diff --git a/Modules/DiffusionImaging/Algorithms/Connectomics/mitkConnectomicsNetworkCreator.cpp b/Modules/DiffusionImaging/Algorithms/Connectomics/mitkConnectomicsNetworkCreator.cpp index dbbf1cf2df..51069ccf02 100644 --- a/Modules/DiffusionImaging/Algorithms/Connectomics/mitkConnectomicsNetworkCreator.cpp +++ b/Modules/DiffusionImaging/Algorithms/Connectomics/mitkConnectomicsNetworkCreator.cpp @@ -1,759 +1,758 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date$ Version: $Revision$ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #include "mitkConnectomicsNetworkCreator.h" #include #include #include "mitkConnectomicsConstantsManager.h" // VTK #include #include #include mitk::ConnectomicsNetworkCreator::ConnectomicsNetworkCreator() : m_FiberBundle() , m_Segmentation() , m_ConNetwork( mitk::ConnectomicsNetwork::New() ) , idCounter(0) , m_LabelToVertexMap() , m_LabelToNodePropertyMap() , allowLoops( false ) { } mitk::ConnectomicsNetworkCreator::ConnectomicsNetworkCreator( mitk::Image::Pointer segmentation, mitk::FiberBundleX::Pointer fiberBundle ) : m_FiberBundle(fiberBundle) , m_Segmentation(segmentation) , m_ConNetwork( mitk::ConnectomicsNetwork::New() ) , idCounter(0) , m_LabelToVertexMap() , m_LabelToNodePropertyMap() , allowLoops( false ) { } mitk::ConnectomicsNetworkCreator::~ConnectomicsNetworkCreator() { } void mitk::ConnectomicsNetworkCreator::SetFiberBundle(mitk::FiberBundleX::Pointer fiberBundle) { m_FiberBundle = fiberBundle; } void mitk::ConnectomicsNetworkCreator::SetSegmentation(mitk::Image::Pointer segmentation) { m_Segmentation = segmentation; } itk::Point mitk::ConnectomicsNetworkCreator::GetItkPoint(double point[3]) { itk::Point itkPoint; itkPoint[0] = point[0]; itkPoint[1] = point[1]; itkPoint[2] = point[2]; return itkPoint; } void mitk::ConnectomicsNetworkCreator::CreateNetworkFromFibersAndSegmentation() { //empty graph m_ConNetwork->clear(); m_LabelToVertexMap.clear(); m_LabelToNodePropertyMap.clear(); vtkSmartPointer fiberPolyData = m_FiberBundle->GetFiberPolyData(); vtkSmartPointer vLines = fiberPolyData->GetLines(); vLines->InitTraversal(); - //int numFibers = m_FiberBundle->GetNumFibers(); - int numFibers= 10; + int numFibers = m_FiberBundle->GetNumFibers(); for( int fiberID( 0 ); fiberID < numFibers; fiberID++ ) { vtkIdType numPointsInCell(0); vtkIdType* pointsInCell(NULL); vLines->GetNextCell ( numPointsInCell, pointsInCell ); TractType::Pointer singleTract = TractType::New(); for( int pointInCellID( 0 ); pointInCellID < numPointsInCell ; pointInCellID++) { // push back point PointType point = GetItkPoint( fiberPolyData->GetPoint( pointsInCell[ pointInCellID ] ) ); singleTract->InsertElement( singleTract->Size(), point ); } //MappingStrategy strategy = EndElementPosition; //MappingStrategy strategy = JustEndPointVerticesNoLabel; MappingStrategy strategy = EndElementPositionAvoidingWhiteMatter; if ( singleTract && ( singleTract->Size() > 0 ) ) { AddConnectionToNetwork( ReturnAssociatedVertexPairForLabelPair( ReturnLabelForFiberTract( singleTract, strategy ) ) ); } } // provide network with geometry m_ConNetwork->SetGeometry( m_Segmentation->GetGeometry() ); m_ConNetwork->UpdateBounds(); m_ConNetwork->SetIsModified( true ); MBI_INFO << mitk::ConnectomicsConstantsManager::CONNECTOMICS_WARNING_INFO_NETWORK_CREATED; } void mitk::ConnectomicsNetworkCreator::AddConnectionToNetwork(ConnectionType newConnection) { VertexType vertexA = newConnection.first; VertexType vertexB = newConnection.second; // if vertices A and B exist if( vertexA && vertexB) { // check for loops (if they are not allowed if( allowLoops || !