diff --git a/Core/Code/DataManagement/mitkBaseGeometry.cpp b/Core/Code/DataManagement/mitkBaseGeometry.cpp index df57c5c582..5b4a6a0397 100644 --- a/Core/Code/DataManagement/mitkBaseGeometry.cpp +++ b/Core/Code/DataManagement/mitkBaseGeometry.cpp @@ -1,1095 +1,1095 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include "mitkBaseGeometry.h" #include "mitkvector.h" #include "mitkMatrixConvert.h" #include #include #include "mitkRotationOperation.h" #include "mitkRestorePlanePositionOperation.h" #include "mitkApplyTransformMatrixOperation.h" #include "mitkPointOperation.h" #include "mitkInteractionConst.h" #include "mitkModifiedLock.h" mitk::BaseGeometry::BaseGeometry(): Superclass(), mitk::OperationActor(), m_FrameOfReferenceID(0), m_IndexToWorldTransformLastModified(0), m_ImageGeometry(false), m_ModifiedLockFlag(false), m_ModifiedCalledFlag(false) { m_VtkMatrix = vtkMatrix4x4::New(); m_VtkIndexToWorldTransform = vtkMatrixToLinearTransform::New(); m_VtkIndexToWorldTransform->SetInput(m_VtkMatrix); Initialize(); } -mitk::BaseGeometry::BaseGeometry(const BaseGeometry& other): Superclass(), m_TimeBounds(other.m_TimeBounds), +mitk::BaseGeometry::BaseGeometry(const BaseGeometry& other): Superclass(), //m_TimeBounds(other.m_TimeBounds), m_FrameOfReferenceID(other.m_FrameOfReferenceID), m_IndexToWorldTransformLastModified(other.m_IndexToWorldTransformLastModified), m_Origin(other.m_Origin), m_ImageGeometry(other.m_ImageGeometry), m_ModifiedLockFlag(false), m_ModifiedCalledFlag(false) { // DEPRECATED(m_RotationQuaternion = other.m_RotationQuaternion); // AffineGeometryFrame SetBounds(other.GetBounds()); m_VtkMatrix = vtkMatrix4x4::New(); m_VtkMatrix->DeepCopy(other.m_VtkMatrix); m_VtkIndexToWorldTransform = vtkMatrixToLinearTransform::New(); m_VtkIndexToWorldTransform->DeepCopy(other.m_VtkIndexToWorldTransform); m_VtkIndexToWorldTransform->SetInput(m_VtkMatrix); other.InitializeGeometry(this); } mitk::BaseGeometry::~BaseGeometry() { m_VtkMatrix->Delete(); m_VtkIndexToWorldTransform->Delete(); } const mitk::Point3D& mitk::BaseGeometry::GetOrigin() const { return m_Origin; } void mitk::BaseGeometry::SetOrigin(const Point3D & origin) { mitk::ModifiedLock lock(this); if(origin!=GetOrigin()) { m_Origin = origin; m_IndexToWorldTransform->SetOffset(m_Origin.GetVectorFromOrigin()); Modified(); TransferItkToVtkTransform(); } } void mitk::BaseGeometry::TransferItkToVtkTransform() { mitk::ModifiedLock lock(this); // copy m_IndexToWorldTransform into m_VtkIndexToWorldTransform TransferItkTransformToVtkMatrix(m_IndexToWorldTransform.GetPointer(), m_VtkMatrix); m_VtkIndexToWorldTransform->Modified(); } static void CopySpacingFromTransform(mitk::AffineTransform3D* transform, mitk::Vector3D& spacing) { mitk::AffineTransform3D::MatrixType::InternalMatrixType vnlmatrix; vnlmatrix = transform->GetMatrix().GetVnlMatrix(); spacing[0]=vnlmatrix.get_column(0).magnitude(); spacing[1]=vnlmatrix.get_column(1).magnitude(); spacing[2]=vnlmatrix.get_column(2).magnitude(); } void mitk::BaseGeometry::Initialize() { float b[6] = {0,1,0,1,0,1}; SetFloatBounds(b); if(m_IndexToWorldTransform.IsNull()) m_IndexToWorldTransform = TransformType::New(); else m_IndexToWorldTransform->SetIdentity(); CopySpacingFromTransform(m_IndexToWorldTransform, m_Spacing); vtk2itk(m_IndexToWorldTransform->GetOffset(), m_Origin); m_VtkMatrix->Identity(); - m_TimeBounds[0]=ScalarTypeNumericTraits::NonpositiveMin(); m_TimeBounds[1]=ScalarTypeNumericTraits::max(); + //m_TimeBounds[0]=ScalarTypeNumericTraits::NonpositiveMin(); m_TimeBounds[1]=ScalarTypeNumericTraits::max(); m_FrameOfReferenceID = 0; m_ImageGeometry = false; this->PostInitialize(); } void mitk::BaseGeometry::PostInitializeGeometry(BaseGeometry * newGeometry) const { newGeometry->m_ImageGeometry = m_ImageGeometry; } void mitk::BaseGeometry::SetFloatBounds(const float bounds[6]) { mitk::BoundingBox::BoundsArrayType b; const float *input = bounds; int i=0; for(mitk::BoundingBox::BoundsArrayType::Iterator it = b.Begin(); i < 6 ;++i) *it++ = (mitk::ScalarType)*input++; SetBounds(b); } void mitk::BaseGeometry::SetFloatBounds(const double bounds[6]) { mitk::BoundingBox::BoundsArrayType b; const double *input = bounds; int i=0; for(mitk::BoundingBox::BoundsArrayType::Iterator it = b.Begin(); i < 6 ;++i) *it++ = (mitk::ScalarType)*input++; SetBounds(b); } /** Initialize the geometry */ void mitk::BaseGeometry::InitializeGeometry(BaseGeometry* newGeometry) const { newGeometry->SetBounds(m_BoundingBox->GetBounds()); // we have to create a new transform!! - newGeometry->SetTimeBounds(m_TimeBounds); + //newGeometry->SetTimeBounds(m_TimeBounds); newGeometry->SetFrameOfReferenceID(GetFrameOfReferenceID()); if(m_IndexToWorldTransform) { TransformType::Pointer indexToWorldTransform = TransformType::New(); indexToWorldTransform->SetCenter( m_IndexToWorldTransform->GetCenter() ); indexToWorldTransform->SetMatrix( m_IndexToWorldTransform->GetMatrix() ); indexToWorldTransform->SetOffset( m_IndexToWorldTransform->GetOffset() ); newGeometry->SetIndexToWorldTransform(indexToWorldTransform); } this->PostInitializeGeometry(newGeometry); } void mitk::BaseGeometry::PostInitialize() { } /** Set the bounds */ void mitk::BaseGeometry::SetBounds(const BoundsArrayType& bounds) { mitk::ModifiedLock lock(this); PreSetBounds(bounds); m_BoundingBox = BoundingBoxType::New(); BoundingBoxType::PointsContainer::Pointer pointscontainer = BoundingBoxType::PointsContainer::New(); BoundingBoxType::PointType p; BoundingBoxType::PointIdentifier pointid; for(pointid=0; pointid<2;++pointid) { unsigned int i; for(i=0; iInsertElement(pointid, p); } m_BoundingBox->SetPoints(pointscontainer); m_BoundingBox->ComputeBoundingBox(); this->Modified(); } void mitk::BaseGeometry::PreSetBounds(const BoundsArrayType& bounds){}; void mitk::BaseGeometry::SetIndexToWorldTransform(mitk::AffineTransform3D* transform) { mitk::ModifiedLock lock(this); PreSetIndexToWorldTransform(transform); if(m_IndexToWorldTransform.GetPointer() != transform) { m_IndexToWorldTransform = transform; CopySpacingFromTransform(m_IndexToWorldTransform, m_Spacing); vtk2itk(m_IndexToWorldTransform->GetOffset(), m_Origin); TransferItkToVtkTransform(); Modified(); } PostSetIndexToWorldTransform(transform); } void mitk::BaseGeometry::PreSetIndexToWorldTransform(mitk::AffineTransform3D* transform) {} void mitk::BaseGeometry::PostSetIndexToWorldTransform(mitk::AffineTransform3D* transform) {} const mitk::BaseGeometry::BoundsArrayType mitk::BaseGeometry::GetBounds() const { assert(m_BoundingBox.IsNotNull()); return m_BoundingBox->GetBounds(); } bool mitk::BaseGeometry::IsValid() const { return true; } void mitk::BaseGeometry::SetSpacing(const mitk::Vector3D& aSpacing, bool enforceSetSpacing ) { PreSetSpacing(aSpacing); _SetSpacing(aSpacing, enforceSetSpacing); } void mitk::BaseGeometry::PreSetSpacing(const mitk::Vector3D& aSpacing) {} void mitk::BaseGeometry::_SetSpacing(const mitk::Vector3D& aSpacing, bool enforceSetSpacing){ if(mitk::Equal(m_Spacing, aSpacing) == false || enforceSetSpacing) { assert(aSpacing[0]>0 && aSpacing[1]>0 && aSpacing[2]>0); m_Spacing = aSpacing; AffineTransform3D::MatrixType::InternalMatrixType vnlmatrix; vnlmatrix = m_IndexToWorldTransform->GetMatrix().GetVnlMatrix(); mitk::VnlVector col; col = vnlmatrix.get_column(0); col.normalize(); col*=aSpacing[0]; vnlmatrix.set_column(0, col); col = vnlmatrix.get_column(1); col.normalize(); col*=aSpacing[1]; vnlmatrix.set_column(1, col); col = vnlmatrix.get_column(2); col.normalize(); col*=aSpacing[2]; vnlmatrix.set_column(2, col); Matrix3D matrix; matrix = vnlmatrix; AffineTransform3D::Pointer transform = AffineTransform3D::New(); transform->SetMatrix(matrix); transform->SetOffset(m_IndexToWorldTransform->GetOffset()); SetIndexToWorldTransform(transform.GetPointer()); } } mitk::Vector3D mitk::BaseGeometry::GetAxisVector(unsigned int direction) const { Vector3D frontToBack; frontToBack.SetVnlVector(m_IndexToWorldTransform->GetMatrix().GetVnlMatrix().get_column(direction)); frontToBack *= GetExtent(direction); return frontToBack; } mitk::ScalarType mitk::BaseGeometry::GetExtent(unsigned int direction) const { assert(m_BoundingBox.IsNotNull()); if (direction>=m_NDimensions) mitkThrow() << "Direction is too big. This geometry is for 3D Data"; BoundsArrayType bounds = m_BoundingBox->GetBounds(); return bounds[direction*2+1]-bounds[direction*2]; } bool mitk::BaseGeometry::Is2DConvertable() { bool isConvertableWithoutLoss = true; do { if (this->GetSpacing()[2] != 1) { isConvertableWithoutLoss = false; break; } if (this->GetOrigin()[2] != 0) { isConvertableWithoutLoss = false; break; } mitk::Vector3D col0, col1, col2; col0.SetVnlVector(this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(0)); col1.SetVnlVector(this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(1)); col2.SetVnlVector(this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(2)); if ((col0[2] != 0) || (col1[2] != 0) || (col2[0] != 0) || (col2[1] != 0) || (col2[2] != 1)) { isConvertableWithoutLoss = false; break; } } while (0); return isConvertableWithoutLoss; } mitk::Point3D mitk::BaseGeometry::GetCenter() const { assert(m_BoundingBox.IsNotNull()); return m_IndexToWorldTransform->TransformPoint(m_BoundingBox->GetCenter()); } double mitk::BaseGeometry::GetDiagonalLength2() const { Vector3D diagonalvector = GetCornerPoint()-GetCornerPoint(false, false, false); return diagonalvector.GetSquaredNorm(); } //##Documentation //## @brief Get the length of the diagonal of the bounding-box in mm //## double mitk::BaseGeometry::GetDiagonalLength() const { return sqrt(GetDiagonalLength2()); } mitk::Point3D mitk::BaseGeometry::GetCornerPoint(int id) const { assert(id >= 0); assert(this->IsBoundingBoxNull()==false); BoundingBox::BoundsArrayType bounds = this->GetBoundingBox()->GetBounds(); Point3D cornerpoint; switch(id) { case 0: FillVector3D(cornerpoint, bounds[0],bounds[2],bounds[4]); break; case 1: FillVector3D(cornerpoint, bounds[0],bounds[2],bounds[5]); break; case 2: FillVector3D(cornerpoint, bounds[0],bounds[3],bounds[4]); break; case 3: FillVector3D(cornerpoint, bounds[0],bounds[3],bounds[5]); break; case 4: FillVector3D(cornerpoint, bounds[1],bounds[2],bounds[4]); break; case 5: FillVector3D(cornerpoint, bounds[1],bounds[2],bounds[5]); break; case 6: FillVector3D(cornerpoint, bounds[1],bounds[3],bounds[4]); break; case 7: FillVector3D(cornerpoint, bounds[1],bounds[3],bounds[5]); break; default: { itkExceptionMacro(<<"A cube only has 8 corners. These are labeled 0-7."); } } if(m_ImageGeometry) { // Here i have to adjust the 0.5 offset manually, because the cornerpoint is the corner of the // bounding box. The bounding box itself is no image, so it is corner-based FillVector3D(cornerpoint, cornerpoint[0]-0.5, cornerpoint[1]-0.5, cornerpoint[2]-0.5); } return this->GetIndexToWorldTransform()->TransformPoint(cornerpoint); } mitk::Point3D mitk::BaseGeometry::GetCornerPoint(bool xFront, bool yFront, bool zFront) const { assert(this->IsBoundingBoxNull()==false); BoundingBox::BoundsArrayType bounds = this->GetBoundingBox()->GetBounds(); Point3D cornerpoint; cornerpoint[0] = (xFront ? bounds[0] : bounds[1]); cornerpoint[1] = (yFront ? bounds[2] : bounds[3]); cornerpoint[2] = (zFront ? bounds[4] : bounds[5]); if(m_ImageGeometry) { // Here i have to adjust the 0.5 offset manually, because the cornerpoint is the corner of the // bounding box. The bounding box itself is no image, so it is corner-based FillVector3D(cornerpoint, cornerpoint[0]-0.5, cornerpoint[1]-0.5, cornerpoint[2]-0.5); } return this->GetIndexToWorldTransform()->TransformPoint(cornerpoint); } mitk::ScalarType mitk::BaseGeometry::GetExtentInMM(int direction) const { return m_IndexToWorldTransform->GetMatrix().GetVnlMatrix().get_column(direction).magnitude()*GetExtent(direction); } void mitk::BaseGeometry::SetExtentInMM(int direction, ScalarType extentInMM) { mitk::ModifiedLock lock(this); ScalarType len = GetExtentInMM(direction); if(fabs(len - extentInMM)>=mitk::eps) { AffineTransform3D::MatrixType::InternalMatrixType vnlmatrix; vnlmatrix = m_IndexToWorldTransform->GetMatrix().GetVnlMatrix(); if(len>extentInMM) vnlmatrix.set_column(direction, vnlmatrix.get_column(direction)/len*extentInMM); else vnlmatrix.set_column(direction, vnlmatrix.get_column(direction)*extentInMM/len); Matrix3D matrix; matrix = vnlmatrix; m_IndexToWorldTransform->SetMatrix(matrix); Modified(); } PostSetExtentInMM(direction,extentInMM); } void mitk::BaseGeometry::PostSetExtentInMM(int direction, ScalarType extentInMM){}; bool mitk::BaseGeometry::IsInside(const mitk::Point3D& p) const { mitk::Point3D index; WorldToIndex(p, index); return IsIndexInside(index); } bool mitk::BaseGeometry::IsIndexInside(const mitk::Point3D& index) const { bool inside = false; //if it is an image geometry, we need to convert the index to discrete values //this is done by applying the rounding function also used in WorldToIndex (see line 323) if (m_ImageGeometry) { mitk::Point3D discretIndex; discretIndex[0]=itk::Math::RoundHalfIntegerUp( index[0] ); discretIndex[1]=itk::Math::RoundHalfIntegerUp( index[1] ); discretIndex[2]=itk::Math::RoundHalfIntegerUp( index[2] ); inside = this->GetBoundingBox()->IsInside(discretIndex); //we have to check if the index is at the upper border of each dimension, // because the boundingbox is not centerbased if (inside) { const BoundingBox::BoundsArrayType& bounds = this->GetBoundingBox()->GetBounds(); if((discretIndex[0] == bounds[1]) || (discretIndex[1] == bounds[3]) || (discretIndex[2] == bounds[5])) inside = false; } } else inside = this->GetBoundingBox()->IsInside(index); return inside; } void mitk::BaseGeometry::WorldToIndex(const mitk::Point3D &pt_mm, mitk::Point3D &pt_units) const { BackTransform(pt_mm, pt_units); } void mitk::BaseGeometry::WorldToIndex( const mitk::Vector3D &vec_mm, mitk::Vector3D &vec_units) const { BackTransform( vec_mm, vec_units); } void mitk::BaseGeometry::BackTransform(const mitk::Vector3D& in, mitk::Vector3D& out) const { // Get WorldToIndex transform if (m_IndexToWorldTransformLastModified != m_IndexToWorldTransform->GetMTime()) { m_InvertedTransform = TransformType::New(); if (!m_IndexToWorldTransform->GetInverse( m_InvertedTransform.GetPointer() )) { itkExceptionMacro( "Internal ITK matrix inversion error, cannot proceed." ); } m_IndexToWorldTransformLastModified = m_IndexToWorldTransform->GetMTime(); } // Check for valid matrix inversion const TransformType::MatrixType& inverse = m_InvertedTransform->GetMatrix(); if(inverse.GetVnlMatrix().has_nans()) { itkExceptionMacro( "Internal ITK matrix inversion error, cannot proceed. Matrix was: " << std::endl << m_IndexToWorldTransform->GetMatrix() << "Suggested inverted matrix is:" << std::endl << inverse ); } // Transform vector for (unsigned int i = 0; i < 3; i++) { out[i] = 0.0; for (unsigned int j = 0; j < 3; j++) { out[i] += inverse[i][j]*in[j]; } } } void mitk::BaseGeometry::BackTransform(const mitk::Point3D &in, mitk::Point3D& out) const { ScalarType temp[3]; unsigned int i, j; const TransformType::OffsetType& offset = m_IndexToWorldTransform->GetOffset(); // Remove offset for (j = 0; j < 3; j++) { temp[j] = in[j] - offset[j]; } // Get WorldToIndex transform if (m_IndexToWorldTransformLastModified != m_IndexToWorldTransform->GetMTime()) { m_InvertedTransform = TransformType::New(); if (!m_IndexToWorldTransform->GetInverse( m_InvertedTransform.GetPointer() )) { itkExceptionMacro( "Internal ITK matrix inversion error, cannot proceed." ); } m_IndexToWorldTransformLastModified = m_IndexToWorldTransform->GetMTime(); } // Check for valid matrix inversion const TransformType::MatrixType& inverse = m_InvertedTransform->GetMatrix(); if(inverse.GetVnlMatrix().has_nans()) { itkExceptionMacro( "Internal ITK matrix inversion error, cannot proceed. Matrix was: " << std::endl << m_IndexToWorldTransform->GetMatrix() << "Suggested inverted matrix is:" << std::endl << inverse ); } // Transform point for (i = 0; i < 3; i++) { out[i] = 0.0; for (j = 0; j < 3; j++) { out[i] += inverse[i][j]*temp[j]; } } } mitk::VnlVector mitk::BaseGeometry::GetOriginVnl() const { return const_cast(this)->m_Origin.GetVnlVector(); } vtkLinearTransform* mitk::BaseGeometry::GetVtkTransform() const { return (vtkLinearTransform*)m_VtkIndexToWorldTransform; } void mitk::BaseGeometry::SetIdentity() { mitk::ModifiedLock lock(this); m_IndexToWorldTransform->SetIdentity(); m_Origin.Fill(0); CopySpacingFromTransform(m_IndexToWorldTransform, m_Spacing); Modified(); TransferItkToVtkTransform(); } void mitk::BaseGeometry::TransferVtkToItkTransform() { TransferVtkMatrixToItkTransform(m_VtkMatrix, m_IndexToWorldTransform.GetPointer()); CopySpacingFromTransform(m_IndexToWorldTransform, m_Spacing); vtk2itk(m_IndexToWorldTransform->GetOffset(), m_Origin); } void mitk::BaseGeometry::Compose( const mitk::BaseGeometry::TransformType * other, bool pre ) { mitk::ModifiedLock lock(this); m_IndexToWorldTransform->Compose(other, pre); CopySpacingFromTransform(m_IndexToWorldTransform, m_Spacing); vtk2itk(m_IndexToWorldTransform->GetOffset(), m_Origin); Modified(); TransferItkToVtkTransform(); } void mitk::BaseGeometry::Compose( const vtkMatrix4x4 * vtkmatrix, bool pre ) { mitk::BaseGeometry::TransformType::Pointer itkTransform = mitk::BaseGeometry::TransformType::New(); TransferVtkMatrixToItkTransform(vtkmatrix, itkTransform.GetPointer()); Compose(itkTransform, pre); } void mitk::BaseGeometry::Translate(const Vector3D & vector) { if((vector[0] != 0) || (vector[1] != 0) || (vector[2] != 0)) { this->SetOrigin(m_Origin + vector); } } void mitk::BaseGeometry::IndexToWorld(const mitk::Point3D &pt_units, mitk::Point3D &pt_mm) const { pt_mm = m_IndexToWorldTransform->TransformPoint(pt_units); } void mitk::BaseGeometry::IndexToWorld(const mitk::Vector3D &vec_units, mitk::Vector3D &vec_mm) const { vec_mm = m_IndexToWorldTransform->TransformVector(vec_units); } #include void mitk::BaseGeometry::ExecuteOperation(Operation* operation) { mitk::ModifiedLock lock(this); vtkTransform *vtktransform = vtkTransform::New(); vtktransform->SetMatrix(m_VtkMatrix); switch (operation->GetOperationType()) { case OpNOTHING: break; case OpMOVE: { mitk::PointOperation *pointOp = dynamic_cast(operation); if (pointOp == NULL) { //mitk::StatusBar::GetInstance()->DisplayText("received wrong type of operation!See mitkAffineInteractor.cpp", 10000); return; } mitk::Point3D newPos = pointOp->GetPoint(); ScalarType data[3]; vtktransform->GetPosition(data); vtktransform->PostMultiply(); vtktransform->Translate(newPos[0], newPos[1], newPos[2]); vtktransform->PreMultiply(); break; } case OpSCALE: { mitk::PointOperation *pointOp = dynamic_cast(operation); if (pointOp == NULL) { //mitk::StatusBar::GetInstance()->DisplayText("received wrong type of operation!See mitkAffineInteractor.cpp", 10000); return; } mitk::Point3D newScale = pointOp->GetPoint(); ScalarType data[3]; /* calculate new scale: newscale = oldscale * (oldscale + scaletoadd)/oldscale */ data[0] = 1 + (newScale[0] / GetMatrixColumn(0).magnitude()); data[1] = 1 + (newScale[1] / GetMatrixColumn(1).magnitude()); data[2] = 1 + (newScale[2] / GetMatrixColumn(2).magnitude()); mitk::Point3D center = const_cast(m_BoundingBox.GetPointer())->GetCenter(); ScalarType pos[3]; vtktransform->GetPosition(pos); vtktransform->PostMultiply(); vtktransform->Translate(-pos[0], -pos[1], -pos[2]); vtktransform->Translate(-center[0], -center[1], -center[2]); vtktransform->PreMultiply(); vtktransform->Scale(data[0], data[1], data[2]); vtktransform->PostMultiply(); vtktransform->Translate(+center[0], +center[1], +center[2]); vtktransform->Translate(pos[0], pos[1], pos[2]); vtktransform->PreMultiply(); break; } case OpROTATE: { mitk::RotationOperation *rotateOp = dynamic_cast(operation); if (rotateOp == NULL) { //mitk::StatusBar::GetInstance()->DisplayText("received wrong type of operation!See mitkAffineInteractor.cpp", 10000); return; } Vector3D rotationVector = rotateOp->GetVectorOfRotation(); Point3D center = rotateOp->GetCenterOfRotation(); ScalarType angle = rotateOp->GetAngleOfRotation(); vtktransform->PostMultiply(); vtktransform->Translate(-center[0], -center[1], -center[2]); vtktransform->RotateWXYZ(angle, rotationVector[0], rotationVector[1], rotationVector[2]); vtktransform->Translate(center[0], center[1], center[2]); vtktransform->PreMultiply(); break; } case OpRESTOREPLANEPOSITION: { //Copy necessary to avoid vtk warning vtkMatrix4x4* matrix = vtkMatrix4x4::New(); TransferItkTransformToVtkMatrix(dynamic_cast(operation)->GetTransform().GetPointer(), matrix); vtktransform->SetMatrix(matrix); break; } case OpAPPLYTRANSFORMMATRIX: { ApplyTransformMatrixOperation *applyMatrixOp = dynamic_cast< ApplyTransformMatrixOperation* >( operation ); vtktransform->SetMatrix(applyMatrixOp->GetMatrix()); break; } default: vtktransform->Delete(); return; } m_VtkMatrix->DeepCopy(vtktransform->GetMatrix()); TransferVtkToItkTransform(); Modified(); vtktransform->Delete(); } mitk::VnlVector mitk::BaseGeometry::GetMatrixColumn(unsigned int direction) const { return m_IndexToWorldTransform->GetMatrix().GetVnlMatrix().get_column(direction); } mitk::BoundingBox::Pointer mitk::BaseGeometry::CalculateBoundingBoxRelativeToTransform(const mitk::AffineTransform3D* transform) const { mitk::BoundingBox::PointsContainer::Pointer pointscontainer=mitk::BoundingBox::PointsContainer::New(); mitk::BoundingBox::PointIdentifier pointid=0; unsigned char i; if(transform!=NULL) { mitk::AffineTransform3D::Pointer inverse = mitk::AffineTransform3D::New(); transform->GetInverse(inverse); for(i=0; i<8; ++i) pointscontainer->InsertElement( pointid++, inverse->TransformPoint( GetCornerPoint(i) )); } else { for(i=0; i<8; ++i) pointscontainer->InsertElement( pointid++, GetCornerPoint(i) ); } mitk::BoundingBox::Pointer result = mitk::BoundingBox::New(); result->SetPoints(pointscontainer); result->ComputeBoundingBox(); return result; } -void mitk::BaseGeometry::SetTimeBounds(const TimeBounds& timebounds) -{ - mitk::ModifiedLock lock(this); - - if(m_TimeBounds != timebounds) - { - m_TimeBounds = timebounds; - Modified(); - } - PostSetTimeBounds(timebounds); -} - -void mitk::BaseGeometry::PostSetTimeBounds(const TimeBounds& timebounds) -{} +//void mitk::BaseGeometry::SetTimeBounds(const TimeBounds& timebounds) +//{ +// mitk::ModifiedLock lock(this); +// +// if(m_TimeBounds != timebounds) +// { +// m_TimeBounds = timebounds; +// Modified(); +// } +// PostSetTimeBounds(timebounds); +//} +// +//void mitk::BaseGeometry::PostSetTimeBounds(const TimeBounds& timebounds) +//{} const std::string mitk::BaseGeometry::GetTransformAsString( TransformType* transformType ) { std::ostringstream out; out << '['; for( int i=0; i<3; ++i ) { out << '['; for( int j=0; j<3; ++j ) out << transformType->GetMatrix().GetVnlMatrix().get(i, j) << ' '; out << ']'; } out << "]["; for( int i=0; i<3; ++i ) out << transformType->GetOffset()[i] << ' '; out << "]\0"; return out.str(); } void mitk::BaseGeometry::SetIndexToWorldTransformByVtkMatrix(vtkMatrix4x4* vtkmatrix) { m_VtkMatrix->DeepCopy(vtkmatrix); TransferVtkToItkTransform(); } void mitk::BaseGeometry::WorldToIndex(const mitk::Point3D & /*atPt3d_mm*/, const mitk::Vector3D &vec_mm, mitk::Vector3D &vec_units) const { MITK_WARN<<"Warning! Call of the deprecated function BaseGeometry::WorldToIndex(point, vec, vec). Use BaseGeometry::WorldToIndex(vec, vec) instead!"; //BackTransform(atPt3d_mm, vec_mm, vec_units); this->WorldToIndex(vec_mm, vec_units); } void mitk::BaseGeometry::IndexToWorld(const mitk::Point3D &/*atPt3d_units*/, const mitk::Vector3D &vec_units, mitk::Vector3D &vec_mm) const { MITK_WARN<<"Warning! Call of the deprecated function BaseGeometry::IndexToWorld(point, vec, vec). Use BaseGeometry::IndexToWorld(vec, vec) instead!"; //vec_mm = m_IndexToWorldTransform->TransformVector(vec_units); this->IndexToWorld(vec_units, vec_mm); } void mitk::BaseGeometry::BackTransform(const mitk::Point3D &/*at*/, const mitk::Vector3D &in, mitk::Vector3D& out) const { MITK_INFO<<"Warning! Call of the deprecated function BaseGeometry::BackTransform(point, vec, vec). Use BaseGeometry::BackTransform(vec, vec) instead!"; //// Get WorldToIndex transform //if (m_IndexToWorldTransformLastModified != m_IndexToWorldTransform->GetMTime()) //{ // m_InvertedTransform = TransformType::New(); // if (!m_IndexToWorldTransform->GetInverse( m_InvertedTransform.GetPointer() )) // { // itkExceptionMacro( "Internal ITK matrix inversion error, cannot proceed." ); // } // m_IndexToWorldTransformLastModified = m_IndexToWorldTransform->GetMTime(); //} //// Check for valid matrix inversion //const TransformType::MatrixType& inverse = m_InvertedTransform->GetMatrix(); //if(inverse.GetVnlMatrix().has_nans()) //{ // itkExceptionMacro( "Internal ITK matrix inversion error, cannot proceed. Matrix was: " << std::endl // << m_IndexToWorldTransform->GetMatrix() << "Suggested inverted matrix is:" << std::endl // << inverse ); //} //// Transform vector //for (unsigned int i = 0; i < 3; i++) //{ // out[i] = 0.0; // for (unsigned int j = 0; j < 3; j++) // { // out[i] += inverse[i][j]*in[j]; // } //} this->BackTransform(in, out); } vtkMatrix4x4* mitk::BaseGeometry::GetVtkMatrix(){ return m_VtkMatrix; } bool mitk::BaseGeometry::IsBoundingBoxNull() const{ return m_BoundingBox.IsNull(); } bool mitk::BaseGeometry::IsIndexToWorldTransformNull() const{ return m_IndexToWorldTransform.IsNull(); } void mitk::BaseGeometry::ChangeImageGeometryConsideringOriginOffset( const bool isAnImageGeometry ) { // If Geometry is switched to ImageGeometry, you have to put an offset to the origin, because // imageGeometries origins are pixel-center-based // ... and remove the offset, if you switch an imageGeometry back to a normal geometry // For more information please see the Geometry documentation page if(m_ImageGeometry == isAnImageGeometry) return; const BoundingBox::BoundsArrayType& boundsarray = this->GetBoundingBox()->GetBounds(); Point3D originIndex; FillVector3D(originIndex, boundsarray[0], boundsarray[2], boundsarray[4]); if(isAnImageGeometry == true) FillVector3D( originIndex, originIndex[0] + 0.5, originIndex[1] + 0.5, originIndex[2] + 0.5 ); else FillVector3D( originIndex, originIndex[0] - 0.5, originIndex[1] - 0.5, originIndex[2] - 0.5 ); Point3D originWorld; originWorld = GetIndexToWorldTransform() ->TransformPoint( originIndex ); // instead could as well call IndexToWorld(originIndex,originWorld); SetOrigin(originWorld); this->SetImageGeometry(isAnImageGeometry); } //itk::LightObject::Pointer mitk::BaseGeometry::InternalClone() const //{ // Self::Pointer newGeometry = new Self(*this); // newGeometry->UnRegister(); // return newGeometry.GetPointer(); //} void mitk::BaseGeometry::PrintSelf(std::ostream& os, itk::Indent indent) const { os << indent << " IndexToWorldTransform: "; if(this->IsIndexToWorldTransformNull()) os << "NULL" << std::endl; else { // from itk::MatrixOffsetTransformBase unsigned int i, j; os << std::endl; os << indent << "Matrix: " << std::endl; for (i = 0; i < 3; i++) { os << indent.GetNextIndent(); for (j = 0; j < 3; j++) { os << this->GetIndexToWorldTransform()->GetMatrix()[i][j] << " "; } os << std::endl; } os << indent << "Offset: " << this->GetIndexToWorldTransform()->GetOffset() << std::endl; os << indent << "Center: " << this->GetIndexToWorldTransform()->GetCenter() << std::endl; os << indent << "Translation: " << this->GetIndexToWorldTransform()->GetTranslation() << std::endl; os << indent << "Inverse: " << std::endl; for (i = 0; i < 3; i++) { os << indent.GetNextIndent(); for (j = 0; j < 3; j++) { os << this->GetIndexToWorldTransform()->GetInverseMatrix()[i][j] << " "; } os << std::endl; } // from itk::ScalableAffineTransform os << indent << "Scale : "; for (i = 0; i < 3; i++) { os << this->GetIndexToWorldTransform()->GetScale()[i] << " "; } os << std::endl; } os << indent << " BoundingBox: "; if(this->IsBoundingBoxNull()) os << "NULL" << std::endl; else { os << indent << "( "; for (unsigned int i=0; i<3; i++) { os << this->GetBoundingBox()->GetBounds()[2*i] << "," << this->GetBoundingBox()->GetBounds()[2*i+1] << " "; } os << " )" << std::endl; } os << indent << " Origin: " << this->GetOrigin() << std::endl; os << indent << " ImageGeometry: " << this->GetImageGeometry() << std::endl; os << indent << " Spacing: " << this->GetSpacing() << std::endl; - os << indent << " TimeBounds: " << this->GetTimeBounds() << std::endl; + //os << indent << " TimeBounds: " << this->GetTimeBounds() << std::endl; } void mitk::BaseGeometry::Modified() const{ if(!m_ModifiedLockFlag) Superclass::Modified(); else m_ModifiedCalledFlag = true; } bool mitk::Equal( const mitk::BaseGeometry::BoundingBoxType *leftHandSide, const mitk::BaseGeometry::BoundingBoxType *rightHandSide, ScalarType eps, bool verbose ) { if(( leftHandSide == NULL) || ( rightHandSide == NULL )) { MITK_ERROR << "mitk::Equal( const mitk::Geometry3D::BoundingBoxType *leftHandSide, const mitk::Geometry3D::BoundingBoxType *rightHandSide, ScalarType eps, bool verbose ) does not with NULL pointer input."; return false; } return Equal( *leftHandSide, *rightHandSide, eps, verbose); } bool mitk::Equal( const mitk::BaseGeometry::BoundingBoxType& leftHandSide, const mitk::BaseGeometry::BoundingBoxType& rightHandSide, ScalarType eps, bool verbose ) { bool result = true; BaseGeometry::BoundsArrayType rightBounds = rightHandSide.GetBounds(); BaseGeometry::BoundsArrayType leftBounds = leftHandSide.GetBounds(); BaseGeometry::BoundsArrayType::Iterator itLeft = leftBounds.Begin(); for( BaseGeometry::BoundsArrayType::Iterator itRight = rightBounds.Begin(); itRight != rightBounds.End(); ++itRight) { if(( !mitk::Equal( *itLeft, *itRight, eps )) ) { if(verbose) { MITK_INFO << "[( Geometry3D::BoundingBoxType )] bounds are not equal."; MITK_INFO << "rightHandSide is " << setprecision(12) << *itRight << " : leftHandSide is " << *itLeft << " and tolerance is " << eps; } result = false; } itLeft++; } return result; } bool mitk::Equal(const mitk::BaseGeometry *leftHandSide, const mitk::BaseGeometry *rightHandSide, ScalarType eps, bool verbose) { if(( leftHandSide == NULL) || ( rightHandSide == NULL )) { MITK_ERROR << "mitk::Equal(const mitk::Geometry3D *leftHandSide, const mitk::Geometry3D *rightHandSide, ScalarType eps, bool verbose) does not with NULL pointer input."; return false; } return Equal( *leftHandSide, *rightHandSide, eps, verbose); } bool mitk::Equal(const mitk::BaseGeometry& leftHandSide, const mitk::BaseGeometry& rightHandSide, ScalarType eps, bool verbose) { bool result = true; //Compare spacings if( !mitk::Equal( leftHandSide.GetSpacing(), rightHandSide.GetSpacing(), eps ) ) { if(verbose) { MITK_INFO << "[( Geometry3D )] Spacing differs."; MITK_INFO << "rightHandSide is " << setprecision(12) << rightHandSide.GetSpacing() << " : leftHandSide is " << leftHandSide.GetSpacing() << " and tolerance is " << eps; } result = false; } //Compare Origins if( !mitk::Equal( leftHandSide.GetOrigin(), rightHandSide.GetOrigin(), eps ) ) { if(verbose) { MITK_INFO << "[( Geometry3D )] Origin differs."; MITK_INFO << "rightHandSide is " << setprecision(12) << rightHandSide.GetOrigin() << " : leftHandSide is " << leftHandSide.GetOrigin() << " and tolerance is " << eps; } result = false; } //Compare Axis and Extents for( unsigned int i=0; i<3; ++i) { if( !mitk::Equal( leftHandSide.GetAxisVector(i), rightHandSide.GetAxisVector(i), eps)) { if(verbose) { MITK_INFO << "[( Geometry3D )] AxisVector #" << i << " differ"; MITK_INFO << "rightHandSide is " << setprecision(12) << rightHandSide.GetAxisVector(i) << " : leftHandSide is " << leftHandSide.GetAxisVector(i) << " and tolerance is " << eps; } result = false; } if( !mitk::Equal( leftHandSide.GetExtent(i), rightHandSide.GetExtent(i), eps) ) { if(verbose) { MITK_INFO << "[( Geometry3D )] Extent #" << i << " differ"; MITK_INFO << "rightHandSide is " << setprecision(12) << rightHandSide.GetExtent(i) << " : leftHandSide is " << leftHandSide.GetExtent(i) << " and tolerance is " << eps; } result = false; } } //Compare ImageGeometry Flag if( rightHandSide.GetImageGeometry() != leftHandSide.GetImageGeometry() ) { if(verbose) { MITK_INFO << "[( Geometry3D )] GetImageGeometry is different."; MITK_INFO << "rightHandSide is " << rightHandSide.GetImageGeometry() << " : leftHandSide is " << leftHandSide.GetImageGeometry(); } result = false; } //Compare BoundingBoxes if( !mitk::Equal( *leftHandSide.GetBoundingBox(), *rightHandSide.GetBoundingBox(), eps, verbose) ) { result = false; } //Compare IndexToWorldTransform Matrix if( !mitk::Equal( *leftHandSide.GetIndexToWorldTransform(), *rightHandSide.GetIndexToWorldTransform(), eps, verbose) ) { result = false; } return result; } bool mitk::Equal(const BaseGeometry::TransformType *leftHandSide, const BaseGeometry::TransformType *rightHandSide, ScalarType eps, bool verbose ) { if(( leftHandSide == NULL) || ( rightHandSide == NULL )) { MITK_ERROR << "mitk::Equal(const Geometry3D::TransformType *leftHandSide, const Geometry3D::TransformType *rightHandSide, ScalarType eps, bool verbose ) does not with NULL pointer input."; return false; } return Equal( *leftHandSide, *rightHandSide, eps, verbose); } bool mitk::Equal(const BaseGeometry::TransformType& leftHandSide, const BaseGeometry::TransformType& rightHandSide, ScalarType eps, bool verbose ) { //Compare IndexToWorldTransform Matrix if( !mitk::MatrixEqualElementWise( leftHandSide.GetMatrix(), rightHandSide.GetMatrix() ) ) { if(verbose) { MITK_INFO << "[( Geometry3D::TransformType )] Index to World Transformation matrix differs."; MITK_INFO << "rightHandSide is " << setprecision(12) << rightHandSide.GetMatrix() << " : leftHandSide is " << leftHandSide.GetMatrix() << " and tolerance is " << eps; } return false; } return true; } diff --git a/Core/Code/DataManagement/mitkBaseGeometry.h b/Core/Code/DataManagement/mitkBaseGeometry.h index a0a83bdd1e..61783ff39a 100644 --- a/Core/Code/DataManagement/mitkBaseGeometry.h +++ b/Core/Code/DataManagement/mitkBaseGeometry.h @@ -1,762 +1,759 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef BaseGeometry_H_HEADER_INCLUDED #define BaseGeometry_H_HEADER_INCLUDED #include #include #include "mitkoperationactor.h" #include #include "mitkvector.h" #include #include #include "itkScalableAffineTransform.h" #include class vtkMatrix4x4; class vtkMatrixToLinearTransform; class vtkLinearTransform; namespace mitk { //##Documentation //## @brief Standard 3D-BoundingBox typedef //## //## Standard 3D-BoundingBox typedef to get rid of template arguments (3D, type). typedef itk::BoundingBox BoundingBox; //##Documentation //## @brief Standard typedef for time-bounds typedef itk::FixedArray TimeBounds; typedef itk::FixedArray FixedArrayType; typedef itk::AffineGeometryFrame AffineGeometryFrame3D; //##Documentation //## @brief BaseGeometry Describes the geometry of a data object //## //## The class holds //## \li a bounding box which is axes-parallel in intrinsic coordinates //## (often integer indices of pixels), to be accessed by //## GetBoundingBox() //## \li a transform to convert intrinsic coordinates into a //## world-coordinate system with coordinates in millimeters //## and milliseconds (all are floating point values), to //## be accessed by GetIndexToWorldTransform() - //## \li a life span, i.e. a bounding box in time in ms (with - //## start and end time), to be accessed by GetTimeBounds(). - //## The default is minus infinity to plus infinity. //## \li an origin and spacing to define the geometry //## //## BaseGeometry and its sub-classes allow converting between //## intrinsic coordinates (called index or unit coordinates) //## and world-coordinates (called world or mm coordinates), //## e.g. WorldToIndex. //## In case you need integer index coordinates, provide an //## mitk::Index3D (or itk::Index) as target variable to //## WorldToIndex, otherwise you will get a continuous index //## (floating point values). //## //## An important sub-class is SlicedGeometry3D, which descibes //## data objects consisting of slices, e.g., objects of type Image. //## Conversions between world coordinates (in mm) and unit coordinates //## (e.g., pixels in the case of an Image) can be performed. //## //## For more information on related classes, see \ref Geometry. //## //## BaseGeometry instances referring to an Image need a slightly //## different definition of corners, see SetImageGeometry. This //## is usualy automatically called by Image. //## //## BaseGeometry have to be initialized in the method GenerateOutputInformation() //## of BaseProcess (or CopyInformation/ UpdateOutputInformation of BaseData, //## if possible, e.g., by analyzing pic tags in Image) subclasses. See also //## itk::ProcessObject::GenerateOutputInformation(), //## itk::DataObject::CopyInformation() and //## itk::DataObject::UpdateOutputInformation(). //## //## At least, it can return the bounding box of the data object. //## //## The BaseGeometry class is an abstract class. The most simple implementation //## is the sublass Geometry3D. //## //## Rule: everything is in mm (ms) if not stated otherwise. //## @ingroup Geometry class MITK_CORE_EXPORT BaseGeometry : public itk::Object, public OperationActor { public: mitkClassMacro(BaseGeometry, itk::Object); // ********************************** TypeDef ********************************** typedef itk::ScalableAffineTransform TransformType; typedef itk::BoundingBox BoundingBoxType; typedef BoundingBoxType::BoundsArrayType BoundsArrayType; typedef BoundingBoxType::Pointer BoundingBoxPointer; // ********************************** Origin, Spacing ********************************** //##Documentation //## @brief Get the origin, e.g. the upper-left corner of the plane const Point3D& GetOrigin() const; //##Documentation //## @brief Set the origin, i.e. the upper-left corner of the plane //## void SetOrigin(const Point3D& origin); //##Documentation //## @brief Get the spacing (size of a pixel). //## itkGetConstReferenceMacro(Spacing, mitk::Vector3D); //##Documentation //## @brief Set the spacing (m_Spacing). //## //##The spacing is also changed in the IndexToWorldTransform. void SetSpacing(const mitk::Vector3D& aSpacing, bool enforceSetSpacing = false); //##Documentation //## @brief Get the origin as VnlVector //## //## \sa GetOrigin VnlVector GetOriginVnl() const; // ********************************** other functions ********************************** //##Documentation //## @brief Get the DICOM FrameOfReferenceID referring to the //## used world coordinate system itkGetConstMacro(FrameOfReferenceID, unsigned int); //##Documentation //## @brief Set the DICOM FrameOfReferenceID referring to the //## used world coordinate system itkSetMacro(FrameOfReferenceID, unsigned int); itkGetConstMacro(IndexToWorldTransformLastModified, unsigned long); //##Documentation //## @brief Overload of function Modified() to prohibit several calls of Modified() using the ModifiedLock class. //## //## For the use of Modified(), see class ModifiedLock. void Modified() const; friend class ModifiedLock; //##Documentation //## @brief Is this BaseGeometry in a state that is valid? //## //## This function returns always true in the BaseGeometry class. Other implementations are possible in subclasses. virtual bool IsValid() const; // ********************************** Initialize ********************************** //##Documentation //## @brief Initialize the BaseGeometry void Initialize(); void InitializeGeometry(Self * newGeometry) const; // ********************************** Transformations Set/Get ********************************** // a bit of a misuse, but we want only doxygen to see the following: #ifdef DOXYGEN_SKIP //##Documentation //## @brief Get the transformation used to convert from index //## to world coordinates itkGetObjectMacro(IndexToWorldTransform, AffineTransform3D); #endif //## @brief Set the transformation used to convert from index //## to world coordinates. The spacing of the new transform is //## copied to m_spacing. void SetIndexToWorldTransform(mitk::AffineTransform3D* transform); //##Documentation //## @brief Convenience method for setting the ITK transform //## (m_IndexToWorldTransform) via an vtkMatrix4x4.The spacing of //## the new transform is copied to m_spacing. //## \sa SetIndexToWorldTransform virtual void SetIndexToWorldTransformByVtkMatrix(vtkMatrix4x4* vtkmatrix); //## Get the IndexToWorldTransform itkGetConstObjectMacro(IndexToWorldTransform, AffineTransform3D); itkGetObjectMacro(IndexToWorldTransform, AffineTransform3D); //## Get the Vtk Matrix which describes the transform. vtkMatrix4x4* GetVtkMatrix(); //##Documentation //## @brief Get the m_IndexToWorldTransform as a vtkLinearTransform vtkLinearTransform* GetVtkTransform() const; //##Documentation //## @brief Set the transform to identity, the spacing to 1 and origin to 0 //## virtual void SetIdentity(); // ********************************** Transformations ********************************** //##Documentation //## @brief Compose new IndexToWorldTransform with a given transform. //## //## This method composes m_IndexToWorldTransform with another transform, //## modifying self to be the composition of self and other. //## If the argument pre is true, then other is precomposed with self; //## that is, the resulting transformation consists of first applying //## other to the source, followed by self. If pre is false or omitted, //## then other is post-composed with self; that is the resulting //## transformation consists of first applying self to the source, //## followed by other. //## This method also changes m_spacing. void Compose( const BaseGeometry::TransformType * other, bool pre = 0 ); //##Documentation //## @brief Compose new IndexToWorldTransform with a given vtkMatrix4x4. //## //## Converts the vtkMatrix4x4 into a itk-transform and calls the previous method. void Compose( const vtkMatrix4x4 * vtkmatrix, bool pre = 0 ); //##Documentation //## @brief Translate the origin by a vector //## void Translate(const Vector3D& vector); //##Documentation //##@brief executes affine operations (translate, rotate, scale) virtual void ExecuteOperation(Operation* operation); //##Documentation //## @brief Convert world coordinates (in mm) of a \em point to (continuous!) index coordinates //## \warning If you need (discrete) integer index coordinates (e.g., for iterating easily over an image), //## use WorldToIndex(const mitk::Point3D& pt_mm, itk::Index &index). //## For further information about coordinates types, please see the Geometry documentation void WorldToIndex(const mitk::Point3D& pt_mm, mitk::Point3D& pt_units) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em vector //## \a vec_mm to (continuous!) index coordinates. //## For further information about coordinates types, please see the Geometry documentation void WorldToIndex(const mitk::Vector3D& vec_mm, mitk::Vector3D& vec_units) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em point to (discrete!) index coordinates. //## This method rounds to integer indices! //## For further information about coordinates types, please see the Geometry documentation template void WorldToIndex(const mitk::Point3D& pt_mm, itk::Index &index) const { typedef itk::Index IndexType; mitk::Point3D pt_units; this->WorldToIndex(pt_mm, pt_units); int i, dim=index.GetIndexDimension(); if(dim>3) { index.Fill(0); dim=3; } for(i=0;i( pt_units[i] ); } } //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em vector //## \a vec_units to world coordinates (in mm) //## For further information about coordinates types, please see the Geometry documentation void IndexToWorld(const mitk::Vector3D& vec_units, mitk::Vector3D& vec_mm) const; //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em point to world coordinates (in mm) //## For further information about coordinates types, please see the Geometry documentation void IndexToWorld(const mitk::Point3D& pt_units, mitk::Point3D& pt_mm) const; //##Documentation //## @brief Convert (discrete) index coordinates of a \em point to world coordinates (in mm) //## For further information about coordinates types, please see the Geometry documentation template void IndexToWorld(const itk::Index &index, mitk::Point3D& pt_mm ) const { mitk::Point3D pt_units; pt_units.Fill(0); int i, dim=index.GetIndexDimension(); if(dim>3) { dim=3; } for(i=0;i void ItkPhysicalPointToWorld(const itk::Point& itkPhysicalPoint, mitk::Point3D& pt_mm) const { mitk::vtk2itk(itkPhysicalPoint, pt_mm); } //##Documentation //## @brief Deprecated for use with ITK version 3.10 or newer. //## Convert world coordinates (in mm) of a \em point to //## ITK physical coordinates (in mm, but without a possible rotation) //## //## This method is useful if you have want to access an mitk::Image //## via an itk::Image. ITK v3.8 and older did not support rotated (tilted) //## images, i.e., ITK images are always parallel to the coordinate axes. //## When accessing a (possibly rotated) mitk::Image via an itk::Image //## the rotational part of the transformation in the BaseGeometry is //## simply discarded; in other word: only the origin and spacing is //## used by ITK, not the complete matrix available in MITK. //## With WorldToItkPhysicalPoint you can convert an MITK world //## coordinate (including the rotation) into a coordinate that //## can be used with the ITK image as a ITK physical coordinate //## (excluding the rotation). template void WorldToItkPhysicalPoint(const mitk::Point3D& pt_mm, itk::Point& itkPhysicalPoint) const { mitk::vtk2itk(pt_mm, itkPhysicalPoint); } // ********************************** BoundingBox ********************************** /** Get the bounding box */ itkGetConstObjectMacro(BoundingBox, BoundingBoxType); //##Documentation //## @brief Get the time bounds (in ms) - itkGetConstReferenceMacro(TimeBounds, TimeBounds); + //itkGetConstReferenceMacro(TimeBounds, TimeBounds); // a bit of a misuse, but we want only doxygen to see the following: #ifdef DOXYGEN_SKIP //##Documentation //## @brief Get bounding box (in index/unit coordinates) itkGetConstObjectMacro(BoundingBox, BoundingBoxType); //##Documentation //## @brief Get bounding box (in index/unit coordinates) as a BoundsArrayType const BoundsArrayType GetBounds() const; #endif const BoundsArrayType GetBounds() const; //##Documentation //## \brief Set the bounding box (in index/unit coordinates) //## //## Only possible via the BoundsArray to make clear that a //## copy of the bounding-box is stored, not a reference to it. void SetBounds(const BoundsArrayType& bounds); //##Documentation //## @brief Set the bounding box (in index/unit coordinates) via a float array void SetFloatBounds(const float bounds[6]); //##Documentation //## @brief Set the bounding box (in index/unit coordinates) via a double array void SetFloatBounds(const double bounds[6]); //##Documentation //## @brief Get a VnlVector along bounding-box in the specified //## @a direction, length is spacing //## //## \sa GetAxisVector VnlVector GetMatrixColumn(unsigned int direction) const; //##Documentation //## @brief Calculates a bounding-box around the geometry relative //## to a coordinate system defined by a transform //## mitk::BoundingBox::Pointer CalculateBoundingBoxRelativeToTransform(const mitk::AffineTransform3D* transform) const; //##Documentation //## @brief Set the time bounds (in ms) - void SetTimeBounds(const TimeBounds& timebounds); + //void SetTimeBounds(const TimeBounds& timebounds); // ********************************** Geometry ********************************** #ifdef DOXYGEN_SKIP //##Documentation //## @brief Get the extent of the bounding box (in index/unit coordinates) //## //## To access the extent in mm use GetExtentInMM ScalarType GetExtent(unsigned int direction) const; #endif /** Get the extent of the bounding box */ ScalarType GetExtent(unsigned int direction) const; //##Documentation //## @brief Get the extent of the bounding-box in the specified @a direction in mm //## //## Equals length of GetAxisVector(direction). ScalarType GetExtentInMM(int direction) const; //##Documentation //## @brief Get vector along bounding-box in the specified @a direction in mm //## //## The length of the vector is the size of the bounding-box in the //## specified @a direction in mm //## \sa GetMatrixColumn Vector3D GetAxisVector(unsigned int direction) const; //##Documentation //## @brief Checks, if the given geometry can be converted to 2D without information loss //## e.g. when a 2D image is saved, the matrix is usually cropped to 2x2, and when you load it back to MITK //## it will be filled with standard values. This function checks, if information would be lost during this //## procedure virtual bool Is2DConvertable(); //##Documentation //## @brief Get the center of the bounding-box in mm //## Point3D GetCenter() const; //##Documentation //## @brief Get the squared length of the diagonal of the bounding-box in mm //## double GetDiagonalLength2() const; //##Documentation //## @brief Get the length of the diagonal of the bounding-box in mm //## double GetDiagonalLength() const; //##Documentation //## @brief Get the position of the corner number \a id (in world coordinates) //## //## See SetImageGeometry for how a corner is defined on images. Point3D GetCornerPoint(int id) const; //##Documentation //## @brief Get the position of a corner (in world coordinates) //## //## See SetImageGeometry for how a corner is defined on images. Point3D GetCornerPoint(bool xFront=true, bool yFront=true, bool zFront=true) const; //##Documentation //## @brief Set the extent of the bounding-box in the specified @a direction in mm //## //## @note This changes the matrix in the transform, @a not the bounds, which are given in units! void SetExtentInMM(int direction, ScalarType extentInMM); //##Documentation //## @brief Test whether the point \a p (world coordinates in mm) is //## inside the bounding box bool IsInside(const mitk::Point3D& p) const; //##Documentation //## @brief Test whether the point \a p ((continous!)index coordinates in units) is //## inside the bounding box bool IsIndexInside(const mitk::Point3D& index) const; //##Documentation //## @brief Convenience method for working with ITK indices template bool IsIndexInside(const itk::Index &index) const { int i, dim=index.GetIndexDimension(); Point3D pt_index; pt_index.Fill(0); for ( i = 0; i < dim; ++i ) { pt_index[i] = index[i]; } return IsIndexInside(pt_index); } // ********************************* Image Geometry ******************************** //##Documentation //## @brief When switching from an Image Geometry to a normal Geometry (and the other way around), you have to change the origin as well (See Geometry Documentation)! This function will change the "isImageGeometry" bool flag and changes the origin respectively. virtual void ChangeImageGeometryConsideringOriginOffset( const bool isAnImageGeometry ); //##Documentation //## @brief Is this an ImageGeometry? //## //## For more information, see SetImageGeometry itkGetConstMacro(ImageGeometry, bool); //##Documentation //## @brief Define that this BaseGeometry is refering to an Image //## //## A geometry referring to an Image needs a slightly different //## definition of the position of the corners (see GetCornerPoint). //## The position of a voxel is defined by the position of its center. //## If we would use the origin (position of the (center of) the first //## voxel) as a corner and display this point, it would seem to be //## \em not at the corner but a bit within the image. Even worse for //## the opposite corner of the image: here the corner would appear //## outside the image (by half of the voxel diameter). Thus, we have //## to correct for this and to be able to do that, we need to know //## that the BaseGeometry is referring to an Image. itkSetMacro(ImageGeometry, bool); itkBooleanMacro(ImageGeometry); protected: // ********************************** Constructor ********************************** BaseGeometry(); BaseGeometry(const BaseGeometry& other); virtual ~BaseGeometry(); //##Documentation //## @brief clones the geometry //## //## Overwrite in all sub-classes. //## Normally looks like: //## \code //## Self::Pointer newGeometry = new Self(*this); //## newGeometry->UnRegister(); //## return newGeometry.GetPointer(); //## \endcode virtual itk::LightObject::Pointer InternalClone() const =0; virtual void PrintSelf(std::ostream& os, itk::Indent indent) const; void BackTransform(const mitk::Point3D& in, mitk::Point3D& out) const; //Without redundant parameter Point3D void BackTransform(const mitk::Vector3D& in, mitk::Vector3D& out) const; //##Documentation //## @brief Deprecated void BackTransform(const mitk::Point3D& at, const mitk::Vector3D& in, mitk::Vector3D& out) const; //##Documentation //## @brief Copy the ITK transform //## (m_IndexToWorldTransform) to the VTK transform //## \sa SetIndexToWorldTransform void TransferItkToVtkTransform(); //##Documentation //## @brief Copy the VTK transform //## to the ITK transform (m_IndexToWorldTransform) //## \sa SetIndexToWorldTransform void TransferVtkToItkTransform(); static const std::string GetTransformAsString( TransformType* transformType ); itkGetConstMacro(NDimensions, unsigned int); bool IsBoundingBoxNull() const; bool IsIndexToWorldTransformNull() const; //##Documentation //## @brief Intern functions to assure a consistent behaviour of SetSpacing. void _SetSpacing(const mitk::Vector3D& aSpacing, bool enforceSetSpacing = false); private: //##Documentation //## @brief Pre- and Post-functions are empty in BaseGeometry //## //## These virtual functions allow for a different beahiour in subclasses. virtual void PreSetBounds(const BoundsArrayType& bounds); virtual void PostInitialize(); virtual void PostInitializeGeometry(Self * newGeometry) const; virtual void PostSetExtentInMM(int direction, ScalarType extentInMM); - virtual void PostSetTimeBounds(const TimeBounds& timebounds); + //virtual void PostSetTimeBounds(const TimeBounds& timebounds); virtual void PreSetIndexToWorldTransform(mitk::AffineTransform3D* transform); virtual void PostSetIndexToWorldTransform(mitk::AffineTransform3D* transform); virtual void PreSetSpacing(const mitk::Vector3D& aSpacing); // ********************************** Variables ********************************** //##Documentation //## @brief Spacing, measurement of the resolution //## mitk::Vector3D m_Spacing; //##Documentation //## @brief Index to World Transform, contains a transformation matrix to convert //## points from indes coordinates to world coordinates (mm). The Spacing is included in this variable. AffineTransform3D::Pointer m_IndexToWorldTransform; //##Documentation //## @brief Bounding Box, which is axes-parallel in intrinsic coordinates //## (often integer indices of pixels) BoundingBoxPointer m_BoundingBox; vtkMatrixToLinearTransform* m_VtkIndexToWorldTransform; vtkMatrix4x4* m_VtkMatrix; unsigned int m_FrameOfReferenceID; - mitk::TimeBounds m_TimeBounds; + //mitk::TimeBounds m_TimeBounds; //##Documentation //## @brief Origin, i.e. upper-left corner of the plane //## Point3D m_Origin; static const unsigned int m_NDimensions = 3; mutable TransformType::Pointer m_InvertedTransform; mutable unsigned long m_IndexToWorldTransformLastModified; bool m_ImageGeometry; //##Documentation //## @brief ModifiedLockFlag is used to prohibit the call of Modified() //## //## For the use of this Flag, see class ModifiedLock. This flag should only be set //## by the ModifiedLock class! bool m_ModifiedLockFlag; //##Documentation //## @brief ModifiedcalledFlag is used to collect calls of Modified(). //## //## For the use of this Flag, see class ModifiedLock. This flag should only be set //## by the Modified() function! mutable bool m_ModifiedCalledFlag; }; // ********************************** Equal Functions ********************************** // // Static compare functions mainly for testing // /** * @brief Equal A function comparing two geometries for beeing identical. * @warning This method is deprecated and will not be available in the future. Use the \a bool mitk::Equal(const mitk::mitk::BaseGeometry& g1, const mitk::BaseGeometry& g2) instead. * * @ingroup MITKTestingAPI * * The function compares the spacing, origin, axisvectors, extents, the matrix of the * IndexToWorldTransform (elementwise), the bounding (elementwise) and the ImageGeometry flag. * * The parameter eps is a tolarence value for all methods which are internally used for comparion. * If you want to use different tolarance values for different parts of the geometry, feel free to use * the other comparison methods and write your own implementation of Equal. * @param rightHandSide Compare this against leftHandSide. * @param leftHandSide Compare this against rightHandSide. * @param eps Tolarence for comparison. You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return True, if all comparison are true. False in any other case. */ DEPRECATED( MITK_CORE_EXPORT bool Equal(const mitk::BaseGeometry* leftHandSide, const mitk::BaseGeometry* rightHandSide, ScalarType eps, bool verbose)); /** * @brief Equal A function comparing two geometries for beeing identical. * * @ingroup MITKTestingAPI * * The function compares the spacing, origin, axisvectors, extents, the matrix of the * IndexToWorldTransform (elementwise), the bounding (elementwise) and the ImageGeometry flag. * * The parameter eps is a tolarence value for all methods which are internally used for comparion. * If you want to use different tolarance values for different parts of the geometry, feel free to use * the other comparison methods and write your own implementation of Equal. * @param rightHandSide Compare this against leftHandSide. * @param leftHandSide Compare this against rightHandSide. * @param eps Tolarence for comparison. You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return True, if all comparison are true. False in any other case. */ MITK_CORE_EXPORT bool Equal(const mitk::BaseGeometry& leftHandSide, const mitk::BaseGeometry& rightHandSide, ScalarType eps, bool verbose); /** * @brief Equal A function comparing two transforms (TransformType) for beeing identical. * @warning This method is deprecated and will not be available in the future. Use the \a bool mitk::Equal(const mitk::mitk::BaseGeometry::TransformType& t1, const mitk::BaseGeometry::TransformType& t2) instead. * * @ingroup MITKTestingAPI * * The function compares the IndexToWorldTransform (elementwise). * * The parameter eps is a tolarence value for all methods which are internally used for comparion. * @param rightHandSide Compare this against leftHandSide. * @param leftHandSide Compare this against rightHandSide. * @param eps Tolarence for comparison. You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return True, if all comparison are true. False in any other case. */ DEPRECATED( MITK_CORE_EXPORT bool Equal(const mitk::BaseGeometry::TransformType *leftHandSide, const mitk::BaseGeometry::TransformType *rightHandSide, ScalarType eps, bool verbose)); /** * @brief Equal A function comparing two transforms (TransformType) for beeing identical. * * @ingroup MITKTestingAPI * * The function compares the IndexToWorldTransform (elementwise). * * The parameter eps is a tolarence value for all methods which are internally used for comparion. * @param rightHandSide Compare this against leftHandSide. * @param leftHandSide Compare this against rightHandSide. * @param eps Tolarence for comparison. You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return True, if all comparison are true. False in any other case. */ MITK_CORE_EXPORT bool Equal(const mitk::BaseGeometry::TransformType& leftHandSide, const mitk::BaseGeometry::TransformType& rightHandSide, ScalarType eps, bool verbose); /** * @brief Equal A function comparing two bounding boxes (BoundingBoxType) for beeing identical. * @warning This method is deprecated and will not be available in the future. Use the \a bool mitk::Equal(const mitk::mitk::BaseGeometry::BoundingBoxType& b1, const mitk::BaseGeometry::BoundingBoxType& b2) instead. * * @ingroup MITKTestingAPI * * The function compares the bounds (elementwise). * * The parameter eps is a tolarence value for all methods which are internally used for comparion. * @param rightHandSide Compare this against leftHandSide. * @param leftHandSide Compare this against rightHandSide. * @param eps Tolarence for comparison. You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return True, if all comparison are true. False in any other case. */ DEPRECATED( MITK_CORE_EXPORT bool Equal( const mitk::BaseGeometry::BoundingBoxType *leftHandSide, const mitk::BaseGeometry::BoundingBoxType *rightHandSide, ScalarType eps, bool verbose)); /** * @brief Equal A function comparing two bounding boxes (BoundingBoxType) for beeing identical. * * @ingroup MITKTestingAPI * * The function compares the bounds (elementwise). * * The parameter eps is a tolarence value for all methods which are internally used for comparion. * @param rightHandSide Compare this against leftHandSide. * @param leftHandSide Compare this against rightHandSide. * @param eps Tolarence for comparison. You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return True, if all comparison are true. False in any other case. */ MITK_CORE_EXPORT bool Equal( const mitk::BaseGeometry::BoundingBoxType& leftHandSide, const mitk::BaseGeometry::BoundingBoxType& rightHandSide, ScalarType eps, bool verbose); } // namespace mitk #endif /* BaseGeometry_H_HEADER_INCLUDED */ diff --git a/Core/Code/Testing/mitkBaseGeometryTest.cpp b/Core/Code/Testing/mitkBaseGeometryTest.cpp index 6067b39a07..8eee786cd7 100644 --- a/Core/Code/Testing/mitkBaseGeometryTest.cpp +++ b/Core/Code/Testing/mitkBaseGeometryTest.cpp @@ -1,1227 +1,1227 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkTestingMacros.h" #include #include #include #include #include #include "mitkoperationactor.h" #include #include "mitkvector.h" #include #include #include "itkScalableAffineTransform.h" #include #include #include #include "mitkRotationOperation.h" #include "mitkInteractionConst.h" #include #include class vtkMatrix4x4; class vtkMatrixToLinearTransform; class vtkLinearTransform; typedef itk::BoundingBox BoundingBox; typedef itk::BoundingBox BoundingBoxType; typedef BoundingBoxType::BoundsArrayType BoundsArrayType; typedef BoundingBoxType::Pointer BoundingBoxPointer; // Dummy instance of abstract base class class DummyTestClass : public mitk::BaseGeometry { public: DummyTestClass(){}; DummyTestClass(const DummyTestClass& other) : BaseGeometry(other){}; ~DummyTestClass(){}; mitkClassMacro(DummyTestClass, mitk::BaseGeometry); itkNewMacro(Self); mitkNewMacro1Param(Self,Self); itk::LightObject::Pointer DummyTestClass::InternalClone() const { Self::Pointer newGeometry = new Self(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } virtual void PrintSelf(std::ostream& os, itk::Indent indent) const{}; }; class mitkBaseGeometryTestSuite : public mitk::TestFixture { // List of Tests CPPUNIT_TEST_SUITE(mitkBaseGeometryTestSuite); //Constructor MITK_TEST(TestConstructors); MITK_TEST(TestInitialize); //Set MITK_TEST(TestSetOrigin); MITK_TEST(TestSetBounds); MITK_TEST(TestSetFloatBounds); MITK_TEST(TestSetFloatBoundsDouble); MITK_TEST(TestSetFrameOfReferenceID); MITK_TEST(TestSetIndexToWorldTransform); MITK_TEST(TestSetSpacing); MITK_TEST(TestTransferItkToVtkTransform); MITK_TEST(TestSetIndexToWorldTransformByVtkMatrix); MITK_TEST(TestSetIdentity); MITK_TEST(TestSetImageGeometry); //Equal MITK_TEST(Equal_CloneAndOriginal_ReturnsTrue); MITK_TEST(Equal_DifferentOrigin_ReturnsFalse); MITK_TEST(Equal_DifferentIndexToWorldTransform_ReturnsFalse); MITK_TEST(Equal_DifferentSpacing_ReturnsFalse); MITK_TEST(Equal_InputIsNull_ReturnsFalse); MITK_TEST(Equal_DifferentBoundingBox_ReturnsFalse); //other