diff --git a/Modules/Core/include/mitkPointSetVtkMapper2D.h b/Modules/Core/include/mitkPointSetVtkMapper2D.h index 8f085d70f6..ea6e8a3c8a 100644 --- a/Modules/Core/include/mitkPointSetVtkMapper2D.h +++ b/Modules/Core/include/mitkPointSetVtkMapper2D.h @@ -1,224 +1,224 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkPointSetVtkMapper2D_h #define mitkPointSetVtkMapper2D_h #include #include #include "mitkVtkMapper.h" #include "mitkBaseRenderer.h" #include "mitkLocalStorageHandler.h" //VTK #include class vtkActor; class vtkPropAssembly; class vtkPolyData; class vtkPolyDataMapper; class vtkGlyphSource2D; class vtkGlyph3D; class vtkFloatArray; class vtkCellArray; namespace mitk { class PointSet; /** * @brief Vtk-based 2D mapper for PointSet * * Due to the need of different colors for selected * and unselected points and the facts, that we also have a contour and * labels for the points, the vtk structure is build up the following way: * * We have three PolyData, one selected, and one unselected and one * for a contour between the points. Each one is connected to an own * PolyDataMapper and an Actor. The different color for the unselected and * selected state and for the contour is read from properties. * * This mapper has several additional functionalities, such as rendering * a contour between points, calculating and displaying distances or angles * between points. * * Then the three Actors are combined inside a vtkPropAssembly and this * object is returned in GetProp() and so hooked up into the rendering * pipeline. * Properties that can be set for point sets and influence the PointSetVTKMapper2D are: * * - \b "line width": (IntProperty 2) // line width of the line from one point to another * - \b "point line width": (IntProperty 1) // line width of the cross marking a point - * - \b "point 2D size": (IntProperty 6) // size of the glyph marking a point + * - \b "point 2D size": (FloatProperty 6) // size of the glyph marking a point * - \b "show contour": (BoolProperty false) // enable contour rendering between points (lines) * - \b "close contour": (BoolProperty false) // if enabled, the open strip is closed (first point connected with last point) * - \b "show points": (BoolProperty true) // show or hide points * - \b "show distances": (BoolProperty false) // show or hide distance measure * - \b "distance decimal digits": (IntProperty 2) // set the number of decimal digits to be shown when rendering the distance information * - \b "show angles": (BoolProperty false) // show or hide angle measurement * - \b "show distant lines": (BoolProperty false) // show the line between to points from a distant view (equals "always on top" option) * - \b "layer": (IntProperty 1) // default is drawing pointset above images (they have a default layer of 0) * - \b "PointSet.2D.shape" (EnumerationProperty Cross) // provides different shapes marking a point * 0 = "None", 1 = "Vertex", 2 = "Dash", 3 = "Cross", 4 = "ThickCross", 5 = "Triangle", 6 = "Square", 7 = "Circle", * 8 = "Diamond", 9 = "Arrow", 10 = "ThickArrow", 11 = "HookedArrow", 12 = "Cross" * - \b "PointSet.2D.fill shape": (BoolProperty false) // fill or do not fill the glyph shape * - \b "Pointset.2D.distance to plane": (FloatProperty 4.0) //In the 2D render window, points are rendered which lie within a certain distance * to the current plane. They are projected on the current plane and scalled according to their distance. * Point markers appear smaller as the plane moves away from their true location. * The distance threshold can be adjusted by this float property, which ables the user to delineate the points * that lie exactly on the plane. (+/- rounding error) * * Other Properties used here but not defined in this class: * * - \b "selectedcolor": (ColorProperty (1.0f, 0.0f, 0.0f)) // default color of the selected pointset e.g. the current point is red * - \b "contourcolor" : (ColorProperty (1.0f, 0.0f, 0.0f)) // default color for the contour is red * - \b "color": (ColorProperty (1.0f, 1.0f, 0.0f)) // default color of the (unselected) pointset is yellow * - \b "opacity": (FloatProperty 1.0) // opacity of point set, contours * - \b "label": (StringProperty NULL) // a label can be defined for each point, which is rendered in proximity to the point * * @ingroup Mapper */ class MITKCORE_EXPORT PointSetVtkMapper2D : public VtkMapper { public: mitkClassMacro(PointSetVtkMapper2D, VtkMapper); itkFactorylessNewMacro(Self) itkCloneMacro(Self) virtual const mitk::PointSet* GetInput() const; /** \brief returns the a prop assembly */ virtual vtkProp* GetVtkProp(mitk::BaseRenderer* renderer); /** \brief set the default properties for this mapper */ static void SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer = NULL, bool overwrite = false); /** \brief Internal class holding the mapper, actor, etc. for each of the 3 2D render windows */ class LocalStorage : public mitk::Mapper::BaseLocalStorage { public: /* constructor */ LocalStorage(); /* destructor */ ~LocalStorage(); // points vtkSmartPointer m_UnselectedPoints; vtkSmartPointer m_SelectedPoints; vtkSmartPointer m_ContourPoints; // scales vtkSmartPointer m_UnselectedScales; vtkSmartPointer m_SelectedScales; // distances vtkSmartPointer m_DistancesBetweenPoints; // lines vtkSmartPointer m_ContourLines; // glyph source (provides different shapes for the points) vtkSmartPointer m_UnselectedGlyphSource2D; vtkSmartPointer m_SelectedGlyphSource2D; // glyph vtkSmartPointer m_UnselectedGlyph3D; vtkSmartPointer m_SelectedGlyph3D; // polydata vtkSmartPointer m_VtkUnselectedPointListPolyData; vtkSmartPointer m_VtkSelectedPointListPolyData; vtkSmartPointer m_VtkContourPolyData; // actor vtkSmartPointer m_UnselectedActor; vtkSmartPointer m_SelectedActor; vtkSmartPointer m_ContourActor; vtkSmartPointer m_VtkTextActor; std::vector < vtkSmartPointer > m_VtkTextLabelActors; std::vector < vtkSmartPointer > m_VtkTextDistanceActors; std::vector < vtkSmartPointer > m_VtkTextAngleActors; // mappers vtkSmartPointer m_VtkUnselectedPolyDataMapper; vtkSmartPointer m_VtkSelectedPolyDataMapper; vtkSmartPointer m_VtkContourPolyDataMapper; // propassembly vtkSmartPointer m_PropAssembly; }; /** \brief The LocalStorageHandler holds all (three) LocalStorages for the three 2D render windows. */ mitk::LocalStorageHandler m_LSH; protected: /* constructor */ PointSetVtkMapper2D(); /* destructor */ virtual ~PointSetVtkMapper2D(); /* \brief Applies the color and opacity properties and calls CreateVTKRenderObjects */ virtual void GenerateDataForRenderer(mitk::BaseRenderer* renderer); /* \brief Called in mitk::Mapper::Update * If TimeSlicedGeometry or time step is not valid of point set: reset mapper so that nothing is * displayed e.g. toggle visiblity of the propassembly */ virtual void ResetMapper( BaseRenderer* renderer ); /* \brief Fills the vtk objects, thus it is only called when the point set has been changed. * This function iterates over the input point set and determines the glyphs which lie in a specific * range around the current slice. Those glyphs are rendered using a specific shape defined in vtk glyph source * to mark each point. The shape can be changed in MITK using the property "PointSet.2D.shape". * * There were issues when rendering vtk glyphs in the 2D-render windows. By default, the glyphs are * rendered within the x-y plane in each 2D-render window, so you would only see them from the * side in the saggital and coronal 2D-render window. The solution to this is to rotate the glyphs in order * to be ortogonal to the current view vector. To achieve this, the rotation (vtktransform) of the current * PlaneGeometry is applied to the orienation of the glyphs. */ virtual void CreateVTKRenderObjects(mitk::BaseRenderer* renderer); // member variables holding the current value of the properties used in this mapper bool m_ShowContour; // "show contour" property bool m_CloseContour; // "close contour" property bool m_ShowPoints; // "show points" property bool m_ShowDistances; // "show distances" property int m_DistancesDecimalDigits; // "distance