( vertexA == vertexB ) ) { // If the connection already exists, increment weight, else create connection if ( m_ConNetwork->EdgeExists( vertexA, vertexB ) ) { m_ConNetwork->IncreaseEdgeWeight( vertexA, vertexB ); } else { m_ConNetwork->AddEdge( vertexA, vertexB ); } } } } mitk::ConnectomicsNetworkCreator::VertexType mitk::ConnectomicsNetworkCreator::ReturnAssociatedVertexForLabel( ImageLabelType label ) { // if label is not known, create entry if( ! ( m_LabelToVertexMap.count( label ) > 0 ) ) { VertexType newVertex = m_ConNetwork->AddVertex( idCounter ); idCounter++; SupplyVertexWithInformation(label, newVertex); m_LabelToVertexMap.insert( std::pair< ImageLabelType, VertexType >( label, newVertex ) ); } //return associated vertex return m_LabelToVertexMap.find( label )->second; } mitk::ConnectomicsNetworkCreator::ConnectionType mitk::ConnectomicsNetworkCreator::ReturnAssociatedVertexPairForLabelPair( ImageLabelPairType labelpair ) { //hand both labels through to the single label function ConnectionType connection( ReturnAssociatedVertexForLabel(labelpair.first), ReturnAssociatedVertexForLabel(labelpair.second) ); return connection; } mitk::ConnectomicsNetworkCreator::ImageLabelPairType mitk::ConnectomicsNetworkCreator::ReturnLabelForFiberTract( TractType::Pointer singleTract, mitk::ConnectomicsNetworkCreator::MappingStrategy strategy) { switch( strategy ) { case EndElementPosition: { return EndElementPositionLabel( singleTract ); } case PrecomputeAndDistance: { return PrecomputeVertexLocationsBySegmentation( singleTract ); } case JustEndPointVerticesNoLabel: { return JustEndPointVerticesNoLabelTest( singleTract ); } case EndElementPositionAvoidingWhiteMatter: { return EndElementPositionLabelAvoidingWhiteMatter( singleTract ); } } // To remove warnings, this code should never be reached MBI_ERROR << mitk::ConnectomicsConstantsManager::CONNECTOMICS_ERROR_INVALID_MAPPING; ImageLabelPairType nullPair( NULL, NULL ); return nullPair; } mitk::ConnectomicsNetworkCreator::ImageLabelPairType mitk::ConnectomicsNetworkCreator::EndElementPositionLabel( TractType::Pointer singleTract ) { ImageLabelPairType labelpair; {// Note: .fib image tracts are safed using index coordinates mitk::Point3D firstElementFiberCoord, lastElementFiberCoord; mitk::Point3D firstElementSegCoord, lastElementSegCoord; mitk::Index3D firstElementSegIndex, lastElementSegIndex; if( singleTract->front().Size() != 3 ) { MBI_ERROR << mitk::ConnectomicsConstantsManager::CONNECTOMICS_ERROR_INVALID_DIMENSION_NEED_3; } for( int index = 0; index < singleTract->front().Size(); index++ ) { firstElementFiberCoord.SetElement( index, singleTract->front().GetElement( index ) ); lastElementFiberCoord.SetElement( index, singleTract->back().GetElement( index ) ); } // convert from fiber index coordinates to segmentation index coordinates FiberToSegmentationCoords( firstElementFiberCoord, firstElementSegCoord ); FiberToSegmentationCoords( lastElementFiberCoord, lastElementSegCoord ); for( int index = 0; index < 3; index++ ) { firstElementSegIndex.SetElement( index, firstElementSegCoord.GetElement( index ) ); lastElementSegIndex.SetElement( index, lastElementSegCoord.GetElement( index ) ); } int firstLabel = m_Segmentation->GetPixelValueByIndex( firstElementSegIndex ); int lastLabel = m_Segmentation->GetPixelValueByIndex( lastElementSegIndex ); labelpair.first = firstLabel; labelpair.second = lastLabel; // Add property to property map if( ! ( m_LabelToNodePropertyMap.count( firstLabel ) > 0 ) ) { NetworkNode firstNode; firstNode.coordinates.resize( 3 ); for( unsigned int index = 0; index < firstNode.coordinates.size() ; index++ ) { firstNode.coordinates[ index ] = firstElementSegIndex[ index ] ; } firstNode.label = LabelToString( firstLabel ); m_LabelToNodePropertyMap.insert( std::pair< ImageLabelType, NetworkNode >( firstLabel, firstNode ) ); } if( ! ( m_LabelToNodePropertyMap.count( lastLabel ) > 0 ) ) { NetworkNode lastNode; lastNode.coordinates.resize( 3 ); for( unsigned int index = 0; index < lastNode.coordinates.size() ; index++ ) { lastNode.coordinates[ index ] = lastElementSegIndex[ index ] ; } lastNode.label = LabelToString( lastLabel ); m_LabelToNodePropertyMap.insert( std::pair< ImageLabelType, NetworkNode >( lastLabel, lastNode ) ); } } return labelpair; } mitk::ConnectomicsNetworkCreator::ImageLabelPairType mitk::ConnectomicsNetworkCreator::PrecomputeVertexLocationsBySegmentation( TractType::Pointer singleTract ) { ImageLabelPairType labelpair; return labelpair; } mitk::ConnectomicsNetworkCreator::ImageLabelPairType mitk::ConnectomicsNetworkCreator::EndElementPositionLabelAvoidingWhiteMatter( TractType::Pointer singleTract ) { ImageLabelPairType labelpair; {// Note: .fib image tracts are safed using index coordinates mitk::Point3D firstElementFiberCoord, lastElementFiberCoord; mitk::Point3D firstElementSegCoord, lastElementSegCoord; mitk::Index3D firstElementSegIndex, lastElementSegIndex; if( singleTract->front().Size() != 3 ) { MBI_ERROR << mitk::ConnectomicsConstantsManager::CONNECTOMICS_ERROR_INVALID_DIMENSION_NEED_3; } for( int index = 0; index < singleTract->front().Size(); index++ ) { firstElementFiberCoord.SetElement( index, singleTract->front().GetElement( index ) ); lastElementFiberCoord.SetElement( index, singleTract->back().GetElement( index ) ); } // convert from fiber index coordinates to segmentation index coordinates FiberToSegmentationCoords( firstElementFiberCoord, firstElementSegCoord ); FiberToSegmentationCoords( lastElementFiberCoord, lastElementSegCoord ); for( int index = 0; index < 3; index++ ) { firstElementSegIndex.SetElement( index, firstElementSegCoord.GetElement( index ) ); lastElementSegIndex.SetElement( index, lastElementSegCoord.GetElement( index ) ); } int firstLabel = m_Segmentation->GetPixelValueByIndex( firstElementSegIndex ); int lastLabel = m_Segmentation->GetPixelValueByIndex( lastElementSegIndex ); // Check whether the labels belong to the white matter (which means, that the fibers ended early) bool extendFront(false), extendEnd(false), retractFront(false), retractEnd(false); extendFront = !IsNonWhiteMatterLabel( firstLabel ); extendEnd = !IsNonWhiteMatterLabel( lastLabel ); retractFront = IsBackgroundLabel( firstLabel ); retractEnd = IsBackgroundLabel( lastLabel ); //if( extendFront || extendEnd ) //{ //MBI_INFO << "Before Start: " << firstLabel << " at " << firstElementSegIndex[ 0 ] << " " << firstElementSegIndex[ 1 ] << " " << firstElementSegIndex[ 2 ] << " End: " << lastLabel << " at " << lastElementSegIndex[ 0 ] << " " << lastElementSegIndex[ 1 ] << " " << lastElementSegIndex[ 2 ]; //} if ( extendFront ) { std::vector< int > indexVectorOfPointsToUse; //Use first two points for direction indexVectorOfPointsToUse.push_back( 1 ); indexVectorOfPointsToUse.push_back( 0 ); // label and coordinate temp storage int tempLabel( firstLabel ); mitk::Index3D tempIndex = firstElementSegIndex; LinearExtensionUntilGreyMatter( indexVectorOfPointsToUse, singleTract, tempLabel, tempIndex ); firstLabel = tempLabel; firstElementSegIndex = tempIndex; } if ( extendEnd ) { std::vector< int > indexVectorOfPointsToUse; //Use last two points for direction indexVectorOfPointsToUse.push_back( singleTract->Size() - 2 ); indexVectorOfPointsToUse.push_back( singleTract->Size() - 1 ); // label and coordinate temp storage int tempLabel( lastLabel ); mitk::Index3D tempIndex = lastElementSegIndex; LinearExtensionUntilGreyMatter( indexVectorOfPointsToUse, singleTract, tempLabel, tempIndex ); lastLabel = tempLabel; lastElementSegIndex = tempIndex; } if ( retractFront ) { // label and coordinate temp storage int tempLabel( firstLabel ); mitk::Index3D tempIndex = firstElementSegIndex; RetractionUntilBrainMatter( true, singleTract, tempLabel, tempIndex ); firstLabel = tempLabel; firstElementSegIndex = tempIndex; } if ( retractEnd ) { // label and coordinate temp storage int tempLabel( lastLabel ); mitk::Index3D tempIndex = lastElementSegIndex; RetractionUntilBrainMatter( false, singleTract, tempLabel, tempIndex ); lastLabel = tempLabel; lastElementSegIndex = tempIndex; } //if( extendFront || extendEnd ) //{ // MBI_INFO << "After Start: " << firstLabel << " at " << firstElementSegIndex[ 0 ] << " " << firstElementSegIndex[ 1 ] << " " << firstElementSegIndex[ 2 ] << " End: " << lastLabel << " at " << lastElementSegIndex[ 0 ] << " " << lastElementSegIndex[ 1 ] << " " << lastElementSegIndex[ 2 ]; //} labelpair.first = firstLabel; labelpair.second = lastLabel; // Add property to property map if( ! ( m_LabelToNodePropertyMap.count( firstLabel ) > 0 ) ) { NetworkNode firstNode; firstNode.coordinates.resize( 3 ); for( unsigned int index = 0; index < firstNode.coordinates.size() ; index++ ) { firstNode.coordinates[ index ] = firstElementSegIndex[ index ] ; } firstNode.label = LabelToString( firstLabel ); m_LabelToNodePropertyMap.insert( std::pair< ImageLabelType, NetworkNode >( firstLabel, firstNode ) ); } if( ! ( m_LabelToNodePropertyMap.count( lastLabel ) > 0 ) ) { NetworkNode lastNode; lastNode.coordinates.resize( 3 ); for( unsigned int index = 0; index < lastNode.coordinates.size() ; index++ ) { lastNode.coordinates[ index ] = lastElementSegIndex[ index ] ; } lastNode.label = LabelToString( lastLabel ); m_LabelToNodePropertyMap.insert( std::pair< ImageLabelType, NetworkNode >( lastLabel, lastNode ) ); } } return labelpair; } mitk::ConnectomicsNetworkCreator::ImageLabelPairType mitk::ConnectomicsNetworkCreator::JustEndPointVerticesNoLabelTest( TractType::Pointer singleTract ) { ImageLabelPairType labelpair; {// Note: .fib image tracts are safed using index coordinates mitk::Point3D firstElementFiberCoord, lastElementFiberCoord; mitk::Point3D firstElementSegCoord, lastElementSegCoord; mitk::Index3D firstElementSegIndex, lastElementSegIndex; if( singleTract->front().Size() != 3 ) { MBI_ERROR << mitk::ConnectomicsConstantsManager::CONNECTOMICS_ERROR_INVALID_DIMENSION_NEED_3; } for( int index = 0; index < singleTract->front().Size(); index++ ) { firstElementFiberCoord.SetElement( index, singleTract->front().GetElement( index ) ); lastElementFiberCoord.SetElement( index, singleTract->back().GetElement( index ) ); } // convert from fiber index coordinates to segmentation index coordinates FiberToSegmentationCoords( firstElementFiberCoord, firstElementSegCoord ); FiberToSegmentationCoords( lastElementFiberCoord, lastElementSegCoord ); for( int index = 0; index < 3; index++ ) { firstElementSegIndex.SetElement( index, firstElementSegCoord.GetElement( index ) ); lastElementSegIndex.SetElement( index, lastElementSegCoord.GetElement( index ) ); } int firstLabel = 1 * firstElementSegIndex[ 0 ] + 1000 * firstElementSegIndex[ 1 ] + 1000000 * firstElementSegIndex[ 2 ]; int lastLabel = 1 * firstElementSegIndex[ 0 ] + 1000 * firstElementSegIndex[ 1 ] + 1000000 * firstElementSegIndex[ 2 ]; labelpair.first = firstLabel; labelpair.second = lastLabel; // Add property to property map if( ! ( m_LabelToNodePropertyMap.count( firstLabel ) > 0 ) ) { NetworkNode firstNode; firstNode.coordinates.resize( 3 ); for( unsigned int index = 0; index < firstNode.coordinates.size() ; index++ ) { firstNode.coordinates[ index ] = firstElementSegIndex[ index ] ; } firstNode.label = LabelToString( firstLabel ); m_LabelToNodePropertyMap.insert( std::pair< ImageLabelType, NetworkNode >( firstLabel, firstNode ) ); } if( ! ( m_LabelToNodePropertyMap.count( lastLabel ) > 0 ) ) { NetworkNode lastNode; lastNode.coordinates.resize( 3 ); for( unsigned int index = 0; index < lastNode.coordinates.size() ; index++ ) { lastNode.coordinates[ index ] = lastElementSegIndex[ index ] ; } lastNode.label = LabelToString( lastLabel ); m_LabelToNodePropertyMap.insert( std::pair< ImageLabelType, NetworkNode >( lastLabel, lastNode ) ); } } return labelpair; } void mitk::ConnectomicsNetworkCreator::SupplyVertexWithInformation( ImageLabelType& label, VertexType& vertex ) { // supply a vertex with the additional information belonging to the label // TODO: Implement additional information acquisition m_ConNetwork->SetLabel( vertex, m_LabelToNodePropertyMap.find( label )->second.label ); m_ConNetwork->SetCoordinates( vertex, m_LabelToNodePropertyMap.find( label )->second.coordinates ); } std::string mitk::ConnectomicsNetworkCreator::LabelToString( ImageLabelType& label ) { int tempInt = (int) label; std::stringstream ss;//create a stringstream std::string tempString; ss << tempInt;//add number to the stream tempString = ss.str(); return tempString;//return a string with the contents of the stream } mitk::ConnectomicsNetwork::Pointer mitk::ConnectomicsNetworkCreator::GetNetwork() { return m_ConNetwork; } void mitk::ConnectomicsNetworkCreator::FiberToSegmentationCoords( mitk::Point3D& fiberCoord, mitk::Point3D& segCoord ) { mitk::Point3D tempPoint; // convert from