Functions MITK_TEST(TestComposeTransform); MITK_TEST(TestComposeVtkMatrix); MITK_TEST(TestTranslate); MITK_TEST(TestIndexToWorld); MITK_TEST(TestExecuteOperation); MITK_TEST(TestCalculateBoundingBoxRelToTransform); - MITK_TEST(TestSetTimeBounds); + //MITK_TEST(TestSetTimeBounds); MITK_TEST(TestIs2DConvertable); MITK_TEST(TestGetCornerPoint); MITK_TEST(TestExtentInMM); MITK_TEST(TestGetAxisVector); MITK_TEST(TestGetCenter); MITK_TEST(TestGetDiagonalLength); MITK_TEST(TestGetExtent); MITK_TEST(TestIsInside); MITK_TEST(TestGetMatrixColumn); CPPUNIT_TEST_SUITE_END(); // Used Variables private: mitk::Point3D aPoint; float aFloatSpacing[3]; mitk::Vector3D aSpacing; mitk::AffineTransform3D::Pointer aTransform; BoundingBoxPointer aBoundingBox; mitk::AffineTransform3D::MatrixType aMatrix; mitk::Point3D anotherPoint; mitk::Vector3D anotherSpacing; BoundingBoxPointer anotherBoundingBox; BoundingBoxPointer aThirdBoundingBox; mitk::AffineTransform3D::Pointer anotherTransform; mitk::AffineTransform3D::Pointer aThirdTransform; mitk::AffineTransform3D::MatrixType anotherMatrix; mitk::AffineTransform3D::MatrixType aThirdMatrix; DummyTestClass::Pointer aDummyGeometry; DummyTestClass::Pointer anotherDummyGeometry; public: // Set up for variables void setUp() { mitk::FillVector3D(aFloatSpacing, 1,1,1); mitk::FillVector3D(aSpacing, 1,1,1); mitk::FillVector3D(aPoint, 0,0,0); //Transform aTransform = mitk::AffineTransform3D::New(); aTransform->SetIdentity(); aMatrix.SetIdentity(); anotherTransform = mitk::AffineTransform3D::New(); anotherMatrix.SetIdentity(); anotherMatrix(1,1) = 2; anotherTransform->SetMatrix( anotherMatrix ); aThirdTransform = mitk::AffineTransform3D::New(); aThirdMatrix.SetIdentity(); aThirdMatrix(1,1) = 7; aThirdTransform->SetMatrix( aThirdMatrix ); //Bounding Box float bounds[6] = {0,1,0,1,0,1}; mitk::BoundingBox::BoundsArrayType b; const float *input = bounds; int j=0; for(mitk::BoundingBox::BoundsArrayType::Iterator it = b.Begin(); j < 6 ;++j) *it++ = (mitk::ScalarType)*input++; aBoundingBox = BoundingBoxType::New(); BoundingBoxType::PointsContainer::Pointer pointscontainer = BoundingBoxType::PointsContainer::New(); BoundingBoxType::PointType p; BoundingBoxType::PointIdentifier pointid; for(pointid=0; pointid<2;++pointid) { unsigned int i; for(i=0; i<3; ++i) { p[i] = bounds[2*i+pointid]; } pointscontainer->InsertElement(pointid, p); } aBoundingBox->SetPoints(pointscontainer); aBoundingBox->ComputeBoundingBox(); anotherBoundingBox = BoundingBoxType::New(); p[0]=11; p[1]=12; p[2]=13; pointscontainer->InsertElement(1, p); anotherBoundingBox->SetPoints(pointscontainer); anotherBoundingBox->ComputeBoundingBox(); aThirdBoundingBox = BoundingBoxType::New(); p[0]=22; p[1]=23; p[2]=24; pointscontainer->InsertElement(1, p); aThirdBoundingBox->SetPoints(pointscontainer); aThirdBoundingBox->ComputeBoundingBox(); mitk::FillVector3D(anotherPoint, 2,3,4); mitk::FillVector3D(anotherSpacing, 5,6.5,7); aDummyGeometry = DummyTestClass::New(); aDummyGeometry->Initialize(); anotherDummyGeometry = aDummyGeometry->Clone(); } void tearDown() { aDummyGeometry = NULL; anotherDummyGeometry = NULL; } // Test functions void TestSetOrigin() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetOrigin(anotherPoint); CPPUNIT_ASSERT(anotherPoint==dummy->GetOrigin()); //undo changes, new and changed object need to be the same! dummy->SetOrigin(aPoint); DummyTestClass::Pointer newDummy = DummyTestClass::New(); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } void TestSetImageGeometry() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetImageGeometry(true); CPPUNIT_ASSERT(dummy->GetImageGeometry()); //undo changes, new and changed object need to be the same! dummy->SetImageGeometry(false); CPPUNIT_ASSERT(dummy->GetImageGeometry()==false); DummyTestClass::Pointer newDummy = DummyTestClass::New(); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } void TestSetFloatBounds(){ float bounds[6] = {0,11,0,12,0,13}; DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetFloatBounds(bounds); CPPUNIT_ASSERT(mitk::Equal( dummy->GetBoundingBox(), anotherBoundingBox, mitk::eps, true)); //Wrong bounds, test needs to fail bounds[1]=7; dummy->SetFloatBounds(bounds); CPPUNIT_ASSERT((mitk::Equal( dummy->GetBoundingBox(), anotherBoundingBox, mitk::eps, false))==false); //undo changes, new and changed object need to be the same! float originalBounds[6] = {0,1,0,1,0,1}; dummy->SetFloatBounds(originalBounds); DummyTestClass::Pointer newDummy = DummyTestClass::New(); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } void TestSetBounds(){ DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetBounds(anotherBoundingBox->GetBounds()); CPPUNIT_ASSERT(mitk::Equal( dummy->GetBoundingBox(), anotherBoundingBox, mitk::eps, true)); //Test needs to fail now dummy->SetBounds(aThirdBoundingBox->GetBounds()); CPPUNIT_ASSERT(mitk::Equal( dummy->GetBoundingBox(), anotherBoundingBox, mitk::eps, false)==false); //undo changes, new and changed object need to be the same! dummy->SetBounds(aBoundingBox->GetBounds()); DummyTestClass::Pointer newDummy = DummyTestClass::New(); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } void TestSetFloatBoundsDouble(){ double bounds[6] = {0,11,0,12,0,13}; DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetFloatBounds(bounds); CPPUNIT_ASSERT(mitk::Equal( dummy->GetBoundingBox(), anotherBoundingBox, mitk::eps, true)); //Test needs to fail now bounds[3]=7; dummy->SetFloatBounds(bounds); CPPUNIT_ASSERT(mitk::Equal( dummy->GetBoundingBox(), anotherBoundingBox, mitk::eps, false)==false); //undo changes, new and changed object need to be the same! double originalBounds[6] = {0,1,0,1,0,1}; dummy->SetFloatBounds(originalBounds); DummyTestClass::Pointer newDummy = DummyTestClass::New(); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } void TestSetFrameOfReferenceID() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetFrameOfReferenceID(5); CPPUNIT_ASSERT(dummy->GetFrameOfReferenceID()==5); //undo changes, new and changed object need to be the same! dummy->SetFrameOfReferenceID(0); DummyTestClass::Pointer newDummy = DummyTestClass::New(); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } void TestSetIndexToWorldTransform() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransform(anotherTransform); CPPUNIT_ASSERT(mitk::Equal(anotherTransform,dummy->GetIndexToWorldTransform(),mitk::eps,true)); //Test needs to fail now dummy->SetIndexToWorldTransform(aThirdTransform); CPPUNIT_ASSERT(mitk::Equal(anotherTransform,dummy->GetIndexToWorldTransform(),mitk::eps,false)==false); //undo changes, new and changed object need to be the same! dummy->SetIndexToWorldTransform(aTransform); DummyTestClass::Pointer newDummy = DummyTestClass::New(); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } void TestSetIndexToWorldTransformByVtkMatrix() { vtkMatrix4x4* vtkmatrix; vtkmatrix = vtkMatrix4x4::New(); vtkmatrix->Identity(); vtkmatrix->SetElement(1,1,2); DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransformByVtkMatrix(vtkmatrix); CPPUNIT_ASSERT(mitk::Equal(anotherTransform,dummy->GetIndexToWorldTransform(),mitk::eps,true)); //test needs to fail now vtkmatrix->SetElement(1,1,7); dummy->SetIndexToWorldTransformByVtkMatrix(vtkmatrix); CPPUNIT_ASSERT(mitk::Equal(anotherTransform,dummy->GetIndexToWorldTransform(),mitk::eps,false)==false); //undo changes, new and changed object need to be the same! vtkmatrix->SetElement(1,1,1); dummy->SetIndexToWorldTransformByVtkMatrix(vtkmatrix); DummyTestClass::Pointer newDummy = DummyTestClass::New(); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } void TestSetIdentity() { DummyTestClass::Pointer dummy = DummyTestClass::New(); //Change IndextoWorldTransform and Origin dummy->SetIndexToWorldTransform(anotherTransform); dummy->SetOrigin(anotherPoint); //Set Identity should reset ITWT and Origin dummy->SetIdentity(); CPPUNIT_ASSERT(mitk::Equal(aTransform,dummy->GetIndexToWorldTransform(),mitk::eps,true)); CPPUNIT_ASSERT(aPoint==dummy->GetOrigin()); CPPUNIT_ASSERT(aSpacing==dummy->GetSpacing()); //new and changed object need to be the same! DummyTestClass::Pointer newDummy = DummyTestClass::New(); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } void TestSetSpacing() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetSpacing(anotherSpacing); CPPUNIT_ASSERT(anotherSpacing==dummy->GetSpacing()); //undo changes, new and changed object need to be the same! dummy->SetSpacing(aSpacing); DummyTestClass::Pointer newDummy = DummyTestClass::New(); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } void TestTransferItkToVtkTransform() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransform(anotherTransform); //calls TransferItkToVtkTransform mitk::AffineTransform3D::Pointer dummyTransform = dummy->GetIndexToWorldTransform(); CPPUNIT_ASSERT(mitk::MatrixEqualElementWise( anotherMatrix, dummyTransform->GetMatrix() )); } void TestConstructors() { //test standard constructor DummyTestClass::Pointer dummy1 = DummyTestClass::New(); bool test = dummy1->IsValid(); CPPUNIT_ASSERT(test == true); CPPUNIT_ASSERT(dummy1->GetFrameOfReferenceID() == 0); CPPUNIT_ASSERT(dummy1->GetIndexToWorldTransformLastModified() == 0); CPPUNIT_ASSERT(dummy1->GetSpacing() == aSpacing); CPPUNIT_ASSERT(dummy1->GetOrigin()==aPoint); CPPUNIT_ASSERT(dummy1->GetImageGeometry()==false); CPPUNIT_ASSERT(mitk::Equal( dummy1->GetIndexToWorldTransform(), aTransform, mitk::eps, true)); CPPUNIT_ASSERT(mitk::Equal( dummy1->GetBoundingBox(), aBoundingBox, mitk::eps, true)); DummyTestClass::Pointer dummy2 = DummyTestClass::New(); dummy2->SetOrigin(anotherPoint); float bounds[6] = {0,11,0,12,0,13}; dummy2->SetFloatBounds(bounds); dummy2->SetIndexToWorldTransform(anotherTransform); dummy2->SetSpacing(anotherSpacing); DummyTestClass::Pointer dummy3; dummy3 = DummyTestClass::New(*dummy2); CPPUNIT_ASSERT(mitk::Equal(dummy3,dummy2,mitk::eps,true)); } //Equal Tests void Equal_CloneAndOriginal_ReturnsTrue() { CPPUNIT_ASSERT( mitk::Equal(aDummyGeometry, anotherDummyGeometry, mitk::eps,true)); } void Equal_DifferentOrigin_ReturnsFalse() { anotherDummyGeometry->SetOrigin(anotherPoint); CPPUNIT_ASSERT( mitk::Equal(aDummyGeometry, anotherDummyGeometry, mitk::eps,false)==false); } void Equal_DifferentIndexToWorldTransform_ReturnsFalse() { anotherDummyGeometry->SetIndexToWorldTransform(anotherTransform); CPPUNIT_ASSERT( mitk::Equal(aDummyGeometry, anotherDummyGeometry, mitk::eps,false)==false); } void Equal_DifferentSpacing_ReturnsFalse() { anotherDummyGeometry->SetSpacing(anotherSpacing); CPPUNIT_ASSERT( mitk::Equal(aDummyGeometry, anotherDummyGeometry, mitk::eps,false)==false); } void Equal_InputIsNull_ReturnsFalse() { DummyTestClass::Pointer geometryNull = NULL; CPPUNIT_ASSERT( mitk::Equal(geometryNull, anotherDummyGeometry, mitk::eps,false)==false); } void Equal_DifferentBoundingBox_ReturnsFalse() { //create different bounds to make the comparison false mitk::ScalarType bounds[ ] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; anotherDummyGeometry->SetBounds(bounds); CPPUNIT_ASSERT( mitk::Equal(aDummyGeometry, anotherDummyGeometry, mitk::eps,false)==false); } void TestComposeTransform(){ //Create Transformations to set and compare mitk::AffineTransform3D::Pointer transform1; transform1 = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType matrix1; matrix1.SetIdentity(); matrix1(1,1) = 2; transform1->SetMatrix( matrix1 ); //Spacing = 2 mitk::AffineTransform3D::Pointer transform2; transform2 = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType matrix2; matrix2.SetIdentity(); matrix2(1,1) = 2; transform2->SetMatrix( matrix2 ); //Spacing = 2 mitk::AffineTransform3D::Pointer transform3; transform3 = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType matrix3; matrix3.SetIdentity(); matrix3(1,1) = 4; transform3->SetMatrix( matrix3 ); //Spacing = 4 mitk::AffineTransform3D::Pointer transform4; transform4 = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType matrix4; matrix4.SetIdentity(); matrix4(1,1) = 0.25; transform4->SetMatrix( matrix4 ); //Spacing = 0.25 //Vector to compare spacing mitk::Vector3D expectedSpacing; expectedSpacing.Fill(1.0); expectedSpacing[1] = 4; DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransform(transform1); //Spacing = 2 dummy->Compose(transform2); //Spacing = 4 CPPUNIT_ASSERT(mitk::Equal(dummy->GetSpacing(), expectedSpacing)); CPPUNIT_ASSERT(mitk::Equal(transform3,dummy->GetIndexToWorldTransform(),mitk::eps,true)); // 4=4 //undo changes, new and changed object need to be the same! dummy->Compose(transform4); //Spacing = 1 DummyTestClass::Pointer newDummy = DummyTestClass::New(); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); // 1=1 } void TestComposeVtkMatrix(){ //Create Transformations to set and compare mitk::AffineTransform3D::Pointer transform1; transform1 = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType matrix1; matrix1.SetIdentity(); matrix1(1,1) = 2; transform1->SetMatrix( matrix1 ); //Spacing = 2 vtkMatrix4x4* vtkmatrix2; vtkmatrix2 = vtkMatrix4x4::New(); vtkmatrix2->Identity(); vtkmatrix2->SetElement(1,1,2); //Spacing = 2 mitk::AffineTransform3D::Pointer transform3; transform3 = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType matrix3; matrix3.SetIdentity(); matrix3(1,1) = 4; transform3->SetMatrix( matrix3 ); //Spacing = 4 vtkMatrix4x4* vtkmatrix4; vtkmatrix4 = vtkMatrix4x4::New(); vtkmatrix4->Identity(); vtkmatrix4->SetElement(1,1,0.25); //Spacing = 0.25 //Vector to compare spacing mitk::Vector3D expectedSpacing; expectedSpacing.Fill(1.0); expectedSpacing[1] = 4; DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransform(transform1); //Spacing = 2 dummy->Compose(vtkmatrix2); //Spacing = 4 CPPUNIT_ASSERT(mitk::Equal(transform3,dummy->GetIndexToWorldTransform(),mitk::eps,true)); // 4=4 CPPUNIT_ASSERT(mitk::Equal(dummy->GetSpacing(), expectedSpacing)); //undo changes, new and changed object need to be the same! dummy->Compose(vtkmatrix4); //Spacing = 1 DummyTestClass::Pointer newDummy = DummyTestClass::New(); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); // 1=1 } void TestTranslate(){ DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetOrigin(anotherPoint); CPPUNIT_ASSERT(anotherPoint==dummy->GetOrigin()); //use some random values for translation mitk::Vector3D translationVector; translationVector.SetElement(0, 17.5f); translationVector.SetElement(1, -32.3f); translationVector.SetElement(2, 4.0f); //compute ground truth mitk::Point3D tmpResult = anotherPoint + translationVector; dummy->Translate(translationVector); CPPUNIT_ASSERT( mitk::Equal( dummy->GetOrigin(), tmpResult )); //undo changes translationVector*=-1; dummy->Translate(translationVector); CPPUNIT_ASSERT( mitk::Equal( dummy->GetOrigin(), anotherPoint )); //undo changes, new and changed object need to be the same! translationVector.SetElement(0, -1 * anotherPoint[0]); translationVector.SetElement(1, -1 * anotherPoint[1]); translationVector.SetElement(2, -1 * anotherPoint[2]); dummy->Translate(translationVector); DummyTestClass::Pointer newDummy = DummyTestClass::New(); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } // a part of the test requires axis-parallel coordinates int testIndexAndWorldConsistency(DummyTestClass* dummyGeometry) { //Testing consistency of index and world coordinate systems mitk::Point3D origin = dummyGeometry->GetOrigin(); mitk::Point3D dummyPoint; //Testing index->world->index conversion consistency dummyGeometry->WorldToIndex(origin, dummyPoint); dummyGeometry->IndexToWorld(dummyPoint, dummyPoint); CPPUNIT_ASSERT(dummyPoint == origin); //Testing WorldToIndex(origin, mitk::Point3D)==(0,0,0) mitk::Point3D globalOrigin; mitk::FillVector3D(globalOrigin, 0,0,0); mitk::Point3D originContinuousIndex; dummyGeometry->WorldToIndex(origin, originContinuousIndex); CPPUNIT_ASSERT(originContinuousIndex == globalOrigin); //Testing WorldToIndex(origin, itk::Index)==(0,0,0) itk::Index<3> itkindex; dummyGeometry->WorldToIndex(origin, itkindex); itk::Index<3> globalOriginIndex; mitk::vtk2itk(globalOrigin, globalOriginIndex); CPPUNIT_ASSERT(itkindex == globalOriginIndex); //Testing WorldToIndex(origin-0.5*spacing, itk::Index)==(0,0,0) mitk::Vector3D halfSpacingStep = dummyGeometry->GetSpacing()*0.5; mitk::Matrix3D rotation; mitk::Point3D originOffCenter = origin-halfSpacingStep; dummyGeometry->WorldToIndex(originOffCenter, itkindex); CPPUNIT_ASSERT(itkindex == globalOriginIndex); //Testing WorldToIndex(origin+0.5*spacing-eps, itk::Index)==(0,0,0) originOffCenter = origin+halfSpacingStep; originOffCenter -= 0.0001; dummyGeometry->WorldToIndex( originOffCenter, itkindex); CPPUNIT_ASSERT(itkindex == globalOriginIndex); //Testing WorldToIndex(origin+0.5*spacing, itk::Index)==(1,1,1)"); originOffCenter = origin+halfSpacingStep; itk::Index<3> global111; mitk::FillVector3D(global111, 1,1,1); dummyGeometry->WorldToIndex( originOffCenter, itkindex); CPPUNIT_ASSERT(itkindex == global111); //Testing WorldToIndex(GetCenter())==BoundingBox.GetCenter mitk::Point3D center = dummyGeometry->GetCenter(); mitk::Point3D centerContIndex; dummyGeometry->WorldToIndex(center, centerContIndex); mitk::BoundingBox::ConstPointer boundingBox = dummyGeometry->GetBoundingBox(); mitk::BoundingBox::PointType centerBounds = boundingBox->GetCenter(); CPPUNIT_ASSERT(mitk::Equal(centerContIndex,centerBounds)); //Testing GetCenter()==IndexToWorld(BoundingBox.GetCenter) center = dummyGeometry->GetCenter(); mitk::Point3D centerBoundsInWorldCoords; dummyGeometry->IndexToWorld(centerBounds, centerBoundsInWorldCoords); CPPUNIT_ASSERT(mitk::Equal(center,centerBoundsInWorldCoords)); //Test using random point, //Testing consistency of index and world coordinate systems mitk::Point3D point; mitk::FillVector3D(point,3.5,-2,4.6); //Testing index->world->index conversion consistency dummyGeometry->WorldToIndex(point, dummyPoint); dummyGeometry->IndexToWorld(dummyPoint, dummyPoint); CPPUNIT_ASSERT(dummyPoint == point); return EXIT_SUCCESS; } int testIndexAndWorldConsistencyForVectors(DummyTestClass* dummyGeometry) { //Testing consistency of index and world coordinate systems for vectors mitk::Vector3D xAxisMM = dummyGeometry->GetAxisVector(0); mitk::Vector3D xAxisContinuousIndex; mitk::Point3D p, pIndex, origin; origin = dummyGeometry->GetOrigin(); p[0] = xAxisMM[0]+origin[0]; p[1] = xAxisMM[1]+origin[1]; p[2] = xAxisMM[2]+origin[2]; dummyGeometry->WorldToIndex(p,pIndex); dummyGeometry->WorldToIndex(xAxisMM,xAxisContinuousIndex); CPPUNIT_ASSERT(xAxisContinuousIndex[0] == pIndex[0]); CPPUNIT_ASSERT(xAxisContinuousIndex[1] == pIndex[1]); CPPUNIT_ASSERT(xAxisContinuousIndex[2] == pIndex[2]); dummyGeometry->IndexToWorld(xAxisContinuousIndex,xAxisContinuousIndex); dummyGeometry->IndexToWorld(pIndex,p); CPPUNIT_ASSERT(xAxisContinuousIndex == xAxisMM); CPPUNIT_ASSERT(xAxisContinuousIndex[0] == p[0]-origin[0]); CPPUNIT_ASSERT(xAxisContinuousIndex[1] == p[1]-origin[1]); CPPUNIT_ASSERT(xAxisContinuousIndex[2] == p[2]-origin[2]); //Test consictency for random vector mitk::Vector3D vector; mitk::FillVector3D(vector, 2.5,-3.2,8.1); mitk::Vector3D vectorContinuousIndex; p[0] = vector[0]+origin[0]; p[1] = vector[1]+origin[1]; p[2] = vector[2]+origin[2]; dummyGeometry->WorldToIndex(p,pIndex); dummyGeometry->WorldToIndex(vector,vectorContinuousIndex); CPPUNIT_ASSERT(vectorContinuousIndex[0] == pIndex[0]); CPPUNIT_ASSERT(vectorContinuousIndex[1] == pIndex[1]); CPPUNIT_ASSERT(vectorContinuousIndex[2] == pIndex[2]); dummyGeometry->IndexToWorld(vectorContinuousIndex,vectorContinuousIndex); dummyGeometry->IndexToWorld(pIndex,p); CPPUNIT_ASSERT(vectorContinuousIndex == vector); CPPUNIT_ASSERT(vectorContinuousIndex[0] == p[0]-origin[0]); CPPUNIT_ASSERT(vectorContinuousIndex[1] == p[1]-origin[1]); CPPUNIT_ASSERT(vectorContinuousIndex[2] == p[2]-origin[2]); return EXIT_SUCCESS; } int testIndexAndWorldConsistencyForIndex(DummyTestClass* dummyGeometry) { //Testing consistency of index and world coordinate systems // creating testing data itk::Index<4> itkIndex4, itkIndex4b; itk::Index<3> itkIndex3, itkIndex3b; itk::Index<2> itkIndex2, itkIndex2b; mitk::Index3D mitkIndex, mitkIndexb; itkIndex4[0] = itkIndex4[1] = itkIndex4[2] = itkIndex4[3] = 4; itkIndex3[0] = itkIndex3[1] = itkIndex3[2] = 6; itkIndex2[0] = itkIndex2[1] = 2; mitkIndex[0] = mitkIndex[1] = mitkIndex[2] = 13; // check for constistency mitk::Point3D point; dummyGeometry->IndexToWorld(itkIndex2,point); dummyGeometry->WorldToIndex(point,itkIndex2b); CPPUNIT_ASSERT( ((itkIndex2b[0] == itkIndex2[0]) && (itkIndex2b[1] == itkIndex2[1]))); //Testing itk::index<2> for IndexToWorld/WorldToIndex consistency dummyGeometry->IndexToWorld(itkIndex3,point); dummyGeometry->WorldToIndex(point,itkIndex3b); CPPUNIT_ASSERT( ((itkIndex3b[0] == itkIndex3[0]) && (itkIndex3b[1] == itkIndex3[1]) && (itkIndex3b[2] == itkIndex3[2]))); //Testing itk::index<3> for IndexToWorld/WorldToIndex consistency dummyGeometry->IndexToWorld(itkIndex4,point); dummyGeometry->WorldToIndex(point,itkIndex4b); CPPUNIT_ASSERT( ((itkIndex4b[0] == itkIndex4[0]) && (itkIndex4b[1] == itkIndex4[1]) && (itkIndex4b[2] == itkIndex4[2]) && (itkIndex4b[3] == 0))); //Testing itk::index<3> for IndexToWorld/WorldToIndex consistency dummyGeometry->IndexToWorld(mitkIndex,point); dummyGeometry->WorldToIndex(point,mitkIndexb); CPPUNIT_ASSERT( ((mitkIndexb[0] == mitkIndex[0]) && (mitkIndexb[1] == mitkIndex[1]) && (mitkIndexb[2] == mitkIndex[2]))); //Testing mitk::Index for IndexToWorld/WorldToIndex consistency return EXIT_SUCCESS; } void TestIndexToWorld(){ DummyTestClass::Pointer dummy = DummyTestClass::New(); testIndexAndWorldConsistency(dummy); testIndexAndWorldConsistencyForVectors(dummy); testIndexAndWorldConsistencyForIndex(dummy); //Geometry must not have changed DummyTestClass::Pointer newDummy = DummyTestClass::New(); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); //Test with other geometries dummy->SetOrigin(anotherPoint); testIndexAndWorldConsistency(dummy); testIndexAndWorldConsistencyForVectors(dummy); testIndexAndWorldConsistencyForIndex(dummy); dummy->SetIndexToWorldTransform(anotherTransform); testIndexAndWorldConsistency(dummy); testIndexAndWorldConsistencyForVectors(dummy); testIndexAndWorldConsistencyForIndex(dummy); dummy->SetOrigin(anotherPoint); testIndexAndWorldConsistency(dummy); testIndexAndWorldConsistencyForVectors(dummy); testIndexAndWorldConsistencyForIndex(dummy); dummy->SetSpacing(anotherSpacing); testIndexAndWorldConsistency(dummy); testIndexAndWorldConsistencyForVectors(dummy); testIndexAndWorldConsistencyForIndex(dummy); } void TestExecuteOperation(){ DummyTestClass::Pointer dummy = DummyTestClass::New(); //Do same Operations with new Dummy and compare DummyTestClass::Pointer newDummy = DummyTestClass::New(); //Test operation Nothing mitk::Operation* opN = new mitk::Operation(mitk::OpNOTHING); dummy->ExecuteOperation(opN); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); //Test operation Move mitk::PointOperation* opP = new mitk::PointOperation(mitk::OpMOVE,anotherPoint); dummy->ExecuteOperation(opP); CPPUNIT_ASSERT(anotherPoint==dummy->GetOrigin()); newDummy->SetOrigin(anotherPoint); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); //Test operation Scale, Scale sets spacing to scale+1 mitk::Point3D spacing; spacing[0]=anotherSpacing[0]-1.; spacing[1]=anotherSpacing[1]-1.; spacing[2]=anotherSpacing[2]-1.; mitk::PointOperation* opS = new mitk::PointOperation(mitk::OpSCALE,spacing); dummy->ExecuteOperation(opS); CPPUNIT_ASSERT(anotherSpacing==dummy->GetSpacing()); newDummy->SetSpacing(anotherSpacing); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); //change Geometry to test more cases dummy->SetIndexToWorldTransform(anotherTransform); dummy->SetSpacing(anotherSpacing); //Testing a rotation of the geometry double angle = 35.0; mitk::Vector3D rotationVector; mitk::FillVector3D( rotationVector, 1, 0, 0 ); mitk::Point3D center = dummy->GetCenter(); mitk::RotationOperation* opR = new mitk::RotationOperation( mitk::OpROTATE, center, rotationVector, angle ); dummy->ExecuteOperation(opR); mitk::Matrix3D rotation; mitk::GetRotation(dummy, rotation); mitk::Vector3D voxelStep=rotation*anotherSpacing; mitk::Vector3D voxelStepIndex; dummy->WorldToIndex(voxelStep, voxelStepIndex); mitk::Vector3D expectedVoxelStepIndex; expectedVoxelStepIndex.Fill(1); CPPUNIT_ASSERT(mitk::Equal(voxelStepIndex,expectedVoxelStepIndex)); delete opR, opN, opS, opP; } void TestCalculateBoundingBoxRelToTransform(){ DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetExtentInMM(0,15); dummy->SetExtentInMM(1,20); dummy->SetExtentInMM(2,8); mitk::BoundingBox::Pointer dummyBoundingBox = dummy->CalculateBoundingBoxRelativeToTransform(anotherTransform); mitk::BoundingBox::PointsContainer::Pointer pointscontainer=mitk::BoundingBox::PointsContainer::New(); mitk::BoundingBox::PointIdentifier pointid=0; unsigned char i; mitk::AffineTransform3D::Pointer inverse = mitk::AffineTransform3D::New(); anotherTransform->GetInverse(inverse); for(i=0; i<8; ++i) pointscontainer->InsertElement( pointid++, inverse->TransformPoint( dummy->GetCornerPoint(i) )); mitk::BoundingBox::Pointer result = mitk::BoundingBox::New(); result->SetPoints(pointscontainer); result->ComputeBoundingBox(); CPPUNIT_ASSERT(mitk::Equal(result,dummyBoundingBox,mitk::eps,true)); //dummy still needs to be unchanged, except for extend DummyTestClass::Pointer newDummy = DummyTestClass::New(); newDummy->SetExtentInMM(0,15); newDummy->SetExtentInMM(1,20); newDummy->SetExtentInMM(2,8); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } - void TestSetTimeBounds(){ - mitk::TimeBounds timeBounds; - timeBounds[0] = 1; - timeBounds[1] = 9; + //void TestSetTimeBounds(){ + // mitk::TimeBounds timeBounds; + // timeBounds[0] = 1; + // timeBounds[1] = 9; - DummyTestClass::Pointer dummy = DummyTestClass::New(); - dummy->SetTimeBounds(timeBounds); - mitk::TimeBounds timeBounds2 = dummy->GetTimeBounds(); + // DummyTestClass::Pointer dummy = DummyTestClass::New(); + // dummy->SetTimeBounds(timeBounds); + // mitk::TimeBounds timeBounds2 = dummy->GetTimeBounds(); - CPPUNIT_ASSERT(timeBounds[0]==timeBounds2[0]); - CPPUNIT_ASSERT(timeBounds[1]==timeBounds2[1]); + // CPPUNIT_ASSERT(timeBounds[0]==timeBounds2[0]); + // CPPUNIT_ASSERT(timeBounds[1]==timeBounds2[1]); - //undo changes, new and changed object need to be the same! - timeBounds[0]=mitk::ScalarTypeNumericTraits::NonpositiveMin(); - timeBounds[1]=mitk::ScalarTypeNumericTraits::max(); + // //undo changes, new and changed object need to be the same! + // timeBounds[0]=mitk::ScalarTypeNumericTraits::NonpositiveMin(); + // timeBounds[1]=mitk::ScalarTypeNumericTraits::max(); - DummyTestClass::Pointer newDummy = DummyTestClass::New(); - CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); - } + // DummyTestClass::Pointer newDummy = DummyTestClass::New(); + // CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); + //} void TestIs2DConvertable(){ DummyTestClass::Pointer dummy = DummyTestClass::New(); //new initialized geometry is 2D convertable CPPUNIT_ASSERT(dummy->Is2DConvertable()); //Wrong Spacing needs to fail dummy->SetSpacing(anotherSpacing); CPPUNIT_ASSERT(dummy->Is2DConvertable()==false); //undo dummy->SetSpacing(aSpacing); CPPUNIT_ASSERT(dummy->Is2DConvertable()); //Wrong Origin needs to fail dummy->SetOrigin(anotherPoint); CPPUNIT_ASSERT(dummy->Is2DConvertable()==false); //undo dummy->SetOrigin(aPoint); CPPUNIT_ASSERT(dummy->Is2DConvertable()); //third dimension must not be transformed mitk::AffineTransform3D::Pointer dummyTransform = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType dummyMatrix; dummyMatrix.SetIdentity(); dummyTransform->SetMatrix( dummyMatrix ); dummy->SetIndexToWorldTransform(dummyTransform); //identity matrix is 2DConvertable CPPUNIT_ASSERT(dummy->Is2DConvertable()); dummyMatrix(0,2) = 3; dummyTransform->SetMatrix( dummyMatrix ); CPPUNIT_ASSERT(dummy->Is2DConvertable()==false); dummyMatrix.SetIdentity(); dummyMatrix(1,2) = 0.4; dummyTransform->SetMatrix( dummyMatrix ); CPPUNIT_ASSERT(dummy->Is2DConvertable()==false); dummyMatrix.SetIdentity(); dummyMatrix(2,2) = 3; dummyTransform->SetMatrix( dummyMatrix ); CPPUNIT_ASSERT(dummy->Is2DConvertable()==false); dummyMatrix.SetIdentity(); dummyMatrix(2,1) = 3; dummyTransform->SetMatrix( dummyMatrix ); CPPUNIT_ASSERT(dummy->Is2DConvertable()==false); dummyMatrix.SetIdentity(); dummyMatrix(2,0) = 3; dummyTransform->SetMatrix( dummyMatrix ); CPPUNIT_ASSERT(dummy->Is2DConvertable()==false); //undo changes, new and changed object need to be the same! dummyMatrix.SetIdentity(); dummyTransform->SetMatrix( dummyMatrix ); DummyTestClass::Pointer newDummy = DummyTestClass::New(); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } void TestGetCornerPoint(){ DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransform(anotherTransform); double bounds[6] = {0,11,0,12,0,13}; dummy->SetFloatBounds(bounds); mitk::Point3D corner, refCorner; //Corner 0 mitk::FillVector3D(refCorner,bounds[0],bounds[2],bounds[4]); refCorner = anotherTransform->TransformPoint(refCorner); corner=dummy->GetCornerPoint(0); CPPUNIT_ASSERT(refCorner==corner); corner=dummy->GetCornerPoint(true,true,true); CPPUNIT_ASSERT(refCorner==corner); //Corner 1 mitk::FillVector3D(refCorner,bounds[0],bounds[2],bounds[5]); refCorner = anotherTransform->TransformPoint(refCorner); corner=dummy->GetCornerPoint(1); CPPUNIT_ASSERT(refCorner==corner); corner=dummy->GetCornerPoint(true,true,false); CPPUNIT_ASSERT(refCorner==corner); //Corner 2 mitk::FillVector3D(refCorner,bounds[0],bounds[3],bounds[4]); refCorner = anotherTransform->TransformPoint(refCorner); corner=dummy->GetCornerPoint(2); CPPUNIT_ASSERT(refCorner==corner); corner=dummy->GetCornerPoint(true,false,true); CPPUNIT_ASSERT(refCorner==corner); //Corner 3 mitk::FillVector3D(refCorner,bounds[0],bounds[3],bounds[5]); refCorner = anotherTransform->TransformPoint(refCorner); corner=dummy->GetCornerPoint(3); CPPUNIT_ASSERT(refCorner==corner); corner=dummy->GetCornerPoint(true,false,false); CPPUNIT_ASSERT(refCorner==corner); //Corner 4 mitk::FillVector3D(refCorner,bounds[1],bounds[2],bounds[4]); refCorner = anotherTransform->TransformPoint(refCorner); corner=dummy->GetCornerPoint(4); CPPUNIT_ASSERT(refCorner==corner); corner=dummy->GetCornerPoint(false,true,true); CPPUNIT_ASSERT(refCorner==corner); //Corner 5 mitk::FillVector3D(refCorner,bounds[1],bounds[2],bounds[5]); refCorner = anotherTransform->TransformPoint(refCorner); corner=dummy->GetCornerPoint(5); CPPUNIT_ASSERT(refCorner==corner); corner=dummy->GetCornerPoint(false,true,false); CPPUNIT_ASSERT(refCorner==corner); //Corner 6 mitk::FillVector3D(refCorner,bounds[1],bounds[3],bounds[4]); refCorner = anotherTransform->TransformPoint(refCorner); corner=dummy->GetCornerPoint(6); CPPUNIT_ASSERT(refCorner==corner); corner=dummy->GetCornerPoint(false,false,true); CPPUNIT_ASSERT(refCorner==corner); //Corner 7 mitk::FillVector3D(refCorner,bounds[1],bounds[3],bounds[5]); refCorner = anotherTransform->TransformPoint(refCorner); corner=dummy->GetCornerPoint(7); CPPUNIT_ASSERT(refCorner==corner); corner=dummy->GetCornerPoint(false,false,false); CPPUNIT_ASSERT(refCorner==corner); //Wrong Corner needs to fail CPPUNIT_ASSERT_THROW(dummy->GetCornerPoint(-1),itk::ExceptionObject); //dummy geometry must not have changed! DummyTestClass::Pointer newDummy = DummyTestClass::New(); newDummy->SetIndexToWorldTransform(anotherTransform); newDummy->SetFloatBounds(bounds); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } void TestExtentInMM() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetExtentInMM(0,50); CPPUNIT_ASSERT(50==dummy->GetExtentInMM(0)); //Vnl Matrix has changed. The next line only works because the spacing is 1! CPPUNIT_ASSERT(50==dummy->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(0).magnitude()); //Smaller extent than original dummy->SetExtentInMM(0,5); CPPUNIT_ASSERT(5==dummy->GetExtentInMM(0)); CPPUNIT_ASSERT(5==dummy->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(0).magnitude()); dummy->SetExtentInMM(1,4); CPPUNIT_ASSERT(4==dummy->GetExtentInMM(1)); CPPUNIT_ASSERT(4==dummy->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(1).magnitude()); dummy->SetExtentInMM(2,2.5); CPPUNIT_ASSERT(2.5==dummy->GetExtentInMM(2)); CPPUNIT_ASSERT(2.5==dummy->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(2).magnitude()); } void TestGetAxisVector(){ DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransform(anotherTransform); double bounds[6] = {0,11,0,12,0,13}; dummy->SetFloatBounds(bounds); mitk::Vector3D vector; mitk::FillVector3D(vector,bounds[1],0,0); dummy->IndexToWorld(vector,vector); CPPUNIT_ASSERT(dummy->GetAxisVector(0)==vector); mitk::FillVector3D(vector,0,bounds[3],0); dummy->IndexToWorld(vector,vector); CPPUNIT_ASSERT(dummy->GetAxisVector(1)==vector); mitk::FillVector3D(vector,0,0,bounds[5]); dummy->IndexToWorld(vector,vector); CPPUNIT_ASSERT(dummy->GetAxisVector(2)==vector); } void TestGetCenter(){ DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransform(anotherTransform); double bounds[6] = {0,11,2,12,1,13}; dummy->SetFloatBounds(bounds); mitk::Point3D refCenter; for( int i=0;i<3;i++) refCenter.SetElement(i,( bounds[2 * i] + bounds[2 * i + 1] ) / 2.0); dummy->IndexToWorld(refCenter,refCenter); CPPUNIT_ASSERT(dummy->GetCenter()==refCenter); } void TestGetDiagonalLength(){ DummyTestClass::Pointer dummy = DummyTestClass::New(); double bounds[6] = {1,3,5,8,7.5,11.5}; dummy->SetFloatBounds(bounds); //3-1=2, 8-5=3, 11.5-7.5=4; 2^2+3^2+4^2 = 29 double expectedLength = sqrt(29.); CPPUNIT_ASSERT(expectedLength==dummy->GetDiagonalLength()); CPPUNIT_ASSERT(29==dummy->GetDiagonalLength2()); //dummy must not have changed DummyTestClass::Pointer newDummy = DummyTestClass::New(); newDummy->SetFloatBounds(bounds); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } void TestGetExtent(){ DummyTestClass::Pointer dummy = DummyTestClass::New(); double bounds[6] = {1,3,5,8,7.5,11.5}; dummy->SetFloatBounds(bounds); CPPUNIT_ASSERT(2==dummy->GetExtent(0)); CPPUNIT_ASSERT(3==dummy->GetExtent(1)); CPPUNIT_ASSERT(4==dummy->GetExtent(2)); //dummy must not have changed DummyTestClass::Pointer newDummy = DummyTestClass::New(); newDummy->SetFloatBounds(bounds); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } void TestIsInside(){ DummyTestClass::Pointer dummy = DummyTestClass::New(); double bounds[6] = {1,3,5,8,7.5,11.5}; dummy->SetFloatBounds(bounds); mitk::Point3D insidePoint; mitk::Point3D outsidePoint; mitk::FillVector3D(insidePoint,2,6,7.6); mitk::FillVector3D(outsidePoint,0,9,8.2); CPPUNIT_ASSERT(dummy->IsIndexInside(insidePoint)); CPPUNIT_ASSERT(false==dummy->IsIndexInside(outsidePoint)); dummy->IndexToWorld(insidePoint,insidePoint); dummy->IndexToWorld(outsidePoint,outsidePoint); CPPUNIT_ASSERT(dummy->IsInside(insidePoint)); CPPUNIT_ASSERT(false==dummy->IsInside(outsidePoint)); //dummy must not have changed DummyTestClass::Pointer newDummy = DummyTestClass::New(); newDummy->SetFloatBounds(bounds); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } void TestInitialize() { //test standard constructor DummyTestClass::Pointer dummy1 = DummyTestClass::New(); DummyTestClass::Pointer dummy2 = DummyTestClass::New(); dummy2->SetOrigin(anotherPoint); dummy2->SetBounds(anotherBoundingBox->GetBounds()); - mitk::TimeBounds timeBounds; - timeBounds[0] = 1; - timeBounds[1] = 9; - dummy2->SetTimeBounds(timeBounds); + //mitk::TimeBounds timeBounds; + //timeBounds[0] = 1; + //timeBounds[1] = 9; + //dummy2->SetTimeBounds(timeBounds); dummy2->SetIndexToWorldTransform(anotherTransform); dummy2->SetSpacing(anotherSpacing); dummy1->InitializeGeometry(dummy2); CPPUNIT_ASSERT(mitk::Equal(dummy1,dummy2,mitk::eps,true)); dummy1->Initialize(); DummyTestClass::Pointer dummy3 = DummyTestClass::New(); CPPUNIT_ASSERT(mitk::Equal(dummy3,dummy1,mitk::eps,true)); } void TestGetMatrixColumn(){ DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransform(anotherTransform); mitk::Vector3D testVector,refVector; testVector.SetVnlVector(dummy->GetMatrixColumn(0)); mitk::FillVector3D(refVector,1,0,0); CPPUNIT_ASSERT(testVector==refVector); testVector.SetVnlVector(dummy->GetMatrixColumn(1)); mitk::FillVector3D(refVector,0,2,0); CPPUNIT_ASSERT(testVector==refVector); testVector.SetVnlVector(dummy->GetMatrixColumn(2)); mitk::FillVector3D(refVector,0,0,1); CPPUNIT_ASSERT(testVector==refVector); //dummy must not have changed DummyTestClass::Pointer newDummy = DummyTestClass::New(); newDummy->SetIndexToWorldTransform(anotherTransform); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } /* void (){ DummyTestClass::Pointer dummy = DummyTestClass::New(); CPPUNIT_ASSERT(); //undo changes, new and changed object need to be the same! DummyTestClass::Pointer newDummy = DummyTestClass::New(); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } */ };//end class mitkBaseGeometryTestSuite MITK_TEST_SUITE_REGISTRATION(mitkBaseGeometry) diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractDensityImageFilter.cpp b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractDensityImageFilter.cpp index d0000ed0a1..2da65f6632 100644 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractDensityImageFilter.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractDensityImageFilter.cpp @@ -1,227 +1,227 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Coindex[1]right (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "itkTractDensityImageFilter.h" // VTK #include #include #include // misc #include #include namespace itk{ template< class OutputImageType > TractDensityImageFilter< OutputImageType >::TractDensityImageFilter() : m_InvertImage(false) , m_FiberBundle(NULL) , m_UpsamplingFactor(1) , m_InputImage(NULL) , m_BinaryOutput(false) , m_UseImageGeometry(false) , m_OutputAbsoluteValues(false) { } template< class OutputImageType > TractDensityImageFilter< OutputImageType >::~TractDensityImageFilter() { } template< class OutputImageType > itk::Point TractDensityImageFilter< OutputImageType >::GetItkPoint(double point[3]) { itk::Point itkPoint; itkPoint[0] = point[0]; itkPoint[1] = point[1]; itkPoint[2] = point[2]; return itkPoint; } template< class OutputImageType > void TractDensityImageFilter< OutputImageType >::GenerateData() { // generate upsampled image - mitk::Geometry3D::Pointer geometry = m_FiberBundle->GetGeometry(); + mitk::BaseGeometry::Pointer geometry = m_FiberBundle->GetGeometry(); typename OutputImageType::Pointer outImage = this->GetOutput(); // calculate new image parameters itk::Vector newSpacing; mitk::Point3D newOrigin; itk::Matrix newDirection; ImageRegion<3> upsampledRegion; if (m_UseImageGeometry && !m_InputImage.IsNull()) { MITK_INFO << "TractDensityImageFilter: using image geometry"; newSpacing = m_InputImage->GetSpacing()/m_UpsamplingFactor; upsampledRegion = m_InputImage->GetLargestPossibleRegion(); newOrigin = m_InputImage->GetOrigin(); typename OutputImageType::RegionType::SizeType size = upsampledRegion.GetSize(); size[0] *= m_UpsamplingFactor; size[1] *= m_UpsamplingFactor; size[2] *= m_UpsamplingFactor; upsampledRegion.SetSize(size); newDirection = m_InputImage->GetDirection(); } else { MITK_INFO << "TractDensityImageFilter: using fiber bundle geometry"; newSpacing = geometry->GetSpacing()/m_UpsamplingFactor; newOrigin = geometry->GetOrigin(); mitk::Geometry3D::BoundsArrayType bounds = geometry->GetBounds(); newOrigin[0] += bounds.GetElement(0); newOrigin[1] += bounds.GetElement(2); newOrigin[2] += bounds.GetElement(4); for (int i=0; i<3; i++) for (int j=0; j<3; j++) newDirection[j][i] = geometry->GetMatrixColumn(i)[j]; upsampledRegion.SetSize(0, geometry->GetExtent(0)*m_UpsamplingFactor); upsampledRegion.SetSize(1, geometry->GetExtent(1)*m_UpsamplingFactor); upsampledRegion.SetSize(2, geometry->GetExtent(2)*m_UpsamplingFactor); } typename OutputImageType::RegionType::SizeType upsampledSize = upsampledRegion.GetSize(); // apply new image parameters outImage->SetSpacing( newSpacing ); outImage->SetOrigin( newOrigin ); outImage->SetDirection( newDirection ); outImage->SetRegions( upsampledRegion ); outImage->Allocate(); outImage->FillBuffer(0.0); int w = upsampledSize[0]; int h = upsampledSize[1]; int d = upsampledSize[2]; // set/initialize output OutPixelType* outImageBufferPointer = (OutPixelType*)outImage->GetBufferPointer(); // resample fiber bundle float minSpacing = 1; if(newSpacing[0]GetDeepCopy(); m_FiberBundle->ResampleFibers(minSpacing); MITK_INFO << "TractDensityImageFilter: starting image generation"; vtkSmartPointer fiberPolyData = m_FiberBundle->GetFiberPolyData(); vtkSmartPointer vLines = fiberPolyData->GetLines(); vLines->InitTraversal(); int numFibers = m_FiberBundle->GetNumFibers(); boost::progress_display disp(numFibers); for( int i=0; iGetNextCell ( numPoints, points ); // fill output image for( int j=0; j vertex = GetItkPoint(fiberPolyData->GetPoint(points[j])); itk::Index<3> index; itk::ContinuousIndex contIndex; outImage->TransformPhysicalPointToIndex(vertex, index); outImage->TransformPhysicalPointToContinuousIndex(vertex, contIndex); float frac_x = contIndex[0] - index[0]; float frac_y = contIndex[1] - index[1]; float frac_z = contIndex[2] - index[2]; if (frac_x<0) { index[0] -= 1; frac_x += 1; } if (frac_y<0) { index[1] -= 1; frac_y += 1; } if (frac_z<0) { index[2] -= 1; frac_z += 1; } frac_x = 1-frac_x; frac_y = 1-frac_y; frac_z = 1-frac_z; // int coordinates inside image? if (index[0] < 0 || index[0] >= w-1) continue; if (index[1] < 0 || index[1] >= h-1) continue; if (index[2] < 0 || index[2] >= d-1) continue; if (m_BinaryOutput) { outImageBufferPointer[( index[0] + w*(index[1] + h*index[2] ))] = 1; outImageBufferPointer[( index[0] + w*(index[1]+1+ h*index[2] ))] = 1; outImageBufferPointer[( index[0] + w*(index[1] + h*index[2]+h))] = 1; outImageBufferPointer[( index[0] + w*(index[1]+1+ h*index[2]+h))] = 1; outImageBufferPointer[( index[0]+1 + w*(index[1] + h*index[2] ))] = 1; outImageBufferPointer[( index[0]+1 + w*(index[1] + h*index[2]+h))] = 1; outImageBufferPointer[( index[0]+1 + w*(index[1]+1+ h*index[2] ))] = 1; outImageBufferPointer[( index[0]+1 + w*(index[1]+1+ h*index[2]+h))] = 1; } else { outImageBufferPointer[( index[0] + w*(index[1] + h*index[2] ))] += ( frac_x)*( frac_y)*( frac_z); outImageBufferPointer[( index[0] + w*(index[1]+1+ h*index[2] ))] += ( frac_x)*(1-frac_y)*( frac_z); outImageBufferPointer[( index[0] + w*(index[1] + h*index[2]+h))] += ( frac_x)*( frac_y)*(1-frac_z); outImageBufferPointer[( index[0] + w*(index[1]+1+ h*index[2]+h))] += ( frac_x)*(1-frac_y)*(1-frac_z); outImageBufferPointer[( index[0]+1 + w*(index[1] + h*index[2] ))] += (1-frac_x)*( frac_y)*( frac_z); outImageBufferPointer[( index[0]+1 + w*(index[1] + h*index[2]+h))] += (1-frac_x)*( frac_y)*(1-frac_z); outImageBufferPointer[( index[0]+1 + w*(index[1]+1+ h*index[2] ))] += (1-frac_x)*(1-frac_y)*( frac_z); outImageBufferPointer[( index[0]+1 + w*(index[1]+1+ h*index[2]+h))] += (1-frac_x)*(1-frac_y)*(1-frac_z); } } } if (!m_OutputAbsoluteValues && !m_BinaryOutput) { MITK_INFO << "TractDensityImageFilter: max-normalizing output image"; OutPixelType max = 0; for (int i=0; i0) for (int i=0; i #include #include #include namespace itk{ template< class OutputImageType > TractsToFiberEndingsImageFilter< OutputImageType >::TractsToFiberEndingsImageFilter() : m_InvertImage(false) , m_UpsamplingFactor(1) , m_InputImage(NULL) , m_UseImageGeometry(false) , m_BinaryOutput(false) { } template< class OutputImageType > TractsToFiberEndingsImageFilter< OutputImageType >::~TractsToFiberEndingsImageFilter() { } template< class OutputImageType > itk::Point TractsToFiberEndingsImageFilter< OutputImageType >::GetItkPoint(double point[3]) { itk::Point itkPoint; itkPoint[0] = point[0]; itkPoint[1] = point[1]; itkPoint[2] = point[2]; return itkPoint; } template< class OutputImageType > void TractsToFiberEndingsImageFilter< OutputImageType >::GenerateData() { // generate upsampled image - mitk::Geometry3D::Pointer geometry = m_FiberBundle->GetGeometry(); + mitk::BaseGeometry::Pointer geometry = m_FiberBundle->GetGeometry(); typename OutputImageType::Pointer outImage = this->GetOutput(); // calculate new image parameters itk::Vector newSpacing; mitk::Point3D newOrigin; itk::Matrix newDirection; ImageRegion<3> upsampledRegion; if (m_UseImageGeometry && !m_InputImage.IsNull()) { newSpacing = m_InputImage->GetSpacing()/m_UpsamplingFactor; upsampledRegion = m_InputImage->GetLargestPossibleRegion(); newOrigin = m_InputImage->GetOrigin(); typename OutputImageType::RegionType::SizeType size = upsampledRegion.GetSize(); size[0] *= m_UpsamplingFactor; size[1] *= m_UpsamplingFactor; size[2] *= m_UpsamplingFactor; upsampledRegion.SetSize(size); newDirection = m_InputImage->GetDirection(); } else { newSpacing = geometry->GetSpacing()/m_UpsamplingFactor; newOrigin = geometry->GetOrigin(); mitk::Geometry3D::BoundsArrayType bounds = geometry->GetBounds(); newOrigin[0] += bounds.GetElement(0); newOrigin[1] += bounds.GetElement(2); newOrigin[2] += bounds.GetElement(4); for (int i=0; i<3; i++) for (int j=0; j<3; j++) newDirection[j][i] = geometry->GetMatrixColumn(i)[j]; upsampledRegion.SetSize(0, geometry->GetExtent(0)*m_UpsamplingFactor); upsampledRegion.SetSize(1, geometry->GetExtent(1)*m_UpsamplingFactor); upsampledRegion.SetSize(2, geometry->GetExtent(2)*m_UpsamplingFactor); } typename OutputImageType::RegionType::SizeType upsampledSize = upsampledRegion.GetSize(); // apply new image parameters outImage->SetSpacing( newSpacing ); outImage->SetOrigin( newOrigin ); outImage->SetDirection( newDirection ); outImage->SetRegions( upsampledRegion ); outImage->Allocate(); int w = upsampledSize[0]; int h = upsampledSize[1]; int d = upsampledSize[2]; // set/initialize output OutPixelType* outImageBufferPointer = (OutPixelType*)outImage->GetBufferPointer(); for (int i=0; i fiberPolyData = m_FiberBundle->GetFiberPolyData(); vtkSmartPointer vLines = fiberPolyData->GetLines(); vLines->InitTraversal(); int numFibers = m_FiberBundle->GetNumFibers(); boost::progress_display disp(numFibers); for( int i=0; iGetNextCell ( numPoints, points ); // fill output image if (numPoints>0) { itk::Point vertex = GetItkPoint(fiberPolyData->GetPoint(points[0])); itk::Index<3> index; outImage->TransformPhysicalPointToIndex(vertex, index); if (m_BinaryOutput) outImage->SetPixel(index, 1); else outImage->SetPixel(index, outImage->GetPixel(index)+1); } if (numPoints>2) { itk::Point vertex = GetItkPoint(fiberPolyData->GetPoint(points[numPoints-1])); itk::Index<3> index; outImage->TransformPhysicalPointToIndex(vertex, index); if (m_BinaryOutput) outImage->SetPixel(index, 1); else outImage->SetPixel(index, outImage->GetPixel(index)+1); } } if (m_InvertImage) for (int i=0; i #include #include // misc #include #include namespace itk{ template< class OutputImageType > TractsToRgbaImageFilter< OutputImageType >::TractsToRgbaImageFilter() : m_UpsamplingFactor(1) , m_InputImage(NULL) , m_UseImageGeometry(false) { } template< class OutputImageType > TractsToRgbaImageFilter< OutputImageType >::~TractsToRgbaImageFilter() { } template< class OutputImageType > itk::Point TractsToRgbaImageFilter< OutputImageType >::GetItkPoint(double point[3]) { itk::Point itkPoint; itkPoint[0] = point[0]; itkPoint[1] = point[1]; itkPoint[2] = point[2]; return itkPoint; } template< class OutputImageType > void TractsToRgbaImageFilter< OutputImageType >::GenerateData() { if(&typeid(OutPixelType) != &typeid(itk::RGBAPixel)) return; // generate upsampled image - mitk::Geometry3D::Pointer geometry = m_FiberBundle->GetGeometry(); + mitk::BaseGeometry::Pointer geometry = m_FiberBundle->GetGeometry(); typename OutputImageType::Pointer outImage = this->GetOutput(); // calculate new image parameters itk::Vector newSpacing; mitk::Point3D newOrigin; itk::Matrix newDirection; ImageRegion<3> upsampledRegion; if (m_UseImageGeometry && !m_InputImage.IsNull()) { newSpacing = m_InputImage->GetSpacing()/m_UpsamplingFactor; upsampledRegion = m_InputImage->GetLargestPossibleRegion(); newOrigin = m_InputImage->GetOrigin(); typename OutputImageType::RegionType::SizeType size = upsampledRegion.GetSize(); size[0] *= m_UpsamplingFactor; size[1] *= m_UpsamplingFactor; size[2] *= m_UpsamplingFactor; upsampledRegion.SetSize(size); newDirection = m_InputImage->GetDirection(); } else { newSpacing = geometry->GetSpacing()/m_UpsamplingFactor; newOrigin = geometry->GetOrigin(); mitk::Geometry3D::BoundsArrayType bounds = geometry->GetBounds(); newOrigin[0] += bounds.GetElement(0); newOrigin[1] += bounds.GetElement(2); newOrigin[2] += bounds.GetElement(4); for (int i=0; i<3; i++) for (int j=0; j<3; j++) newDirection[j][i] = geometry->GetMatrixColumn(i)[j]; upsampledRegion.SetSize(0, geometry->GetExtent(0)*m_UpsamplingFactor); upsampledRegion.SetSize(1, geometry->GetExtent(1)*m_UpsamplingFactor); upsampledRegion.SetSize(2, geometry->GetExtent(2)*m_UpsamplingFactor); } typename OutputImageType::RegionType::SizeType upsampledSize = upsampledRegion.GetSize(); // apply new image parameters outImage->SetSpacing( newSpacing ); outImage->SetOrigin( newOrigin ); outImage->SetDirection( newDirection ); outImage->SetRegions( upsampledRegion ); outImage->Allocate(); int w = upsampledSize[0]; int h = upsampledSize[1]; int d = upsampledSize[2]; // set/initialize output unsigned char* outImageBufferPointer = (unsigned char*)outImage->GetBufferPointer(); float* buffer = new float[w*h*d*4]; for (int i=0; iGetDeepCopy(); m_FiberBundle->ResampleFibers(minSpacing); vtkSmartPointer fiberPolyData = m_FiberBundle->GetFiberPolyData(); vtkSmartPointer vLines = fiberPolyData->GetLines(); vLines->InitTraversal(); int numFibers = m_FiberBundle->GetNumFibers(); boost::progress_display disp(numFibers); for( int i=0; iGetNextCell ( numPoints, points ); // calc directions (which are used as weights) std::list< itk::Point > rgbweights; std::list intensities; for( int j=0; j vertex = GetItkPoint(fiberPolyData->GetPoint(points[j])); itk::Point vertexPost = GetItkPoint(fiberPolyData->GetPoint(points[j+1])); itk::Point dir; dir[0] = fabs((vertexPost[0] - vertex[0]) * outImage->GetSpacing()[0]); dir[1] = fabs((vertexPost[1] - vertex[1]) * outImage->GetSpacing()[1]); dir[2] = fabs((vertexPost[2] - vertex[2]) * outImage->GetSpacing()[2]); rgbweights.push_back(dir); float intensity = sqrt(dir[0]*dir[0]+dir[1]*dir[1]+dir[2]*dir[2]); intensities.push_back(intensity); // last point gets same as previous one if(j==numPoints-2) { rgbweights.push_back(dir); intensities.push_back(intensity); } } // fill output image for( int j=0; j vertex = GetItkPoint(fiberPolyData->GetPoint(points[j])); itk::Index<3> index; itk::ContinuousIndex contIndex; outImage->TransformPhysicalPointToIndex(vertex, index); outImage->TransformPhysicalPointToContinuousIndex(vertex, contIndex); float frac_x = contIndex[0] - index[0]; float frac_y = contIndex[1] - index[1]; float frac_z = contIndex[2] - index[2]; int px = index[0]; if (frac_x<0) { px -= 1; frac_x += 1; } int py = index[1]; if (frac_y<0) { py -= 1; frac_y += 1; } int pz = index[2]; if (frac_z<0) { pz -= 1; frac_z += 1; } // int coordinates inside image? if (px < 0 || px >= w-1) continue; if (py < 0 || py >= h-1) continue; if (pz < 0 || pz >= d-1) continue; float scale = 100 * pow((float)m_UpsamplingFactor,3); itk::Point rgbweight = rgbweights.front(); rgbweights.pop_front(); float intweight = intensities.front(); intensities.pop_front(); // add to r-channel in output image buffer[0+4*( px + w*(py + h*pz ))] += (1-frac_x)*(1-frac_y)*(1-frac_z) * rgbweight[0] * scale; buffer[0+4*( px + w*(py+1+ h*pz ))] += (1-frac_x)*( frac_y)*(1-frac_z) * rgbweight[0] * scale; buffer[0+4*( px + w*(py + h*pz+h))] += (1-frac_x)*(1-frac_y)*( frac_z) * rgbweight[0] * scale; buffer[0+4*( px + w*(py+1+ h*pz+h))] += (1-frac_x)*( frac_y)*( frac_z) * rgbweight[0] * scale; buffer[0+4*( px+1 + w*(py + h*pz ))] += ( frac_x)*(1-frac_y)*(1-frac_z) * rgbweight[0] * scale; buffer[0+4*( px+1 + w*(py + h*pz+h))] += ( frac_x)*(1-frac_y)*( frac_z) * rgbweight[0] * scale; buffer[0+4*( px+1 + w*(py+1+ h*pz ))] += ( frac_x)*( frac_y)*(1-frac_z) * rgbweight[0] * scale; buffer[0+4*( px+1 + w*(py+1+ h*pz+h))] += ( frac_x)*( frac_y)*( frac_z) * rgbweight[0] * scale; // add to g-channel in output image buffer[1+4*( px + w*(py + h*pz ))] += (1-frac_x)*(1-frac_y)*(1-frac_z) * rgbweight[1] * scale; buffer[1+4*( px + w*(py+1+ h*pz ))] += (1-frac_x)*( frac_y)*(1-frac_z) * rgbweight[1] * scale; buffer[1+4*( px + w*(py + h*pz+h))] += (1-frac_x)*(1-frac_y)*( frac_z) * rgbweight[1] * scale; buffer[1+4*( px + w*(py+1+ h*pz+h))] += (1-frac_x)*( frac_y)*( frac_z) * rgbweight[1] * scale; buffer[1+4*( px+1 + w*(py + h*pz ))] += ( frac_x)*(1-frac_y)*(1-frac_z) * rgbweight[1] * scale; buffer[1+4*( px+1 + w*(py + h*pz+h))] += ( frac_x)*(1-frac_y)*( frac_z) * rgbweight[1] * scale; buffer[1+4*( px+1 + w*(py+1+ h*pz ))] += ( frac_x)*( frac_y)*(1-frac_z) * rgbweight[1] * scale; buffer[1+4*( px+1 + w*(py+1+ h*pz+h))] += ( frac_x)*( frac_y)*( frac_z) * rgbweight[1] * scale; // add to b-channel in output image buffer[2+4*( px + w*(py + h*pz ))] += (1-frac_x)*(1-frac_y)*(1-frac_z) * rgbweight[2] * scale; buffer[2+4*( px + w*(py+1+ h*pz ))] += (1-frac_x)*( frac_y)*(1-frac_z) * rgbweight[2] * scale; buffer[2+4*( px + w*(py + h*pz+h))] += (1-frac_x)*(1-frac_y)*( frac_z) * rgbweight[2] * scale; buffer[2+4*( px + w*(py+1+ h*pz+h))] += (1-frac_x)*( frac_y)*( frac_z) * rgbweight[2] * scale; buffer[2+4*( px+1 + w*(py + h*pz ))] += ( frac_x)*(1-frac_y)*(1-frac_z) * rgbweight[2] * scale; buffer[2+4*( px+1 + w*(py + h*pz+h))] += ( frac_x)*(1-frac_y)*( frac_z) * rgbweight[2] * scale; buffer[2+4*( px+1 + w*(py+1+ h*pz ))] += ( frac_x)*( frac_y)*(1-frac_z) * rgbweight[2] * scale; buffer[2+4*( px+1 + w*(py+1+ h*pz+h))] += ( frac_x)*( frac_y)*( frac_z) * rgbweight[2] * scale; // add to a-channel in output image buffer[3+4*( px + w*(py + h*pz ))] += (1-frac_x)*(1-frac_y)*(1-frac_z) * intweight * scale; buffer[3+4*( px + w*(py+1+ h*pz ))] += (1-frac_x)*( frac_y)*(1-frac_z) * intweight * scale; buffer[3+4*( px + w*(py + h*pz+h))] += (1-frac_x)*(1-frac_y)*( frac_z) * intweight * scale; buffer[3+4*( px + w*(py+1+ h*pz+h))] += (1-frac_x)*( frac_y)*( frac_z) * intweight * scale; buffer[3+4*( px+1 + w*(py + h*pz ))] += ( frac_x)*(1-frac_y)*(1-frac_z) * intweight * scale; buffer[3+4*( px+1 + w*(py + h*pz+h))] += ( frac_x)*(1-frac_y)*( frac_z) * intweight * scale; buffer[3+4*( px+1 + w*(py+1+ h*pz ))] += ( frac_x)*( frac_y)*(1-frac_z) * intweight * scale; buffer[3+4*( px+1 + w*(py+1+ h*pz+h))] += ( frac_x)*( frac_y)*( frac_z) * intweight * scale; } } float maxRgb = 0.000000001; float maxInt = 0.000000001; int numPix; numPix = w*h*d*4; // calc maxima for(int i=0; i maxRgb) maxRgb = buffer[i]; } else { if(buffer[i] > maxInt) maxInt = buffer[i]; } } // write output, normalized uchar 0..255 for(int i=0; i #include #include #include #include #include "ctkCommandLineParser.h" using namespace mitk; #include "ctkCommandLineParser.h" int CopyGeometry(int argc, char* argv[]) { ctkCommandLineParser parser; parser.setArgumentPrefix("--", "-"); parser.addArgument("in", "i", ctkCommandLineParser::String, "input image", us::Any(), false); parser.addArgument("ref", "r", ctkCommandLineParser::String, "reference image", us::Any(), false); parser.addArgument("out", "o", ctkCommandLineParser::String, "output image", us::Any(), false); map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; // mandatory arguments string imageName = us::any_cast(parsedArgs["in"]); string refImage = us::any_cast(parsedArgs["ref"]); string outImage = us::any_cast(parsedArgs["out"]); try { MITK_INFO << "Loading image " << imageName; const std::string s1="", s2=""; std::vector infile = BaseDataIO::LoadBaseDataFromFile( refImage, s1, s2, false ); Image::Pointer source = dynamic_cast(infile.at(0).GetPointer()); infile = BaseDataIO::LoadBaseDataFromFile( imageName, s1, s2, false ); Image::Pointer target = dynamic_cast(infile.at(0).GetPointer()); - mitk::Geometry3D* s_geom = source->GetGeometry(); - mitk::Geometry3D* t_geom = target->GetGeometry(); + mitk::BaseGeometry* s_geom = source->GetGeometry(); + mitk::BaseGeometry* t_geom = target->GetGeometry(); t_geom->SetIndexToWorldTransform(s_geom->GetIndexToWorldTransform()); target->SetGeometry(t_geom); if ( dynamic_cast*>(target.GetPointer()) ) { MITK_INFO << "Writing " << outImage; DiffusionImage::Pointer dwi = dynamic_cast*>(target.GetPointer()); NrrdDiffusionImageWriter::Pointer writer = NrrdDiffusionImageWriter::New(); writer->SetFileName(outImage); writer->SetInput(dwi); writer->Update(); } else mitk::IOUtil::SaveImage(target, outImage); } catch (itk::ExceptionObject e) { MITK_INFO << e; return EXIT_FAILURE; } catch (std::exception e) { MITK_INFO << e.what(); return EXIT_FAILURE; } catch (...) { MITK_INFO << "ERROR!?!"; return EXIT_FAILURE; } MITK_INFO << "DONE"; return EXIT_SUCCESS; } RegisterDiffusionMiniApp(CopyGeometry); diff --git a/Modules/DiffusionImaging/MiniApps/ExtractImageStatistics.cpp b/Modules/DiffusionImaging/MiniApps/ExtractImageStatistics.cpp index 1f47a6b043..06ad8f9597 100644 --- a/Modules/DiffusionImaging/MiniApps/ExtractImageStatistics.cpp +++ b/Modules/DiffusionImaging/MiniApps/ExtractImageStatistics.cpp @@ -1,121 +1,121 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "MiniAppManager.h" #include "ctkCommandLineParser.h" #include "mitkImage.h" #include "mitkImageStatisticsCalculator.h" #include "mitkIOUtil.h" #include #include #include int ExtractImageStatistics(int argc, char* argv[]) { ctkCommandLineParser parser; parser.setArgumentPrefix("--", "-"); parser.addArgument("help", "h", ctkCommandLineParser::String, "Show this help text"); parser.addArgument("input", "i", ctkCommandLineParser::String, "input image", us::Any(),false); parser.addArgument("mask", "m", ctkCommandLineParser::String, "mask image / roi image denotin area on which statistics are calculated", us::Any(),false); parser.addArgument("out", "o", ctkCommandLineParser::String, "output file (default: filenameOfRoi.nrrd_statistics.txt)", us::Any()); map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0 || parsedArgs.count("help") || parsedArgs.count("h")) { std::cout << "\n\n MiniApp Description: \nCalculates statistics on the supplied image using given mask." << endl; std::cout << "Output is written to the designated output file in this order:" << endl; std::cout << "Mean, Standard Deviation, RMS, Max, Min, Number of Voxels, Volume [mm3]" << endl; std::cout << "\n\n Parameters:"<< endl; std::cout << parser.helpText(); return EXIT_SUCCESS; } // Parameters: bool ignoreZeroValues = false; unsigned int timeStep = 0; std::string inputImageFile = us::any_cast(parsedArgs["input"]); std::string maskImageFile = us::any_cast(parsedArgs["mask"]); std::string outFile; if (parsedArgs.count("out") || parsedArgs.count("o") ) outFile = us::any_cast(parsedArgs["out"]); else outFile = inputImageFile + "_statistics.txt"; // Load image and mask mitk::Image::Pointer maskImage = mitk::IOUtil::LoadImage(maskImageFile); mitk::Image::Pointer inputImage = mitk::IOUtil::LoadImage(inputImageFile); // Calculate statistics mitk::ImageStatisticsCalculator::Statistics statisticsStruct; mitk::ImageStatisticsCalculator::Pointer calculator = mitk::ImageStatisticsCalculator::New(); try { calculator->SetImage(inputImage); calculator->SetImageMask(maskImage); calculator->SetMaskingModeToImage(); } catch( const itk::ExceptionObject& e) { MITK_ERROR << "Statistic Calculation Failed - ITK Exception:" << e.what(); return -1; } calculator->SetDoIgnorePixelValue(ignoreZeroValues); calculator->SetIgnorePixelValue(0); try { calculator->ComputeStatistics(timeStep); } catch ( mitk::Exception& e) { MITK_ERROR<< "MITK Exception: " << e.what(); return -1; } statisticsStruct = calculator->GetStatistics(timeStep); // Calculate Volume double volume = 0; - const mitk::Geometry3D *geometry = inputImage->GetGeometry(); + const mitk::BaseGeometry *geometry = inputImage->GetGeometry(); if ( geometry != NULL ) { const mitk::Vector3D &spacing = inputImage->GetGeometry()->GetSpacing(); volume = spacing[0] * spacing[1] * spacing[2] * (double) statisticsStruct.N; } // Write Results to file std::ofstream output; output.open(outFile.c_str()); output << statisticsStruct.Mean << " , "; output << statisticsStruct.Sigma << " , "; output << statisticsStruct.RMS << " , "; output << statisticsStruct.Max << " , "; output << statisticsStruct.Min << " , "; output << statisticsStruct.N << " , "; output << volume << "\n"; output.flush(); output.close(); return 0; } RegisterDiffusionMiniApp(ExtractImageStatistics); diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/QmitkODFRenderWidget.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/QmitkODFRenderWidget.cpp index d7594a6a69..58a3c17daa 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/QmitkODFRenderWidget.