decimal digits" property bool m_ShowAngles; // "show angles" property bool m_ShowDistantLines; // "show distant lines" property int m_LineWidth; // "line width" property int m_PointLineWidth; // "point line width" property - int m_Point2DSize; // "point 2D size" property + float m_Point2DSize; // "point 2D size" property int m_IDShapeProperty; // ID for mitkPointSetShape Enumeration Property "Pointset.2D.shape" bool m_FillShape; // "Pointset.2D.fill shape" property float m_DistanceToPlane; // "Pointset.2D.distance to plane" property }; } // namespace mitk #endif /* mitkPointSetVtkMapper2D_h */ diff --git a/Modules/Core/src/Rendering/mitkPointSetVtkMapper2D.cpp b/Modules/Core/src/Rendering/mitkPointSetVtkMapper2D.cpp index 40a369a995..0417dcf15e 100644 --- a/Modules/Core/src/Rendering/mitkPointSetVtkMapper2D.cpp +++ b/Modules/Core/src/Rendering/mitkPointSetVtkMapper2D.cpp @@ -1,715 +1,713 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPointSetVtkMapper2D.h" //mitk includes #include "mitkVtkPropRenderer.h" #include #include #include #include //vtk includes #include #include #include #include #include #include #include #include #include #include #include #include #include #include // constructor LocalStorage mitk::PointSetVtkMapper2D::LocalStorage::LocalStorage() { // points m_UnselectedPoints = vtkSmartPointer::New(); m_SelectedPoints = vtkSmartPointer::New(); m_ContourPoints = vtkSmartPointer::New(); // scales m_UnselectedScales = vtkSmartPointer::New(); m_SelectedScales = vtkSmartPointer::New(); // distances m_DistancesBetweenPoints = vtkSmartPointer::New(); // lines m_ContourLines = vtkSmartPointer::New(); // glyph source (provides the different shapes) m_UnselectedGlyphSource2D = vtkSmartPointer::New(); m_SelectedGlyphSource2D = vtkSmartPointer::New(); // glyphs m_UnselectedGlyph3D = vtkSmartPointer::New(); m_SelectedGlyph3D = vtkSmartPointer::New(); // polydata m_VtkUnselectedPointListPolyData = vtkSmartPointer::New(); m_VtkSelectedPointListPolyData = vtkSmartPointer ::New(); m_VtkContourPolyData = vtkSmartPointer::New(); // actors m_UnselectedActor = vtkSmartPointer ::New(); m_SelectedActor = vtkSmartPointer ::New(); m_ContourActor = vtkSmartPointer ::New(); // mappers m_VtkUnselectedPolyDataMapper = vtkSmartPointer::New(); m_VtkSelectedPolyDataMapper = vtkSmartPointer::New(); m_VtkContourPolyDataMapper = vtkSmartPointer::New(); // propassembly m_PropAssembly = vtkSmartPointer ::New(); } // destructor LocalStorage mitk::PointSetVtkMapper2D::LocalStorage::~LocalStorage() { } // input for this mapper ( = point set) const mitk::PointSet* mitk::PointSetVtkMapper2D::GetInput() const { return static_cast ( GetDataNode()->GetData() ); } // constructor PointSetVtkMapper2D mitk::PointSetVtkMapper2D::PointSetVtkMapper2D() : m_ShowContour(false), m_CloseContour(false), m_ShowPoints(true), m_ShowDistances(false), m_DistancesDecimalDigits(1), m_ShowAngles(false), m_ShowDistantLines(false), m_LineWidth(1), m_PointLineWidth(1), m_Point2DSize(6), m_IDShapeProperty(mitk::PointSetShapeProperty::CROSS), m_FillShape(false), m_DistanceToPlane(4.0f) { } // destructor mitk::PointSetVtkMapper2D::~PointSetVtkMapper2D() { } // reset mapper so that nothing is displayed e.g. toggle visiblity of the propassembly void mitk::PointSetVtkMapper2D::ResetMapper( BaseRenderer* renderer ) { LocalStorage *ls = m_LSH.GetLocalStorage(renderer); ls->m_PropAssembly->VisibilityOff(); } // returns propassembly vtkProp* mitk::PointSetVtkMapper2D::GetVtkProp(mitk::BaseRenderer * renderer) { LocalStorage *ls = m_LSH.GetLocalStorage(renderer); return ls->m_PropAssembly; } static bool makePerpendicularVector2D(const mitk::Vector2D& in, mitk::Vector2D& out) { // The dot product of orthogonal vectors is zero. // In two dimensions the slopes of perpendicular lines are negative reciprocals. if((fabs(in[0])>0) && ( (fabs(in[0])>fabs(in[1])) || (in[1] == 0) ) ) { // negative reciprocal out[0]=-in[1]/in[0]; out[1]=1; out.Normalize(); return true; } else if(fabs(in[1])>0) { out[0]=1; // negative reciprocal out[1]=-in[0]/in[1]; out.Normalize(); return true; } else return false; } void mitk::PointSetVtkMapper2D::CreateVTKRenderObjects(mitk::BaseRenderer* renderer) { LocalStorage *ls = m_LSH.GetLocalStorage(renderer); unsigned i = 0; // The vtk text actors need to be removed manually from the propassembly // since the same vtk text actors are not overwriten within this function, // but new actors are added to the propassembly each time this function is executed. // Thus, the actors from the last call must be removed in the beginning. for(i=0; i< ls->m_VtkTextLabelActors.size(); i++) { if(ls->m_PropAssembly->GetParts()->IsItemPresent(ls->m_VtkTextLabelActors.at(i))) ls->m_PropAssembly->RemovePart(ls->m_VtkTextLabelActors.at(i)); } for(i=0; i< ls->m_VtkTextDistanceActors.size(); i++) { if(ls->m_PropAssembly->GetParts()->IsItemPresent(ls->m_VtkTextDistanceActors.at(i))) ls->m_PropAssembly->RemovePart(ls->m_VtkTextDistanceActors.at(i)); } for(i=0; i< ls->m_VtkTextAngleActors.size(); i++) { if(ls->m_PropAssembly->GetParts()->IsItemPresent(ls->m_VtkTextAngleActors.at(i))) ls->m_PropAssembly->RemovePart(ls->m_VtkTextAngleActors.at(i)); } // initialize polydata here, otherwise we have update problems when // executing this function again ls->m_VtkUnselectedPointListPolyData = vtkSmartPointer::New(); ls->m_VtkSelectedPointListPolyData = vtkSmartPointer ::New(); ls->m_VtkContourPolyData = vtkSmartPointer::New(); // get input point set and update the PointSet mitk::PointSet::Pointer input = const_cast(this->GetInput()); // only update the input data, if the property tells us to bool update = true; this->GetDataNode()->GetBoolProperty("updateDataOnRender", update); if (update == true) input->Update(); int timestep = this->GetTimestep(); mitk::PointSet::DataType::Pointer itkPointSet = input->GetPointSet( timestep ); if ( itkPointSet.GetPointer() == NULL) { ls->m_PropAssembly->VisibilityOff(); return; } //iterator for point set mitk::PointSet::PointsContainer::Iterator pointsIter = itkPointSet->GetPoints()->Begin(); // PointDataContainer has additional information to each point, e.g. whether // it is selected or not mitk::PointSet::PointDataContainer::Iterator pointDataIter; pointDataIter = itkPointSet->GetPointData()->Begin(); //check if the list for the PointDataContainer is the same size as the PointsContainer. //If not, then the points were inserted manually and can not be visualized according to the PointData (selected/unselected) bool pointDataBroken = (itkPointSet->GetPointData()->Size() != itkPointSet->GetPoints()->Size()); if( itkPointSet->GetPointData()->size() == 0 || pointDataBroken) { ls->m_PropAssembly->VisibilityOff(); return; } ls->m_PropAssembly->VisibilityOn(); // empty point sets, cellarrays, scalars ls->m_UnselectedPoints->Reset(); ls->m_SelectedPoints->Reset(); ls->m_ContourPoints->Reset(); ls->m_ContourLines->Reset(); ls->m_UnselectedScales->Reset(); ls->m_SelectedScales->Reset(); ls->m_DistancesBetweenPoints->Reset(); ls->m_VtkTextLabelActors.clear(); ls->m_VtkTextDistanceActors.clear(); ls->m_VtkTextAngleActors.clear(); ls->m_UnselectedScales->SetNumberOfComponents(3); ls->m_SelectedScales->SetNumberOfComponents(3); int NumberContourPoints = 0; bool pointsOnSameSideOfPlane = false; const int text2dDistance = 10; // initialize points with a random start value // current point in point set itk::Point point = pointsIter->Value(); mitk::Point3D p = point; // currently visited point mitk::Point3D lastP = point; // last visited point (predecessor in point set of "point") mitk::Vector3D vec; // p - lastP mitk::Vector3D lastVec; // lastP - point before lastP vec.Fill(0.0); lastVec.Fill(0.0); mitk::Point3D projected_p = point; // p projected on viewplane mitk::Point2D pt2d; pt2d[0] = point[0]; // projected_p in display coordinates pt2d[1] = point[1]; mitk::Point2D lastPt2d = pt2d; // last projected_p in display coordinates (predecessor in point set of "pt2d") mitk::Point2D preLastPt2d = pt2d ; // projected_p in display coordinates before lastPt2 mitk::DisplayGeometry::Pointer displayGeometry = renderer->GetDisplayGeometry(); const mitk::PlaneGeometry* geo2D = renderer->GetCurrentWorldPlaneGeometry(); vtkLinearTransform* dataNodeTransform = input->GetGeometry()->GetVtkTransform(); int count = 0; for (pointsIter=itkPointSet->GetPoints()->Begin(); pointsIter!