100644 --- a/Plugins/org.mitk.gui.qt.segmentation/src/internal/QmitkSegmentationView.cpp +++ b/Plugins/org.mitk.gui.qt.segmentation/src/internal/QmitkSegmentationView.cpp @@ -1,1252 +1,1247 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkDataNodeObject.h" #include "mitkProperties.h" #include "mitkSegTool2D.h" #include "mitkGlobalInteraction.h" #include "QmitkStdMultiWidget.h" #include "QmitkNewSegmentationDialog.h" #include #include #include "QmitkSegmentationView.h" #include "QmitkSegmentationPostProcessing.h" #include "QmitkSegmentationOrganNamesHandling.cpp" #include #include //For Segmentation in rotated slices //TODO clean up includes #include "mitkVtkResliceInterpolationProperty.h" #include "mitkPlanarCircle.h" #include "mitkGetModuleContext.h" #include "mitkModule.h" #include "mitkModuleRegistry.h" #include "mitkSegmentationObjectFactory.h" const std::string QmitkSegmentationView::VIEW_ID = "org.mitk.views.segmentation"; // public methods QmitkSegmentationView::QmitkSegmentationView() :m_Parent(NULL) ,m_Controls(NULL) ,m_MultiWidget(NULL) ,m_RenderingManagerObserverTag(0) ,m_DataSelectionChanged(false) { RegisterSegmentationObjectFactory(); } QmitkSegmentationView::~QmitkSegmentationView() { // delete m_PostProcessing; delete m_Controls; } void QmitkSegmentationView::NewNodesGenerated() { // ForceDisplayPreferencesUponAllImages(); } void QmitkSegmentationView::NewNodeObjectsGenerated(mitk::ToolManager::DataVectorType* nodes) { if (!nodes) return; mitk::ToolManager* toolManager = m_Controls->m_ManualToolSelectionBox->GetToolManager(); if (!toolManager) return; for (mitk::ToolManager::DataVectorType::iterator iter = nodes->begin(); iter != nodes->end(); ++iter) { this->FireNodeSelected( *iter ); // only last iteration meaningful, multiple generated objects are not taken into account here } } void QmitkSegmentationView::Visible() { if (m_DataSelectionChanged) { this->OnSelectionChanged(this->GetDataManagerSelection()); } } void QmitkSegmentationView::Activated() { // should be moved to ::BecomesVisible() or similar if( m_Controls ) { m_Controls->m_ManualToolSelectionBox->setEnabled( true ); m_Controls->m_OrganToolSelectionBox->setEnabled( true ); m_Controls->m_LesionToolSelectionBox->setEnabled( true ); m_Controls->m_SlicesInterpolator->Enable3DInterpolation( m_Controls->widgetStack->currentWidget() == m_Controls->pageManual ); //TODO Remove Observer itk::ReceptorMemberCommand::Pointer command1 = itk::ReceptorMemberCommand::New(); command1->SetCallbackFunction( this, &QmitkSegmentationView::RenderingManagerReinitialized ); m_RenderingManagerObserverTag = mitk::RenderingManager::GetInstance()->AddObserver( mitk::RenderingManagerViewsInitializedEvent(), command1 ); //Adding observers for node visibility to existing segmentations mitk::TNodePredicateDataType::Pointer isImage = mitk::TNodePredicateDataType::New(); mitk::NodePredicateProperty::Pointer isBinary = mitk::NodePredicateProperty::New("binary", mitk::BoolProperty::New(true)); mitk::NodePredicateAnd::Pointer isSegmentation = mitk::NodePredicateAnd::New( isImage, isBinary ); mitk::DataStorage::SetOfObjects::ConstPointer segmentations = this->GetDefaultDataStorage()->GetSubset( isSegmentation ); mitk::DataStorage::SetOfObjects::ConstPointer image = this->GetDefaultDataStorage()->GetSubset( isImage ); if (!image->empty()) { OnSelectionChanged(*image->begin()); } for ( mitk::DataStorage::SetOfObjects::const_iterator iter = segmentations->begin(); iter != segmentations->end(); ++iter) { mitk::DataNode* node = *iter; itk::SimpleMemberCommand::Pointer command = itk::SimpleMemberCommand::New(); command->SetCallbackFunction(this, &QmitkSegmentationView::OnWorkingNodeVisibilityChanged); m_WorkingDataObserverTags.insert( std::pair( node, node->GetProperty("visible")->AddObserver( itk::ModifiedEvent(), command ) ) ); } if(segmentations->Size() > 0) { FireNodeSelected(segmentations->ElementAt(0)); segmentations->ElementAt(0)->GetProperty("visible")->Modified(); } } } void QmitkSegmentationView::Deactivated() { if( m_Controls ) { mitk::RenderingManager::GetInstance()->RemoveObserver( m_RenderingManagerObserverTag ); m_Controls->m_ManualToolSelectionBox->setEnabled( false ); //deactivate all tools m_Controls->m_ManualToolSelectionBox->GetToolManager()->ActivateTool(-1); m_Controls->m_OrganToolSelectionBox->setEnabled( false ); m_Controls->m_LesionToolSelectionBox->setEnabled( false ); m_Controls->m_SlicesInterpolator->EnableInterpolation( false ); //Removing all observers for ( NodeTagMapType::iterator dataIter = m_WorkingDataObserverTags.begin(); dataIter != m_WorkingDataObserverTags.end(); ++dataIter ) { (*dataIter).first->GetProperty("visible")->RemoveObserver( (*dataIter).second ); } m_WorkingDataObserverTags.clear(); if (m_MultiWidget) { mitk::SlicesCoordinator *coordinator = m_MultiWidget->GetSlicesRotator(); if (coordinator) coordinator->RemoveObserver(m_SlicesRotationObserverTag1); coordinator = m_MultiWidget->GetSlicesSwiveller(); if (coordinator) coordinator->RemoveObserver(m_SlicesRotationObserverTag2); } // gets the context of the "Mitk" (Core) module (always has id 1) // TODO Workaround until CTL plugincontext is available mitk::ModuleContext* context = mitk::ModuleRegistry::GetModule(1)->GetModuleContext(); // Workaround end mitk::ServiceReference