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/QmitkODFRenderWidget.cpp @@ -1,125 +1,124 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkODFRenderWidget.h" #include #include #include #include -#include QmitkODFRenderWidget::QmitkODFRenderWidget(QWidget* parent, Qt::WindowFlags f): QWidget(parent, f) { //create Layouts QmitkODFRenderWidgetLayout = new QHBoxLayout( this ); //Set Layout to widget this->setLayout(QmitkODFRenderWidgetLayout); //Create RenderWindow m_RenderWindow = new QmitkRenderWindow(this, "odf render widget"); m_RenderWindow->setMaximumSize(300,300); m_RenderWindow->GetRenderer()->SetMapperID( mitk::BaseRenderer::Standard3D ); //m_RenderWindow->SetLayoutIndex( 3 ); QmitkODFRenderWidgetLayout->addWidget( m_RenderWindow ); } QmitkODFRenderWidget::~QmitkODFRenderWidget() { } void QmitkODFRenderWidget::GenerateODF( itk::OrientationDistributionFunction odf ) { try { m_Surface = mitk::Surface::New(); m_ds = mitk::StandaloneDataStorage::New(); m_Node = mitk::DataNode::New(); vtkPolyData* m_TemplateOdf = itk::OrientationDistributionFunction::GetBaseMesh(); vtkPolyData *polyData = vtkPolyData::New(); vtkPoints *points = vtkPoints::New(); vtkFloatArray *scalars = vtkFloatArray::New(); for (int i=0; iGetPoints()->GetPoint(i,p); double val = odf[i]; p[0] *= val; p[1] *= val; p[2] *= val; points->InsertPoint(i,p); scalars->InsertTuple1(i, 1-val); } polyData->SetPoints(points); vtkCellArray* polys = m_TemplateOdf->GetPolys(); polyData->SetPolys(polys); polyData->GetPointData()->SetScalars(scalars); polys->Delete(); scalars->Delete(); points->Delete(); m_Surface->SetVtkPolyData(polyData); m_Node->SetData(m_Surface); mitk::LookupTable::Pointer mitkLut = mitk::LookupTable::New(); // assign an empty vtk lookup table to the odf renderer, it is the same // the ODF 2D Mapper has vtkLookupTable *lut = vtkLookupTable::New(); mitkLut->SetVtkLookupTable( lut ); mitk::LookupTableProperty::Pointer mitkLutProp = mitk::LookupTableProperty::New(); mitkLutProp->SetLookupTable(mitkLut); m_Node->SetProperty( "LookupTable", mitkLutProp ); m_Node->SetProperty("scalar visibility", mitk::BoolProperty::New(true)); m_Node->SetProperty("color mode", mitk::BoolProperty::New(true)); m_Node->SetProperty("material.specularCoefficient", mitk::FloatProperty::New(0.5)); m_ds->Add(m_Node); m_RenderWindow->GetRenderer()->SetDataStorage( m_ds ); // adjust camera to current plane rotation mitk::Geometry2D::ConstPointer worldGeometry = mitk::GlobalInteraction::GetInstance()->GetFocus()->GetCurrentWorldGeometry2D(); mitk::PlaneGeometry::ConstPointer worldPlaneGeometry = dynamic_cast( worldGeometry.GetPointer() ); mitk::Vector3D normal = worldPlaneGeometry->GetNormal(); mitk::Vector3D up = worldPlaneGeometry->GetAxisVector(1); normal.Normalize(); up.Normalize(); vtkSmartPointer cam = vtkSmartPointer::New(); const double camPos[3] = {normal[0],normal[1],normal[2]}; const double camUp[3] = {up[0],up[1],up[2]}; cam->SetPosition(camPos); cam->SetViewUp(camUp); cam->SetParallelProjection(1); m_RenderWindow->GetRenderer()->GetVtkRenderer()->SetActiveCamera(cam); m_RenderWindow->update(); } catch (...) { } } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkControlVisualizationPropertiesView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkControlVisualizationPropertiesView.cpp index d376fd0fbe..c195ebae87 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkControlVisualizationPropertiesView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkControlVisualizationPropertiesView.cpp @@ -1,1856 +1,1856 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkControlVisualizationPropertiesView.h" #include "mitkNodePredicateDataType.h" #include "mitkDataNodeObject.h" #include "mitkOdfNormalizationMethodProperty.h" #include "mitkOdfScaleByProperty.h" #include "mitkResliceMethodProperty.h" #include "mitkRenderingManager.h" #include "mitkTbssImage.h" #include "mitkPlanarFigure.h" #include "mitkFiberBundleX.h" #include "QmitkDataStorageComboBox.h" #include "QmitkStdMultiWidget.h" #include "mitkFiberBundleInteractor.h" #include "mitkPlanarFigureInteractor.h" #include #include #include #include #include "mitkGlobalInteraction.h" #include "usModuleRegistry.h" -#include "mitkGeometry2D.h" +#include "mitkPlaneGeometry.h" #include "berryIWorkbenchWindow.h" #include "berryIWorkbenchPage.h" #include "berryISelectionService.h" #include "berryConstants.h" #include "berryPlatformUI.h" #include "itkRGBAPixel.h" #include #include "qwidgetaction.h" #include "qcolordialog.h" #include #define ROUND(a) ((a)>0 ? (int)((a)+0.5) : -(int)(0.5-(a))) static bool DetermineAffectedImageSlice( const mitk::Image* image, const mitk::PlaneGeometry* plane, int& affectedDimension, int& affectedSlice ) { assert(image); assert(plane); // compare normal of plane to the three axis vectors of the image mitk::Vector3D normal = plane->GetNormal(); mitk::Vector3D imageNormal0 = image->GetSlicedGeometry()->GetAxisVector(0); mitk::Vector3D imageNormal1 = image->GetSlicedGeometry()->GetAxisVector(1); mitk::Vector3D imageNormal2 = image->GetSlicedGeometry()->GetAxisVector(2); normal.Normalize(); imageNormal0.Normalize(); imageNormal1.Normalize(); imageNormal2.Normalize(); imageNormal0.SetVnlVector( vnl_cross_3d(normal.GetVnlVector(),imageNormal0.GetVnlVector()) ); imageNormal1.SetVnlVector( vnl_cross_3d(normal.GetVnlVector(),imageNormal1.GetVnlVector()) ); imageNormal2.SetVnlVector( vnl_cross_3d(normal.GetVnlVector(),imageNormal2.GetVnlVector()) ); double eps( 0.00001 ); // axial if ( imageNormal2.GetNorm() <= eps ) { affectedDimension = 2; } // sagittal else if ( imageNormal1.GetNorm() <= eps ) { affectedDimension = 1; } // frontal else if ( imageNormal0.GetNorm() <= eps ) { affectedDimension = 0; } else { affectedDimension = -1; // no idea return false; } // determine slice number in image - mitk::Geometry3D* imageGeometry = image->GetGeometry(0); + mitk::BaseGeometry* imageGeometry = image->GetGeometry(0); mitk::Point3D testPoint = imageGeometry->GetCenter(); mitk::Point3D projectedPoint; plane->Project( testPoint, projectedPoint ); mitk::Point3D indexPoint; imageGeometry->WorldToIndex( projectedPoint, indexPoint ); affectedSlice = ROUND( indexPoint[affectedDimension] ); MITK_DEBUG << "indexPoint " << indexPoint << " affectedDimension " << affectedDimension << " affectedSlice " << affectedSlice; // check if this index is still within the image if ( affectedSlice < 0 || affectedSlice >= static_cast(image->GetDimension(affectedDimension)) ) return false; return true; } const std::string QmitkControlVisualizationPropertiesView::VIEW_ID = "org.mitk.views.controlvisualizationpropertiesview"; using namespace berry; struct CvpSelListener : ISelectionListener { berryObjectMacro(CvpSelListener); CvpSelListener(QmitkControlVisualizationPropertiesView* view) { m_View = view; } void ApplySettings(mitk::DataNode::Pointer node) { bool tex_int; node->GetBoolProperty("texture interpolation", tex_int); if(tex_int) { m_View->m_Controls->m_TextureIntON->setIcon(*m_View->m_IconTexON); m_View->m_Controls->m_TextureIntON->setChecked(true); m_View->m_TexIsOn = true; } else { m_View->m_Controls->m_TextureIntON->setIcon(*m_View->m_IconTexOFF); m_View->m_Controls->m_TextureIntON->setChecked(false); m_View->m_TexIsOn = false; } int val; node->GetIntProperty("ShowMaxNumber", val); m_View->m_Controls->m_ShowMaxNumber->setValue(val); m_View->m_Controls->m_NormalizationDropdown->setCurrentIndex(dynamic_cast(node->GetProperty("Normalization"))->GetValueAsId()); float fval; node->GetFloatProperty("Scaling",fval); m_View->m_Controls->m_ScalingFactor->setValue(fval); m_View->m_Controls->m_AdditionalScaling->setCurrentIndex(dynamic_cast(node->GetProperty("ScaleBy"))->GetValueAsId()); node->GetFloatProperty("IndexParam1",fval); m_View->m_Controls->m_IndexParam1->setValue(fval); node->GetFloatProperty("IndexParam2",fval); m_View->m_Controls->m_IndexParam2->setValue(fval); } void DoSelectionChanged(ISelection::ConstPointer selection) { // save current selection in member variable m_View->m_CurrentSelection = selection.Cast(); m_View->m_Controls->m_VisibleOdfsON_T->setVisible(false); m_View->m_Controls->m_VisibleOdfsON_S->setVisible(false); m_View->m_Controls->m_VisibleOdfsON_C->setVisible(false); m_View->m_Controls->m_TextureIntON->setVisible(false); m_View->m_Controls->m_ImageControlsFrame->setVisible(false); m_View->m_Controls->m_PlanarFigureControlsFrame->setVisible(false); m_View->m_Controls->m_BundleControlsFrame->setVisible(false); m_View->m_SelectedNode = 0; if(m_View->m_CurrentSelection.IsNull()) return; if(m_View->m_CurrentSelection->Size() == 1) { mitk::DataNodeObject::Pointer nodeObj = m_View->m_CurrentSelection->Begin()->Cast(); if(nodeObj.IsNotNull()) { mitk::DataNode::Pointer node = nodeObj->GetDataNode(); // check if node has data, // if some helper nodes are shown in the DataManager, the GetData() returns 0x0 which would lead to SIGSEV mitk::BaseData* nodeData = node->GetData(); if(nodeData != NULL ) { if(dynamic_cast(nodeData) != 0) { m_View->m_Controls->m_PlanarFigureControlsFrame->setVisible(true); m_View->m_SelectedNode = node; float val; node->GetFloatProperty("planarfigure.line.width", val); m_View->m_Controls->m_PFWidth->setValue((int)(val*10.0)); QString label = "Width %1"; label = label.arg(val); m_View->m_Controls->label_pfwidth->setText(label); float color[3]; node->GetColor( color, NULL, "planarfigure.default.line.color"); QString styleSheet = "background-color:rgb("; styleSheet.append(QString::number(color[0]*255.0)); styleSheet.append(","); styleSheet.append(QString::number(color[1]*255.0)); styleSheet.append(","); styleSheet.append(QString::number(color[2]*255.0)); styleSheet.append(")"); m_View->m_Controls->m_PFColor->setAutoFillBackground(true); m_View->m_Controls->m_PFColor->setStyleSheet(styleSheet); node->GetColor( color, NULL, "color"); styleSheet = "background-color:rgb("; styleSheet.append(QString::number(color[0]*255.0)); styleSheet.append(","); styleSheet.append(QString::number(color[1]*255.0)); styleSheet.append(","); styleSheet.append(QString::number(color[2]*255.0)); styleSheet.append(")"); m_View->PlanarFigureFocus(); } if(dynamic_cast(nodeData) != 0) { m_View->m_Controls->m_BundleControlsFrame->setVisible(true); m_View->m_SelectedNode = node; if(m_View->m_CurrentPickingNode != 0 && node.GetPointer() != m_View->m_CurrentPickingNode) { m_View->m_Controls->m_Crosshair->setEnabled(false); } else { m_View->m_Controls->m_Crosshair->setEnabled(true); } float val; node->GetFloatProperty("TubeRadius", val); m_View->m_Controls->m_TubeRadius->setValue((int)(val * 100.0)); QString label = "Radius %1"; label = label.arg(val); m_View->m_Controls->label_tuberadius->setText(label); int width; node->GetIntProperty("LineWidth", width); m_View->m_Controls->m_LineWidth->setValue(width); label = "Width %1"; label = label.arg(width); m_View->m_Controls->label_linewidth->setText(label); float range; node->GetFloatProperty("Fiber2DSliceThickness",range); label = "Range %1"; label = label.arg(range*0.1); m_View->m_Controls->label_range->setText(label); } } // check node data != NULL } } if(m_View->m_CurrentSelection->Size() > 0 && m_View->m_SelectedNode == 0) { m_View->m_Controls->m_ImageControlsFrame->setVisible(true); bool foundDiffusionImage = false; bool foundQBIVolume = false; bool foundTensorVolume = false; bool foundImage = false; bool foundMultipleOdfImages = false; bool foundRGBAImage = false; bool foundTbssImage = false; // do something with the selected items if(m_View->m_CurrentSelection) { // iterate selection for (IStructuredSelection::iterator i = m_View->m_CurrentSelection->Begin(); i != m_View->m_CurrentSelection->End(); ++i) { // extract datatree node if (mitk::DataNodeObject::Pointer nodeObj = i->Cast()) { mitk::DataNode::Pointer node = nodeObj->GetDataNode(); mitk::BaseData* nodeData = node->GetData(); if(nodeData != NULL ) { // only look at interesting types if(QString("DiffusionImage").compare(nodeData->GetNameOfClass())==0) { foundDiffusionImage = true; bool tex_int; node->GetBoolProperty("texture interpolation", tex_int); if(tex_int) { m_View->m_Controls->m_TextureIntON->setIcon(*m_View->m_IconTexON); m_View->m_Controls->m_TextureIntON->setChecked(true); m_View->m_TexIsOn = true; } else { m_View->m_Controls->m_TextureIntON->setIcon(*m_View->m_IconTexOFF); m_View->m_Controls->m_TextureIntON->setChecked(false); m_View->m_TexIsOn = false; } int val; node->GetIntProperty("DisplayChannel", val); m_View->m_Controls->m_DisplayIndex->setValue(val); m_View->m_Controls->m_DisplayIndexSpinBox->setValue(val); QString label = "Channel %1"; label = label.arg(val); m_View->m_Controls->label_channel->setText(label); int maxVal = (dynamic_cast* >(nodeData))->GetVectorImage()->GetVectorLength(); m_View->m_Controls->m_DisplayIndex->setMaximum(maxVal-1); m_View->m_Controls->m_DisplayIndexSpinBox->setMaximum(maxVal-1); } if(QString("TbssImage").compare(nodeData->GetNameOfClass())==0) { foundTbssImage = true; bool tex_int; node->GetBoolProperty("texture interpolation", tex_int); if(tex_int) { m_View->m_Controls->m_TextureIntON->setIcon(*m_View->m_IconTexON); m_View->m_Controls->m_TextureIntON->setChecked(true); m_View->m_TexIsOn = true; } else { m_View->m_Controls->m_TextureIntON->setIcon(*m_View->m_IconTexOFF); m_View->m_Controls->m_TextureIntON->setChecked(false); m_View->m_TexIsOn = false; } int val; node->GetIntProperty("DisplayChannel", val); m_View->m_Controls->m_DisplayIndex->setValue(val); m_View->m_Controls->m_DisplayIndexSpinBox->setValue(val); QString label = "Channel %1"; label = label.arg(val); m_View->m_Controls->label_channel->setText(label); int maxVal = (dynamic_cast(nodeData))->GetImage()->GetVectorLength(); m_View->m_Controls->m_DisplayIndex->setMaximum(maxVal-1); m_View->m_Controls->m_DisplayIndexSpinBox->setMaximum(maxVal-1); } else if(QString("QBallImage").compare(nodeData->GetNameOfClass())==0) { foundMultipleOdfImages = foundQBIVolume || foundTensorVolume; foundQBIVolume = true; ApplySettings(node); } else if(QString("TensorImage").compare(nodeData->GetNameOfClass())==0) { foundMultipleOdfImages = foundQBIVolume || foundTensorVolume; foundTensorVolume = true; ApplySettings(node); } else if(QString("Image").compare(nodeData->GetNameOfClass())==0) { foundImage = true; mitk::Image::Pointer img = dynamic_cast(nodeData); if(img.IsNotNull() && img->GetPixelType().GetPixelType() == itk::ImageIOBase::RGBA && img->GetPixelType().GetComponentType() == itk::ImageIOBase::UCHAR ) { foundRGBAImage = true; } bool tex_int; node->GetBoolProperty("texture interpolation", tex_int); if(tex_int) { m_View->m_Controls->m_TextureIntON->setIcon(*m_View->m_IconTexON); m_View->m_Controls->m_TextureIntON->setChecked(true); m_View->m_TexIsOn = true; } else { m_View->m_Controls->m_TextureIntON->setIcon(*m_View->m_IconTexOFF); m_View->m_Controls->m_TextureIntON->setChecked(false); m_View->m_TexIsOn = false; } } } // END CHECK node != NULL } } } m_View->m_FoundSingleOdfImage = (foundQBIVolume || foundTensorVolume) && !foundMultipleOdfImages; m_View->m_Controls->m_NumberGlyphsFrame->setVisible(m_View->m_FoundSingleOdfImage); m_View->m_Controls->m_NormalizationDropdown->setVisible(m_View->m_FoundSingleOdfImage); m_View->m_Controls->label->setVisible(m_View->m_FoundSingleOdfImage); m_View->m_Controls->m_ScalingFactor->setVisible(m_View->m_FoundSingleOdfImage); m_View->m_Controls->m_AdditionalScaling->setVisible(m_View->m_FoundSingleOdfImage); m_View->m_Controls->m_NormalizationScalingFrame->setVisible(m_View->m_FoundSingleOdfImage); m_View->m_Controls->OpacMinFrame->setVisible(foundRGBAImage || m_View->m_FoundSingleOdfImage); // changed for SPIE paper, Principle curvature scaling //m_View->m_Controls->params_frame->setVisible(m_View->m_FoundSingleOdfImage); m_View->m_Controls->params_frame->setVisible(false); m_View->m_Controls->m_VisibleOdfsON_T->setVisible(m_View->m_FoundSingleOdfImage); m_View->m_Controls->m_VisibleOdfsON_S->setVisible(m_View->m_FoundSingleOdfImage); m_View->m_Controls->m_VisibleOdfsON_C->setVisible(m_View->m_FoundSingleOdfImage); bool foundAnyImage = foundDiffusionImage || foundQBIVolume || foundTensorVolume || foundImage || foundTbssImage; m_View->m_Controls->m_Reinit->setVisible(foundAnyImage); m_View->m_Controls->m_TextureIntON->setVisible(foundAnyImage); m_View->m_Controls->m_TSMenu->setVisible(foundAnyImage); } } void SelectionChanged(IWorkbenchPart::Pointer part, ISelection::ConstPointer selection) { // check, if selection comes from datamanager if (part) { QString partname(part->GetPartName().c_str()); if(partname.compare("Data Manager")==0) { // apply selection DoSelectionChanged(selection); } } } QmitkControlVisualizationPropertiesView* m_View; }; QmitkControlVisualizationPropertiesView::QmitkControlVisualizationPropertiesView() : QmitkFunctionality(), m_Controls(NULL), m_MultiWidget(NULL), m_NodeUsedForOdfVisualization(NULL), m_IconTexOFF(new QIcon(":/QmitkDiffusionImaging/texIntOFFIcon.png")), m_IconTexON(new QIcon(":/QmitkDiffusionImaging/texIntONIcon.png")), m_IconGlyOFF_T(new QIcon(":/QmitkDiffusionImaging/glyphsoff_T.png")), m_IconGlyON_T(new QIcon(":/QmitkDiffusionImaging/glyphson_T.png")), m_IconGlyOFF_C(new QIcon(":/QmitkDiffusionImaging/glyphsoff_C.png")), m_IconGlyON_C(new QIcon(":/QmitkDiffusionImaging/glyphson_C.png")), m_IconGlyOFF_S(new QIcon(":/QmitkDiffusionImaging/glyphsoff_S.png")), m_IconGlyON_S(new QIcon(":/QmitkDiffusionImaging/glyphson_S.png")), m_CurrentSelection(0), m_CurrentPickingNode(0), m_GlyIsOn_S(false), m_GlyIsOn_C(false), m_GlyIsOn_T(false), m_FiberBundleObserverTag(0), m_Color(NULL) { currentThickSlicesMode = 1; m_MyMenu = NULL; int numThread = itk::MultiThreader::GetGlobalMaximumNumberOfThreads(); if (numThread > 12) numThread = 12; itk::MultiThreader::SetGlobalDefaultNumberOfThreads(numThread); } QmitkControlVisualizationPropertiesView::QmitkControlVisualizationPropertiesView(const QmitkControlVisualizationPropertiesView& other) { Q_UNUSED(other) throw std::runtime_error("Copy constructor not implemented"); } QmitkControlVisualizationPropertiesView::~QmitkControlVisualizationPropertiesView() { if(m_SlicesRotationObserverTag1 ) { mitk::SlicesCoordinator* coordinator = m_MultiWidget->GetSlicesRotator(); if( coordinator) coordinator->RemoveObserver(m_SlicesRotationObserverTag1); } if( m_SlicesRotationObserverTag2) { mitk::SlicesCoordinator* coordinator = m_MultiWidget->GetSlicesRotator(); if( coordinator ) coordinator->RemoveObserver(m_SlicesRotationObserverTag1); } this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->RemovePostSelectionListener(/*"org.mitk.views.datamanager",*/ m_SelListener); } void QmitkControlVisualizationPropertiesView::OnThickSlicesModeSelected( QAction* action ) { currentThickSlicesMode = action->data().toInt(); switch(currentThickSlicesMode) { default: case 1: this->m_Controls->m_TSMenu->setText("MIP"); break; case 2: this->m_Controls->m_TSMenu->setText("SUM"); break; case 3: this->m_Controls->m_TSMenu->setText("WEIGH"); break; } mitk::DataNode* n; n = this->m_MultiWidget->GetWidgetPlane1(); if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( currentThickSlicesMode ) ); n = this->m_MultiWidget->GetWidgetPlane2(); if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( currentThickSlicesMode ) ); n = this->m_MultiWidget->GetWidgetPlane3(); if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( currentThickSlicesMode ) ); mitk::BaseRenderer::Pointer renderer = this->GetActiveStdMultiWidget()->GetRenderWindow1()->GetRenderer(); if(renderer.IsNotNull()) { renderer->SendUpdateSlice(); } renderer = this->GetActiveStdMultiWidget()->GetRenderWindow2()->GetRenderer(); if(renderer.IsNotNull()) { renderer->SendUpdateSlice(); } renderer = this->GetActiveStdMultiWidget()->GetRenderWindow3()->GetRenderer(); if(renderer.IsNotNull()) { renderer->SendUpdateSlice(); } renderer->GetRenderingManager()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::OnTSNumChanged(int num) { if(num==0) { mitk::DataNode* n; n = this->m_MultiWidget->GetWidgetPlane1(); if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( 0 ) ); n = this->m_MultiWidget->GetWidgetPlane2(); if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( 0 ) ); n = this->m_MultiWidget->GetWidgetPlane3(); if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( 0 ) ); } else { mitk::DataNode* n; n = this->m_MultiWidget->GetWidgetPlane1(); if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( currentThickSlicesMode ) ); n = this->m_MultiWidget->GetWidgetPlane2(); if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( currentThickSlicesMode ) ); n = this->m_MultiWidget->GetWidgetPlane3(); if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( currentThickSlicesMode ) ); n = this->m_MultiWidget->GetWidgetPlane1(); if(n) n->SetProperty( "reslice.thickslices.num", mitk::IntProperty::New( num ) ); n = this->m_MultiWidget->GetWidgetPlane2(); if(n) n->SetProperty( "reslice.thickslices.num", mitk::IntProperty::New( num ) ); n = this->m_MultiWidget->GetWidgetPlane3(); if(n) n->SetProperty( "reslice.thickslices.num", mitk::IntProperty::New( num ) ); } m_TSLabel->setText(QString::number(num*2+1)); mitk::BaseRenderer::Pointer renderer = this->GetActiveStdMultiWidget()->GetRenderWindow1()->GetRenderer(); if(renderer.IsNotNull()) { renderer->SendUpdateSlice(); } renderer = this->GetActiveStdMultiWidget()->GetRenderWindow2()->GetRenderer(); if(renderer.IsNotNull()) { renderer->SendUpdateSlice(); } renderer = this->GetActiveStdMultiWidget()->GetRenderWindow3()->GetRenderer(); if(renderer.IsNotNull()) { renderer->SendUpdateSlice(); } renderer->GetRenderingManager()->RequestUpdateAll(mitk::RenderingManager::REQUEST_UPDATE_2DWINDOWS); } void QmitkControlVisualizationPropertiesView::CreateQtPartControl(QWidget *parent) { if (!m_Controls) { // create GUI widgets m_Controls = new Ui::QmitkControlVisualizationPropertiesViewControls; m_Controls->setupUi(parent); this->CreateConnections(); // hide warning (ODFs in rotated planes) m_Controls->m_lblRotatedPlanesWarning->hide(); m_MyMenu = new QMenu(parent); connect( m_MyMenu, SIGNAL( aboutToShow() ), this, SLOT(OnMenuAboutToShow()) ); // button for changing rotation mode m_Controls->m_TSMenu->setMenu( m_MyMenu ); //m_CrosshairModeButton->setIcon( QIcon( iconCrosshairMode_xpm ) ); m_Controls->params_frame->setVisible(false); QIcon icon5(":/QmitkDiffusionImaging/Refresh_48.png"); m_Controls->m_Reinit->setIcon(icon5); m_Controls->m_Focus->setIcon(icon5); QIcon iconColor(":/QmitkDiffusionImaging/color24.gif"); m_Controls->m_PFColor->setIcon(iconColor); m_Controls->m_Color->setIcon(iconColor); QIcon iconReset(":/QmitkDiffusionImaging/reset.png"); m_Controls->m_ResetColoring->setIcon(iconReset); m_Controls->m_PFColor->setToolButtonStyle(Qt::ToolButtonTextBesideIcon); QIcon iconCrosshair(":/QmitkDiffusionImaging/crosshair.png"); m_Controls->m_Crosshair->setIcon(iconCrosshair); // was is los QIcon iconPaint(":/QmitkDiffusionImaging/paint2.png"); m_Controls->m_TDI->setIcon(iconPaint); QIcon iconFiberFade(":/QmitkDiffusionImaging/MapperEfx2D.png"); m_Controls->m_FiberFading2D->setIcon(iconFiberFade); m_Controls->m_TextureIntON->setCheckable(true); #ifndef DIFFUSION_IMAGING_EXTENDED int size = m_Controls->m_AdditionalScaling->count(); for(int t=0; tm_AdditionalScaling->itemText(t).toStdString() == "Scale by ASR") { m_Controls->m_AdditionalScaling->removeItem(t); } } #endif m_Controls->m_OpacitySlider->setRange(0.0,1.0); m_Controls->m_OpacitySlider->setLowerValue(0.0); m_Controls->m_OpacitySlider->setUpperValue(0.0); m_Controls->m_ScalingFrame->setVisible(false); m_Controls->m_NormalizationFrame->setVisible(false); m_Controls->frame_tube->setVisible(false); m_Controls->frame_wire->setVisible(false); } m_IsInitialized = false; m_SelListener = berry::ISelectionListener::Pointer(new CvpSelListener(this)); this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->AddPostSelectionListener(/*"org.mitk.views.datamanager",*/ m_SelListener); berry::ISelection::ConstPointer sel( this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); m_CurrentSelection = sel.Cast(); m_SelListener.Cast()->DoSelectionChanged(sel); m_IsInitialized = true; } void QmitkControlVisualizationPropertiesView::OnMenuAboutToShow () { // THICK SLICE SUPPORT QMenu *myMenu = m_MyMenu; myMenu->clear(); QActionGroup* thickSlicesActionGroup = new QActionGroup(myMenu); thickSlicesActionGroup->setExclusive(true); mitk::BaseRenderer::Pointer renderer = this->GetActiveStdMultiWidget()->GetRenderWindow1()->GetRenderer(); int currentTSMode = 0; { mitk::ResliceMethodProperty::Pointer m = dynamic_cast(renderer->GetCurrentWorldGeometry2DNode()->GetProperty( "reslice.thickslices" )); if( m.IsNotNull() ) currentTSMode = m->GetValueAsId(); } const int maxTS = 30; int currentNum = 0; { mitk::IntProperty::Pointer m = dynamic_cast(renderer->GetCurrentWorldGeometry2DNode()->GetProperty( "reslice.thickslices.num" )); if( m.IsNotNull() ) { currentNum = m->GetValue(); if(currentNum < 0) currentNum = 0; if(currentNum > maxTS) currentNum = maxTS; } } if(currentTSMode==0) currentNum=0; QSlider *m_TSSlider = new QSlider(myMenu); m_TSSlider->setMinimum(0); m_TSSlider->setMaximum(maxTS-1); m_TSSlider->setValue(currentNum); m_TSSlider->setOrientation(Qt::Horizontal); connect( m_TSSlider, SIGNAL( valueChanged(int) ), this, SLOT( OnTSNumChanged(int) ) ); QHBoxLayout* _TSLayout = new QHBoxLayout; _TSLayout->setContentsMargins(4,4,4,4); _TSLayout->addWidget(m_TSSlider); _TSLayout->addWidget(m_TSLabel=new QLabel(QString::number(currentNum*2+1),myMenu)); QWidget* _TSWidget = new QWidget; _TSWidget->setLayout(_TSLayout); QActionGroup* thickSliceModeActionGroup = new QActionGroup(myMenu); thickSliceModeActionGroup->setExclusive(true); QWidgetAction *m_TSSliderAction = new QWidgetAction(myMenu); m_TSSliderAction->setDefaultWidget(_TSWidget); myMenu->addAction(m_TSSliderAction); QAction* mipThickSlicesAction = new QAction(myMenu); mipThickSlicesAction->setActionGroup(thickSliceModeActionGroup); mipThickSlicesAction->setText("MIP (max. intensity proj.)"); mipThickSlicesAction->setCheckable(true); mipThickSlicesAction->setChecked(currentThickSlicesMode==1); mipThickSlicesAction->setData(1); myMenu->addAction( mipThickSlicesAction ); QAction* sumThickSlicesAction = new QAction(myMenu); sumThickSlicesAction->setActionGroup(thickSliceModeActionGroup); sumThickSlicesAction->setText("SUM (sum intensity proj.)"); sumThickSlicesAction->setCheckable(true); sumThickSlicesAction->setChecked(currentThickSlicesMode==2); sumThickSlicesAction->setData(2); myMenu->addAction( sumThickSlicesAction ); QAction* weightedThickSlicesAction = new QAction(myMenu); weightedThickSlicesAction->setActionGroup(thickSliceModeActionGroup); weightedThickSlicesAction->setText("WEIGHTED (gaussian proj.)"); weightedThickSlicesAction->setCheckable(true); weightedThickSlicesAction->setChecked(currentThickSlicesMode==3); weightedThickSlicesAction->setData(3); myMenu->addAction( weightedThickSlicesAction ); connect( thickSliceModeActionGroup, SIGNAL(triggered(QAction*)), this, SLOT(OnThickSlicesModeSelected(QAction*)) ); } void QmitkControlVisualizationPropertiesView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; if (m_MultiWidget) { mitk::SlicesCoordinator* coordinator = m_MultiWidget->GetSlicesRotator(); if (coordinator) { itk::ReceptorMemberCommand::Pointer command2 = itk::ReceptorMemberCommand::New(); command2->SetCallbackFunction( this, &QmitkControlVisualizationPropertiesView::SliceRotation ); m_SlicesRotationObserverTag1 = coordinator->AddObserver( mitk::SliceRotationEvent(), command2 ); } coordinator = m_MultiWidget->GetSlicesSwiveller(); if (coordinator) { itk::ReceptorMemberCommand::Pointer command2 = itk::ReceptorMemberCommand::New(); command2->SetCallbackFunction( this, &QmitkControlVisualizationPropertiesView::SliceRotation ); m_SlicesRotationObserverTag2 = coordinator->AddObserver( mitk::SliceRotationEvent(), command2 ); } } } void QmitkControlVisualizationPropertiesView::SliceRotation(const itk::EventObject&) { // test if plane rotated if( m_GlyIsOn_T || m_GlyIsOn_C || m_GlyIsOn_S ) { if( this->IsPlaneRotated() ) { // show label m_Controls->m_lblRotatedPlanesWarning->show(); } else { //hide label m_Controls->m_lblRotatedPlanesWarning->hide(); } } } void QmitkControlVisualizationPropertiesView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } void QmitkControlVisualizationPropertiesView::CreateConnections() { if ( m_Controls ) { connect( (QObject*)(m_Controls->m_DisplayIndex), SIGNAL(valueChanged(int)), this, SLOT(DisplayIndexChanged(int)) ); connect( (QObject*)(m_Controls->m_DisplayIndexSpinBox), SIGNAL(valueChanged(int)), this, SLOT(DisplayIndexChanged(int)) ); connect( (QObject*)(m_Controls->m_TextureIntON), SIGNAL(clicked()), this, SLOT(TextIntON()) ); connect( (QObject*)(m_Controls->m_Reinit), SIGNAL(clicked()), this, SLOT(Reinit()) ); connect( (QObject*)(m_Controls->m_VisibleOdfsON_T), SIGNAL(clicked()), this, SLOT(VisibleOdfsON_T()) ); connect( (QObject*)(m_Controls->m_VisibleOdfsON_S), SIGNAL(clicked()), this, SLOT(VisibleOdfsON_S()) ); connect( (QObject*)(m_Controls->m_VisibleOdfsON_C), SIGNAL(clicked()), this, SLOT(VisibleOdfsON_C()) ); connect( (QObject*)(m_Controls->m_ShowMaxNumber), SIGNAL(editingFinished()), this, SLOT(ShowMaxNumberChanged()) ); connect( (QObject*)(m_Controls->m_NormalizationDropdown), SIGNAL(currentIndexChanged(int)), this, SLOT(NormalizationDropdownChanged(int)) ); connect( (QObject*)(m_Controls->m_ScalingFactor), SIGNAL(valueChanged(double)), this, SLOT(ScalingFactorChanged(double)) ); connect( (QObject*)(m_Controls->m_AdditionalScaling), SIGNAL(currentIndexChanged(int)), this, SLOT(AdditionalScaling(int)) ); connect( (QObject*)(m_Controls->m_IndexParam1), SIGNAL(valueChanged(double)), this, SLOT(IndexParam1Changed(double)) ); connect( (QObject*)(m_Controls->m_IndexParam2), SIGNAL(valueChanged(double)), this, SLOT(IndexParam2Changed(double)) ); connect( (QObject*)(m_Controls->m_ScalingCheckbox), SIGNAL(clicked()), this, SLOT(ScalingCheckbox()) ); connect( (QObject*)(m_Controls->m_OpacitySlider), SIGNAL(spanChanged(double,double)), this, SLOT(OpacityChanged(double,double)) ); connect((QObject*) m_Controls->m_Wire, SIGNAL(clicked()), (QObject*) this, SLOT(BundleRepresentationWire())); connect((QObject*) m_Controls->m_Tube, SIGNAL(clicked()), (QObject*) this, SLOT(BundleRepresentationTube())); connect((QObject*) m_Controls->m_Color, SIGNAL(clicked()), (QObject*) this, SLOT(BundleRepresentationColor())); connect((QObject*) m_Controls->m_ResetColoring, SIGNAL(clicked()), (QObject*) this, SLOT(BundleRepresentationResetColoring())); connect((QObject*) m_Controls->m_Focus, SIGNAL(clicked()), (QObject*) this, SLOT(PlanarFigureFocus())); connect((QObject*) m_Controls->m_FiberFading2D, SIGNAL(clicked()), (QObject*) this, SLOT( Fiber2DfadingEFX() ) ); connect((QObject*) m_Controls->m_FiberThicknessSlider, SIGNAL(sliderReleased()), (QObject*) this, SLOT( FiberSlicingThickness2D() ) ); connect((QObject*) m_Controls->m_FiberThicknessSlider, SIGNAL(valueChanged(int)), (QObject*) this, SLOT( FiberSlicingUpdateLabel(int) )); connect((QObject*) m_Controls->m_Crosshair, SIGNAL(clicked()), (QObject*) this, SLOT(SetInteractor())); connect((QObject*) m_Controls->m_PFWidth, SIGNAL(valueChanged(int)), (QObject*) this, SLOT(PFWidth(int))); connect((QObject*) m_Controls->m_PFColor, SIGNAL(clicked()), (QObject*) this, SLOT(PFColor())); connect((QObject*) m_Controls->m_TDI, SIGNAL(clicked()), (QObject*) this, SLOT(GenerateTdi())); connect((QObject*) m_Controls->m_LineWidth, SIGNAL(valueChanged(int)), (QObject*) this, SLOT(LineWidthChanged(int))); connect((QObject*) m_Controls->m_TubeRadius, SIGNAL(valueChanged(int)), (QObject*) this, SLOT(TubeRadiusChanged(int))); } } void QmitkControlVisualizationPropertiesView::Activated() { berry::ISelection::ConstPointer sel( this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); m_CurrentSelection = sel.Cast(); m_SelListener.Cast()->DoSelectionChanged(sel); QmitkFunctionality::Activated(); } void QmitkControlVisualizationPropertiesView::Deactivated() { QmitkFunctionality::Deactivated(); } int QmitkControlVisualizationPropertiesView::GetSizeFlags(bool width) { if(!width) { return berry::Constants::MIN | berry::Constants::MAX | berry::Constants::FILL; } else { return 0; } } int QmitkControlVisualizationPropertiesView::ComputePreferredSize(bool width, int /*availableParallel*/, int /*availablePerpendicular*/, int preferredResult) { if(width==false) { return m_FoundSingleOdfImage ? 120 : 80; } else { return preferredResult; } } // set diffusion image channel to b0 volume void QmitkControlVisualizationPropertiesView::NodeAdded(const mitk::DataNode *node) { mitk::DataNode* notConst = const_cast(node); if (dynamic_cast*>(notConst->GetData())) { mitk::DiffusionImage::Pointer dimg = dynamic_cast*>(notConst->GetData()); // if there is no b0 image in the dataset, the GetB0Indices() returns a vector of size 0 // and hence we cannot set the Property directly to .front() int displayChannelPropertyValue = 0; mitk::DiffusionImage::BValueMap map = dimg->GetBValueMap(); if( map[0].size() > 0) displayChannelPropertyValue = map[0].front(); notConst->SetIntProperty("DisplayChannel", displayChannelPropertyValue ); } } /* OnSelectionChanged is registered to SelectionService, therefore no need to implement SelectionService Listener explicitly */ void QmitkControlVisualizationPropertiesView::OnSelectionChanged( std::vector nodes ) { // deactivate channel slider if no diffusion weighted image or tbss image is selected m_Controls->m_DisplayIndex->setVisible(false); m_Controls->m_DisplayIndexSpinBox->setVisible(false); m_Controls->label_channel->setVisible(false); for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; // check if node has data, // if some helper nodes are shown in the DataManager, the GetData() returns 0x0 which would lead to SIGSEV mitk::BaseData* nodeData = node->GetData(); if(nodeData == NULL) continue; if (node.IsNotNull() && (dynamic_cast(nodeData) || dynamic_cast*>(nodeData))) { m_Controls->m_DisplayIndex->setVisible(true); m_Controls->m_DisplayIndexSpinBox->setVisible(true); m_Controls->label_channel->setVisible(true); } else if (node.IsNotNull() && dynamic_cast(node->GetData())) { if (m_Color.IsNotNull()) m_Color->RemoveObserver(m_FiberBundleObserverTag); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkControlVisualizationPropertiesView::SetFiberBundleCustomColor ); m_Color = dynamic_cast(node->GetProperty("color", NULL)); if (m_Color.IsNotNull()) m_FiberBundleObserverTag = m_Color->AddObserver( itk::ModifiedEvent(), command ); } } for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; // check if node has data, // if some helper nodes are shown in the DataManager, the GetData() returns 0x0 which would lead to SIGSEV mitk::BaseData* nodeData = node->GetData(); if(nodeData == NULL) continue; if( node.IsNotNull() && (dynamic_cast(nodeData) || dynamic_cast(nodeData)) ) { if(m_NodeUsedForOdfVisualization.IsNotNull()) { m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_S", false); m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_C", false); m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_T", false); } m_NodeUsedForOdfVisualization = node; m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_S", m_GlyIsOn_S); m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_C", m_GlyIsOn_C); m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_T", m_GlyIsOn_T); if(m_MultiWidget) m_MultiWidget->RequestUpdate(); m_Controls->m_TSMenu->setVisible(false); // deactivate mip etc. for tensor and q-ball images break; } else if( node.IsNotNull() && dynamic_cast(nodeData) ) m_Controls->m_TSMenu->setVisible(false); else m_Controls->m_TSMenu->setVisible(true); } // if selection changes, set the current selction member and call SellListener::DoSelectionChanged berry::ISelection::ConstPointer sel( this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); m_CurrentSelection = sel.Cast(); m_SelListener.Cast()->DoSelectionChanged(sel); } mitk::DataStorage::SetOfObjects::Pointer QmitkControlVisualizationPropertiesView::ActiveSet(std::string classname) { if (m_CurrentSelection) { mitk::DataStorage::SetOfObjects::Pointer set = mitk::DataStorage::SetOfObjects::New(); int at = 0; for (IStructuredSelection::iterator i = m_CurrentSelection->Begin(); i != m_CurrentSelection->End(); ++i) { if (mitk::DataNodeObject::Pointer nodeObj = i->Cast()) { mitk::DataNode::Pointer node = nodeObj->GetDataNode(); // check if node has data, // if some helper nodes are shown in the DataManager, the GetData() returns 0x0 which would lead to SIGSEV const mitk::BaseData* nodeData = node->GetData(); if(nodeData == NULL) continue; if(QString(classname.c_str()).compare(nodeData->GetNameOfClass())==0) { set->InsertElement(at++, node); } } } return set; } return 0; } void QmitkControlVisualizationPropertiesView::SetBoolProp( mitk::DataStorage::SetOfObjects::Pointer set, std::string name, bool value) { if(set.IsNotNull()) { mitk::DataStorage::SetOfObjects::const_iterator itemiter( set->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( set->end() ); while ( itemiter != itemiterend ) { (*itemiter)->SetBoolProperty(name.c_str(), value); ++itemiter; } } } void QmitkControlVisualizationPropertiesView::SetIntProp( mitk::DataStorage::SetOfObjects::Pointer set, std::string name, int value) { if(set.IsNotNull()) { mitk::DataStorage::SetOfObjects::const_iterator itemiter( set->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( set->end() ); while ( itemiter != itemiterend ) { (*itemiter)->SetIntProperty(name.c_str(), value); ++itemiter; } } } void QmitkControlVisualizationPropertiesView::SetFloatProp( mitk::DataStorage::SetOfObjects::Pointer set, std::string name, float value) { if(set.IsNotNull()) { mitk::DataStorage::SetOfObjects::const_iterator itemiter( set->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( set->end() ); while ( itemiter != itemiterend ) { (*itemiter)->SetFloatProperty(name.c_str(), value); ++itemiter; } } } void QmitkControlVisualizationPropertiesView::SetLevelWindowProp( mitk::DataStorage::SetOfObjects::Pointer set, std::string name, mitk::LevelWindow value) { if(set.IsNotNull()) { mitk::LevelWindowProperty::Pointer prop = mitk::LevelWindowProperty::New(value); mitk::DataStorage::SetOfObjects::const_iterator itemiter( set->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( set->end() ); while ( itemiter != itemiterend ) { (*itemiter)->SetProperty(name.c_str(), prop); ++itemiter; } } } void QmitkControlVisualizationPropertiesView::SetEnumProp( mitk::DataStorage::SetOfObjects::Pointer set, std::string name, mitk::EnumerationProperty::Pointer value) { if(set.IsNotNull()) { mitk::DataStorage::SetOfObjects::const_iterator itemiter( set->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( set->end() ); while ( itemiter != itemiterend ) { (*itemiter)->SetProperty(name.c_str(), value); ++itemiter; } } } void QmitkControlVisualizationPropertiesView::DisplayIndexChanged(int dispIndex) { m_Controls->m_DisplayIndex->setValue(dispIndex); m_Controls->m_DisplayIndexSpinBox->setValue(dispIndex); QString label = "Channel %1"; label = label.arg(dispIndex); m_Controls->label_channel->setText(label); std::vector sets; sets.push_back("DiffusionImage"); sets.push_back("TbssImage"); std::vector::iterator it = sets.begin(); while(it != sets.end()) { std::string s = *it; mitk::DataStorage::SetOfObjects::Pointer set = ActiveSet(s); if(set.IsNotNull()) { mitk::DataStorage::SetOfObjects::const_iterator itemiter( set->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( set->end() ); while ( itemiter != itemiterend ) { (*itemiter)->SetIntProperty("DisplayChannel", dispIndex); ++itemiter; } //m_MultiWidget->RequestUpdate(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } it++; } } void QmitkControlVisualizationPropertiesView::Reinit() { if (m_CurrentSelection) { mitk::DataNodeObject::Pointer nodeObj = m_CurrentSelection->Begin()->Cast(); mitk::DataNode::Pointer node = nodeObj->GetDataNode(); mitk::BaseData::Pointer basedata = node->GetData(); if (basedata.IsNotNull()) { mitk::RenderingManager::GetInstance()->InitializeViews( basedata->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } } void QmitkControlVisualizationPropertiesView::TextIntON() { if(m_TexIsOn) { m_Controls->m_TextureIntON->setIcon(*m_IconTexOFF); } else { m_Controls->m_TextureIntON->setIcon(*m_IconTexON); } mitk::DataStorage::SetOfObjects::Pointer set = ActiveSet("DiffusionImage"); SetBoolProp(set,"texture interpolation", !m_TexIsOn); set = ActiveSet("TensorImage"); SetBoolProp(set,"texture interpolation", !m_TexIsOn); set = ActiveSet("QBallImage"); SetBoolProp(set,"texture interpolation", !m_TexIsOn); set = ActiveSet("Image"); SetBoolProp(set,"texture interpolation", !m_TexIsOn); m_TexIsOn = !m_TexIsOn; if(m_MultiWidget) m_MultiWidget->RequestUpdate(); } void QmitkControlVisualizationPropertiesView::VisibleOdfsON_S() { m_GlyIsOn_S = m_Controls->m_VisibleOdfsON_S->isChecked(); if (m_NodeUsedForOdfVisualization.IsNull()) { MITK_WARN << "ODF visualization activated but m_NodeUsedForOdfVisualization is NULL"; return; } m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_S", m_GlyIsOn_S); VisibleOdfsON(0); } void QmitkControlVisualizationPropertiesView::VisibleOdfsON_T() { m_GlyIsOn_T = m_Controls->m_VisibleOdfsON_T->isChecked(); if (m_NodeUsedForOdfVisualization.IsNull()) { MITK_WARN << "ODF visualization activated but m_NodeUsedForOdfVisualization is NULL"; return; } m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_T", m_GlyIsOn_T); VisibleOdfsON(1); } void QmitkControlVisualizationPropertiesView::VisibleOdfsON_C() { m_GlyIsOn_C = m_Controls->m_VisibleOdfsON_C->isChecked(); if (m_NodeUsedForOdfVisualization.IsNull()) { MITK_WARN << "ODF visualization activated but m_NodeUsedForOdfVisualization is NULL"; return; } m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_C", m_GlyIsOn_C); VisibleOdfsON(2); } bool QmitkControlVisualizationPropertiesView::IsPlaneRotated() { // for all 2D renderwindows of m_MultiWidget check alignment mitk::PlaneGeometry::ConstPointer displayPlane = dynamic_cast( m_MultiWidget->GetRenderWindow1()->GetRenderer()->GetCurrentWorldGeometry2D() ); if (displayPlane.IsNull()) return false; mitk::Image* currentImage = dynamic_cast( m_NodeUsedForOdfVisualization->GetData() ); if( currentImage == NULL ) { MITK_ERROR << " Casting problems. Returning false"; return false; } int affectedDimension(-1); int affectedSlice(-1); return !(DetermineAffectedImageSlice( currentImage, displayPlane, affectedDimension, affectedSlice )); } void QmitkControlVisualizationPropertiesView::VisibleOdfsON(int view) { if(m_MultiWidget) m_MultiWidget->RequestUpdate(); } void QmitkControlVisualizationPropertiesView::ShowMaxNumberChanged() { int maxNr = m_Controls->m_ShowMaxNumber->value(); if ( maxNr < 1 ) { m_Controls->m_ShowMaxNumber->setValue( 1 ); maxNr = 1; } mitk::DataStorage::SetOfObjects::Pointer set = ActiveSet("QBallImage"); SetIntProp(set,"ShowMaxNumber", maxNr); set = ActiveSet("TensorImage"); SetIntProp(set,"ShowMaxNumber", maxNr); if(m_MultiWidget) m_MultiWidget->RequestUpdate(); } void QmitkControlVisualizationPropertiesView::NormalizationDropdownChanged(int normDropdown) { typedef mitk::OdfNormalizationMethodProperty PropType; PropType::Pointer normMeth = PropType::New(); switch(normDropdown) { case 0: normMeth->SetNormalizationToMinMax(); break; case 1: normMeth->SetNormalizationToMax(); break; case 2: normMeth->SetNormalizationToNone(); break; case 3: normMeth->SetNormalizationToGlobalMax(); break; default: normMeth->SetNormalizationToMinMax(); } mitk::DataStorage::SetOfObjects::Pointer set = ActiveSet("QBallImage"); SetEnumProp(set,"Normalization", normMeth.GetPointer()); set = ActiveSet("TensorImage"); SetEnumProp(set,"Normalization", normMeth.GetPointer()); // if(m_MultiWidget) // m_MultiWidget->RequestUpdate(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::ScalingFactorChanged(double scalingFactor) { mitk::DataStorage::SetOfObjects::Pointer set = ActiveSet("QBallImage"); SetFloatProp(set,"Scaling", scalingFactor); set = ActiveSet("TensorImage"); SetFloatProp(set,"Scaling", scalingFactor); if(m_MultiWidget) m_MultiWidget->RequestUpdate(); } void QmitkControlVisualizationPropertiesView::AdditionalScaling(int additionalScaling) { typedef mitk::OdfScaleByProperty PropType; PropType::Pointer scaleBy = PropType::New(); switch(additionalScaling) { case 0: scaleBy->SetScaleByNothing(); break; case 1: scaleBy->SetScaleByGFA(); //m_Controls->params_frame->setVisible(true); break; #ifdef DIFFUSION_IMAGING_EXTENDED case 2: scaleBy->SetScaleByPrincipalCurvature(); // commented in for SPIE paper, Principle curvature scaling //m_Controls->params_frame->setVisible(true); break; #endif default: scaleBy->SetScaleByNothing(); } mitk::DataStorage::SetOfObjects::Pointer set = ActiveSet("QBallImage"); SetEnumProp(set,"ScaleBy", scaleBy.GetPointer()); set = ActiveSet("TensorImage"); SetEnumProp(set,"ScaleBy", scaleBy.GetPointer()); if(m_MultiWidget) m_MultiWidget->RequestUpdate(); } void QmitkControlVisualizationPropertiesView::IndexParam1Changed(double param1) { mitk::DataStorage::SetOfObjects::Pointer set = ActiveSet("QBallImage"); SetFloatProp(set,"IndexParam1", param1); set = ActiveSet("TensorImage"); SetFloatProp(set,"IndexParam1", param1); if(m_MultiWidget) m_MultiWidget->RequestUpdate(); } void QmitkControlVisualizationPropertiesView::IndexParam2Changed(double param2) { mitk::DataStorage::SetOfObjects::Pointer set = ActiveSet("QBallImage"); SetFloatProp(set,"IndexParam2", param2); set = ActiveSet("TensorImage"); SetFloatProp(set,"IndexParam2", param2); if(m_MultiWidget) m_MultiWidget->RequestUpdate(); } void QmitkControlVisualizationPropertiesView::OpacityChanged(double l, double u) { mitk::LevelWindow olw; olw.SetRangeMinMax(l*255, u*255); mitk::DataStorage::SetOfObjects::Pointer set = ActiveSet("QBallImage"); SetLevelWindowProp(set,"opaclevelwindow", olw); set = ActiveSet("TensorImage"); SetLevelWindowProp(set,"opaclevelwindow", olw); set = ActiveSet("Image"); SetLevelWindowProp(set,"opaclevelwindow", olw); m_Controls->m_OpacityMinFaLabel->setText(QString::number(l,'f',2) + " : " + QString::number(u,'f',2)); if(m_MultiWidget) m_MultiWidget->RequestUpdate(); } void QmitkControlVisualizationPropertiesView::ScalingCheckbox() { m_Controls->m_ScalingFrame->setVisible( m_Controls->m_ScalingCheckbox->isChecked()); if(!m_Controls->m_ScalingCheckbox->isChecked()) { m_Controls->m_AdditionalScaling->setCurrentIndex(0); m_Controls->m_ScalingFactor->setValue(1.0); } } void QmitkControlVisualizationPropertiesView::Fiber2DfadingEFX() { if (m_SelectedNode) { bool currentMode; m_SelectedNode->GetBoolProperty("Fiber2DfadeEFX", currentMode); m_SelectedNode->SetProperty("Fiber2DfadeEFX", mitk::BoolProperty::New(!currentMode)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); } } void QmitkControlVisualizationPropertiesView::FiberSlicingThickness2D() { if (m_SelectedNode) { float fibThickness = m_Controls->m_FiberThicknessSlider->value() * 0.1; m_SelectedNode->SetProperty("Fiber2DSliceThickness", mitk::FloatProperty::New(fibThickness)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); } } void QmitkControlVisualizationPropertiesView::FiberSlicingUpdateLabel(int value) { QString label = "Range %1"; label = label.arg(value * 0.1); m_Controls->label_range->setText(label); } void QmitkControlVisualizationPropertiesView::BundleRepresentationWire() { if(m_SelectedNode) { int width = m_Controls->m_LineWidth->value(); m_SelectedNode->SetProperty("LineWidth",mitk::IntProperty::New(width)); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(15)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(18)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(1)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(2)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(3)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(4)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(0)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); } } void QmitkControlVisualizationPropertiesView::BundleRepresentationTube() { if(m_SelectedNode) { float radius = m_Controls->m_TubeRadius->value() / 100.0; m_SelectedNode->SetProperty("TubeRadius",mitk::FloatProperty::New(radius)); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(17)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(13)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(16)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); m_SelectedNode->SetProperty("ColorCoding",mitk::IntProperty::New(0)); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); } } void QmitkControlVisualizationPropertiesView::SetFiberBundleCustomColor(const itk::EventObject& /*e*/) { float color[3]; m_SelectedNode->GetColor(color); m_Controls->m_Color->setAutoFillBackground(true); QString styleSheet = "background-color:rgb("; styleSheet.append(QString::number(color[0]*255.0)); styleSheet.append(","); styleSheet.append(QString::number(color[1]*255.0)); styleSheet.append(","); styleSheet.append(QString::number(color[2]*255.0)); styleSheet.append(")"); m_Controls->m_Color->setStyleSheet(styleSheet); m_SelectedNode->SetProperty("color",mitk::ColorProperty::New(color[0], color[1], color[2])); mitk::FiberBundleX::Pointer fib = dynamic_cast(m_SelectedNode->GetData()); fib->SetColorCoding(mitk::FiberBundleX::COLORCODING_CUSTOM); m_SelectedNode->Modified(); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); } void QmitkControlVisualizationPropertiesView::BundleRepresentationColor() { if(m_SelectedNode) { QColor color = QColorDialog::getColor(); if (!color.isValid()) return; m_Controls->m_Color->setAutoFillBackground(true); QString styleSheet = "background-color:rgb("; styleSheet.append(QString::number(color.red())); styleSheet.append(","); styleSheet.append(QString::number(color.green())); styleSheet.append(","); styleSheet.append(QString::number(color.blue())); styleSheet.append(")"); m_Controls->m_Color->setStyleSheet(styleSheet); m_SelectedNode->SetProperty("color",mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0)); mitk::FiberBundleX::Pointer fib = dynamic_cast(m_SelectedNode->GetData()); fib->SetColorCoding(mitk::FiberBundleX::COLORCODING_CUSTOM); m_SelectedNode->Modified(); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); } } void QmitkControlVisualizationPropertiesView::BundleRepresentationResetColoring() { if(m_SelectedNode) { MITK_INFO << "reset colorcoding to oBased"; m_Controls->m_Color->setAutoFillBackground(true); QString styleSheet = "background-color:rgb(255,255,255)"; m_Controls->m_Color->setStyleSheet(styleSheet); // m_SelectedNode->SetProperty("color",NULL); m_SelectedNode->SetProperty("color",mitk::ColorProperty::New(1.0, 1.0, 1.0)); mitk::FiberBundleX::Pointer fib = dynamic_cast(m_SelectedNode->GetData()); fib->SetColorCoding(mitk::FiberBundleX::COLORCODING_ORIENTATION_BASED); fib->DoColorCodingOrientationBased(); m_SelectedNode->Modified(); mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); } } void QmitkControlVisualizationPropertiesView::PlanarFigureFocus() { if(m_SelectedNode) { mitk::PlanarFigure* _PlanarFigure = 0; _PlanarFigure = dynamic_cast (m_SelectedNode->GetData()); if (_PlanarFigure && _PlanarFigure->GetGeometry2D()) { QmitkRenderWindow* selectedRenderWindow = 0; bool PlanarFigureInitializedWindow = false; QmitkRenderWindow* RenderWindow1 = this->GetActiveStdMultiWidget()->GetRenderWindow1(); if (m_SelectedNode->GetBoolProperty("PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow1->GetRenderer())) { selectedRenderWindow = RenderWindow1; } QmitkRenderWindow* RenderWindow2 = this->GetActiveStdMultiWidget()->GetRenderWindow2(); if (!selectedRenderWindow && m_SelectedNode->GetBoolProperty( "PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow2->GetRenderer())) { selectedRenderWindow = RenderWindow2; } QmitkRenderWindow* RenderWindow3 = this->GetActiveStdMultiWidget()->GetRenderWindow3(); if (!selectedRenderWindow && m_SelectedNode->GetBoolProperty( "PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow3->GetRenderer())) { selectedRenderWindow = RenderWindow3; } QmitkRenderWindow* RenderWindow4 = this->GetActiveStdMultiWidget()->GetRenderWindow4(); if (!selectedRenderWindow && m_SelectedNode->GetBoolProperty( "PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow4->GetRenderer())) { selectedRenderWindow = RenderWindow4; } const mitk::PlaneGeometry * _PlaneGeometry = dynamic_cast (_PlanarFigure->GetGeometry2D()); mitk::VnlVector normal = _PlaneGeometry->GetNormalVnl(); mitk::Geometry2D::ConstPointer worldGeometry1 = RenderWindow1->GetRenderer()->GetCurrentWorldGeometry2D(); mitk::PlaneGeometry::ConstPointer _Plane1 = dynamic_cast( worldGeometry1.GetPointer() ); mitk::VnlVector normal1 = _Plane1->GetNormalVnl(); mitk::Geometry2D::ConstPointer worldGeometry2 = RenderWindow2->GetRenderer()->GetCurrentWorldGeometry2D(); mitk::PlaneGeometry::ConstPointer _Plane2 = dynamic_cast( worldGeometry2.GetPointer() ); mitk::VnlVector normal2 = _Plane2->GetNormalVnl(); mitk::Geometry2D::ConstPointer worldGeometry3 = RenderWindow3->GetRenderer()->GetCurrentWorldGeometry2D(); mitk::PlaneGeometry::ConstPointer _Plane3 = dynamic_cast( worldGeometry3.GetPointer() ); mitk::VnlVector normal3 = _Plane3->GetNormalVnl(); normal[0] = fabs(normal[0]); normal[1] = fabs(normal[1]); normal[2] = fabs(normal[2]); normal1[0] = fabs(normal1[0]); normal1[1] = fabs(normal1[1]); normal1[2] = fabs(normal1[2]); normal2[0] = fabs(normal2[0]); normal2[1] = fabs(normal2[1]); normal2[2] = fabs(normal2[2]); normal3[0] = fabs(normal3[0]); normal3[1] = fabs(normal3[1]); normal3[2] = fabs(normal3[2]); double ang1 = angle(normal, normal1); double ang2 = angle(normal, normal2); double ang3 = angle(normal, normal3); if(ang1 < ang2 && ang1 < ang3) { selectedRenderWindow = RenderWindow1; } else { if(ang2 < ang3) { selectedRenderWindow = RenderWindow2; } else { selectedRenderWindow = RenderWindow3; } } // make node visible if (selectedRenderWindow) { const mitk::Point3D& centerP = _PlaneGeometry->GetOrigin(); selectedRenderWindow->GetSliceNavigationController()->ReorientSlices( centerP, _PlaneGeometry->GetNormal()); } } // set interactor for new node (if not already set) mitk::PlanarFigureInteractor::Pointer figureInteractor = dynamic_cast(m_SelectedNode->GetDataInteractor().GetPointer()); if(figureInteractor.IsNull()) { figureInteractor = mitk::PlanarFigureInteractor::New(); us::Module* planarFigureModule = us::ModuleRegistry::GetModule( "MitkPlanarFigure" ); figureInteractor->LoadStateMachine("PlanarFigureInteraction.xml", planarFigureModule ); figureInteractor->SetEventConfig( "PlanarFigureConfig.xml", planarFigureModule ); figureInteractor->SetDataNode( m_SelectedNode ); } m_SelectedNode->SetProperty("planarfigure.iseditable",mitk::BoolProperty::New(true)); } } void QmitkControlVisualizationPropertiesView::SetInteractor() { typedef std::vector Container; Container _NodeSet = this->GetDataManagerSelection(); mitk::DataNode* node = 0; mitk::FiberBundleX* bundle = 0; mitk::FiberBundleInteractor::Pointer bundleInteractor = 0; // finally add all nodes to the model for(Container::const_iterator it=_NodeSet.begin(); it!=_NodeSet.end() ; it++) { node = const_cast(*it); bundle = dynamic_cast(node->GetData()); if(bundle) { bundleInteractor = dynamic_cast(node->GetInteractor()); if(bundleInteractor.IsNotNull()) mitk::GlobalInteraction::GetInstance()->RemoveInteractor(bundleInteractor); if(!m_Controls->m_Crosshair->isChecked()) { m_Controls->m_Crosshair->setChecked(false); this->GetActiveStdMultiWidget()->GetRenderWindow4()->setCursor(Qt::ArrowCursor); m_CurrentPickingNode = 0; } else { m_Controls->m_Crosshair->setChecked(true); bundleInteractor = mitk::FiberBundleInteractor::New("FiberBundleInteractor", node); mitk::GlobalInteraction::GetInstance()->AddInteractor(bundleInteractor); this->GetActiveStdMultiWidget()->GetRenderWindow4()->setCursor(Qt::CrossCursor); m_CurrentPickingNode = node; } } } } void QmitkControlVisualizationPropertiesView::PFWidth(int w) { double width = w/10.0; m_SelectedNode->SetProperty("planarfigure.line.width", mitk::FloatProperty::New(width) ); m_SelectedNode->SetProperty("planarfigure.shadow.widthmodifier", mitk::FloatProperty::New(width) ); m_SelectedNode->SetProperty("planarfigure.outline.width", mitk::FloatProperty::New(width) ); m_SelectedNode->SetProperty("planarfigure.helperline.width", mitk::FloatProperty::New(width) ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QString label = "Width %1"; label = label.arg(width); m_Controls->label_pfwidth->setText(label); } void QmitkControlVisualizationPropertiesView::PFColor() { QColor color = QColorDialog::getColor(); if (!color.isValid()) return; m_Controls->m_PFColor->setAutoFillBackground(true); QString styleSheet = "background-color:rgb("; styleSheet.append(QString::number(color.red())); styleSheet.append(","); styleSheet.append(QString::number(color.green())); styleSheet.append(","); styleSheet.append(QString::number(color.blue())); styleSheet.append(")"); m_Controls->m_PFColor->setStyleSheet(styleSheet); m_SelectedNode->SetProperty( "planarfigure.default.line.color", mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0)); m_SelectedNode->SetProperty( "planarfigure.default.outline.color", mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0)); m_SelectedNode->SetProperty( "planarfigure.default.helperline.color", mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0)); m_SelectedNode->SetProperty( "planarfigure.default.markerline.color", mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0)); m_SelectedNode->SetProperty( "planarfigure.default.marker.color", mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0)); m_SelectedNode->SetProperty( "planarfigure.hover.line.color", mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0) ); m_SelectedNode->SetProperty( "planarfigure.hover.outline.color", mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0) ); m_SelectedNode->SetProperty( "planarfigure.hover.helperline.color", mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0) ); m_SelectedNode->SetProperty( "color", mitk::ColorProperty::New(color.red()/255.0, color.green()/255.0, color.blue()/255.0)); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::GenerateTdi() { if(m_SelectedNode) { mitk::FiberBundleX* bundle = dynamic_cast(m_SelectedNode->GetData()); if(!bundle) return; typedef float OutPixType; typedef itk::Image OutImageType; // run generator itk::TractDensityImageFilter< OutImageType >::Pointer generator = itk::TractDensityImageFilter< OutImageType >::New(); generator->SetFiberBundle(bundle); generator->SetOutputAbsoluteValues(true); generator->SetUpsamplingFactor(1); generator->Update(); // get result OutImageType::Pointer outImg = generator->GetOutput(); mitk::Image::Pointer img = mitk::Image::New(); img->InitializeByItk(outImg.GetPointer()); img->SetVolume(outImg->GetBufferPointer()); // to datastorage mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData(img); QString name(m_SelectedNode->GetName().c_str()); name += "_TDI"; node->SetName(name.toStdString()); node->SetVisibility(true); GetDataStorage()->Add(node); } } void QmitkControlVisualizationPropertiesView::LineWidthChanged(int w) { QString label = "Width %1"; label = label.arg(w); m_Controls->label_linewidth->setText(label); BundleRepresentationWire(); } void QmitkControlVisualizationPropertiesView::TubeRadiusChanged(int r) { QString label = "Radius %1"; label = label.arg(r / 100.0); m_Controls->label_tuberadius->setText(label); this->BundleRepresentationTube(); } void QmitkControlVisualizationPropertiesView::Welcome() { berry::PlatformUI::GetWorkbench()->GetIntroManager()->ShowIntro( GetSite()->GetWorkbenchWindow(), false); } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkDwiSoftwarePhantomView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkDwiSoftwarePhantomView.cpp index db330266b4..3154a0d37a 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkDwiSoftwarePhantomView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkDwiSoftwarePhantomView.cpp @@ -1,496 +1,496 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Qmitk #include "QmitkDwiSoftwarePhantomView.h" // MITK #include #include #include #include #define _USE_MATH_DEFINES #include const std::string QmitkDwiSoftwarePhantomView::VIEW_ID = "org.mitk.views.dwisoftwarephantomview"; QmitkDwiSoftwarePhantomView::QmitkDwiSoftwarePhantomView() : QmitkFunctionality() , m_Controls( 0 ) , m_MultiWidget( NULL ) { } // Destructor QmitkDwiSoftwarePhantomView::~QmitkDwiSoftwarePhantomView() { } void QmitkDwiSoftwarePhantomView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkDwiSoftwarePhantomViewControls; m_Controls->setupUi( parent ); m_Controls->m_SignalRegionBox->setVisible(false); connect((QObject*) m_Controls->m_GeneratePhantomButton, SIGNAL(clicked()), (QObject*) this, SLOT(GeneratePhantom())); connect((QObject*) m_Controls->m_SimulateBaseline, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnSimulateBaselineToggle(int))); } } QmitkDwiSoftwarePhantomView::GradientListType QmitkDwiSoftwarePhantomView::GenerateHalfShell(int NPoints) { NPoints *= 2; vnl_vector theta; theta.set_size(NPoints); vnl_vector phi; phi.set_size(NPoints); double C = sqrt(4*M_PI); phi(0) = 0.0; phi(NPoints-1) = 0.0; for(int i=0; i0 && i std::vector > QmitkDwiSoftwarePhantomView::MakeGradientList() { std::vector > retval; vnl_matrix_fixed* U = itk::PointShell >::DistributePointShell(); // Add 0 vector for B0 int numB0 = ndirs/10; if (numB0==0) numB0=1; itk::Vector v; v.Fill(0.0); for (int i=0; i v; v[0] = U->get(0,i); v[1] = U->get(1,i); v[2] = U->get(2,i); retval.push_back(v); } return retval; } void QmitkDwiSoftwarePhantomView::OnSimulateBaselineToggle(int state) { if (state) { m_Controls->m_NoiseLabel->setText("Noise Variance:"); m_Controls->m_NoiseLevel->setValue(1.0/(m_Controls->m_NoiseLevel->value()*m_Controls->m_NoiseLevel->value())); m_Controls->m_NoiseLevel->setToolTip("Variance of Rician noise."); } else { m_Controls->m_NoiseLabel->setText("SNR:"); if (m_Controls->m_NoiseLevel->value()>0) m_Controls->m_NoiseLevel->setValue(1.0/(sqrt(m_Controls->m_NoiseLevel->value()))); else m_Controls->m_NoiseLevel->setValue(0.0001); m_Controls->m_NoiseLevel->setToolTip("Signal to noise ratio (for values > 99, no noise at all is added to the image)."); } } void QmitkDwiSoftwarePhantomView::GeneratePhantom() { typedef itk::DwiPhantomGenerationFilter< short > FilterType; FilterType::GradientListType gradientList; m_SignalRegions.clear(); for (int i=0; i(m_SignalRegionNodes.at(i)->GetData()); ItkUcharImgType::Pointer signalRegion = ItkUcharImgType::New(); mitk::CastToItkImage(mitkBinaryImg, signalRegion); m_SignalRegions.push_back(signalRegion); } gradientList = GenerateHalfShell(m_Controls->m_NumGradientsBox->value()); // switch(m_Controls->m_NumGradientsBox->value()) // { // case 0: // gradientList = MakeGradientList<12>(); // break; // case 1: // gradientList = MakeGradientList<42>(); // break; // case 2: // gradientList = MakeGradientList<92>(); // break; // case 3: // gradientList = MakeGradientList<162>(); // break; // case 4: // gradientList = MakeGradientList<252>(); // break; // case 5: // gradientList = MakeGradientList<362>(); // break; // case 6: // gradientList = MakeGradientList<492>(); // break; // case 7: // gradientList = MakeGradientList<642>(); // break; // case 8: // gradientList = MakeGradientList<812>(); // break; // case 9: // gradientList = MakeGradientList<1002>(); // break; // default: // gradientList = MakeGradientList<92>(); // } double bVal = m_Controls->m_TensorsToDWIBValueEdit->value(); itk::ImageRegion<3> imageRegion; imageRegion.SetSize(0, m_Controls->m_SizeX->value()); imageRegion.SetSize(1, m_Controls->m_SizeY->value()); imageRegion.SetSize(2, m_Controls->m_SizeZ->value()); mitk::Vector3D spacing; spacing[0] = m_Controls->m_SpacingX->value(); spacing[1] = m_Controls->m_SpacingY->value(); spacing[2] = m_Controls->m_SpacingZ->value(); FilterType::Pointer filter = FilterType::New(); filter->SetGradientList(gradientList); filter->SetBValue(bVal); filter->SetNoiseVariance(m_Controls->m_NoiseLevel->value()); filter->SetImageRegion(imageRegion); filter->SetSpacing(spacing); filter->SetSignalRegions(m_SignalRegions); filter->SetGreyMatterAdc(m_Controls->m_GmAdc->value()); std::vector< float > tensorFA; std::vector< float > tensorADC; std::vector< float > tensorWeight; std::vector< vnl_vector_fixed > tensorDirection; for (int i=0; ivalue()); tensorADC.push_back(m_SpinAdc.at(i)->value()); vnl_vector_fixed dir; dir[0] = m_SpinX.at(i)->value(); dir[1] = m_SpinY.at(i)->value(); dir[2] = m_SpinZ.at(i)->value(); dir.normalize(); tensorDirection.push_back(dir); tensorWeight.push_back(m_SpinWeight.at(i)->value()); } filter->SetTensorFA(tensorFA); filter->SetTensorADC(tensorADC); filter->SetTensorWeight(tensorWeight); filter->SetTensorDirection(tensorDirection); if (!m_Controls->m_SimulateBaseline->isChecked()) filter->SetSimulateBaseline(false); else filter->SetSimulateBaseline(true); filter->Update(); mitk::DiffusionImage::Pointer image = mitk::DiffusionImage::New(); image->SetVectorImage( filter->GetOutput() ); image->SetReferenceBValue(bVal); image->SetDirections(gradientList); image->InitializeFromVectorImage(); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName(m_Controls->m_ImageName->text().toStdString()); GetDataStorage()->Add(node); mitk::BaseData::Pointer basedata = node->GetData(); if (basedata.IsNotNull()) { mitk::RenderingManager::GetInstance()->InitializeViews( basedata->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } if (m_Controls->m_OutputNumDirectionsBox->isChecked()) { ItkUcharImgType::Pointer numDirImage = filter->GetNumDirectionsImage(); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk( numDirImage.GetPointer() ); image->SetVolume( numDirImage->GetBufferPointer() ); mitk::DataNode::Pointer node2 = mitk::DataNode::New(); node2->SetData(image); QString name(m_Controls->m_ImageName->text()); name += "_NumDirections"; node2->SetName(name.toStdString().c_str()); GetDataStorage()->Add(node2); } if (m_Controls->m_OutputSnrImageBox->isChecked()) { ItkFloatImgType::Pointer snrImage = filter->GetSNRImage(); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk( snrImage.GetPointer() ); image->SetVolume( snrImage->GetBufferPointer() ); mitk::DataNode::Pointer node2 = mitk::DataNode::New(); node2->SetData(image); QString name(m_Controls->m_ImageName->text()); name += "_SNR"; node2->SetName(name.toStdString().c_str()); GetDataStorage()->Add(node2); } if (m_SignalRegionNodes.size()==0) return; if (m_Controls->m_OutputDirectionImagesBox->isChecked()) { typedef FilterType::ItkDirectionImageContainer ItkDirectionImageContainer; ItkDirectionImageContainer::Pointer container = filter->GetDirectionImageContainer(); for (int i=0; iSize(); i++) { FilterType::ItkDirectionImage::Pointer itkImg = container->GetElement(i); mitk::Image::Pointer img = mitk::Image::New(); img->InitializeByItk( itkImg.GetPointer() ); img->SetVolume( itkImg->GetBufferPointer() ); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData(img); QString name(m_Controls->m_ImageName->text()); name += "_Direction"; name += QString::number(i+1); node->SetName(name.toStdString().c_str()); GetDataStorage()->Add(node); } } if (m_Controls->m_OutputVectorFieldBox->isChecked()) { - mitk::Geometry3D::Pointer geometry = image->GetGeometry(); + mitk::BaseGeometry::Pointer geometry = image->GetGeometry(); mitk::Vector3D outImageSpacing = geometry->GetSpacing(); float minSpacing = 1; if(outImageSpacing[0]GetOutputFiberBundle(); directions->SetGeometry(geometry); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData(directions); QString name(m_Controls->m_ImageName->text()); name += "_VectorField"; node->SetName(name.toStdString().c_str()); node->SetProperty("Fiber2DSliceThickness", mitk::FloatProperty::New(minSpacing)); node->SetProperty("Fiber2DfadeEFX", mitk::BoolProperty::New(false)); GetDataStorage()->Add(node); } } void QmitkDwiSoftwarePhantomView::UpdateGui() { if (!m_SignalRegionNodes.empty()) { m_Controls->m_SignalRegionBox->setVisible(true); m_Controls->m_Instruction->setVisible(false); } else { m_Controls->m_SignalRegionBox->setVisible(false); m_Controls->m_Instruction->setVisible(true); } QLayout* layout = m_Controls->m_SignalRegionBox->layout(); for (int i=0; im_SignalRegionBox->setLayout(newlayout); if (!m_SignalRegionNodes.empty()) { QLabel* label1 = new QLabel("Image"); newlayout->addWidget(label1,0,0); m_Labels.push_back(label1); QLabel* label2 = new QLabel("FA"); newlayout->addWidget(label2,0,1); m_Labels.push_back(label2); QLabel* label3 = new QLabel("ADC"); newlayout->addWidget(label3,0,2); m_Labels.push_back(label3); QLabel* label4 = new QLabel("X"); newlayout->addWidget(label4,0,03); m_Labels.push_back(label4); QLabel* label5 = new QLabel("Y"); newlayout->addWidget(label5,0,4); m_Labels.push_back(label5); QLabel* label6 = new QLabel("Z"); newlayout->addWidget(label6,0,5); m_Labels.push_back(label6); QLabel* label7 = new QLabel("Weight"); newlayout->addWidget(label7,0,6); m_Labels.push_back(label7); } for (int i=0; iGetName().c_str()); newlayout->addWidget(label,i+1,0); m_Labels.push_back(label); QDoubleSpinBox* spinFa = new QDoubleSpinBox(); spinFa->setValue(0.7); spinFa->setMinimum(0); spinFa->setMaximum(1); spinFa->setSingleStep(0.1); newlayout->addWidget(spinFa,i+1,1); m_SpinFa.push_back(spinFa); QDoubleSpinBox* spinAdc = new QDoubleSpinBox(); newlayout->addWidget(spinAdc,i+1,2); spinAdc->setMinimum(0); spinAdc->setMaximum(1); spinAdc->setSingleStep(0.001); spinAdc->setDecimals(3); spinAdc->setValue(0.001); ///// ??????????????????????????? m_SpinAdc.push_back(spinAdc); QDoubleSpinBox* spinX = new QDoubleSpinBox(); newlayout->addWidget(spinX,i+1,3); spinX->setValue(1); spinX->setMinimum(-1); spinX->setMaximum(1); spinX->setSingleStep(0.1); m_SpinX.push_back(spinX); QDoubleSpinBox* spinY = new QDoubleSpinBox(); newlayout->addWidget(spinY,i+1,4); spinY->setMinimum(-1); spinY->setMaximum(1); spinY->setSingleStep(0.1); m_SpinY.push_back(spinY); QDoubleSpinBox* spinZ = new QDoubleSpinBox(); newlayout->addWidget(spinZ,i+1,5); spinZ->setMinimum(-1); spinZ->setMaximum(1); spinZ->setSingleStep(0.1); m_SpinZ.push_back(spinZ); QDoubleSpinBox* spinWeight = new QDoubleSpinBox(); newlayout->addWidget(spinWeight,i+1,6); spinWeight->setMinimum(0); spinWeight->setMaximum(1); spinWeight->setSingleStep(0.1); spinWeight->setValue(1.0); m_SpinWeight.push_back(spinWeight); } } void QmitkDwiSoftwarePhantomView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkDwiSoftwarePhantomView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } void QmitkDwiSoftwarePhantomView::OnSelectionChanged( std::vector nodes ) { m_SignalRegionNodes.clear(); // iterate all selected objects, adjust warning visibility for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if( node.IsNotNull() && dynamic_cast(node->GetData()) ) { bool isBinary = false; node->GetPropertyValue("binary", isBinary); if (isBinary) m_SignalRegionNodes.push_back(node); } } UpdateGui(); } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberExtractionView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberExtractionView.cpp index 40962c1646..b008e2de6b 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberExtractionView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberExtractionView.cpp @@ -1,1452 +1,1452 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Blueberry #include #include // Qmitk #include "QmitkFiberExtractionView.h" #include // Qt #include // MITK #include #include #include #include #include #include #include #include #include #include #include #include #include "usModuleRegistry.h" // ITK #include #include #include #include #include #include #include #include const std::string QmitkFiberExtractionView::VIEW_ID = "org.mitk.views.fiberextraction"; const std::string id_DataManager = "org.mitk.views.datamanager"; using namespace mitk; QmitkFiberExtractionView::QmitkFiberExtractionView() : QmitkFunctionality() , m_Controls( 0 ) , m_MultiWidget( NULL ) , m_CircleCounter(0) , m_PolygonCounter(0) , m_UpsamplingFactor(1) , m_LastAddedPf(NULL) { } // Destructor QmitkFiberExtractionView::~QmitkFiberExtractionView() { } void QmitkFiberExtractionView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkFiberExtractionViewControls; m_Controls->setupUi( parent ); m_Controls->doExtractFibersButton->setDisabled(true); m_Controls->PFCompoANDButton->setDisabled(true); m_Controls->PFCompoORButton->setDisabled(true); m_Controls->PFCompoNOTButton->setDisabled(true); m_Controls->m_PlanarFigureButtonsFrame->setEnabled(false); m_Controls->m_RectangleButton->setVisible(false); connect( m_Controls->m_CircleButton, SIGNAL( clicked() ), this, SLOT( OnDrawCircle() ) ); connect( m_Controls->m_PolygonButton, SIGNAL( clicked() ), this, SLOT( OnDrawPolygon() ) ); connect(m_Controls->PFCompoANDButton, SIGNAL(clicked()), this, SLOT(GenerateAndComposite()) ); connect(m_Controls->PFCompoORButton, SIGNAL(clicked()), this, SLOT(GenerateOrComposite()) ); connect(m_Controls->PFCompoNOTButton, SIGNAL(clicked()), this, SLOT(GenerateNotComposite()) ); connect(m_Controls->m_JoinBundles, SIGNAL(clicked()), this, SLOT(JoinBundles()) ); connect(m_Controls->m_SubstractBundles, SIGNAL(clicked()), this, SLOT(SubstractBundles()) ); connect(m_Controls->m_GenerateRoiImage, SIGNAL(clicked()), this, SLOT(GenerateRoiImage()) ); connect(m_Controls->m_Extract3dButton, SIGNAL(clicked()), this, SLOT(ExtractPassingMask())); connect( m_Controls->m_ExtractMask, SIGNAL(clicked()), this, SLOT(ExtractEndingInMask()) ); connect( m_Controls->doExtractFibersButton, SIGNAL(clicked()), this, SLOT(DoFiberExtraction()) ); connect( m_Controls->m_RemoveOutsideMaskButton, SIGNAL(clicked()), this, SLOT(DoRemoveOutsideMask())); connect( m_Controls->m_RemoveInsideMaskButton, SIGNAL(clicked()), this, SLOT(DoRemoveInsideMask())); } } void QmitkFiberExtractionView::DoRemoveInsideMask() { if (m_MaskImageNode.IsNull()) return; mitk::Image::Pointer mitkMask = dynamic_cast(m_MaskImageNode->GetData()); for (unsigned int i=0; i(m_SelectedFB.at(i)->GetData()); QString name(m_SelectedFB.at(i)->GetName().c_str()); itkUCharImageType::Pointer mask = itkUCharImageType::New(); mitk::CastToItkImage(mitkMask, mask); mitk::FiberBundleX::Pointer newFib = fib->RemoveFibersOutside(mask, true); if (newFib->GetNumFibers()<=0) { QMessageBox::information(NULL, "No output generated:", "The resulting fiber bundle contains no fibers."); continue; } DataNode::Pointer newNode = DataNode::New(); newNode->SetData(newFib); name += "_Cut"; newNode->SetName(name.toStdString()); GetDefaultDataStorage()->Add(newNode); m_SelectedFB.at(i)->SetVisibility(false); } } void QmitkFiberExtractionView::DoRemoveOutsideMask() { if (m_MaskImageNode.IsNull()) return; mitk::Image::Pointer mitkMask = dynamic_cast(m_MaskImageNode->GetData()); for (unsigned int i=0; i(m_SelectedFB.at(i)->GetData()); QString name(m_SelectedFB.at(i)->GetName().c_str()); itkUCharImageType::Pointer mask = itkUCharImageType::New(); mitk::CastToItkImage(mitkMask, mask); mitk::FiberBundleX::Pointer newFib = fib->RemoveFibersOutside(mask); if (newFib->GetNumFibers()<=0) { QMessageBox::information(NULL, "No output generated:", "The resulting fiber bundle contains no fibers."); continue; } DataNode::Pointer newNode = DataNode::New(); newNode->SetData(newFib); name += "_Cut"; newNode->SetName(name.toStdString()); GetDefaultDataStorage()->Add(newNode); m_SelectedFB.at(i)->SetVisibility(false); } } void QmitkFiberExtractionView::ExtractEndingInMask() { if (m_MaskImageNode.IsNull()) return; mitk::Image::Pointer mitkMask = dynamic_cast(m_MaskImageNode->GetData()); for (unsigned int i=0; i(m_SelectedFB.at(i)->GetData()); QString name(m_SelectedFB.at(i)->GetName().c_str()); itkUCharImageType::Pointer mask = itkUCharImageType::New(); mitk::CastToItkImage(mitkMask, mask); mitk::FiberBundleX::Pointer newFib = fib->ExtractFiberSubset(mask, false); if (newFib->GetNumFibers()<=0) { QMessageBox::information(NULL, "No output generated:", "The resulting fiber bundle contains no fibers."); continue; } DataNode::Pointer newNode = DataNode::New(); newNode->SetData(newFib); name += "_ending-in-mask"; newNode->SetName(name.toStdString()); GetDefaultDataStorage()->Add(newNode); m_SelectedFB.at(i)->SetVisibility(false); } } void QmitkFiberExtractionView::ExtractPassingMask() { if (m_MaskImageNode.IsNull()) return; mitk::Image::Pointer mitkMask = dynamic_cast(m_MaskImageNode->GetData()); for (unsigned int i=0; i(m_SelectedFB.at(i)->GetData()); QString name(m_SelectedFB.at(i)->GetName().c_str()); itkUCharImageType::Pointer mask = itkUCharImageType::New(); mitk::CastToItkImage(mitkMask, mask); mitk::FiberBundleX::Pointer newFib = fib->ExtractFiberSubset(mask, true); if (newFib->GetNumFibers()<=0) { QMessageBox::information(NULL, "No output generated:", "The resulting fiber bundle contains no fibers."); continue; } DataNode::Pointer newNode = DataNode::New(); newNode->SetData(newFib); name += "_passing-mask"; newNode->SetName(name.toStdString()); GetDefaultDataStorage()->Add(newNode); m_SelectedFB.at(i)->SetVisibility(false); } } void QmitkFiberExtractionView::GenerateRoiImage(){ if (m_SelectedPF.empty()) return; - mitk::Geometry3D::Pointer geometry; + mitk::BaseGeometry::Pointer geometry; if (!m_SelectedFB.empty()) { mitk::FiberBundleX::Pointer fib = dynamic_cast(m_SelectedFB.front()->GetData()); geometry = fib->GetGeometry(); } else if (m_SelectedImage) geometry = m_SelectedImage->GetGeometry(); else return; itk::Vector spacing = geometry->GetSpacing(); spacing /= m_UpsamplingFactor; mitk::Point3D newOrigin = geometry->GetOrigin(); mitk::Geometry3D::BoundsArrayType bounds = geometry->GetBounds(); newOrigin[0] += bounds.GetElement(0); newOrigin[1] += bounds.GetElement(2); newOrigin[2] += bounds.GetElement(4); itk::Matrix direction; itk::ImageRegion<3> imageRegion; for (int i=0; i<3; i++) for (int j=0; j<3; j++) direction[j][i] = geometry->GetMatrixColumn(i)[j]/spacing[j]; imageRegion.SetSize(0, geometry->GetExtent(0)*m_UpsamplingFactor); imageRegion.SetSize(1, geometry->GetExtent(1)*m_UpsamplingFactor); imageRegion.SetSize(2, geometry->GetExtent(2)*m_UpsamplingFactor); m_PlanarFigureImage = itkUCharImageType::New(); m_PlanarFigureImage->SetSpacing( spacing ); // Set the image spacing m_PlanarFigureImage->SetOrigin( newOrigin ); // Set the image origin m_PlanarFigureImage->SetDirection( direction ); // Set the image direction m_PlanarFigureImage->SetRegions( imageRegion ); m_PlanarFigureImage->Allocate(); m_PlanarFigureImage->FillBuffer( 0 ); Image::Pointer tmpImage = Image::New(); tmpImage->InitializeByItk(m_PlanarFigureImage.GetPointer()); tmpImage->SetVolume(m_PlanarFigureImage->GetBufferPointer()); for (unsigned int i=0; iInitializeByItk(m_PlanarFigureImage.GetPointer()); tmpImage->SetVolume(m_PlanarFigureImage->GetBufferPointer()); node->SetData(tmpImage); node->SetName("ROI Image"); this->GetDefaultDataStorage()->Add(node); } void QmitkFiberExtractionView::CompositeExtraction(mitk::DataNode::Pointer node, mitk::Image* image) { if (dynamic_cast(node.GetPointer()->GetData()) && !dynamic_cast(node.GetPointer()->GetData())) { m_PlanarFigure = dynamic_cast(node.GetPointer()->GetData()); AccessFixedDimensionByItk_2( image, InternalReorientImagePlane, 3, m_PlanarFigure->GetGeometry(), -1); AccessFixedDimensionByItk_2( m_InternalImage, InternalCalculateMaskFromPlanarFigure, 3, 2, node->GetName() ); } } template < typename TPixel, unsigned int VImageDimension > -void QmitkFiberExtractionView::InternalReorientImagePlane( const itk::Image< TPixel, VImageDimension > *image, mitk::Geometry3D* planegeo3D, int additionalIndex ) +void QmitkFiberExtractionView::InternalReorientImagePlane( const itk::Image< TPixel, VImageDimension > *image, mitk::BaseGeometry* planegeo3D, int additionalIndex ) { MITK_DEBUG << "InternalReorientImagePlane() start"; typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< float, VImageDimension > FloatImageType; typedef itk::ResampleImageFilter ResamplerType; typename ResamplerType::Pointer resampler = ResamplerType::New(); mitk::PlaneGeometry* planegeo = dynamic_cast(planegeo3D); float upsamp = m_UpsamplingFactor; float gausssigma = 0.5; // Spacing typename ResamplerType::SpacingType spacing = planegeo->GetSpacing(); spacing[0] = image->GetSpacing()[0] / upsamp; spacing[1] = image->GetSpacing()[1] / upsamp; spacing[2] = image->GetSpacing()[2]; resampler->SetOutputSpacing( spacing ); // Size typename ResamplerType::SizeType size; - size[0] = planegeo->GetParametricExtentInMM(0) / spacing[0]; - size[1] = planegeo->GetParametricExtentInMM(1) / spacing[1]; + size[0] = planegeo->GetExtentInMM(0) / spacing[0]; + size[1] = planegeo->GetExtentInMM(1) / spacing[1]; size[2] = 1; resampler->SetSize( size ); // Origin typename mitk::Point3D orig = planegeo->GetOrigin(); typename mitk::Point3D corrorig; planegeo3D->WorldToIndex(orig,corrorig); corrorig[0] += 0.5/upsamp; corrorig[1] += 0.5/upsamp; corrorig[2] += 0; planegeo3D->IndexToWorld(corrorig,corrorig); resampler->SetOutputOrigin(corrorig ); // Direction typename ResamplerType::DirectionType direction; typename mitk::AffineTransform3D::MatrixType matrix = planegeo->GetIndexToWorldTransform()->GetMatrix(); for(int c=0; cSetOutputDirection( direction ); // Gaussian interpolation if(gausssigma != 0) { double sigma[3]; for( unsigned int d = 0; d < 3; d++ ) { sigma[d] = gausssigma * image->GetSpacing()[d]; } double alpha = 2.0; typedef itk::GaussianInterpolateImageFunction GaussianInterpolatorType; typename GaussianInterpolatorType::Pointer interpolator = GaussianInterpolatorType::New(); interpolator->SetInputImage( image ); interpolator->SetParameters( sigma, alpha ); resampler->SetInterpolator( interpolator ); } else { // typedef typename itk::BSplineInterpolateImageFunction // InterpolatorType; typedef typename itk::LinearInterpolateImageFunction InterpolatorType; typename InterpolatorType::Pointer interpolator = InterpolatorType::New(); interpolator->SetInputImage( image ); resampler->SetInterpolator( interpolator ); } // Other resampling options resampler->SetInput( image ); resampler->SetDefaultPixelValue(0); MITK_DEBUG << "Resampling requested image plane ... "; resampler->Update(); MITK_DEBUG << " ... done"; if(additionalIndex < 0) { this->m_InternalImage = mitk::Image::New(); this->m_InternalImage->InitializeByItk( resampler->GetOutput() ); this->m_InternalImage->SetVolume( resampler->GetOutput()->GetBufferPointer() ); } } template < typename TPixel, unsigned int VImageDimension > void QmitkFiberExtractionView::InternalCalculateMaskFromPlanarFigure( itk::Image< TPixel, VImageDimension > *image, unsigned int axis, std::string ) { MITK_DEBUG << "InternalCalculateMaskFromPlanarFigure() start"; typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::CastImageFilter< ImageType, itkUCharImageType > CastFilterType; // Generate mask image as new image with same header as input image and // initialize with "1". itkUCharImageType::Pointer newMaskImage = itkUCharImageType::New(); newMaskImage->SetSpacing( image->GetSpacing() ); // Set the image spacing newMaskImage->SetOrigin( image->GetOrigin() ); // Set the image origin newMaskImage->SetDirection( image->GetDirection() ); // Set the image direction newMaskImage->SetRegions( image->GetLargestPossibleRegion() ); newMaskImage->Allocate(); newMaskImage->FillBuffer( 1 ); // Generate VTK polygon from (closed) PlanarFigure polyline // (The polyline points are shifted by -0.5 in z-direction to make sure // that the extrusion filter, which afterwards elevates all points by +0.5 // in z-direction, creates a 3D object which is cut by the the plane z=0) const Geometry2D *planarFigureGeometry2D = m_PlanarFigure->GetGeometry2D(); const PlanarFigure::PolyLineType planarFigurePolyline = m_PlanarFigure->GetPolyLine( 0 ); - const Geometry3D *imageGeometry3D = m_InternalImage->GetGeometry( 0 ); + const BaseGeometry *imageGeometry3D = m_InternalImage->GetGeometry( 0 ); vtkPolyData *polyline = vtkPolyData::New(); polyline->Allocate( 1, 1 ); // Determine x- and y-dimensions depending on principal axis int i0, i1; switch ( axis ) { case 0: i0 = 1; i1 = 2; break; case 1: i0 = 0; i1 = 2; break; case 2: default: i0 = 0; i1 = 1; break; } // Create VTK polydata object of polyline contour vtkPoints *points = vtkPoints::New(); PlanarFigure::PolyLineType::const_iterator it; std::vector indices; unsigned int numberOfPoints = 0; for ( it = planarFigurePolyline.begin(); it != planarFigurePolyline.end(); ++it ) { Point3D point3D; // Convert 2D point back to the local index coordinates of the selected // image Point2D point2D = it->Point; planarFigureGeometry2D->WorldToIndex(point2D, point2D); point2D[0] -= 0.5/m_UpsamplingFactor; point2D[1] -= 0.5/m_UpsamplingFactor; planarFigureGeometry2D->IndexToWorld(point2D, point2D); planarFigureGeometry2D->Map( point2D, point3D ); // Polygons (partially) outside of the image bounds can not be processed // further due to a bug in vtkPolyDataToImageStencil if ( !imageGeometry3D->IsInside( point3D ) ) { float bounds[2] = {0,0}; bounds[0] = this->m_InternalImage->GetLargestPossibleRegion().GetSize().GetElement(i0); bounds[1] = this->m_InternalImage->GetLargestPossibleRegion().GetSize().GetElement(i1); imageGeometry3D->WorldToIndex( point3D, point3D ); // if (point3D[i0]<0) // point3D[i0] = 0.5; // else if (point3D[i0]>bounds[0]) // point3D[i0] = bounds[0]-0.5; // if (point3D[i1]<0) // point3D[i1] = 0.5; // else if (point3D[i1]>bounds[1]) // point3D[i1] = bounds[1]-0.5; if (point3D[i0]<0) point3D[i0] = 0.0; else if (point3D[i0]>bounds[0]) point3D[i0] = bounds[0]-0.001; if (point3D[i1]<0) point3D[i1] = 0.0; else if (point3D[i1]>bounds[1]) point3D[i1] = bounds[1]-0.001; points->InsertNextPoint( point3D[i0], point3D[i1], -0.5 ); numberOfPoints++; } else { imageGeometry3D->WorldToIndex( point3D, point3D ); // Add point to polyline array points->InsertNextPoint( point3D[i0], point3D[i1], -0.5 ); numberOfPoints++; } } polyline->SetPoints( points ); points->Delete(); vtkIdType *ptIds = new vtkIdType[numberOfPoints]; for ( vtkIdType i = 0; i < numberOfPoints; ++i ) { ptIds[i] = i; } polyline->InsertNextCell( VTK_POLY_LINE, numberOfPoints, ptIds ); // Extrude the generated contour polygon vtkLinearExtrusionFilter *extrudeFilter = vtkLinearExtrusionFilter::New(); extrudeFilter->SetInputData( polyline ); extrudeFilter->SetScaleFactor( 1 ); extrudeFilter->SetExtrusionTypeToNormalExtrusion(); extrudeFilter->SetVector( 0.0, 0.0, 1.0 ); // Make a stencil from the extruded polygon vtkPolyDataToImageStencil *polyDataToImageStencil = vtkPolyDataToImageStencil::New(); polyDataToImageStencil->SetInputConnection( extrudeFilter->GetOutputPort() ); // Export from ITK to VTK (to use a VTK filter) typedef itk::VTKImageImport< itkUCharImageType > ImageImportType; typedef itk::VTKImageExport< itkUCharImageType > ImageExportType; typename ImageExportType::Pointer itkExporter = ImageExportType::New(); itkExporter->SetInput( newMaskImage ); vtkImageImport *vtkImporter = vtkImageImport::New(); this->ConnectPipelines( itkExporter, vtkImporter ); vtkImporter->Update(); // Apply the generated image stencil to the input image vtkImageStencil *imageStencilFilter = vtkImageStencil::New(); imageStencilFilter->SetInputConnection( vtkImporter->GetOutputPort() ); imageStencilFilter->SetStencilConnection(polyDataToImageStencil->GetOutputPort() ); imageStencilFilter->ReverseStencilOff(); imageStencilFilter->SetBackgroundValue( 0 ); imageStencilFilter->Update(); // Export from VTK back to ITK vtkImageExport *vtkExporter = vtkImageExport::New(); vtkExporter->SetInputConnection( imageStencilFilter->GetOutputPort() ); vtkExporter->Update(); typename ImageImportType::Pointer itkImporter = ImageImportType::New(); this->ConnectPipelines( vtkExporter, itkImporter ); itkImporter->Update(); // calculate cropping bounding box m_InternalImageMask3D = itkImporter->GetOutput(); m_InternalImageMask3D->SetDirection(image->GetDirection()); itk::ImageRegionConstIterator itmask(m_InternalImageMask3D, m_InternalImageMask3D->GetLargestPossibleRegion()); itk::ImageRegionIterator itimage(image, image->GetLargestPossibleRegion()); itmask.GoToBegin(); itimage.GoToBegin(); typename ImageType::SizeType lowersize = {{9999999999,9999999999,9999999999}}; typename ImageType::SizeType uppersize = {{0,0,0}}; while( !itmask.IsAtEnd() ) { if(itmask.Get() == 0) { itimage.Set(0); } else { typename ImageType::IndexType index = itimage.GetIndex(); typename ImageType::SizeType signedindex; signedindex[0] = index[0]; signedindex[1] = index[1]; signedindex[2] = index[2]; lowersize[0] = signedindex[0] < lowersize[0] ? signedindex[0] : lowersize[0]; lowersize[1] = signedindex[1] < lowersize[1] ? signedindex[1] : lowersize[1]; lowersize[2] = signedindex[2] < lowersize[2] ? signedindex[2] : lowersize[2]; uppersize[0] = signedindex[0] > uppersize[0] ? signedindex[0] : uppersize[0]; uppersize[1] = signedindex[1] > uppersize[1] ? signedindex[1] : uppersize[1]; uppersize[2] = signedindex[2] > uppersize[2] ? signedindex[2] : uppersize[2]; } ++itmask; ++itimage; } typename ImageType::IndexType index; index[0] = lowersize[0]; index[1] = lowersize[1]; index[2] = lowersize[2]; typename ImageType::SizeType size; size[0] = uppersize[0] - lowersize[0] + 1; size[1] = uppersize[1] - lowersize[1] + 1; size[2] = uppersize[2] - lowersize[2] + 1; itk::ImageRegion<3> cropRegion = itk::ImageRegion<3>(index, size); // crop internal mask typedef itk::RegionOfInterestImageFilter< itkUCharImageType, itkUCharImageType > ROIMaskFilterType; typename ROIMaskFilterType::Pointer roi2 = ROIMaskFilterType::New(); roi2->SetRegionOfInterest(cropRegion); roi2->SetInput(m_InternalImageMask3D); roi2->Update(); m_InternalImageMask3D = roi2->GetOutput(); Image::Pointer tmpImage = Image::New(); tmpImage->InitializeByItk(m_InternalImageMask3D.GetPointer()); tmpImage->SetVolume(m_InternalImageMask3D->GetBufferPointer()); Image::Pointer tmpImage2 = Image::New(); tmpImage2->InitializeByItk(m_PlanarFigureImage.GetPointer()); - const Geometry3D *pfImageGeometry3D = tmpImage2->GetGeometry( 0 ); + const BaseGeometry *pfImageGeometry3D = tmpImage2->GetGeometry( 0 ); - const Geometry3D *intImageGeometry3D = tmpImage->GetGeometry( 0 ); + const BaseGeometry *intImageGeometry3D = tmpImage->GetGeometry( 0 ); typedef itk::ImageRegionIteratorWithIndex IteratorType; IteratorType imageIterator (m_InternalImageMask3D, m_InternalImageMask3D->GetRequestedRegion()); imageIterator.GoToBegin(); while ( !imageIterator.IsAtEnd() ) { unsigned char val = imageIterator.Value(); if (val>0) { itk::Index<3> index = imageIterator.GetIndex(); Point3D point; point[0] = index[0]; point[1] = index[1]; point[2] = index[2]; intImageGeometry3D->IndexToWorld(point, point); pfImageGeometry3D->WorldToIndex(point, point); point[i0] += 0.5; point[i1] += 0.5; index[0] = point[0]; index[1] = point[1]; index[2] = point[2]; if (pfImageGeometry3D->IsIndexInside(index)) m_PlanarFigureImage->SetPixel(index, 1); } ++imageIterator; } // Clean up VTK objects polyline->Delete(); extrudeFilter->Delete(); polyDataToImageStencil->Delete(); vtkImporter->Delete(); imageStencilFilter->Delete(); //vtkExporter->Delete(); // TODO: crashes when outcommented; memory leak?? delete[] ptIds; } void QmitkFiberExtractionView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkFiberExtractionView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } /* OnSelectionChanged is registered to SelectionService, therefore no need to implement SelectionService Listener explicitly */ void QmitkFiberExtractionView::UpdateGui() { m_Controls->m_Extract3dButton->setEnabled(false); m_Controls->m_ExtractMask->setEnabled(false); m_Controls->m_RemoveOutsideMaskButton->setEnabled(false); m_Controls->m_RemoveInsideMaskButton->setEnabled(false); // are fiber bundles selected? if ( m_SelectedFB.empty() ) { m_Controls->m_InputData->setTitle("Please Select Input Data"); m_Controls->m_JoinBundles->setEnabled(false); m_Controls->m_SubstractBundles->setEnabled(false); m_Controls->doExtractFibersButton->setEnabled(false); m_Controls->m_PlanarFigureButtonsFrame->setEnabled(false); } else { m_Controls->m_InputData->setTitle("Input Data"); m_Controls->m_PlanarFigureButtonsFrame->setEnabled(true); // one bundle and one planar figure needed to extract fibers if (!m_SelectedPF.empty()) m_Controls->doExtractFibersButton->setEnabled(true); // more than two bundles needed to join/subtract if (m_SelectedFB.size() > 1) { m_Controls->m_JoinBundles->setEnabled(true); m_Controls->m_SubstractBundles->setEnabled(true); } else { m_Controls->m_JoinBundles->setEnabled(false); m_Controls->m_SubstractBundles->setEnabled(false); } if (m_MaskImageNode.IsNotNull()) { m_Controls->m_Extract3dButton->setEnabled(true); m_Controls->m_ExtractMask->setEnabled(true); m_Controls->m_RemoveOutsideMaskButton->setEnabled(true); m_Controls->m_RemoveInsideMaskButton->setEnabled(true); } } // are planar figures selected? if ( m_SelectedPF.empty() ) { m_Controls->doExtractFibersButton->setEnabled(false); m_Controls->PFCompoANDButton->setEnabled(false); m_Controls->PFCompoORButton->setEnabled(false); m_Controls->PFCompoNOTButton->setEnabled(false); m_Controls->m_GenerateRoiImage->setEnabled(false); } else { if ( !m_SelectedFB.empty() || m_SelectedImage.IsNotNull()) m_Controls->m_GenerateRoiImage->setEnabled(true); else m_Controls->m_GenerateRoiImage->setEnabled(false); if (m_SelectedPF.size() > 1) { m_Controls->PFCompoANDButton->setEnabled(true); m_Controls->PFCompoORButton->setEnabled(true); m_Controls->PFCompoNOTButton->setEnabled(false); } else { m_Controls->PFCompoANDButton->setEnabled(false); m_Controls->PFCompoORButton->setEnabled(false); m_Controls->PFCompoNOTButton->setEnabled(true); } } } void QmitkFiberExtractionView::OnSelectionChanged( std::vector nodes ) { //reset existing Vectors containing FiberBundles and PlanarFigures from a previous selection m_SelectedFB.clear(); m_SelectedPF.clear(); m_SelectedSurfaces.clear(); m_SelectedImage = NULL; m_MaskImageNode = NULL; m_Controls->m_FibLabel->setText("mandatory"); m_Controls->m_PfLabel->setText("needed for extraction"); for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if ( dynamic_cast(node->GetData()) ) { m_Controls->m_FibLabel->setText(node->GetName().c_str()); m_SelectedFB.push_back(node); } else if (dynamic_cast(node->GetData())) { m_Controls->m_PfLabel->setText(node->GetName().c_str()); m_SelectedPF.push_back(node); } else if (dynamic_cast(node->GetData())) { m_SelectedImage = dynamic_cast(node->GetData()); bool isBinary = false; node->GetPropertyValue("binary", isBinary); if (isBinary) { m_MaskImageNode = node; m_Controls->m_PfLabel->setText(node->GetName().c_str()); } } else if (dynamic_cast(node->GetData())) { m_Controls->m_PfLabel->setText(node->GetName().c_str()); m_SelectedSurfaces.push_back(dynamic_cast(node->GetData())); } } if (m_SelectedFB.empty()) { int maxLayer = 0; itk::VectorContainer::ConstPointer nodes = this->GetDefaultDataStorage()->GetAll(); for (unsigned int i=0; iSize(); i++) if (dynamic_cast(nodes->at(i)->GetData())) { int layer = 0; nodes->at(i)->GetPropertyValue("layer", layer); if (layer>=maxLayer) { maxLayer = layer; m_Controls->m_FibLabel->setText(nodes->at(i)->GetName().c_str()); m_SelectedFB.clear(); m_SelectedFB.push_back(nodes->at(i)); } } } if (m_SelectedPF.empty() && m_LastAddedPf.IsNotNull()) { m_Controls->m_PfLabel->setText(m_LastAddedPf->GetName().c_str()); m_SelectedPF.push_back(m_LastAddedPf); // int maxLayer = 0; // itk::VectorContainer::ConstPointer nodes = this->GetDefaultDataStorage()->GetAll(); // for (unsigned int i=0; iSize(); i++) // if (dynamic_cast(nodes->at(i)->GetData())) // { // int layer; // nodes->at(i)->GetPropertyValue("layer", layer); // if (layer>=maxLayer) // { // maxLayer = layer; // m_Controls->m_PfLabel->setText(nodes->at(i)->GetName().c_str()); // m_SelectedPF.clear(); // m_SelectedPF.push_back(nodes->at(i)); // } // } } UpdateGui(); GenerateStats(); } void QmitkFiberExtractionView::OnDrawPolygon() { // bool checked = m_Controls->m_PolygonButton->isChecked(); // if(!this->AssertDrawingIsPossible(checked)) // return; mitk::PlanarPolygon::Pointer figure = mitk::PlanarPolygon::New(); figure->ClosedOn(); this->AddFigureToDataStorage(figure, QString("Polygon%1").arg(++m_PolygonCounter)); MITK_DEBUG << "PlanarPolygon created ..."; mitk::DataStorage::SetOfObjects::ConstPointer _NodeSet = this->GetDefaultDataStorage()->GetAll(); mitk::DataNode* node = 0; mitk::PlanarFigureInteractor::Pointer figureInteractor = 0; mitk::PlanarFigure* figureP = 0; for(mitk::DataStorage::SetOfObjects::ConstIterator it=_NodeSet->Begin(); it!=_NodeSet->End() ; it++) { node = const_cast(it->Value().GetPointer()); figureP = dynamic_cast(node->GetData()); if(figureP) { figureInteractor = dynamic_cast(node->GetDataInteractor().GetPointer()); if(figureInteractor.IsNull()) { figureInteractor = mitk::PlanarFigureInteractor::New(); us::Module* planarFigureModule = us::ModuleRegistry::GetModule( "MitkPlanarFigure" ); figureInteractor->LoadStateMachine("PlanarFigureInteraction.xml", planarFigureModule ); figureInteractor->SetEventConfig( "PlanarFigureConfig.xml", planarFigureModule ); figureInteractor->SetDataNode( node ); } } } } void QmitkFiberExtractionView::OnDrawCircle() { mitk::PlanarCircle::Pointer figure = mitk::PlanarCircle::New(); this->AddFigureToDataStorage(figure, QString("Circle%1").arg(++m_CircleCounter)); this->GetDataStorage()->Modified(); mitk::DataStorage::SetOfObjects::ConstPointer _NodeSet = this->GetDefaultDataStorage()->GetAll(); mitk::DataNode* node = 0; mitk::PlanarFigureInteractor::Pointer figureInteractor = 0; mitk::PlanarFigure* figureP = 0; for(mitk::DataStorage::SetOfObjects::ConstIterator it=_NodeSet->Begin(); it!=_NodeSet->End(); it++) { node = const_cast(it->Value().GetPointer()); figureP = dynamic_cast(node->GetData()); if(figureP) { figureInteractor = dynamic_cast(node->GetDataInteractor().GetPointer()); if(figureInteractor.IsNull()) { figureInteractor = mitk::PlanarFigureInteractor::New(); us::Module* planarFigureModule = us::ModuleRegistry::GetModule( "MitkPlanarFigure" ); figureInteractor->LoadStateMachine("PlanarFigureInteraction.xml", planarFigureModule ); figureInteractor->SetEventConfig( "PlanarFigureConfig.xml", planarFigureModule ); figureInteractor->SetDataNode( node ); } } } } void QmitkFiberExtractionView::Activated() { } void QmitkFiberExtractionView::AddFigureToDataStorage(mitk::PlanarFigure* figure, const QString& name, const char *, mitk::BaseProperty * ) { // initialize figure's geometry with empty geometry mitk::PlaneGeometry::Pointer emptygeometry = mitk::PlaneGeometry::New(); figure->SetGeometry2D( emptygeometry ); //set desired data to DataNode where Planarfigure is stored mitk::DataNode::Pointer newNode = mitk::DataNode::New(); newNode->SetName(name.toStdString()); newNode->SetData(figure); newNode->SetBoolProperty("planarfigure.3drendering", true); // figure drawn on the topmost layer / image newNode->SetColor(1.0,1.0,1.0); newNode->SetOpacity(0.8); GetDataStorage()->Add(newNode ); for(unsigned int i = 0; i < m_SelectedPF.size(); i++) m_SelectedPF[i]->SetSelected(false); newNode->SetSelected(true); m_SelectedPF.clear(); m_SelectedPF.push_back(newNode); m_LastAddedPf = newNode; m_Controls->m_PfLabel->setText(newNode->GetName().c_str()); } void QmitkFiberExtractionView::DoFiberExtraction() { if ( m_SelectedFB.empty() ){ QMessageBox::information( NULL, "Warning", "No fibe bundle selected!"); MITK_WARN("QmitkFiberExtractionView") << "no fibe bundle selected"; return; } for (unsigned int i=0; i(m_SelectedFB.at(i)->GetData()); mitk::PlanarFigure::Pointer roi = dynamic_cast (m_SelectedPF.at(0)->GetData()); mitk::FiberBundleX::Pointer extFB = fib->ExtractFiberSubset(roi); if (extFB->GetNumFibers()<=0) { QMessageBox::information(NULL, "No output generated:", "The resulting fiber bundle contains no fibers."); continue; } mitk::DataNode::Pointer node; node = mitk::DataNode::New(); node->SetData(extFB); QString name(m_SelectedFB.at(i)->GetName().c_str()); name += "_"; name += m_SelectedPF.at(0)->GetName().c_str(); node->SetName(name.toStdString()); GetDataStorage()->Add(node); m_SelectedFB.at(i)->SetVisibility(false); } } void QmitkFiberExtractionView::GenerateAndComposite() { mitk::PlanarFigureComposite::Pointer PFCAnd = mitk::PlanarFigureComposite::New(); mitk::PlaneGeometry* currentGeometry2D = dynamic_cast( const_cast(GetActiveStdMultiWidget()->GetRenderWindow1()->GetRenderer()->GetCurrentWorldGeometry2D())); PFCAnd->SetGeometry2D(currentGeometry2D); PFCAnd->setOperationType(mitk::PFCOMPOSITION_AND_OPERATION); for( std::vector::iterator it = m_SelectedPF.begin(); it != m_SelectedPF.end(); ++it ) { mitk::DataNode::Pointer nodePF = *it; mitk::PlanarFigure::Pointer tmpPF = dynamic_cast( nodePF->GetData() ); PFCAnd->addPlanarFigure( tmpPF ); PFCAnd->addDataNode( nodePF ); PFCAnd->setDisplayName("AND_COMPO"); } AddCompositeToDatastorage(PFCAnd, NULL); } void QmitkFiberExtractionView::GenerateOrComposite() { mitk::PlanarFigureComposite::Pointer PFCOr = mitk::PlanarFigureComposite::New(); mitk::PlaneGeometry* currentGeometry2D = dynamic_cast( const_cast(GetActiveStdMultiWidget()->GetRenderWindow1()->GetRenderer()->GetCurrentWorldGeometry2D())); PFCOr->SetGeometry2D(currentGeometry2D); PFCOr->setOperationType(mitk::PFCOMPOSITION_OR_OPERATION); for( std::vector::iterator it = m_SelectedPF.begin(); it != m_SelectedPF.end(); ++it ) { mitk::DataNode::Pointer nodePF = *it; mitk::PlanarFigure::Pointer tmpPF = dynamic_cast( nodePF->GetData() ); PFCOr->addPlanarFigure( tmpPF ); PFCOr->addDataNode( nodePF ); PFCOr->setDisplayName("OR_COMPO"); } AddCompositeToDatastorage(PFCOr, NULL); } void QmitkFiberExtractionView::GenerateNotComposite() { mitk::PlanarFigureComposite::Pointer PFCNot = mitk::PlanarFigureComposite::New(); mitk::PlaneGeometry* currentGeometry2D = dynamic_cast( const_cast(GetActiveStdMultiWidget()->GetRenderWindow1()->GetRenderer()->GetCurrentWorldGeometry2D())); PFCNot->SetGeometry2D(currentGeometry2D); PFCNot->setOperationType(mitk::PFCOMPOSITION_NOT_OPERATION); for( std::vector::iterator it = m_SelectedPF.begin(); it != m_SelectedPF.end(); ++it ) { mitk::DataNode::Pointer nodePF = *it; mitk::PlanarFigure::Pointer tmpPF = dynamic_cast( nodePF->GetData() ); PFCNot->addPlanarFigure( tmpPF ); PFCNot->addDataNode( nodePF ); PFCNot->setDisplayName("NOT_COMPO"); } AddCompositeToDatastorage(PFCNot, NULL); } /* CLEANUP NEEDED */ void QmitkFiberExtractionView::AddCompositeToDatastorage(mitk::PlanarFigureComposite::Pointer pfcomp, mitk::DataNode::Pointer parentDataNode ) { mitk::DataNode::Pointer newPFCNode; newPFCNode = mitk::DataNode::New(); newPFCNode->SetName( pfcomp->getDisplayName() ); newPFCNode->SetData(pfcomp); newPFCNode->SetVisibility(true); for(unsigned int i = 0; i < m_SelectedPF.size(); i++) m_SelectedPF[i]->SetSelected(false); newPFCNode->SetSelected(true); m_LastAddedPf = newPFCNode; m_SelectedPF.clear(); m_SelectedPF.push_back(newPFCNode); m_Controls->m_PfLabel->setText(newPFCNode->GetName().c_str()); switch (pfcomp->getOperationType()) { case 0: { if (!parentDataNode.IsNull()) { GetDataStorage()->Add(newPFCNode, parentDataNode); } else { GetDataStorage()->Add(newPFCNode); } //iterate through its childs for(int i=0; igetNumberOfChildren(); ++i) { mitk::PlanarFigure::Pointer tmpPFchild = pfcomp->getChildAt(i); mitk::DataNode::Pointer savedPFchildNode = pfcomp->getDataNodeAt(i); mitk::PlanarFigureComposite::Pointer pfcompcast= dynamic_cast(tmpPFchild.GetPointer()); if ( !pfcompcast.IsNull() ) { // child is of type planar Figure composite // make new node of the child, cuz later the child has to be removed of its old position in datamanager // feed new dataNode with information of the savedDataNode, which is gonna be removed soon mitk::DataNode::Pointer newChildPFCNode; newChildPFCNode = mitk::DataNode::New(); newChildPFCNode->SetData(tmpPFchild); newChildPFCNode->SetName( savedPFchildNode->GetName() ); pfcompcast->setDisplayName( savedPFchildNode->GetName() ); //name might be changed in DataManager by user //update inside vector the dataNodePointer pfcomp->replaceDataNodeAt(i, newChildPFCNode); AddCompositeToDatastorage(pfcompcast, newPFCNode); //the current PFCNode becomes the childs parent // remove savedNode here, cuz otherwise its children will change their position in the dataNodeManager // without having its parent anymore //GetDataStorage()->Remove(savedPFchildNode); if ( GetDataStorage()->Exists(savedPFchildNode)) { MITK_DEBUG << savedPFchildNode->GetName() << " exists in DS...trying to remove it"; }else{ MITK_DEBUG << "[ERROR] does NOT exist, but can I read its Name? " << savedPFchildNode->GetName(); } // remove old child position in dataStorage GetDataStorage()->Remove(savedPFchildNode); if ( GetDataStorage()->Exists(savedPFchildNode)) { MITK_DEBUG << savedPFchildNode->GetName() << " still exists"; } } else { // child is not of type PlanarFigureComposite, so its one of the planarFigures // create new dataNode containing the data of the old dataNode, but position in dataManager will be // modified cuz we re setting a (new) parent. mitk::DataNode::Pointer newPFchildNode = mitk::DataNode::New(); newPFchildNode->SetName(savedPFchildNode->GetName() ); newPFchildNode->SetData(tmpPFchild); newPFchildNode->SetVisibility(true); // replace the dataNode in PFComp DataNodeVector pfcomp->replaceDataNodeAt(i, newPFchildNode); if ( GetDataStorage()->Exists(savedPFchildNode)) { MITK_DEBUG << savedPFchildNode->GetName() << " exists in DS...trying to remove it"; } else { MITK_DEBUG << "[ERROR] does NOT exist, but can I read its Name? " << savedPFchildNode->GetName(); } // remove old child position in dataStorage GetDataStorage()->Remove(savedPFchildNode); if ( GetDataStorage()->Exists(savedPFchildNode)) { MITK_DEBUG << savedPFchildNode->GetName() << " still exists"; } MITK_DEBUG << "adding " << newPFchildNode->GetName() << " to " << newPFCNode->GetName(); //add new child to datamanager with its new position as child of newPFCNode parent GetDataStorage()->Add(newPFchildNode, newPFCNode); } } GetDataStorage()->Modified(); break; } case 1: { if (!parentDataNode.IsNull()) { MITK_DEBUG << "adding " << newPFCNode->GetName() << " to " << parentDataNode->GetName() ; GetDataStorage()->Add(newPFCNode, parentDataNode); } else { MITK_DEBUG << "adding " << newPFCNode->GetName(); GetDataStorage()->Add(newPFCNode); } for(int i=0; igetNumberOfChildren(); ++i) { mitk::PlanarFigure::Pointer tmpPFchild = pfcomp->getChildAt(i); mitk::DataNode::Pointer savedPFchildNode = pfcomp->getDataNodeAt(i); mitk::PlanarFigureComposite::Pointer pfcompcast= dynamic_cast(tmpPFchild.GetPointer()); if ( !pfcompcast.IsNull() ) { // child is of type planar Figure composite // make new node of the child, cuz later the child has to be removed of its old position in datamanager // feed new dataNode with information of the savedDataNode, which is gonna be removed soon mitk::DataNode::Pointer newChildPFCNode; newChildPFCNode = mitk::DataNode::New(); newChildPFCNode->SetData(tmpPFchild); newChildPFCNode->SetName( savedPFchildNode->GetName() ); pfcompcast->setDisplayName( savedPFchildNode->GetName() ); //name might be changed in DataManager by user //update inside vector the dataNodePointer pfcomp->replaceDataNodeAt(i, newChildPFCNode); AddCompositeToDatastorage(pfcompcast, newPFCNode); //the current PFCNode becomes the childs parent // remove savedNode here, cuz otherwise its children will change their position in the dataNodeManager // without having its parent anymore //GetDataStorage()->Remove(savedPFchildNode); if ( GetDataStorage()->Exists(savedPFchildNode)) { MITK_DEBUG << savedPFchildNode->GetName() << " exists in DS...trying to remove it"; }else{ MITK_DEBUG << "[ERROR] does NOT exist, but can I read its Name? " << savedPFchildNode->GetName(); } // remove old child position in dataStorage GetDataStorage()->Remove(savedPFchildNode); if ( GetDataStorage()->Exists(savedPFchildNode)) { MITK_DEBUG << savedPFchildNode->GetName() << " still exists"; } } else { // child is not of type PlanarFigureComposite, so its one of the planarFigures // create new dataNode containing the data of the old dataNode, but position in dataManager will be // modified cuz we re setting a (new) parent. mitk::DataNode::Pointer newPFchildNode = mitk::DataNode::New(); newPFchildNode->SetName(savedPFchildNode->GetName() ); newPFchildNode->SetData(tmpPFchild); newPFchildNode->SetVisibility(true); // replace the dataNode in PFComp DataNodeVector pfcomp->replaceDataNodeAt(i, newPFchildNode); if ( GetDataStorage()->Exists(savedPFchildNode)) { MITK_DEBUG << savedPFchildNode->GetName() << " exists in DS...trying to remove it"; }else{ MITK_DEBUG << "[ERROR] does NOT exist, but can I read its Name? " << savedPFchildNode->GetName(); } // remove old child position in dataStorage GetDataStorage()->Remove(savedPFchildNode); if ( GetDataStorage()->Exists(savedPFchildNode)) { MITK_DEBUG << savedPFchildNode->GetName() << " still exists"; } MITK_DEBUG << "adding " << newPFchildNode->GetName() << " to " << newPFCNode->GetName(); //add new child to datamanager with its new position as child of newPFCNode parent GetDataStorage()->Add(newPFchildNode, newPFCNode); } } GetDataStorage()->Modified(); break; } case 2: { if (!parentDataNode.IsNull()) { MITK_DEBUG << "adding " << newPFCNode->GetName() << " to " << parentDataNode->GetName() ; GetDataStorage()->Add(newPFCNode, parentDataNode); } else { MITK_DEBUG << "adding " << newPFCNode->GetName(); GetDataStorage()->Add(newPFCNode); } //iterate through its childs for(int i=0; igetNumberOfChildren(); ++i) { mitk::PlanarFigure::Pointer tmpPFchild = pfcomp->getChildAt(i); mitk::DataNode::Pointer savedPFchildNode = pfcomp->getDataNodeAt(i); mitk::PlanarFigureComposite::Pointer pfcompcast= dynamic_cast(tmpPFchild.GetPointer()); if ( !pfcompcast.IsNull() ) { // child is of type planar Figure composite // makeRemoveBundle new node of the child, cuz later the child has to be removed of its old position in datamanager // feed new dataNode with information of the savedDataNode, which is gonna be removed soon mitk::DataNode::Pointer newChildPFCNode; newChildPFCNode = mitk::DataNode::New(); newChildPFCNode->SetData(tmpPFchild); newChildPFCNode->SetName( savedPFchildNode->GetName() ); pfcompcast->setDisplayName( savedPFchildNode->GetName() ); //name might be changed in DataManager by user //update inside vector the dataNodePointer pfcomp->replaceDataNodeAt(i, newChildPFCNode); AddCompositeToDatastorage(pfcompcast, newPFCNode); //the current PFCNode becomes the childs parent // remove savedNode here, cuz otherwise its children will change their position in the dataNodeManager // without having its parent anymore //GetDataStorage()->Remove(savedPFchildNode); if ( GetDataStorage()->Exists(savedPFchildNode)) { MITK_DEBUG << savedPFchildNode->GetName() << " exists in DS...trying to remove it"; }else{ MITK_DEBUG << "[ERROR] does NOT exist, but can I read its Name? " << savedPFchildNode->GetName(); } // remove old child position in dataStorage GetDataStorage()->Remove(savedPFchildNode); if ( GetDataStorage()->Exists(savedPFchildNode)) { MITK_DEBUG << savedPFchildNode->GetName() << " still exists"; } } else { // child is not of type PlanarFigureComposite, so its one of the planarFigures // create new dataNode containing the data of the old dataNode, but position in dataManager will be // modified cuz we re setting a (new) parent. mitk::DataNode::Pointer newPFchildNode = mitk::DataNode::New(); newPFchildNode->SetName(savedPFchildNode->GetName() ); newPFchildNode->SetData(tmpPFchild); newPFchildNode->SetVisibility(true); // replace the dataNode in PFComp DataNodeVector pfcomp->replaceDataNodeAt(i, newPFchildNode); if ( GetDataStorage()->Exists(savedPFchildNode)) { MITK_DEBUG << savedPFchildNode->GetName() << " exists in DS...trying to remove it"; }else{ MITK_DEBUG << "[ERROR] does NOT exist, but can I read its Name? " << savedPFchildNode->GetName(); } // remove old child position in dataStorage GetDataStorage()->Remove(savedPFchildNode); if ( GetDataStorage()->Exists(savedPFchildNode)) { MITK_DEBUG << savedPFchildNode->GetName() << " still exists"; } MITK_DEBUG << "adding " << newPFchildNode->GetName() << " to " << newPFCNode->GetName(); //add new child to datamanager with its new position as child of newPFCNode parent GetDataStorage()->Add(newPFchildNode, newPFCNode); } } GetDataStorage()->Modified(); break; } default: MITK_DEBUG << "we have an UNDEFINED composition... ERROR" ; break; } } void QmitkFiberExtractionView::JoinBundles() { if ( m_SelectedFB.size()<2 ){ QMessageBox::information( NULL, "Warning", "Select at least two fiber bundles!"); MITK_WARN("QmitkFiberExtractionView") << "Select at least two fiber bundles!"; return; } mitk::FiberBundleX::Pointer newBundle = dynamic_cast(m_SelectedFB.at(0)->GetData()); m_SelectedFB.at(0)->SetVisibility(false); QString name(""); name += QString(m_SelectedFB.at(0)->GetName().c_str()); for (unsigned int i=1; iAddBundle(dynamic_cast(m_SelectedFB.at(i)->GetData())); name += "+"+QString(m_SelectedFB.at(i)->GetName().c_str()); m_SelectedFB.at(i)->SetVisibility(false); } mitk::DataNode::Pointer fbNode = mitk::DataNode::New(); fbNode->SetData(newBundle); fbNode->SetName(name.toStdString()); fbNode->SetVisibility(true); GetDataStorage()->Add(fbNode); } void QmitkFiberExtractionView::SubstractBundles() { if ( m_SelectedFB.size()<2 ){ QMessageBox::information( NULL, "Warning", "Select at least two fiber bundles!"); MITK_WARN("QmitkFiberExtractionView") << "Select at least two fiber bundles!"; return; } mitk::FiberBundleX::Pointer newBundle = dynamic_cast(m_SelectedFB.at(0)->GetData()); m_SelectedFB.at(0)->SetVisibility(false); QString name(""); name += QString(m_SelectedFB.at(0)->GetName().c_str()); for (unsigned int i=1; iSubtractBundle(dynamic_cast(m_SelectedFB.at(i)->GetData())); if (newBundle.IsNull()) break; name += "-"+QString(m_SelectedFB.at(i)->GetName().c_str()); m_SelectedFB.at(i)->SetVisibility(false); } if (newBundle.IsNull()) { QMessageBox::information(NULL, "No output generated:", "The resulting fiber bundle contains no fibers. Did you select the fiber bundles in the correct order? X-Y is not equal to Y-X!"); return; } mitk::DataNode::Pointer fbNode = mitk::DataNode::New(); fbNode->SetData(newBundle); fbNode->SetName(name.toStdString()); fbNode->SetVisibility(true); GetDataStorage()->Add(fbNode); } void QmitkFiberExtractionView::GenerateStats() { if ( m_SelectedFB.empty() ) return; QString stats(""); for(unsigned int i=0; i(node->GetData())) { if (i>0) stats += "\n-----------------------------\n"; stats += QString(node->GetName().c_str()) + "\n"; mitk::FiberBundleX::Pointer fib = dynamic_cast(node->GetData()); stats += "Number of fibers: "+ QString::number(fib->GetNumFibers()) + "\n"; stats += "Min. length: "+ QString::number(fib->GetMinFiberLength(),'f',1) + " mm\n"; stats += "Max. length: "+ QString::number(fib->GetMaxFiberLength(),'f',1) + " mm\n"; stats += "Mean length: "+ QString::number(fib->GetMeanFiberLength(),'f',1) + " mm\n"; stats += "Median length: "+ QString::number(fib->GetMedianFiberLength(),'f',1) + " mm\n"; stats += "Standard deviation: "+ QString::number(fib->GetLengthStDev(),'f',1) + " mm\n"; } } this->m_Controls->m_StatsTextEdit->setText(stats); } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberExtractionView.h b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberExtractionView.h index 76c0ad0c49..f2ff67f688 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberExtractionView.h +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberExtractionView.h @@ -1,175 +1,175 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef QmitkFiberExtractionView_h #define QmitkFiberExtractionView_h #include #include "ui_QmitkFiberExtractionViewControls.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /*! \brief View to process fiber bundles. Supplies methods to extract fibers from the bundle, join and subtract bundles and much more. \sa QmitkFunctionality \ingroup Functionalities */ class QmitkFiberExtractionView : public QmitkFunctionality { // this is needed for all Qt objects that should have a Qt meta-object // (everything that derives from QObject and wants to have signal/slots) Q_OBJECT public: typedef itk::Image< unsigned char, 3 > itkUCharImageType; static const std::string VIEW_ID; QmitkFiberExtractionView(); virtual ~QmitkFiberExtractionView(); virtual void CreateQtPartControl(QWidget *parent); virtual void StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget); virtual void StdMultiWidgetNotAvailable(); virtual void Activated(); protected slots: void OnDrawCircle(); ///< add circle interactors etc. void OnDrawPolygon(); ///< add circle interactors etc. void DoFiberExtraction(); ///< Extract fibers from selected bundle void GenerateAndComposite(); void GenerateOrComposite(); void GenerateNotComposite(); void DoRemoveOutsideMask(); void DoRemoveInsideMask(); void JoinBundles(); ///< merge selected fiber bundles void SubstractBundles(); ///< subtract bundle A from bundle B. Not commutative! Defined by order of selection. void GenerateRoiImage(); ///< generate binary image of selected planar figures. void ExtractPassingMask(); ///< extract all fibers passing the selected surface mesh void ExtractEndingInMask(); ///< extract all fibers passing the selected surface mesh virtual void AddFigureToDataStorage(mitk::PlanarFigure* figure, const QString& name, const char *propertyKey = NULL, mitk::BaseProperty *property = NULL ); protected: /// \brief called by QmitkFunctionality when DataManager's selection has changed virtual void OnSelectionChanged( std::vector nodes ); Ui::QmitkFiberExtractionViewControls* m_Controls; QmitkStdMultiWidget* m_MultiWidget; /** Connection from VTK to ITK */ template void ConnectPipelines(VTK_Exporter* exporter, ITK_Importer importer) { importer->SetUpdateInformationCallback(exporter->GetUpdateInformationCallback()); importer->SetPipelineModifiedCallback(exporter->GetPipelineModifiedCallback()); importer->SetWholeExtentCallback(exporter->GetWholeExtentCallback()); importer->SetSpacingCallback(exporter->GetSpacingCallback()); importer->SetOriginCallback(exporter->GetOriginCallback()); importer->SetScalarTypeCallback(exporter->GetScalarTypeCallback()); importer->SetNumberOfComponentsCallback(exporter->GetNumberOfComponentsCallback()); importer->SetPropagateUpdateExtentCallback(exporter->GetPropagateUpdateExtentCallback()); importer->SetUpdateDataCallback(exporter->GetUpdateDataCallback()); importer->SetDataExtentCallback(exporter->GetDataExtentCallback()); importer->SetBufferPointerCallback(exporter->GetBufferPointerCallback()); importer->SetCallbackUserData(exporter->GetCallbackUserData()); } template void ConnectPipelines(ITK_Exporter exporter, VTK_Importer* importer) { importer->SetUpdateInformationCallback(exporter->GetUpdateInformationCallback()); importer->SetPipelineModifiedCallback(exporter->GetPipelineModifiedCallback()); importer->SetWholeExtentCallback(exporter->GetWholeExtentCallback()); importer->SetSpacingCallback(exporter->GetSpacingCallback()); importer->SetOriginCallback(exporter->GetOriginCallback()); importer->SetScalarTypeCallback(exporter->GetScalarTypeCallback()); importer->SetNumberOfComponentsCallback(exporter->GetNumberOfComponentsCallback()); importer->SetPropagateUpdateExtentCallback(exporter->GetPropagateUpdateExtentCallback()); importer->SetUpdateDataCallback(exporter->GetUpdateDataCallback()); importer->SetDataExtentCallback(exporter->GetDataExtentCallback()); importer->SetBufferPointerCallback(exporter->GetBufferPointerCallback()); importer->SetCallbackUserData(exporter->GetCallbackUserData()); } template < typename TPixel, unsigned int VImageDimension > void InternalCalculateMaskFromPlanarFigure( itk::Image< TPixel, VImageDimension > *image, unsigned int axis, std::string nodeName ); template < typename TPixel, unsigned int VImageDimension > void InternalReorientImagePlane( - const itk::Image< TPixel, VImageDimension > *image, mitk::Geometry3D* planegeo3D, int additionalIndex ); + const itk::Image< TPixel, VImageDimension > *image, mitk::BaseGeometry* planegeo3D, int additionalIndex ); void GenerateStats(); ///< generate statistics of selected fiber bundles void UpdateGui(); ///< update button activity etc. dpending on current datamanager selection int m_CircleCounter; ///< used for data node naming int m_PolygonCounter; ///< used for data node naming std::vector m_SelectedFB; ///< selected fiber bundle nodes std::vector m_SelectedPF; ///< selected planar figure nodes std::vector m_SelectedSurfaces; mitk::Image::Pointer m_SelectedImage; mitk::Image::Pointer m_InternalImage; mitk::PlanarFigure::Pointer m_PlanarFigure; itkUCharImageType::Pointer m_InternalImageMask3D; itkUCharImageType::Pointer m_PlanarFigureImage; float m_UpsamplingFactor; ///< upsampling factor for all image generations mitk::DataNode::Pointer m_MaskImageNode; mitk::DataNode::Pointer m_LastAddedPf; void AddCompositeToDatastorage(mitk::PlanarFigureComposite::Pointer, mitk::DataNode::Pointer); void debugPFComposition(mitk::PlanarFigureComposite::Pointer , int ); void CompositeExtraction(mitk::DataNode::Pointer node, mitk::Image* image); mitk::DataNode::Pointer GenerateTractDensityImage(mitk::FiberBundleX::Pointer fib, bool binary, bool absolute); mitk::DataNode::Pointer GenerateColorHeatmap(mitk::FiberBundleX::Pointer fib); mitk::DataNode::Pointer GenerateFiberEndingsImage(mitk::FiberBundleX::Pointer fib); mitk::DataNode::Pointer GenerateFiberEndingsPointSet(mitk::FiberBundleX::Pointer fib); }; #endif // _QMITKFIBERTRACKINGVIEW_H_INCLUDED diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.cpp index 89389384c4..7323e6bd1f 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.cpp @@ -1,2344 +1,2344 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //misc #define _USE_MATH_DEFINES #include // Blueberry #include #include // Qmitk #include "QmitkFiberfoxView.h" // MITK #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "usModuleRegistry.h" #include #include #include #include #include #include #define _USE_MATH_DEFINES #include QmitkFiberfoxWorker::QmitkFiberfoxWorker(QmitkFiberfoxView* view) : m_View(view) { } void QmitkFiberfoxWorker::run() { try{ switch (m_FilterType) { case 0: m_View->m_TractsToDwiFilter->Update(); break; case 1: m_View->m_ArtifactsToDwiFilter->Update(); break; } } catch( ... ) { } m_View->m_Thread.quit(); } const std::string QmitkFiberfoxView::VIEW_ID = "org.mitk.views.fiberfoxview"; QmitkFiberfoxView::QmitkFiberfoxView() : QmitkAbstractView() , m_Controls( 0 ) , m_SelectedImage( NULL ) , m_Worker(this) , m_ThreadIsRunning(false) { m_Worker.moveToThread(&m_Thread); connect(&m_Thread, SIGNAL(started()), this, SLOT(BeforeThread())); connect(&m_Thread, SIGNAL(started()), &m_Worker, SLOT(run())); connect(&m_Thread, SIGNAL(finished()), this, SLOT(AfterThread())); connect(&m_Thread, SIGNAL(terminated()), this, SLOT(AfterThread())); m_SimulationTimer = new QTimer(this); } void QmitkFiberfoxView::KillThread() { MITK_INFO << "Aborting DWI simulation."; switch (m_Worker.m_FilterType) { case 0: m_TractsToDwiFilter->SetAbortGenerateData(true); break; case 1: m_ArtifactsToDwiFilter->SetAbortGenerateData(true); break; } m_Controls->m_AbortSimulationButton->setEnabled(false); m_Controls->m_AbortSimulationButton->setText("Aborting simulation ..."); } void QmitkFiberfoxView::BeforeThread() { m_SimulationTime = QTime::currentTime(); m_SimulationTimer->start(100); m_Controls->m_AbortSimulationButton->setVisible(true); m_Controls->m_GenerateImageButton->setVisible(false); m_Controls->m_SimulationStatusText->setVisible(true); m_ThreadIsRunning = true; } void QmitkFiberfoxView::AfterThread() { UpdateSimulationStatus(); m_SimulationTimer->stop(); m_Controls->m_AbortSimulationButton->setVisible(false); m_Controls->m_AbortSimulationButton->setEnabled(true); m_Controls->m_AbortSimulationButton->setText("Abort simulation"); m_Controls->m_GenerateImageButton->setVisible(true); m_ThreadIsRunning = false; QString statusText; FiberfoxParameters parameters; mitk::DiffusionImage::Pointer mitkImage = mitk::DiffusionImage::New(); switch (m_Worker.m_FilterType) { case 0: { statusText = QString(m_TractsToDwiFilter->GetStatusText().c_str()); if (m_TractsToDwiFilter->GetAbortGenerateData()) { MITK_INFO << "Simulation aborted."; return; } parameters = m_TractsToDwiFilter->GetParameters(); mitkImage->SetVectorImage( m_TractsToDwiFilter->GetOutput() ); mitkImage->SetReferenceBValue(parameters.m_Bvalue); mitkImage->SetDirections(parameters.GetGradientDirections()); mitkImage->InitializeFromVectorImage(); parameters.m_ResultNode->SetData( mitkImage ); parameters.m_ResultNode->SetName(parameters.m_ParentNode->GetName() +"_D"+QString::number(parameters.m_ImageRegion.GetSize(0)).toStdString() +"-"+QString::number(parameters.m_ImageRegion.GetSize(1)).toStdString() +"-"+QString::number(parameters.m_ImageRegion.GetSize(2)).toStdString() +"_S"+QString::number(parameters.m_ImageSpacing[0]).toStdString() +"-"+QString::number(parameters.m_ImageSpacing[1]).toStdString() +"-"+QString::number(parameters.m_ImageSpacing[2]).toStdString() +"_b"+QString::number(parameters.m_Bvalue).toStdString() +"_"+parameters.m_SignalModelString +parameters.m_ArtifactModelString); GetDataStorage()->Add(parameters.m_ResultNode, parameters.m_ParentNode); parameters.m_ResultNode->SetProperty( "levelwindow", mitk::LevelWindowProperty::New(m_TractsToDwiFilter->GetLevelWindow()) ); if (m_Controls->m_VolumeFractionsBox->isChecked()) { std::vector< itk::TractsToDWIImageFilter< short >::ItkDoubleImgType::Pointer > volumeFractions = m_TractsToDwiFilter->GetVolumeFractions(); for (unsigned int k=0; kInitializeByItk(volumeFractions.at(k).GetPointer()); image->SetVolume(volumeFractions.at(k)->GetBufferPointer()); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName(parameters.m_ParentNode->GetName()+"_CompartmentVolume-"+QString::number(k).toStdString()); GetDataStorage()->Add(node, parameters.m_ParentNode); } } m_TractsToDwiFilter = NULL; break; } case 1: { statusText = QString(m_ArtifactsToDwiFilter->GetStatusText().c_str()); if (m_ArtifactsToDwiFilter->GetAbortGenerateData()) { MITK_INFO << "Simulation aborted."; return; } parameters = m_ArtifactsToDwiFilter->GetParameters().CopyParameters(); mitk::DiffusionImage::Pointer diffImg = dynamic_cast*>(parameters.m_ParentNode->GetData()); mitkImage = mitk::DiffusionImage::New(); mitkImage->SetVectorImage( m_ArtifactsToDwiFilter->GetOutput() ); mitkImage->SetReferenceBValue(diffImg->GetReferenceBValue()); mitkImage->SetDirections(diffImg->GetDirections()); mitkImage->InitializeFromVectorImage(); parameters.m_ResultNode->SetData( mitkImage ); parameters.m_ResultNode->SetName(parameters.m_ParentNode->GetName()+parameters.m_ArtifactModelString); GetDataStorage()->Add(parameters.m_ResultNode, parameters.m_ParentNode); m_ArtifactsToDwiFilter = NULL; break; } } mitk::BaseData::Pointer basedata = parameters.m_ResultNode->GetData(); if (basedata.IsNotNull()) { mitk::RenderingManager::GetInstance()->InitializeViews( basedata->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } if (!parameters.m_OutputPath.empty()) { try{ QString outputFileName(parameters.m_OutputPath.c_str()); outputFileName += parameters.m_ResultNode->GetName().c_str(); outputFileName.replace(QString("."), QString("_")); outputFileName += ".dwi"; QString status("Saving output image to "); status += outputFileName; m_Controls->m_SimulationStatusText->append(status); mitk::IOUtil::SaveBaseData(mitkImage, outputFileName.toStdString()); m_Controls->m_SimulationStatusText->append("File saved successfully."); } catch (itk::ExceptionObject &e) { QString status("Exception during DWI writing: "); status += e.GetDescription(); m_Controls->m_SimulationStatusText->append(status); } catch (...) { m_Controls->m_SimulationStatusText->append("Unknown exception during DWI writing!"); } } parameters.m_FrequencyMap = NULL; } void QmitkFiberfoxView::UpdateSimulationStatus() { QString statusText; switch (m_Worker.m_FilterType) { case 0: statusText = QString(m_TractsToDwiFilter->GetStatusText().c_str()); break; case 1: statusText = QString(m_ArtifactsToDwiFilter->GetStatusText().c_str()); break; } if (QString::compare(m_SimulationStatusText,statusText)!=0) { m_Controls->m_SimulationStatusText->clear(); statusText = "
"+statusText+"
