diff --git a/Modules/Classification/CLActiveLearning/include/mitkActiveLearningInteractor.h b/Modules/Classification/CLActiveLearning/include/mitkActiveLearningInteractor.h index f88e88d88e..d9a7126c09 100644 --- a/Modules/Classification/CLActiveLearning/include/mitkActiveLearningInteractor.h +++ b/Modules/Classification/CLActiveLearning/include/mitkActiveLearningInteractor.h @@ -1,62 +1,62 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkActiveLearningInteractor_h #define mitkActiveLearningInteractor_h #include #include #include #include namespace mitk { class MITKCLACTIVELEARNING_EXPORT ActiveLearningInteractor : public DataInteractor { public: typedef unsigned short AnnotationPixelType; mitkClassMacro(ActiveLearningInteractor, DataInteractor) itkFactorylessNewMacro(Self) - void SetPaintingPixelValue(AnnotationPixelType value){m_PaintingPixelValue = value;} + void SetPaintingPixelValue(AnnotationPixelType value){m_PaintingPixelValue = static_cast(value);} bool IsUsed(){return m_Used;} private: ActiveLearningInteractor(); ~ActiveLearningInteractor(); void ConnectActionsAndFunctions() override; void DataNodeChanged() override; void Paint(mitk::StateMachineAction* action, mitk::InteractionEvent* event); void PaintInterpolate(mitk::StateMachineAction* action, mitk::InteractionEvent* event); itk::Index<3> m_LastPixelIndex; AnnotationPixelType m_PaintingPixelValue; bool m_Used; }; } #endif diff --git a/Modules/Classification/CLActiveLearning/src/mitkActiveLearningInteractor.cpp b/Modules/Classification/CLActiveLearning/src/mitkActiveLearningInteractor.cpp index badb2ea81d..dcb78dd492 100644 --- a/Modules/Classification/CLActiveLearning/src/mitkActiveLearningInteractor.cpp +++ b/Modules/Classification/CLActiveLearning/src/mitkActiveLearningInteractor.cpp @@ -1,217 +1,217 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include // Helper function to get an image from a data node. static mitk::Image::Pointer GetImage(mitk::DataNode::Pointer dataNode) { if (dataNode.IsNull()) mitkThrow(); mitk::Image::Pointer image = dynamic_cast(dataNode->GetData()); if (image.IsNull()) mitkThrow(); return image; } // Helper function to get a geometry of an image for a specific time step. static mitk::BaseGeometry::Pointer GetGeometry(mitk::Image* image, unsigned int timeStep) { if (image == nullptr) mitkThrow(); mitk::TimeGeometry::Pointer timeGeometry = image->GetTimeGeometry(); if (timeGeometry.IsNull()) mitkThrow(); auto geometry = timeGeometry->GetGeometryForTimeStep(timeStep); if (geometry.IsNull()) mitkThrow(); return geometry; } static std::vector> InterpolateIndices(itk::Index<3> startIndex, itk::Index<3> endIndex, mitk::BaseGeometry* geometry) { if (geometry == nullptr) mitkThrow(); std::vector> resultIndices; mitk::Point3D startPoint; mitk::Point3D endPoint; geometry->IndexToWorld(startIndex, startPoint); geometry->IndexToWorld(endIndex, endPoint); itk::Index<3> indexDelta; int indexDeltaInc[3]; for (int i=0; i<3; i++) { indexDelta[i] = endIndex[i] - startIndex[i]; indexDeltaInc[i] = (indexDelta[i] > 0) ? 1 : (indexDelta[i] < 0) ? -1 : 0; } int argm[3] = {0, 1, 2}; if (abs(indexDelta[1]) > abs(indexDelta[0])) { argm[0] = 1; argm[1] = 0; } if (abs(indexDelta[2]) > abs(indexDelta[argm[1]])) { argm[2] = argm[1]; argm[1] = 2; } if (abs(indexDelta[2]) > abs(indexDelta[argm[0]])) { argm[1] = argm[0]; argm[0] = 2; } double slopes[2]; slopes[0] = (endPoint[argm[1]] - startPoint[argm[1]]) / (endPoint[argm[0]] - startPoint[argm[0]]); slopes[1] = (endPoint[argm[2]] - startPoint[argm[2]]) / sqrt((endPoint[argm[1]] - startPoint[argm[1]]) * (endPoint[argm[1]] - startPoint[argm[1]]) + (endPoint[argm[0]] - startPoint[argm[0]]) * (endPoint[argm[0]] - startPoint[argm[0]])); itk::Index<3> currentIndex = startIndex; mitk::Point3D currentPoint = startPoint; while (currentIndex != endIndex) { currentIndex[argm[0]] += indexDeltaInc[argm[0]]; geometry->IndexToWorld(currentIndex, currentPoint); currentPoint[argm[1]] = startPoint[argm[1]] + slopes[0] * (currentPoint[argm[0]] - startPoint[argm[0]]); currentPoint[argm[2]] = startPoint[argm[2]] + slopes[1] * sqrt((currentPoint[argm[1]] - startPoint[argm[1]]) * (currentPoint[argm[1]] - startPoint[argm[1]]) + (currentPoint[argm[0]] - startPoint[argm[0]]) * (currentPoint[argm[0]] - startPoint[argm[0]])); geometry->WorldToIndex(currentPoint, currentIndex); resultIndices.push_back(currentIndex); } return resultIndices; } mitk::ActiveLearningInteractor::ActiveLearningInteractor() : m_PaintingPixelValue(0) { } mitk::ActiveLearningInteractor::~ActiveLearningInteractor() { } void