serviceRef = context->GetServiceReference(); //mitk::ServiceReference serviceRef = mitk::GetModuleContext()->GetServiceReference(); mitk::PlanePositionManagerService* service = dynamic_cast(context->GetService(serviceRef)); service->RemoveAllPlanePositions(); } } void QmitkSegmentationView::StdMultiWidgetAvailable( QmitkStdMultiWidget& stdMultiWidget ) { SetMultiWidget(&stdMultiWidget); } void QmitkSegmentationView::StdMultiWidgetNotAvailable() { SetMultiWidget(NULL); } void QmitkSegmentationView::StdMultiWidgetClosed( QmitkStdMultiWidget& /*stdMultiWidget*/ ) { SetMultiWidget(NULL); } void QmitkSegmentationView::SetMultiWidget(QmitkStdMultiWidget* multiWidget) { if (m_MultiWidget) { mitk::SlicesCoordinator* coordinator = m_MultiWidget->GetSlicesRotator(); if (coordinator) { coordinator->RemoveObserver( m_SlicesRotationObserverTag1 ); } coordinator = m_MultiWidget->GetSlicesSwiveller(); if (coordinator) { coordinator->RemoveObserver( m_SlicesRotationObserverTag2 ); } } // save the current multiwidget as the working widget m_MultiWidget = multiWidget; //TODO Remove Observers if (m_MultiWidget) { mitk::SlicesCoordinator* coordinator = m_MultiWidget->GetSlicesRotator(); if (coordinator) { itk::ReceptorMemberCommand::Pointer command2 = itk::ReceptorMemberCommand::New(); command2->SetCallbackFunction( this, &QmitkSegmentationView::SliceRotation ); m_SlicesRotationObserverTag1 = coordinator->AddObserver( mitk::SliceRotationEvent(), command2 ); } coordinator = m_MultiWidget->GetSlicesSwiveller(); if (coordinator) { itk::ReceptorMemberCommand::Pointer command2 = itk::ReceptorMemberCommand::New(); command2->SetCallbackFunction( this, &QmitkSegmentationView::SliceRotation ); m_SlicesRotationObserverTag2 = coordinator->AddObserver( mitk::SliceRotationEvent(), command2 ); } } //TODO End Remove Observers if (m_Parent) { m_Parent->setEnabled(m_MultiWidget); } // tell the interpolation about toolmanager and multiwidget (and data storage) if (m_Controls && m_MultiWidget) { mitk::ToolManager* toolManager = m_Controls->m_ManualToolSelectionBox->GetToolManager(); m_Controls->m_SlicesInterpolator->SetDataStorage( *(this->GetDefaultDataStorage())); m_Controls->m_SlicesInterpolator->Initialize( toolManager, m_MultiWidget ); } } void QmitkSegmentationView::OnPreferencesChanged(const berry::IBerryPreferences*) { ForceDisplayPreferencesUponAllImages(); } //TODO remove function void QmitkSegmentationView::RenderingManagerReinitialized(const itk::EventObject&) { CheckImageAlignment(); } //TODO remove function void QmitkSegmentationView::SliceRotation(const itk::EventObject&) { CheckImageAlignment(); } // protected slots void QmitkSegmentationView::CreateNewSegmentation() { mitk::DataNode::Pointer node = m_Controls->m_ManualToolSelectionBox->GetToolManager()->GetReferenceData(0); if (node.IsNotNull()) { mitk::Image::Pointer image = dynamic_cast( node->GetData() ); if (image.IsNotNull()) { if (image->GetDimension()>1) { // ask about the name and organ type of the new segmentation QmitkNewSegmentationDialog* dialog = new QmitkNewSegmentationDialog( m_Parent ); // needs a QWidget as parent, "this" is not QWidget QString storedList = QString::fromStdString( this->GetPreferences()->GetByteArray("Organ-Color-List","") ); QStringList organColors; if (storedList.isEmpty()) { organColors = GetDefaultOrganColorString(); } else { /* a couple of examples of how organ names are stored: a simple item is built up like 'name#AABBCC' where #AABBCC is the hexadecimal notation of a color as known from HTML items are stored separated by ';' this makes it necessary to escape occurrences of ';' in name. otherwise the string "hugo;ypsilon#AABBCC;eugen#AABBCC" could not be parsed as two organs but we would get "hugo" and "ypsilon#AABBCC" and "eugen#AABBCC" so the organ name "hugo;ypsilon" is stored as "hugo\;ypsilon" and must be unescaped after loading the following lines could be one split with Perl's negative lookbehind */ // recover string list from BlueBerry view's preferences QString storedString = QString::fromStdString( this->GetPreferences()->GetByteArray("Organ-Color-List","") ); MITK_DEBUG << "storedString: " << storedString.toStdString(); // match a string consisting of any number of repetitions of either "anything but ;" or "\;". This matches everything until the next unescaped ';' QRegExp onePart("(?:[^;]|\\\\;)*"); MITK_DEBUG << "matching " << onePart.pattern().toStdString(); int count = 0; int pos = 0; while( (pos = onePart.indexIn( storedString, pos )) != -1 ) { ++count; int length = onePart.matchedLength(); if (length == 0) break; QString matchedString = storedString.mid(pos, length); MITK_DEBUG << " Captured length " << length << ": " << matchedString.toStdString(); pos += length + 1; // skip separating ';' // unescape possible occurrences of '\;' in the string matchedString.replace("\\;", ";"); // add matched string part to output list organColors << matchedString; } MITK_DEBUG << "Captured " << count << " organ name/colors"; } dialog->SetSuggestionList( organColors ); int dialogReturnValue = dialog->exec(); if ( dialogReturnValue == QDialog::Rejected ) return; // user clicked cancel or pressed Esc or something similar // ask the user about an organ type and name, add this information to the image's (!) propertylist // create a new image of