"; m_Controls->m_SimulationStatusText->setText(statusText); QScrollBar *vScrollBar = m_Controls->m_SimulationStatusText->verticalScrollBar(); vScrollBar->triggerAction(QScrollBar::SliderToMaximum); } } // Destructor QmitkFiberfoxView::~QmitkFiberfoxView() { delete m_SimulationTimer; } void QmitkFiberfoxView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkFiberfoxViewControls; m_Controls->setupUi( parent ); m_Controls->m_StickWidget1->setVisible(true); m_Controls->m_StickWidget2->setVisible(false); m_Controls->m_ZeppelinWidget1->setVisible(false); m_Controls->m_ZeppelinWidget2->setVisible(false); m_Controls->m_TensorWidget1->setVisible(false); m_Controls->m_TensorWidget2->setVisible(false); m_Controls->m_BallWidget1->setVisible(true); m_Controls->m_BallWidget2->setVisible(false); m_Controls->m_AstrosticksWidget1->setVisible(false); m_Controls->m_AstrosticksWidget2->setVisible(false); m_Controls->m_DotWidget1->setVisible(false); m_Controls->m_DotWidget2->setVisible(false); m_Controls->m_Comp4FractionFrame->setVisible(false); m_Controls->m_DiffusionPropsMessage->setVisible(false); m_Controls->m_GeometryMessage->setVisible(false); m_Controls->m_AdvancedSignalOptionsFrame->setVisible(false); m_Controls->m_AdvancedFiberOptionsFrame->setVisible(false); m_Controls->m_VarianceBox->setVisible(false); m_Controls->m_NoiseFrame->setVisible(false); m_Controls->m_GhostFrame->setVisible(false); m_Controls->m_DistortionsFrame->setVisible(false); m_Controls->m_EddyFrame->setVisible(false); m_Controls->m_SpikeFrame->setVisible(false); m_Controls->m_AliasingFrame->setVisible(false); m_Controls->m_MotionArtifactFrame->setVisible(false); m_ParameterFile = QDir::currentPath()+"/param.ffp"; m_Controls->m_AbortSimulationButton->setVisible(false); m_Controls->m_SimulationStatusText->setVisible(false); m_Controls->m_FrequencyMapBox->SetDataStorage(this->GetDataStorage()); mitk::TNodePredicateDataType::Pointer isMitkImage = mitk::TNodePredicateDataType::New(); mitk::NodePredicateDataType::Pointer isDwi = mitk::NodePredicateDataType::New("DiffusionImage"); mitk::NodePredicateDataType::Pointer isDti = mitk::NodePredicateDataType::New("TensorImage"); mitk::NodePredicateDataType::Pointer isQbi = mitk::NodePredicateDataType::New("QBallImage"); mitk::NodePredicateOr::Pointer isDiffusionImage = mitk::NodePredicateOr::New(isDwi, isDti); isDiffusionImage = mitk::NodePredicateOr::New(isDiffusionImage, isQbi); mitk::NodePredicateNot::Pointer noDiffusionImage = mitk::NodePredicateNot::New(isDiffusionImage); mitk::NodePredicateAnd::Pointer finalPredicate = mitk::NodePredicateAnd::New(isMitkImage, noDiffusionImage); m_Controls->m_FrequencyMapBox->SetPredicate(finalPredicate); m_Controls->m_Comp4VolumeFraction->SetDataStorage(this->GetDataStorage()); m_Controls->m_Comp4VolumeFraction->SetPredicate(finalPredicate); connect( m_SimulationTimer, SIGNAL(timeout()), this, SLOT(UpdateSimulationStatus()) ); connect((QObject*) m_Controls->m_AbortSimulationButton, SIGNAL(clicked()), (QObject*) this, SLOT(KillThread())); connect((QObject*) m_Controls->m_GenerateImageButton, SIGNAL(clicked()), (QObject*) this, SLOT(GenerateImage())); connect((QObject*) m_Controls->m_GenerateFibersButton, SIGNAL(clicked()), (QObject*) this, SLOT(GenerateFibers())); connect((QObject*) m_Controls->m_CircleButton, SIGNAL(clicked()), (QObject*) this, SLOT(OnDrawROI())); connect((QObject*) m_Controls->m_FlipButton, SIGNAL(clicked()), (QObject*) this, SLOT(OnFlipButton())); connect((QObject*) m_Controls->m_JoinBundlesButton, SIGNAL(clicked()), (QObject*) this, SLOT(JoinBundles())); connect((QObject*) m_Controls->m_VarianceBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnVarianceChanged(double))); connect((QObject*) m_Controls->m_DistributionBox, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(OnDistributionChanged(int))); connect((QObject*) m_Controls->m_FiberDensityBox, SIGNAL(valueChanged(int)), (QObject*) this, SLOT(OnFiberDensityChanged(int))); connect((QObject*) m_Controls->m_FiberSamplingBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnFiberSamplingChanged(double))); connect((QObject*) m_Controls->m_TensionBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnTensionChanged(double))); connect((QObject*) m_Controls->m_ContinuityBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnContinuityChanged(double))); connect((QObject*) m_Controls->m_BiasBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnBiasChanged(double))); connect((QObject*) m_Controls->m_AddNoise, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddNoise(int))); connect((QObject*) m_Controls->m_AddGhosts, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddGhosts(int))); connect((QObject*) m_Controls->m_AddDistortions, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddDistortions(int))); connect((QObject*) m_Controls->m_AddEddy, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddEddy(int))); connect((QObject*) m_Controls->m_AddSpikes, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddSpikes(int))); connect((QObject*) m_Controls->m_AddAliasing, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddAliasing(int))); connect((QObject*) m_Controls->m_AddMotion, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddMotion(int))); connect((QObject*) m_Controls->m_ConstantRadiusBox, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnConstantRadius(int))); connect((QObject*) m_Controls->m_CopyBundlesButton, SIGNAL(clicked()), (QObject*) this, SLOT(CopyBundles())); connect((QObject*) m_Controls->m_TransformBundlesButton, SIGNAL(clicked()), (QObject*) this, SLOT(ApplyTransform())); connect((QObject*) m_Controls->m_AlignOnGrid, SIGNAL(clicked()), (QObject*) this, SLOT(AlignOnGrid())); connect((QObject*) m_Controls->m_Compartment1Box, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(Comp1ModelFrameVisibility(int))); connect((QObject*) m_Controls->m_Compartment2Box, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(Comp2ModelFrameVisibility(int))); connect((QObject*) m_Controls->m_Compartment3Box, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(Comp3ModelFrameVisibility(int))); connect((QObject*) m_Controls->m_Compartment4Box, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(Comp4ModelFrameVisibility(int))); connect((QObject*) m_Controls->m_AdvancedOptionsBox, SIGNAL( stateChanged(int)), (QObject*) this, SLOT(ShowAdvancedOptions(int))); connect((QObject*) m_Controls->m_AdvancedOptionsBox_2, SIGNAL( stateChanged(int)), (QObject*) this, SLOT(ShowAdvancedOptions(int))); connect((QObject*) m_Controls->m_SaveParametersButton, SIGNAL(clicked()), (QObject*) this, SLOT(SaveParameters())); connect((QObject*) m_Controls->m_LoadParametersButton, SIGNAL(clicked()), (QObject*) this, SLOT(LoadParameters())); connect((QObject*) m_Controls->m_OutputPathButton, SIGNAL(clicked()), (QObject*) this, SLOT(SetOutputPath())); } } template< class ScalarType > FiberfoxParameters< ScalarType > QmitkFiberfoxView::UpdateImageParameters() { FiberfoxParameters< ScalarType > parameters; parameters.m_OutputPath = ""; string outputPath = m_Controls->m_SavePathEdit->text().toStdString(); if (outputPath.compare("-")!=0) { parameters.m_OutputPath = outputPath; parameters.m_OutputPath += "/"; } if (m_MaskImageNode.IsNotNull()) { mitk::Image::Pointer mitkMaskImage = dynamic_cast(m_MaskImageNode->GetData()); mitk::CastToItkImage(mitkMaskImage, parameters.m_MaskImage); itk::ImageDuplicator::Pointer duplicator = itk::ImageDuplicator::New(); duplicator->SetInputImage(parameters.m_MaskImage); duplicator->Update(); parameters.m_MaskImage = duplicator->GetOutput(); } if (m_SelectedDWI.IsNotNull()) // use parameters of selected DWI { mitk::DiffusionImage::Pointer dwi = dynamic_cast*>(m_SelectedDWI->GetData()); parameters.m_ImageRegion = dwi->GetVectorImage()->GetLargestPossibleRegion(); parameters.m_ImageSpacing = dwi->GetVectorImage()->GetSpacing(); parameters.m_ImageOrigin = dwi->GetVectorImage()->GetOrigin(); parameters.m_ImageDirection = dwi->GetVectorImage()->GetDirection(); parameters.m_Bvalue = dwi->GetReferenceBValue(); parameters.SetGradienDirections(dwi->GetDirections()); } else if (m_SelectedImage.IsNotNull()) // use geometry of selected image { mitk::Image::Pointer img = dynamic_cast(m_SelectedImage->GetData()); itk::Image< float, 3 >::Pointer itkImg = itk::Image< float, 3 >::New(); CastToItkImage< itk::Image< float, 3 > >(img, itkImg); parameters.m_ImageRegion = itkImg->GetLargestPossibleRegion(); parameters.m_ImageSpacing = itkImg->GetSpacing(); parameters.m_ImageOrigin = itkImg->GetOrigin(); parameters.m_ImageDirection = itkImg->GetDirection(); parameters.SetNumWeightedGradients(m_Controls->m_NumGradientsBox->value()); parameters.m_Bvalue = m_Controls->m_BvalueBox->value(); } else // use GUI parameters { parameters.m_ImageRegion.SetSize(0, m_Controls->m_SizeX->value()); parameters.m_ImageRegion.SetSize(1, m_Controls->m_SizeY->value()); parameters.m_ImageRegion.SetSize(2, m_Controls->m_SizeZ->value()); parameters.m_ImageSpacing[0] = m_Controls->m_SpacingX->value(); parameters.m_ImageSpacing[1] = m_Controls->m_SpacingY->value(); parameters.m_ImageSpacing[2] = m_Controls->m_SpacingZ->value(); parameters.m_ImageOrigin[0] = parameters.m_ImageSpacing[0]/2; parameters.m_ImageOrigin[1] = parameters.m_ImageSpacing[1]/2; parameters.m_ImageOrigin[2] = parameters.m_ImageSpacing[2]/2; parameters.m_ImageDirection.SetIdentity(); parameters.SetNumWeightedGradients(m_Controls->m_NumGradientsBox->value()); parameters.m_Bvalue = m_Controls->m_BvalueBox->value(); parameters.GenerateGradientHalfShell(); } // signal relaxation parameters.m_DoSimulateRelaxation = m_Controls->m_RelaxationBox->isChecked(); if (parameters.m_DoSimulateRelaxation && m_SelectedBundles.size()>0 ) parameters.m_ArtifactModelString += "_RELAX"; // N/2 ghosts if (m_Controls->m_AddGhosts->isChecked()) { parameters.m_ArtifactModelString += "_GHOST"; parameters.m_KspaceLineOffset = m_Controls->m_kOffsetBox->value(); parameters.m_ResultNode->AddProperty("Fiberfox.Ghost", DoubleProperty::New(parameters.m_KspaceLineOffset)); } else parameters.m_KspaceLineOffset = 0; // Aliasing if (m_Controls->m_AddAliasing->isChecked()) { parameters.m_ArtifactModelString += "_ALIASING"; parameters.m_CroppingFactor = (100-m_Controls->m_WrapBox->value())/100; parameters.m_ResultNode->AddProperty("Fiberfox.Aliasing", DoubleProperty::New(m_Controls->m_WrapBox->value())); } // Motion parameters.m_DoAddMotion = m_Controls->m_AddMotion->isChecked(); parameters.m_DoRandomizeMotion = m_Controls->m_RandomMotion->isChecked(); parameters.m_Translation[0] = m_Controls->m_MaxTranslationBoxX->value(); parameters.m_Translation[1] = m_Controls->m_MaxTranslationBoxY->value(); parameters.m_Translation[2] = m_Controls->m_MaxTranslationBoxZ->value(); parameters.m_Rotation[0] = m_Controls->m_MaxRotationBoxX->value(); parameters.m_Rotation[1] = m_Controls->m_MaxRotationBoxY->value(); parameters.m_Rotation[2] = m_Controls->m_MaxRotationBoxZ->value(); if ( m_Controls->m_AddMotion->isChecked() && m_SelectedBundles.size()>0 ) { parameters.m_ArtifactModelString += "_MOTION"; parameters.m_ResultNode->AddProperty("Fiberfox.Motion.Random", BoolProperty::New(parameters.m_DoRandomizeMotion)); parameters.m_ResultNode->AddProperty("Fiberfox.Motion.Translation-x", DoubleProperty::New(parameters.m_Translation[0])); parameters.m_ResultNode->AddProperty("Fiberfox.Motion.Translation-y", DoubleProperty::New(parameters.m_Translation[1])); parameters.m_ResultNode->AddProperty("Fiberfox.Motion.Translation-z", DoubleProperty::New(parameters.m_Translation[2])); parameters.m_ResultNode->AddProperty("Fiberfox.Motion.Rotation-x", DoubleProperty::New(parameters.m_Rotation[0])); parameters.m_ResultNode->AddProperty("Fiberfox.Motion.Rotation-y", DoubleProperty::New(parameters.m_Rotation[1])); parameters.m_ResultNode->AddProperty("Fiberfox.Motion.Rotation-z", DoubleProperty::New(parameters.m_Rotation[2])); } // other imaging parameters parameters.m_tLine = m_Controls->m_LineReadoutTimeBox->value(); parameters.m_tInhom = m_Controls->m_T2starBox->value(); parameters.m_tEcho = m_Controls->m_TEbox->value(); parameters.m_Repetitions = m_Controls->m_RepetitionsBox->value(); parameters.m_DoDisablePartialVolume = m_Controls->m_EnforcePureFiberVoxelsBox->isChecked(); parameters.m_AxonRadius = m_Controls->m_FiberRadius->value(); parameters.m_SignalScale = m_Controls->m_SignalScaleBox->value(); if (m_Controls->m_AddSpikes->isChecked()) { parameters.m_Spikes = m_Controls->m_SpikeNumBox->value(); parameters.m_SpikeAmplitude = m_Controls->m_SpikeScaleBox->value(); parameters.m_ArtifactModelString += "_SPIKES"; parameters.m_ResultNode->AddProperty("Fiberfox.Spikes.Number", IntProperty::New(parameters.m_Spikes)); parameters.m_ResultNode->AddProperty("Fiberfox.Spikes.Amplitude", DoubleProperty::New(parameters.m_SpikeAmplitude)); } // adjust echo time if needed if ( parameters.m_tEcho < parameters.m_ImageRegion.GetSize(1)*parameters.m_tLine ) { this->m_Controls->m_TEbox->setValue( parameters.m_ImageRegion.GetSize(1)*parameters.m_tLine ); parameters.m_tEcho = m_Controls->m_TEbox->value(); QMessageBox::information( NULL, "Warning", "Echo time is too short! Time not sufficient to read slice. Automaticall adjusted to "+QString::number(parameters.m_tEcho)+" ms"); } // rician noise if (m_Controls->m_AddNoise->isChecked()) { double noiseVariance = m_Controls->m_NoiseLevel->value(); { switch (m_Controls->m_NoiseDistributionBox->currentIndex()) { case 0: { parameters.m_NoiseModel = new mitk::RicianNoiseModel(); parameters.m_ArtifactModelString += "_RICIAN-"; parameters.m_ResultNode->AddProperty("Fiberfox.Noise-Distribution", StringProperty::New("Rician")); break; } case 1: { parameters.m_NoiseModel = new mitk::ChiSquareNoiseModel(); parameters.m_ArtifactModelString += "_CHISQUARED-"; parameters.m_ResultNode->AddProperty("Fiberfox.Noise-Distribution", StringProperty::New("Chi-squared")); break; } default: { parameters.m_NoiseModel = new mitk::RicianNoiseModel(); parameters.m_ArtifactModelString += "_RICIAN-"; parameters.m_ResultNode->AddProperty("Fiberfox.Noise-Distribution", StringProperty::New("Rician")); } } } parameters.m_NoiseModel->SetNoiseVariance(noiseVariance); parameters.m_ArtifactModelString += QString::number(noiseVariance).toStdString(); parameters.m_ResultNode->AddProperty("Fiberfox.Noise-Variance", DoubleProperty::New(noiseVariance)); } // gibbs ringing parameters.m_DoAddGibbsRinging = m_Controls->m_AddGibbsRinging->isChecked(); if (m_Controls->m_AddGibbsRinging->isChecked()) { parameters.m_ResultNode->AddProperty("Fiberfox.Ringing", BoolProperty::New(true)); parameters.m_ArtifactModelString += "_RINGING"; } // adjusting line readout time to the adapted image size needed for the DFT unsigned int y = parameters.m_ImageRegion.GetSize(1); y += y%2; if ( y>parameters.m_ImageRegion.GetSize(1) ) parameters.m_tLine *= (double)parameters.m_ImageRegion.GetSize(1)/y; // add distortions if (m_Controls->m_AddDistortions->isChecked() && m_Controls->m_FrequencyMapBox->GetSelectedNode().IsNotNull()) { mitk::DataNode::Pointer fMapNode = m_Controls->m_FrequencyMapBox->GetSelectedNode(); mitk::Image* img = dynamic_cast(fMapNode->GetData()); ItkDoubleImgType::Pointer itkImg = ItkDoubleImgType::New(); CastToItkImage< ItkDoubleImgType >(img, itkImg); if (parameters.m_ImageRegion.GetSize(0)==itkImg->GetLargestPossibleRegion().GetSize(0) && parameters.m_ImageRegion.GetSize(1)==itkImg->GetLargestPossibleRegion().GetSize(1) && parameters.m_ImageRegion.GetSize(2)==itkImg->GetLargestPossibleRegion().GetSize(2)) { itk::ImageDuplicator::Pointer duplicator = itk::ImageDuplicator::New(); duplicator->SetInputImage(itkImg); duplicator->Update(); parameters.m_FrequencyMap = duplicator->GetOutput(); parameters.m_ArtifactModelString += "_DISTORTED"; parameters.m_ResultNode->AddProperty("Fiberfox.Distortions", BoolProperty::New(true)); } } parameters.m_EddyStrength = 0; if (m_Controls->m_AddEddy->isChecked()) { parameters.m_EddyStrength = m_Controls->m_EddyGradientStrength->value(); parameters.m_ArtifactModelString += "_EDDY"; parameters.m_ResultNode->AddProperty("Fiberfox.Eddy-strength", DoubleProperty::New(parameters.m_EddyStrength)); } // signal models // compartment 1 switch (m_Controls->m_Compartment1Box->currentIndex()) { case 0: m_StickModel1.SetGradientList(parameters.GetGradientDirections()); m_StickModel1.SetBvalue(parameters.m_Bvalue); m_StickModel1.SetDiffusivity(m_Controls->m_StickWidget1->GetD()); m_StickModel1.SetT2(m_Controls->m_StickWidget1->GetT2()); parameters.m_FiberModelList.push_back(&m_StickModel1); parameters.m_SignalModelString += "Stick"; parameters.m_ResultNode->AddProperty("Fiberfox.Compartment1.Description", StringProperty::New("Intra-axonal compartment") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment1.Model", StringProperty::New("Stick") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment1.D", DoubleProperty::New(m_Controls->m_StickWidget1->GetD()) ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment1.T2", DoubleProperty::New(m_StickModel1.GetT2()) ); break; case 1: m_ZeppelinModel1.SetGradientList(parameters.GetGradientDirections()); m_ZeppelinModel1.SetBvalue(parameters.m_Bvalue); m_ZeppelinModel1.SetDiffusivity1(m_Controls->m_ZeppelinWidget1->GetD1()); m_ZeppelinModel1.SetDiffusivity2(m_Controls->m_ZeppelinWidget1->GetD2()); m_ZeppelinModel1.SetDiffusivity3(m_Controls->m_ZeppelinWidget1->GetD2()); m_ZeppelinModel1.SetT2(m_Controls->m_ZeppelinWidget1->GetT2()); parameters.m_FiberModelList.push_back(&m_ZeppelinModel1); parameters.m_SignalModelString += "Zeppelin"; parameters.m_ResultNode->AddProperty("Fiberfox.Compartment1.Description", StringProperty::New("Intra-axonal compartment") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment1.Model", StringProperty::New("Zeppelin") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment1.D1", DoubleProperty::New(m_Controls->m_ZeppelinWidget1->GetD1()) ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment1.D2", DoubleProperty::New(m_Controls->m_ZeppelinWidget1->GetD2()) ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment1.T2", DoubleProperty::New(m_ZeppelinModel1.GetT2()) ); break; case 2: m_TensorModel1.SetGradientList(parameters.GetGradientDirections()); m_TensorModel1.SetBvalue(parameters.m_Bvalue); m_TensorModel1.SetDiffusivity1(m_Controls->m_TensorWidget1->GetD1()); m_TensorModel1.SetDiffusivity2(m_Controls->m_TensorWidget1->GetD2()); m_TensorModel1.SetDiffusivity3(m_Controls->m_TensorWidget1->GetD3()); m_TensorModel1.SetT2(m_Controls->m_TensorWidget1->GetT2()); parameters.m_FiberModelList.push_back(&m_TensorModel1); parameters.m_SignalModelString += "Tensor"; parameters.m_ResultNode->AddProperty("Fiberfox.Compartment1.Description", StringProperty::New("Intra-axonal compartment") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment1.Model", StringProperty::New("Tensor") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment1.D1", DoubleProperty::New(m_Controls->m_TensorWidget1->GetD1()) ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment1.D2", DoubleProperty::New(m_Controls->m_TensorWidget1->GetD2()) ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment1.D3", DoubleProperty::New(m_Controls->m_TensorWidget1->GetD3()) ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment1.T2", DoubleProperty::New(m_ZeppelinModel1.GetT2()) ); break; } // compartment 2 switch (m_Controls->m_Compartment2Box->currentIndex()) { case 0: break; case 1: m_StickModel2.SetGradientList(parameters.GetGradientDirections()); m_StickModel2.SetBvalue(parameters.m_Bvalue); m_StickModel2.SetDiffusivity(m_Controls->m_StickWidget2->GetD()); m_StickModel2.SetT2(m_Controls->m_StickWidget2->GetT2()); parameters.m_FiberModelList.push_back(&m_StickModel2); parameters.m_SignalModelString += "Stick"; parameters.m_ResultNode->AddProperty("Fiberfox.Compartment2.Description", StringProperty::New("Inter-axonal compartment") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment2.Model", StringProperty::New("Stick") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment2.D", DoubleProperty::New(m_Controls->m_StickWidget2->GetD()) ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment2.T2", DoubleProperty::New(m_StickModel2.GetT2()) ); break; case 2: m_ZeppelinModel2.SetGradientList(parameters.GetGradientDirections()); m_ZeppelinModel2.SetBvalue(parameters.m_Bvalue); m_ZeppelinModel2.SetDiffusivity1(m_Controls->m_ZeppelinWidget2->GetD1()); m_ZeppelinModel2.SetDiffusivity2(m_Controls->m_ZeppelinWidget2->GetD2()); m_ZeppelinModel2.SetDiffusivity3(m_Controls->m_ZeppelinWidget2->GetD2()); m_ZeppelinModel2.SetT2(m_Controls->m_ZeppelinWidget2->GetT2()); parameters.m_FiberModelList.push_back(&m_ZeppelinModel2); parameters.m_SignalModelString += "Zeppelin"; parameters.m_ResultNode->AddProperty("Fiberfox.Compartment2.Description", StringProperty::New("Inter-axonal compartment") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment2.Model", StringProperty::New("Zeppelin") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment2.D1", DoubleProperty::New(m_Controls->m_ZeppelinWidget2->GetD1()) ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment2.D2", DoubleProperty::New(m_Controls->m_ZeppelinWidget2->GetD2()) ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment2.T2", DoubleProperty::New(m_ZeppelinModel2.GetT2()) ); break; case 3: m_TensorModel2.SetGradientList(parameters.GetGradientDirections()); m_TensorModel2.SetBvalue(parameters.m_Bvalue); m_TensorModel2.SetDiffusivity1(m_Controls->m_TensorWidget2->GetD1()); m_TensorModel2.SetDiffusivity2(m_Controls->m_TensorWidget2->GetD2()); m_TensorModel2.SetDiffusivity3(m_Controls->m_TensorWidget2->GetD3()); m_TensorModel2.SetT2(m_Controls->m_TensorWidget2->GetT2()); parameters.m_FiberModelList.push_back(&m_TensorModel2); parameters.m_SignalModelString += "Tensor"; parameters.m_ResultNode->AddProperty("Fiberfox.Compartment2.Description", StringProperty::New("Inter-axonal compartment") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment2.Model", StringProperty::New("Tensor") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment2.D1", DoubleProperty::New(m_Controls->m_TensorWidget2->GetD1()) ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment2.D2", DoubleProperty::New(m_Controls->m_TensorWidget2->GetD2()) ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment2.D3", DoubleProperty::New(m_Controls->m_TensorWidget2->GetD3()) ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment2.T2", DoubleProperty::New(m_ZeppelinModel2.GetT2()) ); break; } // compartment 3 switch (m_Controls->m_Compartment3Box->currentIndex()) { case 0: m_BallModel1.SetGradientList(parameters.GetGradientDirections()); m_BallModel1.SetBvalue(parameters.m_Bvalue); m_BallModel1.SetDiffusivity(m_Controls->m_BallWidget1->GetD()); m_BallModel1.SetT2(m_Controls->m_BallWidget1->GetT2()); parameters.m_NonFiberModelList.push_back(&m_BallModel1); parameters.m_SignalModelString += "Ball"; parameters.m_ResultNode->AddProperty("Fiberfox.Compartment3.Description", StringProperty::New("Extra-axonal compartment 1") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment3.Model", StringProperty::New("Ball") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment3.D", DoubleProperty::New(m_Controls->m_BallWidget1->GetD()) ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment3.T2", DoubleProperty::New(m_BallModel1.GetT2()) ); break; case 1: m_AstrosticksModel1.SetGradientList(parameters.GetGradientDirections()); m_AstrosticksModel1.SetBvalue(parameters.m_Bvalue); m_AstrosticksModel1.SetDiffusivity(m_Controls->m_AstrosticksWidget1->GetD()); m_AstrosticksModel1.SetT2(m_Controls->m_AstrosticksWidget1->GetT2()); m_AstrosticksModel1.SetRandomizeSticks(m_Controls->m_AstrosticksWidget1->GetRandomizeSticks()); parameters.m_NonFiberModelList.push_back(&m_AstrosticksModel1); parameters.m_SignalModelString += "Astrosticks"; parameters.m_ResultNode->AddProperty("Fiberfox.Compartment3.Description", StringProperty::New("Extra-axonal compartment 1") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment3.Model", StringProperty::New("Astrosticks") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment3.D", DoubleProperty::New(m_Controls->m_AstrosticksWidget1->GetD()) ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment3.T2", DoubleProperty::New(m_AstrosticksModel1.GetT2()) ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment3.RandomSticks", BoolProperty::New(m_Controls->m_AstrosticksWidget1->GetRandomizeSticks()) ); break; case 2: m_DotModel1.SetGradientList(parameters.GetGradientDirections()); m_DotModel1.SetT2(m_Controls->m_DotWidget1->GetT2()); parameters.m_NonFiberModelList.push_back(&m_DotModel1); parameters.m_SignalModelString += "Dot"; parameters.m_ResultNode->AddProperty("Fiberfox.Compartment3.Description", StringProperty::New("Extra-axonal compartment 1") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment3.Model", StringProperty::New("Dot") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment3.T2", DoubleProperty::New(m_DotModel1.GetT2()) ); break; } // compartment 4 switch (m_Controls->m_Compartment4Box->currentIndex()) { case 0: break; case 1: { m_BallModel2.SetGradientList(parameters.GetGradientDirections()); m_BallModel2.SetBvalue(parameters.m_Bvalue); m_BallModel2.SetDiffusivity(m_Controls->m_BallWidget2->GetD()); m_BallModel2.SetT2(m_Controls->m_BallWidget2->GetT2()); mitk::DataNode::Pointer volumeNode = m_Controls->m_Comp4VolumeFraction->GetSelectedNode(); if (volumeNode.IsNull()) { MITK_WARN << "No volume fraction image selected! Second extra-axonal compartment has been disabled."; break; } mitk::Image* img = dynamic_cast(volumeNode->GetData()); ItkDoubleImgType::Pointer itkImg = ItkDoubleImgType::New(); CastToItkImage< ItkDoubleImgType >(img, itkImg); double max = img->GetScalarValueMax(); double min = img->GetScalarValueMin(); if (max>1 || min<0) // are volume fractions between 0 and 1? { itk::RescaleIntensityImageFilter::Pointer rescaler = itk::RescaleIntensityImageFilter::New(); rescaler->SetInput(0, itkImg); rescaler->SetOutputMaximum(1); rescaler->SetOutputMinimum(0); rescaler->Update(); itkImg = rescaler->GetOutput(); } m_BallModel2.SetVolumeFractionImage(itkImg); parameters.m_NonFiberModelList.push_back(&m_BallModel2); parameters.m_SignalModelString += "Ball"; parameters.m_ResultNode->AddProperty("Fiberfox.Compartment4.Description", StringProperty::New("Extra-axonal compartment 2") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment4.Model", StringProperty::New("Ball") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment4.D", DoubleProperty::New(m_Controls->m_BallWidget2->GetD()) ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment4.T2", DoubleProperty::New(m_BallModel2.GetT2()) ); itk::InvertIntensityImageFilter< ItkDoubleImgType, ItkDoubleImgType >::Pointer inverter = itk::InvertIntensityImageFilter< ItkDoubleImgType, ItkDoubleImgType >::New(); inverter->SetMaximum(1.0); inverter->SetInput(itkImg); inverter->Update(); parameters.m_NonFiberModelList.at(parameters.m_NonFiberModelList.size()-2)->SetVolumeFractionImage(inverter->GetOutput()); break; } case 2: { m_AstrosticksModel2.SetGradientList(parameters.GetGradientDirections()); m_AstrosticksModel2.SetBvalue(parameters.m_Bvalue); m_AstrosticksModel2.SetDiffusivity(m_Controls->m_AstrosticksWidget2->GetD()); m_AstrosticksModel2.SetT2(m_Controls->m_AstrosticksWidget2->GetT2()); m_AstrosticksModel2.SetRandomizeSticks(m_Controls->m_AstrosticksWidget2->GetRandomizeSticks()); mitk::DataNode::Pointer volumeNode = m_Controls->m_Comp4VolumeFraction->GetSelectedNode(); if (volumeNode.IsNull()) { MITK_WARN << "No volume fraction image selected! Second extra-axonal compartment has been disabled."; break; } mitk::Image* img = dynamic_cast(volumeNode->GetData()); ItkDoubleImgType::Pointer itkImg = ItkDoubleImgType::New(); CastToItkImage< ItkDoubleImgType >(img, itkImg); double max = img->GetScalarValueMax(); double min = img->GetScalarValueMin(); if (max>1 || min<0) // are volume fractions between 0 and 1? { itk::RescaleIntensityImageFilter::Pointer rescaler = itk::RescaleIntensityImageFilter::New(); rescaler->SetInput(0, itkImg); rescaler->SetOutputMaximum(1); rescaler->SetOutputMinimum(0); rescaler->Update(); itkImg = rescaler->GetOutput(); } m_AstrosticksModel2.SetVolumeFractionImage(itkImg); parameters.m_NonFiberModelList.push_back(&m_AstrosticksModel2); parameters.m_SignalModelString += "Astrosticks"; parameters.m_ResultNode->AddProperty("Fiberfox.Compartment4.Description", StringProperty::New("Extra-axonal compartment 2") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment4.Model", StringProperty::New("Astrosticks") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment4.D", DoubleProperty::New(m_Controls->m_AstrosticksWidget2->GetD()) ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment4.T2", DoubleProperty::New(m_AstrosticksModel2.GetT2()) ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment4.RandomSticks", BoolProperty::New(m_Controls->m_AstrosticksWidget2->GetRandomizeSticks()) ); itk::InvertIntensityImageFilter< ItkDoubleImgType, ItkDoubleImgType >::Pointer inverter = itk::InvertIntensityImageFilter< ItkDoubleImgType, ItkDoubleImgType >::New(); inverter->SetMaximum( 1.0 ); inverter->SetInput(itkImg); inverter->Update(); parameters.m_NonFiberModelList.at(parameters.m_NonFiberModelList.size()-2)->SetVolumeFractionImage(inverter->GetOutput()); break; } case 3: { m_DotModel2.SetGradientList(parameters.GetGradientDirections()); m_DotModel2.SetT2(m_Controls->m_DotWidget2->GetT2()); mitk::DataNode::Pointer volumeNode = m_Controls->m_Comp4VolumeFraction->GetSelectedNode(); if (volumeNode.IsNull()) { MITK_WARN << "No volume fraction image selected! Second extra-axonal compartment has been disabled."; break; } mitk::Image* img = dynamic_cast(volumeNode->GetData()); ItkDoubleImgType::Pointer itkImg = ItkDoubleImgType::New(); CastToItkImage< ItkDoubleImgType >(img, itkImg); double max = img->GetScalarValueMax(); double min = img->GetScalarValueMin(); if (max>1 || min<0) // are volume fractions between 0 and 1? { itk::RescaleIntensityImageFilter::Pointer rescaler = itk::RescaleIntensityImageFilter::New(); rescaler->SetInput(0, itkImg); rescaler->SetOutputMaximum(1); rescaler->SetOutputMinimum(0); rescaler->Update(); itkImg = rescaler->GetOutput(); } m_DotModel2.SetVolumeFractionImage(itkImg); parameters.m_NonFiberModelList.push_back(&m_DotModel2); parameters.m_SignalModelString += "Dot"; parameters.m_ResultNode->AddProperty("Fiberfox.Compartment4.Description", StringProperty::New("Extra-axonal compartment 2") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment4.Model", StringProperty::New("Dot") ); parameters.m_ResultNode->AddProperty("Fiberfox.Compartment4.T2", DoubleProperty::New(m_DotModel2.GetT2()) ); itk::InvertIntensityImageFilter< ItkDoubleImgType, ItkDoubleImgType >::Pointer inverter = itk::InvertIntensityImageFilter< ItkDoubleImgType, ItkDoubleImgType >::New(); inverter->SetMaximum( 1.0 ); inverter->SetInput(itkImg); inverter->Update(); parameters.m_NonFiberModelList.at(parameters.m_NonFiberModelList.size()-2)->SetVolumeFractionImage(inverter->GetOutput()); break; } } parameters.m_ResultNode->AddProperty("Fiberfox.SignalScale", IntProperty::New(parameters.m_SignalScale)); parameters.m_ResultNode->AddProperty("Fiberfox.FiberRadius", IntProperty::New(parameters.m_AxonRadius)); parameters.m_ResultNode->AddProperty("Fiberfox.Tinhom", DoubleProperty::New(parameters.m_tInhom)); parameters.m_ResultNode->AddProperty("Fiberfox.Tline", DoubleProperty::New(parameters.m_tLine)); parameters.m_ResultNode->AddProperty("Fiberfox.TE", DoubleProperty::New(parameters.m_tEcho)); parameters.m_ResultNode->AddProperty("Fiberfox.Repetitions", IntProperty::New(parameters.m_Repetitions)); parameters.m_ResultNode->AddProperty("Fiberfox.b-value", DoubleProperty::New(parameters.m_Bvalue)); parameters.m_ResultNode->AddProperty("Fiberfox.NoPartialVolume", BoolProperty::New(parameters.m_DoDisablePartialVolume)); parameters.m_ResultNode->AddProperty("Fiberfox.Relaxation", BoolProperty::New(parameters.m_DoSimulateRelaxation)); parameters.m_ResultNode->AddProperty("binary", BoolProperty::New(false)); return parameters; } void QmitkFiberfoxView::SaveParameters() { FiberfoxParameters ffParamaters = UpdateImageParameters(); QString filename = QFileDialog::getSaveFileName( 0, tr("Save Parameters"), m_ParameterFile, tr("Fiberfox Parameters (*.ffp)") ); if(filename.isEmpty() || filename.isNull()) return; if(!filename.endsWith(".ffp")) filename += ".ffp"; m_ParameterFile = filename; boost::property_tree::ptree parameters; // fiber generation parameters parameters.put("fiberfox.fibers.realtime", m_Controls->m_RealTimeFibers->isChecked()); parameters.put("fiberfox.fibers.showadvanced", m_Controls->m_AdvancedOptionsBox->isChecked()); parameters.put("fiberfox.fibers.distribution", m_Controls->m_DistributionBox->currentIndex()); parameters.put("fiberfox.fibers.variance", m_Controls->m_VarianceBox->value()); parameters.put("fiberfox.fibers.density", m_Controls->m_FiberDensityBox->value()); parameters.put("fiberfox.fibers.spline.sampling", m_Controls->m_FiberSamplingBox->value()); parameters.put("fiberfox.fibers.spline.tension", m_Controls->m_TensionBox->value()); parameters.put("fiberfox.fibers.spline.continuity", m_Controls->m_ContinuityBox->value()); parameters.put("fiberfox.fibers.spline.bias", m_Controls->m_BiasBox->value()); parameters.put("fiberfox.fibers.constantradius", m_Controls->m_ConstantRadiusBox->isChecked()); parameters.put("fiberfox.fibers.rotation.x", m_Controls->m_XrotBox->value()); parameters.put("fiberfox.fibers.rotation.y", m_Controls->m_YrotBox->value()); parameters.put("fiberfox.fibers.rotation.z", m_Controls->m_ZrotBox->value()); parameters.put("fiberfox.fibers.translation.x", m_Controls->m_XtransBox->value()); parameters.put("fiberfox.fibers.translation.y", m_Controls->m_YtransBox->value()); parameters.put("fiberfox.fibers.translation.z", m_Controls->m_ZtransBox->value()); parameters.put("fiberfox.fibers.scale.x", m_Controls->m_XscaleBox->value()); parameters.put("fiberfox.fibers.scale.y", m_Controls->m_YscaleBox->value()); parameters.put("fiberfox.fibers.scale.z", m_Controls->m_ZscaleBox->value()); parameters.put("fiberfox.fibers.includeFiducials", m_Controls->m_IncludeFiducials->isChecked()); parameters.put("fiberfox.fibers.includeFiducials", m_Controls->m_IncludeFiducials->isChecked()); // image generation parameters parameters.put("fiberfox.image.basic.size.x", ffParamaters.m_ImageRegion.GetSize(0)); parameters.put("fiberfox.image.basic.size.y", ffParamaters.m_ImageRegion.GetSize(1)); parameters.put("fiberfox.image.basic.size.z", ffParamaters.m_ImageRegion.GetSize(2)); parameters.put("fiberfox.image.basic.spacing.x", ffParamaters.m_ImageSpacing[0]); parameters.put("fiberfox.image.basic.spacing.y", ffParamaters.m_ImageSpacing[1]); parameters.put("fiberfox.image.basic.spacing.z", ffParamaters.m_ImageSpacing[2]); parameters.put("fiberfox.image.basic.numgradients", ffParamaters.GetNumWeightedVolumes()); parameters.put("fiberfox.image.basic.bvalue", ffParamaters.m_Bvalue); parameters.put("fiberfox.image.showadvanced", m_Controls->m_AdvancedOptionsBox_2->isChecked()); parameters.put("fiberfox.image.repetitions", ffParamaters.m_Repetitions); parameters.put("fiberfox.image.signalScale", ffParamaters.m_SignalScale); parameters.put("fiberfox.image.tEcho", ffParamaters.m_tEcho); parameters.put("fiberfox.image.tLine", m_Controls->m_LineReadoutTimeBox->value()); parameters.put("fiberfox.image.tInhom", ffParamaters.m_tInhom); parameters.put("fiberfox.image.axonRadius", ffParamaters.m_AxonRadius); parameters.put("fiberfox.image.doSimulateRelaxation", ffParamaters.m_DoSimulateRelaxation); parameters.put("fiberfox.image.doDisablePartialVolume", ffParamaters.m_DoDisablePartialVolume); parameters.put("fiberfox.image.outputvolumefractions", m_Controls->m_VolumeFractionsBox->isChecked()); parameters.put("fiberfox.image.artifacts.addnoise", m_Controls->m_AddNoise->isChecked()); parameters.put("fiberfox.image.artifacts.noisedistribution", m_Controls->m_NoiseDistributionBox->currentIndex()); parameters.put("fiberfox.image.artifacts.noisevariance", m_Controls->m_NoiseLevel->value()); parameters.put("fiberfox.image.artifacts.addghost", m_Controls->m_AddGhosts->isChecked()); parameters.put("fiberfox.image.artifacts.kspaceLineOffset", m_Controls->m_kOffsetBox->value()); parameters.put("fiberfox.image.artifacts.distortions", m_Controls->m_AddDistortions->isChecked()); parameters.put("fiberfox.image.artifacts.addeddy", m_Controls->m_AddEddy->isChecked()); parameters.put("fiberfox.image.artifacts.eddyStrength", m_Controls->m_EddyGradientStrength->value()); parameters.put("fiberfox.image.artifacts.addringing", m_Controls->m_AddGibbsRinging->isChecked()); parameters.put("fiberfox.image.artifacts.addspikes", m_Controls->m_AddSpikes->isChecked()); parameters.put("fiberfox.image.artifacts.spikesnum", m_Controls->m_SpikeNumBox->value()); parameters.put("fiberfox.image.artifacts.spikesscale", m_Controls->m_SpikeScaleBox->value()); parameters.put("fiberfox.image.artifacts.addaliasing", m_Controls->m_AddAliasing->isChecked()); parameters.put("fiberfox.image.artifacts.aliasingfactor", m_Controls->m_WrapBox->value()); parameters.put("fiberfox.image.artifacts.doAddMotion", m_Controls->m_AddMotion->isChecked()); parameters.put("fiberfox.image.artifacts.randomMotion", m_Controls->m_RandomMotion->isChecked()); parameters.put("fiberfox.image.artifacts.translation0", m_Controls->m_MaxTranslationBoxX->value()); parameters.put("fiberfox.image.artifacts.translation1", m_Controls->m_MaxTranslationBoxY->value()); parameters.put("fiberfox.image.artifacts.translation2", m_Controls->m_MaxTranslationBoxZ->value()); parameters.put("fiberfox.image.artifacts.rotation0", m_Controls->m_MaxRotationBoxX->value()); parameters.put("fiberfox.image.artifacts.rotation1", m_Controls->m_MaxRotationBoxY->value()); parameters.put("fiberfox.image.artifacts.rotation2", m_Controls->m_MaxRotationBoxZ->value()); parameters.put("fiberfox.image.compartment1.index", m_Controls->m_Compartment1Box->currentIndex()); parameters.put("fiberfox.image.compartment2.index", m_Controls->m_Compartment2Box->currentIndex()); parameters.put("fiberfox.image.compartment3.index", m_Controls->m_Compartment3Box->currentIndex()); parameters.put("fiberfox.image.compartment4.index", m_Controls->m_Compartment4Box->currentIndex()); parameters.put("fiberfox.image.compartment1.stick.d", m_Controls->m_StickWidget1->GetD()); parameters.put("fiberfox.image.compartment1.stick.t2", m_Controls->m_StickWidget1->GetT2()); parameters.put("fiberfox.image.compartment1.zeppelin.d1", m_Controls->m_ZeppelinWidget1->GetD1()); parameters.put("fiberfox.image.compartment1.zeppelin.d2", m_Controls->m_ZeppelinWidget1->GetD2()); parameters.put("fiberfox.image.compartment1.zeppelin.t2", m_Controls->m_ZeppelinWidget1->GetT2()); parameters.put("fiberfox.image.compartment1.tensor.d1", m_Controls->m_TensorWidget1->GetD1()); parameters.put("fiberfox.image.compartment1.tensor.d2", m_Controls->m_TensorWidget1->GetD2()); parameters.put("fiberfox.image.compartment1.tensor.d3", m_Controls->m_TensorWidget1->GetD3()); parameters.put("fiberfox.image.compartment1.tensor.t2", m_Controls->m_TensorWidget1->GetT2()); parameters.put("fiberfox.image.compartment2.stick.d", m_Controls->m_StickWidget2->GetD()); parameters.put("fiberfox.image.compartment2.stick.t2", m_Controls->m_StickWidget2->GetT2()); parameters.put("fiberfox.image.compartment2.zeppelin.d1", m_Controls->m_ZeppelinWidget2->GetD1()); parameters.put("fiberfox.image.compartment2.zeppelin.d2", m_Controls->m_ZeppelinWidget2->GetD2()); parameters.put("fiberfox.image.compartment2.zeppelin.t2", m_Controls->m_ZeppelinWidget2->GetT2()); parameters.put("fiberfox.image.compartment2.tensor.d1", m_Controls->m_TensorWidget2->GetD1()); parameters.put("fiberfox.image.compartment2.tensor.d2", m_Controls->m_TensorWidget2->GetD2()); parameters.put("fiberfox.image.compartment2.tensor.d3", m_Controls->m_TensorWidget2->GetD3()); parameters.put("fiberfox.image.compartment2.tensor.t2", m_Controls->m_TensorWidget2->GetT2()); parameters.put("fiberfox.image.compartment3.ball.d", m_Controls->m_BallWidget1->GetD()); parameters.put("fiberfox.image.compartment3.ball.t2", m_Controls->m_BallWidget1->GetT2()); parameters.put("fiberfox.image.compartment3.astrosticks.d", m_Controls->m_AstrosticksWidget1->GetD()); parameters.put("fiberfox.image.compartment3.astrosticks.t2", m_Controls->m_AstrosticksWidget1->GetT2()); parameters.put("fiberfox.image.compartment3.astrosticks.randomize", m_Controls->m_AstrosticksWidget1->GetRandomizeSticks()); parameters.put("fiberfox.image.compartment3.dot.t2", m_Controls->m_DotWidget1->GetT2()); parameters.put("fiberfox.image.compartment4.ball.d", m_Controls->m_BallWidget2->GetD()); parameters.put("fiberfox.image.compartment4.ball.t2", m_Controls->m_BallWidget2->GetT2()); parameters.put("fiberfox.image.compartment4.astrosticks.d", m_Controls->m_AstrosticksWidget2->GetD()); parameters.put("fiberfox.image.compartment4.astrosticks.t2", m_Controls->m_AstrosticksWidget2->GetT2()); parameters.put("fiberfox.image.compartment4.astrosticks.randomize", m_Controls->m_AstrosticksWidget2->GetRandomizeSticks()); parameters.put("fiberfox.image.compartment4.dot.t2", m_Controls->m_DotWidget2->GetT2()); boost::property_tree::xml_parser::write_xml(filename.toStdString(), parameters); } void QmitkFiberfoxView::LoadParameters() { QString filename = QFileDialog::getOpenFileName(0, tr("Load Parameters"), QString(itksys::SystemTools::GetFilenamePath(m_ParameterFile.toStdString()).c_str()), tr("Fiberfox Parameters (*.ffp)") ); if(filename.isEmpty() || filename.isNull()) return; m_ParameterFile = filename; boost::property_tree::ptree parameters; boost::property_tree::xml_parser::read_xml(filename.toStdString(), parameters); BOOST_FOREACH( boost::property_tree::ptree::value_type const& v1, parameters.get_child("fiberfox") ) { if( v1.first == "fibers" ) { m_Controls->m_RealTimeFibers->setChecked(v1.second.get("realtime")); m_Controls->m_AdvancedOptionsBox->setChecked(v1.second.get("showadvanced")); m_Controls->m_DistributionBox->setCurrentIndex(v1.second.get("distribution")); m_Controls->m_VarianceBox->setValue(v1.second.get("variance")); m_Controls->m_FiberDensityBox->setValue(v1.second.get("density")); m_Controls->m_IncludeFiducials->setChecked(v1.second.get("includeFiducials")); m_Controls->m_ConstantRadiusBox->setChecked(v1.second.get("constantradius")); BOOST_FOREACH( boost::property_tree::ptree::value_type const& v2, v1.second ) { if( v2.first == "spline" ) { m_Controls->m_FiberSamplingBox->setValue(v2.second.get("sampling")); m_Controls->m_TensionBox->setValue(v2.second.get("tension")); m_Controls->m_ContinuityBox->setValue(v2.second.get("continuity")); m_Controls->m_BiasBox->setValue(v2.second.get("bias")); } if( v2.first == "rotation" ) { m_Controls->m_XrotBox->setValue(v2.second.get("x")); m_Controls->m_YrotBox->setValue(v2.second.get("y")); m_Controls->m_ZrotBox->setValue(v2.second.get("z")); } if( v2.first == "translation" ) { m_Controls->m_XtransBox->setValue(v2.second.get("x")); m_Controls->m_YtransBox->setValue(v2.second.get("y")); m_Controls->m_ZtransBox->setValue(v2.second.get("z")); } if( v2.first == "scale" ) { m_Controls->m_XscaleBox->setValue(v2.second.get("x")); m_Controls->m_YscaleBox->setValue(v2.second.get("y")); m_Controls->m_ZscaleBox->setValue(v2.second.get("z")); } } } if( v1.first == "image" ) { m_Controls->m_SizeX->setValue(v1.second.get("basic.size.x")); m_Controls->m_SizeY->setValue(v1.second.get("basic.size.y")); m_Controls->m_SizeZ->setValue(v1.second.get("basic.size.z")); m_Controls->m_SpacingX->setValue(v1.second.get("basic.spacing.x")); m_Controls->m_SpacingY->setValue(v1.second.get("basic.spacing.y")); m_Controls->m_SpacingZ->setValue(v1.second.get("basic.spacing.z")); m_Controls->m_NumGradientsBox->setValue(v1.second.get("basic.numgradients")); m_Controls->m_BvalueBox->setValue(v1.second.get("basic.bvalue")); m_Controls->m_AdvancedOptionsBox_2->setChecked(v1.second.get("showadvanced")); m_Controls->m_RepetitionsBox->setValue(v1.second.get("repetitions")); m_Controls->m_SignalScaleBox->setValue(v1.second.get("signalScale")); m_Controls->m_TEbox->setValue(v1.second.get("tEcho")); m_Controls->m_LineReadoutTimeBox->setValue(v1.second.get("tLine")); m_Controls->m_T2starBox->setValue(v1.second.get("tInhom")); m_Controls->m_FiberRadius->setValue(v1.second.get("axonRadius")); m_Controls->m_RelaxationBox->setChecked(v1.second.get("doSimulateRelaxation")); m_Controls->m_EnforcePureFiberVoxelsBox->setChecked(v1.second.get("doDisablePartialVolume")); m_Controls->m_VolumeFractionsBox->setChecked(v1.second.get("outputvolumefractions")); m_Controls->m_AddNoise->setChecked(v1.second.get("artifacts.addnoise")); m_Controls->m_NoiseDistributionBox->setCurrentIndex(v1.second.get("artifacts.noisedistribution")); m_Controls->m_NoiseLevel->setValue(v1.second.get("artifacts.noisevariance")); m_Controls->m_AddGhosts->setChecked(v1.second.get("artifacts.addghost")); m_Controls->m_kOffsetBox->setValue(v1.second.get("artifacts.kspaceLineOffset")); m_Controls->m_AddAliasing->setChecked(v1.second.get("artifacts.addaliasing")); m_Controls->m_WrapBox->setValue(v1.second.get("artifacts.aliasingfactor")); m_Controls->m_AddDistortions->setChecked(v1.second.get("artifacts.distortions")); m_Controls->m_AddSpikes->setChecked(v1.second.get("artifacts.addspikes")); m_Controls->m_SpikeNumBox->setValue(v1.second.get("artifacts.spikesnum")); m_Controls->m_SpikeScaleBox->setValue(v1.second.get("artifacts.spikesscale")); m_Controls->m_AddEddy->setChecked(v1.second.get("artifacts.addeddy")); m_Controls->m_EddyGradientStrength->setValue(v1.second.get("artifacts.eddyStrength")); m_Controls->m_AddGibbsRinging->setChecked(v1.second.get("artifacts.addringing")); m_Controls->m_AddMotion->setChecked(v1.second.get("artifacts.doAddMotion")); m_Controls->m_RandomMotion->setChecked(v1.second.get("artifacts.randomMotion")); m_Controls->m_MaxTranslationBoxX->setValue(v1.second.get("artifacts.translation0")); m_Controls->m_MaxTranslationBoxY->setValue(v1.second.get("artifacts.translation1")); m_Controls->m_MaxTranslationBoxZ->setValue(v1.second.get("artifacts.translation2")); m_Controls->m_MaxRotationBoxX->setValue(v1.second.get("artifacts.rotation0")); m_Controls->m_MaxRotationBoxY->setValue(v1.second.get("artifacts.rotation1")); m_Controls->m_MaxRotationBoxZ->setValue(v1.second.get("artifacts.rotation2")); m_Controls->m_Compartment1Box->setCurrentIndex(v1.second.get("compartment1.index")); m_Controls->m_Compartment2Box->setCurrentIndex(v1.second.get("compartment2.index")); m_Controls->m_Compartment3Box->setCurrentIndex(v1.second.get("compartment3.index")); m_Controls->m_Compartment4Box->setCurrentIndex(v1.second.get("compartment4.index")); m_Controls->m_StickWidget1->SetD(v1.second.get("compartment1.stick.d")); m_Controls->m_StickWidget1->SetT2(v1.second.get("compartment1.stick.t2")); m_Controls->m_ZeppelinWidget1->SetD1(v1.second.get("compartment1.zeppelin.d1")); m_Controls->m_ZeppelinWidget1->SetD2(v1.second.get("compartment1.zeppelin.d2")); m_Controls->m_ZeppelinWidget1->SetT2(v1.second.get("compartment1.zeppelin.t2")); m_Controls->m_TensorWidget1->SetD1(v1.second.get("compartment1.tensor.d1")); m_Controls->m_TensorWidget1->SetD2(v1.second.get("compartment1.tensor.d2")); m_Controls->m_TensorWidget1->SetD3(v1.second.get("compartment1.tensor.d3")); m_Controls->m_TensorWidget1->SetT2(v1.second.get("compartment1.tensor.t2")); m_Controls->m_StickWidget2->SetD(v1.second.get("compartment2.stick.d")); m_Controls->m_StickWidget2->SetT2(v1.second.get("compartment2.stick.t2")); m_Controls->m_ZeppelinWidget2->SetD1(v1.second.get("compartment2.zeppelin.d1")); m_Controls->m_ZeppelinWidget2->SetD2(v1.second.get("compartment2.zeppelin.d2")); m_Controls->m_ZeppelinWidget2->SetT2(v1.second.get("compartment2.zeppelin.t2")); m_Controls->m_TensorWidget2->SetD1(v1.second.get("compartment2.tensor.d1")); m_Controls->m_TensorWidget2->SetD2(v1.second.get("compartment2.tensor.d2")); m_Controls->m_TensorWidget2->SetD3(v1.second.get("compartment2.tensor.d3")); m_Controls->m_TensorWidget2->SetT2(v1.second.get("compartment2.tensor.t2")); m_Controls->m_BallWidget1->SetD(v1.second.get("compartment3.ball.d")); m_Controls->m_BallWidget1->SetT2(v1.second.get("compartment3.ball.t2")); m_Controls->m_AstrosticksWidget1->SetD(v1.second.get("compartment3.astrosticks.d")); m_Controls->m_AstrosticksWidget1->SetT2(v1.second.get("compartment3.astrosticks.t2")); m_Controls->m_AstrosticksWidget1->SetRandomizeSticks(v1.second.get("compartment3.astrosticks.randomize")); m_Controls->m_DotWidget1->SetT2(v1.second.get("compartment3.dot.t2")); m_Controls->m_BallWidget2->SetD(v1.second.get("compartment4.ball.d")); m_Controls->m_BallWidget2->SetT2(v1.second.get("compartment4.ball.t2")); m_Controls->m_AstrosticksWidget2->SetD(v1.second.get("compartment4.astrosticks.d")); m_Controls->m_AstrosticksWidget2->SetT2(v1.second.get("compartment4.astrosticks.t2")); m_Controls->m_AstrosticksWidget2->SetRandomizeSticks(v1.second.get("compartment4.astrosticks.randomize")); m_Controls->m_DotWidget2->SetT2(v1.second.get("compartment4.dot.t2")); } } } void QmitkFiberfoxView::ShowAdvancedOptions(int state) { if (state) { m_Controls->m_AdvancedFiberOptionsFrame->setVisible(true); m_Controls->m_AdvancedSignalOptionsFrame->setVisible(true); m_Controls->m_AdvancedOptionsBox->setChecked(true); m_Controls->m_AdvancedOptionsBox_2->setChecked(true); } else { m_Controls->m_AdvancedFiberOptionsFrame->setVisible(false); m_Controls->m_AdvancedSignalOptionsFrame->setVisible(false); m_Controls->m_AdvancedOptionsBox->setChecked(false); m_Controls->m_AdvancedOptionsBox_2->setChecked(false); } } void QmitkFiberfoxView::Comp1ModelFrameVisibility(int index) { m_Controls->m_StickWidget1->setVisible(false); m_Controls->m_ZeppelinWidget1->setVisible(false); m_Controls->m_TensorWidget1->setVisible(false); switch (index) { case 0: m_Controls->m_StickWidget1->setVisible(true); break; case 1: m_Controls->m_ZeppelinWidget1->setVisible(true); break; case 2: m_Controls->m_TensorWidget1->setVisible(true); break; } } void QmitkFiberfoxView::Comp2ModelFrameVisibility(int index) { m_Controls->m_StickWidget2->setVisible(false); m_Controls->m_ZeppelinWidget2->setVisible(false); m_Controls->m_TensorWidget2->setVisible(false); switch (index) { case 0: break; case 1: m_Controls->m_StickWidget2->setVisible(true); break; case 2: m_Controls->m_ZeppelinWidget2->setVisible(true); break; case 3: m_Controls->m_TensorWidget2->setVisible(true); break; } } void QmitkFiberfoxView::Comp3ModelFrameVisibility(int index) { m_Controls->m_BallWidget1->setVisible(false); m_Controls->m_AstrosticksWidget1->setVisible(false); m_Controls->m_DotWidget1->setVisible(false); switch (index) { case 0: m_Controls->m_BallWidget1->setVisible(true); break; case 1: m_Controls->m_AstrosticksWidget1->setVisible(true); break; case 2: m_Controls->m_DotWidget1->setVisible(true); break; } } void QmitkFiberfoxView::Comp4ModelFrameVisibility(int index) { m_Controls->m_BallWidget2->setVisible(false); m_Controls->m_AstrosticksWidget2->setVisible(false); m_Controls->m_DotWidget2->setVisible(false); m_Controls->m_Comp4FractionFrame->setVisible(false); switch (index) { case 0: break; case 1: m_Controls->m_BallWidget2->setVisible(true); m_Controls->m_Comp4FractionFrame->setVisible(true); break; case 2: m_Controls->m_AstrosticksWidget2->setVisible(true); m_Controls->m_Comp4FractionFrame->setVisible(true); break; case 3: m_Controls->m_DotWidget2->setVisible(true); m_Controls->m_Comp4FractionFrame->setVisible(true); break; } } void QmitkFiberfoxView::OnConstantRadius(int value) { if (value>0 && m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnAddMotion(int value) { if (value>0) m_Controls->m_MotionArtifactFrame->setVisible(true); else m_Controls->m_MotionArtifactFrame->setVisible(false); } void QmitkFiberfoxView::OnAddAliasing(int value) { if (value>0) m_Controls->m_AliasingFrame->setVisible(true); else m_Controls->m_AliasingFrame->setVisible(false); } void QmitkFiberfoxView::OnAddSpikes(int value) { if (value>0) m_Controls->m_SpikeFrame->setVisible(true); else m_Controls->m_SpikeFrame->setVisible(false); } void QmitkFiberfoxView::OnAddEddy(int value) { if (value>0) m_Controls->m_EddyFrame->setVisible(true); else m_Controls->m_EddyFrame->setVisible(false); } void QmitkFiberfoxView::OnAddDistortions(int value) { if (value>0) m_Controls->m_DistortionsFrame->setVisible(true); else m_Controls->m_DistortionsFrame->setVisible(false); } void QmitkFiberfoxView::OnAddGhosts(int value) { if (value>0) m_Controls->m_GhostFrame->setVisible(true); else m_Controls->m_GhostFrame->setVisible(false); } void QmitkFiberfoxView::OnAddNoise(int value) { if (value>0) m_Controls->m_NoiseFrame->setVisible(true); else m_Controls->m_NoiseFrame->setVisible(false); } void QmitkFiberfoxView::OnDistributionChanged(int value) { if (value==1) m_Controls->m_VarianceBox->setVisible(true); else m_Controls->m_VarianceBox->setVisible(false); if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnVarianceChanged(double) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnFiberDensityChanged(int) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnFiberSamplingChanged(double) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnTensionChanged(double) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnContinuityChanged(double) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnBiasChanged(double) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::AlignOnGrid() { for (unsigned int i=0; i(m_SelectedFiducials.at(i)->GetData()); mitk::Point3D wc0 = pe->GetWorldControlPoint(0); mitk::DataStorage::SetOfObjects::ConstPointer parentFibs = GetDataStorage()->GetSources(m_SelectedFiducials.at(i)); for( mitk::DataStorage::SetOfObjects::const_iterator it = parentFibs->begin(); it != parentFibs->end(); ++it ) { mitk::DataNode::Pointer pFibNode = *it; if ( pFibNode.IsNotNull() && dynamic_cast(pFibNode->GetData()) ) { mitk::DataStorage::SetOfObjects::ConstPointer parentImgs = GetDataStorage()->GetSources(pFibNode); for( mitk::DataStorage::SetOfObjects::const_iterator it2 = parentImgs->begin(); it2 != parentImgs->end(); ++it2 ) { mitk::DataNode::Pointer pImgNode = *it2; if ( pImgNode.IsNotNull() && dynamic_cast(pImgNode->GetData()) ) { mitk::Image::Pointer img = dynamic_cast(pImgNode->GetData()); - mitk::Geometry3D::Pointer geom = img->GetGeometry(); + mitk::BaseGeometry::Pointer geom = img->GetGeometry(); itk::Index<3> idx; geom->WorldToIndex(wc0, idx); mitk::Point3D cIdx; cIdx[0]=idx[0]; cIdx[1]=idx[1]; cIdx[2]=idx[2]; mitk::Point3D world; geom->IndexToWorld(cIdx,world); mitk::Vector3D trans = world - wc0; pe->GetGeometry()->Translate(trans); break; } } break; } } } for(unsigned int i=0; iGetSources(fibNode); for( mitk::DataStorage::SetOfObjects::const_iterator it = sources->begin(); it != sources->end(); ++it ) { mitk::DataNode::Pointer imgNode = *it; if ( imgNode.IsNotNull() && dynamic_cast(imgNode->GetData()) ) { mitk::DataStorage::SetOfObjects::ConstPointer derivations = GetDataStorage()->GetDerivations(fibNode); for( mitk::DataStorage::SetOfObjects::const_iterator it2 = derivations->begin(); it2 != derivations->end(); ++it2 ) { mitk::DataNode::Pointer fiducialNode = *it2; if ( fiducialNode.IsNotNull() && dynamic_cast(fiducialNode->GetData()) ) { mitk::PlanarEllipse::Pointer pe = dynamic_cast(fiducialNode->GetData()); mitk::Point3D wc0 = pe->GetWorldControlPoint(0); mitk::Image::Pointer img = dynamic_cast(imgNode->GetData()); - mitk::Geometry3D::Pointer geom = img->GetGeometry(); + mitk::BaseGeometry::Pointer geom = img->GetGeometry(); itk::Index<3> idx; geom->WorldToIndex(wc0, idx); mitk::Point3D cIdx; cIdx[0]=idx[0]; cIdx[1]=idx[1]; cIdx[2]=idx[2]; mitk::Point3D world; geom->IndexToWorld(cIdx,world); mitk::Vector3D trans = world - wc0; pe->GetGeometry()->Translate(trans); } } break; } } } for(unsigned int i=0; i(m_SelectedImages.at(i)->GetData()); mitk::DataStorage::SetOfObjects::ConstPointer derivations = GetDataStorage()->GetDerivations(m_SelectedImages.at(i)); for( mitk::DataStorage::SetOfObjects::const_iterator it = derivations->begin(); it != derivations->end(); ++it ) { mitk::DataNode::Pointer fibNode = *it; if ( fibNode.IsNotNull() && dynamic_cast(fibNode->GetData()) ) { mitk::DataStorage::SetOfObjects::ConstPointer derivations2 = GetDataStorage()->GetDerivations(fibNode); for( mitk::DataStorage::SetOfObjects::const_iterator it2 = derivations2->begin(); it2 != derivations2->end(); ++it2 ) { mitk::DataNode::Pointer fiducialNode = *it2; if ( fiducialNode.IsNotNull() && dynamic_cast(fiducialNode->GetData()) ) { mitk::PlanarEllipse::Pointer pe = dynamic_cast(fiducialNode->GetData()); mitk::Point3D wc0 = pe->GetWorldControlPoint(0); - mitk::Geometry3D::Pointer geom = img->GetGeometry(); + mitk::BaseGeometry::Pointer geom = img->GetGeometry(); itk::Index<3> idx; geom->WorldToIndex(wc0, idx); mitk::Point3D cIdx; cIdx[0]=idx[0]; cIdx[1]=idx[1]; cIdx[2]=idx[2]; mitk::Point3D world; geom->IndexToWorld(cIdx,world); mitk::Vector3D trans = world - wc0; pe->GetGeometry()->Translate(trans); } } } } } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnFlipButton() { if (m_SelectedFiducial.IsNull()) return; std::map::iterator it = m_DataNodeToPlanarFigureData.find(m_SelectedFiducial.GetPointer()); if( it != m_DataNodeToPlanarFigureData.end() ) { QmitkPlanarFigureData& data = it->second; data.m_Flipped += 1; data.m_Flipped %= 2; } if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } QmitkFiberfoxView::GradientListType QmitkFiberfoxView::GenerateHalfShell(int NPoints) { NPoints *= 2; GradientListType pointshell; int numB0 = NPoints/20; if (numB0==0) numB0=1; GradientType g; g.Fill(0.0); for (int i=0; i theta; theta.set_size(NPoints); vnl_vector phi; phi.set_size(NPoints); double C = sqrt(4*M_PI); phi(0) = 0.0; phi(NPoints-1) = 0.0; for(int i=0; i0 && i std::vector > QmitkFiberfoxView::MakeGradientList() { std::vector > retval; vnl_matrix_fixed* U = itk::PointShell >::DistributePointShell(); // Add 0 vector for B0 int numB0 = ndirs/10; if (numB0==0) numB0=1; itk::Vector v; v.Fill(0.0); for (int i=0; i v; v[0] = U->get(0,i); v[1] = U->get(1,i); v[2] = U->get(2,i); retval.push_back(v); } return retval; } void QmitkFiberfoxView::OnAddBundle() { if (m_SelectedImage.IsNull()) return; mitk::DataStorage::SetOfObjects::ConstPointer children = GetDataStorage()->GetDerivations(m_SelectedImage); mitk::FiberBundleX::Pointer bundle = mitk::FiberBundleX::New(); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( bundle ); QString name = QString("Bundle_%1").arg(children->size()); node->SetName(name.toStdString()); m_SelectedBundles.push_back(node); UpdateGui(); GetDataStorage()->Add(node, m_SelectedImage); } void QmitkFiberfoxView::OnDrawROI() { if (m_SelectedBundles.empty()) OnAddBundle(); if (m_SelectedBundles.empty()) return; mitk::DataStorage::SetOfObjects::ConstPointer children = GetDataStorage()->GetDerivations(m_SelectedBundles.at(0)); mitk::PlanarEllipse::Pointer figure = mitk::PlanarEllipse::New(); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( figure ); node->SetBoolProperty("planarfigure.3drendering", true); QList nodes = this->GetDataManagerSelection(); for( int i=0; iSetSelected(false); m_SelectedFiducial = node; QString name = QString("Fiducial_%1").arg(children->size()); node->SetName(name.toStdString()); node->SetSelected(true); this->DisableCrosshairNavigation(); mitk::PlanarFigureInteractor::Pointer figureInteractor = dynamic_cast(node->GetDataInteractor().GetPointer()); if(figureInteractor.IsNull()) { figureInteractor = mitk::PlanarFigureInteractor::New(); us::Module* planarFigureModule = us::ModuleRegistry::GetModule( "MitkPlanarFigure" ); figureInteractor->LoadStateMachine("PlanarFigureInteraction.xml", planarFigureModule ); figureInteractor->SetEventConfig( "PlanarFigureConfig.xml", planarFigureModule ); figureInteractor->SetDataNode( node ); } UpdateGui(); GetDataStorage()->Add(node, m_SelectedBundles.at(0)); } bool CompareLayer(mitk::DataNode::Pointer i,mitk::DataNode::Pointer j) { int li = -1; i->GetPropertyValue("layer", li); int lj = -1; j->GetPropertyValue("layer", lj); return liGetSources(m_SelectedFiducial); for( mitk::DataStorage::SetOfObjects::const_iterator it = parents->begin(); it != parents->end(); ++it ) if(dynamic_cast((*it)->GetData())) m_SelectedBundles.push_back(*it); if (m_SelectedBundles.empty()) return; } vector< vector< mitk::PlanarEllipse::Pointer > > fiducials; vector< vector< unsigned int > > fliplist; for (unsigned int i=0; iGetDerivations(m_SelectedBundles.at(i)); std::vector< mitk::DataNode::Pointer > childVector; for( mitk::DataStorage::SetOfObjects::const_iterator it = children->begin(); it != children->end(); ++it ) childVector.push_back(*it); sort(childVector.begin(), childVector.end(), CompareLayer); vector< mitk::PlanarEllipse::Pointer > fib; vector< unsigned int > flip; float radius = 1; int count = 0; for( std::vector< mitk::DataNode::Pointer >::const_iterator it = childVector.begin(); it != childVector.end(); ++it ) { mitk::DataNode::Pointer node = *it; if ( node.IsNotNull() && dynamic_cast(node->GetData()) ) { mitk::PlanarEllipse* ellipse = dynamic_cast(node->GetData()); if (m_Controls->m_ConstantRadiusBox->isChecked()) { ellipse->SetTreatAsCircle(true); mitk::Point2D c = ellipse->GetControlPoint(0); mitk::Point2D p = ellipse->GetControlPoint(1); mitk::Vector2D v = p-c; if (count==0) { radius = v.GetVnlVector().magnitude(); ellipse->SetControlPoint(1, p); } else { v.Normalize(); v *= radius; ellipse->SetControlPoint(1, c+v); } } fib.push_back(ellipse); std::map::iterator it = m_DataNodeToPlanarFigureData.find(node.GetPointer()); if( it != m_DataNodeToPlanarFigureData.end() ) { QmitkPlanarFigureData& data = it->second; flip.push_back(data.m_Flipped); } else flip.push_back(0); } count++; } if (fib.size()>1) { fiducials.push_back(fib); fliplist.push_back(flip); } else if (fib.size()>0) m_SelectedBundles.at(i)->SetData( mitk::FiberBundleX::New() ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } itk::FibersFromPlanarFiguresFilter::Pointer filter = itk::FibersFromPlanarFiguresFilter::New(); filter->SetFiducials(fiducials); filter->SetFlipList(fliplist); switch(m_Controls->m_DistributionBox->currentIndex()){ case 0: filter->SetFiberDistribution(itk::FibersFromPlanarFiguresFilter::DISTRIBUTE_UNIFORM); break; case 1: filter->SetFiberDistribution(itk::FibersFromPlanarFiguresFilter::DISTRIBUTE_GAUSSIAN); filter->SetVariance(m_Controls->m_VarianceBox->value()); break; } filter->SetDensity(m_Controls->m_FiberDensityBox->value()); filter->SetTension(m_Controls->m_TensionBox->value()); filter->SetContinuity(m_Controls->m_ContinuityBox->value()); filter->SetBias(m_Controls->m_BiasBox->value()); filter->SetFiberSampling(m_Controls->m_FiberSamplingBox->value()); filter->Update(); vector< mitk::FiberBundleX::Pointer > fiberBundles = filter->GetFiberBundles(); for (unsigned int i=0; iSetData( fiberBundles.at(i) ); if (fiberBundles.at(i)->GetNumFibers()>50000) m_SelectedBundles.at(i)->SetVisibility(false); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberfoxView::GenerateImage() { if (m_SelectedBundles.empty() && m_SelectedDWI.IsNull()) { mitk::Image::Pointer image = mitk::ImageGenerator::GenerateGradientImage( m_Controls->m_SizeX->value(), m_Controls->m_SizeY->value(), m_Controls->m_SizeZ->value(), m_Controls->m_SpacingX->value(), m_Controls->m_SpacingY->value(), m_Controls->m_SpacingZ->value()); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("Dummy"); unsigned int window = m_Controls->m_SizeX->value()*m_Controls->m_SizeY->value()*m_Controls->m_SizeZ->value(); unsigned int level = window/2; mitk::LevelWindow lw; lw.SetLevelWindow(level, window); node->SetProperty( "levelwindow", mitk::LevelWindowProperty::New( lw ) ); GetDataStorage()->Add(node); m_SelectedImage = node; mitk::BaseData::Pointer basedata = node->GetData(); if (basedata.IsNotNull()) { mitk::RenderingManager::GetInstance()->InitializeViews( basedata->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } UpdateGui(); } else if (!m_SelectedBundles.empty()) SimulateImageFromFibers(m_SelectedBundles.at(0)); else if (m_SelectedDWI.IsNotNull()) SimulateForExistingDwi(m_SelectedDWI); } void QmitkFiberfoxView::SimulateForExistingDwi(mitk::DataNode* imageNode) { if (!dynamic_cast*>(imageNode->GetData())) return; FiberfoxParameters parameters = UpdateImageParameters(); if (parameters.m_NoiseModel==NULL && parameters.m_Spikes==0 && parameters.m_FrequencyMap.IsNull() && parameters.m_KspaceLineOffset<=0.000001 && !parameters.m_DoAddGibbsRinging && !