=itkPointSet->GetPoints()->End(); pointsIter++) { lastP = p; // valid for number of points count > 0 preLastPt2d = lastPt2d; // valid only for count > 1 lastPt2d = pt2d; // valid for number of points count > 0 lastVec = vec; // valid only for counter > 1 // get current point in point set point = pointsIter->Value(); // transform point { float vtkp[3]; itk2vtk(point, vtkp); dataNodeTransform->TransformPoint(vtkp, vtkp); vtk2itk(vtkp,point); } p[0] = point[0]; p[1] = point[1]; p[2] = point[2]; displayGeometry->Project(p, projected_p); displayGeometry->Map(projected_p, pt2d); displayGeometry->WorldToDisplay(pt2d, pt2d); vec = p-lastP; // valid only for counter > 0 // compute distance to current plane float diff = fabs(geo2D->Distance(point)); // diff = diff * diff; //draw markers on slices a certain distance away from the points //location according to the tolerance threshold (m_DistanceToPlane) if(diff < m_DistanceToPlane) { // is point selected or not? if (pointDataIter->Value().selected) { ls->m_SelectedPoints->InsertNextPoint(point[0],point[1],point[2]); // point is scaled according to its distance to the plane ls->m_SelectedScales->InsertNextTuple3((double)m_Point2DSize*(1-diff/m_DistanceToPlane),0,0); } else { ls->m_UnselectedPoints->InsertNextPoint(point[0],point[1],point[2]); // point is scaled according to its distance to the plane ls->m_UnselectedScales->InsertNextTuple3((double)m_Point2DSize*(1-diff/m_DistanceToPlane),0,0); } //---- LABEL -----// //paint label for each point if available if (dynamic_cast(this->GetDataNode()->GetProperty("label")) != NULL) { const char * pointLabel = dynamic_cast( this->GetDataNode()->GetProperty("label"))->GetValue(); std::string l = pointLabel; if (input->GetSize()>1) { std::stringstream ss; ss << pointsIter->Index(); l.append(ss.str()); } ls->m_VtkTextActor = vtkSmartPointer::New(); ls->m_VtkTextActor->SetPosition(pt2d[0] + text2dDistance, pt2d[1] + text2dDistance); ls->m_VtkTextActor->SetInput(l.c_str()); ls->m_VtkTextActor->GetTextProperty()->SetOpacity( 100 ); float unselectedColor[4] = {1.0, 1.0, 0.0, 1.0}; //check if there is a color property GetDataNode()->GetColor(unselectedColor); ls->m_VtkTextActor->GetTextProperty()->SetColor(unselectedColor[0], unselectedColor[1], unselectedColor[2]); ls->m_VtkTextLabelActors.push_back(ls->m_VtkTextActor); } } // draw contour, distance text and angle text in render window // lines between points, which intersect the current plane, are drawn if( m_ShowContour && count > 0 ) { ScalarType distance = displayGeometry->GetWorldGeometry()->SignedDistance(point); ScalarType lastDistance = displayGeometry->GetWorldGeometry()->SignedDistance(lastP); pointsOnSameSideOfPlane = (distance * lastDistance) > 0.5; // Points must be on different side of plane in order to draw a contour. // If "show distant lines" is enabled this condition is disregarded. if ( !pointsOnSameSideOfPlane || m_ShowDistantLines) { vtkSmartPointer line = vtkSmartPointer::New(); ls->m_ContourPoints->InsertNextPoint(lastP[0],lastP[1],lastP[2]); line->GetPointIds()->SetId(0, NumberContourPoints); NumberContourPoints++; ls->m_ContourPoints->InsertNextPoint(point[0], point[1], point[2]); line->GetPointIds()->SetId(1, NumberContourPoints); NumberContourPoints++; ls->m_ContourLines->InsertNextCell(line); if(m_ShowDistances) // calculate and print distance between adjacent points { float distancePoints = point.EuclideanDistanceTo(lastP); std::stringstream buffer; buffer<m_VtkTextActor = vtkSmartPointer::New(); ls->m_VtkTextActor->SetPosition(pos2d[0],pos2d[1]); ls->m_VtkTextActor->SetInput(buffer.str().c_str()); ls->m_VtkTextActor->GetTextProperty()->SetColor(0.0, 1.0, 0.0); ls->m_VtkTextDistanceActors.push_back(ls->m_VtkTextActor); } if(m_ShowAngles && count > 1) // calculate and print angle between connected lines { std::stringstream buffer; buffer << angle(vec.GetVnlVector(), -lastVec.GetVnlVector())*180/vnl_math::pi << "°"; //compute desired display position of text Vector2D vec2d = pt2d-lastPt2d; // first arm enclosing the angle vec2d.Normalize(); Vector2D lastVec2d = lastPt2d-preLastPt2d; // second arm enclosing the angle lastVec2d.Normalize(); vec2d=vec2d-lastVec2d; // vector connecting both arms vec2d.Normalize(); // middle between two vectors that enclose the angle Vector2D pos2d = lastPt2d.GetVectorFromOrigin() + vec2d * text2dDistance * text2dDistance; ls->m_VtkTextActor = vtkSmartPointer::New(); ls->m_VtkTextActor->SetPosition(pos2d[0],pos2d[1]); ls->m_VtkTextActor->SetInput(buffer.str().c_str()); ls->m_VtkTextActor->GetTextProperty()->SetColor(0.0, 1.0, 0.0); ls->m_VtkTextAngleActors.push_back(ls->m_VtkTextActor); } } } if(pointDataIter != itkPointSet->GetPointData()->End()) { pointDataIter++; count++; } } // add each single text actor to the assembly for(i=0; i< ls->m_VtkTextLabelActors.size(); i++) { ls->m_PropAssembly->AddPart(ls->m_VtkTextLabelActors.at(i)); } for(i=0; i< ls->m_VtkTextDistanceActors.size(); i++) { ls->m_PropAssembly->AddPart(ls->m_VtkTextDistanceActors.at(i)); } for(i=0; i< ls->m_VtkTextAngleActors.size(); i++) { ls->m_PropAssembly->AddPart(ls->m_VtkTextAngleActors.at(i)); } //---- CONTOUR -----// //create lines between the points which intersect the plane if (m_ShowContour) { // draw line between first and last point which is rendered if(m_CloseContour && NumberContourPoints > 1){ vtkSmartPointer closingLine = vtkSmartPointer::New(); closingLine->GetPointIds()->SetId(0, 0); // index of first point closingLine->GetPointIds()->SetId(1, NumberContourPoints-1); // index of last point ls->m_ContourLines->InsertNextCell(closingLine); } ls->m_VtkContourPolyData->SetPoints(ls->m_ContourPoints); ls->m_VtkContourPolyData->SetLines(ls->m_ContourLines); ls->m_VtkContourPolyDataMapper->SetInputData(ls->m_VtkContourPolyData); ls->m_ContourActor->SetMapper(ls->m_VtkContourPolyDataMapper); ls->m_ContourActor->GetProperty()->SetLineWidth(m_LineWidth); ls->m_PropAssembly->AddPart(ls->m_ContourActor); } // the point set must be transformed in order to obtain the appropriate glyph orientation // according to the current view vtkSmartPointer transform = vtkSmartPointer::New(); vtkSmartPointer a,b = vtkSmartPointer::New(); a = geo2D->GetVtkTransform()->GetMatrix(); b->DeepCopy( a ); // delete transformation from matrix, only take orientation b->SetElement(3,3,1); b->SetElement(2,3,0); b->SetElement(1,3,0); b->SetElement(0,3,0); b->SetElement(3,2,0); b->SetElement(3,1,0); b->SetElement(3,0,0); transform->SetMatrix( b ); //---- UNSELECTED POINTS -----// // apply properties to glyph ls->m_UnselectedGlyphSource2D->SetGlyphType(m_IDShapeProperty); if(m_FillShape) ls->m_UnselectedGlyphSource2D->FilledOn(); else ls->m_UnselectedGlyphSource2D->FilledOff(); -// ls->m_UnselectedGlyphSource2D->SetScale((double)m_Point2DSize/100); - // apply transform vtkSmartPointer transformFilterU = vtkSmartPointer::New(); transformFilterU->SetInputConnection(ls->m_UnselectedGlyphSource2D->GetOutputPort()); transformFilterU->SetTransform(transform); ls->m_VtkUnselectedPointListPolyData->SetPoints(ls->m_UnselectedPoints); ls->m_VtkUnselectedPointListPolyData->GetPointData()->SetVectors(ls->m_UnselectedScales); // apply transform of current plane to glyphs ls->m_UnselectedGlyph3D->SetSourceConnection(transformFilterU->GetOutputPort()); ls->m_UnselectedGlyph3D->SetInputData(ls->m_VtkUnselectedPointListPolyData); ls->m_UnselectedGlyph3D->SetScaleModeToScaleByVector(); ls->m_UnselectedGlyph3D->SetVectorModeToUseVector(); ls->m_VtkUnselectedPolyDataMapper->SetInputConnection(ls->m_UnselectedGlyph3D->GetOutputPort()); ls->m_UnselectedActor->SetMapper(ls->m_VtkUnselectedPolyDataMapper); ls->m_UnselectedActor->GetProperty()->SetLineWidth(m_PointLineWidth); ls->m_PropAssembly->AddPart(ls->m_UnselectedActor); //---- SELECTED