the same dimensions and smallest possible pixel type mitk::ToolManager* toolManager = m_Controls->m_ManualToolSelectionBox->GetToolManager(); mitk::Tool* firstTool = toolManager->GetToolById(0); if (firstTool) { try { mitk::DataNode::Pointer emptySegmentation = firstTool->CreateEmptySegmentationNode( image, dialog->GetSegmentationName().toStdString(), dialog->GetColor() ); //Here we change the reslice interpolation mode for a segmentation, so that contours in rotated slice can be shown correctly emptySegmentation->SetProperty( "reslice interpolation", mitk::VtkResliceInterpolationProperty::New(VTK_RESLICE_NEAREST) ); // initialize showVolume to false to prevent recalculating the volume while working on the segmentation emptySegmentation->SetProperty( "showVolume", mitk::BoolProperty::New( false ) ); if (!emptySegmentation) return; // could be aborted by user UpdateOrganList( organColors, dialog->GetSegmentationName(), dialog->GetColor() ); /* escape ';' here (replace by '\;'), see longer comment above */ std::string stringForStorage = organColors.replaceInStrings(";","\\;").join(";").toStdString(); MITK_DEBUG << "Will store: " << stringForStorage; this->GetPreferences()->PutByteArray("Organ-Color-List", stringForStorage ); this->GetPreferences()->Flush(); if(m_Controls->m_ManualToolSelectionBox->GetToolManager()->GetWorkingData(0)) { m_Controls->m_ManualToolSelectionBox->GetToolManager()->GetWorkingData(0)->SetSelected(false); } emptySegmentation->SetSelected(true); this->GetDefaultDataStorage()->Add( emptySegmentation, node ); // add as a child, because the segmentation "derives" from the original this->FireNodeSelected( emptySegmentation ); this->OnSelectionChanged( emptySegmentation ); this->SetToolManagerSelection(node, emptySegmentation); } catch (std::bad_alloc) { QMessageBox::warning(NULL,"Create new segmentation","Could not allocate memory for new segmentation"); } } } else { QMessageBox::information(NULL,"Segmentation","Segmentation is currently not supported for 2D images"); } } } else { MITK_ERROR << "'Create new segmentation' button should never be clickable unless a patient image is selected..."; } } void QmitkSegmentationView::OnWorkingNodeVisibilityChanged(/*const itk::Object* caller, const itk::EventObject& e*/) { if (!m_Parent || !m_Parent->isVisible()) return; // The new selection behaviour is: // // When clicking on the checkbox of a segmentation the node will e selected and its reference node either // The previous selected segmentation (if there is one) will be deselected. Additionally a reinit on the // selected segmenation will be performed. // If more than one segmentation is selected the tools will be disabled. if (!m_Controls) return; // might happen on initialization (preferences loaded) mitk::DataNode::Pointer referenceDataNew; mitk::DataNode::Pointer workingData; bool workingNodeIsVisible (true); unsigned int numberOfSelectedSegmentations (0); // iterate all images mitk::TNodePredicateDataType::Pointer isImage = mitk::TNodePredicateDataType::New(); mitk::DataStorage::SetOfObjects::ConstPointer allImages = this->GetDefaultDataStorage()->GetSubset( isImage ); for ( mitk::DataStorage::SetOfObjects::const_iterator iter = allImages->begin(); iter != allImages->end(); ++iter) { mitk::DataNode* node = *iter; // apply display preferences ApplyDisplayOptions(node); bool isSegmentation(false); node->GetBoolProperty("binary", isSegmentation); if (node->IsSelected() && isSegmentation) { workingNodeIsVisible = node->IsVisible(mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget1"))); if (!workingNodeIsVisible) return; numberOfSelectedSegmentations++; workingData = node; if (this->GetDefaultDataStorage()->GetSources(node)->Size() != 0) { referenceDataNew = this->GetDefaultDataStorage()->GetSources(node)->ElementAt(0); } bool isBinary(false); //Find topmost source or first source which is no binary image while (referenceDataNew.IsNotNull() && this->GetDefaultDataStorage()->GetSources(referenceDataNew)->Size() != 0) { referenceDataNew = this->GetDefaultDataStorage()->GetSources(referenceDataNew)->ElementAt(0); referenceDataNew->GetBoolProperty("binary",isBinary); if (!isBinary) break; } if (workingNodeIsVisible && referenceDataNew) { //Since the binary property of a segmentation can be set to false and afterwards you can create a new segmentation out of it //->could lead to a deadloop NodeTagMapType::iterator searchIter = m_WorkingDataObserverTags.find( referenceDataNew ); if ( searchIter != m_WorkingDataObserverTags.end()) { referenceDataNew->GetProperty("visible")->RemoveObserver( (*searchIter).second ); } referenceDataNew->SetVisibility(true); } //set comboBox to reference image disconnect( m_Controls->refImageSelector, SIGNAL( OnSelectionChanged( const mitk::DataNode* ) ), this, SLOT( OnComboBoxSelectionChanged( const mitk::DataNode* ) ) ); m_Controls->refImageSelector->setCurrentIndex( m_Controls->refImageSelector->Find(referenceDataNew) ); connect( m_Controls->refImageSelector, SIGNAL( OnSelectionChanged( const mitk::DataNode* ) ), this, SLOT( OnComboBoxSelectionChanged( const mitk::DataNode* ) ) ); continue; } if (workingData.IsNull() || (workingNodeIsVisible && node != referenceDataNew)) { node->SetVisibility((false)); } } if(numberOfSelectedSegmentations == 