(parameters.m_EddyStrength>0) && parameters.m_CroppingFactor>0.999) { QMessageBox::information( NULL, "Simulation cancelled", "No valid artifact enabled! Motion artifacts and relaxation effects can NOT be added to an existing diffusion weighted image."); return; } mitk::DiffusionImage::Pointer diffImg = dynamic_cast*>(imageNode->GetData()); m_ArtifactsToDwiFilter = itk::AddArtifactsToDwiImageFilter< short >::New(); m_ArtifactsToDwiFilter->SetInput(diffImg->GetVectorImage()); parameters.m_ParentNode = imageNode; m_ArtifactsToDwiFilter->SetParameters(parameters); m_Worker.m_FilterType = 1; m_Thread.start(QThread::LowestPriority); } void QmitkFiberfoxView::SimulateImageFromFibers(mitk::DataNode* fiberNode) { mitk::FiberBundleX::Pointer fiberBundle = dynamic_cast(fiberNode->GetData()); if (fiberBundle->GetNumFibers()<=0) return; FiberfoxParameters parameters = UpdateImageParameters(); m_TractsToDwiFilter = itk::TractsToDWIImageFilter< short >::New(); parameters.m_ParentNode = fiberNode; m_TractsToDwiFilter->SetParameters(parameters); m_TractsToDwiFilter->SetFiberBundle(fiberBundle); m_Worker.m_FilterType = 0; m_Thread.start(QThread::LowestPriority); } void QmitkFiberfoxView::ApplyTransform() { vector< mitk::DataNode::Pointer > selectedBundles; for(unsigned int i=0; iGetDerivations(m_SelectedImages.at(i)); for( mitk::DataStorage::SetOfObjects::const_iterator it = derivations->begin(); it != derivations->end(); ++it ) { mitk::DataNode::Pointer fibNode = *it; if ( fibNode.IsNotNull() && dynamic_cast(fibNode->GetData()) ) selectedBundles.push_back(fibNode); } } if (selectedBundles.empty()) selectedBundles = m_SelectedBundles2; if (!selectedBundles.empty()) { for (std::vector::const_iterator it = selectedBundles.begin(); it!=selectedBundles.end(); ++it) { mitk::FiberBundleX::Pointer fib = dynamic_cast((*it)->GetData()); fib->RotateAroundAxis(m_Controls->m_XrotBox->value(), m_Controls->m_YrotBox->value(), m_Controls->m_ZrotBox->value()); fib->TranslateFibers(m_Controls->m_XtransBox->value(), m_Controls->m_YtransBox->value(), m_Controls->m_ZtransBox->value()); fib->ScaleFibers(m_Controls->m_XscaleBox->value(), m_Controls->m_YscaleBox->value(), m_Controls->m_ZscaleBox->value()); // handle child fiducials if (m_Controls->m_IncludeFiducials->isChecked()) { mitk::DataStorage::SetOfObjects::ConstPointer derivations = GetDataStorage()->GetDerivations(*it); for( mitk::DataStorage::SetOfObjects::const_iterator it2 = derivations->begin(); it2 != derivations->end(); ++it2 ) { mitk::DataNode::Pointer fiducialNode = *it2; if ( fiducialNode.IsNotNull() && dynamic_cast(fiducialNode->GetData()) ) { mitk::PlanarEllipse* pe = dynamic_cast(fiducialNode->GetData()); - mitk::Geometry3D* geom = pe->GetGeometry(); + mitk::BaseGeometry* geom = pe->GetGeometry(); // translate mitk::Vector3D world; world[0] = m_Controls->m_XtransBox->value(); world[1] = m_Controls->m_YtransBox->value(); world[2] = m_Controls->m_ZtransBox->value(); geom->Translate(world); // calculate rotation matrix double x = m_Controls->m_XrotBox->value()*M_PI/180; double y = m_Controls->m_YrotBox->value()*M_PI/180; double z = m_Controls->m_ZrotBox->value()*M_PI/180; itk::Matrix< double, 3, 3 > rotX; rotX.SetIdentity(); rotX[1][1] = cos(x); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(x); rotX[2][1] = -rotX[1][2]; itk::Matrix< double, 3, 3 > rotY; rotY.SetIdentity(); rotY[0][0] = cos(y); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(y); rotY[2][0] = -rotY[0][2]; itk::Matrix< double, 3, 3 > rotZ; rotZ.SetIdentity(); rotZ[0][0] = cos(z); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(z); rotZ[1][0] = -rotZ[0][1]; itk::Matrix< double, 3, 3 > rot = rotZ*rotY*rotX; // transform control point coordinate into geometry translation geom->SetOrigin(pe->GetWorldControlPoint(0)); mitk::Point2D cp; cp.Fill(0.0); pe->SetControlPoint(0, cp); // rotate fiducial geom->GetIndexToWorldTransform()->SetMatrix(rot*geom->GetIndexToWorldTransform()->GetMatrix()); // implicit translation mitk::Vector3D trans; trans[0] = geom->GetOrigin()[0]-fib->GetGeometry()->GetCenter()[0]; trans[1] = geom->GetOrigin()[1]-fib->GetGeometry()->GetCenter()[1]; trans[2] = geom->GetOrigin()[2]-fib->GetGeometry()->GetCenter()[2]; mitk::Vector3D newWc = rot*trans; newWc = newWc-trans; geom->Translate(newWc); pe->Modified(); } } } } } else { for (unsigned int i=0; i(m_SelectedFiducials.at(i)->GetData()); - mitk::Geometry3D* geom = pe->GetGeometry(); + mitk::BaseGeometry* geom = pe->GetGeometry(); // translate mitk::Vector3D world; world[0] = m_Controls->m_XtransBox->value(); world[1] = m_Controls->m_YtransBox->value(); world[2] = m_Controls->m_ZtransBox->value(); geom->Translate(world); // calculate rotation matrix double x = m_Controls->m_XrotBox->value()*M_PI/180; double y = m_Controls->m_YrotBox->value()*M_PI/180; double z = m_Controls->m_ZrotBox->value()*M_PI/180; itk::Matrix< double, 3, 3 > rotX; rotX.SetIdentity(); rotX[1][1] = cos(x); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(x); rotX[2][1] = -rotX[1][2]; itk::Matrix< double, 3, 3 > rotY; rotY.SetIdentity(); rotY[0][0] = cos(y); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(y); rotY[2][0] = -rotY[0][2]; itk::Matrix< double, 3, 3 > rotZ; rotZ.SetIdentity(); rotZ[0][0] = cos(z); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(z); rotZ[1][0] = -rotZ[0][1]; itk::Matrix< double, 3, 3 > rot = rotZ*rotY*rotX; // transform control point coordinate into geometry translation geom->SetOrigin(pe->GetWorldControlPoint(0)); mitk::Point2D cp; cp.Fill(0.0); pe->SetControlPoint(0, cp); // rotate fiducial geom->GetIndexToWorldTransform()->SetMatrix(rot*geom->GetIndexToWorldTransform()->GetMatrix()); pe->Modified(); } if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberfoxView::CopyBundles() { if ( m_SelectedBundles.size()<1 ){ QMessageBox::information( NULL, "Warning", "Select at least one fiber bundle!"); MITK_WARN("QmitkFiberProcessingView") << "Select at least one fiber bundle!"; return; } for (std::vector::const_iterator it = m_SelectedBundles.begin(); it!=m_SelectedBundles.end(); ++it) { // find parent image mitk::DataNode::Pointer parentNode; mitk::DataStorage::SetOfObjects::ConstPointer parentImgs = GetDataStorage()->GetSources(*it); for( mitk::DataStorage::SetOfObjects::const_iterator it2 = parentImgs->begin(); it2 != parentImgs->end(); ++it2 ) { mitk::DataNode::Pointer pImgNode = *it2; if ( pImgNode.IsNotNull() && dynamic_cast(pImgNode->GetData()) ) { parentNode = pImgNode; break; } } mitk::FiberBundleX::Pointer fib = dynamic_cast((*it)->GetData()); mitk::FiberBundleX::Pointer newBundle = fib->GetDeepCopy(); QString name((*it)->GetName().c_str()); name += "_copy"; mitk::DataNode::Pointer fbNode = mitk::DataNode::New(); fbNode->SetData(newBundle); fbNode->SetName(name.toStdString()); fbNode->SetVisibility(true); if (parentNode.IsNotNull()) GetDataStorage()->Add(fbNode, parentNode); else GetDataStorage()->Add(fbNode); // copy child fiducials if (m_Controls->m_IncludeFiducials->isChecked()) { mitk::DataStorage::SetOfObjects::ConstPointer derivations = GetDataStorage()->GetDerivations(*it); for( mitk::DataStorage::SetOfObjects::const_iterator it2 = derivations->begin(); it2 != derivations->end(); ++it2 ) { mitk::DataNode::Pointer fiducialNode = *it2; if ( fiducialNode.IsNotNull() && dynamic_cast(fiducialNode->GetData()) ) { mitk::PlanarEllipse::Pointer pe = mitk::PlanarEllipse::New(); pe->DeepCopy(dynamic_cast(fiducialNode->GetData())); mitk::DataNode::Pointer newNode = mitk::DataNode::New(); newNode->SetData(pe); newNode->SetName(fiducialNode->GetName()); newNode->SetBoolProperty("planarfigure.3drendering", true); GetDataStorage()->Add(newNode, fbNode); } } } } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberfoxView::JoinBundles() { if ( m_SelectedBundles.size()<2 ){ QMessageBox::information( NULL, "Warning", "Select at least two fiber bundles!"); MITK_WARN("QmitkFiberProcessingView") << "Select at least two fiber bundles!"; return; } std::vector::const_iterator it = m_SelectedBundles.begin(); mitk::FiberBundleX::Pointer newBundle = dynamic_cast((*it)->GetData()); QString name(""); name += QString((*it)->GetName().c_str()); ++it; for (; it!=m_SelectedBundles.end(); ++it) { newBundle = newBundle->AddBundle(dynamic_cast((*it)->GetData())); name += "+"+QString((*it)->GetName().c_str()); } mitk::DataNode::Pointer fbNode = mitk::DataNode::New(); fbNode->SetData(newBundle); fbNode->SetName(name.toStdString()); fbNode->SetVisibility(true); GetDataStorage()->Add(fbNode); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberfoxView::UpdateGui() { m_Controls->m_FiberBundleLabel->setText("mandatory"); m_Controls->m_GeometryFrame->setEnabled(true); m_Controls->m_GeometryMessage->setVisible(false); m_Controls->m_DiffusionPropsMessage->setVisible(false); m_Controls->m_FiberGenMessage->setVisible(true); m_Controls->m_TransformBundlesButton->setEnabled(false); m_Controls->m_CopyBundlesButton->setEnabled(false); m_Controls->m_GenerateFibersButton->setEnabled(false); m_Controls->m_FlipButton->setEnabled(false); m_Controls->m_CircleButton->setEnabled(false); m_Controls->m_BvalueBox->setEnabled(true); m_Controls->m_NumGradientsBox->setEnabled(true); m_Controls->m_JoinBundlesButton->setEnabled(false); m_Controls->m_AlignOnGrid->setEnabled(false); if (m_SelectedFiducial.IsNotNull()) { m_Controls->m_TransformBundlesButton->setEnabled(true); m_Controls->m_FlipButton->setEnabled(true); m_Controls->m_AlignOnGrid->setEnabled(true); } if (m_SelectedImage.IsNotNull() || !m_SelectedBundles.empty()) { m_Controls->m_TransformBundlesButton->setEnabled(true); m_Controls->m_CircleButton->setEnabled(true); m_Controls->m_FiberGenMessage->setVisible(false); m_Controls->m_AlignOnGrid->setEnabled(true); } if (m_MaskImageNode.IsNotNull() || m_SelectedImage.IsNotNull()) { m_Controls->m_GeometryMessage->setVisible(true); m_Controls->m_GeometryFrame->setEnabled(false); } if (m_SelectedDWI.IsNotNull()) { m_Controls->m_DiffusionPropsMessage->setVisible(true); m_Controls->m_BvalueBox->setEnabled(false); m_Controls->m_NumGradientsBox->setEnabled(false); m_Controls->m_GeometryMessage->setVisible(true); m_Controls->m_GeometryFrame->setEnabled(false); } if (!m_SelectedBundles.empty()) { m_Controls->m_CopyBundlesButton->setEnabled(true); m_Controls->m_GenerateFibersButton->setEnabled(true); m_Controls->m_FiberBundleLabel->setText(m_SelectedBundles.at(0)->GetName().c_str()); if (m_SelectedBundles.size()>1) m_Controls->m_JoinBundlesButton->setEnabled(true); } } void QmitkFiberfoxView::OnSelectionChanged( berry::IWorkbenchPart::Pointer, const QList& nodes ) { m_SelectedBundles2.clear(); m_SelectedImages.clear(); m_SelectedFiducials.clear(); m_SelectedFiducial = NULL; m_SelectedBundles.clear(); m_SelectedImage = NULL; m_SelectedDWI = NULL; m_MaskImageNode = NULL; m_Controls->m_TissueMaskLabel->setText("optional"); // iterate all selected objects, adjust warning visibility for( int i=0; i*>(node->GetData()) ) { m_SelectedDWI = node; m_SelectedImage = node; m_SelectedImages.push_back(node); } else if( node.IsNotNull() && dynamic_cast(node->GetData()) ) { m_SelectedImages.push_back(node); m_SelectedImage = node; bool isbinary = false; node->GetPropertyValue("binary", isbinary); if (isbinary) { m_MaskImageNode = node; m_Controls->m_TissueMaskLabel->setText(m_MaskImageNode->GetName().c_str()); } } else if ( node.IsNotNull() && dynamic_cast(node->GetData()) ) { m_SelectedBundles2.push_back(node); if (m_Controls->m_RealTimeFibers->isChecked()) { m_SelectedBundles.push_back(node); mitk::FiberBundleX::Pointer newFib = dynamic_cast(node->GetData()); if (newFib->GetNumFibers()!=m_Controls->m_FiberDensityBox->value()) GenerateFibers(); } else m_SelectedBundles.push_back(node); } else if ( node.IsNotNull() && dynamic_cast(node->GetData()) ) { m_SelectedFiducials.push_back(node); m_SelectedFiducial = node; m_SelectedBundles.clear(); mitk::DataStorage::SetOfObjects::ConstPointer parents = GetDataStorage()->GetSources(node); for( mitk::DataStorage::SetOfObjects::const_iterator it = parents->begin(); it != parents->end(); ++it ) { mitk::DataNode::Pointer pNode = *it; if ( pNode.IsNotNull() && dynamic_cast(pNode->GetData()) ) m_SelectedBundles.push_back(pNode); } } } UpdateGui(); } void QmitkFiberfoxView::EnableCrosshairNavigation() { MITK_DEBUG << "EnableCrosshairNavigation"; // enable the crosshair navigation if (mitk::ILinkedRenderWindowPart* linkedRenderWindow = dynamic_cast(this->GetRenderWindowPart())) { MITK_DEBUG << "enabling linked navigation"; linkedRenderWindow->EnableLinkedNavigation(true); // linkedRenderWindow->EnableSlicingPlanes(true); } if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::DisableCrosshairNavigation() { MITK_DEBUG << "DisableCrosshairNavigation"; // disable the crosshair navigation during the drawing if (mitk::ILinkedRenderWindowPart* linkedRenderWindow = dynamic_cast(this->GetRenderWindowPart())) { MITK_DEBUG << "disabling linked navigation"; linkedRenderWindow->EnableLinkedNavigation(false); // linkedRenderWindow->EnableSlicingPlanes(false); } } void QmitkFiberfoxView::NodeRemoved(const mitk::DataNode* node) { mitk::DataNode* nonConstNode = const_cast(node); std::map::iterator it = m_DataNodeToPlanarFigureData.find(nonConstNode); if (dynamic_cast(node->GetData())) { m_SelectedBundles.clear(); m_SelectedBundles2.clear(); } else if (dynamic_cast(node->GetData())) m_SelectedImages.clear(); if( it != m_DataNodeToPlanarFigureData.end() ) { QmitkPlanarFigureData& data = it->second; // remove observers data.m_Figure->RemoveObserver( data.m_EndPlacementObserverTag ); data.m_Figure->RemoveObserver( data.m_SelectObserverTag ); data.m_Figure->RemoveObserver( data.m_StartInteractionObserverTag ); data.m_Figure->RemoveObserver( data.m_EndInteractionObserverTag ); m_DataNodeToPlanarFigureData.erase( it ); } } void QmitkFiberfoxView::NodeAdded( const mitk::DataNode* node ) { // add observer for selection in renderwindow mitk::PlanarFigure* figure = dynamic_cast(node->GetData()); bool isPositionMarker (false); node->GetBoolProperty("isContourMarker", isPositionMarker); if( figure && !isPositionMarker ) { MITK_DEBUG << "figure added. will add interactor if needed."; mitk::PlanarFigureInteractor::Pointer figureInteractor = dynamic_cast(node->GetDataInteractor().GetPointer()); mitk::DataNode* nonConstNode = const_cast( node ); if(figureInteractor.IsNull()) { figureInteractor = mitk::PlanarFigureInteractor::New(); us::Module* planarFigureModule = us::ModuleRegistry::GetModule( "MitkPlanarFigure" ); figureInteractor->LoadStateMachine("PlanarFigureInteraction.xml", planarFigureModule ); figureInteractor->SetEventConfig( "PlanarFigureConfig.xml", planarFigureModule ); figureInteractor->SetDataNode( nonConstNode ); } MITK_DEBUG << "will now add observers for planarfigure"; QmitkPlanarFigureData data; data.m_Figure = figure; // // add observer for event when figure has been placed typedef itk::SimpleMemberCommand< QmitkFiberfoxView > SimpleCommandType; // SimpleCommandType::Pointer initializationCommand = SimpleCommandType::New(); // initializationCommand->SetCallbackFunction( this, &QmitkFiberfoxView::PlanarFigureInitialized ); // data.m_EndPlacementObserverTag = figure->AddObserver( mitk::EndPlacementPlanarFigureEvent(), initializationCommand ); // add observer for event when figure is picked (selected) typedef itk::MemberCommand< QmitkFiberfoxView > MemberCommandType; MemberCommandType::Pointer selectCommand = MemberCommandType::New(); selectCommand->SetCallbackFunction( this, &QmitkFiberfoxView::PlanarFigureSelected ); data.m_SelectObserverTag = figure->AddObserver( mitk::SelectPlanarFigureEvent(), selectCommand ); // add observer for event when interaction with figure starts SimpleCommandType::Pointer startInteractionCommand = SimpleCommandType::New(); startInteractionCommand->SetCallbackFunction( this, &QmitkFiberfoxView::DisableCrosshairNavigation); data.m_StartInteractionObserverTag = figure->AddObserver( mitk::StartInteractionPlanarFigureEvent(), startInteractionCommand ); // add observer for event when interaction with figure starts SimpleCommandType::Pointer endInteractionCommand = SimpleCommandType::New(); endInteractionCommand->SetCallbackFunction( this, &QmitkFiberfoxView::EnableCrosshairNavigation); data.m_EndInteractionObserverTag = figure->AddObserver( mitk::EndInteractionPlanarFigureEvent(), endInteractionCommand ); m_DataNodeToPlanarFigureData[nonConstNode] = data; } } void QmitkFiberfoxView::PlanarFigureSelected( itk::Object* object, const itk::EventObject& ) { mitk::TNodePredicateDataType::Pointer isPf = mitk::TNodePredicateDataType::New(); mitk::DataStorage::SetOfObjects::ConstPointer allPfs = this->GetDataStorage()->GetSubset( isPf ); for ( mitk::DataStorage::SetOfObjects::const_iterator it = allPfs->begin(); it!=allPfs->end(); ++it) { mitk::DataNode* node = *it; if( node->GetData() == object ) { node->SetSelected(true); m_SelectedFiducial = node; } else node->SetSelected(false); } UpdateGui(); this->RequestRenderWindowUpdate(); } void QmitkFiberfoxView::SetFocus() { m_Controls->m_CircleButton->setFocus(); } void QmitkFiberfoxView::SetOutputPath() { // SELECT FOLDER DIALOG string outputPath = QFileDialog::getExistingDirectory(NULL, "Save images to...", QString(outputPath.c_str())).toStdString(); if (outputPath.empty()) m_Controls->m_SavePathEdit->setText("-"); else { outputPath += "/"; m_Controls->m_SavePathEdit->setText(QString(outputPath.c_str())); } } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFieldmapGeneratorView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFieldmapGeneratorView.cpp index 82b690a657..bf60a0342a 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFieldmapGeneratorView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFieldmapGeneratorView.cpp @@ -1,298 +1,298 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Blueberry #include #include // MITK #include "QmitkFieldmapGeneratorView.h" #include #include #include #include const std::string QmitkFieldmapGeneratorView::VIEW_ID = "org.mitk.views.fieldmapgenerator"; QmitkFieldmapGeneratorView::QmitkFieldmapGeneratorView() : QmitkFunctionality() , m_Controls( 0 ) , m_MultiWidget( NULL ) { } QmitkFieldmapGeneratorView::~QmitkFieldmapGeneratorView() { } void QmitkFieldmapGeneratorView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkFieldmapGeneratorViewControls; m_Controls->setupUi( parent ); m_Controls->m_SelectedImageBox->SetDataStorage(this->GetDataStorage()); mitk::TNodePredicateDataType::Pointer isMitkImage = mitk::TNodePredicateDataType::New(); m_Controls->m_SelectedImageBox->SetPredicate(isMitkImage); connect((QObject*) m_Controls->m_GenerateFieldmap, SIGNAL(clicked()), (QObject*) this, SLOT(GenerateFieldmap())); connect((QObject*) m_Controls->m_PlaceFieldSource, SIGNAL(clicked()), (QObject*) this, SLOT(PlaceFieldSource())); connect((QObject*) m_Controls->m_SourceVarianceBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnVarianceChanged(double))); connect((QObject*) m_Controls->m_SourceHeightBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnHeightChanged(double))); } } void QmitkFieldmapGeneratorView::OnVarianceChanged(double value) { if (m_SelectedSource.IsNotNull()) { m_SelectedSource->SetProperty("pointsize", mitk::FloatProperty::New(value)); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkFieldmapGeneratorView::OnHeightChanged(double value) { if (m_SelectedSource.IsNotNull()) { m_SelectedSource->SetProperty("color", mitk::ColorProperty::New(0, 0, value/100.0)); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkFieldmapGeneratorView::PlaceFieldSource() { if (m_Controls->m_SelectedImageBox->GetSelectedNode().IsNull() || !m_MultiWidget) { m_Controls->m_WorldPosLabel->setText("-"); m_Controls->m_IndexLabel->setText("-"); return; } mitk::Point3D index; mitk::Image::Pointer img = dynamic_cast(m_Controls->m_SelectedImageBox->GetSelectedNode()->GetData()); - mitk::Geometry3D* geom = img->GetGeometry(); + mitk::BaseGeometry* geom = img->GetGeometry(); if ( geom->IsInside(m_WorldPoint) ) { img->GetGeometry()->WorldToIndex(m_WorldPoint, index); mitk::PointSet::Pointer pointSet = mitk::PointSet::New(); pointSet->InsertPoint(0, m_WorldPoint); mitk::DataStorage::SetOfObjects::ConstPointer children = GetDataStorage()->GetDerivations(m_Controls->m_SelectedImageBox->GetSelectedNode()); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData(pointSet); QString name = QString("FieldSource_%1").arg(children->size()); node->SetName(name.toStdString()); node->SetVisibility(true); float minSpacing; if(geom->GetSpacing()[0]GetSpacing()[1] && geom->GetSpacing()[0]GetSpacing()[2]) minSpacing = geom->GetSpacing()[0]; else if (geom->GetSpacing()[1] < geom->GetSpacing()[2]) minSpacing = geom->GetSpacing()[1]; else minSpacing = geom->GetSpacing()[2]; node->SetProperty("pointsize", mitk::FloatProperty::New(minSpacing*5)); node->SetProperty("color", mitk::ColorProperty::New(0, 0, 1)); GetDataStorage()->Add(node, m_Controls->m_SelectedImageBox->GetSelectedNode()); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkFieldmapGeneratorView::GenerateFieldmap() { if (m_Controls->m_SelectedImageBox->GetSelectedNode().IsNull()) return; mitk::Image::Pointer img = dynamic_cast(m_Controls->m_SelectedImageBox->GetSelectedNode()->GetData()); - mitk::Geometry3D* geom = img->GetGeometry(); + mitk::BaseGeometry* geom = img->GetGeometry(); typedef itk::Image< double, 3 > FieldMapType; itk::Vector spacing; ///< output image spacing mitk::Point3D origin; ///< output image origin itk::FieldmapGeneratorFilter< FieldMapType >::MatrixType directionMatrix; ///< output image rotation itk::FieldmapGeneratorFilter< FieldMapType >::OutputImageRegionType imageRegion; ///< output image size spacing = geom->GetSpacing(); origin = geom->GetOrigin(); imageRegion.SetSize(0, img->GetDimension(0)); imageRegion.SetSize(1, img->GetDimension(1)); imageRegion.SetSize(2, img->GetDimension(2)); for (int r=0; r<3; r++) for (int c=0; c<3; c++) directionMatrix[r][c]=geom->GetMatrixColumn(c)[r]/spacing[c]; std::vector< double > variances; std::vector< double > heights; std::vector< mitk::Point3D > worldPositions; mitk::DataStorage::SetOfObjects::ConstPointer children = GetDataStorage()->GetDerivations(m_Controls->m_SelectedImageBox->GetSelectedNode()); for( mitk::DataStorage::SetOfObjects::const_iterator it = children->begin(); it != children->end(); ++it ) if(dynamic_cast((*it)->GetData())) { float var = 0; (*it)->GetPropertyValue("pointsize", var); variances.push_back(var); float color[3]; (*it)->GetColor(color); heights.push_back(color[2]*100); mitk::PointSet* ps = dynamic_cast((*it)->GetData()); mitk::Point3D point; ps->GetPointIfExists(0, &point); worldPositions.push_back(point); } vnl_vector_fixed< double, 3 > gradient, offset; gradient[0] = m_Controls->m_xGradientBox->value(); gradient[1] = m_Controls->m_yGradientBox->value(); gradient[2] = m_Controls->m_zGradientBox->value(); offset[0] = m_Controls->m_xOffsetBox->value(); offset[1] = m_Controls->m_yOffsetBox->value(); offset[2] = m_Controls->m_zOffsetBox->value(); itk::FieldmapGeneratorFilter< FieldMapType >::Pointer filter = itk::FieldmapGeneratorFilter< FieldMapType >::New(); filter->SetHeights(heights); filter->SetVariances(variances); filter->SetWorldPositions(worldPositions); filter->SetSpacing(spacing); filter->SetOrigin(origin); filter->SetDirectionMatrix(directionMatrix); filter->SetImageRegion(imageRegion); filter->SetGradient(gradient); filter->SetOffset(offset); filter->Update(); mitk::DataNode::Pointer resultNode = mitk::DataNode::New(); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(filter->GetOutput(0)); image->SetVolume(filter->GetOutput(0)->GetBufferPointer()); resultNode->SetData( image ); resultNode->SetName(m_Controls->m_SelectedImageBox->GetSelectedNode()->GetName()+"_Fieldmap"); GetDataStorage()->Add(resultNode); } void QmitkFieldmapGeneratorView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget1->GetSliceNavigationController(); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkFieldmapGeneratorView::OnSliceChanged ); m_SliceObserverTag1 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(NULL, 0), command ); } { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget2->GetSliceNavigationController(); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkFieldmapGeneratorView::OnSliceChanged ); m_SliceObserverTag2 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(NULL, 0), command ); } { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget3->GetSliceNavigationController(); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkFieldmapGeneratorView::OnSliceChanged ); m_SliceObserverTag3 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(NULL, 0), command ); } } void QmitkFieldmapGeneratorView::StdMultiWidgetNotAvailable() { { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget1->GetSliceNavigationController(); slicer->RemoveObserver( m_SliceObserverTag1 ); } { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget2->GetSliceNavigationController(); slicer->RemoveObserver( m_SliceObserverTag2 ); } { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget3->GetSliceNavigationController(); slicer->RemoveObserver( m_SliceObserverTag3 ); } m_MultiWidget = NULL; } void QmitkFieldmapGeneratorView::OnSelectionChanged( std::vector nodes ) { if (m_Controls->m_SelectedImageBox->GetSelectedNode().IsNotNull()) m_Controls->m_SelectedImageBox->GetSelectedNode()->RemoveObserver( m_PropertyObserverTag ); m_Controls->m_InputData->setTitle("Please Select Reference Image"); m_SelectedSource = NULL; // iterate selection for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if ( node.IsNotNull() && (dynamic_cast(node->GetData())) ) { m_Controls->m_SourceNameLabel->setText(node->GetName().c_str()); m_SelectedSource = node; float variance = 0; node->GetPropertyValue("pointsize", variance); m_Controls->m_SourceVarianceBox->setValue(variance); float color[3]; node->GetColor(color); m_Controls->m_SourceHeightBox->setValue(color[2]*100); } } if (m_Controls->m_SelectedImageBox->GetSelectedNode().IsNotNull()) { itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkFieldmapGeneratorView::OnSliceChanged ); m_PropertyObserverTag = m_Controls->m_SelectedImageBox->GetSelectedNode()->AddObserver( itk::ModifiedEvent(), command ); m_Controls->m_InputData->setTitle("Reference Image"); } } void QmitkFieldmapGeneratorView::OnSliceChanged(const itk::EventObject& /*e*/) { if (m_Controls->m_SelectedImageBox->GetSelectedNode().IsNull() || !m_MultiWidget) { m_Controls->m_WorldPosLabel->setText("-"); m_Controls->m_IndexLabel->setText("-"); return; } m_WorldPoint = m_MultiWidget->GetCrossPosition(); QString posSting = QString::number(m_WorldPoint[0]); posSting += ", "; posSting += QString::number(m_WorldPoint[1]); posSting += ", "; posSting += QString::number(m_WorldPoint[2]); m_Controls->m_WorldPosLabel->setText(posSting.toStdString().c_str()); mitk::Point3D index; mitk::Image::Pointer img = dynamic_cast(m_Controls->m_SelectedImageBox->GetSelectedNode()->GetData()); if ( m_Controls->m_SelectedImageBox->GetSelectedNode()->GetData()->GetGeometry()->IsInside(m_WorldPoint) ) { img->GetGeometry()->WorldToIndex(m_WorldPoint, index); posSting = QString::number(index[0]); posSting += ", "; posSting += QString::number(index[1]); posSting += ", "; posSting += QString::number(index[2]); m_Controls->m_IndexLabel->setText(posSting.toStdString().c_str()); } } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkOdfMaximaExtractionView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkOdfMaximaExtractionView.cpp index e1ba64bee3..e39be65d67 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkOdfMaximaExtractionView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkOdfMaximaExtractionView.cpp @@ -1,779 +1,779 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //misc #define _USE_MATH_DEFINES #include #include // Blueberry #include #include // Qmitk #include "QmitkOdfMaximaExtractionView.h" // MITK #include #include #include #include #include #include // ITK #include #include #include #include #include #include #include // Qt #include const std::string QmitkOdfMaximaExtractionView::VIEW_ID = "org.mitk.views.odfmaximaextractionview"; using namespace mitk; QmitkOdfMaximaExtractionView::QmitkOdfMaximaExtractionView() : QmitkFunctionality() , m_Controls( 0 ) , m_MultiWidget( NULL ) { } // Destructor QmitkOdfMaximaExtractionView::~QmitkOdfMaximaExtractionView() { } void QmitkOdfMaximaExtractionView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkOdfMaximaExtractionViewControls; m_Controls->setupUi( parent ); connect((QObject*) m_Controls->m_StartTensor, SIGNAL(clicked()), (QObject*) this, SLOT(StartTensor())); connect((QObject*) m_Controls->m_StartFiniteDiff, SIGNAL(clicked()), (QObject*) this, SLOT(StartFiniteDiff())); connect((QObject*) m_Controls->m_GenerateImageButton, SIGNAL(clicked()), (QObject*) this, SLOT(GenerateImage())); connect((QObject*) m_Controls->m_ImportPeaks, SIGNAL(clicked()), (QObject*) this, SLOT(ConvertPeaks())); connect((QObject*) m_Controls->m_ImportShCoeffs, SIGNAL(clicked()), (QObject*) this, SLOT(ConvertShCoeffs())); } } void QmitkOdfMaximaExtractionView::UpdateGui() { m_Controls->m_GenerateImageButton->setEnabled(false); m_Controls->m_StartFiniteDiff->setEnabled(false); m_Controls->m_StartTensor->setEnabled(false); m_Controls->m_CoeffImageFrame->setEnabled(false); if (!m_ImageNodes.empty() || !m_TensorImageNodes.empty()) { m_Controls->m_InputData->setTitle("Input Data"); if (!m_TensorImageNodes.empty()) { m_Controls->m_DwiFibLabel->setText(m_TensorImageNodes.front()->GetName().c_str()); m_Controls->m_StartTensor->setEnabled(true); } else { m_Controls->m_DwiFibLabel->setText(m_ImageNodes.front()->GetName().c_str()); m_Controls->m_StartFiniteDiff->setEnabled(true); m_Controls->m_GenerateImageButton->setEnabled(true); m_Controls->m_CoeffImageFrame->setEnabled(true); m_Controls->m_ShOrderBox->setEnabled(true); m_Controls->m_MaxNumPeaksBox->setEnabled(true); m_Controls->m_PeakThresholdBox->setEnabled(true); m_Controls->m_AbsoluteThresholdBox->setEnabled(true); } } else m_Controls->m_DwiFibLabel->setText("mandatory"); if (m_ImageNodes.empty()) { m_Controls->m_ImportPeaks->setEnabled(false); m_Controls->m_ImportShCoeffs->setEnabled(false); } else { m_Controls->m_ImportPeaks->setEnabled(true); m_Controls->m_ImportShCoeffs->setEnabled(true); } if (!m_BinaryImageNodes.empty()) { m_Controls->m_MaskLabel->setText(m_BinaryImageNodes.front()->GetName().c_str()); } else { m_Controls->m_MaskLabel->setText("optional"); } } template void QmitkOdfMaximaExtractionView::TemplatedConvertShCoeffs(mitk::Image* mitkImg) { typedef itk::ShCoefficientImageImporter< float, shOrder > FilterType; typedef mitk::ImageToItk< itk::Image< float, 4 > > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(mitkImg); caster->Update(); typename FilterType::Pointer filter = FilterType::New(); switch (m_Controls->m_ToolkitBox->currentIndex()) { case 0: filter->SetToolkit(FilterType::FSL); break; case 1: filter->SetToolkit(FilterType::MRTRIX); break; default: filter->SetToolkit(FilterType::FSL); } filter->SetInputImage(caster->GetOutput()); filter->GenerateData(); typename FilterType::QballImageType::Pointer itkQbi = filter->GetQballImage(); typename FilterType::CoefficientImageType::Pointer itkCi = filter->GetCoefficientImage(); { mitk::Image::Pointer img = mitk::Image::New(); img->InitializeByItk( itkCi.GetPointer() ); img->SetVolume( itkCi->GetBufferPointer() ); DataNode::Pointer node = DataNode::New(); node->SetData(img); node->SetName("_ShCoefficientImage"); node->SetVisibility(false); GetDataStorage()->Add(node); } { mitk::QBallImage::Pointer img = mitk::QBallImage::New(); img->InitializeByItk( itkQbi.GetPointer() ); img->SetVolume( itkQbi->GetBufferPointer() ); DataNode::Pointer node = DataNode::New(); node->SetData(img); node->SetName("_QballImage"); GetDataStorage()->Add(node); } } void QmitkOdfMaximaExtractionView::ConvertShCoeffs() { if (m_ImageNodes.empty()) return; mitk::Image::Pointer mitkImg = dynamic_cast(m_ImageNodes.at(0)->GetData()); if (mitkImg->GetDimension()!=4) { MITK_INFO << "wrong image type (need 4 dimensions)"; return; } int nrCoeffs = mitkImg->GetLargestPossibleRegion().GetSize()[3]; // solve bx² + cx + d = 0 = shOrder² + 2*shOrder + 2-2*neededCoeffs; int c=3, d=2-2*nrCoeffs; double D = c*c-4*d; int shOrder; if (D>0) { shOrder = (-c+sqrt(D))/2.0; if (shOrder<0) shOrder = (-c-sqrt(D))/2.0; } else if (D==0) shOrder = -c/2.0; MITK_INFO << "using SH-order " << shOrder; switch (shOrder) { case 2: TemplatedConvertShCoeffs<2>(mitkImg); break; case 4: TemplatedConvertShCoeffs<4>(mitkImg); break; case 6: TemplatedConvertShCoeffs<6>(mitkImg); break; case 8: TemplatedConvertShCoeffs<8>(mitkImg); break; case 10: TemplatedConvertShCoeffs<10>(mitkImg); break; case 12: TemplatedConvertShCoeffs<12>(mitkImg); break; default: MITK_INFO << "SH-order " << shOrder << " not supported"; } } void QmitkOdfMaximaExtractionView::ConvertPeaks() { if (m_ImageNodes.empty()) return; switch (m_Controls->m_ToolkitBox->currentIndex()) { case 0: { typedef itk::Image< float, 4 > ItkImageType; typedef itk::FslPeakImageConverter< float > FilterType; FilterType::Pointer filter = FilterType::New(); FilterType::InputType::Pointer inputVec = FilterType::InputType::New(); - mitk::Geometry3D::Pointer geom; + mitk::BaseGeometry::Pointer geom; for (int i=0; i(m_ImageNodes.at(i)->GetData()); geom = mitkImg->GetGeometry(); typedef mitk::ImageToItk< FilterType::InputImageType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(mitkImg); caster->Update(); FilterType::InputImageType::Pointer itkImg = caster->GetOutput(); inputVec->InsertElement(inputVec->Size(), itkImg); } filter->SetInputImages(inputVec); filter->GenerateData(); mitk::Vector3D outImageSpacing = geom->GetSpacing(); float maxSpacing = 1; if(outImageSpacing[0]>outImageSpacing[1] && outImageSpacing[0]>outImageSpacing[2]) maxSpacing = outImageSpacing[0]; else if (outImageSpacing[1] > outImageSpacing[2]) maxSpacing = outImageSpacing[1]; else maxSpacing = outImageSpacing[2]; mitk::FiberBundleX::Pointer directions = filter->GetOutputFiberBundle(); // directions->SetGeometry(geom); DataNode::Pointer node = DataNode::New(); node->SetData(directions); node->SetName("_VectorField"); node->SetProperty("Fiber2DSliceThickness", mitk::FloatProperty::New(maxSpacing)); node->SetProperty("Fiber2DfadeEFX", mitk::BoolProperty::New(false)); GetDataStorage()->Add(node); typedef FilterType::DirectionImageContainerType DirectionImageContainerType; DirectionImageContainerType::Pointer container = filter->GetDirectionImageContainer(); for (int i=0; iSize(); i++) { ItkDirectionImage3DType::Pointer itkImg = container->GetElement(i); mitk::Image::Pointer img = mitk::Image::New(); img->InitializeByItk( itkImg.GetPointer() ); img->SetVolume( itkImg->GetBufferPointer() ); DataNode::Pointer node = DataNode::New(); node->SetData(img); QString name(m_ImageNodes.at(i)->GetName().c_str()); name += "_Direction"; name += QString::number(i+1); node->SetName(name.toStdString().c_str()); node->SetVisibility(false); GetDataStorage()->Add(node); } break; } case 1: { typedef itk::Image< float, 4 > ItkImageType; typedef itk::MrtrixPeakImageConverter< float > FilterType; FilterType::Pointer filter = FilterType::New(); // cast to itk mitk::Image::Pointer mitkImg = dynamic_cast(m_ImageNodes.at(0)->GetData()); - mitk::Geometry3D::Pointer geom = mitkImg->GetGeometry(); + mitk::BaseGeometry::Pointer geom = mitkImg->GetGeometry(); typedef mitk::ImageToItk< FilterType::InputImageType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(mitkImg); caster->Update(); FilterType::InputImageType::Pointer itkImg = caster->GetOutput(); filter->SetInputImage(itkImg); filter->GenerateData(); mitk::Vector3D outImageSpacing = geom->GetSpacing(); float maxSpacing = 1; if(outImageSpacing[0]>outImageSpacing[1] && outImageSpacing[0]>outImageSpacing[2]) maxSpacing = outImageSpacing[0]; else if (outImageSpacing[1] > outImageSpacing[2]) maxSpacing = outImageSpacing[1]; else maxSpacing = outImageSpacing[2]; mitk::FiberBundleX::Pointer directions = filter->GetOutputFiberBundle(); //directions->SetGeometry(geom); DataNode::Pointer node = DataNode::New(); node->SetData(directions); QString name(m_ImageNodes.at(0)->GetName().c_str()); name += "_VectorField"; node->SetName(name.toStdString().c_str()); node->SetProperty("Fiber2DSliceThickness", mitk::FloatProperty::New(maxSpacing)); node->SetProperty("Fiber2DfadeEFX", mitk::BoolProperty::New(false)); GetDataStorage()->Add(node); { ItkUcharImgType::Pointer numDirImage = filter->GetNumDirectionsImage(); mitk::Image::Pointer image2 = mitk::Image::New(); image2->InitializeByItk( numDirImage.GetPointer() ); image2->SetVolume( numDirImage->GetBufferPointer() ); DataNode::Pointer node2 = DataNode::New(); node2->SetData(image2); QString name(m_ImageNodes.at(0)->GetName().c_str()); name += "_NumDirections"; node2->SetName(name.toStdString().c_str()); GetDataStorage()->Add(node2); } typedef FilterType::DirectionImageContainerType DirectionImageContainerType; DirectionImageContainerType::Pointer container = filter->GetDirectionImageContainer(); for (int i=0; iSize(); i++) { ItkDirectionImage3DType::Pointer itkImg = container->GetElement(i); mitk::Image::Pointer img = mitk::Image::New(); img->InitializeByItk( itkImg.GetPointer() ); img->SetVolume( itkImg->GetBufferPointer() ); DataNode::Pointer node = DataNode::New(); node->SetData(img); QString name(m_ImageNodes.at(0)->GetName().c_str()); name += "_Direction"; name += QString::number(i+1); node->SetName(name.toStdString().c_str()); node->SetVisibility(false); GetDataStorage()->Add(node); } break; } } } void QmitkOdfMaximaExtractionView::GenerateImage() { if (!m_ImageNodes.empty()) GenerateDataFromDwi(); } void QmitkOdfMaximaExtractionView::StartTensor() { if (m_TensorImageNodes.empty()) return; typedef itk::DiffusionTensorPrincipalDirectionImageFilter< float, float > MaximaExtractionFilterType; MaximaExtractionFilterType::Pointer filter = MaximaExtractionFilterType::New(); - mitk::Geometry3D::Pointer geometry; + mitk::BaseGeometry::Pointer geometry; try{ TensorImage::Pointer img = dynamic_cast(m_TensorImageNodes.at(0)->GetData()); ItkTensorImage::Pointer itkImage = ItkTensorImage::New(); CastToItkImage(img, itkImage); filter->SetInput(itkImage); geometry = img->GetGeometry(); } catch(itk::ExceptionObject &e) { MITK_INFO << "wrong image type: " << e.what(); QMessageBox::warning( NULL, "Wrong pixel type", "Could not perform Tensor Principal Direction Extraction due to Image has wrong pixel type.", QMessageBox::Ok ); return; //throw e; } if (!m_BinaryImageNodes.empty()) { ItkUcharImgType::Pointer itkMaskImage = ItkUcharImgType::New(); Image::Pointer mitkMaskImg = dynamic_cast(m_BinaryImageNodes.at(0)->GetData()); CastToItkImage(mitkMaskImg, itkMaskImage); filter->SetMaskImage(itkMaskImage); } if (m_Controls->m_NormalizationBox->currentIndex()==0) filter->SetNormalizeVectors(false); filter->Update(); if (m_Controls->m_OutputDirectionImagesBox->isChecked()) { MaximaExtractionFilterType::OutputImageType::Pointer itkImg = filter->GetOutput(); mitk::Image::Pointer img = mitk::Image::New(); img->InitializeByItk( itkImg.GetPointer() ); img->SetVolume( itkImg->GetBufferPointer() ); DataNode::Pointer node = DataNode::New(); node->SetData(img); QString name(m_TensorImageNodes.at(0)->GetName().c_str()); name += "_PrincipalDirection"; node->SetName(name.toStdString().c_str()); node->SetVisibility(false); GetDataStorage()->Add(node); } if (m_Controls->m_OutputNumDirectionsBox->isChecked()) { ItkUcharImgType::Pointer numDirImage = filter->GetNumDirectionsImage(); mitk::Image::Pointer image2 = mitk::Image::New(); image2->InitializeByItk( numDirImage.GetPointer() ); image2->SetVolume( numDirImage->GetBufferPointer() ); DataNode::Pointer node2 = DataNode::New(); node2->SetData(image2); QString name(m_TensorImageNodes.at(0)->GetName().c_str()); name += "_NumDirections"; node2->SetName(name.toStdString().c_str()); GetDataStorage()->Add(node2); } if (m_Controls->m_OutputVectorFieldBox->isChecked()) { mitk::Vector3D outImageSpacing = geometry->GetSpacing(); float minSpacing = 1; if(outImageSpacing[0]GetOutputFiberBundle(); // directions->SetGeometry(geometry); DataNode::Pointer node = DataNode::New(); node->SetData(directions); QString name(m_TensorImageNodes.at(0)->GetName().c_str()); name += "_VectorField"; node->SetName(name.toStdString().c_str()); node->SetProperty("Fiber2DSliceThickness", mitk::FloatProperty::New(minSpacing)); node->SetProperty("Fiber2DfadeEFX", mitk::BoolProperty::New(false)); GetDataStorage()->Add(node); } } template void QmitkOdfMaximaExtractionView::StartMaximaExtraction() { typedef itk::FiniteDiffOdfMaximaExtractionFilter< float, shOrder, 20242 > MaximaExtractionFilterType; typename MaximaExtractionFilterType::Pointer filter = MaximaExtractionFilterType::New(); switch (m_Controls->m_ToolkitBox->currentIndex()) { case 0: filter->SetToolkit(MaximaExtractionFilterType::FSL); break; case 1: filter->SetToolkit(MaximaExtractionFilterType::MRTRIX); break; default: filter->SetToolkit(MaximaExtractionFilterType::FSL); } - mitk::Geometry3D::Pointer geometry; + mitk::BaseGeometry::Pointer geometry; try{ Image::Pointer img = dynamic_cast(m_ImageNodes.at(0)->GetData()); typedef ImageToItk< typename MaximaExtractionFilterType::CoefficientImageType > CasterType; typename CasterType::Pointer caster = CasterType::New(); caster->SetInput(img); caster->Update(); filter->SetInput(caster->GetOutput()); geometry = img->GetGeometry(); } catch(itk::ExceptionObject &e) { MITK_INFO << "wrong image type: " << e.what(); QMessageBox::warning( NULL, "Wrong pixel type", "Could not perform Finite Differences Extraction due to Image has wrong pixel type.", QMessageBox::Ok ); return; //throw; } filter->SetAngularThreshold(cos((float)m_Controls->m_AngularThreshold->value()*M_PI/180)); filter->SetClusteringThreshold(cos((float)m_Controls->m_ClusteringAngleBox->value()*M_PI/180)); filter->SetMaxNumPeaks(m_Controls->m_MaxNumPeaksBox->value()); filter->SetPeakThreshold(m_Controls->m_PeakThresholdBox->value()); filter->SetAbsolutePeakThreshold(m_Controls->m_AbsoluteThresholdBox->value()); if (!m_BinaryImageNodes.empty()) { ItkUcharImgType::Pointer itkMaskImage = ItkUcharImgType::New(); Image::Pointer mitkMaskImg = dynamic_cast(m_BinaryImageNodes.at(0)->GetData()); CastToItkImage(mitkMaskImg, itkMaskImage); filter->SetMaskImage(itkMaskImage); } switch (m_Controls->m_NormalizationBox->currentIndex()) { case 0: filter->SetNormalizationMethod(MaximaExtractionFilterType::NO_NORM); break; case 1: filter->SetNormalizationMethod(MaximaExtractionFilterType::MAX_VEC_NORM); break; case 2: filter->SetNormalizationMethod(MaximaExtractionFilterType::SINGLE_VEC_NORM); break; } filter->Update(); if (m_Controls->m_OutputDirectionImagesBox->isChecked()) { typedef typename MaximaExtractionFilterType::ItkDirectionImageContainer ItkDirectionImageContainer; typename ItkDirectionImageContainer::Pointer container = filter->GetDirectionImageContainer(); for (int i=0; iSize(); i++) { typename MaximaExtractionFilterType::ItkDirectionImage::Pointer itkImg = container->GetElement(i); mitk::Image::Pointer img = mitk::Image::New(); img->InitializeByItk( itkImg.GetPointer() ); img->SetVolume( itkImg->GetBufferPointer() ); DataNode::Pointer node = DataNode::New(); node->SetData(img); QString name(m_ImageNodes.at(0)->GetName().c_str()); name += "_Direction"; name += QString::number(i+1); node->SetName(name.toStdString().c_str()); node->SetVisibility(false); GetDataStorage()->Add(node); } } if (m_Controls->m_OutputNumDirectionsBox->isChecked()) { ItkUcharImgType::Pointer numDirImage = filter->GetNumDirectionsImage(); mitk::Image::Pointer image2 = mitk::Image::New(); image2->InitializeByItk( numDirImage.GetPointer() ); image2->SetVolume( numDirImage->GetBufferPointer() ); DataNode::Pointer node2 = DataNode::New(); node2->SetData(image2); QString name(m_ImageNodes.at(0)->GetName().c_str()); name += "_NumDirections"; node2->SetName(name.toStdString().c_str()); GetDataStorage()->Add(node2); } if (m_Controls->m_OutputVectorFieldBox->isChecked()) { mitk::Vector3D outImageSpacing = geometry->GetSpacing(); float minSpacing = 1; if(outImageSpacing[0]GetOutputFiberBundle(); // directions->SetGeometry(geometry); DataNode::Pointer node = DataNode::New(); node->SetData(directions); QString name(m_ImageNodes.at(0)->GetName().c_str()); name += "_VectorField"; node->SetName(name.toStdString().c_str()); node->SetProperty("Fiber2DSliceThickness", mitk::FloatProperty::New(minSpacing)); node->SetProperty("Fiber2DfadeEFX", mitk::BoolProperty::New(false)); GetDataStorage()->Add(node); } } void QmitkOdfMaximaExtractionView::StartFiniteDiff() { if (m_ImageNodes.empty()) return; switch (m_Controls->m_ShOrderBox->currentIndex()) { case 0: StartMaximaExtraction<2>(); break; case 1: StartMaximaExtraction<4>(); break; case 2: StartMaximaExtraction<6>(); break; case 3: StartMaximaExtraction<8>(); break; case 4: StartMaximaExtraction<10>(); break; case 5: StartMaximaExtraction<12>(); break; } } void QmitkOdfMaximaExtractionView::GenerateDataFromDwi() { typedef itk::OdfMaximaExtractionFilter< float > MaximaExtractionFilterType; MaximaExtractionFilterType::Pointer filter = MaximaExtractionFilterType::New(); - mitk::Geometry3D::Pointer geometry; + mitk::BaseGeometry::Pointer geometry; if (!m_ImageNodes.empty()) { try{ Image::Pointer img = dynamic_cast(m_ImageNodes.at(0)->GetData()); typedef ImageToItk< MaximaExtractionFilterType::CoefficientImageType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(img); caster->Update(); filter->SetShCoeffImage(caster->GetOutput()); geometry = img->GetGeometry(); } catch(itk::ExceptionObject &e) { MITK_INFO << "wrong image type: " << e.what(); return; } } else return; filter->SetMaxNumPeaks(m_Controls->m_MaxNumPeaksBox->value()); filter->SetPeakThreshold(m_Controls->m_PeakThresholdBox->value()); if (!m_BinaryImageNodes.empty()) { ItkUcharImgType::Pointer itkMaskImage = ItkUcharImgType::New(); Image::Pointer mitkMaskImg = dynamic_cast(m_BinaryImageNodes.at(0)->GetData()); CastToItkImage(mitkMaskImg, itkMaskImage); filter->SetMaskImage(itkMaskImage); } switch (m_Controls->m_NormalizationBox->currentIndex()) { case 0: filter->SetNormalizationMethod(MaximaExtractionFilterType::NO_NORM); break; case 1: filter->SetNormalizationMethod(MaximaExtractionFilterType::MAX_VEC_NORM); break; case 2: filter->SetNormalizationMethod(MaximaExtractionFilterType::SINGLE_VEC_NORM); break; } filter->GenerateData(); ItkUcharImgType::Pointer numDirImage = filter->GetNumDirectionsImage(); if (m_Controls->m_OutputDirectionImagesBox->isChecked()) { typedef MaximaExtractionFilterType::ItkDirectionImageContainer ItkDirectionImageContainer; ItkDirectionImageContainer::Pointer container = filter->GetDirectionImageContainer(); for (int i=0; iSize(); i++) { MaximaExtractionFilterType::ItkDirectionImage::Pointer itkImg = container->GetElement(i); mitk::Image::Pointer img = mitk::Image::New(); img->InitializeByItk( itkImg.GetPointer() ); img->SetVolume( itkImg->GetBufferPointer() ); DataNode::Pointer node = DataNode::New(); node->SetData(img); QString name(m_ImageNodes.at(0)->GetName().c_str()); name += "_Direction"; name += QString::number(i+1); node->SetName(name.toStdString().c_str()); GetDataStorage()->Add(node); } } if (m_Controls->m_OutputNumDirectionsBox->isChecked()) { mitk::Image::Pointer image2 = mitk::Image::New(); image2->InitializeByItk( numDirImage.GetPointer() ); image2->SetVolume( numDirImage->GetBufferPointer() ); DataNode::Pointer node = DataNode::New(); node->SetData(image2); QString name(m_ImageNodes.at(0)->GetName().c_str()); name += "_NumDirections"; node->SetName(name.toStdString().c_str()); GetDataStorage()->Add(node); } if (m_Controls->m_OutputVectorFieldBox->isChecked()) { mitk::Vector3D outImageSpacing = geometry->GetSpacing(); float minSpacing = 1; if(outImageSpacing[0]GetOutputFiberBundle(); // directions->SetGeometry(geometry); DataNode::Pointer node = DataNode::New(); node->SetData(directions); QString name(m_ImageNodes.at(0)->GetName().c_str()); name += "_VectorField"; node->SetName(name.toStdString().c_str()); node->SetProperty("Fiber2DSliceThickness", mitk::FloatProperty::New(minSpacing)); node->SetProperty("Fiber2DfadeEFX", mitk::BoolProperty::New(false)); GetDataStorage()->Add(node); } } void QmitkOdfMaximaExtractionView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkOdfMaximaExtractionView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } void QmitkOdfMaximaExtractionView::OnSelectionChanged( std::vector nodes ) { m_Controls->m_InputData->setTitle("Please Select Input Data"); m_Controls->m_DwiFibLabel->setText("mandatory"); m_Controls->m_MaskLabel->setText("optional"); m_BinaryImageNodes.clear(); m_ImageNodes.clear(); m_TensorImageNodes.clear(); // iterate all selected objects, adjust warning visibility for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if ( node.IsNotNull() && dynamic_cast(node->GetData()) ) { m_TensorImageNodes.push_back(node); } else if( node.IsNotNull() && dynamic_cast(node->GetData()) ) { bool isBinary = false; node->GetPropertyValue("binary", isBinary); if (isBinary) m_BinaryImageNodes.push_back(node); else m_ImageNodes.push_back(node); } } UpdateGui(); } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkPartialVolumeAnalysisView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkPartialVolumeAnalysisView.cpp index f77ba338e2..bda3c06a86 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkPartialVolumeAnalysisView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkPartialVolumeAnalysisView.cpp @@ -1,2170 +1,2170 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkPartialVolumeAnalysisView.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "QmitkStdMultiWidget.h" #include "QmitkStdMultiWidgetEditor.h" #include "QmitkSliderNavigatorWidget.h" #include #include "mitkNodePredicateDataType.h" #include "mitkNodePredicateOr.h" #include "mitkImageTimeSelector.h" #include "mitkProperties.h" #include "mitkProgressBar.h" #include "mitkImageCast.h" #include "mitkImageToItk.h" #include "mitkITKImageImport.h" #include "mitkDataNodeObject.h" #include "mitkNodePredicateData.h" #include "mitkPlanarFigureInteractor.h" #include "mitkGlobalInteraction.h" #include "mitkTensorImage.h" #include "mitkPlanarCircle.h" #include "mitkPlanarRectangle.h" #include "mitkPlanarPolygon.h" #include "mitkPartialVolumeAnalysisClusteringCalculator.h" #include "mitkDiffusionImage.h" #include "usModuleRegistry.h" #include #include "itkTensorDerivedMeasurementsFilter.h" #include "itkDiffusionTensor3D.h" #include "itkCartesianToPolarVectorImageFilter.h" #include "itkPolarToCartesianVectorImageFilter.h" #include "itkBinaryThresholdImageFilter.h" #include "itkMaskImageFilter.h" #include "itkCastImageFilter.h" #include "itkImageMomentsCalculator.h" #include #include #include #include #define _USE_MATH_DEFINES #include #define PVA_PI M_PI const std::string QmitkPartialVolumeAnalysisView::VIEW_ID = "org.mitk.views.partialvolumeanalysisview"; class QmitkRequestStatisticsUpdateEvent : public QEvent { public: enum Type { StatisticsUpdateRequest = QEvent::MaxUser - 1025 }; QmitkRequestStatisticsUpdateEvent() : QEvent( (QEvent::Type) StatisticsUpdateRequest ) {}; }; typedef itk::Image ImageType; typedef itk::Image FloatImageType; typedef itk::Image, 3> VectorImageType; inline bool my_isnan(float x) { volatile float d = x; if(d!=d) return true; if(d==d) return false; return d != d; } QmitkPartialVolumeAnalysisView::QmitkPartialVolumeAnalysisView(QObject * /*parent*/, const char * /*name*/) : //QmitkFunctionality(), m_Controls( NULL ), m_TimeStepperAdapter( NULL ), m_MeasurementInfoRenderer(0), m_MeasurementInfoAnnotation(0), m_SelectedImageNodes( ), m_SelectedImage( NULL ), m_SelectedMaskNode( NULL ), m_SelectedImageMask( NULL ), m_SelectedPlanarFigureNodes(0), m_SelectedPlanarFigure( NULL ), m_IsTensorImage(false), m_FAImage(0), m_RDImage(0), m_ADImage(0), m_MDImage(0), m_CAImage(0), // m_DirectionImage(0), m_DirectionComp1Image(0), m_DirectionComp2Image(0), m_AngularErrorImage(0), m_SelectedRenderWindow(NULL), m_LastRenderWindow(NULL), m_ImageObserverTag( -1 ), m_ImageMaskObserverTag( -1 ), m_PlanarFigureObserverTag( -1 ), m_CurrentStatisticsValid( false ), m_StatisticsUpdatePending( false ), m_GaussianSigmaChangedSliding(false), m_NumberBinsSliding(false), m_UpsamplingChangedSliding(false), m_ClusteringResult(NULL), m_EllipseCounter(0), m_RectangleCounter(0), m_PolygonCounter(0), m_CurrentFigureNodeInitialized(false), m_QuantifyClass(2), m_IconTexOFF(new QIcon(":/QmitkPartialVolumeAnalysisView/texIntOFFIcon.png")), m_IconTexON(new QIcon(":/QmitkPartialVolumeAnalysisView/texIntONIcon.png")), m_TexIsOn(true), m_Visible(false) { } QmitkPartialVolumeAnalysisView::~QmitkPartialVolumeAnalysisView() { if ( m_SelectedImage.IsNotNull() ) m_SelectedImage->RemoveObserver( m_ImageObserverTag ); if ( m_SelectedImageMask.IsNotNull() ) m_SelectedImageMask->RemoveObserver( m_ImageMaskObserverTag ); if ( m_SelectedPlanarFigure.IsNotNull() ) { m_SelectedPlanarFigure->RemoveObserver( m_PlanarFigureObserverTag ); m_SelectedPlanarFigure->RemoveObserver( m_InitializedObserverTag ); } this->GetDataStorage()->AddNodeEvent -= mitk::MessageDelegate1( this, &QmitkPartialVolumeAnalysisView::NodeAddedInDataStorage ); m_SelectedPlanarFigureNodes->NodeChanged.RemoveListener( mitk::MessageDelegate1( this, &QmitkPartialVolumeAnalysisView::NodeChanged ) ); m_SelectedPlanarFigureNodes->NodeRemoved.RemoveListener( mitk::MessageDelegate1( this, &QmitkPartialVolumeAnalysisView::NodeRemoved ) ); m_SelectedPlanarFigureNodes->PropertyChanged.RemoveListener( mitk::MessageDelegate2( this, &QmitkPartialVolumeAnalysisView::PropertyChanged ) ); m_SelectedImageNodes->NodeChanged.RemoveListener( mitk::MessageDelegate1( this, &QmitkPartialVolumeAnalysisView::NodeChanged ) ); m_SelectedImageNodes->NodeRemoved.RemoveListener( mitk::MessageDelegate1( this, &QmitkPartialVolumeAnalysisView::NodeRemoved ) ); m_SelectedImageNodes->PropertyChanged.RemoveListener( mitk::MessageDelegate2( this, &QmitkPartialVolumeAnalysisView::PropertyChanged ) ); } void QmitkPartialVolumeAnalysisView::CreateQtPartControl(QWidget *parent) { if (m_Controls == NULL) { m_Controls = new Ui::QmitkPartialVolumeAnalysisViewControls; m_Controls->setupUi(parent); this->CreateConnections(); } SetHistogramVisibility(); m_Controls->m_TextureIntON->setIcon(*m_IconTexON); m_Controls->m_SimilarAnglesFrame->setVisible(false); m_Controls->m_SimilarAnglesLabel->setVisible(false); vtkTextProperty *textProp = vtkTextProperty::New(); textProp->SetColor(1.0, 1.0, 1.0); m_MeasurementInfoAnnotation = vtkCornerAnnotation::New(); m_MeasurementInfoAnnotation->SetMaximumFontSize(12); m_MeasurementInfoAnnotation->SetTextProperty(textProp); m_MeasurementInfoRenderer = vtkRenderer::New(); m_MeasurementInfoRenderer->AddActor(m_MeasurementInfoAnnotation); m_SelectedPlanarFigureNodes = mitk::DataStorageSelection::New(this->GetDataStorage(), false); m_SelectedPlanarFigureNodes->NodeChanged.AddListener( mitk::MessageDelegate1( this, &QmitkPartialVolumeAnalysisView::NodeChanged ) ); m_SelectedPlanarFigureNodes->NodeRemoved.AddListener( mitk::MessageDelegate1( this, &QmitkPartialVolumeAnalysisView::NodeRemoved ) ); m_SelectedPlanarFigureNodes->PropertyChanged.AddListener( mitk::MessageDelegate2( this, &QmitkPartialVolumeAnalysisView::PropertyChanged ) ); m_SelectedImageNodes = mitk::DataStorageSelection::New(this->GetDataStorage(), false); m_SelectedImageNodes->PropertyChanged.AddListener( mitk::MessageDelegate2( this, &QmitkPartialVolumeAnalysisView::PropertyChanged ) ); m_SelectedImageNodes->NodeChanged.AddListener( mitk::MessageDelegate1( this, &QmitkPartialVolumeAnalysisView::NodeChanged ) ); m_SelectedImageNodes->NodeRemoved.AddListener( mitk::MessageDelegate1( this, &QmitkPartialVolumeAnalysisView::NodeRemoved ) ); this->GetDataStorage()->AddNodeEvent.AddListener( mitk::MessageDelegate1( this, &QmitkPartialVolumeAnalysisView::NodeAddedInDataStorage ) ); Select(NULL,true,true); SetAdvancedVisibility(); } void QmitkPartialVolumeAnalysisView::SetHistogramVisibility() { m_Controls->m_HistogramWidget->setVisible(m_Controls->m_DisplayHistogramCheckbox->isChecked()); } void QmitkPartialVolumeAnalysisView::SetAdvancedVisibility() { m_Controls->frame_7->setVisible(m_Controls->m_AdvancedCheckbox->isChecked()); } void QmitkPartialVolumeAnalysisView::CreateConnections() { if ( m_Controls ) { connect( m_Controls->m_DisplayHistogramCheckbox, SIGNAL( clicked() ) , this, SLOT( SetHistogramVisibility() ) ); connect( m_Controls->m_AdvancedCheckbox, SIGNAL( clicked() ) , this, SLOT( SetAdvancedVisibility() ) ); connect( m_Controls->m_NumberBinsSlider, SIGNAL( sliderReleased () ), this, SLOT( NumberBinsReleasedSlider( ) ) ); connect( m_Controls->m_UpsamplingSlider, SIGNAL( sliderReleased( ) ), this, SLOT( UpsamplingReleasedSlider( ) ) ); connect( m_Controls->m_GaussianSigmaSlider, SIGNAL( sliderReleased( ) ), this, SLOT( GaussianSigmaReleasedSlider( ) ) ); connect( m_Controls->m_SimilarAnglesSlider, SIGNAL( sliderReleased( ) ), this, SLOT( SimilarAnglesReleasedSlider( ) ) ); connect( m_Controls->m_NumberBinsSlider, SIGNAL( valueChanged (int) ), this, SLOT( NumberBinsChangedSlider( int ) ) ); connect( m_Controls->m_UpsamplingSlider, SIGNAL( valueChanged( int ) ), this, SLOT( UpsamplingChangedSlider( int ) ) ); connect( m_Controls->m_GaussianSigmaSlider, SIGNAL( valueChanged( int ) ), this, SLOT( GaussianSigmaChangedSlider( int ) ) ); connect( m_Controls->m_SimilarAnglesSlider, SIGNAL( valueChanged( int ) ), this, SLOT( SimilarAnglesChangedSlider(int) ) ); connect( m_Controls->m_OpacitySlider, SIGNAL( valueChanged( int ) ), this, SLOT( OpacityChangedSlider(int) ) ); connect( (QObject*)(m_Controls->m_ButtonCopyHistogramToClipboard), SIGNAL(clicked()),(QObject*) this, SLOT(ToClipBoard())); connect( m_Controls->m_CircleButton, SIGNAL( clicked() ) , this, SLOT( ActionDrawEllipseTriggered() ) ); connect( m_Controls->m_RectangleButton, SIGNAL( clicked() ) , this, SLOT( ActionDrawRectangleTriggered() ) ); connect( m_Controls->m_PolygonButton, SIGNAL( clicked() ) , this, SLOT( ActionDrawPolygonTriggered() ) ); connect( m_Controls->m_GreenRadio, SIGNAL( clicked(bool) ) , this, SLOT( GreenRadio(bool) ) ); connect( m_Controls->m_PartialVolumeRadio, SIGNAL( clicked(bool) ) , this, SLOT( PartialVolumeRadio(bool) ) ); connect( m_Controls->m_BlueRadio, SIGNAL( clicked(bool) ) , this, SLOT( BlueRadio(bool) ) ); connect( m_Controls->m_AllRadio, SIGNAL( clicked(bool) ) , this, SLOT( AllRadio(bool) ) ); connect( m_Controls->m_EstimateCircle, SIGNAL( clicked() ) , this, SLOT( EstimateCircle() ) ); connect( (QObject*)(m_Controls->m_TextureIntON), SIGNAL(clicked()), this, SLOT(TextIntON()) ); connect( m_Controls->m_ExportClusteringResultsButton, SIGNAL(clicked()), this, SLOT(ExportClusteringResults())); } } void QmitkPartialVolumeAnalysisView::ExportClusteringResults() { if (m_ClusteringResult.IsNull() || m_SelectedImage.IsNull()) return; - mitk::Geometry3D* geometry = m_SelectedImage->GetGeometry(); + mitk::BaseGeometry* geometry = m_SelectedImage->GetGeometry(); itk::Image< short, 3>::Pointer referenceImage = itk::Image< short, 3>::New(); itk::Vector newSpacing = geometry->GetSpacing(); mitk::Point3D newOrigin = geometry->GetOrigin(); mitk::Geometry3D::BoundsArrayType bounds = geometry->GetBounds(); newOrigin[0] += bounds.GetElement(0); newOrigin[1] += bounds.GetElement(2); newOrigin[2] += bounds.GetElement(4); itk::Matrix newDirection; itk::ImageRegion<3> imageRegion; for (int i=0; i<3; i++) for (int j=0; j<3; j++) newDirection[j][i] = geometry->GetMatrixColumn(i)[j]/newSpacing[j]; imageRegion.SetSize(0, geometry->GetExtent(0)); imageRegion.SetSize(1, geometry->GetExtent(1)); imageRegion.SetSize(2, geometry->GetExtent(2)); // apply new image parameters referenceImage->SetSpacing( newSpacing ); referenceImage->SetOrigin( newOrigin ); referenceImage->SetDirection( newDirection ); referenceImage->SetRegions( imageRegion ); referenceImage->Allocate(); typedef itk::Image< float, 3 > OutType; mitk::Image::Pointer mitkInImage = dynamic_cast(m_ClusteringResult->GetData()); typedef itk::Image< itk::RGBAPixel, 3 > ItkRgbaImageType; typedef mitk::ImageToItk< ItkRgbaImageType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(mitkInImage); caster->Update(); ItkRgbaImageType::Pointer itkInImage = caster->GetOutput(); typedef itk::ExtractChannelFromRgbaImageFilter< itk::Image< short, 3>, OutType > ExtractionFilterType; ExtractionFilterType::Pointer filter = ExtractionFilterType::New(); filter->SetInput(itkInImage); filter->SetChannel(ExtractionFilterType::ALPHA); filter->SetReferenceImage(referenceImage); filter->Update(); OutType::Pointer outImg = filter->GetOutput(); mitk::Image::Pointer img = mitk::Image::New(); img->InitializeByItk(outImg.GetPointer()); img->SetVolume(outImg->GetBufferPointer()); // init data node mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData(img); node->SetName("Clustering Result"); GetDataStorage()->Add(node); } void QmitkPartialVolumeAnalysisView::EstimateCircle() { typedef itk::Image SegImageType; SegImageType::Pointer mask_itk = SegImageType::New(); typedef mitk::ImageToItk CastType; CastType::Pointer caster = CastType::New(); caster->SetInput(m_SelectedImageMask); caster->Update(); typedef itk::ImageMomentsCalculator< SegImageType > MomentsType; MomentsType::Pointer momentsCalc = MomentsType::New(); momentsCalc->SetImage(caster->GetOutput()); momentsCalc->Compute(); MomentsType::VectorType cog = momentsCalc->GetCenterOfGravity(); MomentsType::MatrixType axes = momentsCalc->GetPrincipalAxes(); MomentsType::VectorType moments = momentsCalc->GetPrincipalMoments(); // moments-coord conversion // third coordinate min oder max? // max-min = extent MomentsType::AffineTransformPointer trafo = momentsCalc->GetPhysicalAxesToPrincipalAxesTransform(); itk::ImageRegionIterator itimage(caster->GetOutput(), caster->GetOutput()->GetLargestPossibleRegion()); itimage = itimage.Begin(); double max = -9999999999.0; double min = 9999999999.0; while( !itimage.IsAtEnd() ) { if(itimage.Get()) { ImageType::IndexType index = itimage.GetIndex(); itk::Point point; caster->GetOutput()->TransformIndexToPhysicalPoint(index,point); itk::Point newPoint; newPoint = trafo->TransformPoint(point); if(newPoint[2]max) max = newPoint[2]; } ++itimage; } double extent = max - min; MITK_DEBUG << "EXTENT = " << extent; mitk::Point3D origin; mitk::Vector3D right, bottom, normal; double factor = 1000.0; mitk::FillVector3D(origin, cog[0]-factor*axes[1][0]-factor*axes[2][0], cog[1]-factor*axes[1][1]-factor*axes[2][1], cog[2]-factor*axes[1][2]-factor*axes[2][2]); // mitk::FillVector3D(normal, axis[0][0],axis[0][1],axis[0][2]); mitk::FillVector3D(bottom, 2*factor*axes[1][0], 2*factor*axes[1][1], 2*factor*axes[1][2]); mitk::FillVector3D(right, 2*factor*axes[2][0], 2*factor*axes[2][1], 2*factor*axes[2][2]); mitk::PlaneGeometry::Pointer planegeometry = mitk::PlaneGeometry::New(); planegeometry->InitializeStandardPlane(right.Get_vnl_vector(), bottom.Get_vnl_vector()); planegeometry->SetOrigin(origin); double len1 = sqrt(axes[1][0]*axes[1][0] + axes[1][1]*axes[1][1] + axes[1][2]*axes[1][2]); double len2 = sqrt(axes[2][0]*axes[2][0] + axes[2][1]*axes[2][1] + axes[2][2]*axes[2][2]); mitk::Point2D point1; point1[0] = factor*len1; point1[1] = factor*len2; mitk::Point2D point2; point2[0] = factor*len1+extent*.5; point2[1] = factor*len2; mitk::PlanarCircle::Pointer circle = mitk::PlanarCircle::New(); circle->SetGeometry2D(planegeometry); circle->PlaceFigure( point1 ); circle->SetControlPoint(0,point1); circle->SetControlPoint(1,point2); //circle->SetCurrentControlPoint( point2 ); mitk::PlanarFigure::PolyLineType polyline = circle->GetPolyLine( 0 ); MITK_DEBUG << "SIZE of planar figure polyline: " << polyline.size(); AddFigureToDataStorage(circle, "Circle"); } bool QmitkPartialVolumeAnalysisView::AssertDrawingIsPossible(bool checked) { if (m_SelectedImageNodes->GetNode().IsNull()) { checked = false; this->HandleException("Please select an image!", dynamic_cast(this->parent()), true); return false; } //this->GetActiveStdMultiWidget()->SetWidgetPlanesVisibility(false); return checked; } void QmitkPartialVolumeAnalysisView::ActionDrawEllipseTriggered() { bool checked = m_Controls->m_CircleButton->isChecked(); if(!this->AssertDrawingIsPossible(checked)) return; mitk::PlanarCircle::Pointer figure = mitk::PlanarCircle::New(); // using PV_ prefix for planar figures from this view // to distinguish them from that ones created throught the measurement view this->AddFigureToDataStorage(figure, QString("PV_Circle%1").arg(++m_EllipseCounter)); MITK_DEBUG << "PlanarCircle created ..."; } void QmitkPartialVolumeAnalysisView::ActionDrawRectangleTriggered() { bool checked = m_Controls->m_RectangleButton->isChecked(); if(!this->AssertDrawingIsPossible(checked)) return; mitk::PlanarRectangle::Pointer figure = mitk::PlanarRectangle::New(); // using PV_ prefix for planar figures from this view // to distinguish them from that ones created throught the measurement view this->AddFigureToDataStorage(figure, QString("PV_Rectangle%1").arg(++m_RectangleCounter)); MITK_DEBUG << "PlanarRectangle created ..."; } void QmitkPartialVolumeAnalysisView::ActionDrawPolygonTriggered() { bool checked = m_Controls->m_PolygonButton->isChecked(); if(!this->AssertDrawingIsPossible(checked)) return; mitk::PlanarPolygon::Pointer figure = mitk::PlanarPolygon::New(); figure->ClosedOn(); // using PV_ prefix for planar figures from this view // to distinguish them from that ones created throught the measurement view this->AddFigureToDataStorage(figure, QString("PV_Polygon%1").arg(++m_PolygonCounter)); MITK_DEBUG << "PlanarPolygon created ..."; } void QmitkPartialVolumeAnalysisView::AddFigureToDataStorage(mitk::PlanarFigure* figure, const QString& name, const char *propertyKey, mitk::BaseProperty *property ) { mitk::DataNode::Pointer newNode = mitk::DataNode::New(); newNode->SetName(name.toStdString()); newNode->SetData(figure); // Add custom property, if available if ( (propertyKey != NULL) && (property != NULL) ) { newNode->AddProperty( propertyKey, property ); } // figure drawn on the topmost layer / image this->GetDataStorage()->Add(newNode, m_SelectedImageNodes->GetNode() ); QList selectedNodes = this->GetDataManagerSelection(); for(unsigned int i = 0; i < selectedNodes.size(); i++) { selectedNodes[i]->SetSelected(false); } std::vector selectedPFNodes = m_SelectedPlanarFigureNodes->GetNodes(); for(unsigned int i = 0; i < selectedPFNodes.size(); i++) { selectedPFNodes[i]->SetSelected(false); } newNode->SetSelected(true); Select(newNode); } void QmitkPartialVolumeAnalysisView::PlanarFigureInitialized() { if(m_SelectedPlanarFigureNodes->GetNode().IsNull()) return; m_CurrentFigureNodeInitialized = true; this->Select(m_SelectedPlanarFigureNodes->GetNode()); m_Controls->m_CircleButton->setChecked(false); m_Controls->m_RectangleButton->setChecked(false); m_Controls->m_PolygonButton->setChecked(false); //this->GetActiveStdMultiWidget()->SetWidgetPlanesVisibility(true); this->RequestStatisticsUpdate(); } void QmitkPartialVolumeAnalysisView::PlanarFigureFocus(mitk::DataNode* node) { mitk::PlanarFigure* _PlanarFigure = 0; _PlanarFigure = dynamic_cast (node->GetData()); if (_PlanarFigure) { FindRenderWindow(node); const mitk::PlaneGeometry * _PlaneGeometry = dynamic_cast (_PlanarFigure->GetGeometry2D()); // make node visible if (m_SelectedRenderWindow) { mitk::Point3D centerP = _PlaneGeometry->GetOrigin(); m_SelectedRenderWindow->GetSliceNavigationController()->ReorientSlices( centerP, _PlaneGeometry->GetNormal()); m_SelectedRenderWindow->GetSliceNavigationController()->SelectSliceByPoint( centerP); } } } void QmitkPartialVolumeAnalysisView::FindRenderWindow(mitk::DataNode* node) { if (node && dynamic_cast (node->GetData())) { m_SelectedRenderWindow = 0; bool PlanarFigureInitializedWindow = false; foreach(QmitkRenderWindow * window, this->GetRenderWindowPart()->GetQmitkRenderWindows().values()) { if (!m_SelectedRenderWindow && node->GetBoolProperty("PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, window->GetRenderer())) { m_SelectedRenderWindow = window; } } } } void QmitkPartialVolumeAnalysisView::OnSelectionChanged(berry::IWorkbenchPart::Pointer part, const QList &nodes) { m_Controls->m_InputData->setTitle("Please Select Input Data"); if (!m_Visible) return; if ( nodes.empty() ) { if (m_ClusteringResult.IsNotNull()) { this->GetDataStorage()->Remove(m_ClusteringResult); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } Select(NULL, true, true); } for (int i=0; iRemoveOrphanImages(); bool somethingChanged = false; if(node.IsNull()) { somethingChanged = true; if(clearMaskOnFirstArgNULL) { if ( (m_SelectedImageMask.IsNotNull()) && (m_ImageMaskObserverTag >= 0) ) { m_SelectedImageMask->RemoveObserver( m_ImageMaskObserverTag ); m_ImageMaskObserverTag = -1; } if ( (m_SelectedPlanarFigure.IsNotNull()) && (m_PlanarFigureObserverTag >= 0) ) { m_SelectedPlanarFigure->RemoveObserver( m_PlanarFigureObserverTag ); m_PlanarFigureObserverTag = -1; } if ( (m_SelectedPlanarFigure.IsNotNull()) && (m_InitializedObserverTag >= 0) ) { m_SelectedPlanarFigure->RemoveObserver( m_InitializedObserverTag ); m_InitializedObserverTag = -1; } m_SelectedPlanarFigure = NULL; m_SelectedPlanarFigureNodes->RemoveAllNodes(); m_CurrentFigureNodeInitialized = false; m_SelectedRenderWindow = 0; m_SelectedMaskNode = NULL; m_SelectedImageMask = NULL; } if(clearImageOnFirstArgNULL) { if ( (m_SelectedImage.IsNotNull()) && (m_ImageObserverTag >= 0) ) { m_SelectedImage->RemoveObserver( m_ImageObserverTag ); m_ImageObserverTag = -1; } m_SelectedImageNodes->RemoveAllNodes(); m_SelectedImage = NULL; m_IsTensorImage = false; m_FAImage = NULL; m_RDImage = NULL; m_ADImage = NULL; m_MDImage = NULL; m_CAImage = NULL; m_DirectionComp1Image = NULL; m_DirectionComp2Image = NULL; m_AngularErrorImage = NULL; m_Controls->m_SimilarAnglesFrame->setVisible(false); m_Controls->m_SimilarAnglesLabel->setVisible(false); } } else { typedef itk::SimpleMemberCommand< QmitkPartialVolumeAnalysisView > ITKCommandType; ITKCommandType::Pointer changeListener; changeListener = ITKCommandType::New(); changeListener->SetCallbackFunction( this, &QmitkPartialVolumeAnalysisView::RequestStatisticsUpdate ); // Get selected element mitk::TensorImage *selectedTensorImage = dynamic_cast< mitk::TensorImage * >( node->GetData() ); mitk::Image *selectedImage = dynamic_cast< mitk::Image * >( node->GetData() ); mitk::PlanarFigure *selectedPlanar = dynamic_cast< mitk::PlanarFigure * >( node->GetData() ); bool isMask = false; bool isImage = false; bool isPlanar = false; bool isTensorImage = false; if (selectedTensorImage != NULL) { isTensorImage = true; } else if(selectedImage != NULL) { node->GetPropertyValue("binary", isMask); isImage = !isMask; } else if ( (selectedPlanar != NULL) ) { isPlanar = true; } // image if(isImage && selectedImage->GetDimension()==3) { if(selectedImage != m_SelectedImage.GetPointer()) { somethingChanged = true; if ( (m_SelectedImage.IsNotNull()) && (m_ImageObserverTag >= 0) ) { m_SelectedImage->RemoveObserver( m_ImageObserverTag ); m_ImageObserverTag = -1; } *m_SelectedImageNodes = node; m_SelectedImage = selectedImage; m_IsTensorImage = false; m_FAImage = NULL; m_RDImage = NULL; m_ADImage = NULL; m_MDImage = NULL; m_CAImage = NULL; m_DirectionComp1Image = NULL; m_DirectionComp2Image = NULL; m_AngularErrorImage = NULL; // Add change listeners to selected objects m_ImageObserverTag = m_SelectedImage->AddObserver( itk::ModifiedEvent(), changeListener ); m_Controls->m_SimilarAnglesFrame->setVisible(false); m_Controls->m_SimilarAnglesLabel->setVisible(false); m_Controls->m_SelectedImageLabel->setText( m_SelectedImageNodes->GetNode()->GetName().c_str() ); } } //planar if(isPlanar) { if(selectedPlanar != m_SelectedPlanarFigure.GetPointer()) { MITK_DEBUG << "Planar selection changed"; somethingChanged = true; // Possibly previous change listeners if ( (m_SelectedPlanarFigure.IsNotNull()) && (m_PlanarFigureObserverTag >= 0) ) { m_SelectedPlanarFigure->RemoveObserver( m_PlanarFigureObserverTag ); m_PlanarFigureObserverTag = -1; } if ( (m_SelectedPlanarFigure.IsNotNull()) && (m_InitializedObserverTag >= 0) ) { m_SelectedPlanarFigure->RemoveObserver( m_InitializedObserverTag ); m_InitializedObserverTag = -1; } m_SelectedPlanarFigure = selectedPlanar; *m_SelectedPlanarFigureNodes = node; m_CurrentFigureNodeInitialized = selectedPlanar->IsPlaced(); m_SelectedMaskNode = NULL; m_SelectedImageMask = NULL; m_PlanarFigureObserverTag = m_SelectedPlanarFigure->AddObserver( mitk::EndInteractionPlanarFigureEvent(), changeListener ); if(!m_CurrentFigureNodeInitialized) { typedef itk::SimpleMemberCommand< QmitkPartialVolumeAnalysisView > ITKCommandType; ITKCommandType::Pointer initializationCommand; initializationCommand = ITKCommandType::New(); // set the callback function of the member command initializationCommand->SetCallbackFunction( this, &QmitkPartialVolumeAnalysisView::PlanarFigureInitialized ); // add an observer m_InitializedObserverTag = selectedPlanar->AddObserver( mitk::EndPlacementPlanarFigureEvent(), initializationCommand ); } m_Controls->m_SelectedMaskLabel->setText( m_SelectedPlanarFigureNodes->GetNode()->GetName().c_str() ); PlanarFigureFocus(node); } } //mask this->m_Controls->m_EstimateCircle->setEnabled(isMask && selectedImage->GetDimension()==3); if(isMask && selectedImage->GetDimension()==3) { if(selectedImage != m_SelectedImage.GetPointer()) { somethingChanged = true; if ( (m_SelectedImageMask.IsNotNull()) && (m_ImageMaskObserverTag >= 0) ) { m_SelectedImageMask->RemoveObserver( m_ImageMaskObserverTag ); m_ImageMaskObserverTag = -1; } m_SelectedMaskNode = node; m_SelectedImageMask = selectedImage; m_SelectedPlanarFigure = NULL; m_SelectedPlanarFigureNodes->RemoveAllNodes(); m_ImageMaskObserverTag = m_SelectedImageMask->AddObserver( itk::ModifiedEvent(), changeListener ); m_Controls->m_SelectedMaskLabel->setText( m_SelectedMaskNode->GetName().c_str() ); } } //tensor image if(isTensorImage && selectedTensorImage->GetDimension()==3) { if(selectedImage != m_SelectedImage.GetPointer()) { somethingChanged = true; if ( (m_SelectedImage.IsNotNull()) && (m_ImageObserverTag >= 0) ) { m_SelectedImage->RemoveObserver( m_ImageObserverTag ); m_ImageObserverTag = -1; } *m_SelectedImageNodes = node; m_SelectedImage = selectedImage; m_IsTensorImage = true; ExtractTensorImages(selectedImage); // Add change listeners to selected objects m_ImageObserverTag = m_SelectedImage->AddObserver( itk::ModifiedEvent(), changeListener ); m_Controls->m_SimilarAnglesFrame->setVisible(true); m_Controls->m_SimilarAnglesLabel->setVisible(true); m_Controls->m_SelectedImageLabel->setText( m_SelectedImageNodes->GetNode()->GetName().c_str() ); } } } if(somethingChanged) { this->SetMeasurementInfoToRenderWindow(""); if(m_SelectedPlanarFigure.IsNull() && m_SelectedImageMask.IsNull() ) { m_Controls->m_SelectedMaskLabel->setText("mandatory"); m_Controls->m_ResampleOptionsFrame->setEnabled(false); m_Controls->m_HistogramWidget->setEnabled(false); m_Controls->m_ClassSelector->setEnabled(false); m_Controls->m_DisplayHistogramCheckbox->setEnabled(false); m_Controls->m_AdvancedCheckbox->setEnabled(false); m_Controls->frame_7->setEnabled(false); } else { m_Controls->m_ResampleOptionsFrame->setEnabled(true); m_Controls->m_HistogramWidget->setEnabled(true); m_Controls->m_ClassSelector->setEnabled(true); m_Controls->m_DisplayHistogramCheckbox->setEnabled(true); m_Controls->m_AdvancedCheckbox->setEnabled(true); m_Controls->frame_7->setEnabled(true); } // Clear statistics / histogram GUI if nothing is selected if ( m_SelectedImage.IsNull() ) { m_Controls->m_PlanarFigureButtonsFrame->setEnabled(false); m_Controls->m_OpacityFrame->setEnabled(false); m_Controls->m_SelectedImageLabel->setText("mandatory"); } else { m_Controls->m_PlanarFigureButtonsFrame->setEnabled(true); m_Controls->m_OpacityFrame->setEnabled(true); } if( !m_Visible || m_SelectedImage.IsNull() || (m_SelectedPlanarFigure.IsNull() && m_SelectedImageMask.IsNull()) ) { m_Controls->m_InputData->setTitle("Please Select Input Data"); m_Controls->m_HistogramWidget->ClearItemModel(); m_CurrentStatisticsValid = false; } else { m_Controls->m_InputData->setTitle("Input Data"); this->RequestStatisticsUpdate(); } } } void QmitkPartialVolumeAnalysisView::ShowClusteringResults() { typedef itk::Image MaskImageType; mitk::Image::Pointer mask = 0; MaskImageType::Pointer itkmask = 0; if(m_IsTensorImage && m_Controls->m_SimilarAnglesSlider->value() != 0) { typedef itk::Image AngularErrorImageType; typedef mitk::ImageToItk CastType; CastType::Pointer caster = CastType::New(); caster->SetInput(m_AngularErrorImage); caster->Update(); typedef itk::BinaryThresholdImageFilter< AngularErrorImageType, MaskImageType > ThreshType; ThreshType::Pointer thresh = ThreshType::New(); thresh->SetUpperThreshold((90-m_Controls->m_SimilarAnglesSlider->value())*(PVA_PI/180.0)); thresh->SetInsideValue(1.0); thresh->SetInput(caster->GetOutput()); thresh->Update(); itkmask = thresh->GetOutput(); mask = mitk::Image::New(); mask->InitializeByItk(itkmask.GetPointer()); mask->SetVolume(itkmask->GetBufferPointer()); // GetDefaultDataStorage()->Remove(m_newnode); // m_newnode = mitk::DataNode::New(); // m_newnode->SetData(mask); // m_newnode->SetName("masking node"); // m_newnode->SetIntProperty( "layer", 1002 ); // GetDefaultDataStorage()->Add(m_newnode, m_SelectedImageNodes->GetNode()); } mitk::Image::Pointer clusteredImage; ClusteringType::Pointer clusterer = ClusteringType::New(); if(m_QuantifyClass==3) { if(m_IsTensorImage) { double *green_fa, *green_rd, *green_ad, *green_md; //double *greengray_fa, *greengray_rd, *greengray_ad, *greengray_md; double *gray_fa, *gray_rd, *gray_ad, *gray_md; //double *redgray_fa, *redgray_rd, *redgray_ad, *redgray_md; double *red_fa, *red_rd, *red_ad, *red_md; mitk::Image* tmpImg = m_CurrentStatisticsCalculator->GetInternalAdditionalResampledImage(0); mitk::Image::ConstPointer imgToCluster = tmpImg; red_fa = clusterer->PerformQuantification(imgToCluster, m_CurrentRGBClusteringResults->rgbChannels->r, mask); green_fa = clusterer->PerformQuantification(imgToCluster, m_CurrentRGBClusteringResults->rgbChannels->g, mask); gray_fa = clusterer->PerformQuantification(imgToCluster, m_CurrentRGBClusteringResults->rgbChannels->b, mask); tmpImg = m_CurrentStatisticsCalculator->GetInternalAdditionalResampledImage(3); mitk::Image::ConstPointer imgToCluster3 = tmpImg; red_rd = clusterer->PerformQuantification(imgToCluster3, m_CurrentRGBClusteringResults->rgbChannels->r, mask); green_rd = clusterer->PerformQuantification(imgToCluster3, m_CurrentRGBClusteringResults->rgbChannels->g, mask); gray_rd = clusterer->PerformQuantification(imgToCluster3, m_CurrentRGBClusteringResults->rgbChannels->b, mask); tmpImg = m_CurrentStatisticsCalculator->GetInternalAdditionalResampledImage(4); mitk::Image::ConstPointer imgToCluster4 = tmpImg; red_ad = clusterer->PerformQuantification(imgToCluster4, m_CurrentRGBClusteringResults->rgbChannels->r, mask); green_ad = clusterer->PerformQuantification(imgToCluster4, m_CurrentRGBClusteringResults->rgbChannels->g, mask); gray_ad = clusterer->PerformQuantification(imgToCluster4, m_CurrentRGBClusteringResults->rgbChannels->b, mask); tmpImg = m_CurrentStatisticsCalculator->GetInternalAdditionalResampledImage(5); mitk::Image::ConstPointer imgToCluster5 = tmpImg; red_md = clusterer->PerformQuantification(imgToCluster5, m_CurrentRGBClusteringResults->rgbChannels->r, mask); green_md = clusterer->PerformQuantification(imgToCluster5, m_CurrentRGBClusteringResults->rgbChannels->g, mask); gray_md = clusterer->PerformQuantification(imgToCluster5, m_CurrentRGBClusteringResults->rgbChannels->b, mask); // clipboard QString clipboardText("FA\t%1\t%2\t\t%3\t%4\t\t%5\t%6\t"); clipboardText = clipboardText .arg(red_fa[0]).arg(red_fa[1]) .arg(gray_fa[0]).arg(gray_fa[1]) .arg(green_fa[0]).arg(green_fa[1]); QString clipboardText3("RD\t%1\t%2\t\t%3\t%4\t\t%5\t%6\t"); clipboardText3 = clipboardText3 .arg(red_rd[0]).arg(red_rd[1]) .arg(gray_rd[0]).arg(gray_rd[1]) .arg(green_rd[0]).arg(green_rd[1]); QString clipboardText4("AD\t%1\t%2\t\t%3\t%4\t\t%5\t%6\t"); clipboardText4 = clipboardText4 .arg(red_ad[0]).arg(red_ad[1]) .arg(gray_ad[0]).arg(gray_ad[1]) .arg(green_ad[0]).arg(green_ad[1]); QString clipboardText5("MD\t%1\t%2\t\t%3\t%4\t\t%5\t%6"); clipboardText5 = clipboardText5 .arg(red_md[0]).arg(red_md[1]) .arg(gray_md[0]).arg(gray_md[1]) .arg(green_md[0]).arg(green_md[1]); QApplication::clipboard()->setText(clipboardText+clipboardText3+clipboardText4+clipboardText5, QClipboard::Clipboard); // now paint infos also on renderwindow QString plainInfoText("%1 %2 %3 \n"); plainInfoText = plainInfoText .arg("Red ", 20) .arg("Gray ", 20) .arg("Green", 20); QString plainInfoText0("FA:%1 ± %2%3 ± %4%5 ± %6\n"); plainInfoText0 = plainInfoText0 .arg(red_fa[0], 10, 'g', 2, QLatin1Char( ' ' )).arg(red_fa[1], -10, 'g', 2, QLatin1Char( ' ' )) .arg(gray_fa[0], 10, 'g', 2, QLatin1Char( ' ' )).arg(gray_fa[1], -10, 'g', 2, QLatin1Char( ' ' )) .arg(green_fa[0], 10, 'g', 2, QLatin1Char( ' ' )).arg(green_fa[1], -10, 'g', 2, QLatin1Char( ' ' )); QString plainInfoText3("RDx10³:%1 ± %2%3 ± %4%5 ± %6\n"); plainInfoText3 = plainInfoText3 .arg(1000.0 * red_rd[0], 10, 'g', 2, QLatin1Char( ' ' )).arg(1000.0 * red_rd[1], -10, 'g', 2, QLatin1Char( ' ' )) .arg(1000.0 * gray_rd[0], 10, 'g', 2, QLatin1Char( ' ' )).arg(1000.0 * gray_rd[1], -10, 'g', 2, QLatin1Char( ' ' )) .arg(1000.0 * green_rd[0], 10, 'g', 2, QLatin1Char( ' ' )).arg(1000.0 * green_rd[1], -10, 'g', 2, QLatin1Char( ' ' )); QString plainInfoText4("ADx10³:%1 ± %2%3 ± %4%5 ± %6\n"); plainInfoText4 = plainInfoText4 .arg(1000.0 * red_ad[0], 10, 'g', 2, QLatin1Char( ' ' )).arg(1000.0 * red_ad[1], -10, 'g', 2, QLatin1Char( ' ' )) .arg(1000.0 * gray_ad[0], 10, 'g', 2, QLatin1Char( ' ' )).arg(1000.0 * gray_ad[1], -10, 'g', 2, QLatin1Char( ' ' )) .arg(1000.0 * green_ad[0], 10, 'g', 2, QLatin1Char( ' ' )).arg(1000.0 * green_ad[1], -10, 'g', 2, QLatin1Char( ' ' )); QString plainInfoText5("MDx10³:%1 ± %2%3 ± %4%5 ± %6"); plainInfoText5 = plainInfoText5 .arg(1000.0 * red_md[0], 10, 'g', 2, QLatin1Char( ' ' )).arg(1000.0 * red_md[1], -10, 'g', 2, QLatin1Char( ' ' )) .arg(1000.0 * gray_md[0], 10, 'g', 2, QLatin1Char( ' ' )).arg(1000.0 * gray_md[1], -10, 'g', 2, QLatin1Char( ' ' )) .arg(1000.0 * green_md[0], 10, 'g', 2, QLatin1Char( ' ' )).arg(1000.0 * green_md[1], -10, 'g', 2, QLatin1Char( ' ' )); this->SetMeasurementInfoToRenderWindow(plainInfoText+plainInfoText0+plainInfoText3+plainInfoText4+plainInfoText5); } else { double* green; double* gray; double* red; mitk::Image* tmpImg = m_CurrentStatisticsCalculator->GetInternalImage(); mitk::Image::ConstPointer imgToCluster = tmpImg; red = clusterer->PerformQuantification(imgToCluster, m_CurrentRGBClusteringResults->rgbChannels->r); green = clusterer->PerformQuantification(imgToCluster, m_CurrentRGBClusteringResults->rgbChannels->g); gray = clusterer->PerformQuantification(imgToCluster, m_CurrentRGBClusteringResults->rgbChannels->b); // clipboard QString clipboardText("%1\t%2\t\t%3\t%4\t\t%5\t%6"); clipboardText = clipboardText.arg(red[0]).arg(red[1]) .arg(gray[0]).arg(gray[1]) .arg(green[0]).arg(green[1]); QApplication::clipboard()->setText(clipboardText, QClipboard::Clipboard); // now paint infos also on renderwindow QString plainInfoText("Red: %1 ± %2\nGray: %3 ± %4\nGreen: %5 ± %6"); plainInfoText = plainInfoText.arg(red[0]).arg(red[1]) .arg(gray[0]).arg(gray[1]) .arg(green[0]).arg(green[1]); this->SetMeasurementInfoToRenderWindow(plainInfoText); } clusteredImage = m_CurrentRGBClusteringResults->rgb; } else { if(m_IsTensorImage) { double *red_fa, *red_rd, *red_ad, *red_md; mitk::Image* tmpImg = m_CurrentStatisticsCalculator->GetInternalAdditionalResampledImage(0); mitk::Image::ConstPointer imgToCluster = tmpImg; red_fa = clusterer->PerformQuantification(imgToCluster, m_CurrentPerformClusteringResults->clusteredImage, mask); tmpImg = m_CurrentStatisticsCalculator->GetInternalAdditionalResampledImage(3); mitk::Image::ConstPointer imgToCluster3 = tmpImg; red_rd = clusterer->PerformQuantification(imgToCluster3, m_CurrentPerformClusteringResults->clusteredImage, mask); tmpImg = m_CurrentStatisticsCalculator->GetInternalAdditionalResampledImage(4); mitk::Image::ConstPointer imgToCluster4 = tmpImg; red_ad = clusterer->PerformQuantification(imgToCluster4, m_CurrentPerformClusteringResults->clusteredImage, mask); tmpImg = m_CurrentStatisticsCalculator->GetInternalAdditionalResampledImage(5); mitk::Image::ConstPointer imgToCluster5 = tmpImg; red_md = clusterer->PerformQuantification(imgToCluster5, m_CurrentPerformClusteringResults->clusteredImage, mask); // clipboard QString clipboardText("FA\t%1\t%2\t"); clipboardText = clipboardText .arg(red_fa[0]).arg(red_fa[1]); QString clipboardText3("RD\t%1\t%2\t"); clipboardText3 = clipboardText3 .arg(red_rd[0]).arg(red_rd[1]); QString clipboardText4("AD\t%1\t%2\t"); clipboardText4 = clipboardText4 .arg(red_ad[0]).arg(red_ad[1]); QString clipboardText5("MD\t%1\t%2\t"); clipboardText5 = clipboardText5 .arg(red_md[0]).arg(red_md[1]); QApplication::clipboard()->setText(clipboardText+clipboardText3+clipboardText4+clipboardText5, QClipboard::Clipboard); // now paint infos also on renderwindow QString plainInfoText("%1 \n"); plainInfoText = plainInfoText .arg("Red ", 20); QString plainInfoText0("FA:%1 ± %2\n"); plainInfoText0 = plainInfoText0 .arg(red_fa[0], 10, 'g', 2, QLatin1Char( ' ' )).arg(red_fa[1], -10, 'g', 2, QLatin1Char( ' ' )); QString plainInfoText3("RDx10³:%1 ± %2\n"); plainInfoText3 = plainInfoText3 .arg(1000.0 * red_rd[0], 10, 'g', 2, QLatin1Char( ' ' )).arg(1000.0 * red_rd[1], -10, 'g', 2, QLatin1Char( ' ' )); QString plainInfoText4("ADx10³:%1 ± %2\n"); plainInfoText4 = plainInfoText4 .arg(1000.0 * red_ad[0], 10, 'g', 2, QLatin1Char( ' ' )).arg(1000.0 * red_ad[1], -10, 'g', 2, QLatin1Char( ' ' )); QString plainInfoText5("MDx10³:%1 ± %2"); plainInfoText5 = plainInfoText5 .arg(1000.0 * red_md[0], 10, 'g', 2, QLatin1Char( ' ' )).arg(1000.0 * red_md[1], -10, 'g', 2, QLatin1Char( ' ' )); this->SetMeasurementInfoToRenderWindow(plainInfoText+plainInfoText0+plainInfoText3+plainInfoText4+plainInfoText5); } else { double* quant; mitk::Image* tmpImg = m_CurrentStatisticsCalculator->GetInternalImage(); mitk::Image::ConstPointer imgToCluster = tmpImg; quant = clusterer->PerformQuantification(imgToCluster, m_CurrentPerformClusteringResults->clusteredImage); // clipboard QString clipboardText("%1\t%2"); clipboardText = clipboardText.arg(quant[0]).arg(quant[1]); QApplication::clipboard()->setText(clipboardText, QClipboard::Clipboard); // now paint infos also on renderwindow QString plainInfoText("Measurement: %1 ± %2"); plainInfoText = plainInfoText.arg(quant[0]).arg(quant[1]); this->SetMeasurementInfoToRenderWindow(plainInfoText); } clusteredImage = m_CurrentPerformClusteringResults->displayImage; } if(mask.IsNotNull()) { typedef itk::Image,3> RGBImageType; typedef mitk::ImageToItk ClusterCasterType; ClusterCasterType::Pointer clCaster = ClusterCasterType::New(); clCaster->SetInput(clusteredImage); clCaster->Update(); clCaster->GetOutput(); typedef itk::MaskImageFilter< RGBImageType, MaskImageType, RGBImageType > MaskType; MaskType::Pointer masker = MaskType::New(); masker->SetInput1(clCaster->GetOutput()); masker->SetInput2(itkmask); masker->Update(); clusteredImage = mitk::Image::New(); clusteredImage->InitializeByItk(masker->GetOutput()); clusteredImage->SetVolume(masker->GetOutput()->GetBufferPointer()); } if(m_ClusteringResult.IsNotNull()) { this->GetDataStorage()->Remove(m_ClusteringResult); } m_ClusteringResult = mitk::DataNode::New(); m_ClusteringResult->SetBoolProperty("helper object", true); m_ClusteringResult->SetIntProperty( "layer", 1000 ); m_ClusteringResult->SetBoolProperty("texture interpolation", m_TexIsOn); m_ClusteringResult->SetData(clusteredImage); m_ClusteringResult->SetName("Clusterprobs"); this->GetDataStorage()->Add(m_ClusteringResult, m_SelectedImageNodes->GetNode()); if(m_SelectedPlanarFigure.IsNotNull() && m_SelectedPlanarFigureNodes->GetNode().IsNotNull()) { m_SelectedPlanarFigureNodes->GetNode()->SetIntProperty( "layer", 1001 ); } this->RequestRenderWindowUpdate(); } void QmitkPartialVolumeAnalysisView::UpdateStatistics() { if(!m_CurrentFigureNodeInitialized && m_SelectedPlanarFigure.IsNotNull()) { MITK_DEBUG << "Selected planar figure not initialized. No stats calculation performed."; return; } // Remove any cached images that are no longer referenced elsewhere this->RemoveOrphanImages(); QmitkStdMultiWidget *multiWidget = 0; QmitkStdMultiWidgetEditor * multiWidgetEdit = 0; multiWidgetEdit = dynamic_cast(this->GetRenderWindowPart()); if(multiWidgetEdit){ multiWidget = multiWidgetEdit->GetStdMultiWidget(); } if ( multiWidget == NULL ) { return; } if ( m_SelectedImage.IsNotNull() ) { // Check if a the selected image is a multi-channel image. If yes, statistics // cannot be calculated currently. if ( !m_IsTensorImage && m_SelectedImage->GetPixelType().GetNumberOfComponents() > 1 ) { QMessageBox::information( NULL, "Warning", "Non-tensor multi-component images not supported."); m_Controls->m_HistogramWidget->ClearItemModel(); m_CurrentStatisticsValid = false; return; } m_CurrentStatisticsCalculator = NULL; if(!m_IsTensorImage) { // Retrieve HistogramStatisticsCalculator from has map (or create a new one // for this image if non-existant) PartialVolumeAnalysisMapType::iterator it = m_PartialVolumeAnalysisMap.find( m_SelectedImage ); if ( it != m_PartialVolumeAnalysisMap.end() ) { m_CurrentStatisticsCalculator = it->second; } } if(m_CurrentStatisticsCalculator.IsNull()) { m_CurrentStatisticsCalculator = mitk::PartialVolumeAnalysisHistogramCalculator::New(); m_CurrentStatisticsCalculator->SetPlanarFigureThickness(m_Controls->m_PlanarFiguresThickness->value()); if(m_IsTensorImage) { m_CurrentStatisticsCalculator->SetImage( m_CAImage ); m_CurrentStatisticsCalculator->AddAdditionalResamplingImage( m_FAImage ); m_CurrentStatisticsCalculator->AddAdditionalResamplingImage( m_DirectionComp1Image ); m_CurrentStatisticsCalculator->AddAdditionalResamplingImage( m_DirectionComp2Image ); m_CurrentStatisticsCalculator->AddAdditionalResamplingImage( m_RDImage ); m_CurrentStatisticsCalculator->AddAdditionalResamplingImage( m_ADImage ); m_CurrentStatisticsCalculator->AddAdditionalResamplingImage( m_MDImage ); } else { m_CurrentStatisticsCalculator->SetImage( m_SelectedImage ); } m_PartialVolumeAnalysisMap[m_SelectedImage] = m_CurrentStatisticsCalculator; MITK_DEBUG << "Creating StatisticsCalculator"; } std::string maskName; std::string maskType; unsigned int maskDimension; if ( m_SelectedImageMask.IsNotNull() ) { mitk::PixelType pixelType = m_SelectedImageMask->GetPixelType(); MITK_DEBUG << pixelType.GetPixelTypeAsString(); if(pixelType.GetComponentTypeAsString() == "char") { MITK_DEBUG << "Pixel type is char instead of uchar"; return; } if(pixelType.GetBitsPerComponent() == 16) { //convert from short to uchar typedef itk::Image ShortImageType; typedef itk::Image CharImageType; CharImageType::Pointer charImage; ShortImageType::Pointer shortImage; mitk::CastToItkImage(m_SelectedImageMask, shortImage); typedef itk::CastImageFilter ImageCasterType; ImageCasterType::Pointer caster = ImageCasterType::New(); caster->SetInput( shortImage ); caster->Update(); charImage = caster->GetOutput(); mitk::CastToMitkImage(charImage, m_SelectedImageMask); } m_CurrentStatisticsCalculator->SetImageMask( m_SelectedImageMask ); m_CurrentStatisticsCalculator->SetMaskingModeToImage(); maskName = m_SelectedMaskNode->GetName(); maskType = m_SelectedImageMask->GetNameOfClass(); maskDimension = 3; std::stringstream maskLabel; maskLabel << maskName; if ( maskDimension > 0 ) { maskLabel << " [" << maskDimension << "D " << maskType << "]"; } m_Controls->m_SelectedMaskLabel->setText( maskLabel.str().c_str() ); } else if ( m_SelectedPlanarFigure.IsNotNull() && m_SelectedPlanarFigureNodes->GetNode().IsNotNull()) { m_CurrentStatisticsCalculator->SetPlanarFigure( m_SelectedPlanarFigure ); m_CurrentStatisticsCalculator->SetMaskingModeToPlanarFigure(); maskName = m_SelectedPlanarFigureNodes->GetNode()->GetName(); maskType = m_SelectedPlanarFigure->GetNameOfClass(); maskDimension = 2; } else { m_CurrentStatisticsCalculator->SetMaskingModeToNone(); maskName = "-"; maskType = ""; maskDimension = 0; } bool statisticsChanged = false; bool statisticsCalculationSuccessful = false; // Initialize progress bar mitk::ProgressBar::GetInstance()->AddStepsToDo( 100 ); // Install listener for progress events and initialize progress bar typedef itk::SimpleMemberCommand< QmitkPartialVolumeAnalysisView > ITKCommandType; ITKCommandType::Pointer progressListener; progressListener = ITKCommandType::New(); progressListener->SetCallbackFunction( this, &QmitkPartialVolumeAnalysisView::UpdateProgressBar ); unsigned long progressObserverTag = m_CurrentStatisticsCalculator ->AddObserver( itk::ProgressEvent(), progressListener ); ClusteringType::ParamsType *cparams = 0; ClusteringType::ClusterResultType *cresult = 0; ClusteringType::HistType *chist = 0; try { m_CurrentStatisticsCalculator->SetNumberOfBins(m_Controls->m_NumberBins->text().toInt()); m_CurrentStatisticsCalculator->SetUpsamplingFactor(m_Controls->m_Upsampling->text().toDouble()); m_CurrentStatisticsCalculator->SetGaussianSigma(m_Controls->m_GaussianSigma->text().toDouble()); // Compute statistics statisticsChanged = m_CurrentStatisticsCalculator->ComputeStatistics( ); mitk::Image* tmpImg = m_CurrentStatisticsCalculator->GetInternalImage(); mitk::Image::ConstPointer imgToCluster = tmpImg; if(imgToCluster.IsNotNull()) { // perform clustering const HistogramType *histogram = m_CurrentStatisticsCalculator->GetHistogram( ); if(histogram != NULL) { ClusteringType::Pointer clusterer = ClusteringType::New(); clusterer->SetStepsNumIntegration(200); clusterer->SetMaxIt(1000); mitk::Image::Pointer pFiberImg; if(m_QuantifyClass==3) { if(m_Controls->m_Quantiles->isChecked()) { m_CurrentRGBClusteringResults = clusterer->PerformRGBQuantiles(imgToCluster, histogram, m_Controls->m_q1->value(),m_Controls->m_q2->value()); } else { m_CurrentRGBClusteringResults = clusterer->PerformRGBClustering(imgToCluster, histogram); } pFiberImg = m_CurrentRGBClusteringResults->rgbChannels->r; cparams = m_CurrentRGBClusteringResults->params; cresult = m_CurrentRGBClusteringResults->result; chist = m_CurrentRGBClusteringResults->hist; } else { if(m_Controls->m_Quantiles->isChecked()) { m_CurrentPerformClusteringResults = clusterer->PerformQuantiles(imgToCluster, histogram, m_Controls->m_q1->value(),m_Controls->m_q2->value()); } else { m_CurrentPerformClusteringResults = clusterer->PerformClustering(imgToCluster, histogram, m_QuantifyClass); } pFiberImg = m_CurrentPerformClusteringResults->clusteredImage; cparams = m_CurrentPerformClusteringResults->params; cresult = m_CurrentPerformClusteringResults->result; chist = m_CurrentPerformClusteringResults->hist; } if(m_IsTensorImage) { m_AngularErrorImage = clusterer->CaculateAngularErrorImage( m_CurrentStatisticsCalculator->GetInternalAdditionalResampledImage(1), m_CurrentStatisticsCalculator->GetInternalAdditionalResampledImage(2), pFiberImg); // GetDefaultDataStorage()->Remove(m_newnode2); // m_newnode2 = mitk::DataNode::New(); // m_newnode2->SetData(m_AngularErrorImage); // m_newnode2->SetName(("AngularError")); // m_newnode2->SetIntProperty( "layer", 1003 ); // GetDefaultDataStorage()->Add(m_newnode2, m_SelectedImageNodes->GetNode()); // newnode = mitk::DataNode::New(); // newnode->SetData(m_CurrentStatisticsCalculator->GetInternalAdditionalResampledImage(1)); // newnode->SetName(("Comp1")); // GetDefaultDataStorage()->Add(newnode, m_SelectedImageNodes->GetNode()); // newnode = mitk::DataNode::New(); // newnode->SetData(m_CurrentStatisticsCalculator->GetInternalAdditionalResampledImage(2)); // newnode->SetName(("Comp2")); // GetDefaultDataStorage()->Add(newnode, m_SelectedImageNodes->GetNode()); } ShowClusteringResults(); } } statisticsCalculationSuccessful = true; } catch ( const std::runtime_error &e ) { QMessageBox::information( NULL, "Warning", e.what()); } catch ( const std::exception &e ) { MITK_ERROR << "Caught exception: " << e.what(); QMessageBox::information( NULL, "Warning", e.what()); } m_CurrentStatisticsCalculator->RemoveObserver( progressObserverTag ); // Make sure that progress bar closes mitk::ProgressBar::GetInstance()->Progress( 100 ); if ( statisticsCalculationSuccessful ) { if ( statisticsChanged ) { // Do not show any error messages m_CurrentStatisticsValid = true; } // m_Controls->m_HistogramWidget->SetHistogramModeToDirectHistogram(); m_Controls->m_HistogramWidget->SetParameters( cparams, cresult, chist ); // m_Controls->m_HistogramWidget->UpdateItemModelFromHistogram(); } else { m_Controls->m_SelectedMaskLabel->setText("mandatory"); // Clear statistics and histogram m_Controls->m_HistogramWidget->ClearItemModel(); m_CurrentStatisticsValid = false; // If a (non-closed) PlanarFigure is selected, display a line profile widget if ( m_SelectedPlanarFigure.IsNotNull() ) { // TODO: enable line profile widget //m_Controls->m_StatisticsWidgetStack->setCurrentIndex( 1 ); //m_Controls->m_LineProfileWidget->SetImage( m_SelectedImage ); //m_Controls->m_LineProfileWidget->SetPlanarFigure( m_SelectedPlanarFigure ); //m_Controls->m_LineProfileWidget->UpdateItemModelFromPath(); } } } } void QmitkPartialVolumeAnalysisView::SetMeasurementInfoToRenderWindow(const QString& text) { FindRenderWindow(m_SelectedPlanarFigureNodes->GetNode()); if(m_LastRenderWindow != m_SelectedRenderWindow) { if(m_LastRenderWindow) { QObject::disconnect( m_LastRenderWindow, SIGNAL( destroyed(QObject*) ) , this, SLOT( OnRenderWindowDelete(QObject*) ) ); } m_LastRenderWindow = m_SelectedRenderWindow; if(m_LastRenderWindow) { QObject::connect( m_LastRenderWindow, SIGNAL( destroyed(QObject*) ) , this, SLOT( OnRenderWindowDelete(QObject*) ) ); } } if(m_LastRenderWindow && m_SelectedPlanarFigureNodes->GetNode().IsNotNull()) { if (!text.isEmpty()) { m_MeasurementInfoAnnotation->SetText(1, text.toLatin1().data()); mitk::VtkLayerController::GetInstance(m_LastRenderWindow->GetRenderWindow())->InsertForegroundRenderer( m_MeasurementInfoRenderer, true); } else { if (mitk::VtkLayerController::GetInstance( m_LastRenderWindow->GetRenderWindow()) ->IsRendererInserted( m_MeasurementInfoRenderer)) mitk::VtkLayerController::GetInstance(m_LastRenderWindow->GetRenderWindow())->RemoveRenderer( m_MeasurementInfoRenderer); } } else { QmitkStdMultiWidget *multiWidget = 0; QmitkStdMultiWidgetEditor * multiWidgetEdit = 0; multiWidgetEdit = dynamic_cast(this->GetRenderWindowPart()); if(multiWidgetEdit){ multiWidget = multiWidgetEdit->GetStdMultiWidget(); } if ( multiWidget == NULL ) { return; } if (!text.isEmpty()) { m_MeasurementInfoAnnotation->SetText(1, text.toLatin1().data()); mitk::VtkLayerController::GetInstance(multiWidget->GetRenderWindow1()->GetRenderWindow())->InsertForegroundRenderer( m_MeasurementInfoRenderer, true); } else { if (mitk::VtkLayerController::GetInstance( multiWidget->GetRenderWindow1()->GetRenderWindow()) ->IsRendererInserted( m_MeasurementInfoRenderer)) mitk::VtkLayerController::GetInstance(multiWidget->GetRenderWindow1()->GetRenderWindow())->RemoveRenderer( m_MeasurementInfoRenderer); } } } void QmitkPartialVolumeAnalysisView::UpdateProgressBar() { mitk::ProgressBar::GetInstance()->Progress(); } void QmitkPartialVolumeAnalysisView::RequestStatisticsUpdate() { if ( !m_StatisticsUpdatePending ) { QApplication::postEvent( this, new QmitkRequestStatisticsUpdateEvent ); m_StatisticsUpdatePending = true; } } void QmitkPartialVolumeAnalysisView::RemoveOrphanImages() { PartialVolumeAnalysisMapType::iterator it = m_PartialVolumeAnalysisMap.begin(); while ( it != m_PartialVolumeAnalysisMap.end() ) { mitk::Image *image = it->first; mitk::PartialVolumeAnalysisHistogramCalculator *calculator = it->second; ++it; mitk::NodePredicateData::Pointer hasImage = mitk::NodePredicateData::New( image ); if ( this->GetDataStorage()->GetNode( hasImage ) == NULL ) { if ( m_SelectedImage == image ) { m_SelectedImage = NULL; m_SelectedImageNodes->RemoveAllNodes(); } if ( m_CurrentStatisticsCalculator == calculator ) { m_CurrentStatisticsCalculator = NULL; } m_PartialVolumeAnalysisMap.erase( image ); it = m_PartialVolumeAnalysisMap.begin(); } } } void QmitkPartialVolumeAnalysisView::ExtractTensorImages( mitk::Image::Pointer tensorimage) { typedef itk::Image< itk::DiffusionTensor3D, 3> TensorImageType; typedef mitk::ImageToItk CastType; CastType::Pointer caster = CastType::New(); caster->SetInput(tensorimage); caster->Update(); TensorImageType::Pointer image = caster->GetOutput(); typedef itk::TensorDerivedMeasurementsFilter MeasurementsType; MeasurementsType::Pointer measurementsCalculator = MeasurementsType::New(); measurementsCalculator->SetInput(image ); measurementsCalculator->SetMeasure(MeasurementsType::FA); measurementsCalculator->Update(); MeasurementsType::OutputImageType::Pointer fa = measurementsCalculator->GetOutput(); m_FAImage = mitk::Image::New(); m_FAImage->InitializeByItk(fa.GetPointer()); m_FAImage->SetVolume(fa->GetBufferPointer()); // mitk::DataNode::Pointer node = mitk::DataNode::New(); // node->SetData(m_FAImage); // GetDefaultDataStorage()->Add(node); measurementsCalculator = MeasurementsType::New(); measurementsCalculator->SetInput(image ); measurementsCalculator->SetMeasure(MeasurementsType::CA); measurementsCalculator->Update(); MeasurementsType::OutputImageType::Pointer ca = measurementsCalculator->GetOutput(); m_CAImage = mitk::Image::New(); m_CAImage->InitializeByItk(ca.GetPointer()); m_CAImage->SetVolume(ca->GetBufferPointer()); // node = mitk::DataNode::New(); // node->SetData(m_CAImage); // GetDefaultDataStorage()->Add(node); measurementsCalculator = MeasurementsType::New(); measurementsCalculator->SetInput(image ); measurementsCalculator->SetMeasure(MeasurementsType::RD); measurementsCalculator->Update(); MeasurementsType::OutputImageType::Pointer rd = measurementsCalculator->GetOutput(); m_RDImage = mitk::Image::New(); m_RDImage->InitializeByItk(rd.GetPointer()); m_RDImage->SetVolume(rd->GetBufferPointer()); // node = mitk::DataNode::New(); // node->SetData(m_CAImage); // GetDefaultDataStorage()->Add(node); measurementsCalculator = MeasurementsType::New(); measurementsCalculator->SetInput(image ); measurementsCalculator->SetMeasure(MeasurementsType::AD); measurementsCalculator->Update(); MeasurementsType::OutputImageType::Pointer ad = measurementsCalculator->GetOutput(); m_ADImage = mitk::Image::New(); m_ADImage->InitializeByItk(ad.GetPointer()); m_ADImage->SetVolume(ad->GetBufferPointer()); // node = mitk::DataNode::New(); // node->SetData(m_CAImage); // GetDefaultDataStorage()->Add(node); measurementsCalculator = MeasurementsType::New(); measurementsCalculator->SetInput(image ); measurementsCalculator->SetMeasure(MeasurementsType::RA); measurementsCalculator->Update(); MeasurementsType::OutputImageType::Pointer md = measurementsCalculator->GetOutput(); m_MDImage = mitk::Image::New(); m_MDImage->InitializeByItk(md.GetPointer()); m_MDImage->SetVolume(md->GetBufferPointer()); // node = mitk::DataNode::New(); // node->SetData(m_CAImage); // GetDefaultDataStorage()->Add(node); typedef DirectionsFilterType::OutputImageType DirImageType; DirectionsFilterType::Pointer dirFilter = DirectionsFilterType::New(); dirFilter->SetInput(image ); dirFilter->Update(); itk::ImageRegionIterator itd(dirFilter->GetOutput(), dirFilter->GetOutput()->GetLargestPossibleRegion()); itd = itd.Begin(); while( !itd.IsAtEnd() ) { DirImageType::PixelType direction = itd.Get(); direction[0] = fabs(direction[0]); direction[1] = fabs(direction[1]); direction[2] = fabs(direction[2]); itd.Set(direction); ++itd; } typedef itk::CartesianToPolarVectorImageFilter< DirImageType, DirImageType, true> C2PFilterType; C2PFilterType::Pointer cpFilter = C2PFilterType::New(); cpFilter->SetInput(dirFilter->GetOutput()); cpFilter->Update(); DirImageType::Pointer dir = cpFilter->GetOutput(); typedef itk::Image CompImageType; CompImageType::Pointer comp1 = CompImageType::New(); comp1->SetSpacing( dir->GetSpacing() ); // Set the image spacing comp1->SetOrigin( dir->GetOrigin() ); // Set the image origin comp1->SetDirection( dir->GetDirection() ); // Set the image direction comp1->SetRegions( dir->GetLargestPossibleRegion() ); comp1->Allocate(); CompImageType::Pointer comp2 = CompImageType::New(); comp2->SetSpacing( dir->GetSpacing() ); // Set the image spacing comp2->SetOrigin( dir->GetOrigin() ); // Set the image origin comp2->SetDirection( dir->GetDirection() ); // Set the image direction comp2->SetRegions( dir->GetLargestPossibleRegion() ); comp2->Allocate(); itk::ImageRegionConstIterator it(dir, dir->GetLargestPossibleRegion()); itk::ImageRegionIterator it1(comp1, comp1->GetLargestPossibleRegion()); itk::ImageRegionIterator it2(comp2, comp2->GetLargestPossibleRegion()); it = it.Begin(); it1 = it1.Begin(); it2 = it2.Begin(); while( !it.IsAtEnd() ) { it1.Set(it.Get()[1]); it2.Set(it.Get()[2]); ++it; ++it1; ++it2; } m_DirectionComp1Image = mitk::Image::New(); m_DirectionComp1Image->InitializeByItk(comp1.GetPointer()); m_DirectionComp1Image->SetVolume(comp1->GetBufferPointer()); m_DirectionComp2Image = mitk::Image::New(); m_DirectionComp2Image->InitializeByItk(comp2.GetPointer()); m_DirectionComp2Image->SetVolume(comp2->GetBufferPointer()); } void QmitkPartialVolumeAnalysisView::OnRenderWindowDelete(QObject * obj) { if(obj == m_LastRenderWindow) m_LastRenderWindow = 0; if(obj == m_SelectedRenderWindow) m_SelectedRenderWindow = 0; } bool QmitkPartialVolumeAnalysisView::event( QEvent *event ) { if ( event->type() == (QEvent::Type) QmitkRequestStatisticsUpdateEvent::StatisticsUpdateRequest ) { // Update statistics m_StatisticsUpdatePending = false; this->UpdateStatistics(); return true; } return false; } bool QmitkPartialVolumeAnalysisView::IsExclusiveFunctionality() const { return true; } void QmitkPartialVolumeAnalysisView::Activated() { mitk::DataStorage::SetOfObjects::ConstPointer _NodeSet = this->GetDataStorage()->GetAll(); mitk::DataNode* node = 0; mitk::PlanarFigure* figure = 0; mitk::PlanarFigureInteractor::Pointer figureInteractor = 0; // finally add all nodes to the model for(mitk::DataStorage::SetOfObjects::ConstIterator it=_NodeSet->Begin(); it!=_NodeSet->End() ; it++) { node = const_cast(it->Value().GetPointer()); figure = dynamic_cast(node->GetData()); if(figure) { figureInteractor = dynamic_cast(node->GetDataInteractor().GetPointer()); if(figureInteractor.IsNull()) { figureInteractor = mitk::PlanarFigureInteractor::New(); us::Module* planarFigureModule = us::ModuleRegistry::GetModule( "MitkPlanarFigure" ); figureInteractor->LoadStateMachine("PlanarFigureInteraction.xml", planarFigureModule ); figureInteractor->SetEventConfig( "PlanarFigureConfig.xml", planarFigureModule ); figureInteractor->SetDataNode( node ); } } } } void QmitkPartialVolumeAnalysisView::Deactivated() { } void QmitkPartialVolumeAnalysisView::ActivatedZombieView(berry::IWorkbenchPartReference::Pointer reference) { this->SetMeasurementInfoToRenderWindow(""); mitk::DataStorage::SetOfObjects::ConstPointer _NodeSet = this->GetDataStorage()->GetAll(); mitk::DataNode* node = 0; mitk::PlanarFigure* figure = 0; mitk::PlanarFigureInteractor::Pointer figureInteractor = 0; // finally add all nodes to the model for(mitk::DataStorage::SetOfObjects::ConstIterator it=_NodeSet->Begin(); it!=_NodeSet->End() ; it++) { node = const_cast(it->Value().GetPointer()); figure = dynamic_cast(node->GetData()); if(figure) { figureInteractor = dynamic_cast(node->GetDataInteractor().GetPointer()); if(figureInteractor) figureInteractor->SetDataNode( NULL ); } } } void QmitkPartialVolumeAnalysisView::Hidden() { if (m_ClusteringResult.IsNotNull()) { this->GetDataStorage()->Remove(m_ClusteringResult); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } Select(NULL, true, true); m_Visible = false; } void QmitkPartialVolumeAnalysisView::Visible() { m_Visible = true; berry::IWorkbenchPart::Pointer bla; if (!this->GetCurrentSelection().empty()) { this->OnSelectionChanged(bla, this->GetCurrentSelection()); } else { this->OnSelectionChanged(bla, this->GetDataManagerSelection()); } } void QmitkPartialVolumeAnalysisView::SetFocus() { } void QmitkPartialVolumeAnalysisView::GreenRadio(bool checked) { if(checked) { m_Controls->m_PartialVolumeRadio->setChecked(false); m_Controls->m_BlueRadio->setChecked(false); m_Controls->m_AllRadio->setChecked(false); m_Controls->m_ExportClusteringResultsButton->setEnabled(true); } m_QuantifyClass = 0; RequestStatisticsUpdate(); } void QmitkPartialVolumeAnalysisView::PartialVolumeRadio(bool checked) { if(checked) { m_Controls->m_GreenRadio->setChecked(false); m_Controls->m_BlueRadio->setChecked(false); m_Controls->m_AllRadio->setChecked(false); m_Controls->m_ExportClusteringResultsButton->setEnabled(true); } m_QuantifyClass = 1; RequestStatisticsUpdate(); } void QmitkPartialVolumeAnalysisView::BlueRadio(bool checked) { if(checked) { m_Controls->m_PartialVolumeRadio->setChecked(false); m_Controls->m_GreenRadio->setChecked(false); m_Controls->m_AllRadio->setChecked(false); m_Controls->m_ExportClusteringResultsButton->setEnabled(true); } m_QuantifyClass = 2; RequestStatisticsUpdate(); } void QmitkPartialVolumeAnalysisView::AllRadio(bool checked) { if(checked) { m_Controls->m_BlueRadio->setChecked(false); m_Controls->m_PartialVolumeRadio->setChecked(false); m_Controls->m_GreenRadio->setChecked(false); m_Controls->m_ExportClusteringResultsButton->setEnabled(false); } m_QuantifyClass = 3; RequestStatisticsUpdate(); } void QmitkPartialVolumeAnalysisView::NumberBinsChangedSlider(int v ) { m_Controls->m_NumberBins->setText(QString("%1").arg(m_Controls->m_NumberBinsSlider->value()*5.0)); } void QmitkPartialVolumeAnalysisView::UpsamplingChangedSlider( int v) { m_Controls->m_Upsampling->setText(QString("%1").arg(m_Controls->m_UpsamplingSlider->value()/10.0)); } void QmitkPartialVolumeAnalysisView::GaussianSigmaChangedSlider(int v ) { m_Controls->m_GaussianSigma->setText(QString("%1").arg(m_Controls->m_GaussianSigmaSlider->value()/100.0)); } void QmitkPartialVolumeAnalysisView::SimilarAnglesChangedSlider(int v ) { m_Controls->m_SimilarAngles->setText(QString("%1°").arg(90-m_Controls->m_SimilarAnglesSlider->value())); ShowClusteringResults(); } void QmitkPartialVolumeAnalysisView::OpacityChangedSlider(int v ) { if(m_SelectedImageNodes->GetNode().IsNotNull()) { float opacImag = 1.0f-(v-5)/5.0f; opacImag = opacImag < 0 ? 0 : opacImag; m_SelectedImageNodes->GetNode()->SetFloatProperty("opacity", opacImag); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } if(m_ClusteringResult.IsNotNull()) { float opacClust = v/5.0f; opacClust = opacClust > 1 ? 1 : opacClust; m_ClusteringResult->SetFloatProperty("opacity", opacClust); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkPartialVolumeAnalysisView::NumberBinsReleasedSlider( ) { RequestStatisticsUpdate(); } void QmitkPartialVolumeAnalysisView::UpsamplingReleasedSlider( ) { RequestStatisticsUpdate(); } void QmitkPartialVolumeAnalysisView::GaussianSigmaReleasedSlider( ) { RequestStatisticsUpdate(); } void QmitkPartialVolumeAnalysisView::SimilarAnglesReleasedSlider( ) { } void QmitkPartialVolumeAnalysisView::ToClipBoard() { std::vector* > vals = m_Controls->m_HistogramWidget->m_Vals; QString clipboardText; for (std::vector* >::iterator it = vals.begin(); it != vals.end(); ++it) { for (std::vector::iterator it2 = (**it).begin(); it2 != (**it).end(); ++it2) { clipboardText.append(QString("%1 \t").arg(*it2)); } clipboardText.append(QString("\n")); } QApplication::clipboard()->setText(clipboardText, QClipboard::Clipboard); } void QmitkPartialVolumeAnalysisView::PropertyChanged(const mitk::DataNode* /*node*/, const mitk::BaseProperty* /*prop*/) { } void QmitkPartialVolumeAnalysisView::NodeChanged(const mitk::DataNode* /*node*/) { } void QmitkPartialVolumeAnalysisView::NodeRemoved(const mitk::DataNode* node) { if (dynamic_cast(node->GetData())) this->GetDataStorage()->Remove(m_ClusteringResult); if( node == m_SelectedPlanarFigureNodes->GetNode().GetPointer() || node == m_SelectedMaskNode.GetPointer() ) { this->Select(NULL,true,false); SetMeasurementInfoToRenderWindow(""); } if( node == m_SelectedImageNodes->GetNode().GetPointer() ) { this->Select(NULL,false,true); SetMeasurementInfoToRenderWindow(""); } } void QmitkPartialVolumeAnalysisView::NodeAddedInDataStorage(const mitk::DataNode* node) { if(!m_Visible) return; mitk::DataNode* nonConstNode = const_cast(node); mitk::PlanarFigure* figure = dynamic_cast(nonConstNode->GetData()); if(figure) { // set interactor for new node (if not already set) mitk::PlanarFigureInteractor::Pointer figureInteractor = dynamic_cast(node->GetDataInteractor().GetPointer()); if(figureInteractor.IsNull()) { figureInteractor = mitk::PlanarFigureInteractor::New(); us::Module* planarFigureModule = us::ModuleRegistry::GetModule( "MitkPlanarFigure" ); figureInteractor->LoadStateMachine("PlanarFigureInteraction.xml", planarFigureModule ); figureInteractor->SetEventConfig( "PlanarFigureConfig.xml", planarFigureModule ); figureInteractor->SetDataNode( nonConstNode ); } // remove uninitialized old planars if( m_SelectedPlanarFigureNodes->GetNode().IsNotNull() && m_CurrentFigureNodeInitialized == false ) { mitk::Interactor::Pointer oldInteractor = m_SelectedPlanarFigureNodes->GetNode()->GetInteractor(); if(oldInteractor.IsNotNull()) mitk::GlobalInteraction::GetInstance()->RemoveInteractor(oldInteractor); this->GetDataStorage()->Remove(m_SelectedPlanarFigureNodes->GetNode()); } } } void QmitkPartialVolumeAnalysisView::TextIntON() { if(m_ClusteringResult.IsNotNull()) { if(m_TexIsOn) { m_Controls->m_TextureIntON->setIcon(*m_IconTexOFF); } else { m_Controls->m_TextureIntON->setIcon(*m_IconTexON); } m_ClusteringResult->SetBoolProperty("texture interpolation", !m_TexIsOn); m_TexIsOn = !m_TexIsOn; this->RequestRenderWindowUpdate(); } } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkPreprocessingView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkPreprocessingView.cpp index 0ba1b2e187..dd47e50ae5 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkPreprocessingView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkPreprocessingView.cpp @@ -1,859 +1,859 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //#define MBILOG_ENABLE_DEBUG #include "QmitkPreprocessingView.h" #include "mitkDiffusionImagingConfigure.h" // qt includes #include // itk includes #include "itkTimeProbe.h" #include "itkB0ImageExtractionImageFilter.h" #include "itkB0ImageExtractionToSeparateImageFilter.h" #include "itkBrainMaskExtractionImageFilter.h" #include "itkCastImageFilter.h" #include "itkVectorContainer.h" #include #include #include // Multishell includes #include // Multishell Functors #include #include #include #include // mitk includes #include "QmitkDataStorageComboBox.h" #include "QmitkStdMultiWidget.h" #include "mitkProgressBar.h" #include "mitkStatusBar.h" #include "mitkNodePredicateDataType.h" #include "mitkProperties.h" #include "mitkVtkResliceInterpolationProperty.h" #include "mitkLookupTable.h" #include "mitkLookupTableProperty.h" #include "mitkTransferFunction.h" #include "mitkTransferFunctionProperty.h" #include "mitkDataNodeObject.h" #include "mitkOdfNormalizationMethodProperty.h" #include "mitkOdfScaleByProperty.h" #include #include #include #include const std::string QmitkPreprocessingView::VIEW_ID = "org.mitk.views.preprocessing"; #define DI_INFO MITK_INFO("DiffusionImaging") typedef float TTensorPixelType; QmitkPreprocessingView::QmitkPreprocessingView() : QmitkFunctionality(), m_Controls(NULL), m_MultiWidget(NULL), m_DiffusionImage(NULL) { } QmitkPreprocessingView::~QmitkPreprocessingView() { } void QmitkPreprocessingView::CreateQtPartControl(QWidget *parent) { if (!m_Controls) { // create GUI widgets m_Controls = new Ui::QmitkPreprocessingViewControls; m_Controls->setupUi(parent); this->CreateConnections(); m_Controls->m_MeasurementFrameTable->horizontalHeader()->setResizeMode(QHeaderView::Stretch); m_Controls->m_MeasurementFrameTable->verticalHeader()->setResizeMode(QHeaderView::Stretch); } } void QmitkPreprocessingView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkPreprocessingView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } void QmitkPreprocessingView::CreateConnections() { if ( m_Controls ) { connect( (QObject*)(m_Controls->m_ButtonAverageGradients), SIGNAL(clicked()), this, SLOT(AverageGradients()) ); connect( (QObject*)(m_Controls->m_ButtonExtractB0), SIGNAL(clicked()), this, SLOT(ExtractB0()) ); connect( (QObject*)(m_Controls->m_ModifyMeasurementFrame), SIGNAL(clicked()), this, SLOT(DoApplyMesurementFrame()) ); connect( (QObject*)(m_Controls->m_ReduceGradientsButton), SIGNAL(clicked()), this, SLOT(DoReduceGradientDirections()) ); connect( (QObject*)(m_Controls->m_ShowGradientsButton), SIGNAL(clicked()), this, SLOT(DoShowGradientDirections()) ); connect( (QObject*)(m_Controls->m_MirrorGradientToHalfSphereButton), SIGNAL(clicked()), this, SLOT(DoHalfSphereGradientDirections()) ); connect( (QObject*)(m_Controls->m_MergeDwisButton), SIGNAL(clicked()), this, SLOT(MergeDwis()) ); connect( (QObject*)(m_Controls->m_AdcSignalAverage), SIGNAL(clicked()), this, SLOT(DoADCAverage()) ); //connect( (QObject*)(m_Controls->m_AdcSignalFit), SIGNAL(clicked()), this, SLOT(DoADCFit()) ); connect( (QObject*)(m_Controls->m_AkcSignalFit), SIGNAL(clicked()), this, SLOT(DoAKCFit()) ); connect( (QObject*)(m_Controls->m_BiExpSignalFit), SIGNAL(clicked()), this, SLOT(DoBiExpFit()) ); connect( (QObject*)(m_Controls->m_B_ValueMap_Rounder_SpinBox), SIGNAL(valueChanged(int)), this, SLOT(UpdateDwiBValueMapRounder(int))); connect( (QObject*)(m_Controls->m_CreateLengthCorrectedDwi), SIGNAL(clicked()), this, SLOT(DoLengthCorrection()) ); connect( (QObject*)(m_Controls->m_CalcAdcButton), SIGNAL(clicked()), this, SLOT(DoAdcCalculation()) ); } } void QmitkPreprocessingView::DoLengthCorrection() { if (m_DiffusionImage.IsNull()) return; typedef mitk::DiffusionImage DiffusionImageType; typedef itk::DwiGradientLengthCorrectionFilter FilterType; FilterType::Pointer filter = FilterType::New(); filter->SetRoundingValue( m_Controls->m_B_ValueMap_Rounder_SpinBox->value()); filter->SetReferenceBValue(m_DiffusionImage->GetReferenceBValue()); filter->SetReferenceGradientDirectionContainer(m_DiffusionImage->GetDirections()); filter->Update(); DiffusionImageType::Pointer image = DiffusionImageType::New(); image->SetVectorImage( m_DiffusionImage->GetVectorImage()); image->SetReferenceBValue( filter->GetNewBValue() ); image->SetDirections( filter->GetOutputGradientDirectionContainer()); image->InitializeFromVectorImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( image ); QString name = m_SelectedDiffusionNodes.front()->GetName().c_str(); imageNode->SetName((name+"_rounded").toStdString().c_str()); GetDefaultDataStorage()->Add(imageNode); } void QmitkPreprocessingView::UpdateDwiBValueMapRounder(int i) { if (m_DiffusionImage.IsNull()) return; //m_DiffusionImage->UpdateBValueMap(); UpdateBValueTableWidget(i); } void QmitkPreprocessingView::CallMultishellToSingleShellFilter(itk::DWIVoxelFunctor * functor, mitk::DiffusionImage::Pointer ImPtr, QString imageName) { typedef itk::RadialMultishellToSingleshellImageFilter FilterType; // filter input parameter const mitk::DiffusionImage::BValueMap &originalShellMap = ImPtr->GetBValueMap(); const mitk::DiffusionImage::ImageType *vectorImage = ImPtr->GetVectorImage(); const mitk::DiffusionImage::GradientDirectionContainerType::Pointer gradientContainer = ImPtr->GetDirections(); const unsigned int &bValue = ImPtr->GetReferenceBValue(); mitk::DataNode::Pointer imageNode = 0; // filter call FilterType::Pointer filter = FilterType::New(); filter->SetInput(vectorImage); filter->SetOriginalGradientDirections(gradientContainer); filter->SetOriginalBValueMap(originalShellMap); filter->SetOriginalBValue(bValue); filter->SetFunctor(functor); filter->Update(); // create new DWI image mitk::DiffusionImage::Pointer outImage = mitk::DiffusionImage::New(); outImage->SetVectorImage( filter->GetOutput() ); outImage->SetReferenceBValue( m_Controls->m_targetBValueSpinBox->value() ); outImage->SetDirections( filter->GetTargetGradientDirections() ); outImage->InitializeFromVectorImage(); imageNode = mitk::DataNode::New(); imageNode->SetData( outImage ); imageNode->SetName(imageName.toStdString().c_str()); GetDefaultDataStorage()->Add(imageNode); if(m_Controls->m_OutputRMSErrorImage->isChecked()){ // create new Error image FilterType::ErrorImageType::Pointer errImage = filter->GetErrorImage(); mitk::Image::Pointer mitkErrImage = mitk::Image::New(); mitkErrImage->InitializeByItk(errImage); mitkErrImage->SetVolume(errImage->GetBufferPointer()); imageNode = mitk::DataNode::New(); imageNode->SetData( mitkErrImage ); imageNode->SetName((imageName+"_Error").toStdString().c_str()); GetDefaultDataStorage()->Add(imageNode); } } void QmitkPreprocessingView::DoBiExpFit() { itk::BiExpFitFunctor::Pointer functor = itk::BiExpFitFunctor::New(); for (unsigned int i=0; i::Pointer inImage = dynamic_cast< mitk::DiffusionImage* >(m_SelectedDiffusionNodes.at(i)->GetData()); QString name(m_SelectedDiffusionNodes.at(i)->GetName().c_str()); const mitk::DiffusionImage::BValueMap & originalShellMap = inImage->GetBValueMap(); mitk::DiffusionImage::BValueMap::const_iterator it = originalShellMap.begin(); ++it;/* skip b=0*/ unsigned int s = 0; /*shell index */ vnl_vector bValueList(originalShellMap.size()-1); while(it != originalShellMap.end()) bValueList.put(s++,(it++)->first); const double targetBValue = m_Controls->m_targetBValueSpinBox->value(); functor->setListOfBValues(bValueList); functor->setTargetBValue(targetBValue); CallMultishellToSingleShellFilter(functor,inImage,name + "_BiExp"); } } void QmitkPreprocessingView::DoAKCFit() { itk::KurtosisFitFunctor::Pointer functor = itk::KurtosisFitFunctor::New(); for (unsigned int i=0; i::Pointer inImage = dynamic_cast< mitk::DiffusionImage* >(m_SelectedDiffusionNodes.at(i)->GetData()); QString name(m_SelectedDiffusionNodes.at(i)->GetName().c_str()); const mitk::DiffusionImage::BValueMap & originalShellMap = inImage->GetBValueMap(); mitk::DiffusionImage::BValueMap::const_iterator it = originalShellMap.begin(); ++it;/* skip b=0*/ unsigned int s = 0; /*shell index */ vnl_vector bValueList(originalShellMap.size()-1); while(it != originalShellMap.end()) bValueList.put(s++,(it++)->first); const double targetBValue = m_Controls->m_targetBValueSpinBox->value(); functor->setListOfBValues(bValueList); functor->setTargetBValue(targetBValue); CallMultishellToSingleShellFilter(functor,inImage,name + "_AKC"); } } void QmitkPreprocessingView::DoADCFit() { // later } void QmitkPreprocessingView::DoADCAverage() { itk::ADCAverageFunctor::Pointer functor = itk::ADCAverageFunctor::New(); for (unsigned int i=0; i::Pointer inImage = dynamic_cast< mitk::DiffusionImage* >(m_SelectedDiffusionNodes.at(i)->GetData()); QString name(m_SelectedDiffusionNodes.at(i)->GetName().c_str()); const mitk::DiffusionImage::BValueMap & originalShellMap = inImage->GetBValueMap(); mitk::DiffusionImage::BValueMap::const_iterator it = originalShellMap.begin(); ++it;/* skip b=0*/ unsigned int s = 0; /*shell index */ vnl_vector bValueList(originalShellMap.size()-1); while(it != originalShellMap.end()) bValueList.put(s++,(it++)->first); const double targetBValue = m_Controls->m_targetBValueSpinBox->value(); functor->setListOfBValues(bValueList); functor->setTargetBValue(targetBValue); CallMultishellToSingleShellFilter(functor,inImage,name + "_ADC"); } } void QmitkPreprocessingView::DoAdcCalculation() { if (m_DiffusionImage.IsNull()) return; typedef mitk::DiffusionImage< DiffusionPixelType > DiffusionImageType; typedef itk::AdcImageFilter< DiffusionPixelType, double > FilterType; for (unsigned int i=0; i(m_SelectedDiffusionNodes.at(i)->GetData()); FilterType::Pointer filter = FilterType::New(); filter->SetInput(inImage->GetVectorImage()); filter->SetGradientDirections(inImage->GetDirections()); filter->SetB_value(inImage->GetReferenceBValue()); filter->Update(); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk( filter->GetOutput() ); image->SetVolume( filter->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( image ); QString name = m_SelectedDiffusionNodes.at(i)->GetName().c_str(); imageNode->SetName((name+"_ADC").toStdString().c_str()); GetDefaultDataStorage()->Add(imageNode); } } void QmitkPreprocessingView::UpdateBValueTableWidget(int i) { foreach(QCheckBox * box, m_ReduceGradientCheckboxes) { m_Controls->m_ReductionFrame->layout()->removeWidget(box); delete box; } foreach(QSpinBox * box, m_ReduceGradientSpinboxes) { m_Controls->m_ReductionFrame->layout()->removeWidget(box); delete box; } m_ReduceGradientCheckboxes.clear(); m_ReduceGradientSpinboxes.clear(); if (m_DiffusionImage.IsNull()) { m_Controls->m_B_ValueMap_TableWidget->clear(); m_Controls->m_B_ValueMap_TableWidget->setRowCount(1); QStringList headerList; headerList << "b-Value" << "Number of gradients"; m_Controls->m_B_ValueMap_TableWidget->setHorizontalHeaderLabels(headerList); m_Controls->m_B_ValueMap_TableWidget->setItem(0,0,new QTableWidgetItem("-")); m_Controls->m_B_ValueMap_TableWidget->setItem(0,1,new QTableWidgetItem("-")); }else{ typedef mitk::DiffusionImage::BValueMap BValueMap; typedef mitk::DiffusionImage::BValueMap::iterator BValueMapIterator; BValueMapIterator it; BValueMap roundedBValueMap = m_DiffusionImage->GetBValueMap(); m_Controls->m_B_ValueMap_TableWidget->clear(); m_Controls->m_B_ValueMap_TableWidget->setRowCount(roundedBValueMap.size() ); QStringList headerList; headerList << "b-Value" << "Number of gradients"; m_Controls->m_B_ValueMap_TableWidget->setHorizontalHeaderLabels(headerList); QCheckBox* checkBox; QSpinBox* spinBox; int i = 0 ; for(it = roundedBValueMap.begin() ;it != roundedBValueMap.end(); it++) { m_Controls->m_B_ValueMap_TableWidget->setItem(i,0,new QTableWidgetItem(QString::number(it->first))); m_Controls->m_B_ValueMap_TableWidget->setItem(i,1,new QTableWidgetItem(QString::number(it->second.size()))); // Reduce Gradients GUI adaption if(roundedBValueMap.size() > 1){ checkBox = new QCheckBox(QString::number(it->first) + " with " + QString::number(it->second.size()) + " directions"); checkBox->setEnabled(true); checkBox->setChecked(true); checkBox->setCheckable(true); m_ReduceGradientCheckboxes.push_back(checkBox); m_Controls->m_ReductionFrame->layout()->addWidget(checkBox); spinBox = new QSpinBox(); spinBox->setMaximum(it->second.size()); spinBox->setValue(std::ceil((float)it->second.size())); spinBox->setMinimum(0); m_ReduceGradientSpinboxes.push_back(spinBox); m_Controls->m_ReductionFrame->layout()->addWidget(spinBox); } i++; } } } void QmitkPreprocessingView::OnSelectionChanged( std::vector nodes ) { bool foundDwiVolume = false; m_DiffusionImage = NULL; m_SelectedDiffusionNodes.clear(); // iterate selection for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if( node.IsNotNull() && dynamic_cast*>(node->GetData()) ) { foundDwiVolume = true; m_DiffusionImage = dynamic_cast*>(node->GetData()); m_Controls->m_DiffusionImageLabel->setText(node->GetName().c_str()); m_SelectedDiffusionNodes.push_back(node); } } m_Controls->m_ButtonAverageGradients->setEnabled(foundDwiVolume); m_Controls->m_ButtonExtractB0->setEnabled(foundDwiVolume); m_Controls->m_CheckExtractAll->setEnabled(foundDwiVolume); m_Controls->m_ModifyMeasurementFrame->setEnabled(foundDwiVolume); m_Controls->m_MeasurementFrameTable->setEnabled(foundDwiVolume); m_Controls->m_ReduceGradientsButton->setEnabled(foundDwiVolume); m_Controls->m_ShowGradientsButton->setEnabled(foundDwiVolume); m_Controls->m_MirrorGradientToHalfSphereButton->setEnabled(foundDwiVolume); m_Controls->m_MergeDwisButton->setEnabled(foundDwiVolume); m_Controls->m_B_ValueMap_Rounder_SpinBox->setEnabled(foundDwiVolume); //m_Controls->m_AdcSignalFit->setEnabled(foundDwiVolume); m_Controls->m_AdcSignalAverage->setEnabled(foundDwiVolume); m_Controls->m_AkcSignalFit->setEnabled(foundDwiVolume); m_Controls->m_BiExpSignalFit->setEnabled(foundDwiVolume); m_Controls->m_CreateLengthCorrectedDwi->setEnabled(foundDwiVolume); m_Controls->m_CalcAdcButton->setEnabled(foundDwiVolume); m_Controls->m_targetBValueSpinBox->setEnabled(foundDwiVolume); m_Controls->m_OutputRMSErrorImage->setEnabled(foundDwiVolume); // reset sampling frame to 1 and update all ealted components m_Controls->m_B_ValueMap_Rounder_SpinBox->setValue(1); UpdateBValueTableWidget(m_Controls->m_B_ValueMap_Rounder_SpinBox->value()); if (foundDwiVolume) { m_Controls->m_InputData->setTitle("Input Data"); vnl_matrix_fixed< double, 3, 3 > mf = m_DiffusionImage->GetMeasurementFrame(); for (int r=0; r<3; r++) for (int c=0; c<3; c++) { QTableWidgetItem* item = m_Controls->m_MeasurementFrameTable->item(r,c); delete item; item = new QTableWidgetItem(); item->setTextAlignment(Qt::AlignCenter | Qt::AlignVCenter); item->setText(QString::number(mf.get(r,c))); m_Controls->m_MeasurementFrameTable->setItem(r,c,item); } //calculate target bValue for MultishellToSingleShellfilter const mitk::DiffusionImage::BValueMap & bValMap = m_DiffusionImage->GetBValueMap(); mitk::DiffusionImage::BValueMap::const_iterator it = bValMap.begin(); unsigned int targetBVal = 0; while(it != bValMap.end()) targetBVal += (it++)->first; targetBVal /= (float)bValMap.size()-1; m_Controls->m_targetBValueSpinBox->setValue(targetBVal); } else { for (int r=0; r<3; r++) for (int c=0; c<3; c++) { QTableWidgetItem* item = m_Controls->m_MeasurementFrameTable->item(r,c); delete item; item = new QTableWidgetItem(); m_Controls->m_MeasurementFrameTable->setItem(r,c,item); } m_Controls->m_DiffusionImageLabel->setText("mandatory"); m_Controls->m_InputData->setTitle("Please Select Input Data"); } } void QmitkPreprocessingView::Activated() { QmitkFunctionality::Activated(); } void QmitkPreprocessingView::Deactivated() { QmitkFunctionality::Deactivated(); } void QmitkPreprocessingView::DoHalfSphereGradientDirections() { GradientDirectionContainerType::Pointer gradientContainer = m_DiffusionImage->GetDirections(); for (unsigned int j=0; jSize(); j++) if (gradientContainer->at(j)[0]<0) gradientContainer->at(j) = -gradientContainer->at(j); m_DiffusionImage->SetDirections(gradientContainer); } void QmitkPreprocessingView::DoApplyMesurementFrame() { if (m_DiffusionImage.IsNull()) return; vnl_matrix_fixed< double, 3, 3 > mf; for (int r=0; r<3; r++) for (int c=0; c<3; c++) { QTableWidgetItem* item = m_Controls->m_MeasurementFrameTable->item(r,c); if (!item) return; mf[r][c] = item->text().toDouble(); } m_DiffusionImage->SetMeasurementFrame(mf); } void QmitkPreprocessingView::DoShowGradientDirections() { if (m_DiffusionImage.IsNull()) return; int maxIndex = 0; unsigned int maxSize = m_DiffusionImage->GetDimension(0); if (maxSizeGetDimension(1)) { maxSize = m_DiffusionImage->GetDimension(1); maxIndex = 1; } if (maxSizeGetDimension(2)) { maxSize = m_DiffusionImage->GetDimension(2); maxIndex = 2; } mitk::Point3D origin = m_DiffusionImage->GetGeometry()->GetOrigin(); mitk::PointSet::Pointer originSet = mitk::PointSet::New(); typedef mitk::DiffusionImage::BValueMap BValueMap; typedef mitk::DiffusionImage::BValueMap::iterator BValueMapIterator; BValueMap bValMap = m_DiffusionImage->GetBValueMap(); GradientDirectionContainerType::Pointer gradientContainer = m_DiffusionImage->GetDirections(); - mitk::Geometry3D::Pointer geometry = m_DiffusionImage->GetGeometry(); + mitk::BaseGeometry::Pointer geometry = m_DiffusionImage->GetGeometry(); int shellCount = 1; for(BValueMapIterator it = bValMap.begin(); it!