POINTS -----// ls->m_SelectedGlyphSource2D->SetGlyphTypeToDiamond(); ls->m_SelectedGlyphSource2D->CrossOn(); ls->m_SelectedGlyphSource2D->FilledOff(); // apply transform vtkSmartPointer transformFilterS = vtkSmartPointer::New(); transformFilterS->SetInputConnection(ls->m_SelectedGlyphSource2D->GetOutputPort()); transformFilterS->SetTransform(transform); ls->m_VtkSelectedPointListPolyData->SetPoints(ls->m_SelectedPoints); ls->m_VtkSelectedPointListPolyData->GetPointData()->SetVectors(ls->m_SelectedScales); // apply transform of current plane to glyphs ls->m_SelectedGlyph3D->SetSourceConnection(transformFilterS->GetOutputPort()); ls->m_SelectedGlyph3D->SetInputData(ls->m_VtkSelectedPointListPolyData); ls->m_SelectedGlyph3D->SetScaleModeToScaleByVector(); ls->m_SelectedGlyph3D->SetVectorModeToUseVector(); ls->m_VtkSelectedPolyDataMapper->SetInputConnection(ls->m_SelectedGlyph3D->GetOutputPort()); ls->m_SelectedActor->SetMapper(ls->m_VtkSelectedPolyDataMapper); ls->m_SelectedActor->GetProperty()->SetLineWidth(m_PointLineWidth); ls->m_PropAssembly->AddPart(ls->m_SelectedActor); } void mitk::PointSetVtkMapper2D::GenerateDataForRenderer( mitk::BaseRenderer *renderer ) { const mitk::DataNode* node = GetDataNode(); if( node == NULL ) return; LocalStorage *ls = m_LSH.GetLocalStorage(renderer); // check whether the input data has been changed bool needGenerateData = ls->IsGenerateDataRequired( renderer, this, GetDataNode() ); // toggle visibility bool visible = true; node->GetVisibility(visible, renderer, "visible"); if(!visible) { ls->m_UnselectedActor->VisibilityOff(); ls->m_SelectedActor->VisibilityOff(); ls->m_ContourActor->VisibilityOff(); ls->m_PropAssembly->VisibilityOff(); return; }else{ ls->m_PropAssembly->VisibilityOn(); } node->GetBoolProperty("show contour", m_ShowContour, renderer); node->GetBoolProperty("close contour", m_CloseContour, renderer); node->GetBoolProperty("show points", m_ShowPoints, renderer); node->GetBoolProperty("show distances", m_ShowDistances, renderer); node->GetIntProperty("distance decimal digits", m_DistancesDecimalDigits, renderer); node->GetBoolProperty("show angles", m_ShowAngles, renderer); node->GetBoolProperty("show distant lines", m_ShowDistantLines, renderer); node->GetIntProperty("line width", m_LineWidth, renderer); node->GetIntProperty("point line width", m_PointLineWidth, renderer); - node->GetIntProperty("point 2D size", m_Point2DSize, renderer); + node->GetFloatProperty("point 2D size", m_Point2DSize, renderer); node->GetBoolProperty("Pointset.2D.fill shape", m_FillShape, renderer); node->GetFloatProperty("Pointset.2D.distance to plane", m_DistanceToPlane, renderer ); mitk::PointSetShapeProperty::Pointer shape = dynamic_cast(this->GetDataNode()->GetProperty( "Pointset.2D.shape", renderer )); if(shape.IsNotNull()) { m_IDShapeProperty = shape->GetPointSetShape(); } //check for color props and use it for rendering of selected/unselected points and contour //due to different params in VTK (double/float) we have to convert float unselectedColor[4]; double selectedColor[4]={1.0f,0.0f,0.0f,1.0f}; //red double contourColor[4]={1.0f,0.0f,0.0f,1.0f}; //red float opacity = 1.0; GetDataNode()->GetOpacity(opacity, renderer); // apply color and opacity if(m_ShowPoints) { ls->m_UnselectedActor->VisibilityOn(); ls->m_SelectedActor->VisibilityOn(); //check if there is a color property GetDataNode()->GetColor(unselectedColor); //get selected color property if (dynamic_cast(this->GetDataNode()->GetPropertyList(renderer)->GetProperty("selectedcolor")) != NULL) { mitk::Color tmpColor = dynamic_cast(this->GetDataNode()->GetPropertyList(renderer)->GetProperty("selectedcolor"))->GetValue(); selectedColor[0] = tmpColor[0]; selectedColor[1] = tmpColor[1]; selectedColor[2] = tmpColor[2]; selectedColor[3] = 1.0f; // alpha value } else if (dynamic_cast(this->GetDataNode()->GetPropertyList(NULL)->GetProperty("selectedcolor")) != NULL) { mitk::Color tmpColor = dynamic_cast(this->GetDataNode()->GetPropertyList(NULL)->GetProperty("selectedcolor"))->GetValue(); selectedColor[0] = tmpColor[0]; selectedColor[1] = tmpColor[1]; selectedColor[2] = tmpColor[2]; selectedColor[3] = 1.0f; // alpha value } ls->m_SelectedActor->GetProperty()->SetColor(selectedColor); ls->m_SelectedActor->GetProperty()->SetOpacity(opacity); ls->m_UnselectedActor->GetProperty()->SetColor(unselectedColor[0],unselectedColor[1],unselectedColor[2]); ls->m_UnselectedActor->GetProperty()->SetOpacity(opacity); } else { ls->m_UnselectedActor->VisibilityOff(); ls-> m_SelectedActor->VisibilityOff(); } if (m_ShowContour) { ls->m_ContourActor->VisibilityOn(); //get contour color property if (dynamic_cast(this->GetDataNode()->GetPropertyList(renderer)->GetProperty("contourcolor")) != NULL) { mitk::Color tmpColor = dynamic_cast(this->GetDataNode()->GetPropertyList(renderer)->GetProperty("contourcolor"))->GetValue(); contourColor[0] = tmpColor[0]; contourColor[1] = tmpColor[1]; contourColor[2] = tmpColor[2]; contourColor[3] = 1.0f; } else if (dynamic_cast(this->GetDataNode()->GetPropertyList(NULL)->GetProperty("contourcolor")) != NULL) { mitk::Color tmpColor = dynamic_cast(this->GetDataNode()->GetPropertyList(NULL)->GetProperty("contourcolor"))->GetValue(); contourColor[0] = tmpColor[0]; contourColor[1] = tmpColor[1]; contourColor[2] = tmpColor[2]; contourColor[3] = 1.0f; } ls->m_ContourActor->GetProperty()->SetColor(contourColor); ls->m_ContourActor->GetProperty()->SetOpacity(opacity); } else { ls->m_ContourActor->VisibilityOff(); } if(needGenerateData) { // create new vtk render objects (e.g. a circle for a point) this->CreateVTKRenderObjects(renderer); } } void mitk::PointSetVtkMapper2D::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { node->AddProperty( "line width", mitk::IntProperty::New(2), renderer, overwrite ); node->AddProperty( "point line width", mitk::IntProperty::New(1), renderer, overwrite ); - node->AddProperty( "point 2D size", mitk::IntProperty::New(6), renderer, overwrite ); + node->AddProperty( "point 2D size", mitk::FloatProperty::New(6), renderer, overwrite ); node->AddProperty( "show contour", mitk::BoolProperty::New(false), renderer, overwrite ); node->AddProperty( "close contour", mitk::BoolProperty::New(false), renderer, overwrite ); node->AddProperty( "show points", mitk::BoolProperty::New(true), renderer, overwrite ); node->AddProperty( "show distances", mitk::BoolProperty::New(false), renderer, overwrite ); node->AddProperty( "distance decimal digits", mitk::IntProperty::New(2), renderer, overwrite ); node->AddProperty( "show angles", mitk::BoolProperty::New(false), renderer, overwrite ); node->AddProperty( "show distant lines", mitk::BoolProperty::New(false), renderer, overwrite ); node->AddProperty( "layer", mitk::IntProperty::New(1), renderer, overwrite ); node->AddProperty( "Pointset.2D.fill shape", mitk::BoolProperty::New(false), renderer, overwrite); // fill or do not fill the glyph shape mitk::PointSetShapeProperty::Pointer pointsetShapeProperty = mitk::PointSetShapeProperty::New(); node->AddProperty( "Pointset.2D.shape", pointsetShapeProperty, renderer, overwrite); node->AddProperty( "Pointset.2D.distance to plane", mitk::FloatProperty::New(4.0f), renderer, overwrite ); //show the point at a certain distance above/below the 2D imaging plane. Superclass::SetDefaultProperties(node, renderer, overwrite); } diff --git a/Modules/LegacyGL/mitkPointSetGLMapper2D.cpp b/Modules/LegacyGL/mitkPointSetGLMapper2D.cpp index 7c71d1530e..a475a393ca 100644 --- a/Modules/LegacyGL/mitkPointSetGLMapper2D.cpp +++ b/Modules/LegacyGL/mitkPointSetGLMapper2D.cpp @@ -1,513 +1,513 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPointSetGLMapper2D.h" #include "mitkPointSet.h" #include "mitkPlaneGeometry.h" #include "mitkColorProperty.h" #include "mitkProperties.h" #include "vtkLinearTransform.h" #include "mitkStringProperty.h" #include "mitkPointSet.h" #include "mitkVtkPropRenderer.h" #include "mitkGL.h" //const float