1) SetToolManagerSelection(referenceDataNew, workingData); mitk::DataStorage::SetOfObjects::Pointer temp = mitk::DataStorage::SetOfObjects::New(); temp->InsertElement(0,workingData); - mitk::TimeSlicedGeometry::Pointer bounds = this->GetDataStorage()->ComputeBoundingGeometry3D(temp); +// mitk::TimeGeometry::Pointer bounds = this->GetDataStorage()->ComputeBoundingGeometry3D(temp); - - // Reinit current node ForceDisplayPreferencesUponAllImages(); - // initialize the views to the bounding geometry - /*mitk::RenderingManager::GetInstance()->InitializeViews(bounds); - mitk::RenderingManager::GetInstance()->RequestUpdateAll();*/ } void QmitkSegmentationView::NodeRemoved(const mitk::DataNode* node) { bool isSeg(false); bool isHelperObject(false); node->GetBoolProperty("helper object", isHelperObject); node->GetBoolProperty("binary", isSeg); mitk::Image* image = dynamic_cast(node->GetData()); if(isSeg && !isHelperObject && image) { mitk::DataStorage::SetOfObjects::ConstPointer allContourMarkers = this->GetDataStorage()->GetDerivations(node, mitk::NodePredicateProperty::New("isContourMarker" , mitk::BoolProperty::New(true))); // gets the context of the "Mitk" (Core) module (always has id 1) // TODO Workaround until CTL plugincontext is available mitk::ModuleContext* context = mitk::ModuleRegistry::GetModule(1)->GetModuleContext(); // Workaround end mitk::ServiceReference serviceRef = context->GetServiceReference(); //mitk::ServiceReference serviceRef = mitk::GetModuleContext()->GetServiceReference(); mitk::PlanePositionManagerService* service = dynamic_cast(context->GetService(serviceRef)); for (mitk::DataStorage::SetOfObjects::ConstIterator it = allContourMarkers->Begin(); it != allContourMarkers->End(); ++it) { std::string nodeName = node->GetName(); unsigned int t = nodeName.find_last_of(" "); unsigned int id = atof(nodeName.substr(t+1).c_str())-1; service->RemovePlanePosition(id); this->GetDataStorage()->Remove(it->Value()); } mitk::DataNode* tempNode = const_cast(node); node->GetProperty("visible")->RemoveObserver( m_WorkingDataObserverTags[tempNode] ); m_WorkingDataObserverTags.erase(tempNode); mitk::SurfaceInterpolationController::GetInstance()->RemoveSegmentationFromContourList(image); } if((m_Controls->m_ManualToolSelectionBox->GetToolManager()->GetReferenceData(0) == node)|| (m_Controls->m_ManualToolSelectionBox->GetToolManager()->GetWorkingData(0) == node)) { //as we don't know which node was actually remove e.g. our reference node, disable 'New Segmentation' button. //consider the case that there is no more image in the datastorage this->SetToolManagerSelection(NULL, NULL); } } void QmitkSegmentationView::CreateSegmentationFromSurface() { mitk::DataNode::Pointer surfaceNode = m_Controls->MaskSurfaces->GetSelectedNode(); mitk::Surface::Pointer surface(0); if(surfaceNode.IsNotNull()) surface = dynamic_cast ( surfaceNode->GetData() ); if(surface.IsNull()) { this->HandleException( "No surface selected.", m_Parent, true); return; } mitk::DataNode::Pointer imageNode = m_Controls->m_ManualToolSelectionBox->GetToolManager()->GetReferenceData(0); mitk::Image::Pointer image(0); if (imageNode.IsNotNull()) image = dynamic_cast( imageNode->GetData() ); if(image.IsNull()) { this->HandleException( "No image selected.", m_Parent, true); return; } mitk::SurfaceToImageFilter::Pointer s2iFilter = mitk::SurfaceToImageFilter::New(); s2iFilter->MakeOutputBinaryOn(); s2iFilter->SetInput(surface); s2iFilter->SetImage(image); s2iFilter->Update(); mitk::DataNode::Pointer resultNode = mitk::DataNode::New(); std::string nameOfResultImage = imageNode->GetName(); nameOfResultImage.append(surfaceNode->GetName()); resultNode->SetProperty("name", mitk::StringProperty::New(nameOfResultImage) ); resultNode->SetProperty("binary", mitk::BoolProperty::New(true) ); resultNode->SetData( s2iFilter->GetOutput() ); this->GetDataStorage()->Add(resultNode, imageNode); } void QmitkSegmentationView::ToolboxStackPageChanged(int id) { // interpolation only with manual tools visible m_Controls->m_SlicesInterpolator->EnableInterpolation( id == 0 ); if( id == 0 ) { mitk::DataNode::Pointer workingData = m_Controls->m_ManualToolSelectionBox->GetToolManager()->GetWorkingData(0); if( workingData.IsNotNull() ) { m_Controls->lblSegmentation->setText( workingData->GetName().c_str() ); m_Controls->lblSegImage->show(); m_Controls->lblSegmentation->show(); } } else { m_Controls->lblSegImage->hide(); m_Controls->lblSegmentation->hide(); } // this is just a workaround, should be removed when all tools support 3D+t if (id==2) // lesions { mitk::DataNode::Pointer node = m_Controls->m_ManualToolSelectionBox->GetToolManager()->GetReferenceData(0); if (node.IsNotNull()) { mitk::Image::Pointer image = dynamic_cast( node->GetData() ); if (image.IsNotNull()) { if (image->GetDimension()>3) { m_Controls->widgetStack->setCurrentIndex(0); QMessageBox::information(NULL,"Segmentation","Lesion segmentation is currently not supported for 4D images"); } } } } } // protected void QmitkSegmentationView::OnComboBoxSelectionChanged( const mitk::DataNode* node ) { mitk::DataNode* selectedNode = const_cast(node); if( selectedNode != NULL ) { m_Controls->refImageSelector->show(); m_Controls->lblReferenceImageSelectionWarning->hide(); bool isBinary(false); selectedNode->GetBoolProperty("binary", isBinary); if ( isBinary ) { FireNodeSelected(selectedNode); selectedNode->SetVisibility(true); } else if (node != m_Controls->m_ManualToolSelectionBox->GetToolManager()->GetReferenceData(0)) { if (m_Controls->m_ManualToolSelectionBox->GetToolManager()->GetReferenceData(0)) m_Controls->m_ManualToolSelectionBox->GetToolManager()->GetReferenceData(0)->SetVisibility(false); if (m_Controls->m_ManualToolSelectionBox->GetToolManager()->GetWorkingData(0)) { m_Controls->m_ManualToolSelectionBox->GetToolManager()->GetWorkingData(0)->SetVisibility(false); } FireNodeSelected(selectedNode); selectedNode->SetVisibility(true); SetToolManagerSelection(selectedNode, NULL); } } else { m_Controls->refImageSelector->hide(); m_Controls->lblReferenceImageSelectionWarning->show(); } } void QmitkSegmentationView::OnShowMarkerNodes (bool state) { mitk::SegTool2D::Pointer manualSegmentationTool; unsigned int numberOfExistingTools = m_Controls->m_ManualToolSelectionBox->GetToolManager()->GetTools().size(); for(unsigned int i = 0; i < numberOfExistingTools; i++) { manualSegmentationTool = dynamic_cast(m_Controls->m_ManualToolSelectionBox->GetToolManager()->GetToolById(i)); if (manualSegmentationTool) { if(state == true) { manualSegmentationTool->SetShowMarkerNodes( true ); } else { manualSegmentationTool->SetShowMarkerNodes( false ); } } } } void QmitkSegmentationView::OnSelectionChanged(mitk::DataNode* node) { std::vector nodes; nodes.push_back( node ); this->OnSelectionChanged( nodes ); } void QmitkSegmentationView::OnSurfaceSelectionChanged() { // if Image and Surface are selected, enable button if ( (m_Controls->refImageSelector->GetSelectedNode().IsNull()) || (m_Controls->MaskSurfaces->GetSelectedNode().IsNull())) m_Controls->CreateSegmentationFromSurface->setEnabled(false); else m_Controls->CreateSegmentationFromSurface->setEnabled(true); } void QmitkSegmentationView::OnSelectionChanged(std::vector nodes) { // if the selected node is a contourmarker if ( !nodes.empty() ) { std::string markerName = "Position"; unsigned int numberOfNodes = nodes.size(); std::string nodeName = nodes.at( 0 )->GetName(); if ( ( numberOfNodes == 1 ) && ( nodeName.find( markerName ) == 0) ) { this->OnContourMarkerSelected( nodes.at( 0 ) ); } } // if Image and Surface are selected, enable button if ( (m_Controls->refImageSelector->GetSelectedNode().IsNull()) || (m_Controls->MaskSurfaces->GetSelectedNode().IsNull())) m_Controls->CreateSegmentationFromSurface->setEnabled(false); else m_Controls->CreateSegmentationFromSurface->setEnabled(true); m_DataSelectionChanged = false; if (!m_Parent || !m_Parent->isVisible()) { m_DataSelectionChanged = true; return; } // reaction to BlueBerry selection events // this method will try to figure out if a relevant segmentation and its corresponding original image were selected // a warning is issued if the selection is invalid // appropriate reactions are triggered otherwise mitk::DataNode::Pointer referenceData = FindFirstRegularImage( nodes ); //m_Controls->refImageSelector->GetSelectedNode(); //FindFirstRegularImage( nodes ); mitk::DataNode::Pointer workingData = FindFirstSegmentation( nodes ); if(referenceData.IsNull() && workingData.IsNull()) return; bool invalidSelection( !nodes.empty() && ( nodes.size() > 2 || // maximum 2 selected nodes (nodes.size() == 2 && (workingData.IsNull() || referenceData.IsNull()) ) || // with two nodes, one must be the original image, one the segmentation ( workingData.GetPointer() == referenceData.GetPointer() ) //one node is selected as reference and working image // one item is always ok (might be working or reference or nothing ) ); if (invalidSelection) { // TODO visible warning when two images are selected MITK_ERROR << "WARNING: No image, too many (>2) or two equal images were selected."; workingData = NULL; if( m_Controls->refImageSelector->GetSelectedNode().IsNull() ) referenceData = NULL; } if ( workingData.IsNotNull() && referenceData.IsNull() ) { // find the DataStorage parent of workingData // try to find a "normal image" parent, select this as reference image mitk::TNodePredicateDataType::Pointer isImage = mitk::TNodePredicateDataType::New(); mitk::NodePredicateProperty::Pointer isBinary = mitk::NodePredicateProperty::New("binary", mitk::BoolProperty::New(true)); mitk::NodePredicateNot::Pointer isNotBinary = mitk::NodePredicateNot::New( isBinary ); mitk::NodePredicateAnd::Pointer isNormalImage = mitk::NodePredicateAnd::New( isImage, isNotBinary ); mitk::DataStorage::SetOfObjects::ConstPointer possibleParents = this->GetDefaultDataStorage()->GetSources( workingData, isNormalImage ); if (possibleParents->size() > 0) { if (possibleParents->size() > 1) { // TODO visible warning for this rare case MITK_ERROR << "Selected binary image has multiple parents. Using arbitrary first one for segmentation."; } referenceData = (*possibleParents)[0]; } NodeTagMapType::iterator searchIter = m_WorkingDataObserverTags.find( workingData ); if ( searchIter == m_WorkingDataObserverTags.end() ) { //MITK_INFO<<"Creating new observer"; itk::SimpleMemberCommand::Pointer command = itk::SimpleMemberCommand::New(); command->SetCallbackFunction(this, &QmitkSegmentationView::OnWorkingNodeVisibilityChanged); m_WorkingDataObserverTags.insert( std::pair( workingData, workingData->GetProperty("visible")->AddObserver( itk::ModifiedEvent(), command ) ) ); workingData->GetProperty("visible")->Modified(); return; } if(workingData->IsVisible(mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget1")))) { //set comboBox to reference image disconnect( m_Controls->refImageSelector, SIGNAL( OnSelectionChanged( const mitk::DataNode* ) ), this, SLOT( OnComboBoxSelectionChanged( const mitk::DataNode* ) ) ); m_Controls->refImageSelector->setCurrentIndex( m_Controls->refImageSelector->Find(workingData) ); connect( m_Controls->refImageSelector, SIGNAL( OnSelectionChanged( const mitk::DataNode* ) ), this, SLOT( OnComboBoxSelectionChanged( const mitk::DataNode* ) ) ); // if Image and Surface are selected, enable button if ( (m_Controls->refImageSelector->GetSelectedNode().IsNull()) || (m_Controls->MaskSurfaces->GetSelectedNode().IsNull()) || (!referenceData)) m_Controls->CreateSegmentationFromSurface->setEnabled(false); else m_Controls->CreateSegmentationFromSurface->setEnabled(true); SetToolManagerSelection(referenceData, workingData); FireNodeSelected(workingData); } else { SetToolManagerSelection(NULL, NULL); FireNodeSelected(workingData); } } else { //set comboBox to reference image disconnect( m_Controls->refImageSelector, SIGNAL( OnSelectionChanged( const mitk::DataNode* ) ), this, SLOT( OnComboBoxSelectionChanged( const mitk::DataNode* ) ) ); m_Controls->refImageSelector->setCurrentIndex( m_Controls->refImageSelector->Find(referenceData) ); connect( m_Controls->refImageSelector, SIGNAL( OnSelectionChanged( const mitk::DataNode* ) ), this, SLOT( OnComboBoxSelectionChanged( const mitk::DataNode* ) ) ); // if Image and Surface are selected, enable button if ( (m_Controls->refImageSelector->GetSelectedNode().IsNull()) || (m_Controls->MaskSurfaces->GetSelectedNode().IsNull()) || (!referenceData)) m_Controls->CreateSegmentationFromSurface->setEnabled(false); else m_Controls->CreateSegmentationFromSurface->setEnabled(true); SetToolManagerSelection(referenceData, workingData); FireNodeSelected(referenceData); } } void QmitkSegmentationView::OnContourMarkerSelected(const mitk::DataNode *node) { //TODO renderWindow anders bestimmen, siehe CheckAlignment QmitkRenderWindow* selectedRenderWindow = 0; QmitkRenderWindow* RenderWindow1 = this->GetActiveStdMultiWidget()->GetRenderWindow1(); QmitkRenderWindow* RenderWindow2 = this->GetActiveStdMultiWidget()->GetRenderWindow2(); QmitkRenderWindow* RenderWindow3 = this->GetActiveStdMultiWidget()->GetRenderWindow3(); QmitkRenderWindow* RenderWindow4 = this->GetActiveStdMultiWidget()->GetRenderWindow4(); bool PlanarFigureInitializedWindow = false; // find initialized renderwindow if (node->GetBoolProperty("PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow1->GetRenderer())) { selectedRenderWindow = RenderWindow1; } if (!selectedRenderWindow && node->GetBoolProperty( "PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow2->GetRenderer())) { selectedRenderWindow = RenderWindow2; } if (!selectedRenderWindow && node->GetBoolProperty( "PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow3->GetRenderer())) { selectedRenderWindow = RenderWindow3; } if (!selectedRenderWindow && node->GetBoolProperty( "PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow4->GetRenderer())) { selectedRenderWindow = RenderWindow4; } // make node visible if (selectedRenderWindow) { std::string nodeName = node->GetName(); unsigned int t = nodeName.find_last_of(" "); unsigned int id = atof(nodeName.substr(t+1).c_str())-1; // gets the context of the "Mitk" (Core) module (always has id 1) // TODO Workaround until CTL plugincontext is available mitk::ModuleContext* context = mitk::ModuleRegistry::GetModule(1)->GetModuleContext(); // Workaround end mitk::ServiceReference serviceRef = context->GetServiceReference(); //mitk::ServiceReference serviceRef = mitk::GetModuleContext()->GetServiceReference(); mitk::PlanePositionManagerService* service = dynamic_cast(context->GetService(serviceRef)); selectedRenderWindow->GetSliceNavigationController()->ExecuteOperation(service->GetPlanePosition(id)); selectedRenderWindow->GetRenderer()->GetDisplayGeometry()->Fit(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } mitk::DataNode::Pointer QmitkSegmentationView::FindFirstRegularImage( std::vector nodes ) { if (nodes.empty()) return NULL; for(unsigned int i = 0; i < nodes.size(); ++i) { //mitk::DataNode::Pointer node = i.value() bool isImage(false); if (nodes.at(i)->GetData()) { isImage = dynamic_cast(nodes.at(i)->GetData()) != NULL; } // make sure this is not a binary image bool isSegmentation(false); nodes.at(i)->GetBoolProperty("binary", isSegmentation); // return first proper mitk::Image if (isImage && !isSegmentation) return nodes.at(i); } return NULL; } mitk::DataNode::Pointer QmitkSegmentationView::FindFirstSegmentation( std::vector nodes ) { if (nodes.empty()) return NULL; for(unsigned int i = 0; i < nodes.size(); ++i) { bool isImage(false); if (nodes.at(i)->GetData()) { isImage = dynamic_cast(nodes.at(i)->GetData()) != NULL; } bool isSegmentation(false); nodes.at(i)->GetBoolProperty("binary", isSegmentation); // return first proper binary mitk::Image if (isImage && isSegmentation) { return nodes.at(i); } } return NULL; } void QmitkSegmentationView::SetToolManagerSelection(const mitk::DataNode* referenceData, const