mitk::ActiveLearningInteractor::ConnectActionsAndFunctions() { CONNECT_FUNCTION("paint", Paint) CONNECT_FUNCTION("paint_interpolate", PaintInterpolate) } void mitk::ActiveLearningInteractor::DataNodeChanged() { this->ResetToStartState(); } void mitk::ActiveLearningInteractor::Paint(mitk::StateMachineAction* /*action*/, mitk::InteractionEvent* event) { if (m_PaintingPixelValue == -1) return; try { auto renderer = event->GetSender(); auto image = GetImage(this->GetDataNode()); auto timeStep = renderer->GetTimeStep(); auto geometry = GetGeometry(image, timeStep); auto positionEvent = dynamic_cast(event); auto position = positionEvent->GetPositionInWorld(); if (!geometry->IsInside(position)) return; // Okay, we're safe. Convert the mouse position to the index of the pixel // we're pointing at. itk::Index<3> index; geometry->WorldToIndex<3>(position, index); // We don't need to paint over and over again while moving the mouse // pointer inside the same pixel. That's especially relevant when operating // on zoomed images. if (index != m_LastPixelIndex) { - mitk::ImagePixelWriteAccessor writeAccessor(image, image->GetVolumeData(timeStep)); + mitk::ImagePixelWriteAccessor writeAccessor(image, image->GetVolumeData(timeStep)); writeAccessor.SetPixelByIndexSafe(index, m_PaintingPixelValue); image->Modified(); this->GetDataNode()->Modified(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); m_LastPixelIndex = index; m_Used = true; } } catch (...) { return; } } void mitk::ActiveLearningInteractor::PaintInterpolate(mitk::StateMachineAction* /*action*/, mitk::InteractionEvent* event) { if (m_PaintingPixelValue == -1) return; try { auto renderer = event->GetSender(); auto image = GetImage(this->GetDataNode()); auto timeStep = renderer->GetTimeStep(); auto geometry = GetGeometry(image, timeStep); auto positionEvent = dynamic_cast(event); auto position = positionEvent->GetPositionInWorld(); if (!geometry->IsInside(position)) return; // Okay, we're safe. Convert the mouse position to the index of the pixel // we're pointing at. itk::Index<3> index; geometry->WorldToIndex<3>(position, index); // We don't need to paint over and over again while moving the mouse // pointer inside the same pixel. That's especially relevant when operating // on zoomed images. if (index != m_LastPixelIndex) { // And finally... mitk::ImagePixelWriteAccessor writeAccessor(image, image->GetVolumeData(timeStep)); // Paint all points between current and last pixel auto indices = InterpolateIndices(m_LastPixelIndex, index, geometry); for (auto i : indices) { writeAccessor.SetPixelByIndexSafe(i, m_PaintingPixelValue); } image->Modified(); this->GetDataNode()->Modified(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); m_LastPixelIndex = index; m_Used = true; } } catch (...) { return; } } diff --git a/Plugins/org.mitk.gui.qt.activelearning/src/internal/QmitkActiveLearning.cpp b/Plugins/org.mitk.gui.qt.activelearning/src/internal/QmitkActiveLearning.cpp index 3413ae4e52..d1dace5b9a 100644 --- a/Plugins/org.mitk.gui.qt.activelearning/src/internal/QmitkActiveLearning.cpp +++ b/Plugins/org.mitk.gui.qt.activelearning/src/internal/QmitkActiveLearning.cpp @@ -1,1057 +1,1062 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Blueberry #include #include // Qt #include #include #include #include // Qmitk #include "QmitkActiveLearning.h" // MITK #include #include #include #include #include #include #include #include #include #include #include #include #include +#include -// ITK +// ITK/VTK #include #include #include #include #include #include #include #include +#include typedef ActiveLearning::FeaturePixelType FeaturePixelType; typedef ActiveLearning::AnnotationPixelType AnnotationPixelType; typedef ActiveLearning::LabelPixelType LabelPixelType; typedef ActiveLearning::FeatureMatrixType FeatureMatrixType; typedef ActiveLearning::LabelVectorType LabelVectorType; // Returns true if list has at least one entry and all entries are valid mitk::Images, otherwise false static bool SelectionAllImages(const QList& nodes) { if (nodes.empty()) { return false; } for (const auto& node : nodes) { if(!(node.IsNotNull() && dynamic_cast(node->GetData()) != nullptr)) return false; } return true; } // QColor to mitk::Color static mitk::Color QColorToMitkColor(const QColor& qcolor) { mitk::Color color; color.SetRed((float)qcolor.red() / 255); color.SetGreen((float)qcolor.green() / 255); color.SetBlue((float)qcolor.blue() / 255); return color; } // For debugging static void PrintAllLabels(mitk::LabelSetImage* image) { for (auto it=image->GetActiveLabelSet()->IteratorBegin(); it!