selectedColor[]={1.0,0.0,0.6}; //for selected! mitk::PointSetGLMapper2D::PointSetGLMapper2D() : m_Polygon(false), m_ShowPoints(true), m_ShowDistances(false), m_DistancesDecimalDigits(1), m_ShowAngles(false), m_ShowDistantLines(true), m_LineWidth(1) { } mitk::PointSetGLMapper2D::~PointSetGLMapper2D() { } const mitk::PointSet *mitk::PointSetGLMapper2D::GetInput(void) { return static_cast ( GetDataNode()->GetData() ); } void mitk::PointSetGLMapper2D::ApplyAllProperties(mitk::BaseRenderer* renderer) { GLMapper::ApplyColorAndOpacityProperties( renderer ); const mitk::DataNode* node=GetDataNode(); if( node == NULL ) return; node->GetBoolProperty("show contour", m_Polygon); node->GetBoolProperty("close contour", m_PolygonClosed); node->GetBoolProperty("show points", m_ShowPoints); node->GetBoolProperty("show distances", m_ShowDistances); node->GetIntProperty("distance decimal digits", m_DistancesDecimalDigits); node->GetBoolProperty("show angles", m_ShowAngles); node->GetBoolProperty("show distant lines", m_ShowDistantLines); node->GetIntProperty("line width", m_LineWidth); node->GetIntProperty("point line width", m_PointLineWidth); - node->GetIntProperty("point 2D size", m_Point2DSize); + node->GetFloatProperty("point 2D size", m_Point2DSize); } static bool makePerpendicularVector2D(const mitk::Vector2D& in, mitk::Vector2D& out) { if((fabs(in[0])>0) && ( (fabs(in[0])>fabs(in[1])) || (in[1] == 0) ) ) { out[0]=-in[1]/in[0]; out[1]=1; out.Normalize(); return true; } else if(fabs(in[1])>0) { out[0]=1; out[1]=-in[0]/in[1]; out.Normalize(); return true; } else return false; } void mitk::PointSetGLMapper2D::Paint( mitk::BaseRenderer *renderer ) { const mitk::DataNode* node=GetDataNode(); if( node == NULL ) return; const int text2dDistance = 10; bool visible = true; GetDataNode()->GetVisibility(visible, renderer, "visible"); if ( !visible) return; // @FIXME: Logik fuer update bool updateNeccesary=true; if (updateNeccesary) { // ok, das ist aus GenerateData kopiert mitk::PointSet::Pointer input = const_cast(this->GetInput()); // Get the TimeGeometry of the input object const TimeGeometry* inputTimeGeometry = input->GetTimeGeometry(); if (( inputTimeGeometry == NULL ) || ( inputTimeGeometry->CountTimeSteps() == 0 ) ) { return; } // // get the world time // ScalarType time = renderer->GetTime(); // // convert the world time in time steps of the input object // int timeStep=0; if ( time > itk::NumericTraits::NonpositiveMin() ) timeStep = inputTimeGeometry->TimePointToTimeStep( time ); if ( inputTimeGeometry->IsValidTimeStep( timeStep ) == false ) { return; } mitk::PointSet::DataType::Pointer itkPointSet = input->GetPointSet( timeStep ); if ( itkPointSet.GetPointer() == NULL) { return; } mitk::DisplayGeometry::Pointer displayGeometry = renderer->GetDisplayGeometry(); assert(displayGeometry.IsNotNull()); //apply color and opacity read from the PropertyList this->ApplyAllProperties(renderer); vtkLinearTransform* transform = GetDataNode()->GetVtkTransform(); //List of the Points PointSet::DataType::PointsContainerConstIterator it, end; it = itkPointSet->GetPoints()->Begin(); end = itkPointSet->GetPoints()->End(); //iterator on the additional data of each point PointSet::DataType::PointDataContainerIterator selIt, selEnd; bool pointDataBroken = (itkPointSet->GetPointData()->Size() != itkPointSet->GetPoints()->Size()); selIt = itkPointSet->GetPointData()->Begin(); selEnd = itkPointSet->GetPointData()->End(); int counter = 0; //for writing text int j = 0; //for switching back to old color after using selected color float recallColor[4]; glGetFloatv(GL_CURRENT_COLOR,recallColor); //get the properties for coloring the points float unselectedColor[4] = {1.0, 1.0, 0.0, 1.0};//yellow //check if there is an unselected property if (dynamic_cast(node->GetPropertyList(renderer)->GetProperty("unselectedcolor")) != NULL) { mitk::Color tmpColor = dynamic_cast(this->GetDataNode()->GetPropertyList(renderer)->GetProperty("unselectedcolor"))->GetValue(); unselectedColor[0] = tmpColor[0]; unselectedColor[1] = tmpColor[1]; unselectedColor[2] = tmpColor[2]; unselectedColor[3] = 1.0f; //!!define a new ColorProp to be able to pass alpha value } else if (dynamic_cast(node->GetPropertyList(NULL)->GetProperty("unselectedcolor")) != NULL) { mitk::Color tmpColor = dynamic_cast(this->GetDataNode()->GetPropertyList(NULL)->GetProperty("unselectedcolor"))->GetValue(); unselectedColor[0] = tmpColor[0]; unselectedColor[1] = tmpColor[1]; unselectedColor[2] = tmpColor[2]; unselectedColor[3] = 1.0f; //!!define a new ColorProp to be able to pass alpha value } else { //get the color from the dataNode node->GetColor(unselectedColor, NULL); } //get selected property float selectedColor[4] = {1.0, 0.0, 0.6, 1.0}; if (dynamic_cast(node->GetPropertyList(renderer)->GetProperty("selectedcolor")) != NULL) { mitk::Color tmpColor = dynamic_cast(this->GetDataNode()->GetPropertyList(renderer)->GetProperty("selectedcolor"))->GetValue(); selectedColor[0] = tmpColor[0]; selectedColor[1] = tmpColor[1]; selectedColor[2] = tmpColor[2]; selectedColor[3] = 1.0f; } else if (dynamic_cast(node->GetPropertyList(NULL)->GetProperty("selectedcolor")) != NULL) { mitk::Color tmpColor = dynamic_cast(this->GetDataNode()->GetPropertyList(NULL)->GetProperty("selectedcolor"))->GetValue(); selectedColor[0] = tmpColor[0]; selectedColor[1] = tmpColor[1]; selectedColor[2] = tmpColor[2]; selectedColor[3] = 1.0f; } //check if there is an pointLineWidth property if (dynamic_cast(node->GetPropertyList(renderer)->GetProperty("point line width")) != NULL) { m_PointLineWidth = dynamic_cast(this->GetDataNode()->GetPropertyList(renderer)->GetProperty("point line width"))->GetValue(); } else if (dynamic_cast(node->GetPropertyList(NULL)->GetProperty("point line width")) != NULL) { m_PointLineWidth = dynamic_cast(this->GetDataNode()->GetPropertyList(NULL)->GetProperty("point line width"))->GetValue(); } //check if there is an point 2D size property - if (dynamic_cast(node->GetPropertyList(renderer)->GetProperty("point 2D size")) != NULL) + if (dynamic_cast(node->GetPropertyList(renderer)->GetProperty("point 2D size")) != NULL) { - m_Point2DSize = dynamic_cast(this->GetDataNode()->GetPropertyList(renderer)->GetProperty("point 2D size"))->GetValue(); + m_Point2DSize = dynamic_cast(this->GetDataNode()->GetPropertyList(renderer)->GetProperty("point 2D size"))->GetValue(); } - else if (dynamic_cast(node->GetPropertyList(NULL)->GetProperty("point 2D size")) != NULL) + else if (dynamic_cast(node->GetPropertyList(NULL)->GetProperty("point 2D size")) != NULL) { - m_Point2DSize = dynamic_cast(this->GetDataNode()->GetPropertyList(NULL)->GetProperty("point 2D size"))->GetValue(); + m_Point2DSize = dynamic_cast(this->GetDataNode()->GetPropertyList(NULL)->GetProperty("point 2D size"))->GetValue(); } Point3D p; // currently visited point Point3D lastP; // last visited point Vector3D vec; // p - lastP Vector3D lastVec; // lastP - point before lastP vec.Fill(0); mitk::Point3D projected_p; // p projected on viewplane Point2D pt2d; // projected_p in display coordinates Point2D lastPt2d; // last projected_p in display coordinates Point2D preLastPt2d;// projected_p in display coordinates before lastPt2d Point2D lastPt2DInPointSet; // The last point in the pointset in display coordinates mitk::PointSet::DataType::PointType plob; plob.Fill(0); itkPointSet->GetPoint( itkPointSet->GetNumberOfPoints()-1, &plob); //map lastPt2DInPointSet to display coordinates float vtkp[3]; itk2vtk(plob, vtkp); transform->TransformPoint(vtkp, vtkp); vtk2itk(vtkp,p); displayGeometry->Project(p, projected_p); displayGeometry->Map(projected_p, lastPt2DInPointSet); displayGeometry->WorldToDisplay(lastPt2DInPointSet, lastPt2DInPointSet); while(it!