fiber index coordinates to segmentation index coordinates m_FiberBundle->GetGeometry()->IndexToWorld( fiberCoord, tempPoint ); m_Segmentation->GetGeometry()->WorldToIndex( tempPoint, segCoord ); } void mitk::ConnectomicsNetworkCreator::SegmentationToFiberCoords( mitk::Point3D& segCoord, mitk::Point3D& fiberCoord ) { mitk::Point3D tempPoint; // convert from fiber index coordinates to segmentation index coordinates m_Segmentation->GetGeometry()->IndexToWorld( segCoord, tempPoint ); m_FiberBundle->GetGeometry()->WorldToIndex( tempPoint, fiberCoord ); } bool mitk::ConnectomicsNetworkCreator::IsNonWhiteMatterLabel( int labelInQuestion ) { bool isWhite( false ); isWhite = ( ( labelInQuestion == freesurfer_Left_Cerebral_White_Matter ) || ( labelInQuestion == freesurfer_Left_Cerebellum_White_Matter ) || ( labelInQuestion == freesurfer_Right_Cerebral_White_Matter ) || ( labelInQuestion == freesurfer_Right_Cerebellum_White_Matter ) ); return !isWhite; } bool mitk::ConnectomicsNetworkCreator::IsBackgroundLabel( int labelInQuestion ) { bool isBackground( false ); isBackground = ( labelInQuestion == 0 ); return isBackground; } void mitk::ConnectomicsNetworkCreator::LinearExtensionUntilGreyMatter( std::vector & indexVectorOfPointsToUse, TractType::Pointer singleTract, int & label, mitk::Index3D & mitkIndex ) { if( indexVectorOfPointsToUse.size() > singleTract->Size() ) { MBI_WARN << mitk::ConnectomicsConstantsManager::CONNECTOMICS_WARNING_MORE_POINTS_THAN_PRESENT; return; } if( indexVectorOfPointsToUse.size() < 2 ) { MBI_WARN << mitk::ConnectomicsConstantsManager::CONNECTOMICS_WARNING_ESTIMATING_LESS_THAN_2; return; } for( int index( 0 ); index < indexVectorOfPointsToUse.size(); index++ ) { if( indexVectorOfPointsToUse[ index ] > singleTract->Size() ) { MBI_WARN << mitk::ConnectomicsConstantsManager::CONNECTOMICS_WARNING_ESTIMATING_BEYOND_END; return; } if( indexVectorOfPointsToUse[ index ] < 0 ) { MBI_WARN << mitk::ConnectomicsConstantsManager::CONNECTOMICS_WARNING_ESTIMATING_BEYOND_START; return; } } mitk::Point3D startPoint, endPoint; std::vector< double > differenceVector; differenceVector.resize( singleTract->front().Size() ); { // which points to use, currently only last two //TODO correct using all points int endPointIndex = indexVectorOfPointsToUse.size() - 1; int startPointIndex = indexVectorOfPointsToUse.size() - 2; // convert to segmentation coords mitk::Point3D startFiber, endFiber; for( int index = 0; index < singleTract->front().Size(); index++ ) { endFiber.SetElement( index, singleTract->GetElement( indexVectorOfPointsToUse[ endPointIndex ] ).GetElement( index ) ); startFiber.SetElement( index, singleTract->GetElement( indexVectorOfPointsToUse[ startPointIndex ] ).GetElement( index ) ); } FiberToSegmentationCoords( endFiber, endPoint ); FiberToSegmentationCoords( startFiber, startPoint ); // calculate straight line for( int index = 0; index < singleTract->front().Size(); index++ ) { differenceVector[ index ] = endPoint.GetElement( index ) - startPoint.GetElement( index ); } // normalizing direction vector double length( 0.0 ); double sum( 0.0 ); for( int index = 0; index < differenceVector.size() ; index++ ) { sum = sum + differenceVector[ index ] * differenceVector[ index ]; } length = std::sqrt( sum ); for( int index = 0; index < differenceVector.size() ; index++ ) { differenceVector[ index ] = differenceVector[ index ] / length; } // follow line until first non white matter label mitk::Index3D tempIndex; int tempLabel( label ); bool keepOn( true ); for( int parameter( 0 ) ; keepOn ; parameter++ ) { if( parameter > 1000 ) { MBI_WARN << mitk::ConnectomicsConstantsManager::CONNECTOMICS_WARNING_DID_NOT_FIND_WHITE; break; } for( int index( 0 ); index < 3; index++ ) { tempIndex.SetElement( index, endPoint.GetElement( index ) + parameter * differenceVector[ index ] ); } tempLabel = m_Segmentation->GetPixelValueByIndex( tempIndex ); if( IsNonWhiteMatterLabel( tempLabel ) ) { if( tempLabel < 1 ) { keepOn = false; MBI_WARN << mitk::ConnectomicsConstantsManager::CONNECTOMICS_WARNING_NOT_EXTEND_TO_WHITE; } else { label = tempLabel; mitkIndex = tempIndex; keepOn = false; } } } } } void mitk::ConnectomicsNetworkCreator::RetractionUntilBrainMatter( bool retractFront, TractType::Pointer singleTract, int & label, mitk::Index3D & mitkIndex ) { int retractionStartIndex( singleTract->Size() - 1 ); int retractionStepIndexSize( -1 ); int retractionTerminationIndex( 0 ); if( retractFront ) { retractionStartIndex = 0; retractionStepIndexSize = 1; retractionTerminationIndex = singleTract->Size() - 1; } int currentRetractionIndex = retractionStartIndex; bool keepRetracting( true ); mitk::Point3D currentPoint, nextPoint; std::vector< double > differenceVector; differenceVector.resize( singleTract->front().Size() ); while( keepRetracting && ( currentRetractionIndex != retractionTerminationIndex ) ) { // convert to segmentation coords mitk::Point3D currentPointFiberCoord, nextPointFiberCoord; for( int index = 0; index < singleTract->front().Size(); index++ ) { currentPointFiberCoord.SetElement( index, singleTract->GetElement( currentRetractionIndex ).GetElement( index ) ); nextPointFiberCoord.SetElement( index, singleTract->GetElement( currentRetractionIndex + retractionStepIndexSize ).GetElement( index ) ); } FiberToSegmentationCoords( currentPointFiberCoord, currentPoint ); FiberToSegmentationCoords( nextPointFiberCoord, nextPoint ); // calculate straight line for( int index = 0; index < singleTract->front().Size(); index++ ) { differenceVector[ index ] = nextPoint.GetElement( index ) - currentPoint.GetElement( index ); } // calculate length of direction vector double length( 0.0 ); double sum( 0.0 ); for( int index = 0; index < differenceVector.size() ; index++ ) { sum = sum + differenceVector[ index ] * differenceVector[ index ]; } length = std::sqrt( sum ); // retract mitk::Index3D tempIndex; int tempLabel( label ); for( int parameter( 0 ) ; parameter < length ; parameter++ ) { for( int index( 0 ); index < 3; index++ ) { tempIndex.SetElement( index, currentPoint.GetElement( index ) + ( 1.0 + parameter ) / ( 1.0 + length ) * differenceVector[ index ] ); } tempLabel = m_Segmentation->GetPixelValueByIndex( tempIndex ); if( !IsBackgroundLabel( tempLabel ) ) { label = tempLabel; mitkIndex = tempIndex; return; } // hit next point without finding brain matter currentRetractionIndex = currentRetractionIndex + retractionStepIndexSize; if( ( currentRetractionIndex < 1 ) || ( currentRetractionIndex > ( singleTract->Size() - 2 ) ) ) { keepRetracting = false; } } } }