mitk::DataNode* workingData) { // called as a result of new BlueBerry selections // tells the ToolManager for manual segmentation about new selections // updates GUI information about what the user should select mitk::ToolManager* toolManager = m_Controls->m_ManualToolSelectionBox->GetToolManager(); toolManager->SetReferenceData(const_cast(referenceData)); toolManager->SetWorkingData( const_cast(workingData)); // check original image m_Controls->btnNewSegmentation->setEnabled(referenceData != NULL); if (referenceData) { m_Controls->lblReferenceImageSelectionWarning->hide(); } else { m_Controls->lblReferenceImageSelectionWarning->show(); m_Controls->lblWorkingImageSelectionWarning->hide(); m_Controls->lblSegImage->hide(); m_Controls->lblSegmentation->hide(); } //TODO remove statement // check, wheter reference image is aligned like render windows. Otherwise display a visible warning (because 2D tools will probably not work) CheckImageAlignment(); // check segmentation if (referenceData) { if (!workingData) { m_Controls->lblWorkingImageSelectionWarning->show(); if( m_Controls->widgetStack->currentIndex() == 0 ) { m_Controls->lblSegImage->hide(); m_Controls->lblSegmentation->hide(); } } else { m_Controls->lblWorkingImageSelectionWarning->hide(); this->FireNodeSelected(const_cast(workingData)); if( m_Controls->widgetStack->currentIndex() == 0 ) { m_Controls->lblSegmentation->setText( workingData->GetName().c_str() ); m_Controls->lblSegmentation->show(); m_Controls->lblSegImage->show(); } } } } //TODO remove function void QmitkSegmentationView::CheckImageAlignment() { bool wrongAlignment(true); mitk::DataNode::Pointer node = m_Controls->m_ManualToolSelectionBox->GetToolManager()->GetReferenceData(0); if (node.IsNotNull()) { mitk::Image::Pointer image = dynamic_cast( node->GetData() ); if (image.IsNotNull() && m_MultiWidget) { wrongAlignment = !( IsRenderWindowAligned(m_MultiWidget->GetRenderWindow1(), image ) && IsRenderWindowAligned(m_MultiWidget->GetRenderWindow2(), image ) && IsRenderWindowAligned(m_MultiWidget->GetRenderWindow3(), image ) ); } } m_Controls->lblAlignmentWarning->setVisible(wrongAlignment); } //TODO remove function bool QmitkSegmentationView::IsRenderWindowAligned(QmitkRenderWindow* renderWindow, mitk::Image* image) { if (!renderWindow) return false; // for all 2D renderwindows of m_MultiWidget check alignment mitk::PlaneGeometry::ConstPointer displayPlane = dynamic_cast( renderWindow->GetRenderer()->GetCurrentWorldGeometry2D() ); if (displayPlane.IsNull()) return false; int affectedDimension(-1); int affectedSlice(-1); return mitk::SegTool2D::DetermineAffectedImageSlice( image, displayPlane, affectedDimension, affectedSlice ); } //TODO remove function void QmitkSegmentationView::ForceDisplayPreferencesUponAllImages() { if (!m_Parent || !m_Parent->isVisible()) return; // check all images and segmentations in DataStorage: // (items in brackets are implicitly done by previous steps) // 1. // if a reference image is selected, // show the reference image // and hide all other images (orignal and segmentation), // (and hide all segmentations of the other original images) // and show all the reference's segmentations // if no reference image is selected, do do nothing // // 2. // if a segmentation is selected, // show it // (and hide all all its siblings (childs of the same parent, incl, NULL parent)) // if no segmentation is selected, do nothing if (!m_Controls) return; // might happen on initialization (preferences loaded) mitk::DataNode::Pointer referenceData = m_Controls->m_ManualToolSelectionBox->GetToolManager()->GetReferenceData(0); // 1. if (referenceData.IsNotNull()) { // iterate all images mitk::TNodePredicateDataType::Pointer isImage = mitk::TNodePredicateDataType::New(); mitk::DataStorage::SetOfObjects::ConstPointer allImages = this->GetDefaultDataStorage()->GetSubset( isImage ); //mitk::DataStorage::SetOfObjects::ConstPointer allSegmentationChilds = this->GetDefaultDataStorage()->GetDerivations(referenceData, isImage ); for ( mitk::DataStorage::SetOfObjects::const_iterator iter = allImages->begin(); iter != allImages->end(); ++iter) { mitk::DataNode* node = *iter; // apply display preferences ApplyDisplayOptions(node); // set visibility if(!node->IsSelected() || (node->IsSelected() && !node->IsVisible(mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget1"))))) node->SetVisibility((node == referenceData) || node->IsSelected() ); } // Reinit current node mitk::RenderingManager::GetInstance()->InitializeViews( - referenceData->GetData()->GetTimeSlicedGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); + referenceData->GetData()->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); } // 2. //if (workingData.IsNotNull() && !workingData->IsSelected()) //{ // workingData->SetVisibility(true); //} mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkSegmentationView::ApplyDisplayOptions(mitk::DataNode* node) { if (!node) return; bool isBinary(false); node->GetPropertyValue("binary", isBinary); if (isBinary) { node->SetProperty( "outline binary", mitk::BoolProperty::New( this->GetPreferences()->GetBool("draw outline", true)) ); node->SetProperty( "outline width", mitk::FloatProperty::New( 2.0 ) ); node->SetProperty( "opacity", mitk::FloatProperty::New( this->GetPreferences()->GetBool("draw outline", true) ? 