diff --git a/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp b/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp index 3cd9197343..a36bccd8ad 100644 --- a/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp +++ b/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp @@ -1,1837 +1,1785 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkImageStatisticsCalculator.h" #include "mitkImageAccessByItk.h" #include "mitkImageCast.h" #include "mitkExtractImageFilter.h" #include "mitkImageTimeSelector.h" +#include "mitkITKImageImport.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#define DEBUG_HOTSPOTSEARCH #define _USE_MATH_DEFINES #include #if ( ( VTK_MAJOR_VERSION <= 5 ) && ( VTK_MINOR_VERSION<=8) ) #include "mitkvtkLassoStencilSource.h" #else #include "vtkLassoStencilSource.h" #endif #include #include // TODO DM: sort includes, check if they are really needed namespace mitk { ImageStatisticsCalculator::ImageStatisticsCalculator() : m_MaskingMode( MASKING_MODE_NONE ), m_MaskingModeChanged( false ), m_IgnorePixelValue(0.0), m_DoIgnorePixelValue(false), m_IgnorePixelValueChanged(false), m_PlanarFigureAxis (0), m_PlanarFigureSlice (0), m_PlanarFigureCoordinate0 (0), m_PlanarFigureCoordinate1 (0), // TODO DM: check order of variable initialization m_HotspotRadiusInMM(6.2035049089940), // radius of a 1cm3 sphere in mm m_CalculateHotspot(false), m_HotspotRadiusInMMChanged(false) { m_EmptyHistogram = HistogramType::New(); m_EmptyHistogram->SetMeasurementVectorSize(1); HistogramType::SizeType histogramSize(1); histogramSize.Fill( 256 ); m_EmptyHistogram->Initialize( histogramSize ); m_EmptyStatistics.Reset(); } ImageStatisticsCalculator::~ImageStatisticsCalculator() { } void ImageStatisticsCalculator::SetImage( const mitk::Image *image ) { if ( m_Image != image ) { m_Image = image; this->Modified(); unsigned int numberOfTimeSteps = image->GetTimeSteps(); // Initialize vectors to time-size of this image m_ImageHistogramVector.resize( numberOfTimeSteps ); m_MaskedImageHistogramVector.resize( numberOfTimeSteps ); m_PlanarFigureHistogramVector.resize( numberOfTimeSteps ); m_ImageStatisticsVector.resize( numberOfTimeSteps ); m_MaskedImageStatisticsVector.resize( numberOfTimeSteps ); m_PlanarFigureStatisticsVector.resize( numberOfTimeSteps ); m_ImageStatisticsTimeStampVector.resize( numberOfTimeSteps ); m_MaskedImageStatisticsTimeStampVector.resize( numberOfTimeSteps ); m_PlanarFigureStatisticsTimeStampVector.resize( numberOfTimeSteps ); m_ImageStatisticsCalculationTriggerVector.resize( numberOfTimeSteps ); m_MaskedImageStatisticsCalculationTriggerVector.resize( numberOfTimeSteps ); m_PlanarFigureStatisticsCalculationTriggerVector.resize( numberOfTimeSteps ); for ( unsigned int t = 0; t < image->GetTimeSteps(); ++t ) { m_ImageStatisticsTimeStampVector[t].Modified(); m_ImageStatisticsCalculationTriggerVector[t] = true; } } } void ImageStatisticsCalculator::SetImageMask( const mitk::Image *imageMask ) { if ( m_Image.IsNull() ) { itkExceptionMacro( << "Image needs to be set first!" ); } if ( m_Image->GetTimeSteps() != imageMask->GetTimeSteps() ) { itkExceptionMacro( << "Image and image mask need to have equal number of time steps!" ); } if ( m_ImageMask != imageMask ) { m_ImageMask = imageMask; this->Modified(); for ( unsigned int t = 0; t < m_Image->GetTimeSteps(); ++t ) { m_MaskedImageStatisticsTimeStampVector[t].Modified(); m_MaskedImageStatisticsCalculationTriggerVector[t] = true; } } } void ImageStatisticsCalculator::SetPlanarFigure( mitk::PlanarFigure *planarFigure ) { if ( m_Image.IsNull() ) { itkExceptionMacro( << "Image needs to be set first!" ); } if ( m_PlanarFigure != planarFigure ) { m_PlanarFigure = planarFigure; this->Modified(); for ( unsigned int t = 0; t < m_Image->GetTimeSteps(); ++t ) { m_PlanarFigureStatisticsTimeStampVector[t].Modified(); m_PlanarFigureStatisticsCalculationTriggerVector[t] = true; } } } void ImageStatisticsCalculator::SetMaskingMode( unsigned int mode ) { if ( m_MaskingMode != mode ) { m_MaskingMode = mode; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetMaskingModeToNone() { if ( m_MaskingMode != MASKING_MODE_NONE ) { m_MaskingMode = MASKING_MODE_NONE; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetMaskingModeToImage() { if ( m_MaskingMode != MASKING_MODE_IMAGE ) { m_MaskingMode = MASKING_MODE_IMAGE; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetMaskingModeToPlanarFigure() { if ( m_MaskingMode != MASKING_MODE_PLANARFIGURE ) { m_MaskingMode = MASKING_MODE_PLANARFIGURE; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetIgnorePixelValue(double value) { if ( m_IgnorePixelValue != value ) { m_IgnorePixelValue = value; if(m_DoIgnorePixelValue) { m_IgnorePixelValueChanged = true; } this->Modified(); } } double ImageStatisticsCalculator::GetIgnorePixelValue() { return m_IgnorePixelValue; } void ImageStatisticsCalculator::SetDoIgnorePixelValue(bool value) { if ( m_DoIgnorePixelValue != value ) { m_DoIgnorePixelValue = value; m_IgnorePixelValueChanged = true; this->Modified(); } } bool ImageStatisticsCalculator::GetDoIgnorePixelValue() { return m_DoIgnorePixelValue; } void ImageStatisticsCalculator::SetHotspotRadius(double value) { if ( m_HotspotRadiusInMM != value ) { m_HotspotRadiusInMM = value; if(m_CalculateHotspot) { m_HotspotRadiusInMMChanged = true; - MITK_DEBUG <<"Hotspot radius changed, new convolution required"; + MITK_INFO <<"Hotspot radius changed, new convolution required"; } this->Modified(); } } double ImageStatisticsCalculator::GetHotspotRadius() { return m_HotspotRadiusInMM; } void ImageStatisticsCalculator::SetCalculateHotspot(bool on) { if ( m_CalculateHotspot != on ) { m_CalculateHotspot = on; m_HotspotRadiusInMMChanged = true; - MITK_DEBUG <<"Hotspot calculation changed, new convolution required"; + MITK_INFO <<"Hotspot calculation changed, new convolution required"; this->Modified(); } } bool ImageStatisticsCalculator::IsHotspotCalculated() { return m_CalculateHotspot; } bool ImageStatisticsCalculator::ComputeStatistics( unsigned int timeStep ) { if (m_Image.IsNull() ) { mitkThrow() << "Image not set!"; } if (!m_Image->IsInitialized()) { mitkThrow() << "Image not initialized!"; } if ( m_Image->GetReferenceCount() == 1 ) { // Image no longer valid; we are the only ones to still hold a reference on it return false; } if ( timeStep >= m_Image->GetTimeSteps() ) { throw std::runtime_error( "Error: invalid time step!" ); } // If a mask was set but we are the only ones to still hold a reference on // it, delete it. if ( m_ImageMask.IsNotNull() && (m_ImageMask->GetReferenceCount() == 1) ) { m_ImageMask = NULL; } // Check if statistics is already up-to-date unsigned long imageMTime = m_ImageStatisticsTimeStampVector[timeStep].GetMTime(); unsigned long maskedImageMTime = m_MaskedImageStatisticsTimeStampVector[timeStep].GetMTime(); unsigned long planarFigureMTime = m_PlanarFigureStatisticsTimeStampVector[timeStep].GetMTime(); bool imageStatisticsCalculationTrigger = m_ImageStatisticsCalculationTriggerVector[timeStep]; bool maskedImageStatisticsCalculationTrigger = m_MaskedImageStatisticsCalculationTriggerVector[timeStep]; bool planarFigureStatisticsCalculationTrigger = m_PlanarFigureStatisticsCalculationTriggerVector[timeStep]; if ( !m_IgnorePixelValueChanged && !m_HotspotRadiusInMMChanged && ((m_MaskingMode != MASKING_MODE_NONE) || (imageMTime > m_Image->GetMTime() && !imageStatisticsCalculationTrigger)) && ((m_MaskingMode != MASKING_MODE_IMAGE) || (maskedImageMTime > m_ImageMask->GetMTime() && !maskedImageStatisticsCalculationTrigger)) && ((m_MaskingMode != MASKING_MODE_PLANARFIGURE) || (planarFigureMTime > m_PlanarFigure->GetMTime() && !planarFigureStatisticsCalculationTrigger)) ) { // Statistics is up to date! if ( m_MaskingModeChanged ) { m_MaskingModeChanged = false; } else { return false; } } // Reset state changed flag m_MaskingModeChanged = false; m_IgnorePixelValueChanged = false; // Depending on masking mode, extract and/or generate the required image // and mask data from the user input this->ExtractImageAndMask( timeStep ); StatisticsContainer *statisticsContainer; HistogramContainer *histogramContainer; switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: if(!m_DoIgnorePixelValue) { statisticsContainer = &m_ImageStatisticsVector[timeStep]; histogramContainer = &m_ImageHistogramVector[timeStep]; m_ImageStatisticsTimeStampVector[timeStep].Modified(); m_ImageStatisticsCalculationTriggerVector[timeStep] = false; } else { statisticsContainer = &m_MaskedImageStatisticsVector[timeStep]; histogramContainer = &m_MaskedImageHistogramVector[timeStep]; m_MaskedImageStatisticsTimeStampVector[timeStep].Modified(); m_MaskedImageStatisticsCalculationTriggerVector[timeStep] = false; } break; case MASKING_MODE_IMAGE: statisticsContainer = &m_MaskedImageStatisticsVector[timeStep]; histogramContainer = &m_MaskedImageHistogramVector[timeStep]; m_MaskedImageStatisticsTimeStampVector[timeStep].Modified(); m_MaskedImageStatisticsCalculationTriggerVector[timeStep] = false; break; case MASKING_MODE_PLANARFIGURE: statisticsContainer = &m_PlanarFigureStatisticsVector[timeStep]; histogramContainer = &m_PlanarFigureHistogramVector[timeStep]; m_PlanarFigureStatisticsTimeStampVector[timeStep].Modified(); m_PlanarFigureStatisticsCalculationTriggerVector[timeStep] = false; break; } // Calculate statistics and histogram(s) if ( m_InternalImage->GetDimension() == 3 ) { if ( m_MaskingMode == MASKING_MODE_NONE && !m_DoIgnorePixelValue ) { AccessFixedDimensionByItk_2( m_InternalImage, InternalCalculateStatisticsUnmasked, 3, statisticsContainer, histogramContainer ); } else { AccessFixedDimensionByItk_3( m_InternalImage, InternalCalculateStatisticsMasked, 3, m_InternalImageMask3D.GetPointer(), statisticsContainer, histogramContainer ); } } else if ( m_InternalImage->GetDimension() == 2 ) { if ( m_MaskingMode == MASKING_MODE_NONE && !m_DoIgnorePixelValue ) { AccessFixedDimensionByItk_2( m_InternalImage, InternalCalculateStatisticsUnmasked, 2, statisticsContainer, histogramContainer ); } else { AccessFixedDimensionByItk_3( m_InternalImage, InternalCalculateStatisticsMasked, 2, m_InternalImageMask2D.GetPointer(), statisticsContainer, histogramContainer ); } } else { MITK_ERROR << "ImageStatistics: Image dimension not supported!"; } // Release unused image smart pointers to free memory m_InternalImage = mitk::Image::ConstPointer(); m_InternalImageMask3D = MaskImage3DType::Pointer(); m_InternalImageMask2D = MaskImage2DType::Pointer(); return true; } const ImageStatisticsCalculator::HistogramType * ImageStatisticsCalculator::GetHistogram( unsigned int timeStep, unsigned int label ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return NULL; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageHistogramVector[timeStep][label]; return m_ImageHistogramVector[timeStep][label]; } case MASKING_MODE_IMAGE: return m_MaskedImageHistogramVector[timeStep][label]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureHistogramVector[timeStep][label]; } } const ImageStatisticsCalculator::HistogramContainer & ImageStatisticsCalculator::GetHistogramVector( unsigned int timeStep ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return m_EmptyHistogramContainer; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageHistogramVector[timeStep]; return m_ImageHistogramVector[timeStep]; } case MASKING_MODE_IMAGE: return m_MaskedImageHistogramVector[timeStep]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureHistogramVector[timeStep]; } } const ImageStatisticsCalculator::Statistics & ImageStatisticsCalculator::GetStatistics( unsigned int timeStep, unsigned int label ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return m_EmptyStatistics; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageStatisticsVector[timeStep][label]; return m_ImageStatisticsVector[timeStep][label]; } case MASKING_MODE_IMAGE: return m_MaskedImageStatisticsVector[timeStep][label]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureStatisticsVector[timeStep][label]; } } const ImageStatisticsCalculator::StatisticsContainer & ImageStatisticsCalculator::GetStatisticsVector( unsigned int timeStep ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return m_EmptyStatisticsContainer; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageStatisticsVector[timeStep]; return m_ImageStatisticsVector[timeStep]; } case MASKING_MODE_IMAGE: return m_MaskedImageStatisticsVector[timeStep]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureStatisticsVector[timeStep]; } } void ImageStatisticsCalculator::ExtractImageAndMask( unsigned int timeStep ) { if ( m_Image.IsNull() ) { throw std::runtime_error( "Error: image empty!" ); } if ( timeStep >= m_Image->GetTimeSteps() ) { throw std::runtime_error( "Error: invalid time step!" ); } ImageTimeSelector::Pointer imageTimeSelector = ImageTimeSelector::New(); imageTimeSelector->SetInput( m_Image ); imageTimeSelector->SetTimeNr( timeStep ); imageTimeSelector->UpdateLargestPossibleRegion(); mitk::Image *timeSliceImage = imageTimeSelector->GetOutput(); switch ( m_MaskingMode ) { case MASKING_MODE_NONE: { m_InternalImage = timeSliceImage; m_InternalImageMask2D = NULL; m_InternalImageMask3D = NULL; if(m_DoIgnorePixelValue) { if( m_InternalImage->GetDimension() == 3 ) { CastToItkImage( timeSliceImage, m_InternalImageMask3D ); m_InternalImageMask3D->FillBuffer(1); } if( m_InternalImage->GetDimension() == 2 ) { CastToItkImage( timeSliceImage, m_InternalImageMask2D ); m_InternalImageMask2D->FillBuffer(1); } } break; } case MASKING_MODE_IMAGE: { if ( m_ImageMask.IsNotNull() && (m_ImageMask->GetReferenceCount() > 1) ) { if ( timeStep < m_ImageMask->GetTimeSteps() ) { ImageTimeSelector::Pointer maskedImageTimeSelector = ImageTimeSelector::New(); maskedImageTimeSelector->SetInput( m_ImageMask ); maskedImageTimeSelector->SetTimeNr( timeStep ); maskedImageTimeSelector->UpdateLargestPossibleRegion(); mitk::Image *timeSliceMaskedImage = maskedImageTimeSelector->GetOutput(); m_InternalImage = timeSliceImage; CastToItkImage( timeSliceMaskedImage, m_InternalImageMask3D ); } else { throw std::runtime_error( "Error: image mask has not enough time steps!" ); } } else { throw std::runtime_error( "Error: image mask empty!" ); } break; } case MASKING_MODE_PLANARFIGURE: { m_InternalImageMask2D = NULL; if ( m_PlanarFigure.IsNull() ) { throw std::runtime_error( "Error: planar figure empty!" ); } if ( !m_PlanarFigure->IsClosed() ) { throw std::runtime_error( "Masking not possible for non-closed figures" ); } const Geometry3D *imageGeometry = timeSliceImage->GetGeometry(); if ( imageGeometry == NULL ) { throw std::runtime_error( "Image geometry invalid!" ); } const Geometry2D *planarFigureGeometry2D = m_PlanarFigure->GetGeometry2D(); if ( planarFigureGeometry2D == NULL ) { throw std::runtime_error( "Planar-Figure not yet initialized!" ); } const PlaneGeometry *planarFigureGeometry = dynamic_cast< const PlaneGeometry * >( planarFigureGeometry2D ); if ( planarFigureGeometry == NULL ) { throw std::runtime_error( "Non-planar planar figures not supported!" ); } // Find principal direction of PlanarFigure in input image unsigned int axis; if ( !this->GetPrincipalAxis( imageGeometry, planarFigureGeometry->GetNormal(), axis ) ) { throw std::runtime_error( "Non-aligned planar figures not supported!" ); } m_PlanarFigureAxis = axis; // Find slice number corresponding to PlanarFigure in input image MaskImage3DType::IndexType index; imageGeometry->WorldToIndex( planarFigureGeometry->GetOrigin(), index ); unsigned int slice = index[axis]; m_PlanarFigureSlice = slice; // Extract slice with given position and direction from image unsigned int dimension = timeSliceImage->GetDimension(); if (dimension != 2) { ExtractImageFilter::Pointer imageExtractor = ExtractImageFilter::New(); imageExtractor->SetInput( timeSliceImage ); imageExtractor->SetSliceDimension( axis ); imageExtractor->SetSliceIndex( slice ); imageExtractor->Update(); m_InternalImage = imageExtractor->GetOutput(); } else { m_InternalImage = timeSliceImage; } // Compute mask from PlanarFigure AccessFixedDimensionByItk_1( m_InternalImage, InternalCalculateMaskFromPlanarFigure, 2, axis ); } } if(m_DoIgnorePixelValue) { if ( m_InternalImage->GetDimension() == 3 ) { AccessFixedDimensionByItk_1( m_InternalImage, InternalMaskIgnoredPixels, 3, m_InternalImageMask3D.GetPointer() ); } else if ( m_InternalImage->GetDimension() == 2 ) { AccessFixedDimensionByItk_1( m_InternalImage, InternalMaskIgnoredPixels, 2, m_InternalImageMask2D.GetPointer() ); } } MITK_DEBUG << "Update of convolution image required?\n m_CalculateHotspot: " << m_CalculateHotspot << "\n m_HotspotSearchConvolutionImage: " << (void*) m_HotspotSearchConvolutionImage.GetPointer() << "\n m_ImageStatisticsCalculationTriggerVector["<GetMTime() << "\n ImageStatistics::MTime: " << this->GetMTime() << "\n m_Image->GetMTime(): " << m_Image->GetMTime(); if( m_CalculateHotspot && ( m_HotspotSearchConvolutionImage.IsNull() || m_Image->GetMTime() > this->GetMTime() // TODO check when m_InternalImage 'really' changes; depends on timeStep || m_HotspotRadiusInMMChanged == true ) ) { MITK_DEBUG <<" --> Update required."; if ( m_InternalImage->GetDimension() == 3 ) { AccessFixedDimensionByItk( m_InternalImage, InternalUpdateConvolutionImage, 3 ); } else if ( m_InternalImage->GetDimension() == 2 ) { AccessFixedDimensionByItk( m_InternalImage, InternalUpdateConvolutionImage, 2 ); } } else { MITK_DEBUG <<" --> Update required."; } } bool ImageStatisticsCalculator::GetPrincipalAxis( const Geometry3D *geometry, Vector3D vector, unsigned int &axis ) { vector.Normalize(); for ( unsigned int i = 0; i < 3; ++i ) { Vector3D axisVector = geometry->GetAxisVector( i ); axisVector.Normalize(); if ( fabs( fabs( axisVector * vector ) - 1.0) < mitk::eps ) { axis = i; return true; } } return false; } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalCalculateStatisticsUnmasked( const itk::Image< TPixel, VImageDimension > *image, StatisticsContainer *statisticsContainer, HistogramContainer* histogramContainer ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; typedef typename ImageType::IndexType IndexType; typedef itk::Statistics::ScalarImageToHistogramGenerator< ImageType > HistogramGeneratorType; statisticsContainer->clear(); histogramContainer->clear(); // Progress listening... typedef itk::SimpleMemberCommand< ImageStatisticsCalculator > ITKCommandType; ITKCommandType::Pointer progressListener; progressListener = ITKCommandType::New(); progressListener->SetCallbackFunction( this, &ImageStatisticsCalculator::UnmaskedStatisticsProgressUpdate ); // Issue 100 artificial progress events since ScalarIMageToHistogramGenerator // does not (yet?) support progress reporting this->InvokeEvent( itk::StartEvent() ); for ( unsigned int i = 0; i < 100; ++i ) { this->UnmaskedStatisticsProgressUpdate(); } // Calculate statistics (separate filter) typedef itk::StatisticsImageFilter< ImageType > StatisticsFilterType; typename StatisticsFilterType::Pointer statisticsFilter = StatisticsFilterType::New(); statisticsFilter->SetInput( image ); unsigned long observerTag = statisticsFilter->AddObserver( itk::ProgressEvent(), progressListener ); statisticsFilter->Update(); statisticsFilter->RemoveObserver( observerTag ); this->InvokeEvent( itk::EndEvent() ); // Calculate minimum and maximum typedef itk::MinimumMaximumImageCalculator< ImageType > MinMaxFilterType; typename MinMaxFilterType::Pointer minMaxFilter = MinMaxFilterType::New(); minMaxFilter->SetImage( image ); unsigned long observerTag2 = minMaxFilter->AddObserver( itk::ProgressEvent(), progressListener ); minMaxFilter->Compute(); minMaxFilter->RemoveObserver( observerTag2 ); this->InvokeEvent( itk::EndEvent() ); Statistics statistics; statistics.Reset(); statistics.Label = 1; statistics.N = image->GetBufferedRegion().GetNumberOfPixels(); statistics.Min = statisticsFilter->GetMinimum(); statistics.Max = statisticsFilter->GetMaximum(); statistics.Mean = statisticsFilter->GetMean(); statistics.Median = 0.0; statistics.Sigma = statisticsFilter->GetSigma(); statistics.RMS = sqrt( statistics.Mean * statistics.Mean + statistics.Sigma * statistics.Sigma ); statistics.MinIndex.set_size(image->GetImageDimension()); statistics.MaxIndex.set_size(image->GetImageDimension()); for (unsigned int i=0; iGetIndexOfMaximum()[i]; statistics.MinIndex[i] = minMaxFilter->GetIndexOfMinimum()[i]; } statisticsContainer->push_back( statistics ); // Calculate histogram typename HistogramGeneratorType::Pointer histogramGenerator = HistogramGeneratorType::New(); histogramGenerator->SetInput( image ); histogramGenerator->SetMarginalScale( 100 ); histogramGenerator->SetNumberOfBins( 768 ); histogramGenerator->SetHistogramMin( statistics.Min ); histogramGenerator->SetHistogramMax( statistics.Max ); histogramGenerator->Compute(); // TODO DM: add hotspot search here! histogramContainer->push_back( histogramGenerator->GetOutput() ); } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalMaskIgnoredPixels( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; itk::ImageRegionIterator itmask(maskImage, maskImage->GetLargestPossibleRegion()); itk::ImageRegionConstIterator itimage(image, image->GetLargestPossibleRegion()); itmask.GoToBegin(); itimage.GoToBegin(); while( !itmask.IsAtEnd() ) { if(m_IgnorePixelValue == itimage.Get()) { itmask.Set(0); } ++itmask; ++itimage; } } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalCalculateStatisticsMasked( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage, StatisticsContainer* statisticsContainer, HistogramContainer* histogramContainer ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; typedef typename ImageType::IndexType IndexType; typedef typename ImageType::PointType PointType; typedef typename ImageType::SpacingType SpacingType; typedef itk::LabelStatisticsImageFilter< ImageType, MaskImageType > LabelStatisticsFilterType; typedef itk::ChangeInformationImageFilter< MaskImageType > ChangeInformationFilterType; typedef itk::ExtractImageFilter< ImageType, ImageType > ExtractImageFilterType; statisticsContainer->clear(); histogramContainer->clear(); // Make sure that mask is set if ( maskImage == NULL ) { itkExceptionMacro( << "Mask image needs to be set!" ); } // Make sure that spacing of mask and image are the same SpacingType imageSpacing = image->GetSpacing(); SpacingType maskSpacing = maskImage->GetSpacing(); PointType zeroPoint; zeroPoint.Fill( 0.0 ); if ( (zeroPoint + imageSpacing).SquaredEuclideanDistanceTo( (zeroPoint + maskSpacing) ) > mitk::eps ) { itkExceptionMacro( << "Mask needs to have same spacing as image! (Image spacing: " << imageSpacing << "; Mask spacing: " << maskSpacing << ")" ); } // Make sure that orientation of mask and image are the same typedef typename ImageType::DirectionType DirectionType; DirectionType imageDirection = image->GetDirection(); DirectionType maskDirection = maskImage->GetDirection(); for( int i = 0; i < imageDirection.ColumnDimensions; ++i ) { for( int j = 0; j < imageDirection.ColumnDimensions; ++j ) { double differenceDirection = imageDirection[i][j] - maskDirection[i][j]; if ( fabs( differenceDirection ) > mitk::eps ) { itkExceptionMacro( << "Mask needs to have same direction as image! (Image direction: " << imageDirection << "; Mask direction: " << maskDirection << ")" ); } } } // Make sure that the voxels of mask and image are correctly "aligned", i.e., voxel boundaries are the same in both images PointType imageOrigin = image->GetOrigin(); PointType maskOrigin = maskImage->GetOrigin(); long offset[ImageType::ImageDimension]; typedef itk::ContinuousIndex ContinousIndexType; ContinousIndexType maskOriginContinousIndex, imageOriginContinousIndex; image->TransformPhysicalPointToContinuousIndex(maskOrigin, maskOriginContinousIndex); image->TransformPhysicalPointToContinuousIndex(imageOrigin, imageOriginContinousIndex); for ( unsigned int i = 0; i < ImageType::ImageDimension; ++i ) { double misalignment = maskOriginContinousIndex[i] - floor( maskOriginContinousIndex[i] + 0.5 ); if ( fabs( misalignment ) > mitk::eps ) { itkExceptionMacro( << "Pixels/voxels of mask and image are not sufficiently aligned! (Misalignment: " << misalignment << ")" ); } double indexCoordDistance = maskOriginContinousIndex[i] - imageOriginContinousIndex[i]; offset[i] = (int) indexCoordDistance + image->GetBufferedRegion().GetIndex()[i]; } // Adapt the origin and region (index/size) of the mask so that the origin of both are the same typename ChangeInformationFilterType::Pointer adaptMaskFilter; adaptMaskFilter = ChangeInformationFilterType::New(); adaptMaskFilter->ChangeOriginOn(); adaptMaskFilter->ChangeRegionOn(); adaptMaskFilter->SetInput( maskImage ); adaptMaskFilter->SetOutputOrigin( image->GetOrigin() ); adaptMaskFilter->SetOutputOffset( offset ); adaptMaskFilter->Update(); typename MaskImageType::Pointer adaptedMaskImage = adaptMaskFilter->GetOutput(); - // Make sure that mask region is contained within image region if ( !image->GetLargestPossibleRegion().IsInside( adaptedMaskImage->GetLargestPossibleRegion() ) ) { itkExceptionMacro( << "Mask region needs to be inside of image region! (Image region: " << image->GetLargestPossibleRegion() << "; Mask region: " << adaptedMaskImage->GetLargestPossibleRegion() << ")" ); } // If mask region is smaller than image region, extract the sub-sampled region from the original image typename ImageType::SizeType imageSize = image->GetBufferedRegion().GetSize(); typename ImageType::SizeType maskSize = maskImage->GetBufferedRegion().GetSize(); bool maskSmallerImage = false; for ( unsigned int i = 0; i < ImageType::ImageDimension; ++i ) { if ( maskSize[i] < imageSize[i] ) { maskSmallerImage = true; } } typename ImageType::ConstPointer adaptedImage; if ( maskSmallerImage ) { typename ExtractImageFilterType::Pointer extractImageFilter = ExtractImageFilterType::New(); extractImageFilter->SetInput( image ); extractImageFilter->SetExtractionRegion( adaptedMaskImage->GetBufferedRegion() ); extractImageFilter->Update(); adaptedImage = extractImageFilter->GetOutput(); } else { adaptedImage = image; } // Initialize Filter typedef itk::StatisticsImageFilter< ImageType > StatisticsFilterType; typename StatisticsFilterType::Pointer statisticsFilter = StatisticsFilterType::New(); statisticsFilter->SetInput( adaptedImage ); statisticsFilter->Update(); int numberOfBins = ( m_DoIgnorePixelValue && (m_MaskingMode == MASKING_MODE_NONE) ) ? 768 : 384; typename LabelStatisticsFilterType::Pointer labelStatisticsFilter; labelStatisticsFilter = LabelStatisticsFilterType::New(); labelStatisticsFilter->SetInput( adaptedImage ); labelStatisticsFilter->SetLabelInput( adaptedMaskImage ); labelStatisticsFilter->UseHistogramsOn(); labelStatisticsFilter->SetHistogramParameters( numberOfBins, statisticsFilter->GetMinimum(), statisticsFilter->GetMaximum() ); // Add progress listening typedef itk::SimpleMemberCommand< ImageStatisticsCalculator > ITKCommandType; ITKCommandType::Pointer progressListener; progressListener = ITKCommandType::New(); progressListener->SetCallbackFunction( this, &ImageStatisticsCalculator::MaskedStatisticsProgressUpdate ); unsigned long observerTag = labelStatisticsFilter->AddObserver( itk::ProgressEvent(), progressListener ); // Execute filter this->InvokeEvent( itk::StartEvent() ); // Make sure that only the mask region is considered (otherwise, if the mask region is smaller // than the image region, the Update() would result in an exception). labelStatisticsFilter->GetOutput()->SetRequestedRegion( adaptedMaskImage->GetLargestPossibleRegion() ); // Execute the filter labelStatisticsFilter->Update(); this->InvokeEvent( itk::EndEvent() ); labelStatisticsFilter->RemoveObserver( observerTag ); // Find all relevant labels of mask (other than 0) std::list< int > relevantLabels; bool maskNonEmpty = false; unsigned int i; for ( i = 1; i < 4096; ++i ) { if ( labelStatisticsFilter->HasLabel( i ) ) { relevantLabels.push_back( i ); maskNonEmpty = true; } } + MITK_INFO <<"Mask has pixels? " << maskNonEmpty; if ( maskNonEmpty ) { Statistics statistics; std::list< int >::iterator it; for ( it = relevantLabels.begin(), i = 0; it != relevantLabels.end(); ++it, ++i ) { histogramContainer->push_back( HistogramType::ConstPointer( labelStatisticsFilter->GetHistogram( (*it) ) ) ); statistics.Label = (*it); statistics.N = labelStatisticsFilter->GetCount( *it ); statistics.Min = labelStatisticsFilter->GetMinimum( *it ); statistics.Max = labelStatisticsFilter->GetMaximum( *it ); statistics.Mean = labelStatisticsFilter->GetMean( *it ); statistics.Median = labelStatisticsFilter->GetMedian( *it ); statistics.Sigma = labelStatisticsFilter->GetSigma( *it ); statistics.RMS = sqrt( statistics.Mean * statistics.Mean + statistics.Sigma * statistics.Sigma ); // restrict image to mask area for min/max index calculation typedef itk::MaskImageFilter< ImageType, MaskImageType, ImageType > MaskImageFilterType; typename MaskImageFilterType::Pointer masker = MaskImageFilterType::New(); masker->SetOutsideValue( (statistics.Min+statistics.Max)/2 ); masker->SetInput1(adaptedImage); masker->SetInput2(adaptedMaskImage); masker->Update(); // get index of minimum and maximum typedef itk::MinimumMaximumImageCalculator< ImageType > MinMaxFilterType; typename MinMaxFilterType::Pointer minMaxFilter = MinMaxFilterType::New(); minMaxFilter->SetImage( masker->GetOutput() ); unsigned long observerTag2 = minMaxFilter->AddObserver( itk::ProgressEvent(), progressListener ); minMaxFilter->Compute(); minMaxFilter->RemoveObserver( observerTag2 ); this->InvokeEvent( itk::EndEvent() ); statistics.MinIndex.set_size(adaptedImage->GetImageDimension()); statistics.MaxIndex.set_size(adaptedImage->GetImageDimension()); typename MinMaxFilterType::IndexType tempMaxIndex = minMaxFilter->GetIndexOfMaximum(); typename MinMaxFilterType::IndexType tempMinIndex = minMaxFilter->GetIndexOfMinimum(); // FIX BUG 14644 //If a PlanarFigure is used for segmentation the //adaptedImage is a single slice (2D). Adding the // 3. dimension. if (m_MaskingMode == MASKING_MODE_PLANARFIGURE && m_Image->GetDimension()==3) { statistics.MaxIndex.set_size(m_Image->GetDimension()); statistics.MaxIndex[m_PlanarFigureCoordinate0]=tempMaxIndex[0]; statistics.MaxIndex[m_PlanarFigureCoordinate1]=tempMaxIndex[1]; statistics.MaxIndex[m_PlanarFigureAxis]=m_PlanarFigureSlice; statistics.MinIndex.set_size(m_Image->GetDimension()); statistics.MinIndex[m_PlanarFigureCoordinate0]=tempMinIndex[0]; statistics.MinIndex[m_PlanarFigureCoordinate1]=tempMinIndex[1]; statistics.MinIndex[m_PlanarFigureAxis]=m_PlanarFigureSlice; } else { for (unsigned int i = 0; ipush_back( statistics ); } else { histogramContainer->push_back( HistogramType::ConstPointer( m_EmptyHistogram ) ); statisticsContainer->push_back( Statistics() ); // TODO DM: this is uninitialized! (refactor into real class!) } } // TODO DM: needs to be modified to calculate a specific or multiple(!) labels template -ImageStatisticsCalculator::MinMaxIndex ImageStatisticsCalculator::CalculateMinMaxIndex( +ImageStatisticsCalculator::ImageExtrema ImageStatisticsCalculator::CalculateExtremaWorld( + const itk::Image *inputImage, + itk::Image *maskImage) +{ + // TODO iterate onlye the region of the mask (in the inputImage), which is usually smaller (not sure if this is possible) + typedef itk::Image< TPixel, VImageDimension > ImageType; + typedef itk::Image< unsigned short, VImageDimension > MaskImageType; + + typedef itk::ImageRegionConstIteratorWithIndex MaskImageIteratorType; + typedef itk::ImageRegionConstIteratorWithIndex InputImageIndexIteratorType; + + MaskImageIteratorType maskIt(maskImage, maskImage->GetLargestPossibleRegion()); // TODO DM: we should use the same regions here + InputImageIndexIteratorType imageIndexIt(inputImage, inputImage->GetLargestPossibleRegion()); + + float maxValue = itk::NumericTraits::min(); // TODO DM: I DID correct this before: use named functions instead of using - + float minValue = itk::NumericTraits::max(); + + typename ImageType::IndexType maxIndex; + typename ImageType::IndexType minIndex; + + typename ImageType::IndexType imageIndex; + typename ImageType::PointType worldPosition; + typename ImageType::IndexType maskIndex; + + for(imageIndexIt.GoToBegin(); !imageIndexIt.IsAtEnd(); ++imageIndexIt) + { + imageIndex = imageIndexIt.GetIndex(); + inputImage->TransformIndexToPhysicalPoint(imageIndex, worldPosition); + maskImage->TransformPhysicalPointToIndex(worldPosition, maskIndex); + + maskIt.SetIndex( maskIndex ); + if(maskIt.Get() > 0) + { + double value = imageIndexIt.Get(); + + //Calculate minimum, maximum and corresponding index-values + if( value > maxValue ) + { + maxIndex = imageIndexIt.GetIndex(); + maxValue = value; + } + + if(value < minValue ) + { + minIndex = imageIndexIt.GetIndex(); + minValue = value; + } + } + } + + ImageExtrema minMax; + + minMax.MinIndex.set_size(inputImage->GetImageDimension()); + minMax.MaxIndex.set_size(inputImage->GetImageDimension()); + + for(unsigned int i = 0; i < minMax.MaxIndex.size(); ++i) + minMax.MaxIndex[i] = maxIndex[i]; + + for(unsigned int i = 0; i < minMax.MinIndex.size(); ++i) + minMax.MinIndex[i] = minIndex[i]; + + + minMax.Max = maxValue; + minMax.Min = minValue; + + return minMax; +} + + +// TODO DM: needs to be modified to calculate a specific or multiple(!) labels +template +ImageStatisticsCalculator::ImageExtrema ImageStatisticsCalculator::CalculateExtrema( const itk::Image *inputImage, itk::Image *maskImage) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; typedef itk::ImageRegionConstIterator MaskImageIteratorType; typedef itk::ImageRegionConstIteratorWithIndex InputImageIndexIteratorType; MaskImageIteratorType maskIt(maskImage, maskImage->GetLargestPossibleRegion()); // TODO DM: we should use the same regions here InputImageIndexIteratorType imageIndexIt(inputImage, inputImage->GetLargestPossibleRegion()); float maxValue = itk::NumericTraits::min(); // TODO DM: I DID correct this before: use named functions instead of using - float minValue = itk::NumericTraits::max(); typename ImageType::IndexType maxIndex; typename ImageType::IndexType minIndex; for(maskIt.GoToBegin(), imageIndexIt.GoToBegin(); !maskIt.IsAtEnd() && !imageIndexIt.IsAtEnd(); ++maskIt, ++imageIndexIt) { if(maskIt.Get() > itk::NumericTraits::Zero) // TODO DM: this is where multiple mask values could be used { double value = imageIndexIt.Get(); //Calculate minimum, maximum and corresponding index-values if( value > maxValue ) { maxIndex = imageIndexIt.GetIndex(); maxValue = value; } if(value < minValue ) { minIndex = imageIndexIt.GetIndex(); minValue = value; } } } - MinMaxIndex minMax; + ImageExtrema minMax; minMax.MinIndex.set_size(inputImage->GetImageDimension()); minMax.MaxIndex.set_size(inputImage->GetImageDimension()); for(unsigned int i = 0; i < minMax.MaxIndex.size(); ++i) minMax.MaxIndex[i] = maxIndex[i]; for(unsigned int i = 0; i < minMax.MinIndex.size(); ++i) minMax.MinIndex[i] = minIndex[i]; minMax.Max = maxValue; minMax.Min = minValue; return minMax; } +template +itk::Size +ImageStatisticsCalculator +::CalculateConvolutionKernelSize(double spacing[VImageDimension], double radiusInMM) +{ + typedef itk::Image< float, VImageDimension > KernelImageType; + typedef typename KernelImageType::SizeType SizeType; + SizeType maskSize; + + for(unsigned int i = 0; i < VImageDimension; ++i) + { + maskSize[i] = ::ceil( 2.0 * radiusInMM / spacing[i] ); + + // We always want an uneven size to have a clear center point in the convolution mask + if(maskSize[i] % 2 == 0 ) + { + ++maskSize[i]; + } + } + + return maskSize; +} + template itk::SmartPointer< itk::Image > ImageStatisticsCalculator ::GenerateHotspotSearchConvolutionKernel(double spacing[VImageDimension], double radiusInMM) { std::stringstream ss; for (unsigned int i = 0; i < VImageDimension; ++i) { ss << spacing[i]; if (i < VImageDimension -1) ss << ","; } MITK_DEBUG << "Update convolution kernel for spacing (" << ss.str() << ") and radius " << radiusInMM << "mm"; + + double radiusInMMSquared = radiusInMM * radiusInMM; typedef itk::Image< float, VImageDimension > KernelImageType; typename KernelImageType::Pointer convolutionKernel = KernelImageType::New(); // Calculate size and allocate mask image typedef typename KernelImageType::IndexType IndexType; IndexType maskIndex; maskIndex.Fill(0); typedef typename KernelImageType::SizeType SizeType; - SizeType maskSize; + SizeType maskSize = this->CalculateConvolutionKernelSize(spacing, radiusInMM); Point3D convolutionMaskCenter; convolutionMaskCenter.Fill(0.0); for(unsigned int i = 0; i < VImageDimension; ++i) { - maskSize[i] = ::ceil( 2.0 * radiusInMM / spacing[i] ); - - // We always want an uneven size to have a clear center point in the convolution mask - if(maskSize[i] % 2 == 0 ) - { - ++maskSize[i]; - } - convolutionMaskCenter[i] = 0.5 * (double)(maskSize[i]-1); } typedef typename KernelImageType::RegionType RegionType; RegionType maskRegion; maskRegion.SetSize(maskSize); maskRegion.SetIndex(maskIndex); convolutionKernel->SetRegions(maskRegion); convolutionKernel->SetSpacing(spacing); convolutionKernel->Allocate(); // Fill mask image values by subsampling the image grid typedef itk::ImageRegionIteratorWithIndex MaskIteratorType; MaskIteratorType maskIt(convolutionKernel,maskRegion); int numberOfSubVoxelsPerDimension = 2; // per dimension! int numberOfSubVoxels = ::pow( static_cast(numberOfSubVoxelsPerDimension), static_cast(VImageDimension) ); double subVoxelSize = 1.0 / (double)numberOfSubVoxelsPerDimension; //(double)numberOfSubVoxels; double valueOfOneSubVoxel = 1.0 / (double)numberOfSubVoxels; double maskValue = 0.0; Point3D subVoxelPosition; double distanceSquared = 0.0; typedef itk::ContinuousIndex ContinuousIndexType; for(maskIt.GoToBegin(); !maskIt.IsAtEnd(); ++maskIt) { ContinuousIndexType indexPoint(maskIt.GetIndex()); Point3D voxelPosition; for (unsigned int dimension = 0; dimension < VImageDimension; ++dimension) { voxelPosition[dimension] = indexPoint[dimension]; } // TODO DM: regard all dimensions, including z! (former code used only x/y) // TODO DM: generalize: not x, y, z but a for loop over dimension // TODO DM: this could be done by calling a recursive method, handing over the "remaining number of dimensions to iterate" maskValue = 0.0; Vector3D subVoxelOffset; subVoxelOffset.Fill(0.0); // iterate sub-voxels by iterating all possible offsets for (subVoxelOffset[0] = -0.5 + subVoxelSize / 2.0; subVoxelOffset[0] < +0.5; subVoxelOffset[0] += subVoxelSize) { for (subVoxelOffset[1] = -0.5 + subVoxelSize / 2.0; subVoxelOffset[1] < +0.5; subVoxelOffset[1] += subVoxelSize) { for (subVoxelOffset[2] = -0.5 + subVoxelSize / 2.0; subVoxelOffset[2] < +0.5; subVoxelOffset[2] += subVoxelSize) { subVoxelPosition = voxelPosition + subVoxelOffset; // TODO DM: this COULD be integrated into the for-loops if neccessary (add voxelPosition to initializer and end condition) //if ( subVoxelPosition.EuclideanDistanceTo( convolutionMaskCenter ) < radiusInMM ) // TODO DM: this is too much matrix operations, we calculate ourselves, check if this time is relevant distanceSquared = (subVoxelPosition[0]-convolutionMaskCenter[0]) / spacing[0] * (subVoxelPosition[0]-convolutionMaskCenter[0]) / spacing[0] + (subVoxelPosition[1]-convolutionMaskCenter[1]) / spacing[1] * (subVoxelPosition[1]-convolutionMaskCenter[1]) / spacing[1] + (subVoxelPosition[2]-convolutionMaskCenter[2]) / spacing[2] * (subVoxelPosition[2]-convolutionMaskCenter[2]) / spacing[2]; if (distanceSquared <= radiusInMMSquared) { maskValue += valueOfOneSubVoxel; } } } } maskIt.Set( maskValue ); } return convolutionKernel; } template void ImageStatisticsCalculator::InternalUpdateConvolutionImage( itk::Image* inputImage ) { double spacing[VImageDimension]; for (unsigned int dimension = 0; dimension < VImageDimension; ++dimension) { spacing[dimension] = inputImage->GetSpacing()[dimension]; } // update convolution kernel typedef itk::Image< float, VImageDimension > KernelImageType; typename KernelImageType::Pointer convolutionKernel = this->GenerateHotspotSearchConvolutionKernel(spacing, m_HotspotRadiusInMM); // TODO: if GenerateHotspotSearchConvolutionKernel() consumes relevant time, we need an additional condition // update convolution image typedef itk::Image< TPixel, VImageDimension > InputImageType; typedef itk::Image< TPixel, VImageDimension > ConvolutionImageType; typedef itk::FFTConvolutionImageFilter ConvolutionFilterType; typedef itk::ConstantBoundaryCondition BoundaryConditionType; BoundaryConditionType boundaryCondition; boundaryCondition.SetConstant(0.0); typename ConvolutionFilterType::Pointer convolutionFilter = ConvolutionFilterType::New(); convolutionFilter->SetBoundaryCondition(&boundaryCondition); convolutionFilter->SetInput(inputImage); convolutionFilter->SetKernelImage(convolutionKernel); convolutionFilter->SetNormalize(true); - MITK_DEBUG << "Update Convolution image for hotspot search"; + MITK_INFO << "Update Convolution image for hotspot search"; convolutionFilter->UpdateLargestPossibleRegion(); // TODO check if we could benefit from restricting this for a region typename ConvolutionImageType::Pointer convolutionImage = convolutionFilter->GetOutput(); convolutionImage->SetSpacing( inputImage->GetSpacing() ); // TODO: only workaround because convolution filter seems to ignore spacing of input image m_HotspotSearchConvolutionImage = convolutionImage.GetPointer(); m_HotspotRadiusInMMChanged = false; } +template < typename TPixel, unsigned int VImageDimension> +void +ImageStatisticsCalculator +::FillHotspotMaskPixels( itk::Image* maskImage, + itk::Point sphereCenter, + double sphereRadiusInMM) +{ + typedef itk::Image< TPixel, VImageDimension > MaskImageType; + typedef itk::ImageRegionIteratorWithIndex MaskImageIteratorType; + + MaskImageIteratorType maskIt(maskImage, maskImage->GetLargestPossibleRegion()); // TODO DM: we should use the same regions here + + typename MaskImageType::IndexType maskIndex; + typename MaskImageType::PointType worldPosition; + + for(maskIt.GoToBegin(); !maskIt.IsAtEnd(); ++maskIt) + { + maskIndex = maskIt.GetIndex(); + maskImage->TransformIndexToPhysicalPoint(maskIndex, worldPosition); + + maskIt.Set( worldPosition.EuclideanDistanceTo(sphereCenter) <= sphereRadiusInMM ? 1 : 0 ); + } +} -// TODO DM: should be refactored into multiple smaller methosd. This one is too large template < typename TPixel, unsigned int VImageDimension> ImageStatisticsCalculator::Statistics ImageStatisticsCalculator::CalculateHotspotStatistics( const itk::Image* inputImage, - itk::Image* maskImage, // TODO DM: this parameter is completely ignored, although the method is currently ONLY called in the masked input case + itk::Image* maskImage, double radiusInMM) { + MITK_INFO << "CalculateHotspotStatistics()"; + + // get convolution image (updated in InternalUpdateConvolutionImage()) typedef itk::Image< TPixel, VImageDimension > ConvolutionImageType; + typedef itk::Image< float, VImageDimension > KernelImageType; + typedef itk::Image< unsigned short, VImageDimension > MaskImageType; typename ConvolutionImageType::Pointer convolutionImage = dynamic_cast(m_HotspotSearchConvolutionImage.GetPointer()); if (convolutionImage.IsNull()) { MITK_ERROR << "Empty convolution image in CalculateHotspotStatistics(). We should never reach this state (logic error)."; throw std::logic_error("Empty convolution image in CalculateHotspotStatistics()"); } + // find maximum in convolution image, given the current mask (this might change over time, while we assume the input fixed (TODO wrong assumption)) + ImageExtrema pi = CalculateExtremaWorld(convolutionImage.GetPointer(), maskImage); + MITK_INFO <<"Initial search for hotspot: " + "\n Index: " << pi.MaxIndex[0] << "," << pi.MaxIndex[1] << "," << pi.MaxIndex[2] << + "\n Value(hotspot): " << pi.Max<< + "\n Index(min): " << pi.MinIndex[0] << "," << pi.MinIndex[1] << "," << pi.MinIndex[2] << + "\n Value(min): " << pi.Min; - - // TODO DM: why a spatial object? Objective here should be to 1. find position and value of maximum value in convolution image - /*****************************************************Creating Hotspot Sphere**********************************************/ - typedef itk::Image SphereMaskImageType; - typename SphereMaskImageType::Pointer hotspotSphere = SphereMaskImageType::New(); - - typedef itk::EllipseSpatialObject EllipseType; - typedef itk::SpatialObjectToImageFilter SpatialObjectToImageFilter; - - double hotspotMean = itk::NumericTraits::min(); - - typename SphereMaskImageType::Pointer croppedRegionMask = SphereMaskImageType::New(); - - typedef itk::Image< TPixel, VImageDimension > InputImageType; - typedef typename InputImageType::IndexType IndexType; - typedef typename InputImageType::SizeType SizeType; - typename SphereMaskImageType::IndexType peakStart; - peakStart.Fill(0); - typename SphereMaskImageType::SizeType sphereMaskSize = convolutionImage->GetLargestPossibleRegion().GetSize(); - - // TODO DM: this creates an image of the input image size! - typename SphereMaskImageType::RegionType peakRegion; - peakRegion.SetIndex(peakStart); - peakRegion.SetSize(convolutionImage->GetLargestPossibleRegion().GetSize()); - - croppedRegionMask->SetRegions(peakRegion); - croppedRegionMask->Allocate(); - + // create mask corresponding to hotspot region + // mask is defined on the inputImage grid and is + // dimensioned as the hotspot convolution kernel (the sphere) double spacing[VImageDimension]; for (unsigned int dimension = 0; dimension < VImageDimension; ++dimension) { spacing[dimension] = inputImage->GetSpacing()[dimension]; } + typedef typename ConvolutionImageType::SizeType SizeType; + SizeType maskSize = this->CalculateConvolutionKernelSize(spacing, m_HotspotRadiusInMM); - int offsetX = static_cast((radiusInMM / spacing[0]) + 0.99999); - int offsetY = static_cast((radiusInMM / spacing[1]) + 0.99999); - int offsetZ = static_cast((radiusInMM / spacing[2]) + 0.99999); - - typedef itk::ImageRegionIteratorWithIndex CroppedImageIteratorType; - CroppedImageIteratorType sphereMaskIt(croppedRegionMask, peakRegion); - - for(sphereMaskIt.GoToBegin(); !sphereMaskIt.IsAtEnd(); ++sphereMaskIt) - { - IndexType index = sphereMaskIt.GetIndex(); - - if((index[0] >= offsetX && index[0] <= sphereMaskSize[0] - offsetX -1) && - (index[1] >= offsetY && index[1] <= sphereMaskSize[1] - offsetY -1) && - (index[2] >= offsetZ && index[2] <= sphereMaskSize[2] - offsetZ -1)) - sphereMaskIt.Set(1); - else - sphereMaskIt.Set(0); - } - - typedef typename itk::Image InputMaskImageType; - typedef itk::ImageRegionIteratorWithIndex MaskImageIteratorType; - MaskImageIteratorType inputMaskIt(maskImage, maskImage->GetLargestPossibleRegion()); - CroppedImageIteratorType sphereMaskIterator(croppedRegionMask, croppedRegionMask->GetLargestPossibleRegion()); - - for(inputMaskIt.GoToBegin(), sphereMaskIterator.GoToBegin(); - !inputMaskIt.IsAtEnd() &&!sphereMaskIterator.IsAtEnd(); - ++inputMaskIt, ++sphereMaskIterator) - { - unsigned int maskValue = inputMaskIt.Get(); - unsigned int sphereMaskValue = sphereMaskIterator.Get(); - - if(maskValue > 0 && sphereMaskValue > 0) - sphereMaskIterator.Set(1); - else - sphereMaskIterator.Set(0); - } - - // TODO DM: sphereMaskIt seems to define a box region where a sphere could fit inside the input image - // this seems to come from an idea that Hannes mentioned and what I commented on in line 1244 - // CONVOLUTION should be restricted to an area where we can possibly find result values (i.e. regions inside the mask) - // in addition, if we require the sphere to be completely contained inside the input image (talk to Mathias/Danial for definition) - // THEN we should reduce the mask image before working with it (and prior to using it as a bounding region for convolution) - // - // Besides the comment above, a spatial object is not useful here. A simple itk::ImageRegion would be enough! (and it would fit into the iterator initialization) - MinMaxIndex peakInformations = CalculateMinMaxIndex(convolutionImage.GetPointer(), croppedRegionMask.GetPointer()); - - hotspotMean = peakInformations.Max; - typename SphereMaskImageType::IndexType hotspotIndex; - for(int