diff --git a/Modules/MatchPointRegistration/Rendering/mitkRegEvaluationMapper2D.cpp b/Modules/MatchPointRegistration/Rendering/mitkRegEvaluationMapper2D.cpp index ea6be768d4..e58cd97045 100644 --- a/Modules/MatchPointRegistration/Rendering/mitkRegEvaluationMapper2D.cpp +++ b/Modules/MatchPointRegistration/Rendering/mitkRegEvaluationMapper2D.cpp @@ -1,840 +1,840 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //MITK #include #include #include #include #include #include #include #include #include #include #include #include "mitkImageStatisticsHolder.h" #include "mitkPlaneClipping.h" #include "mitkRegVisPropertyTags.h" #include "mitkRegVisHelper.h" #include "mitkRegEvalStyleProperty.h" #include "mitkRegEvalWipeStyleProperty.h" //MITK Rendering #include "mitkRegEvaluationMapper2D.h" #include "vtkMitkThickSlicesFilter.h" #include "vtkMitkLevelWindowFilter.h" #include "vtkNeverTranslucentTexture.h" //VTK #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //ITK #include #include //MatchPoint #include #include mitk::RegEvaluationMapper2D::RegEvaluationMapper2D() { } mitk::RegEvaluationMapper2D::~RegEvaluationMapper2D() { } //set the two points defining the textured plane according to the dimension and spacing void mitk::RegEvaluationMapper2D::GeneratePlane(mitk::BaseRenderer* renderer, double planeBounds[6]) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); float depth = this->CalculateLayerDepth(renderer); //Set the origin to (xMin; yMin; depth) of the plane. This is necessary for obtaining the correct //plane size in crosshair rotation and swivel mode. localStorage->m_Plane->SetOrigin(planeBounds[0], planeBounds[2], depth); //These two points define the axes of the plane in combination with the origin. //Point 1 is the x-axis and point 2 the y-axis. //Each plane is transformed according to the view (axial, coronal and saggital) afterwards. localStorage->m_Plane->SetPoint1(planeBounds[1] , planeBounds[2], depth); //P1: (xMax, yMin, depth) localStorage->m_Plane->SetPoint2(planeBounds[0], planeBounds[3], depth); //P2: (xMin, yMax, depth) } float mitk::RegEvaluationMapper2D::CalculateLayerDepth(mitk::BaseRenderer* renderer) { //get the clipping range to check how deep into z direction we can render images double maxRange = renderer->GetVtkRenderer()->GetActiveCamera()->GetClippingRange()[1]; //Due to a VTK bug, we cannot use the whole clipping range. /100 is empirically determined float depth = -maxRange*0.01; // divide by 100 int layer = 0; GetDataNode()->GetIntProperty( "layer", layer, renderer); //add the layer property for each image to render images with a higher layer on top of the others depth += layer*10; //*10: keep some room for each image (e.g. for ODFs in between) if(depth > 0.0f) { depth = 0.0f; MITK_WARN << "Layer value exceeds clipping range. Set to minimum instead."; } return depth; } const mitk::Image* mitk::RegEvaluationMapper2D::GetTargetImage( void ) { const mitk::RegEvaluationObject* evalObj = dynamic_cast< const mitk::RegEvaluationObject* >( GetDataNode()->GetData() ); if (evalObj) { return evalObj->GetTargetImage(); } return nullptr; } const mitk::Image* mitk::RegEvaluationMapper2D::GetMovingImage( void ) { const mitk::RegEvaluationObject* evalObj = dynamic_cast< const mitk::RegEvaluationObject* >( GetDataNode()->GetData() ); if (evalObj) { return evalObj->GetMovingImage(); } return nullptr; } const mitk::DataNode* mitk::RegEvaluationMapper2D::GetTargetNode(void) { const mitk::RegEvaluationObject* evalObj = dynamic_cast< const mitk::RegEvaluationObject* >(GetDataNode()->GetData()); if (evalObj) { return evalObj->GetTargetNode(); } return nullptr; } const mitk::DataNode* mitk::RegEvaluationMapper2D::GetMovingNode(void) { const mitk::RegEvaluationObject* evalObj = dynamic_cast< const mitk::RegEvaluationObject* >(GetDataNode()->GetData()); if (evalObj) { return evalObj->GetMovingNode(); } return nullptr; } const mitk::MAPRegistrationWrapper* mitk::RegEvaluationMapper2D::GetRegistration( void ) { const mitk::RegEvaluationObject* evalObj = dynamic_cast< const mitk::RegEvaluationObject* >( GetDataNode()->GetData() ); if (evalObj) { return evalObj->GetRegistration(); } return