=image->GetActiveLabelSet()->IteratorConstEnd(); ++it) { MITK_INFO << "Key: " << it->first << " - Name: " << it->second->GetName() << " - Value: " << it->second->GetValue() << " - Color: " << it->second->GetColor(); } } // Make values of labels a consistent range static void FillLabelValues(mitk::LabelSetImage* image) { int value(0); for (auto it=image->GetActiveLabelSet()->IteratorBegin(); it!=image->GetActiveLabelSet()->IteratorConstEnd(); ++it) { it->second->SetValue(value); value++; } image->GetActiveLabelSet()->SetActiveLabel(0); } // Fill image with zeros static void FillWithZeros(mitk::Image* image) { unsigned int size = image->GetPixelType().GetSize(); for (unsigned int i=0; iGetDimension(); i++) { size *= image->GetDimension(i); } for (unsigned int t=0; tGetTimeSteps(); t++) { mitk::ImageWriteAccessor accessor(image, image->GetVolumeData(0)); memset(accessor.GetData(), 0, size); } } template static Eigen::Matrix Transform(const std::vector images) { // Find size for output matrix [number of voxels, number of feature images] unsigned int size = images[0]->GetDimension(0); for (unsigned int i=1; i<3; ++i) { size *= images[0]->GetDimension(i); } Eigen::Matrix outputMatrix(size, images.size()); for (unsigned int i=0; i::Pointer imageItk; mitk::CastToItkImage(images[i], imageItk); outputMatrix.col(i) = Eigen::Matrix::Map(imageItk->GetBufferPointer(), size); } return outputMatrix; } template static mitk::Image::Pointer Transform(const Eigen::Matrix &inputMatrix, const mitk::Image::Pointer referenceImage) { typename itk::Image::Pointer imageItk; auto outputImage = mitk::Image::New(); outputImage->Initialize(mitk::MakeScalarPixelType(), *(referenceImage->GetTimeGeometry()->Clone())); mitk::CastToItkImage(outputImage, imageItk); auto it = itk::ImageRegionIterator>(imageItk, imageItk->GetLargestPossibleRegion()); int i = 0; while (!it.IsAtEnd()) { it.Set(inputMatrix(i, 0)); ++it; ++i; } outputImage = mitk::GrabItkImageMemory(imageItk); return outputImage; } template static mitk::Image::Pointer Transform(const Eigen::Matrix &inputMatrix, const mitk::Image::Pointer referenceImage) { // Create ITK image typedef itk::VectorImage VectorImageType; auto imageItk = VectorImageType::New(); typename VectorImageType::IndexType start; start.Fill(0); typename VectorImageType::SizeType size; for (int i=0; i<3; ++i) { size[i] = referenceImage->GetDimension(i); } typename VectorImageType::RegionType region(start, size); imageItk->SetRegions(region); imageItk->SetVectorLength(inputMatrix.cols()); imageItk->Allocate(); auto outputImage = mitk::Image::New(); auto it = itk::ImageRegionIterator>(imageItk, imageItk->GetLargestPossibleRegion()); int i = 0; while (!it.IsAtEnd()) { itk::VariableLengthVector pixel; pixel.SetSize(inputMatrix.cols()); for (int j=0; j(inputMatrix(i, j)); } it.Set(pixel); ++it; ++i; } outputImage = mitk::ImportItkImage(imageItk); outputImage->SetClonedTimeGeometry(referenceImage->GetTimeGeometry()); return outputImage; } template static void PrintMatrix(const Eigen::Matrix dataMatrix, int maxRows = 0) { if (maxRows == 0 || maxRows > dataMatrix.rows()) maxRows = dataMatrix.rows(); MITK_INFO << "---------------------"; for (int i=0; i static void PrintMatrix(const Eigen::Matrix dataMatrix, const Eigen::Matrix labelMatrix, int maxRows = 0) { if (labelMatrix.rows() < dataMatrix.rows()) return; if (maxRows == 0 || maxRows > dataMatrix.rows()) maxRows = dataMatrix.rows(); MITK_INFO << "---------------------"; for (int i=0; i static void GaussianSmoothing(const itk::Image* inputImage, const double sigma, mitk::Image::Pointer outputImage) { typedef itk::Image ImageType; typedef itk::Image FeatureImageType; auto filter = itk::DiscreteGaussianImageFilter::New(); filter->SetInput(inputImage); filter->SetVariance(sigma*sigma); filter->Update(); mitk::GrabItkImageMemory(filter->GetOutput(), outputImage); } template static void GaussianGradientMagnitude(const itk::Image* inputImage, const double sigma, mitk::Image::Pointer outputImage) { typedef itk::Image ImageType; typedef itk::Image FeatureImageType; auto filter = itk::GradientMagnitudeRecursiveGaussianImageFilter::New(); filter->SetInput(inputImage); filter->SetSigma(sigma); filter->Update(); mitk::GrabItkImageMemory(filter->GetOutput(), outputImage); } template static void LaplacianOfGaussian(const itk::Image* inputImage, const double sigma, mitk::Image::Pointer outputImage) { typedef itk::Image ImageType; typedef itk::Image FeatureImageType; auto filter = itk::LaplacianRecursiveGaussianImageFilter::New(); filter->SetInput(inputImage); filter->SetSigma(sigma); filter->Update(); mitk::GrabItkImageMemory(filter->GetOutput(), outputImage); } //template //static void