i = 0; i < VImageDimension; ++i) - hotspotIndex[i] = peakInformations.MaxIndex[i]; - - typename SphereMaskImageType::SizeType hotspotSphereSize; - typename SphereMaskImageType::SpacingType hotspotSphereSpacing = inputImage->GetSpacing(); // TODO DM: we don't need a third spacing definition; all our calculations are for one and the same image with just one spacing in variable "spacing" - - // TODO DM: remove this and use previously calculated mask size! This is redundant - for(unsigned int i = 0; i < VImageDimension; ++i) + typedef typename ConvolutionImageType::IndexType IndexType; + IndexType maskIndex; maskIndex.Fill(0); + MITK_INFO << "Hotspot statistics mask started with size ["<(countIndex); - - // We always have an uneven number in size to determine a center-point in the convolution mask - if(castedIndex % 2 > 0 ) + maskIndex[dimension] = pi.MaxIndex[dimension] - (maskSize[dimension]-1)/2; // maskSize is always odd (size of 5 --> shift -2 required + if (maskIndex[dimension] < 0) { - hotspotSphereSize[i] = castedIndex; + maskIndex[dimension] = 0; } - else + + /* TODO + if (maskIndex[dimension] + maskSize[dimension] > inputImage->GetBufferedRegion().GetSize()[dimension] ) { - hotspotSphereSize[i] = castedIndex +1; + maskSize[dimension] = inputImage->GetBufferedRegionLargestPossibleRegion().GetSize()[dimension] - maskIndex[dimension]; } + */ } - // Initialize SpatialObjectoToImageFilter - typename itk::SpatialObjectToImageFilter::Pointer spatialObjectToImageFilter - = SpatialObjectToImageFilter::New(); + MITK_INFO << "Hotspot statistics mask corrected as region of size ["<SetSize(hotspotSphereSize); - spatialObjectToImageFilter->SetSpacing(hotspotSphereSpacing); + typename ConvolutionImageType::Pointer hotspotMaskITK = ConvolutionImageType::New(); + // copy origin and spacing of maskImage + hotspotMaskITK->CopyInformation( inputImage ); // type not optimal, but image grid is good - // Creating spatial sphere object - typename EllipseType::Pointer sphere = EllipseType::New(); - sphere->SetRadius(radiusInMM); - typedef typename EllipseType::TransformType TransformType; - typename TransformType::Pointer transform = TransformType::New(); + typedef typename ConvolutionImageType::RegionType RegionType; + RegionType hotspotMaskRegion; + IndexType mi; mi.Fill(0); + hotspotMaskRegion.SetIndex( mi ); + hotspotMaskRegion.SetSize( maskSize ); - transform->SetIdentity(); + hotspotMaskITK->SetRegions( hotspotMaskRegion ); + hotspotMaskITK->Allocate(); - typename TransformType::OutputVectorType translation; + typename ConvolutionImageType::PointType maskOrigin; + inputImage->TransformIndexToPhysicalPoint(maskIndex,maskOrigin); + MITK_INFO << "Mask origin at: " << maskOrigin; + hotspotMaskITK->SetOrigin(maskOrigin); - // Transform sphere on center-position, set pixelValues inside sphere on 1 and update - for(int i = 0; i < VImageDimension; ++i) - translation[i] = static_cast((hotspotSphereSize[i] -1) * hotspotSphereSpacing[i] / 2); + IndexType maskCenterIndex; + for (unsigned int d =0; d< VImageDimension;++d) maskCenterIndex[d]=pi.MaxIndex[d]; + typename ConvolutionImageType::PointType maskCenter; + inputImage->TransformIndexToPhysicalPoint(maskCenterIndex,maskCenter); + MITK_INFO << "Mask center in input image: " << maskCenter; - transform->Translate(translation, false); + FillHotspotMaskPixels(hotspotMaskITK.GetPointer(), maskCenter, m_HotspotRadiusInMM); - sphere->SetObjectToParentTransform(transform); + Image::Pointer hotspotMaskMITK = ImportItkImage( hotspotMaskITK ); - spatialObjectToImageFilter->SetInput(sphere); + Point3D maskCenterPosition = hotspotMaskMITK->GetGeometry()->GetCenter(); + MITK_INFO << "Mask center: " << maskCenterPosition; - sphere->SetDefaultInsideValue(1.00); - sphere->SetDefaultOutsideValue(0.00); + // use second instance of ImageStatisticsCalculator to calculate hotspot statistics - spatialObjectToImageFilter->SetUseObjectValue(true); - spatialObjectToImageFilter->SetOutsideValue(0); + ImageStatisticsCalculator::Pointer calculator = ImageStatisticsCalculator::New(); + calculator->SetImage( this->m_Image ); + calculator->SetMaskingModeToImage(); + calculator->SetImageMask( hotspotMaskMITK ); + calculator->SetCalculateHotspot( false ); + calculator->ComputeStatistics(0); // TODO: timestep - spatialObjectToImageFilter->Update(); - hotspotSphere = spatialObjectToImageFilter->GetOutput(); + Statistics hotspotMaskStatistics = calculator->GetStatistics(0); - // Calculate new origin for hotspot sphere - - IndexType offsetInIndex; - - for(int i = 0; i < VImageDimension; ++i) - offsetInIndex[i] = hotspotSphereSize[i] / 2; - - typedef itk::Image< float, VImageDimension > KernelImageType; - typedef typename KernelImageType::PointType PointType; - typename ConvolutionImageType::PointType hotspotOrigin; // TODO strange - convolutionImage->TransformIndexToPhysicalPoint(hotspotIndex, hotspotOrigin); - - PointType offsetInPhysicalPoint; - hotspotSphere->TransformIndexToPhysicalPoint(offsetInIndex, offsetInPhysicalPoint); - - for(int i = 0; i < VImageDimension; ++i) - hotspotOrigin[i] -= offsetInPhysicalPoint[i]; - - hotspotSphere->SetOrigin(hotspotOrigin); - hotspotSphere->Allocate(); - - /* TODO DM: you don't need all of the above "spatial object sphere" code. - It should be possible to replace all of the below code with a single call - to your CalculateMinMaxIndex method. - */ - -#ifdef DEBUG_HOTSPOTSEARCH - - std::cout << std::endl << std::endl; - std::cout << "hotspotMask: " << std::endl; - unsigned int lastZ = 1000000000; - unsigned int lastY = 1000000000; - - unsigned int hotspotMaskIndexCounter = 0; - - typedef itk::ImageRegionConstIteratorWithIndex SphereMaskIteratorType; - SphereMaskIteratorType hotspotMaskIt(hotspotSphere, hotspotSphere->GetLargestPossibleRegion() ); - - for(hotspotMaskIt.GoToBegin();!hotspotMaskIt.IsAtEnd();++hotspotMaskIt) - { - - double tmp = hotspotMaskIt.Get(); - if (hotspotMaskIt.GetIndex()[1] != lastY) - { - std::cout << std::endl; - lastY = hotspotMaskIt.GetIndex()[1]; - } - if (hotspotMaskIt.GetIndex()[0] != lastZ) - { - std::cout << tmp << " "; - lastZ = hotspotMaskIt.GetIndex()[0]; - } - - hotspotMaskIndexCounter++; - - if(hotspotMaskIndexCounter > hotspotSphereSize[0] * hotspotSphereSize[1] -1) { - std::cout << std::endl; - hotspotMaskIndexCounter = 0; - } - } - - std::cout << std::endl << std::endl; -#endif - - /*********************************Creating cropped inputImage for calculation of hotspot statistics****************************/ - - typename InputImageType::IndexType croppedStart; - convolutionImage->TransformPhysicalPointToIndex(hotspotOrigin,croppedStart); - - typename InputImageType::RegionType::SizeType croppedSize = hotspotSphere->GetLargestPossibleRegion().GetSize(); - typename InputImageType::RegionType inputRegion; - inputRegion.SetIndex(croppedStart); - inputRegion.SetSize(croppedSize); - - typename InputImageType::IndexType croppedOutputStart; - croppedOutputStart.Fill(0); - - typename InputImageType::RegionType croppedOutputRegion; - croppedOutputRegion.SetIndex(croppedOutputStart); - croppedOutputRegion.SetSize(hotspotSphere->GetLargestPossibleRegion().GetSize()); - - typename InputImageType::Pointer croppedOutputImage = InputImageType::New(); - croppedOutputImage->SetRegions(croppedOutputRegion); - croppedOutputImage->Allocate(); - - typedef itk::ImageRegionConstIterator ImageIteratorType; - ImageIteratorType inputIt(inputImage, inputRegion); - - ImageIteratorType croppedOutputImageIt(croppedOutputImage, croppedOutputRegion); - - for(inputIt.GoToBegin(), croppedOutputImageIt.GoToBegin(); !inputIt.IsAtEnd(); ++inputIt, ++croppedOutputImageIt) - { - croppedOutputImage->SetPixel(croppedOutputImageIt.GetIndex(), inputIt.Get()); - } - - // Calculate statistics in Hotspot - MinMaxIndex hotspotInformations; Statistics hotspotStatistics; - - hotspotInformations = CalculateMinMaxIndex(croppedOutputImage.GetPointer(), hotspotSphere.GetPointer()); - - // Add offset to cropped indices - for(int i = 0; i < VImageDimension; ++i) - { - hotspotInformations.MaxIndex[i] += croppedStart[i]; - hotspotInformations.MinIndex[i] += croppedStart[i]; - } - - hotspotStatistics.HotspotMin = hotspotInformations.Min; - hotspotStatistics.HotspotMinIndex = hotspotInformations.MinIndex; - hotspotStatistics.HotspotMax = hotspotInformations.Max; - hotspotStatistics.HotspotMaxIndex = hotspotInformations.MaxIndex; - hotspotStatistics.HotspotMean = hotspotMean; - - hotspotStatistics.HotspotIndex.set_size(inputImage->GetImageDimension()); - for (int i = 0; i< hotspotStatistics.HotspotIndex.size(); ++i) - { - hotspotStatistics.HotspotIndex[i] = hotspotIndex[i]; - } + hotspotStatistics.HotspotMin = hotspotMaskStatistics.Min; + hotspotStatistics.HotspotMinIndex = hotspotMaskStatistics.MinIndex; + hotspotStatistics.HotspotMax = hotspotMaskStatistics.Max; + hotspotStatistics.HotspotMaxIndex = hotspotMaskStatistics.MaxIndex; + hotspotStatistics.HotspotMean = hotspotMaskStatistics.Mean; + hotspotStatistics.HotspotIndex = pi.MaxIndex; + hotspotStatistics.HotspotSigma = hotspotMaskStatistics.Sigma; + + MITK_INFO << "----- Hotspot search results:" + "\n Index: " << hotspotStatistics.HotspotIndex[0] << "," << hotspotStatistics.HotspotIndex[1] << "," << hotspotStatistics.HotspotIndex[2] << + "\n Value: " << hotspotStatistics.HotspotMean << + "\n Max Index: " << hotspotStatistics.HotspotMaxIndex[0] << "," << hotspotStatistics.HotspotMaxIndex[1] << "," << hotspotStatistics.HotspotMaxIndex[2] << + "\n Max Value: " << hotspotStatistics.HotspotMax << + "\n Min Index: " << hotspotStatistics.HotspotMinIndex[0] << "," << hotspotStatistics.HotspotMinIndex[1] << "," << hotspotStatistics.HotspotMinIndex[2] << + "\n