1.0 : 0.3 ) ); node->SetProperty( "volumerendering", mitk::BoolProperty::New( this->GetPreferences()->GetBool("volume rendering", false) ) ); } } void QmitkSegmentationView::CreateQtPartControl(QWidget* parent) { // setup the basic GUI of this view m_Parent = parent; m_Controls = new Ui::QmitkSegmentationControls; m_Controls->setupUi(parent); m_Controls->lblWorkingImageSelectionWarning->hide(); m_Controls->lblAlignmentWarning->hide(); m_Controls->lblSegImage->hide(); m_Controls->lblSegmentation->hide(); m_Controls->refImageSelector->SetDataStorage(this->GetDefaultDataStorage()); mitk::TNodePredicateDataType::Pointer isMitkImage = mitk::TNodePredicateDataType::New(); mitk::NodePredicateDataType::Pointer isDwi = mitk::NodePredicateDataType::New("DiffusionImage"); mitk::NodePredicateDataType::Pointer isDti = mitk::NodePredicateDataType::New("TensorImage"); mitk::NodePredicateDataType::Pointer isQbi = mitk::NodePredicateDataType::New("QBallImage"); mitk::NodePredicateOr::Pointer isDiffusionImage = mitk::NodePredicateOr::New(isDwi, isDti); isDiffusionImage = mitk::NodePredicateOr::New(isDiffusionImage, isQbi); mitk::NodePredicateOr::Pointer isImage = mitk::NodePredicateOr::New(isDiffusionImage, isMitkImage); m_Controls->refImageSelector->SetPredicate(isImage); if( m_Controls->refImageSelector->GetSelectedNode().IsNotNull() ) m_Controls->lblReferenceImageSelectionWarning->hide(); else m_Controls->refImageSelector->hide(); mitk::ToolManager* toolManager = m_Controls->m_ManualToolSelectionBox->GetToolManager(); toolManager->SetDataStorage( *(this->GetDefaultDataStorage()) ); assert ( toolManager ); // all part of open source MITK m_Controls->m_ManualToolSelectionBox->SetGenerateAccelerators(true); m_Controls->m_ManualToolSelectionBox->SetToolGUIArea( m_Controls->m_ManualToolGUIContainer ); m_Controls->m_ManualToolSelectionBox->SetDisplayedToolGroups("Add Subtract Paint Wipe 'Region Growing' Correction Fill Erase"); m_Controls->m_ManualToolSelectionBox->SetEnabledMode( QmitkToolSelectionBox::EnabledWithReferenceAndWorkingData ); // available only in the 3M application if ( !m_Controls->m_OrganToolSelectionBox->children().count() ) { m_Controls->widgetStack->setItemEnabled( 1, false ); } m_Controls->m_OrganToolSelectionBox->SetToolManager( *toolManager ); m_Controls->m_OrganToolSelectionBox->SetToolGUIArea( m_Controls->m_OrganToolGUIContainer ); m_Controls->m_OrganToolSelectionBox->SetDisplayedToolGroups("'Hippocampus left' 'Hippocampus right' 'Lung left' 'Lung right' 'Liver' 'Heart LV' 'Endocard LV' 'Epicard LV' 'Prostate'"); m_Controls->m_OrganToolSelectionBox->SetEnabledMode( QmitkToolSelectionBox::EnabledWithReferenceData ); // available only in the 3M application if ( !m_Controls->m_LesionToolSelectionBox->children().count() ) { m_Controls->widgetStack->setItemEnabled( 2, false ); } m_Controls->m_LesionToolSelectionBox->SetToolManager( *toolManager ); m_Controls->m_LesionToolSelectionBox->SetToolGUIArea( m_Controls->m_LesionToolGUIContainer ); m_Controls->m_LesionToolSelectionBox->SetDisplayedToolGroups("'Lymph Node'"); m_Controls->m_LesionToolSelectionBox->SetEnabledMode( QmitkToolSelectionBox::EnabledWithReferenceData ); toolManager->NewNodesGenerated += mitk::MessageDelegate( this, &QmitkSegmentationView::NewNodesGenerated ); // update the list of segmentations toolManager->NewNodeObjectsGenerated += mitk::MessageDelegate1( this, &QmitkSegmentationView::NewNodeObjectsGenerated ); // update the list of segmentations // create signal/slot connections connect( m_Controls->refImageSelector, SIGNAL( OnSelectionChanged( const mitk::DataNode* ) ), this, SLOT( OnComboBoxSelectionChanged( const mitk::DataNode* ) ) ); connect( m_Controls->btnNewSegmentation, SIGNAL(clicked()), this, SLOT(CreateNewSegmentation()) ); connect( m_Controls->CreateSegmentationFromSurface, SIGNAL(clicked()), this, SLOT(CreateSegmentationFromSurface()) ); connect( m_Controls->widgetStack, SIGNAL(currentChanged(int)), this, SLOT(ToolboxStackPageChanged(int)) ); connect(m_Controls->MaskSurfaces, SIGNAL( OnSelectionChanged( const mitk::DataNode* ) ), this, SLOT( OnSurfaceSelectionChanged( ) ) ); connect(m_Controls->MaskSurfaces, SIGNAL( OnSelectionChanged( const mitk::DataNode* ) ), this, SLOT( OnSurfaceSelectionChanged( ) ) ); connect(m_Controls->m_SlicesInterpolator, SIGNAL(SignalShowMarkerNodes(bool)), this, SLOT(OnShowMarkerNodes(bool))); m_Controls->MaskSurfaces->SetDataStorage(this->GetDefaultDataStorage()); m_Controls->MaskSurfaces->SetPredicate(mitk::NodePredicateDataType::New("Surface")); //// create helper class to provide context menus for segmentations in data manager // m_PostProcessing = new QmitkSegmentationPostProcessing(this->GetDefaultDataStorage(), this, m_Parent); } //void QmitkSegmentationView::OnPlaneModeChanged(int i) //{ // //if plane mode changes, disable all tools // if (m_MultiWidget) // { // mitk::ToolManager* toolManager = m_Controls->m_ManualToolSelectionBox->GetToolManager(); // // if (toolManager) // { // if (toolManager->GetActiveToolID() >= 0) // { // toolManager->ActivateTool(-1); // } // else // { // m_MultiWidget->EnableNavigationControllerEventListening(); // } // } // } //} // ATTENTION some methods for handling the known list of (organ names, colors) are defined in QmitkSegmentationOrganNamesHandling.cpp