StructureTensorEigenvalues(const itk::Image* inputImage, // float sigma, std::vector outputImages) //{ // typedef itk::Image ImageType; // auto filter = itk::StructureTensorEigenvalueImageFilter::New(); // filter->SetInput(inputImage); // filter->SetInnerScale(sigma); // filter->SetOuterScale(sigma); // filter->Update(); // for (unsigned int i=0; iGetNumberOfOutputs(); i++) // { // mitk::GrabItkImageMemory(filter->GetOutput(i), outputImages[i]); // } //} //template //static void HessianEigenvalues(const itk::Image* inputImage, // float sigma, std::vector outputImages) //{ // typedef itk::Image ImageType; // typedef itk::Image, imageDimension> TensorImageType; // auto filter = itk::HessianRecursiveGaussianImageFilter::New(); // ImageType::Pointer o1, o2, o3; // o1->Allocate(); // o2->Allocate(); // o3->Allocate(); // filter->SetInput(inputImage); // filter->SetSigma(sigma); // filter->Update(); // TensorImageType::Pointer tensorImage = filter->GetOutput(); // itk::ImageRegionIterator tensorIt(tensorImage, tensorImage->GetLargestPossibleRegion()); // itk::ImageRegionIterator o1It(o1, o1->GetLargestPossibleRegion()); // itk::ImageRegionIterator o2It(o2, o2->GetLargestPossibleRegion()); // itk::ImageRegionIterator o3It(o3, o3->GetLargestPossibleRegion()); // while (!tensorIt.IsAtEnd()) // { // itk::SymmetricSecondRankTensor::EigenValue // for (unsigned int i=0; iGetNumberOfOutputs(); i++) // { // mitk::GrabItkImageMemory(filter->GetOutput(i), outputImages[i]); // } //} /* ================================================================== * PUBLIC SLOTS * =============================================================== */ void ActiveLearning::Initialize() { // Get selected nodes and check again if these are all images m_Nodes = this->GetDataManagerSelection(); if (!SelectionAllImages(m_Nodes)) return; m_Controls.m_InitializePushButton->setDisabled(true); // Set names to the label (again) QString nameList = QString::fromStdString(m_Nodes[0]->GetName()); if (m_Nodes.length() >= 2) { for (int i=1; i"); nameList += QString::fromStdString(m_Nodes[i]->GetName()); } } m_Controls.m_InitializeLabel->setText(nameList); // ======================================= // PREDICTION IMAGE // ======================================= m_PredictionImage = mitk::Image::New(); try { mitk::Image::Pointer referenceImage = dynamic_cast(m_Nodes[0]->GetData()); m_PredictionImage->Initialize(referenceImage); } catch (mitk::Exception& e) { MITK_ERROR << "Exception caught: " << e.GetDescription(); QMessageBox::information(m_Parent, "Error", "Could not initialize prediction image"); return; } FillWithZeros(m_PredictionImage); m_PredictionNode = mitk::DataNode::New(); m_PredictionNode->SetData(m_PredictionImage); m_PredictionNode->SetName("Predictions"); m_PredictionNode->SetColor(1., 1. ,1.); m_PredictionNode->SetBoolProperty("binary", false); m_PredictionNode->SetProperty("opacity", mitk::FloatProperty::New(0.0f)); // m_PredictionNode->SetBoolProperty("helper object", true); this->GetDataStorage()->Add(m_PredictionNode, m_Nodes[0]); // ======================================= // SEGMENTATION IMAGE // ======================================= m_SegmentationImage = mitk::Image::New(); try { mitk::Image::Pointer referenceImage = dynamic_cast(m_Nodes[0]->GetData()); m_SegmentationImage->Initialize(mitk::MakeScalarPixelType(), *(referenceImage->GetTimeGeometry()->Clone())); } catch (mitk::Exception& e) { MITK_ERROR << "Exception caught: " << e.GetDescription(); QMessageBox::information(m_Parent, "Error", "Could not initialize segmentation image"); return; } FillWithZeros(m_SegmentationImage); m_SegmentationNode = mitk::DataNode::New(); m_SegmentationNode->SetData(m_SegmentationImage); m_SegmentationNode->SetName("Segmentation"); m_SegmentationNode->SetColor(1., 1., 1.); m_SegmentationNode->SetBoolProperty("binary", false); + m_SegmentationNode->SetProperty("reslice interpolation", mitk::VtkResliceInterpolationProperty::New(VTK_RESLICE_NEAREST)); // m_PredictionNode->SetBoolProperty("helper object", true); this->GetDataStorage()->Add(m_SegmentationNode, m_Nodes[0]); // ======================================= // ANNOTATION IMAGE // ======================================= m_AnnotationImage = mitk::Image::New(); try { mitk::Image::Pointer referenceImage = dynamic_cast(m_Nodes[0]->GetData()); m_AnnotationImage->Initialize(mitk::MakeScalarPixelType(), *(referenceImage->GetTimeGeometry()->Clone())); } catch (mitk::Exception& e) { MITK_ERROR << "Exception caught: " << e.GetDescription(); QMessageBox::information(m_Parent, "Error", "Could not initialize annotation