Min Value: " << hotspotStatistics.HotspotMin; return hotspotStatistics; } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalCalculateMaskFromPlanarFigure( const itk::Image< TPixel, VImageDimension > *image, unsigned int axis ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::CastImageFilter< ImageType, MaskImage2DType > CastFilterType; // Generate mask image as new image with same header as input image and - // initialize with "1". + // initialize with 1. typename CastFilterType::Pointer castFilter = CastFilterType::New(); castFilter->SetInput( image ); castFilter->Update(); castFilter->GetOutput()->FillBuffer( 1 ); // all PolylinePoints of the PlanarFigure are stored in a vtkPoints object. // These points are used by the vtkLassoStencilSource to create // a vtkImageStencil. const mitk::Geometry2D *planarFigureGeometry2D = m_PlanarFigure->GetGeometry2D(); const typename PlanarFigure::PolyLineType planarFigurePolyline = m_PlanarFigure->GetPolyLine( 0 ); const mitk::Geometry3D *imageGeometry3D = m_Image->GetGeometry( 0 ); // Determine x- and y-dimensions depending on principal axis int i0, i1; switch ( axis ) { case 0: i0 = 1; i1 = 2; break; case 1: i0 = 0; i1 = 2; break; case 2: default: i0 = 0; i1 = 1; break; } m_PlanarFigureCoordinate0= i0; m_PlanarFigureCoordinate1= i1; // store the polyline contour as vtkPoints object bool outOfBounds = false; vtkSmartPointer points = vtkSmartPointer::New(); typename PlanarFigure::PolyLineType::const_iterator it; for ( it = planarFigurePolyline.begin(); it != planarFigurePolyline.end(); ++it ) { Point3D point3D; // Convert 2D point back to the local index coordinates of the selected // image planarFigureGeometry2D->Map( it->Point, point3D ); // Polygons (partially) outside of the image bounds can not be processed // further due to a bug in vtkPolyDataToImageStencil if ( !imageGeometry3D->IsInside( point3D ) ) { outOfBounds = true; } imageGeometry3D->WorldToIndex( point3D, point3D ); points->InsertNextPoint( point3D[i0], point3D[i1], 0 ); } // mark a malformed 2D planar figure ( i.e. area = 0 ) as out of bounds // this can happen when all control points of a rectangle lie on the same line = two of the three extents are zero double bounds[6] = {0, 0, 0, 0, 0, 0}; points->GetBounds( bounds ); bool extent_x = (fabs(bounds[0] - bounds[1])) < mitk::eps; bool extent_y = (fabs(bounds[2] - bounds[3])) < mitk::eps; bool extent_z = (fabs(bounds[4] - bounds[5])) < mitk::eps; // throw an exception if a closed planar figure is deformed, i.e. has only one non-zero extent if ( m_PlanarFigure->IsClosed() && ((extent_x && extent_y) || (extent_x && extent_z) || (extent_y && extent_z))) { mitkThrow() << "Figure has a zero area and cannot be used for masking."; } if ( outOfBounds ) { throw std::runtime_error( "Figure at least partially outside of image bounds!" ); } // create a vtkLassoStencilSource and set the points of the Polygon vtkSmartPointer lassoStencil = vtkSmartPointer::New(); lassoStencil->SetShapeToPolygon(); lassoStencil->SetPoints( points ); // Export from ITK to VTK (to use a VTK filter) typedef itk::VTKImageImport< MaskImage2DType > ImageImportType; typedef itk::VTKImageExport< MaskImage2DType > ImageExportType; typename ImageExportType::Pointer itkExporter = ImageExportType::New(); itkExporter->SetInput( castFilter->GetOutput() ); vtkSmartPointer vtkImporter = vtkSmartPointer::New(); this->ConnectPipelines( itkExporter, vtkImporter ); // Apply the generated image stencil to the input image vtkSmartPointer imageStencilFilter = vtkSmartPointer::New(); imageStencilFilter->SetInputConnection( vtkImporter->GetOutputPort() ); imageStencilFilter->SetStencil( lassoStencil->GetOutput() ); imageStencilFilter->ReverseStencilOff(); imageStencilFilter->SetBackgroundValue( 0 ); imageStencilFilter->Update(); // Export from VTK back to ITK vtkSmartPointer vtkExporter = vtkImageExport::New(); // TODO: this is WRONG, should be vtkSmartPointer::New(), but bug # 14455 vtkExporter->SetInputConnection( imageStencilFilter->GetOutputPort() ); vtkExporter->Update(); typename ImageImportType::Pointer itkImporter = ImageImportType::New(); this->ConnectPipelines( vtkExporter, itkImporter ); itkImporter->Update(); // Store mask m_InternalImageMask2D = itkImporter->GetOutput(); } void ImageStatisticsCalculator::UnmaskedStatisticsProgressUpdate() { // Need to throw away every second progress event to reach a final count of // 100 since two consecutive filters are used in this case static int updateCounter = 0; if ( updateCounter++ % 2 == 0 ) { this->InvokeEvent( itk::ProgressEvent() ); } } void ImageStatisticsCalculator::MaskedStatisticsProgressUpdate() { this->InvokeEvent( itk::ProgressEvent() ); } } diff --git a/Modules/ImageStatistics/mitkImageStatisticsCalculator.h b/Modules/ImageStatistics/mitkImageStatisticsCalculator.h index 853659cfe2..d735e55131 100644 --- a/Modules/ImageStatistics/mitkImageStatisticsCalculator.h +++ b/Modules/ImageStatistics/mitkImageStatisticsCalculator.h @@ -1,406 +1,424 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkImageStatisticsCalculator_h #define mitkImageStatisticsCalculator_h #include "mitkImage.h" #include "mitkPlanarFigure.h" // TODO DM: why the ifndef? #ifndef __itkHistogram_h #include #endif #include #include #include "ImageStatisticsExports.h" namespace mitk { /** * \brief Class for calculating statistics and histogram for an (optionally * masked) image. * * Images can be masked by either a label image (of the same dimensions as * the original image) or by a closed mitk::PlanarFigure, e.g. a circle or * polygon. When masking with a planar figure, the slice corresponding to the * plane containing the figure is extracted and then clipped with contour * defined by the figure. Planar figures need to be aligned along the main axes * of the image (axial, sagittal, coronal). Planar figures on arbitrary * rotated planes are not supported. * * For each operating mode (no masking, masking by image, masking by planar * figure), the calculated statistics and histogram are cached so that, when * switching back and forth between operation modes without modifying mask or * image, the information doesn't need to be recalculated. * * The class also has the possibility to calculate minimum, maximum, mean * and their corresponding indicies in the hottest spot in a given ROI / VOI. * The size of the hotspot is defined by a sphere with a radius specified by * the user. This procedure is required for the calculation of SUV-statistics * in PET-images for example. * * Note: currently time-resolved and multi-channel pictures are not properly * supported. */ class ImageStatistics_EXPORT ImageStatisticsCalculator : public itk::Object { public: /** TODO DM: document */ enum { MASKING_MODE_NONE = 0, MASKING_MODE_IMAGE = 1, MASKING_MODE_PLANARFIGURE = 2 }; typedef itk::Statistics::Histogram HistogramType; typedef HistogramType::ConstIterator HistogramConstIteratorType; /** TODO DM: document */ struct Statistics { int Label; unsigned int N; //< number of voxels double Min; //< mimimum value double Max; //< maximum value double Mean; //< mean value double Median; //< median value double Variance; //< variance of values // TODO DM: remove, was never filled with values ; check if any calling code within MITK used this member! double Sigma; //< standard deviation of values (== square root of variance) double RMS; //< root means square (TODO DM: check mesning) double HotspotMin; //< mimimum value inside hotspot double HotspotMax; //< maximum value inside hotspot double HotspotMean; //< mean value inside hotspot double HotspotSigma; //< standard deviation of values inside hotspot //TODO DM: where is variance? does not make much sense, but should be consistent with usual statistics //TODO DM: same goes for N //TODO DM: same goes for RMS - double HotspotPeak; //< TODO DM: should this not replace "mean" the two values could be irritating vnl_vector< int > MinIndex; vnl_vector< int > MaxIndex; vnl_vector HotspotMaxIndex; vnl_vector HotspotMinIndex; vnl_vector HotspotIndex; //< TODO DM: couldn't this be named "hotspot index"? We need to clear naming of hotspotmean, hotspotpeakindex, and hotspotpeak + Statistics() + { + this->Reset(); + } + // TODO DM: make this struct a real class and put this into a constructor void Reset() // TODO DM: move to .cpp file (mitk::ImageStatisticsCalculator::Statistics::Reset() {...