=bValMap.end(); ++it) { mitk::PointSet::Pointer pointset = mitk::PointSet::New(); for (unsigned int j=0; jsecond.size(); j++) { mitk::Point3D ip; vnl_vector_fixed< double, 3 > v = gradientContainer->at(it->second[j]); if (v.magnitude()>mitk::eps) { ip[0] = v[0]*maxSize*geometry->GetSpacing()[maxIndex]/2 + origin[0]-0.5*geometry->GetSpacing()[0] + geometry->GetSpacing()[0]*m_DiffusionImage->GetDimension(0)/2; ip[1] = v[1]*maxSize*geometry->GetSpacing()[maxIndex]/2 + origin[1]-0.5*geometry->GetSpacing()[1] + geometry->GetSpacing()[1]*m_DiffusionImage->GetDimension(1)/2; ip[2] = v[2]*maxSize*geometry->GetSpacing()[maxIndex]/2 + origin[2]-0.5*geometry->GetSpacing()[2] + geometry->GetSpacing()[2]*m_DiffusionImage->GetDimension(2)/2; pointset->InsertPoint(j, ip); } else if (originSet->IsEmpty()) { ip[0] = v[0]*maxSize*geometry->GetSpacing()[maxIndex]/2 + origin[0]-0.5*geometry->GetSpacing()[0] + geometry->GetSpacing()[0]*m_DiffusionImage->GetDimension(0)/2; ip[1] = v[1]*maxSize*geometry->GetSpacing()[maxIndex]/2 + origin[1]-0.5*geometry->GetSpacing()[1] + geometry->GetSpacing()[1]*m_DiffusionImage->GetDimension(1)/2; ip[2] = v[2]*maxSize*geometry->GetSpacing()[maxIndex]/2 + origin[2]-0.5*geometry->GetSpacing()[2] + geometry->GetSpacing()[2]*m_DiffusionImage->GetDimension(2)/2; originSet->InsertPoint(j, ip); } } if (it->firstSetData(pointset); QString name = m_SelectedDiffusionNodes.front()->GetName().c_str(); name += "_Shell_"; name += QString::number(it->first); node->SetName(name.toStdString().c_str()); node->SetProperty("pointsize", mitk::FloatProperty::New((float)maxSize/50)); int b0 = shellCount%2; int b1 = 0; int b2 = 0; if (shellCount>4) b2 = 1; if (shellCount%4 >= 2) b1 = 1; node->SetProperty("color", mitk::ColorProperty::New(b2, b1, b0)); GetDefaultDataStorage()->Add(node, m_SelectedDiffusionNodes.front()); shellCount++; } // add origin to datastorage mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData(originSet); QString name = m_SelectedDiffusionNodes.front()->GetName().c_str(); name += "_Origin"; node->SetName(name.toStdString().c_str()); node->SetProperty("pointsize", mitk::FloatProperty::New((float)maxSize/50)); node->SetProperty("color", mitk::ColorProperty::New(1,1,1)); GetDefaultDataStorage()->Add(node, m_SelectedDiffusionNodes.front()); } void QmitkPreprocessingView::DoReduceGradientDirections() { if (m_DiffusionImage.IsNull()) return; typedef mitk::DiffusionImage DiffusionImageType; typedef itk::ElectrostaticRepulsionDiffusionGradientReductionFilter FilterType; typedef DiffusionImageType::BValueMap BValueMap; // GetShellSelection from GUI BValueMap shellSlectionMap; BValueMap originalShellMap = m_DiffusionImage->GetBValueMap(); std::vector newNumGradientDirections; int shellCounter = 0; foreach(QCheckBox * box , m_ReduceGradientCheckboxes) { if(box->isChecked()) { double BValue = (box->text().split(' ')).at(0).toDouble(); shellSlectionMap[BValue] = originalShellMap[BValue]; newNumGradientDirections.push_back(m_ReduceGradientSpinboxes.at(shellCounter)->value()); } shellCounter++; } if (newNumGradientDirections.empty()) return; GradientDirectionContainerType::Pointer gradientContainer = m_DiffusionImage->GetDirections(); FilterType::Pointer filter = FilterType::New(); filter->SetInput(m_DiffusionImage->GetVectorImage()); filter->SetOriginalGradientDirections(gradientContainer); filter->SetNumGradientDirections(newNumGradientDirections); filter->SetOriginalBValueMap(originalShellMap); filter->SetShellSelectionBValueMap(shellSlectionMap); filter->Update(); DiffusionImageType::Pointer image = DiffusionImageType::New(); image->SetVectorImage( filter->GetOutput() ); image->SetReferenceBValue(m_DiffusionImage->GetReferenceBValue()); image->SetDirections(filter->GetGradientDirections()); image->SetMeasurementFrame(m_DiffusionImage->GetMeasurementFrame()); image->InitializeFromVectorImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( image ); QString name = m_SelectedDiffusionNodes.front()->GetName().c_str(); QList::iterator itSpinBox = m_ReduceGradientSpinboxes.begin(); QList::iterator itCheckBox = m_ReduceGradientCheckboxes.begin(); while(itSpinBox != m_ReduceGradientSpinboxes.end() && itCheckBox != m_ReduceGradientCheckboxes.end()) { name += "_"; if((*itCheckBox)->isChecked()){ name += QString::number((*itSpinBox)->value()); }else { name += QString::number(0); } ++itSpinBox; ++itCheckBox; } imageNode->SetName(name.toStdString().c_str()); GetDefaultDataStorage()->Add(imageNode); } void QmitkPreprocessingView::MergeDwis() { typedef mitk::DiffusionImage DiffusionImageType; typedef DiffusionImageType::GradientDirectionContainerType GradientContainerType; if (m_SelectedDiffusionNodes.size()<2) return; typedef itk::VectorImage DwiImageType; typedef DwiImageType::PixelType DwiPixelType; typedef DwiImageType::RegionType DwiRegionType; typedef std::vector< DwiImageType::Pointer > DwiImageContainerType; typedef std::vector< GradientContainerType::Pointer > GradientListContainerType; DwiImageContainerType imageContainer; GradientListContainerType gradientListContainer; std::vector< double > bValueContainer; QString name = m_SelectedDiffusionNodes.front()->GetName().c_str(); for (unsigned int i=0; i* >( m_SelectedDiffusionNodes.at(i)->GetData() ); if ( dwi.IsNotNull() ) { imageContainer.push_back(dwi->GetVectorImage()); gradientListContainer.push_back(dwi->GetDirections()); bValueContainer.push_back(dwi->GetReferenceBValue()); if (i>0) { name += "+"; name += m_SelectedDiffusionNodes.at(i)->GetName().c_str(); } } } typedef itk::MergeDiffusionImagesFilter FilterType; FilterType::Pointer filter = FilterType::New(); filter->SetImageVolumes(imageContainer); filter->SetGradientLists(gradientListContainer); filter->SetBValues(bValueContainer); filter->Update(); vnl_matrix_fixed< double, 3, 3 > mf; mf.set_identity(); DiffusionImageType::Pointer image = DiffusionImageType::New(); image->SetVectorImage( filter->GetOutput() ); image->SetReferenceBValue(filter->GetB_Value()); image->SetDirections(filter->GetOutputGradients()); image->SetMeasurementFrame(mf); image->InitializeFromVectorImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( image ); imageNode->SetName(name.toStdString().c_str()); GetDefaultDataStorage()->Add(imageNode); } void QmitkPreprocessingView::ExtractB0() { typedef mitk::DiffusionImage DiffusionImageType; typedef DiffusionImageType::GradientDirectionContainerType GradientContainerType; int nrFiles = m_SelectedDiffusionNodes.size(); if (!nrFiles) return; // call the extraction withou averaging if the check-box is checked if( this->m_Controls->m_CheckExtractAll->isChecked() ) { DoExtractBOWithoutAveraging(); return; } mitk::DataStorage::SetOfObjects::const_iterator itemiter( m_SelectedDiffusionNodes.begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( m_SelectedDiffusionNodes.end() ); std::vector nodes; while ( itemiter != itemiterend ) // for all items { DiffusionImageType* vols = static_cast( (*itemiter)->GetData()); std::string nodename; (*itemiter)->GetStringProperty("name", nodename); // Extract image using found index typedef itk::B0ImageExtractionImageFilter FilterType; FilterType::Pointer filter = FilterType::New(); filter->SetInput(vols->GetVectorImage()); filter->SetDirections(vols->GetDirections()); filter->Update(); mitk::Image::Pointer mitkImage = mitk::Image::New(); mitkImage->InitializeByItk( filter->GetOutput() ); mitkImage->SetVolume( filter->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( mitkImage ); node->SetProperty( "name", mitk::StringProperty::New(nodename + "_B0")); GetDefaultDataStorage()->Add(node); ++itemiter; } } void QmitkPreprocessingView::DoExtractBOWithoutAveraging() { // typedefs typedef mitk::DiffusionImage DiffusionImageType; typedef DiffusionImageType::GradientDirectionContainerType GradientContainerType; typedef itk::B0ImageExtractionToSeparateImageFilter< short, short> FilterType; // check number of selected objects, return if empty int nrFiles = m_SelectedDiffusionNodes.size(); if (!nrFiles) return; mitk::DataStorage::SetOfObjects::const_iterator itemiter( m_SelectedDiffusionNodes.begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( m_SelectedDiffusionNodes.end() ); while ( itemiter != itemiterend ) // for all items { DiffusionImageType* vols = static_cast( (*itemiter)->GetData()); std::string nodename; (*itemiter)->GetStringProperty("name", nodename); // Extract image using found index FilterType::Pointer filter = FilterType::New(); filter->SetInput(vols->GetVectorImage()); filter->SetDirections(vols->GetDirections()); filter->Update(); mitk::Image::Pointer mitkImage = mitk::Image::New(); mitkImage->InitializeByItk( filter->GetOutput() ); mitkImage->SetImportChannel( filter->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( mitkImage ); node->SetProperty( "name", mitk::StringProperty::New(nodename + "_B0_ALL")); GetDefaultDataStorage()->Add(node); /*A reinitialization is needed to access the time channels via the ImageNavigationController The Global-Geometry can not recognize the time channel without a re-init. (for a new selection in datamanger a automatically updated of the Global-Geometry should be done - if it contains the time channel)*/ mitk::RenderingManager::GetInstance()->InitializeViews(node->GetData()->GetTimeGeometry(),mitk::RenderingManager::REQUEST_UPDATE_ALL, true); ++itemiter; } } void QmitkPreprocessingView::AverageGradients() { int nrFiles = m_SelectedDiffusionNodes.size(); if (!nrFiles) return; mitk::DataStorage::SetOfObjects::const_iterator itemiter( m_SelectedDiffusionNodes.begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( m_SelectedDiffusionNodes.end() ); std::vector nodes; while ( itemiter != itemiterend ) // for all items { mitk::DiffusionImage* vols = static_cast*>( (*itemiter)->GetData()); vols->AverageRedundantGradients(m_Controls->m_Blur->value()); ++itemiter; } } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkStochasticFiberTrackingView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkStochasticFiberTrackingView.cpp index 20a99e41ab..c50dda8e7b 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkStochasticFiberTrackingView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkStochasticFiberTrackingView.cpp @@ -1,290 +1,290 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Blueberry #include #include #include // Qmitk #include "QmitkStochasticFiberTrackingView.h" #include "QmitkStdMultiWidget.h" // Qt #include // MITK #include #include // VTK #include #include #include #include #include #include const std::string QmitkStochasticFiberTrackingView::VIEW_ID = "org.mitk.views.stochasticfibertracking"; const std::string id_DataManager = "org.mitk.views.datamanager"; using namespace berry; QmitkStochasticFiberTrackingView::QmitkStochasticFiberTrackingView() : QmitkFunctionality() , m_Controls( 0 ) , m_MultiWidget( NULL ) , m_SeedRoi( NULL ) , m_DiffusionImage( NULL ) { } // Destructor QmitkStochasticFiberTrackingView::~QmitkStochasticFiberTrackingView() { } void QmitkStochasticFiberTrackingView::CreateQtPartControl( QWidget *parent ) { if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkStochasticFiberTrackingViewControls; m_Controls->setupUi( parent ); connect( m_Controls->commandLinkButton, SIGNAL(clicked()), this, SLOT(DoFiberTracking()) ); connect( m_Controls->m_SeedsPerVoxelSlider, SIGNAL(valueChanged(int)), this, SLOT(OnSeedsPerVoxelChanged(int)) ); connect( m_Controls->m_MaxCacheSizeSlider, SIGNAL(valueChanged(int)), this, SLOT(OnMaxCacheSizeChanged(int)) ); connect( m_Controls->m_MaxTractLengthSlider, SIGNAL(valueChanged(int)), this, SLOT(OnMaxTractLengthChanged(int)) ); } } void QmitkStochasticFiberTrackingView::OnSeedsPerVoxelChanged(int value) { m_Controls->m_SeedsPerVoxelLabel->setText(QString("Seeds per Voxel: ")+QString::number(value)); } void QmitkStochasticFiberTrackingView::OnMaxTractLengthChanged(int value) { m_Controls->m_MaxTractLengthLabel->setText(QString("Max. Tract Length: ")+QString::number(value)); } void QmitkStochasticFiberTrackingView::OnMaxCacheSizeChanged(int value) { m_Controls->m_MaxCacheSizeLabel->setText(QString("Max. Cache Size: ")+QString::number(value)+"GB"); } void QmitkStochasticFiberTrackingView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkStochasticFiberTrackingView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } void QmitkStochasticFiberTrackingView::OnSelectionChanged( std::vector nodes ) { m_DiffusionImageNode = NULL; m_DiffusionImage = NULL; m_SeedRoi = NULL; m_Controls->m_DiffusionImageLabel->setText("mandatory"); m_Controls->m_RoiImageLabel->setText("mandatory"); for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if( node.IsNotNull() && dynamic_cast(node->GetData()) ) { if( dynamic_cast*>(node->GetData()) ) { m_DiffusionImageNode = node; m_DiffusionImage = dynamic_cast*>(node->GetData()); m_Controls->m_DiffusionImageLabel->setText(node->GetName().c_str()); } else { bool isBinary = false; node->GetPropertyValue("binary", isBinary); if (isBinary) { m_SeedRoi = dynamic_cast(node->GetData()); m_Controls->m_RoiImageLabel->setText(node->GetName().c_str()); } } } } if(m_DiffusionImage.IsNotNull() && m_SeedRoi.IsNotNull()) { m_Controls->m_InputData->setTitle("Input Data"); m_Controls->commandLinkButton->setEnabled(true); } else { m_Controls->m_InputData->setTitle("Please Select Input Data"); m_Controls->commandLinkButton->setEnabled(false); } } void QmitkStochasticFiberTrackingView::DoFiberTracking() { typedef itk::VectorImage< short int, 3 > DWIVectorImageType; typedef itk::Image< float, 3 > FloatImageType; typedef itk::Image< unsigned int, 3 > CImageType; typedef itk::StochasticTractographyFilter< DWIVectorImageType, FloatImageType, CImageType > TrackingFilterType; typedef itk::DTITubeSpatialObject<3> DTITubeType; typedef itk::DTITubeSpatialObjectPoint<3> DTITubePointType; typedef itk::SceneSpatialObject<3> SceneSpatialObjectType; /* get Gradients/Direction of dwi */ itk::VectorContainer< unsigned int, vnl_vector_fixed >::Pointer Pdir = m_DiffusionImage->GetDirections(); /* bValueContainer, Container includes b-values according to corresponding gradient-direction*/ TrackingFilterType::bValueContainerType::Pointer vecCont = TrackingFilterType::bValueContainerType::New(); /* for each gradient set b-Value; for 0-gradient set b-value eq. 0 */ for ( int i=0; i<(int)Pdir->size(); ++i) { vnl_vector_fixed valsGrad = Pdir->at(i); if (valsGrad.get(0) == 0 && valsGrad.get(1) == 0 && valsGrad.get(2) == 0) { //set 0-Gradient to bValue 0 vecCont->InsertElement(i,0); }else{ vecCont->InsertElement(i,m_DiffusionImage->GetReferenceBValue()); } } /* define measurement frame (identity-matrix 3x3) */ TrackingFilterType::MeasurementFrameType measurement_frame = m_DiffusionImage->GetMeasurementFrame(); /* generate white matterImage (dummy?)*/ FloatImageType::Pointer wmImage = FloatImageType::New(); wmImage->SetSpacing( m_DiffusionImage->GetVectorImage()->GetSpacing() ); wmImage->SetOrigin( m_DiffusionImage->GetVectorImage()->GetOrigin() ); wmImage->SetDirection( m_DiffusionImage->GetVectorImage()->GetDirection() ); wmImage->SetLargestPossibleRegion( m_DiffusionImage->GetVectorImage()->GetLargestPossibleRegion() ); wmImage->SetBufferedRegion( wmImage->GetLargestPossibleRegion() ); wmImage->SetRequestedRegion( wmImage->GetLargestPossibleRegion() ); wmImage->Allocate(); itk::ImageRegionIterator ot(wmImage, wmImage->GetLargestPossibleRegion() ); while (!ot.IsAtEnd()) { ot.Set(1); ++ot; } /* init TractographyFilter */ TrackingFilterType::Pointer trackingFilter = TrackingFilterType::New(); trackingFilter->SetPrimaryInput(m_DiffusionImage->GetVectorImage().GetPointer()); trackingFilter->SetbValues(vecCont); trackingFilter->SetGradients(Pdir); trackingFilter->SetMeasurementFrame(measurement_frame); trackingFilter->SetWhiteMatterProbabilityImage(wmImage); trackingFilter->SetTotalTracts(m_Controls->m_SeedsPerVoxelSlider->value()); trackingFilter->SetMaxLikelihoodCacheSize(m_Controls->m_MaxCacheSizeSlider->value()*1000); trackingFilter->SetMaxTractLength(m_Controls->m_MaxTractLengthSlider->value()); //itk::Image< char, 3 > mitk::ImageToItk< itk::Image< unsigned char, 3 > >::Pointer binaryImageToItk1 = mitk::ImageToItk< itk::Image< unsigned char, 3 > >::New(); binaryImageToItk1->SetInput( m_SeedRoi ); binaryImageToItk1->Update(); vtkSmartPointer vPoints = vtkSmartPointer::New(); vtkSmartPointer vCellArray = vtkSmartPointer::New(); itk::ImageRegionConstIterator< BinaryImageType > it(binaryImageToItk1->GetOutput(), binaryImageToItk1->GetOutput()->GetRequestedRegion()); it.GoToBegin(); - mitk::Geometry3D* geom = m_DiffusionImage->GetGeometry(); + mitk::BaseGeometry* geom = m_DiffusionImage->GetGeometry(); while(!it.IsAtEnd()) { itk::ImageConstIterator::PixelType tmpPxValue = it.Get(); if(tmpPxValue != 0){ mitk::Point3D point; itk::ImageRegionConstIterator< BinaryImageType >::IndexType seedIdx = it.GetIndex(); trackingFilter->SetSeedIndex(seedIdx); trackingFilter->Update(); /* get results from Filter */ /* write each single tract into member container */ TrackingFilterType::TractContainerType::Pointer container_tmp = trackingFilter->GetOutputTractContainer(); TrackingFilterType::TractContainerType::Iterator elIt = container_tmp->Begin(); TrackingFilterType::TractContainerType::Iterator end = container_tmp->End(); bool addTract = true; while( elIt != end ){ TrackingFilterType::TractContainerType::Element tract = elIt.Value(); TrackingFilterType::TractContainerType::Element::ObjectType::VertexListType::ConstPointer vertexlist = tract->GetVertexList(); vtkSmartPointer vPolyLine = vtkSmartPointer::New(); for( int j=0; j<(int)vertexlist->Size(); j++) { TrackingFilterType::TractContainerType::Element::ObjectType::VertexListType::Element vertex = vertexlist->GetElement(j); mitk::Point3D index; index[0] = (float)vertex[0]; index[1] = (float)vertex[1]; index[2] = (float)vertex[2]; if (geom->IsIndexInside(index)) { geom->IndexToWorld(index, point); vtkIdType id = vPoints->InsertNextPoint(point.GetDataPointer()); vPolyLine->GetPointIds()->InsertNextId(id); } else { addTract = false; break; } } if (addTract) vCellArray->InsertNextCell(vPolyLine); ++elIt; } } ++it; } vtkSmartPointer fiberPolyData = vtkSmartPointer::New(); fiberPolyData->SetPoints(vPoints); fiberPolyData->SetLines(vCellArray); mitk::FiberBundleX::Pointer fib = mitk::FiberBundleX::New(fiberPolyData); fib->SetReferenceImage(dynamic_cast(m_DiffusionImageNode->GetData())); mitk::DataNode::Pointer fbNode = mitk::DataNode::New(); fbNode->SetData(fib); QString name("FiberBundle_"); name += m_DiffusionImageNode->GetName().c_str(); name += "_Probabilistic"; fbNode->SetName(name.toStdString()); fbNode->SetVisibility(true); GetDataStorage()->Add(fbNode, m_DiffusionImageNode); } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkTbssSkeletonizationView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkTbssSkeletonizationView.cpp index c6df504317..df4e533f38 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkTbssSkeletonizationView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkTbssSkeletonizationView.cpp @@ -1,493 +1,493 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Qmitk #include "QmitkTbssSkeletonizationView.h" #include #include #include #include #include // mitk #include // Qt #include #include //vtk #include #include // Boost #include const std::string QmitkTbssSkeletonizationView::VIEW_ID = "org.mitk.views.tbssskeletonization"; using namespace berry; QmitkTbssSkeletonizationView::QmitkTbssSkeletonizationView() : QmitkFunctionality() , m_Controls( 0 ) , m_MultiWidget( NULL ) { } QmitkTbssSkeletonizationView::~QmitkTbssSkeletonizationView() { } void QmitkTbssSkeletonizationView::OnSelectionChanged(std::vector nodes) { //datamanager selection changed if (!this->IsActivated()) return; bool found3dImage = false; bool found4dImage = false; this->m_Controls->m_TubularName->setText(QString("Tubular Structure Mask: ")); this->m_Controls->m_TubularName->setEnabled(false); this->m_Controls->m_MeanLabel->setText(QString("Mean: ")); this->m_Controls->m_MeanLabel->setEnabled(false); this->m_Controls->m_PatientDataLabel->setText(QString("Patient Data: ")); this->m_Controls->m_PatientDataLabel->setEnabled(false); // iterate selection for ( int i=0; iGetData(); std::string name = ""; nodes[i]->GetStringProperty("name", name); if(nodeData) { if(QString("Image").compare(nodeData->GetNameOfClass())==0) { mitk::Image* img = static_cast(nodeData); if(img->GetDimension() == 3) { bool isBinary(false); nodes[i]->GetBoolProperty("binary", isBinary); if(isBinary) { QString label("Tubular Structure Mask: "); label.append(QString(name.c_str())); this->m_Controls->m_TubularName->setText(label); this->m_Controls->m_TubularName->setEnabled(true); } else { found3dImage = true; QString label("Mean: "); label.append(QString(name.c_str())); this->m_Controls->m_MeanLabel->setText(label); this->m_Controls->m_MeanLabel->setEnabled(true); } } else if(img->GetDimension() == 4) { found4dImage = true; QString label("Patient Data: "); label.append(QString(name.c_str())); this->m_Controls->m_PatientDataLabel->setText(label); this->m_Controls->m_PatientDataLabel->setEnabled(true); } } } } this->m_Controls->m_Skeletonize->setEnabled(found3dImage); this->m_Controls->m_Project->setEnabled(found3dImage && found4dImage); this->m_Controls->m_OutputMask->setEnabled(found3dImage && found4dImage); this->m_Controls->m_OutputDistanceMap->setEnabled(found3dImage && found4dImage); } void QmitkTbssSkeletonizationView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkTbssSkeletonizationViewControls; m_Controls->setupUi( parent ); this->CreateConnections(); } } void QmitkTbssSkeletonizationView::Activated() { QmitkFunctionality::Activated(); } void QmitkTbssSkeletonizationView::Deactivated() { QmitkFunctionality::Deactivated(); } void QmitkTbssSkeletonizationView::CreateConnections() { if ( m_Controls ) { connect( (QObject*)(m_Controls->m_Skeletonize), SIGNAL(clicked()), this, SLOT(Skeletonize() )); connect( (QObject*)(m_Controls->m_Project), SIGNAL(clicked()), this, SLOT(Project() )); } } void QmitkTbssSkeletonizationView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkTbssSkeletonizationView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } void QmitkTbssSkeletonizationView::Skeletonize() { typedef itk::SkeletonizationFilter SkeletonisationFilterType; SkeletonisationFilterType::Pointer skeletonizer = SkeletonisationFilterType::New(); std::vector nodes = this->GetDataManagerSelection(); mitk::Image::Pointer meanImage = mitk::Image::New(); std::string name = ""; for ( int i=0; iGetData(); if(nodeData) { if(QString("Image").compare(nodeData->GetNameOfClass())==0) { bool isBinary(false); nodes[i]->GetBoolProperty("binary", isBinary); mitk::Image* img = static_cast(nodeData); if(img->GetDimension() == 3 && !isBinary) { meanImage = img; name = nodes[i]->GetName(); } } } } // Calculate skeleton FloatImageType::Pointer itkImg = FloatImageType::New(); mitk::CastToItkImage(meanImage, itkImg); skeletonizer->SetInput(itkImg); skeletonizer->Update(); FloatImageType::Pointer output = skeletonizer->GetOutput(); mitk::Image::Pointer mitkOutput = mitk::Image::New(); mitk::CastToMitkImage(output, mitkOutput); name += "_skeleton"; AddToDataStorage(mitkOutput, name); } void QmitkTbssSkeletonizationView::Project() { typedef itk::SkeletonizationFilter SkeletonisationFilterType; typedef itk::ProjectionFilter ProjectionFilterType; typedef itk::DistanceMapFilter DistanceMapFilterType; SkeletonisationFilterType::Pointer skeletonizer = SkeletonisationFilterType::New(); std::vector nodes = this->GetDataManagerSelection(); mitk::Image::Pointer meanImage = mitk::Image::New(); mitk::Image::Pointer subjects = mitk::Image::New(); mitk::Image::Pointer tubular = mitk::Image::New(); for ( int i=0; iGetData(); if(nodeData) { if(QString("Image").compare(nodeData->GetNameOfClass())==0) { mitk::Image* img = static_cast(nodeData); if(img->GetDimension() == 3) { bool isBinary(false); nodes[i]->GetBoolProperty("binary", isBinary); if(isBinary) { tubular = img; } else { meanImage = img; } } else if(img->GetDimension() == 4) { subjects = img; } } } } Float4DImageType::Pointer allFA = ConvertToItk(subjects); // Calculate skeleton FloatImageType::Pointer itkImg = FloatImageType::New(); mitk::CastToItkImage(meanImage, itkImg); skeletonizer->SetInput(itkImg); skeletonizer->Update(); FloatImageType::Pointer output = skeletonizer->GetOutput(); mitk::Image::Pointer mitkOutput = mitk::Image::New(); mitk::CastToMitkImage(output, mitkOutput); AddToDataStorage(mitkOutput, "mean_FA_skeletonised"); // Retrieve direction image needed later by the projection filter DirectionImageType::Pointer directionImg = skeletonizer->GetVectorImage(); // Calculate distance image DistanceMapFilterType::Pointer distanceMapFilter = DistanceMapFilterType::New(); distanceMapFilter->SetInput(output); distanceMapFilter->Update(); FloatImageType::Pointer distanceMap = distanceMapFilter->GetOutput(); if(m_Controls->m_OutputDistanceMap->isChecked()) { mitk::Image::Pointer mitkDistance = mitk::Image::New(); mitk::CastToMitkImage(distanceMap, mitkDistance); AddToDataStorage(mitkDistance, "distance map"); } // Do projection // Ask a threshold to create a skeleton mask double threshold = -1.0; while(threshold == -1.0) { threshold = QInputDialog::getDouble(m_Controls->m_Skeletonize, tr("Specify the FA threshold"), tr("Threshold:"), QLineEdit::Normal, 0.2); if(threshold < 0.0 || threshold > 1.0) { QMessageBox msgBox; msgBox.setText("Please choose a value between 0 and 1"); msgBox.exec(); threshold = -1.0; } } typedef itk::BinaryThresholdImageFilter ThresholdFilterType; ThresholdFilterType::Pointer thresholder = ThresholdFilterType::New(); thresholder->SetInput(output); thresholder->SetLowerThreshold(threshold); thresholder->SetUpperThreshold(std::numeric_limits::max()); thresholder->SetOutsideValue(0); thresholder->SetInsideValue(1); thresholder->Update(); CharImageType::Pointer thresholdedImg = thresholder->GetOutput(); if(m_Controls->m_OutputMask->isChecked()) { mitk::Image::Pointer mitkThresholded = mitk::Image::New(); mitk::CastToMitkImage(thresholdedImg, mitkThresholded); std::string maskName = "skeleton_mask_at_" + boost::lexical_cast(threshold); AddToDataStorage(mitkThresholded, maskName); } CharImageType::Pointer itkTubular = CharImageType::New(); mitk::CastToItkImage(tubular, itkTubular); ProjectionFilterType::Pointer projectionFilter = ProjectionFilterType::New(); projectionFilter->SetDistanceMap(distanceMap); projectionFilter->SetDirections(directionImg); projectionFilter->SetAllFA(allFA); projectionFilter->SetTube(itkTubular); projectionFilter->SetSkeleton(thresholdedImg); projectionFilter->Project(); Float4DImageType::Pointer projected = projectionFilter->GetProjections(); mitk::Image::Pointer mitkProjections = mitk::Image::New(); mitk::CastToMitkImage(projected, mitkProjections); AddToDataStorage(mitkProjections, "all_FA_projected"); } void QmitkTbssSkeletonizationView::AddToDataStorage(mitk::Image* img, std::string name) { mitk::DataNode::Pointer result = mitk::DataNode::New(); result->SetProperty( "name", mitk::StringProperty::New(name) ); result->SetData( img ); // add new image to data storage and set as active to ease further processing GetDefaultDataStorage()->Add( result ); } Float4DImageType::Pointer QmitkTbssSkeletonizationView::ConvertToItk(mitk::Image::Pointer image) { Float4DImageType::Pointer output = Float4DImageType::New(); - mitk::Geometry3D* geo = image->GetGeometry(); + mitk::BaseGeometry* geo = image->GetGeometry(); mitk::Vector3D mitkSpacing = geo->GetSpacing(); mitk::Point3D mitkOrigin = geo->GetOrigin(); Float4DImageType::SpacingType spacing; spacing[0] = mitkSpacing[0]; spacing[1] = mitkSpacing[1]; spacing[2] = mitkSpacing[2]; spacing[3] = 1.0; // todo: check if spacing has length 4 Float4DImageType::PointType origin; origin[0] = mitkOrigin[0]; origin[1] = mitkOrigin[1]; origin[2] = mitkOrigin[2]; origin[3] = 0; Float4DImageType::SizeType size; size[0] = image->GetDimension(0); size[1] = image->GetDimension(1); size[2] = image->GetDimension(2); size[3] = image->GetDimension(3); Float4DImageType::DirectionType dir; vtkLinearTransform* lin = geo->GetVtkTransform(); vtkMatrix4x4 *m = lin->GetMatrix(); dir.Fill(0.0); for(int x=0; x<3; x++) { for(int y=0; y<3; y++) { dir[x][y] = m->GetElement(x,y); } } dir[3][3] = 1; output->SetSpacing(spacing); output->SetOrigin(origin); output->SetRegions(size); output->SetDirection(dir); output->Allocate(); if(image->GetDimension() == 4) { int timesteps = image->GetDimension(3); try{ // REPLACE THIS METHODE()ConvertToItk) WITH mitk::CastToItk // iterate through the subjects and copy data to output for(int t=0; tGetDimension(0); x++) { for(int y=0; yGetDimension(1); y++) { for(int z=0; zGetDimension(2); z++) { itk::Index<3> ix = {x, y, z}; itk::Index<4> ix4 = {x, y, z, t}; output->SetPixel(ix4, image->GetPixelValueByIndex(ix, t)); } } } } } catch(std::exception & e) { MITK_INFO << e.what(); } } return output; } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkTensorReconstructionView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkTensorReconstructionView.cpp index db1e14a815..ba919d3c42 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkTensorReconstructionView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkTensorReconstructionView.cpp @@ -1,967 +1,967 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkTensorReconstructionView.h" #include "mitkDiffusionImagingConfigure.h" // qt includes #include #include #include #include #include // itk includes #include "itkTimeProbe.h" //#include "itkTensor.h" // mitk includes #include "mitkProgressBar.h" #include "mitkStatusBar.h" #include "mitkNodePredicateDataType.h" #include "QmitkDataStorageComboBox.h" #include "QmitkStdMultiWidget.h" #include "mitkTeemDiffusionTensor3DReconstructionImageFilter.h" #include "itkDiffusionTensor3DReconstructionImageFilter.h" #include "itkTensorImageToDiffusionImageFilter.h" #include "itkPointShell.h" #include "itkVector.h" #include "itkB0ImageExtractionImageFilter.h" #include "itkTensorReconstructionWithEigenvalueCorrectionFilter.h" //#include "itkFreeWaterEliminationFilter.h" #include "mitkProperties.h" #include "mitkDataNodeObject.h" #include "mitkOdfNormalizationMethodProperty.h" #include "mitkOdfScaleByProperty.h" #include "mitkDiffusionImageMapper.h" #include "mitkLookupTableProperty.h" #include "mitkLookupTable.h" #include "mitkImageStatisticsHolder.h" #include #include #include #include const std::string QmitkTensorReconstructionView::VIEW_ID = "org.mitk.views.tensorreconstruction"; typedef float TTensorPixelType; typedef itk::DiffusionTensor3D< TTensorPixelType > TensorPixelType; typedef itk::Image< TensorPixelType, 3 > TensorImageType; using namespace berry; QmitkTensorReconstructionView::QmitkTensorReconstructionView() : QmitkFunctionality(), m_Controls(NULL), m_MultiWidget(NULL) { m_DiffusionImages = mitk::DataStorage::SetOfObjects::New(); m_TensorImages = mitk::DataStorage::SetOfObjects::New(); } QmitkTensorReconstructionView::~QmitkTensorReconstructionView() { } void QmitkTensorReconstructionView::CreateQtPartControl(QWidget *parent) { if (!m_Controls) { // create GUI widgets m_Controls = new Ui::QmitkTensorReconstructionViewControls; m_Controls->setupUi(parent); this->CreateConnections(); Advanced1CheckboxClicked(); } } void QmitkTensorReconstructionView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkTensorReconstructionView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } void QmitkTensorReconstructionView::CreateConnections() { if ( m_Controls ) { connect( (QObject*)(m_Controls->m_StartReconstruction), SIGNAL(clicked()), this, SLOT(Reconstruct()) ); connect( (QObject*)(m_Controls->m_Advanced1), SIGNAL(clicked()), this, SLOT(Advanced1CheckboxClicked()) ); connect( (QObject*)(m_Controls->m_TensorsToDWIButton), SIGNAL(clicked()), this, SLOT(TensorsToDWI()) ); connect( (QObject*)(m_Controls->m_TensorsToQbiButton), SIGNAL(clicked()), this, SLOT(TensorsToQbi()) ); connect( (QObject*)(m_Controls->m_ResidualButton), SIGNAL(clicked()), this, SLOT(ResidualCalculation()) ); connect( (QObject*)(m_Controls->m_PerSliceView), SIGNAL(pointSelected(int, int)), this, SLOT(ResidualClicked(int, int)) ); } } void QmitkTensorReconstructionView::ResidualClicked(int slice, int volume) { // Use image coord to reset crosshair // Find currently selected diffusion image // Update Label // to do: This position should be modified in order to skip B0 volumes that are not taken into account // when calculating residuals // Find the diffusion image mitk::DiffusionImage* diffImage; mitk::DataNode::Pointer correctNode; - mitk::Geometry3D* geometry; + mitk::BaseGeometry* geometry; if (m_DiffusionImage.IsNotNull()) { diffImage = static_cast*>(m_DiffusionImage->GetData()); geometry = diffImage->GetGeometry(); // Remember the node whose display index must be updated correctNode = mitk::DataNode::New(); correctNode = m_DiffusionImage; } if(diffImage != NULL) { typedef vnl_vector_fixed< double, 3 > GradientDirectionType; typedef itk::VectorContainer< unsigned int, GradientDirectionType > GradientDirectionContainerType; GradientDirectionContainerType::Pointer dirs = diffImage->GetDirections(); for(unsigned int i=0; iSize() && i<=volume; i++) { GradientDirectionType grad = dirs->ElementAt(i); // check if image is b0 weighted if(fabs(grad[0]) < 0.001 && fabs(grad[1]) < 0.001 && fabs(grad[2]) < 0.001) { volume++; } } QString pos = "Volume: "; pos.append(QString::number(volume)); pos.append(", Slice: "); pos.append(QString::number(slice)); m_Controls->m_PositionLabel->setText(pos); if(correctNode) { int oldDisplayVal; correctNode->GetIntProperty("DisplayChannel", oldDisplayVal); std::string oldVal = QString::number(oldDisplayVal).toStdString(); std::string newVal = QString::number(volume).toStdString(); correctNode->SetIntProperty("DisplayChannel",volume); correctNode->SetSelected(true); this->FirePropertyChanged("DisplayChannel", oldVal, newVal); correctNode->UpdateOutputInformation(); mitk::Point3D p3 = m_MultiWidget->GetCrossPosition(); itk::Index<3> ix; geometry->WorldToIndex(p3, ix); // ix[2] = slice; mitk::Vector3D vec; vec[0] = ix[0]; vec[1] = ix[1]; vec[2] = slice; mitk::Vector3D v3New; geometry->IndexToWorld(vec, v3New); mitk::Point3D origin = geometry->GetOrigin(); mitk::Point3D p3New; p3New[0] = v3New[0] + origin[0]; p3New[1] = v3New[1] + origin[1]; p3New[2] = v3New[2] + origin[2]; m_MultiWidget->MoveCrossToPosition(p3New); m_MultiWidget->RequestUpdate(); } } } void QmitkTensorReconstructionView::Advanced1CheckboxClicked() { bool check = m_Controls-> m_Advanced1->isChecked(); m_Controls->frame->setVisible(check); } void QmitkTensorReconstructionView::Activated() { QmitkFunctionality::Activated(); } void QmitkTensorReconstructionView::Deactivated() { QmitkFunctionality::Deactivated(); } void QmitkTensorReconstructionView::ResidualCalculation() { // Extract dwi and dti from current selection // In case of multiple selections, take the first one, since taking all combinations is not meaningful mitk::DataStorage::SetOfObjects::Pointer set = mitk::DataStorage::SetOfObjects::New(); mitk::DiffusionImage::Pointer diffImage = mitk::DiffusionImage::New(); TensorImageType::Pointer tensorImage; std::string nodename; if(m_DiffusionImage.IsNotNull()) { diffImage = static_cast*>(m_DiffusionImage->GetData()); } else return; if(m_TensorImage.IsNotNull()) { mitk::TensorImage* mitkVol; mitkVol = static_cast(m_TensorImage->GetData()); mitk::CastToItkImage(mitkVol, tensorImage); m_TensorImage->GetStringProperty("name", nodename); } else return; typedef itk::TensorImageToDiffusionImageFilter< TTensorPixelType, DiffusionPixelType > FilterType; mitk::DiffusionImage::GradientDirectionContainerType* gradients = diffImage->GetDirections(); // Find the min and the max values from a baseline image mitk::ImageStatisticsHolder *stats = diffImage->GetStatistics(); //Initialize filter that calculates the modeled diffusion weighted signals FilterType::Pointer filter = FilterType::New(); filter->SetInput( tensorImage ); filter->SetBValue(diffImage->GetReferenceBValue()); filter->SetGradientList(gradients); filter->SetMin(stats->GetScalarValueMin()); filter->SetMax(stats->GetScalarValueMax()); filter->Update(); // TENSORS TO DATATREE mitk::DiffusionImage::Pointer image = mitk::DiffusionImage::New(); image->SetVectorImage( filter->GetOutput() ); image->SetReferenceBValue(diffImage->GetReferenceBValue()); image->SetDirections(gradients); image->InitializeFromVectorImage(); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); mitk::DiffusionImageMapper::SetDefaultProperties(node); QString newname; newname = newname.append(nodename.c_str()); newname = newname.append("_DWI"); node->SetName(newname.toAscii()); GetDefaultDataStorage()->Add(node); mitk::DiffusionImage::BValueMap map =image->GetBValueMap(); mitk::DiffusionImage::IndicesVector b0Indices = map[0]; typedef itk::ResidualImageFilter ResidualImageFilterType; ResidualImageFilterType::Pointer residualFilter = ResidualImageFilterType::New(); residualFilter->SetInput(diffImage->GetVectorImage()); residualFilter->SetSecondDiffusionImage(image->GetVectorImage()); residualFilter->SetGradients(gradients); residualFilter->SetB0Index(b0Indices[0]); residualFilter->SetB0Threshold(30); residualFilter->Update(); itk::Image::Pointer residualImage = itk::Image::New(); residualImage = residualFilter->GetOutput(); mitk::Image::Pointer mitkResImg = mitk::Image::New(); mitk::CastToMitkImage(residualImage, mitkResImg); stats = mitkResImg->GetStatistics(); float min = stats->GetScalarValueMin(); float max = stats->GetScalarValueMax(); mitk::LookupTableProperty::Pointer lutProp = mitk::LookupTableProperty::New(); mitk::LookupTable::Pointer lut = mitk::LookupTable::New(); vtkSmartPointer lookupTable = vtkSmartPointer::New(); lookupTable->SetTableRange(min, max); // If you don't want to use the whole color range, you can use // SetValueRange, SetHueRange, and SetSaturationRange lookupTable->Build(); vtkSmartPointer reversedlookupTable = vtkSmartPointer::New(); reversedlookupTable->SetTableRange(min+1, max); reversedlookupTable->Build(); for(int i=0; i<256; i++) { double* rgba = reversedlookupTable->GetTableValue(255-i); lookupTable->SetTableValue(i, rgba[0], rgba[1], rgba[2], rgba[3]); } lut->SetVtkLookupTable(lookupTable); lutProp->SetLookupTable(lut); // Create lookuptable mitk::DataNode::Pointer resNode=mitk::DataNode::New(); resNode->SetData( mitkResImg ); resNode->SetName("Residual Image"); resNode->SetProperty("LookupTable", lutProp); bool b; resNode->GetBoolProperty("use color", b); resNode->SetBoolProperty("use color", false); GetDefaultDataStorage()->Add(resNode); m_MultiWidget->RequestUpdate(); // Draw Graph std::vector means = residualFilter->GetMeans(); std::vector q1s = residualFilter->GetQ1(); std::vector q3s = residualFilter->GetQ3(); std::vector percentagesOfOUtliers = residualFilter->GetPercentagesOfOutliers(); m_Controls->m_ResidualAnalysis->SetMeans(means); m_Controls->m_ResidualAnalysis->SetQ1(q1s); m_Controls->m_ResidualAnalysis->SetQ3(q3s); m_Controls->m_ResidualAnalysis->SetPercentagesOfOutliers(percentagesOfOUtliers); if(m_Controls->m_PercentagesOfOutliers->isChecked()) { m_Controls->m_ResidualAnalysis->DrawPercentagesOfOutliers(); } else { m_Controls->m_ResidualAnalysis->DrawMeans(); } // Draw Graph for volumes per slice in the QGraphicsView std::vector< std::vector > outliersPerSlice = residualFilter->GetOutliersPerSlice(); int xSize = outliersPerSlice.size(); if(xSize == 0) { return; } int ySize = outliersPerSlice[0].size(); // Find maximum in outliersPerSlice double maxOutlier= 0.0; for(int i=0; imaxOutlier) { maxOutlier = outliersPerSlice[i][j]; } } } // Create some QImage QImage qImage(xSize, ySize, QImage::Format_RGB32); QImage legend(1, 256, QImage::Format_RGB32); QRgb value; vtkSmartPointer lookup = vtkSmartPointer::New(); lookup->SetTableRange(0.0, maxOutlier); lookup->Build(); reversedlookupTable->SetTableRange(0, maxOutlier); reversedlookupTable->Build(); for(int i=0; i<256; i++) { double* rgba = reversedlookupTable->GetTableValue(255-i); lookup->SetTableValue(i, rgba[0], rgba[1], rgba[2], rgba[3]); } // Fill qImage for(int i=0; iMapValue(out); int r, g, b; r = _rgba[0]; g = _rgba[1]; b = _rgba[2]; value = qRgb(r, g, b); qImage.setPixel(i,j,value); } } for(int i=0; i<256; i++) { double* rgba = lookup->GetTableValue(i); int r, g, b; r = rgba[0]*255; g = rgba[1]*255; b = rgba[2]*255; value = qRgb(r, g, b); legend.setPixel(0,255-i,value); } QString upper = QString::number(maxOutlier, 'g', 3); upper.append(" %"); QString lower = QString::number(0.0); lower.append(" %"); m_Controls->m_UpperLabel->setText(upper); m_Controls->m_LowerLabel->setText(lower); QGraphicsScene* scene = new QGraphicsScene; QGraphicsScene* scene2 = new QGraphicsScene; QPixmap pixmap(QPixmap::fromImage(qImage)); QGraphicsPixmapItem *item = new QGraphicsPixmapItem( pixmap, 0, scene); item->scale(10.0, 3.0); QPixmap pixmap2(QPixmap::fromImage(legend)); QGraphicsPixmapItem *item2 = new QGraphicsPixmapItem( pixmap2, 0, scene2); item2->scale(20.0, 1.0); m_Controls->m_PerSliceView->SetResidualPixmapItem(item); m_Controls->m_PerSliceView->setScene(scene); m_Controls->m_LegendView->setScene(scene2); m_Controls->m_PerSliceView->show(); m_Controls->m_PerSliceView->repaint(); m_Controls->m_LegendView->setHorizontalScrollBarPolicy ( Qt::ScrollBarAlwaysOff ); m_Controls->m_LegendView->setVerticalScrollBarPolicy ( Qt::ScrollBarAlwaysOff ); m_Controls->m_LegendView->show(); m_Controls->m_LegendView->repaint(); } void QmitkTensorReconstructionView::Reconstruct() { int method = m_Controls->m_ReconctructionMethodBox->currentIndex(); switch (method) { case 0: ItkTensorReconstruction(m_DiffusionImages); break; case 1: TensorReconstructionWithCorr(m_DiffusionImages); break; default: ItkTensorReconstruction(m_DiffusionImages); } } void QmitkTensorReconstructionView::TensorReconstructionWithCorr (mitk::DataStorage::SetOfObjects::Pointer inImages) { try { int nrFiles = inImages->size(); if (!nrFiles) return; QString status; mitk::ProgressBar::GetInstance()->AddStepsToDo(nrFiles); mitk::DataStorage::SetOfObjects::const_iterator itemiter( inImages->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); while ( itemiter != itemiterend ) // for all items { typedef mitk::DiffusionImage DiffusionImageType; typedef DiffusionImageType::GradientDirectionContainerType GradientDirectionContainerType; DiffusionImageType* vols = static_cast((*itemiter)->GetData()); std::string nodename; (*itemiter)->GetStringProperty("name", nodename); // TENSOR RECONSTRUCTION MITK_INFO << "Tensor reconstruction with correction for negative eigenvalues"; mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Tensor reconstruction for %s", nodename.c_str()).toAscii()); typedef itk::TensorReconstructionWithEigenvalueCorrectionFilter< DiffusionPixelType, TTensorPixelType > ReconstructionFilter; float b0Threshold = m_Controls->m_TensorReconstructionThreshold->value(); GradientDirectionContainerType::Pointer gradientContainerCopy = GradientDirectionContainerType::New(); for(GradientDirectionContainerType::ConstIterator it = vols->GetDirections()->Begin(); it != vols->GetDirections()->End(); it++) { gradientContainerCopy->push_back(it.Value()); } ReconstructionFilter::Pointer reconFilter = ReconstructionFilter::New(); reconFilter->SetGradientImage( gradientContainerCopy, vols->GetVectorImage() ); reconFilter->SetBValue(vols->GetReferenceBValue()); reconFilter->SetB0Threshold(b0Threshold); reconFilter->Update(); typedef itk::Image, 3> TensorImageType; TensorImageType::Pointer outputTensorImg = reconFilter->GetOutput(); typedef itk::ImageRegionIterator TensorImageIteratorType; TensorImageIteratorType tensorIt(outputTensorImg, outputTensorImg->GetRequestedRegion()); tensorIt.GoToBegin(); int negatives = 0; while(!tensorIt.IsAtEnd()) { typedef itk::DiffusionTensor3D TensorType; TensorType tensor = tensorIt.Get(); TensorType::EigenValuesArrayType ev; tensor.ComputeEigenValues(ev); for(unsigned int i=0; iInitializeByItk( outputTensorImg.GetPointer() ); image->SetVolume( outputTensorImg->GetBufferPointer() ); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( image ); SetDefaultNodeProperties(node, nodename+"_EigenvalueCorrected_DT"); GetDefaultDataStorage()->Add(node, *itemiter); mitk::ProgressBar::GetInstance()->Progress(); ++itemiter; } mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Finished Processing %d Files", nrFiles).toAscii()); m_MultiWidget->RequestUpdate(); } catch (itk::ExceptionObject &ex) { MITK_INFO << ex ; QMessageBox::information(0, "Reconstruction not possible:", ex.GetDescription()); } } void QmitkTensorReconstructionView::ItkTensorReconstruction(mitk::DataStorage::SetOfObjects::Pointer inImages) { try { itk::TimeProbe clock; int nrFiles = inImages->size(); if (!nrFiles) return; QString status; mitk::ProgressBar::GetInstance()->AddStepsToDo(nrFiles); mitk::DataStorage::SetOfObjects::const_iterator itemiter( inImages->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); while ( itemiter != itemiterend ) // for all items { mitk::DiffusionImage* vols = static_cast*>( (*itemiter)->GetData()); std::string nodename; (*itemiter)->GetStringProperty("name", nodename); // TENSOR RECONSTRUCTION clock.Start(); MITK_DEBUG << "Tensor reconstruction "; mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Tensor reconstruction for %s", nodename.c_str()).toAscii()); typedef itk::DiffusionTensor3DReconstructionImageFilter< DiffusionPixelType, DiffusionPixelType, TTensorPixelType > TensorReconstructionImageFilterType; TensorReconstructionImageFilterType::Pointer tensorReconstructionFilter = TensorReconstructionImageFilterType::New(); typedef mitk::DiffusionImage DiffusionImageType; typedef DiffusionImageType::GradientDirectionContainerType GradientDirectionContainerType; GradientDirectionContainerType::Pointer gradientContainerCopy = GradientDirectionContainerType::New(); for(GradientDirectionContainerType::ConstIterator it = vols->GetDirections()->Begin(); it != vols->GetDirections()->End(); it++) { gradientContainerCopy->push_back(it.Value()); } tensorReconstructionFilter->SetGradientImage( gradientContainerCopy, vols->GetVectorImage() ); tensorReconstructionFilter->SetBValue(vols->GetReferenceBValue()); tensorReconstructionFilter->SetThreshold( m_Controls->m_TensorReconstructionThreshold->value() ); tensorReconstructionFilter->Update(); clock.Stop(); MITK_DEBUG << "took " << clock.GetMean() << "s."; // TENSORS TO DATATREE mitk::TensorImage::Pointer image = mitk::TensorImage::New(); typedef itk::Image, 3> TensorImageType; TensorImageType::Pointer tensorImage; tensorImage = tensorReconstructionFilter->GetOutput(); // Check the tensor for negative eigenvalues if(m_Controls->m_CheckNegativeEigenvalues->isChecked()) { typedef itk::ImageRegionIterator TensorImageIteratorType; TensorImageIteratorType tensorIt(tensorImage, tensorImage->GetRequestedRegion()); tensorIt.GoToBegin(); while(!tensorIt.IsAtEnd()) { typedef itk::DiffusionTensor3D TensorType; //typedef itk::Tensor TensorType2; TensorType tensor = tensorIt.Get(); TensorType::EigenValuesArrayType ev; tensor.ComputeEigenValues(ev); for(unsigned int i=0; iSetDirection( vols->GetVectorImage()->GetDirection() ); image->InitializeByItk( tensorImage.GetPointer() ); image->SetVolume( tensorReconstructionFilter->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( image ); SetDefaultNodeProperties(node, nodename+"_WeightedLinearLeastSquares_DT"); GetDefaultDataStorage()->Add(node, *itemiter); mitk::ProgressBar::GetInstance()->Progress(); ++itemiter; } mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Finished Processing %d Files", nrFiles).toAscii()); m_MultiWidget->RequestUpdate(); } catch (itk::ExceptionObject &ex) { MITK_INFO << ex ; QMessageBox::information(0, "Reconstruction not possible:", ex.GetDescription()); return; } } void QmitkTensorReconstructionView::SetDefaultNodeProperties(mitk::DataNode::Pointer node, std::string name) { node->SetProperty( "ShowMaxNumber", mitk::IntProperty::New( 500 ) ); node->SetProperty( "Scaling", mitk::FloatProperty::New( 1.0 ) ); node->SetProperty( "Normalization", mitk::OdfNormalizationMethodProperty::New()); node->SetProperty( "ScaleBy", mitk::OdfScaleByProperty::New()); node->SetProperty( "IndexParam1", mitk::FloatProperty::New(2)); node->SetProperty( "IndexParam2", mitk::FloatProperty::New(1)); node->SetProperty( "visible", mitk::BoolProperty::New( true ) ); node->SetProperty( "VisibleOdfs", mitk::BoolProperty::New( false ) ); node->SetProperty ("layer", mitk::IntProperty::New(100)); node->SetProperty( "DoRefresh", mitk::BoolProperty::New( true ) ); node->SetProperty( "name", mitk::StringProperty::New(name) ); } void QmitkTensorReconstructionView::TensorsToDWI() { DoTensorsToDWI(m_TensorImages); } void QmitkTensorReconstructionView::TensorsToQbi() { for (unsigned int i=0; isize(); i++) { mitk::DataNode::Pointer tensorImageNode = m_TensorImages->at(i); MITK_INFO << "starting Q-Ball estimation"; typedef float TTensorPixelType; typedef itk::DiffusionTensor3D< TTensorPixelType > TensorPixelType; typedef itk::Image< TensorPixelType, 3 > TensorImageType; TensorImageType::Pointer itkvol = TensorImageType::New(); mitk::CastToItkImage(dynamic_cast(tensorImageNode->GetData()), itkvol); typedef itk::TensorImageToQBallImageFilter< TTensorPixelType, TTensorPixelType > FilterType; FilterType::Pointer filter = FilterType::New(); filter->SetInput( itkvol ); filter->Update(); typedef itk::Vector OutputPixelType; typedef itk::Image OutputImageType; mitk::QBallImage::Pointer image = mitk::QBallImage::New(); OutputImageType::Pointer outimg = filter->GetOutput(); image->InitializeByItk( outimg.GetPointer() ); image->SetVolume( outimg->GetBufferPointer() ); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName(tensorImageNode->GetName()+"_Qball"); GetDefaultDataStorage()->Add(node, tensorImageNode); } } void QmitkTensorReconstructionView::OnSelectionChanged( std::vector nodes ) { m_DiffusionImages = mitk::DataStorage::SetOfObjects::New(); m_TensorImages = mitk::DataStorage::SetOfObjects::New(); bool foundDwiVolume = false; bool foundTensorVolume = false; m_Controls->m_DiffusionImageLabel->setText("mandatory"); m_DiffusionImage = NULL; m_TensorImage = NULL; m_Controls->m_InputData->setTitle("Please Select Input Data"); // iterate selection for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if (node.IsNull()) continue; // only look at interesting types if(dynamic_cast*>(node->GetData())) { foundDwiVolume = true; m_Controls->m_DiffusionImageLabel->setText(node->GetName().c_str()); m_DiffusionImages->push_back(node); m_DiffusionImage = node; } else if(dynamic_cast(node->GetData())) { foundTensorVolume = true; m_Controls->m_DiffusionImageLabel->setText(node->GetName().c_str()); m_TensorImages->push_back(node); m_TensorImage = node; } } m_Controls->m_StartReconstruction->setEnabled(foundDwiVolume); m_Controls->m_TensorsToDWIButton->setEnabled(foundTensorVolume); m_Controls->m_TensorsToQbiButton->setEnabled(foundTensorVolume); if (foundDwiVolume || foundTensorVolume) m_Controls->m_InputData->setTitle("Input Data"); m_Controls->m_ResidualButton->setEnabled(foundDwiVolume && foundTensorVolume); m_Controls->m_PercentagesOfOutliers->setEnabled(foundDwiVolume && foundTensorVolume); m_Controls->m_PerSliceView->setEnabled(foundDwiVolume && foundTensorVolume); } template QmitkTensorReconstructionView::GradientListType::Pointer QmitkTensorReconstructionView::MakeGradientList() { QmitkTensorReconstructionView::GradientListType::Pointer retval = GradientListType::New(); vnl_matrix_fixed* U = itk::PointShell >::DistributePointShell(); for(int i=0; iget(0,i); v[1] = U->get(1,i); v[2] = U->get(2,i); retval->push_back(v); } // Add 0 vector for B0 GradientType v(0.0); retval->push_back(v); return retval; } void QmitkTensorReconstructionView::DoTensorsToDWI(mitk::DataStorage::SetOfObjects::Pointer inImages) { try { itk::TimeProbe clock; int nrFiles = inImages->size(); if (!nrFiles) return; QString status; mitk::ProgressBar::GetInstance()->AddStepsToDo(nrFiles); mitk::DataStorage::SetOfObjects::const_iterator itemiter( inImages->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); while ( itemiter != itemiterend ) // for all items { std::string nodename; (*itemiter)->GetStringProperty("name", nodename); mitk::TensorImage* vol = static_cast((*itemiter)->GetData()); typedef float TTensorPixelType; typedef itk::DiffusionTensor3D< TTensorPixelType > TensorPixelType; typedef itk::Image< TensorPixelType, 3 > TensorImageType; TensorImageType::Pointer itkvol = TensorImageType::New(); mitk::CastToItkImage(vol, itkvol); typedef itk::TensorImageToDiffusionImageFilter< TTensorPixelType, DiffusionPixelType > FilterType; FilterType::GradientListType::Pointer gradientList; switch(m_Controls->m_TensorsToDWINumDirsSelect->currentIndex()) { case 0: gradientList = MakeGradientList<12>(); break; case 1: gradientList = MakeGradientList<42>(); break; case 2: gradientList = MakeGradientList<92>(); break; case 3: gradientList = MakeGradientList<162>(); break; case 4: gradientList = MakeGradientList<252>(); break; case 5: gradientList = MakeGradientList<362>(); break; case 6: gradientList = MakeGradientList<492>(); break; case 7: gradientList = MakeGradientList<642>(); break; case 8: gradientList = MakeGradientList<812>(); break; case 9: gradientList = MakeGradientList<1002>(); break; default: gradientList = MakeGradientList<92>(); } double bVal = m_Controls->m_TensorsToDWIBValueEdit->text().toDouble(); // DWI ESTIMATION clock.Start(); MBI_INFO << "DWI Estimation "; mitk::StatusBar::GetInstance()->DisplayText(status.sprintf( "DWI Estimation for %s", nodename.c_str()).toAscii()); FilterType::Pointer filter = FilterType::New(); filter->SetInput( itkvol ); filter->SetBValue(bVal); filter->SetGradientList(gradientList); //filter->SetNumberOfThreads(1); filter->Update(); clock.Stop(); MBI_DEBUG << "took " << clock.GetMean() << "s."; // TENSORS TO DATATREE mitk::DiffusionImage::Pointer image = mitk::DiffusionImage::New(); image->SetVectorImage( filter->GetOutput() ); image->SetReferenceBValue(bVal); image->SetDirections(gradientList); image->InitializeFromVectorImage(); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( image ); mitk::DiffusionImageMapper::SetDefaultProperties(node); node->SetName(nodename+"_DWI"); GetDefaultDataStorage()->Add(node, *itemiter); mitk::ProgressBar::GetInstance()->Progress(); ++itemiter; } mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Finished Processing %d Files", nrFiles).toAscii()); m_MultiWidget->RequestUpdate(); } catch (itk::ExceptionObject &ex) { MITK_INFO << ex ; QMessageBox::information(0, "DWI estimation failed:", ex.GetDescription()); return ; } } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkTractbasedSpatialStatisticsView.h b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkTractbasedSpatialStatisticsView.h index c6a5ce32e3..e2ff1abc48 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkTractbasedSpatialStatisticsView.h +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkTractbasedSpatialStatisticsView.h @@ -1,178 +1,178 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef QmitkTractbasedSpatialStatisticsView_h #define QmitkTractbasedSpatialStatisticsView_h #include #include "ui_QmitkTractbasedSpatialStatisticsViewControls.h" #include #include #include #include #include #include #include #include "QmitkTbssTableModel.h" #include "QmitkTbssMetaTableModel.h" #include // Image types typedef short DiffusionPixelType; typedef itk::Image CharImageType; typedef itk::Image UCharImageType; typedef itk::Image Float4DImageType; typedef itk::Image FloatImageType; typedef itk::VectorImage VectorImageType; // Readers/Writers typedef itk::ImageFileReader< CharImageType > CharReaderType; typedef itk::ImageFileReader< UCharImageType > UCharReaderType; typedef itk::ImageFileWriter< CharImageType > CharWriterType; typedef itk::ImageFileReader< FloatImageType > FloatReaderType; typedef itk::ImageFileWriter< FloatImageType > FloatWriterType; typedef itk::ImageFileReader< Float4DImageType > Float4DReaderType; typedef itk::ImageFileWriter< Float4DImageType > Float4DWriterType; /*! * \brief This plugin provides an extension for Tract-based spatial statistics (see Smith et al., 2009. http://dx.doi.org/10.1016/j.neuroimage.2006.02.024) * TBSS enables analyzing the brain by a pipeline of registration, skeletonization, and projection that results in a white matter skeleton * for all subjects that are analyzed statistically in a whole-brain manner. * This plugin provides functionality to select single tracts and analyze them separately. * * Prerequisites: the mean_FA_skeleton and all_FA_skeletonised datasets produced by the FSL TBSS pipeline: http://fsl.fmrib.ox.ac.uk/fsl/fsl4.0/tbss/index */ class QmitkTractbasedSpatialStatisticsView : public QmitkFunctionality { Q_OBJECT public: static const std::string VIEW_ID; QmitkTractbasedSpatialStatisticsView(); virtual ~QmitkTractbasedSpatialStatisticsView(); virtual void CreateQtPartControl(QWidget *parent); /// \brief Creation of the connections of main and control widget virtual void CreateConnections(); virtual void StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget); virtual void StdMultiWidgetNotAvailable(); /// \brief Called when the functionality is activated virtual void Activated(); virtual void Deactivated(); protected slots: // Creates Roi void CreateRoi(); void Clicked(const QPointF& pos); // Import of FSL TBSS data void TbssImport(); // Add a group as metadata. This metadata is required by the plotting functionality void AddGroup(); // Remove a group void RemoveGroup(); // Copies the values displayed in the plot widget to clipboard, i.e. exports the data void CopyToClipboard(); // Method to cut away parts of fiber bundles that should not be plotted. void Cut(); // Adjust plot widget void PerformChange(); protected: /// \brief called by QmitkFunctionality when DataManager's selection has changed virtual void OnSelectionChanged( std::vector nodes ); // Creates a plot using a 4D image containing the projections of all subjects and a region of interest void Plot(mitk::TbssImage*, mitk::TbssRoiImage*); void PlotFiberBundle(mitk::FiberBundleX* fib, mitk::Image* img, mitk::PlanarFigure* startRoi=NULL, mitk::PlanarFigure* endRoi=NULL); void PlotFiber4D(mitk::TbssImage*, mitk::FiberBundleX* fib, mitk::PlanarFigure* startRoi=NULL, mitk::PlanarFigure* endRoi=NULL); // Create a point set. This point set defines the points through which a region of interest should go void InitPointsets(); // Pointset and DataNode to contain the PointSet used in ROI creation mitk::PointSet::Pointer m_PointSetNode; mitk::DataNode::Pointer m_P1; // GUI widgets Ui::QmitkTractbasedSpatialStatisticsViewControls* m_Controls; /* A pointer to the QmitkStdMultiWidget. Used for interaction with the plot widget (clicking in the plot widget makes the image cross jump to the corresponding location on the skeleton).*/ QmitkStdMultiWidget* m_MultiWidget; // Used to save the region of interest in a vector of itk::index. std::vector< itk::Index<3> > m_Roi; mitk::FiberBundleX* m_Fib; - mitk::Geometry3D* m_CurrentGeometry; + mitk::BaseGeometry* m_CurrentGeometry; // A table model for saving group information in a name,number pair. QmitkTbssTableModel* m_GroupModel; // Convenience function for adding a new image to the datastorage and giving it a name. void AddTbssToDataStorage(mitk::Image* image, std::string name); mitk::DataNode::Pointer m_CurrentFiberNode; // needed for the index property when interacting with the plot widget // needed when a plot should only show values between a start end end roi mitk::DataNode::Pointer m_CurrentStartRoi; mitk::DataNode::Pointer m_CurrentEndRoi; }; #endif // _QMITKTRACTBASEDSPATIALSTATISTICSVIEW_H_INCLUDED