image"); return; } FillWithZeros(m_AnnotationImage); m_AnnotationNode = mitk::DataNode::New(); m_AnnotationNode->SetData(m_AnnotationImage); m_AnnotationNode->SetName("Labels"); m_AnnotationNode->SetColor(1., 1., 1.); m_AnnotationNode->SetBoolProperty("binary", false); + m_AnnotationNode->SetProperty("reslice interpolation", mitk::VtkResliceInterpolationProperty::New(VTK_RESLICE_NEAREST)); m_AnnotationNode->SetProperty("opacity", mitk::FloatProperty::New(1.0f)); // m_AnnotationNode->SetBoolProperty("helper object", true); this->GetDataStorage()->Add(m_AnnotationNode, m_Nodes[0]); // Convert input images to FeaturePixelType for (auto node : m_Nodes) { mitk::Image::Pointer image = dynamic_cast(node->GetData()); auto itkImage = itk::Image::New(); mitk::CastToItkImage(image, itkImage); image = mitk::GrabItkImageMemory(itkImage); node->SetData(image); } // Calculate features for (const auto node : m_Nodes) { mitk::Image::Pointer currentImage = dynamic_cast(node->GetData()); QFuture>> future; future = QtConcurrent::run(this, &ActiveLearning::CalculateFeatures, currentImage); auto futureWatcher = new QFutureWatcher>>(); futureWatcher->setFuture(future); connect(futureWatcher, SIGNAL(finished()), this, SLOT(OnInitializationFinished())); m_FeatureCalculationWatchers.push_back(futureWatcher); } // Interactor auto activeLearningLib = us::ModuleRegistry::GetModule("MitkCLActiveLearning"); m_Interactor = mitk::ActiveLearningInteractor::New(); m_Interactor->LoadStateMachine("Paint.xml", activeLearningLib); m_Interactor->SetEventConfig("PaintConfig.xml", activeLearningLib); m_Interactor->SetDataNode(m_AnnotationNode); // Automatically add first label OnAddLabelPushButtonClicked(); m_Active = true; } /* ================================================================== * PUBLIC * =============================================================== */ ActiveLearning::ActiveLearning() : m_Parent(nullptr), m_AnnotationImage(nullptr), m_AnnotationNode(nullptr), m_PredictionImage(nullptr), m_PredictionNode(nullptr), m_SegmentationImage(nullptr), m_SegmentationNode(nullptr), m_Active(false), m_NumberOfTrees(50), m_MaximumTreeDepth(10), m_SamplesPerTree(0.66), m_PredictionMatrix(nullptr) { } ActiveLearning::~ActiveLearning() { } void ActiveLearning::CreateQtPartControl( QWidget *parent ) { m_Controls.setupUi(parent); m_Parent = parent; // Label model m_LabelListModel = new QStandardItemModel(0, 3, this); m_Controls.m_LabelTableView->setModel(m_LabelListModel); m_Controls.m_LabelTableView->horizontalHeader()->setDefaultSectionSize(20); m_Controls.m_LabelTableView->verticalHeader()->setDefaultSectionSize(20); NotEditableDelegate* itemDelegate = new NotEditableDelegate(parent); m_Controls.m_LabelTableView->setItemDelegateForColumn(1, itemDelegate); connect(m_Controls.m_LabelTableView, SIGNAL(doubleClicked(QModelIndex)), this, SLOT(OnColorIconDoubleClicked(QModelIndex))); connect(m_Controls.m_LabelTableView->selectionModel(), SIGNAL(selectionChanged(QItemSelection, QItemSelection)), this, SLOT(OnLabelListSelectionChanged(QItemSelection, QItemSelection))); connect(m_LabelListModel, SIGNAL(dataChanged(QModelIndex, QModelIndex)), this, SLOT(OnLabelNameChanged(QModelIndex, QModelIndex))); // Buttons connect(m_Controls.m_InitializePushButton, SIGNAL(clicked()), this, SLOT(Initialize())); connect(m_Controls.m_AddLabelPushButton, SIGNAL(clicked()), this, SLOT(OnAddLabelPushButtonClicked())); connect(m_Controls.m_RemoveLabelPushButton, SIGNAL(clicked()), this, SLOT(OnRemoveLabelPushButtonClicked())); connect(m_Controls.m_PaintToolButton, SIGNAL(clicked()), this, SLOT(OnPaintToolButtonClicked())); connect(m_Controls.m_EraseToolButton, SIGNAL(clicked()), this, SLOT(OnEraseToolButtonClicked())); connect(m_Controls.m_UpdatePredictionsPushButton, SIGNAL(clicked()), this, SLOT(OnUpdatePredictionsPushButtonClicked())); // Set start configuration m_Controls.m_LabelControlsFrame->setVisible(false); SetInitializeReady(false); } void ActiveLearning::ResetLabels() { for (int i=0; irowCount(); i++) { m_LabelListModel->item(i, 1)->setText(QString::number(i + 1)); } } std::vector > ActiveLearning::CalculateFeatures(const mitk::Image::Pointer inputImage) { std::vector> result; // TODO: Get features from preference page std::vector sigmas = {0.7, 1.6}; for (auto sigma : sigmas) { std::stringstream ss; auto gaussImage = mitk::Image::New(); AccessByItk_n(inputImage, GaussianSmoothing, (sigma, gaussImage)); ss << "GaussianSmoothing (" << std::fixed << std::setprecision(2) << sigma << ")"; result.push_back(std::pair(gaussImage, ss.str())); ss.str(""); auto gradMagImage = mitk::Image::New(); AccessByItk_n(inputImage, GaussianGradientMagnitude, (sigma, gradMagImage)); ss << "GaussianGradientMagnitude (" << std::fixed << std::setprecision(2) << sigma << ")"; result.push_back(std::pair(gradMagImage, ss.str())); ss.str(""); auto logImage = mitk::Image::New(); AccessByItk_n(inputImage, LaplacianOfGaussian, (sigma, logImage)); ss << "LaplacianOfGaussian (" << std::fixed << std::setprecision(2) << sigma << ")"; result.push_back(std::pair(logImage, ss.str())); ss.str(""); // auto structImage1 = mitk::Image::New(); // auto structImage2 = mitk::Image::New(); // auto structImage3 = mitk::Image::New(); // std::vector structImages = {structImage1, structImage2, structImage3}; // AccessByItk_n(inputImage, StructureTensorEigenvalues, (sigma, structImages)); // ss << "StructureTensorEigenvalue1 (" << std::fixed << std::setprecision(2) << sigma << ")"; // result.push_back(std::pair(structImage1, ss.str())); // ss.str(""); // ss << "StructureTensorEigenvalue2 (" << std::fixed << std::setprecision(2) << sigma << ")"; // result.push_back(std::pair(structImage2, ss.str())); // ss.str(""); // if (inputImage->GetDimension() == 3) // { // ss << "StructureTensorEigenvalue3 (" << std::fixed << std::setprecision(2) << sigma << ")"; // result.push_back(std::pair(structImage3, ss.str())); // ss.str(""); // } // auto hessianImage1 = mitk::Image::New(); // auto hessianImage2 = mitk::Image::New(); // auto hessianImage3 = mitk::Image::New(); // std::vector hessianImages = {hessianImage1, hessianImage2, hessianImage3}; // AccessByItk_n(inputImage, HessianEigenvalues, (sigma, hessianImages)); // ss << "HessianEigenvalue1 (" << std::fixed << std::setprecision(2) << sigma << ")"; // result.push_back(std::pair(hessianImage1, ss.str())); // ss.str(""); // ss << "HessianEigenvalue2 (" << std::fixed << std::setprecision(2) << sigma << ")"; // result.push_back(std::pair(hessianImage2, ss.str())); // ss.str(""); // if (inputImage->GetDimension() == 3) // { // ss << "HessianEigenvalue3 (" << std::fixed << std::setprecision(2) << sigma << ")"; // result.push_back(std::pair(hessianImage3, ss.str())); // ss.str(""); // } } return result; } std::pair ActiveLearning::CalculatePrediction(const mitk::Image::Pointer annotationImage, const std::vector &featureImageVector, const mitk::Image::Pointer referenceImage, mitk::AbstractClassifier* classifier, std::shared_ptr predictionMatrix) { // Create prediction matrix if necessary if (predictionMatrix == nullptr) { FeatureMatrixType mat = Transform(featureImageVector); predictionMatrix = std::make_shared(mat); } // Get training data and train auto training = GetTrainingData(annotationImage, featureImageVector); classifier->Train(*training.second, *training.first); // Get result LabelVectorType segmentation = classifier->Predict(*predictionMatrix); FeatureMatrixType prediction = classifier->GetPointWiseProbabilities(); mitk::Image::Pointer segmentationImage = Transform(segmentation, referenceImage); - mitk::Image::Pointer predictionImage = Transform(prediction, referenceImage); +// mitk::Image::Pointer predictionImage = Transform(prediction, referenceImage); + mitk::Image::Pointer predictionImage = Transform(segmentation, referenceImage); std::pair result = std::make_pair(segmentationImage, predictionImage); return result; } std::pair, std::shared_ptr> ActiveLearning::GetTrainingData(const mitk::Image::Pointer annotationImage, const std::vector &featureImageVector) { // Get indices and labels std::vector> indices; std::vector labels; itk::Image::Pointer annotationImageItk; mitk::CastToItkImage(annotationImage, annotationImageItk); itk::ImageRegionIteratorWithIndex> it(annotationImageItk, annotationImageItk->GetLargestPossibleRegion()); while (!it.IsAtEnd()) { if (it.Get() != 0) { indices.push_back(it.GetIndex()); labels.push_back(it.Get()); } ++it; } FeatureMatrixType trainingData(indices.size(), featureImageVector.size()); LabelVectorType trainingLabels = LabelVectorType::Map(labels.data(), labels.size()); int j = 0; for (mitk::Image::Pointer feature : featureImageVector) { int i = 0; mitk::ImagePixelReadAccessor access(feature, feature->GetVolumeData()); for (auto index : indices) { trainingData(i, j) = access.GetPixelByIndexSafe(index); i++; } j++; } auto trainingLabelsPtr = std::make_shared(trainingLabels); auto trainingDataPtr = std::make_shared(trainingData); std::pair, std::shared_ptr> result = std::make_pair(trainingLabelsPtr, trainingDataPtr); return result; } void ActiveLearning::UpdateLookupTables() { // Create new lookup table from list // Annotation type is int, but we only use a ushort lookup table auto lut = vtkSmartPointer::New(); int lowlim = std::numeric_limits::min(); int uplim = std::numeric_limits::max(); lut->SetNumberOfTableValues(uplim - lowlim + 1); lut->SetTableRange(lowlim, uplim); for (long i=0; i<(uplim-lowlim+1); ++i) { lut->SetTableValue(i, 0.0, 0.0, 0.0, 0.0); } for (int j=0; jrowCount(); ++j) { int value = m_LabelListModel->item(j, 1)->text().toInt(); const QColor color = m_LabelListModel->item(j, 0)->background().color(); lut->SetTableValue(value, color.redF(), color.greenF(), color.blueF(), 1.0); } auto lutMitk = mitk::LookupTable::New(); lutMitk->SetVtkLookupTable(lut); // Set to annotation image and segmentation image auto * lut_prop = dynamic_cast(m_AnnotationNode->GetProperty("LookupTable")); lut_prop->SetLookupTable(lutMitk); m_AnnotationNode->SetProperty("Image Rendering.Mode", mitk::RenderingModeProperty::New(mitk::RenderingModeProperty::LOOKUPTABLE_COLOR)); lut_prop = dynamic_cast(m_SegmentationNode->GetProperty("LookupTable")); lut_prop->SetLookupTable(lutMitk); m_SegmentationNode->SetProperty("Image Rendering.Mode", mitk::RenderingModeProperty::New(mitk::RenderingModeProperty::LOOKUPTABLE_COLOR)); } const std::string ActiveLearning::VIEW_ID = "org.mitk.views.activelearning"; /* ================================================================== * PROTECTED SLOTS * =============================================================== */ void ActiveLearning::OnAddLabelPushButtonClicked() { QString labelName = QString("Label ") + QString::number(m_LabelListModel->rowCount() + 1); QColor labelColor = Qt::GlobalColor(m_LabelListModel->rowCount() % 12 + 7); // We only want Qt default colors 7 to 18 // Create icon QStandardItem* colorSquare = new QStandardItem; colorSquare->setBackground(labelColor); colorSquare->setEditable(false); QPixmap colorPixmap(20, 20); colorPixmap.fill(labelColor); colorSquare->setIcon(QIcon(colorPixmap)); // Key is the highest existing key + 1 int value = 1; if (m_LabelListModel->rowCount() >= 1) { value = m_LabelListModel->item(m_LabelListModel->rowCount() - 1, 1)->text().toInt() + 1; } QStandardItem* valueItem = new QStandardItem; valueItem->setText(QString::number(value)); // Create label item QStandardItem* label = new QStandardItem(labelName); // Make list and insert QList list; list.append(colorSquare); list.append(valueItem); list.append(label); m_LabelListModel->appendRow(list); // If this is the first label, we activate the paint button // We also have to set the data node color for this one, because for 1 values that color seems to define the rendered color if (m_LabelListModel->rowCount() == 1) { OnPaintToolButtonClicked(); } // Update colors UpdateLookupTables(); } void ActiveLearning::OnRemoveLabelPushButtonClicked() { // STILL NEED TO REMOVE ANNOTATIONS QItemSelectionModel* selection = m_Controls.m_LabelTableView->selectionModel(); if (selection->hasSelection()) { unsigned int removeIndex = selection->selectedRows().first().row(); QString removeMessage = QString("Remove label '") + m_LabelListModel->item(removeIndex, 2)->text() + QString("'?"); QMessageBox::StandardButton removeReply; removeReply = QMessageBox::question(m_Parent, "Remove Label", removeMessage, QMessageBox::Yes | QMessageBox::No); if (removeReply == QMessageBox::Yes) { m_LabelListModel->removeRow(removeIndex); if (!m_Interactor->IsUsed()) ResetLabels(); } } } void ActiveLearning::OnPaintToolButtonClicked() { m_Controls.m_PaintToolButton->setChecked(true); QItemSelectionModel* selection = m_Controls.m_LabelTableView->selectionModel(); int row(0); if (selection->hasSelection()) { row = selection->selectedRows().first().row(); } else { m_Controls.m_LabelTableView->selectRow(0); } m_Interactor->SetPaintingPixelValue(m_LabelListModel->item(row, 1)->text().toInt()); } void ActiveLearning::OnEraseToolButtonClicked() { m_Controls.m_EraseToolButton->setChecked(true); m_Interactor->SetPaintingPixelValue(0); } void ActiveLearning::OnActivateGuidancePushButtonToggled(bool toggled) { } void ActiveLearning::OnSaveSegmentationPushButtonClicked() { } void ActiveLearning::OnSavePredictionsPushButtonClicked() { } void ActiveLearning::OnExportSegmentationPushButtonClicked() { } void ActiveLearning::OnExportPredictionsPushButtonClicked() { } void ActiveLearning::OnColorIconDoubleClicked(const QModelIndex& index) { // Check if click is really from color icon if (index.column() != 0) { return; } else { // Color change dialog QColor setColor = QColorDialog::getColor(m_LabelListModel->itemFromIndex(index)->background().color(), m_Parent, "Select Label Color"); if (setColor.isValid()) { m_LabelListModel->itemFromIndex(index)->setBackground(setColor); QPixmap colorPixmap(20, 