}) { Label = 0; N = 0; Min = 0.0; Max = 0.0; Mean = 0.0; Median = 0.0; Variance = 0.0; Sigma = 0.0; RMS = 0.0; HotspotMin = 0.0; HotspotMax = 0.0; HotspotMean = 0.0; - HotspotPeak = 0.0; HotspotSigma = 0.0; // TODO DM: also reset index values! Check that everything is initialized } }; - struct MinMaxIndex // TODO DM: why this structure? could at least be private - { - double Max; - double Min; - vnl_vector MaxIndex; - vnl_vector MinIndex; - }; - typedef std::vector< HistogramType::ConstPointer > HistogramContainer; typedef std::vector< Statistics > StatisticsContainer; mitkClassMacro( ImageStatisticsCalculator, itk::Object ); itkNewMacro( ImageStatisticsCalculator ); /** \brief Set image from which to compute statistics. */ void SetImage( const mitk::Image *image ); /** \brief Set image for masking. */ void SetImageMask( const mitk::Image *imageMask ); /** \brief Set planar figure for masking. */ void SetPlanarFigure( mitk::PlanarFigure *planarFigure ); /** \brief Set/Get operation mode for masking */ void SetMaskingMode( unsigned int mode ); /** \brief Set/Get operation mode for masking */ itkGetMacro( MaskingMode, unsigned int ); /** \brief Set/Get operation mode for masking */ void SetMaskingModeToNone(); /** \brief Set/Get operation mode for masking */ void SetMaskingModeToImage(); /** \brief Set/Get operation mode for masking */ void SetMaskingModeToPlanarFigure(); /** \brief Set a pixel value for pixels that will be ignored in the statistics */ void SetIgnorePixelValue(double value); /** \brief Get the pixel value for pixels that will be ignored in the statistics */ double GetIgnorePixelValue(); /** \brief Set whether a pixel value should be ignored in the statistics */ void SetDoIgnorePixelValue(bool doit); /** \brief Get whether a pixel value will be ignored in the statistics */ bool GetDoIgnorePixelValue(); /** \brief Sets the radius for the hotspot */ void SetHotspotRadius (double hotspotRadiusInMM); // TODO in mm /** \brief Returns the radius of the hotspot */ double GetHotspotRadius(); // TODO in mm /** \brief Sets whether the hotspot should be calculated */ void SetCalculateHotspot(bool calculateHotspot); /** \brief Returns true whether the hotspot should be calculated, otherwise false */ bool IsHotspotCalculated(); /** \brief Compute statistics (together with histogram) for the current * masking mode. * * Computation is not executed if statistics is already up to date. In this * case, false is returned; otherwise, true.*/ virtual bool ComputeStatistics( unsigned int timeStep = 0 ); /** \brief Retrieve the histogram depending on the current masking mode. * * \param label The label for which to retrieve the histogram in multi-label situations (ascending order). */ const HistogramType *GetHistogram( unsigned int timeStep = 0, unsigned int label = 0 ) const; /** \brief Retrieve the histogram depending on the current masking mode (for all image labels. */ const HistogramContainer &GetHistogramVector( unsigned int timeStep = 0 ) const; /** \brief Retrieve statistics depending on the current masking mode. * * \param label The label for which to retrieve the statistics in multi-label situations (ascending order). */ const Statistics &GetStatistics( unsigned int timeStep = 0, unsigned int label = 0 ) const; /** \brief Retrieve statistics depending on the current masking mode (for all image labels). */ const StatisticsContainer &GetStatisticsVector( unsigned int timeStep = 0 ) const; protected: typedef std::vector< HistogramContainer > HistogramVector; typedef std::vector< StatisticsContainer > StatisticsVector; typedef std::vector< itk::TimeStamp > TimeStampVectorType; typedef std::vector< bool > BoolVectorType; typedef itk::Image< unsigned short, 3 > MaskImage3DType; typedef itk::Image< unsigned short, 2 > MaskImage2DType; ImageStatisticsCalculator(); virtual ~ImageStatisticsCalculator(); /** \brief Depending on the masking mode, the image and mask from which to * calculate statistics is extracted from the original input image and mask * data. * * For example, a when using a PlanarFigure as mask, the 2D image slice * corresponding to the PlanarFigure will be extracted from the original * image. If masking is disabled, the original image is simply passed * through. */ void ExtractImageAndMask( unsigned int timeStep = 0 ); /** \brief If the passed vector matches any of the three principal axes * of the passed geometry, the ínteger value corresponding to the axis * is set and true is returned. */ bool GetPrincipalAxis( const Geometry3D *geometry, Vector3D vector, unsigned int &axis ); template < typename TPixel, unsigned int VImageDimension > void InternalCalculateStatisticsUnmasked( const itk::Image< TPixel, VImageDimension > *image, StatisticsContainer* statisticsContainer, HistogramContainer *histogramContainer ); template < typename TPixel, unsigned int VImageDimension > void InternalCalculateStatisticsMasked( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage, StatisticsContainer* statisticsContainer, HistogramContainer* histogramContainer ); template < typename TPixel, unsigned int VImageDimension > void InternalCalculateMaskFromPlanarFigure( const itk::Image< TPixel, VImageDimension > *image, unsigned int axis ); template < typename TPixel, unsigned int VImageDimension > void InternalMaskIgnoredPixels( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage ); + struct ImageExtrema + { + double Max; + double Min; + vnl_vector MaxIndex; + vnl_vector MinIndex; + }; + /** \brief Calculates minimum, maximum, mean value and their * corresponding indices in a given ROI. As input the function - * needs an image and a mask. It returns a MinMaxIndex object. */ + * needs an image and a mask. It returns a ImageExtrema object. */ template - MinMaxIndex CalculateMinMaxIndex( + ImageExtrema CalculateExtrema( const itk::Image *inputImage, itk::Image *maskImage); + template + ImageExtrema CalculateExtremaWorld( + const itk::Image *inputImage, + itk::Image *maskImage); + + /** \brief Calculates the hotspot statistics within a given * ROI. As input the function needs an image, a mask which * represents the ROI and a radius which defines the size of * the sphere. The function returns a Statistics object. */ template < typename TPixel, unsigned int VImageDimension> Statistics CalculateHotspotStatistics( const itk::Image *inputImage, itk::Image *maskImage, double radiusInMM); /** Connection from ITK to VTK */ template void ConnectPipelines(ITK_Exporter exporter, vtkSmartPointer importer) { importer->SetUpdateInformationCallback(exporter->GetUpdateInformationCallback()); importer->SetPipelineModifiedCallback(exporter->GetPipelineModifiedCallback()); importer->SetWholeExtentCallback(exporter->GetWholeExtentCallback()); importer->SetSpacingCallback(exporter->GetSpacingCallback()); importer->SetOriginCallback(exporter->GetOriginCallback()); importer->SetScalarTypeCallback(exporter->GetScalarTypeCallback()); importer->SetNumberOfComponentsCallback(exporter->GetNumberOfComponentsCallback()); importer->SetPropagateUpdateExtentCallback(exporter->GetPropagateUpdateExtentCallback()); importer->SetUpdateDataCallback(exporter->GetUpdateDataCallback()); importer->SetDataExtentCallback(exporter->GetDataExtentCallback()); importer->SetBufferPointerCallback(exporter->GetBufferPointerCallback()); importer->SetCallbackUserData(exporter->GetCallbackUserData()); } /** Connection from VTK to ITK */ template void ConnectPipelines(vtkSmartPointer exporter, ITK_Importer importer) { importer->SetUpdateInformationCallback(exporter->GetUpdateInformationCallback()); importer->SetPipelineModifiedCallback(exporter->GetPipelineModifiedCallback()); importer->SetWholeExtentCallback(exporter->GetWholeExtentCallback()); importer->SetSpacingCallback(exporter->GetSpacingCallback()); importer->SetOriginCallback(exporter->GetOriginCallback()); importer->SetScalarTypeCallback(exporter->GetScalarTypeCallback()); importer->SetNumberOfComponentsCallback(exporter->GetNumberOfComponentsCallback()); importer->SetPropagateUpdateExtentCallback(exporter->GetPropagateUpdateExtentCallback()); importer->SetUpdateDataCallback(exporter->GetUpdateDataCallback()); importer->SetDataExtentCallback(exporter->GetDataExtentCallback()); importer->SetBufferPointerCallback(exporter->GetBufferPointerCallback()); importer->SetCallbackUserData(exporter->GetCallbackUserData()); } void UnmaskedStatisticsProgressUpdate(); void MaskedStatisticsProgressUpdate(); + template + itk::Size + CalculateConvolutionKernelSize(double spacing[VImageDimension], double radiusInMM); + template itk::SmartPointer< itk::Image > GenerateHotspotSearchConvolutionKernel(double spacing[VImageDimension], double radiusInMM); /** Uses members m_HotspotRadiusInMM */ template void InternalUpdateConvolutionImage( itk::Image* inputImage ); + template < typename TPixel, unsigned int VImageDimension> + void + FillHotspotMaskPixels( itk::Image* maskImage, + itk::Point sphereCenter, + double sphereRadiusInMM); /** m_Image contains the input image (e.g. 2D, 3D, 3D+t)*/ mitk::Image::ConstPointer m_Image; mitk::Image::ConstPointer m_ImageMask; mitk::PlanarFigure::Pointer m_PlanarFigure; HistogramVector m_ImageHistogramVector; HistogramVector m_MaskedImageHistogramVector; HistogramVector m_PlanarFigureHistogramVector; HistogramType::Pointer m_EmptyHistogram; HistogramContainer m_EmptyHistogramContainer; StatisticsVector m_ImageStatisticsVector; StatisticsVector m_MaskedImageStatisticsVector; StatisticsVector m_PlanarFigureStatisticsVector; StatisticsVector m_MaskedImageHotspotStatisticsVector; Statistics m_EmptyStatistics; StatisticsContainer m_EmptyStatisticsContainer; unsigned int m_MaskingMode; bool m_MaskingModeChanged; /** m_InternalImage contains a image volume at one time step (e.g. 2D, 3D)*/ mitk::Image::ConstPointer m_InternalImage; MaskImage3DType::Pointer m_InternalImageMask3D; MaskImage2DType::Pointer m_InternalImageMask2D; TimeStampVectorType m_ImageStatisticsTimeStampVector; TimeStampVectorType m_MaskedImageStatisticsTimeStampVector; TimeStampVectorType m_PlanarFigureStatisticsTimeStampVector; BoolVectorType m_ImageStatisticsCalculationTriggerVector; BoolVectorType m_MaskedImageStatisticsCalculationTriggerVector; BoolVectorType m_PlanarFigureStatisticsCalculationTriggerVector; double m_IgnorePixelValue; bool m_DoIgnorePixelValue; bool m_IgnorePixelValueChanged; itk::Object::Pointer m_HotspotSearchConvolutionImage; // itk::Image double m_HotspotRadiusInMM; bool m_CalculateHotspot; bool m_HotspotRadiusInMMChanged; unsigned int m_PlanarFigureAxis; // Normal axis for PlanarFigure unsigned int m_PlanarFigureSlice; // Slice which contains PlanarFigure int m_PlanarFigureCoordinate0; // First plane-axis for PlanarFigure int m_PlanarFigureCoordinate1; // Second plane-axis for PlanarFigure }; } // namespace #endif