=end) // iterate over all points { lastP = p; // valid only for counter > 0 lastVec = vec; // valid only for counter > 1 preLastPt2d = lastPt2d; // valid only for counter > 1 lastPt2d = pt2d; // valid only for counter > 0 itk2vtk(it->Value(), vtkp); transform->TransformPoint(vtkp, vtkp); vtk2itk(vtkp,p); vec = p-lastP; // valid only for counter > 0 displayGeometry->Project(p, projected_p); Vector3D diff=p-projected_p; ScalarType scalardiff = diff.GetSquaredNorm(); //MouseOrientation bool isInputDevice=false; bool isRendererSlice = scalardiff < 0.00001; //cause roundoff error if(this->GetDataNode()->GetBoolProperty("inputdevice",isInputDevice) && isInputDevice && !isRendererSlice ) { displayGeometry->Map(projected_p, pt2d); displayGeometry->WorldToDisplay(pt2d, pt2d); //Point size depending of distance to slice /*float p_size = (1/scalardiff)*10*m_Point2DSize; if(p_size < m_Point2DSize * 0.6 ) p_size = m_Point2DSize * 0.6 ; else if ( p_size > m_Point2DSize ) p_size = m_Point2DSize;*/ float p_size = (1/scalardiff)*100.0; if(p_size < 6.0 ) p_size = 6.0 ; else if ( p_size > 10.0 ) p_size = 10.0; //draw Point float opacity = (p_size<8)?0.3:1.0;//don't get the opacity from the node? Feature not a bug! Otehrwise the 2D cross is hardly seen. glColor4f(unselectedColor[0],unselectedColor[1],unselectedColor[2],opacity); glPointSize(p_size); //glShadeModel(GL_FLAT); glBegin (GL_POINTS); glVertex2dv(&pt2d[0]); glEnd (); } //for point set if(!isInputDevice && ( (scalardiff<4.0) || (m_Polygon))) { Point2D tmp; displayGeometry->Map(projected_p, pt2d); displayGeometry->WorldToDisplay(pt2d, pt2d); Vector2D horz,vert; horz[0]=(float)m_Point2DSize-scalardiff*2; horz[1]=0; vert[0]=0; vert[1]=(float)m_Point2DSize-scalardiff*2; // now paint text if available if (dynamic_cast(this->GetDataNode() ->GetProperty("label")) != NULL) { const char * pointLabel = dynamic_cast( this->GetDataNode()->GetProperty("label"))->GetValue(); std::string l = pointLabel; if (input->GetSize()>1) { // char buffer[20]; // sprintf(buffer,"%d",it->Index()); std::stringstream ss; ss << it->Index(); l.append(ss.str()); } mitk::VtkPropRenderer* OpenGLrenderer = dynamic_cast( renderer ); float rgb[3];//yellow rgb[0] = unselectedColor[0]; rgb[1] = unselectedColor[1]; rgb[2] = unselectedColor[2]; OpenGLrenderer->WriteSimpleText(l, pt2d[0] + text2dDistance, pt2d[1] + text2dDistance,rgb[0], rgb[1],rgb[2]); } if((m_ShowPoints) && (scalardiff<4.0)) { //check if the point is to be marked as selected if(selIt != selEnd || pointDataBroken) { bool addAsSelected = false; if (pointDataBroken) addAsSelected = false; else if (selIt->Value().selected) addAsSelected = true; else addAsSelected = false; if (addAsSelected) { horz[0]=(float)m_Point2DSize; vert[1]=(float)m_Point2DSize; glColor3f(selectedColor[0],selectedColor[1],selectedColor[2]); glLineWidth(m_PointLineWidth); //a diamond around the point with the selected color glBegin (GL_LINE_LOOP); tmp=pt2d-horz; glVertex2dv(&tmp[0]); tmp=pt2d+vert; glVertex2dv(&tmp[0]); tmp=pt2d+horz; glVertex2dv(&tmp[0]); tmp=pt2d-vert; glVertex2dv(&tmp[0]); glEnd (); glLineWidth(1); //the actual point in the specified color to see the usual color of the point glColor3f(unselectedColor[0],unselectedColor[1],unselectedColor[2]); glPointSize(1); glBegin (GL_POINTS); tmp=pt2d; glVertex2dv(&tmp[0]); glEnd (); } else //if not selected { glColor3f(unselectedColor[0],unselectedColor[1],unselectedColor[2]); glLineWidth(m_PointLineWidth); //drawing crosses glBegin (GL_LINES); tmp=pt2d-horz; glVertex2dv(&tmp[0]); tmp=pt2d+horz; glVertex2dv(&tmp[0]); tmp=pt2d-vert; glVertex2dv(&tmp[0]); tmp=pt2d+vert; glVertex2dv(&tmp[0]); glEnd (); glLineWidth(1); } } } bool drawLinesEtc = true; if (!m_ShowDistantLines && counter > 0) // check, whether this line should be drawn { ScalarType currentDistance = displayGeometry->GetWorldGeometry()->SignedDistance(p); ScalarType lastDistance = displayGeometry->GetWorldGeometry()->SignedDistance(lastP); if ( currentDistance * lastDistance > 0.5 ) // points on same side of plane drawLinesEtc = false; } // draw a line if ((m_Polygon && counter>0 && drawLinesEtc) || (m_Polygon && m_PolygonClosed && drawLinesEtc)) { if ((counter == 0) && ( m_PolygonClosed)) { lastPt2d = lastPt2DInPointSet; } //get contour color property float contourColor[4] = {unselectedColor[0], unselectedColor[1], unselectedColor[2], unselectedColor[3]};//so if no property set, then use unselected color if (dynamic_cast(node->GetPropertyList(renderer)->GetProperty("contourcolor")) != NULL) { mitk::Color tmpColor = dynamic_cast(this->GetDataNode()->GetPropertyList(renderer)->GetProperty("contourcolor"))->GetValue(); contourColor[0] = tmpColor[0]; contourColor[1] = tmpColor[1]; contourColor[2] = tmpColor[2]; contourColor[3] = 1.0f; } else if (dynamic_cast(node->GetPropertyList(NULL)->GetProperty("contourcolor")) != NULL) { mitk::Color tmpColor = dynamic_cast(this->GetDataNode()->GetPropertyList(NULL)->GetProperty("contourcolor"))->GetValue(); contourColor[0] = tmpColor[0]; contourColor[1] = tmpColor[1]; contourColor[2] = tmpColor[2]; contourColor[3] = 1.0f; } //set this color glColor3f(contourColor[0],contourColor[1],contourColor[2]); glLineWidth( m_LineWidth ); glBegin (GL_LINES); glVertex2dv(&pt2d[0]); glVertex2dv(&lastPt2d[0]); glEnd (); glLineWidth(1.0); if(m_ShowDistances) // calculate and print a distance { std::stringstream buffer; float distance = vec.GetNorm(); buffer<( renderer ); OpenGLrenderer->WriteSimpleText(buffer.str(), pos2d[0], pos2d[1]); //this->WriteTextXY(pos2d[0], pos2d[1], buffer.str(),renderer); } if(m_ShowAngles && counter > 1 ) // calculate and print the angle btw. two lines { std::stringstream buffer; //buffer << angle(vec.Get_vnl_vector(), -lastVec.Get_vnl_vector())*180/vnl_math::pi << "�"; buffer << angle(vec.GetVnlVector(), -lastVec.GetVnlVector())*180/vnl_math::pi << (char)176; Vector2D vec2d = pt2d-lastPt2d; vec2d.Normalize(); Vector2D lastVec2d = lastPt2d-preLastPt2d; lastVec2d.Normalize(); vec2d=vec2d-lastVec2d; vec2d.Normalize(); Vector2D pos2d = lastPt2d.GetVectorFromOrigin()+vec2d*text2dDistance*text2dDistance; mitk::VtkPropRenderer* OpenGLrenderer = dynamic_cast( renderer ); OpenGLrenderer->WriteSimpleText(buffer.str(), pos2d[0], pos2d[1]); //this->WriteTextXY(pos2d[0], pos2d[1], buffer.str(),renderer); } } counter++; } ++it; if(selIt != selEnd && !pointDataBroken) ++selIt; j++; } //recall the color to the same color before this drawing glColor3f(recallColor[0],recallColor[1],recallColor[2]); } } void mitk::PointSetGLMapper2D::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { node->AddProperty( "line width", mitk::IntProperty::New(2), renderer, overwrite ); // width of the line from one point to another node->AddProperty( "point line width", mitk::IntProperty::New(1), renderer, overwrite ); //width of the cross marking a point - node->AddProperty( "point 2D size", mitk::IntProperty::New(8), renderer, overwrite ); // length of the cross marking a point // length of an edge of the box marking a point + node->AddProperty( "point 2D size", mitk::FloatProperty::New(8), renderer, overwrite ); // length of the cross marking a point // length of an edge of the box marking a point node->AddProperty( "show contour", mitk::BoolProperty::New(false), renderer, overwrite ); // contour of the line between points node->AddProperty( "close contour", mitk::BoolProperty::New(false), renderer, overwrite ); node->AddProperty( "show points", mitk::BoolProperty::New(true), renderer, overwrite ); //show or hide points node->AddProperty( "show distances", mitk::BoolProperty::New(false), renderer, overwrite ); //show or hide distance measure (not always available) node->AddProperty( "distance decimal digits", mitk::IntProperty::New(2), renderer, overwrite ); //set the number of decimal digits to be shown node->AddProperty( "show angles", mitk::BoolProperty::New(false), renderer, overwrite ); //show or hide angle measurement (not always available) node->AddProperty( "show distant lines", mitk::BoolProperty::New(false), renderer, overwrite ); //show the line between to points from a distant view (equals "always on top" option) node->AddProperty( "layer", mitk::IntProperty::New(1), renderer, overwrite ); // default to draw pointset above images (they have a default layer of 0) Superclass::SetDefaultProperties(node, renderer, overwrite); } diff --git