20); colorPixmap.fill(setColor); m_LabelListModel->itemFromIndex(index)->setIcon(QIcon(colorPixmap)); UpdateLookupTables(); } } } void ActiveLearning::OnLabelListSelectionChanged(const QItemSelection& selected, const QItemSelection& /*deselected*/) { if (selected.empty()) return; if (m_Controls.m_EraseToolButton->isChecked()) return; // This assumes that only one item can be selected (single selection table view) try { int labelValue = m_LabelListModel->item(selected.indexes()[0].row(), 1)->text().toInt(); m_Interactor->SetPaintingPixelValue(labelValue); } catch (...) { m_Interactor->SetPaintingPixelValue(-1); } } void ActiveLearning::OnLabelNameChanged(const QModelIndex& topLeft, const QModelIndex& /*bottomRight*/) { } void ActiveLearning::OnInitializationFinished() { // Check if all futures are finished for (auto watcher : m_FeatureCalculationWatchers) { if (watcher->isFinished() == false) {return;} } // Empty feature vector m_FeatureImageVector.clear(); // Insert features into feature vector and data storage for (unsigned int i=0; iresult(); for (unsigned int j=0; jSetData(result[j].first); node->SetName(result[j].second); node->SetBoolProperty("helper object", true); node->SetVisibility(false); this->GetDataStorage()->Add(node, m_Nodes[i]); } } // Show controls m_Controls.m_LabelControlsFrame->setVisible(true); m_Controls.m_InitializePushButton->setHidden(true); // Delete watchers for (auto watcher : m_FeatureCalculationWatchers) { delete watcher; } m_FeatureCalculationWatchers.clear(); } void ActiveLearning::OnUpdatePredictionsPushButtonClicked() { m_Controls.m_UpdatePredictionsPushButton->setDisabled(true); // Classifier m_Classifier = mitk::VigraRandomForestClassifier::New(); m_Classifier->SetTreeCount(m_NumberOfTrees); m_Classifier->SetMaximumTreeDepth(m_MaximumTreeDepth); m_Classifier->SetSamplesPerTree(m_SamplesPerTree); mitk::Image::Pointer referenceImage = dynamic_cast(m_Nodes[0]->GetData()); QFuture> future; future = QtConcurrent::run(this, &ActiveLearning::CalculatePrediction, m_AnnotationImage, m_FeatureImageVector, referenceImage, m_Classifier, m_PredictionMatrix); m_PredictionCalculationWatcher = new QFutureWatcher>(); m_PredictionCalculationWatcher->setFuture(future); connect(m_PredictionCalculationWatcher, SIGNAL(finished()), this, SLOT(OnPredictionCalculationFinished())); } void ActiveLearning::OnPredictionCalculationFinished() { auto result = m_PredictionCalculationWatcher->result(); m_SegmentationImage = result.first; m_SegmentationImage->Modified(); m_SegmentationNode->SetData(m_SegmentationImage); m_SegmentationNode->Modified(); m_PredictionImage = result.second; m_PredictionImage->Modified(); m_PredictionNode->SetData(m_PredictionImage); m_PredictionNode->Modified(); m_Controls.m_UpdatePredictionsPushButton->setEnabled(true); } /* ================================================================== * PROTECTED * =============================================================== */ void ActiveLearning::OnSelectionChanged(berry::IWorkbenchPart::Pointer /*source*/, const QList& nodes) { if (!SelectionAllImages(nodes)) { SetInitializeReady(false); return; } if (nodes.length() >= 2) { // First selection is the reference (could be any other) mitk::Image::Pointer referenceImage = dynamic_cast(nodes[0]->GetData()); mitk::BaseGeometry* referenceGeometry = referenceImage->GetTimeGeometry()->GetGeometryForTimeStep(0); // Adjust for multiple timesteps for (int i=1; i(nodes[i]->GetData()); mitk::BaseGeometry* currentGeometry = currentImage->GetTimeGeometry()->GetGeometryForTimeStep(0); // Adjust for multiple timesteps if (!mitk::Equal(*currentGeometry, *referenceGeometry, mitk::eps, true)) { SetInitializeReady(false); return; } } } // All nodes have the same geometry, allow init SetInitializeReady(true); } void ActiveLearning::SetFocus() { } /* ================================================================== * PRIVATE * =============================================================== */ void ActiveLearning::SetInitializeReady(bool ready) { if (ready) { // get selection, check again just to be sure auto nodes = this->GetDataManagerSelection(); if (!SelectionAllImages(nodes)) return; m_Controls.m_InitializePushButton->setEnabled(true); if (!m_Active) { QString nameList = QString::fromStdString(nodes[0]->GetName()); if (nodes.length() >= 2) { for (int i=1; i"); nameList += QString::fromStdString(nodes[i]->GetName()); } } m_Controls.m_InitializeLabel->setText(nameList); } } else { m_Controls.m_InitializePushButton->setDisabled(true); if (!m_Active) { m_Controls.m_InitializeLabel->setText("Selected images must have matching geometries"); } } }