a/Modules/LegacyGL/mitkPointSetGLMapper2D.h b/Modules/LegacyGL/mitkPointSetGLMapper2D.h index 36e43e155c..2797f7f0ea 100644 --- a/Modules/LegacyGL/mitkPointSetGLMapper2D.h +++ b/Modules/LegacyGL/mitkPointSetGLMapper2D.h @@ -1,99 +1,99 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef MITKPointSetMAPPER2D_H_HEADER_INCLUDED #define MITKPointSetMAPPER2D_H_HEADER_INCLUDED #include #include "mitkGLMapper.h" namespace mitk { class BaseRenderer; class PointSet; /** * @brief OpenGL-based mapper to display a mitk::PointSet in a 2D window. * * This mapper can actually more than just draw a number of points of a * mitk::PointSet. If you set the right properties of the mitk::DataNode, * which contains the point set, then this mapper will also draw lines * connecting the points, and calculate and display distances and angles * between adjacent points. Here is a complete list of boolean properties, * which might be of interest: * * - \b "show contour": Draw not only the points but also the connections between * them (default false) * - \b "line width": IntProperty which gives the width of the contour lines * - \b "show points": Wheter or not to draw the actual points (default true) * - \b "show distances": Wheter or not to calculate and print the distance * between adjacent points (default false) * - \b "show angles": Wheter or not to calculate and print the angle between * adjacent points (default false) * - \b "show distant lines": When true, the mapper will also draw contour * lines that are far away form the current slice (default true) * - \b "label": StringProperty with a label for this point set * * BUG 1321 - possible new features: * point-2d-size (length of lines in cross/diamond) * point-linewidth * * @ingroup Mapper */ /** \deprecatedSince{2013_06} This mapper is replaced by PointSetVtkMapper2D. The child classes of this class are deprecated. * To further ensure their functionality PointSetGLMapper2D cannot be removed and is set deprecated too. */ class MITKLEGACYGL_EXPORT PointSetGLMapper2D : public GLMapper { public: mitkClassMacro(PointSetGLMapper2D, GLMapper); itkFactorylessNewMacro(Self) itkCloneMacro(Self) /** @brief Get the PointDataList to map */ virtual const mitk::PointSet * GetInput(void); virtual void Paint(mitk::BaseRenderer * renderer); virtual void ApplyAllProperties(mitk::BaseRenderer* renderer); static void SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer = NULL, bool overwrite = false); protected: PointSetGLMapper2D(); virtual ~PointSetGLMapper2D(); bool m_Polygon; bool m_PolygonClosed; bool m_ShowPoints; bool m_ShowDistances; int m_DistancesDecimalDigits; bool m_ShowAngles; bool m_ShowDistantLines; int m_LineWidth; int m_PointLineWidth; - int m_Point2DSize; + float m_Point2DSize; }; } // namespace mitk #endif /* MITKPointSetMapper2D_H_HEADER_INCLUDED */ diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkMLBTView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkMLBTView.cpp index 82ffd5cfe0..7aa099b1d7 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkMLBTView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkMLBTView.cpp @@ -1,364 +1,364 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Blueberry #include #include // Qmitk #include "QmitkMLBTView.h" #include "QmitkStdMultiWidget.h" // Qt #include #include #include #include "mitkNodePredicateDataType.h" #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include const std::string QmitkMLBTView::VIEW_ID = "org.mitk.views.mlbtview"; using namespace berry; QmitkMLBTView::QmitkMLBTView() : QmitkFunctionality() , m_Controls( 0 ) , m_MultiWidget( NULL ) { m_TrackingTimer = new QTimer(this); } // Destructor QmitkMLBTView::~QmitkMLBTView() { } void QmitkMLBTView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkMLBTViewControls; m_Controls->setupUi( parent ); connect( m_Controls->m_StartTrainingButton, SIGNAL ( clicked() ), this, SLOT( StartTrainingThread() ) ); connect( &m_TrainingWatcher, SIGNAL ( finished() ), this, SLOT( OnTrainingThreadStop() ) ); connect( m_Controls->m_StartTrackingButton, SIGNAL ( clicked() ), this, SLOT( StartTrackingThread() ) ); connect( &m_TrackingWatcher, SIGNAL ( finished() ), this, SLOT( OnTrackingThreadStop() ) ); connect( m_Controls->m_SaveForestButton, SIGNAL ( clicked() ), this, SLOT( SaveForest() ) ); connect( m_Controls->m_LoadForestButton, SIGNAL ( clicked() ), this, SLOT( LoadForest() ) ); connect( m_TrackingTimer, SIGNAL(timeout()), this, SLOT(BuildFibers()) ); connect( m_Controls->m_TimerIntervalBox, SIGNAL(valueChanged(int)), this, SLOT( ChangeTimerInterval(int) )); connect( m_Controls->m_DemoModeBox, SIGNAL(stateChanged(int)), this, SLOT( ToggleDemoMode(int) )); connect( m_Controls->m_PauseTrackingButton, SIGNAL ( clicked() ), this, SLOT( PauseTracking() ) ); connect( m_Controls->m_AbortTrackingButton, SIGNAL ( clicked() ), this, SLOT( AbortTracking() ) ); int numThread = itk::MultiThreader::GetGlobalDefaultNumberOfThreads(); m_Controls->m_NumberOfThreadsBox->setMaximum(numThread); m_Controls->m_NumberOfThreadsBox->setValue(numThread); m_Controls->m_TrackingMaskImageBox->SetDataStorage(this->GetDataStorage()); m_Controls->m_TrackingSeedImageBox->SetDataStorage(this->GetDataStorage()); m_Controls->m_TrackingStopImageBox->SetDataStorage(this->GetDataStorage()); m_Controls->m_TrackingRawImageBox->SetDataStorage(this->GetDataStorage()); mitk::TNodePredicateDataType::Pointer isMitkImage = mitk::TNodePredicateDataType::New(); mitk::NodePredicateDataType::Pointer isDwi = mitk::NodePredicateDataType::New("DiffusionImage"); mitk::NodePredicateDataType::Pointer isDti = mitk::NodePredicateDataType::New("TensorImage"); mitk::NodePredicateDataType::Pointer isQbi = mitk::NodePredicateDataType::New("QBallImage"); mitk::NodePredicateOr::Pointer isDiffusionImage = mitk::NodePredicateOr::New(isDwi, isDti); isDiffusionImage = mitk::NodePredicateOr::New(isDiffusionImage, isQbi); mitk::NodePredicateNot::Pointer noDiffusionImage = mitk::NodePredicateNot::New(isDiffusionImage); mitk::NodePredicateAnd::Pointer finalPredicate = mitk::NodePredicateAnd::New(isMitkImage, noDiffusionImage); mitk::NodePredicateProperty::Pointer isBinaryPredicate = mitk::NodePredicateProperty::New("binary", mitk::BoolProperty::New(true)); finalPredicate = mitk::NodePredicateAnd::New(finalPredicate, isBinaryPredicate); m_Controls->m_TrackingMaskImageBox->SetPredicate(finalPredicate); m_Controls->m_TrackingSeedImageBox->SetPredicate(finalPredicate); m_Controls->m_TrackingStopImageBox->SetPredicate(finalPredicate); m_Controls->m_TrackingRawImageBox->SetPredicate(isMitkImage); } } void QmitkMLBTView::AbortTracking() { if (tracker.IsNotNull()) { tracker->m_AbortTracking = true; } } void QmitkMLBTView::PauseTracking() { if (tracker.IsNotNull()) { tracker->m_PauseTracking = !tracker->m_PauseTracking; } } void QmitkMLBTView::ChangeTimerInterval(int value) { m_TrackingTimer->setInterval(value); } void QmitkMLBTView::ToggleDemoMode(int state) { if (tracker.IsNotNull()) { tracker->SetDemoMode(m_Controls->m_DemoModeBox->isChecked()); tracker->m_Stop = false; } } void QmitkMLBTView::BuildFibers() { if (m_Controls->m_DemoModeBox->isChecked() && tracker.IsNotNull() && tracker->m_BuildFibersFinished) { vtkSmartPointer< vtkPolyData > poly = tracker->GetFiberPolyData(); mitk::FiberBundle::Pointer outFib = mitk::FiberBundle::New(poly); outFib->SetFiberColors(255,255,255); m_TractogramNode->SetData(outFib); m_SamplingPointsNode->SetData(tracker->m_SamplingPointset); m_AlternativePointsNode->SetData(tracker->m_AlternativePointset); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); tracker->m_BuildFibersFinished = false; tracker->m_BuildFibersReady = 0; tracker->m_Stop = false; } } void QmitkMLBTView::LoadForest() { QString filename = QFileDialog::getOpenFileName(0, tr("Load Forest"), QDir::currentPath(), tr("HDF5 random forest file (*.rf)") ); if(filename.isEmpty() || filename.isNull()) return; m_ForestHandler.LoadForest( filename.toStdString() ); } void QmitkMLBTView::StartTrackingThread() { m_TractogramNode = mitk::DataNode::New(); m_TractogramNode->SetName("MLBT Result"); m_TractogramNode->SetProperty("Fiber2DSliceThickness", mitk::FloatProperty::New(20)); m_TractogramNode->SetProperty("Fiber2DfadeEFX", mitk::BoolProperty::New(false)); m_TractogramNode->SetProperty("LineWidth", mitk::IntProperty::New(2)); m_TractogramNode->SetProperty("color",mitk::ColorProperty::New(0, 1, 1)); this->GetDataStorage()->Add(m_TractogramNode); m_SamplingPointsNode = mitk::DataNode::New(); m_SamplingPointsNode->SetName("SamplingPoints"); m_SamplingPointsNode->SetProperty("pointsize", mitk::FloatProperty::New(0.2)); m_SamplingPointsNode->SetProperty("color", mitk::ColorProperty::New(1,1,1)); mitk::PointSetShapeProperty::Pointer bla = mitk::PointSetShapeProperty::New(); bla->SetValue(8); m_SamplingPointsNode->SetProperty("Pointset.2D.shape", bla); m_SamplingPointsNode->SetProperty("Pointset.2D.distance to plane", mitk::FloatProperty::New(1.5)); - m_SamplingPointsNode->SetProperty("point 2D size", mitk::IntProperty::New(3)); + m_SamplingPointsNode->SetProperty("point 2D size", mitk::FloatProperty::New(0.1)); m_SamplingPointsNode->SetProperty("Pointset.2D.fill shape", mitk::BoolProperty::New(true)); this->GetDataStorage()->Add(m_SamplingPointsNode); m_AlternativePointsNode = mitk::DataNode::New(); m_AlternativePointsNode->SetName("AlternativePoints"); m_AlternativePointsNode->SetProperty("pointsize", mitk::FloatProperty::New(0.2)); m_AlternativePointsNode->SetProperty("color", mitk::ColorProperty::New(1,0,0)); m_AlternativePointsNode->SetProperty("Pointset.2D.shape", bla); m_AlternativePointsNode->SetProperty("Pointset.2D.distance to plane", mitk::FloatProperty::New(1.5)); - m_AlternativePointsNode->SetProperty("point 2D size", mitk::IntProperty::New(3)); + m_AlternativePointsNode->SetProperty("point 2D size", mitk::FloatProperty::New(0.1)); m_AlternativePointsNode->SetProperty("Pointset.2D.fill shape", mitk::BoolProperty::New(true)); this->GetDataStorage()->Add(m_AlternativePointsNode); QFuture future = QtConcurrent::run( this, &QmitkMLBTView::StartTracking ); m_TrackingWatcher.setFuture(future); m_TrackingThreadIsRunning = true; m_Controls->m_StartTrackingButton->setEnabled(false); m_TrackingTimer->start(m_Controls->m_TimerIntervalBox->value()); } void QmitkMLBTView::OnTrackingThreadStop() { m_TrackingThreadIsRunning = false; m_Controls->m_StartTrackingButton->setEnabled(true); vtkSmartPointer< vtkPolyData > poly = tracker->GetFiberPolyData(); mitk::FiberBundle::Pointer outFib = mitk::FiberBundle::New(poly); outFib->SetFiberColors(255,255,255); // mitk::DataNode::Pointer node = mitk::DataNode::New(); m_TractogramNode->SetData(outFib); m_SamplingPointsNode->SetData(tracker->m_SamplingPointset); m_AlternativePointsNode->SetData(tracker->m_AlternativePointset); tracker = NULL; m_TrackingTimer->stop(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkMLBTView::StartTracking() { if ( m_Controls->m_TrackingRawImageBox->GetSelectedNode().IsNull() ) return; mitk::Image::Pointer dwi = dynamic_cast(m_Controls->m_TrackingRawImageBox->GetSelectedNode()->GetData()); tracker = TrackerType::New(); tracker->SetNumberOfThreads(m_Controls->m_NumberOfThreadsBox->value()); tracker->SetInput(0, mitk::DiffusionPropertyHelper::GetItkVectorImage(dwi) ); tracker->SetGradientDirections( mitk::DiffusionPropertyHelper::GetGradientContainer(dwi) ); tracker->SetB_Value( mitk::DiffusionPropertyHelper::GetReferenceBValue(dwi) ); tracker->SetDemoMode(m_Controls->m_DemoModeBox->isChecked()); if (m_Controls->m_DemoModeBox->isChecked()) tracker->SetNumberOfThreads(1); if (m_Controls->m_TrackingUseMaskImageBox->isChecked() && m_Controls->m_TrackingMaskImageBox->GetSelectedNode().IsNotNull()) { mitk::Image::Pointer mask = dynamic_cast(m_Controls->m_TrackingMaskImageBox->GetSelectedNode()->GetData()); ItkUcharImgType::Pointer itkMask = ItkUcharImgType::New(); mitk::CastToItkImage(mask, itkMask); tracker->SetMaskImage(itkMask); } if (m_Controls->m_TrackingUseSeedImageBox->isChecked() && m_Controls->m_TrackingSeedImageBox->GetSelectedNode().IsNotNull()) { mitk::Image::Pointer img = dynamic_cast(m_Controls->m_TrackingSeedImageBox->GetSelectedNode()->GetData()); ItkUcharImgType::Pointer itkImg = ItkUcharImgType::New(); mitk::CastToItkImage(img, itkImg); tracker->SetSeedImage(itkImg); } if (m_Controls->m_TrackingUseStopImageBox->isChecked() && m_Controls->m_TrackingStopImageBox->GetSelectedNode().IsNotNull()) { mitk::Image::Pointer img = dynamic_cast(m_Controls->m_TrackingStopImageBox->GetSelectedNode()->GetData()); ItkUcharImgType::Pointer itkImg = ItkUcharImgType::New(); mitk::CastToItkImage(img, itkImg); tracker->SetStoppingRegions(itkImg); } tracker->SetSeedsPerVoxel(m_Controls->m_NumberOfSeedsBox->value()); tracker->SetStepSize(m_Controls->m_TrackingStepSizeBox->value()); tracker->SetAngularThreshold(cos((float)m_Controls->m_AngularThresholdBox->value()*M_PI/180)); tracker->SetMinTractLength(m_Controls->m_MinLengthBox->value()); tracker->SetMaxTractLength(m_Controls->m_MaxLengthBox->value()); tracker->SetAposterioriCurvCheck(m_Controls->m_Curvcheck2->isChecked()); tracker->SetRemoveWmEndFibers(false); tracker->SetAvoidStop(m_Controls->m_AvoidStop->isChecked()); vigra::RandomForest forest = m_ForestHandler.GetForest(); tracker->SetDecisionForest(&forest); tracker->SetSamplingDistance(m_Controls->m_SamplingDistanceBox->value()); tracker->SetNumberOfSamples(m_Controls->m_NumSamplesBox->value()); tracker->SetRandomSampling(m_Controls->m_RandomSampling->isChecked()); tracker->Update(); // vtkSmartPointer< vtkPolyData > poly = tracker->GetFiberPolyData(); // mitk::FiberBundle::Pointer outFib = mitk::FiberBundle::New(poly); // outFib->SetColorCoding(mitk::FiberBundle::COLORCODING_CUSTOM); // mitk::DataNode::Pointer node = mitk::DataNode::New(); // m_TractogramNode->SetData(outFib); // node->SetData(outFib); // node->SetName("MLBT Result"); // this->GetDataStorage()->Add(node); // mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkMLBTView::SaveForest() { QString filename = QFileDialog::getSaveFileName(0, tr("Save Forest"), QDir::currentPath()+"/forest.rf", tr("HDF5 random forest file (*.rf)") ); if(filename.isEmpty() || filename.isNull()) return; if(!filename.endsWith(".rf")) filename += ".rf"; m_ForestHandler.SaveForest( filename.toStdString() ); } void QmitkMLBTView::StartTrainingThread() { QFuture future = QtConcurrent::run( this, &QmitkMLBTView::StartTraining ); m_TrainingWatcher.setFuture(future); m_Controls->m_StartTrainingButton->setEnabled(false); m_Controls->m_SaveForestButton->setEnabled(false); m_Controls->m_LoadForestButton->setEnabled(false); } void QmitkMLBTView::OnTrainingThreadStop() { m_Controls->m_StartTrainingButton->setEnabled(true); m_Controls->m_SaveForestButton->setEnabled(true); m_Controls->m_LoadForestButton->setEnabled(true); } void QmitkMLBTView::StartTraining() { m_ForestHandler.SetRawData(m_SelectedDiffImages); m_ForestHandler.SetTractograms(m_SelectedFB); m_ForestHandler.SetNumTrees(m_Controls->m_NumTreesBox->value()); m_ForestHandler.SetMaxTreeDepth(m_Controls->m_MaxDepthBox->value()); m_ForestHandler.SetGrayMatterSamplesPerVoxel(m_Controls->m_GmSamplingBox->value()); m_ForestHandler.SetSampleFraction(m_Controls->m_SampleFractionBox->value()); m_ForestHandler.SetStepSize(m_Controls->m_TrainingStepSizeBox->value()); m_ForestHandler.StartTraining(); } void QmitkMLBTView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkMLBTView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } void QmitkMLBTView::OnSelectionChanged( std::vector nodes ) { if ( !this->IsVisible() ) { // do nothing if nobody wants to see me :-( return; } m_SelectedFB.clear(); m_SelectedDiffImages.clear(); m_MaskImages.clear(); m_WhiteMatterImages.clear(); for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if ( dynamic_cast(node->GetData()) ) m_SelectedFB.push_back( dynamic_cast(node->GetData()) ); else if (mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(node)) m_SelectedDiffImages.push_back( dynamic_cast(node->GetData()) ); } } void QmitkMLBTView::Activated() { }