nullptr; } vtkProp* mitk::RegEvaluationMapper2D::GetVtkProp(mitk::BaseRenderer* renderer) { //return the actor corresponding to the renderer return m_LSH.GetLocalStorage(renderer)->m_Actors; } void mitk::RegEvaluationMapper2D::GenerateDataForRenderer( mitk::BaseRenderer *renderer ) { bool updated = false; LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); mitk::Image::Pointer targetInput = const_cast< mitk::Image * >( this->GetTargetImage() ); mitk::DataNode* datanode = this->GetDataNode(); if ( targetInput.IsNull() || targetInput->IsInitialized() == false ) { return; } mitk::Image::ConstPointer movingInput = this->GetMovingImage(); if ( movingInput.IsNull() || movingInput->IsInitialized() == false ) { return; } mitk::MAPRegistrationWrapper::ConstPointer reg = this->GetRegistration(); //check if there is a valid worldGeometry const PlaneGeometry *worldGeometry = renderer->GetCurrentWorldPlaneGeometry(); if( ( worldGeometry == nullptr ) || ( !worldGeometry->IsValid() ) || ( !worldGeometry->HasReferenceGeometry() )) { return; } if(targetInput->GetMTime()>localStorage->m_LastUpdateTime || (localStorage->m_LastUpdateTime < renderer->GetCurrentWorldPlaneGeometryUpdateTime()) //was the geometry modified? || (localStorage->m_LastUpdateTime < renderer->GetCurrentWorldPlaneGeometry()->GetMTime())) { //target input has been modified -> reslice target input targetInput->Update(); // early out if there is no intersection of the current rendering geometry // and the geometry of the image that is to be rendered. if ( !RenderingGeometryIntersectsImage( worldGeometry, targetInput->GetSlicedGeometry() ) ) { // set image to nullptr, to clear the texture in 3D, because // the latest image is used there if the plane is out of the geometry // see bug-13275 localStorage->m_EvaluationImage = nullptr; localStorage->m_Mapper->SetInputData( localStorage->m_EmptyPolyData ); return; } //set main input for ExtractSliceFilter localStorage->m_Reslicer->SetInput(targetInput); localStorage->m_Reslicer->SetWorldGeometry(worldGeometry); localStorage->m_Reslicer->SetTimeStep( this->GetTimestep() ); //set the transformation of the image to adapt reslice axis localStorage->m_Reslicer->SetResliceTransformByGeometry( targetInput->GetTimeGeometry()->GetGeometryForTimeStep( this->GetTimestep() ) ); //is the geometry of the slice based on the input image or the worldgeometry? bool inPlaneResampleExtentByGeometry = false; datanode->GetBoolProperty("in plane resample extent by geometry", inPlaneResampleExtentByGeometry, renderer); localStorage->m_Reslicer->SetInPlaneResampleExtentByGeometry(inPlaneResampleExtentByGeometry); // Initialize the interpolation mode for resampling; switch to nearest // neighbor if the input image is too small. if ( (targetInput->GetDimension() >= 3) && (targetInput->GetDimension(2) > 1) ) { VtkResliceInterpolationProperty *resliceInterpolationProperty; datanode->GetProperty( resliceInterpolationProperty, "reslice interpolation" ); int interpolationMode = VTK_RESLICE_NEAREST; if ( resliceInterpolationProperty != nullptr ) { interpolationMode = resliceInterpolationProperty->GetInterpolation(); } switch ( interpolationMode ) { case VTK_RESLICE_NEAREST: localStorage->m_Reslicer->SetInterpolationMode(ExtractSliceFilter::RESLICE_NEAREST); break; case VTK_RESLICE_LINEAR: localStorage->m_Reslicer->SetInterpolationMode(ExtractSliceFilter::RESLICE_LINEAR); break; case VTK_RESLICE_CUBIC: localStorage->m_Reslicer->SetInterpolationMode(ExtractSliceFilter::RESLICE_CUBIC); break; } } else { localStorage->m_Reslicer->SetInterpolationMode(ExtractSliceFilter::RESLICE_NEAREST); } //this is needed when thick mode was enable bevore. These variable have to be reset to default values localStorage->m_Reslicer->SetOutputDimensionality( 2 ); localStorage->m_Reslicer->SetOutputSpacingZDirection(1.0); localStorage->m_Reslicer->SetOutputExtentZDirection( 0, 0 ); localStorage->m_Reslicer->Modified(); //start the pipeline with updating the largest possible, needed if the geometry of the input has changed localStorage->m_Reslicer->UpdateLargestPossibleRegion(); localStorage->m_slicedTargetImage = localStorage->m_Reslicer->GetOutput(); updated = true; } if(updated || movingInput->GetMTime() > localStorage->m_LastUpdateTime || reg->GetMTime() > localStorage->m_LastUpdateTime) { //Map moving image localStorage->m_slicedMappedImage = mitk::ImageMappingHelper::map(movingInput,reg,false,0,localStorage->m_slicedTargetImage->GetGeometry(),false,0); updated = true; } // Bounds information for reslicing (only required if reference geometry // is present) //this used for generating a vtkPLaneSource with the right size double sliceBounds[6] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; if (updated || (localStorage->m_LastUpdateTime < datanode->GetPropertyList()->GetMTime()) //was a property modified? || (localStorage->m_LastUpdateTime < datanode->GetPropertyList(renderer)->GetMTime()) || (localStorage->m_LastUpdateTime < this->GetTargetNode()->GetMTime()) || (localStorage->m_LastUpdateTime < this->GetMovingNode()->GetMTime())) { localStorage->m_Reslicer->GetClippedPlaneBounds(sliceBounds); //get the spacing of the slice localStorage->m_mmPerPixel = localStorage->m_Reslicer->GetOutputSpacing(); // calculate minimum bounding rect of IMAGE in texture { double textureClippingBounds[6] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; // Calculate the actual bounds of the transformed plane clipped by the // dataset bounding box; this is required for drawing the texture at the // correct position during 3D mapping. const PlaneGeometry *planeGeometry = dynamic_cast(worldGeometry); mitk::PlaneClipping::CalculateClippedPlaneBounds(targetInput->GetGeometry(), planeGeometry, textureClippingBounds); textureClippingBounds[0] = static_cast(textureClippingBounds[0] / localStorage->m_mmPerPixel[0] + 0.5); textureClippingBounds[1] = static_cast(textureClippingBounds[1] / localStorage->m_mmPerPixel[0] + 0.5); textureClippingBounds[2] = static_cast(textureClippingBounds[2] / localStorage->m_mmPerPixel[1] + 0.5); textureClippingBounds[3] = static_cast(textureClippingBounds[3] / localStorage->m_mmPerPixel[1] + 0.5); //clipping bounds for cutting the image localStorage->m_TargetLevelWindowFilter->SetClippingBounds(textureClippingBounds); localStorage->m_MappedLevelWindowFilter->SetClippingBounds(textureClippingBounds); } this->ApplyLookuptable(renderer, this->GetTargetNode(), localStorage->m_TargetLevelWindowFilter); this->ApplyLookuptable(renderer, this->GetMovingNode(), localStorage->m_MappedLevelWindowFilter); this->ApplyLevelWindow(renderer, this->GetTargetNode(), localStorage->m_TargetLevelWindowFilter); this->ApplyLevelWindow(renderer, this->GetMovingNode(), localStorage->m_MappedLevelWindowFilter); //connect the input with the levelwindow filter localStorage->m_TargetLevelWindowFilter->SetInputData(localStorage->m_slicedTargetImage->GetVtkImageData()); localStorage->m_MappedLevelWindowFilter->SetInputData(localStorage->m_slicedMappedImage->GetVtkImageData()); localStorage->m_TargetExtractFilter->SetInputConnection(localStorage->m_TargetLevelWindowFilter->GetOutputPort()); localStorage->m_MappedExtractFilter->SetInputConnection(localStorage->m_MappedLevelWindowFilter->GetOutputPort()); localStorage->m_TargetExtractFilter->SetComponents(0); localStorage->m_MappedExtractFilter->SetComponents(0); updated = true; } //Generate evaluation image bool isStyleOutdated = mitk::PropertyIsOutdated(datanode,mitk::nodeProp_RegEvalStyle,localStorage->m_LastUpdateTime); bool isBlendOutdated = mitk::PropertyIsOutdated(datanode,mitk::nodeProp_RegEvalBlendFactor,localStorage->m_LastUpdateTime); bool isCheckerOutdated = mitk::PropertyIsOutdated(datanode,mitk::nodeProp_RegEvalCheckerCount,localStorage->m_LastUpdateTime); bool isWipeStyleOutdated = mitk::PropertyIsOutdated(datanode,mitk::nodeProp_RegEvalWipeStyle,localStorage->m_LastUpdateTime); bool isContourOutdated = mitk::PropertyIsOutdated(datanode,mitk::nodeProp_RegEvalTargetContour,localStorage->m_LastUpdateTime); bool isPositionOutdated = mitk::PropertyIsOutdated(datanode, mitk::nodeProp_RegEvalCurrentPosition, localStorage->m_LastUpdateTime); if (updated || isStyleOutdated || isBlendOutdated || isCheckerOutdated || isWipeStyleOutdated || isContourOutdated || isPositionOutdated) { mitk::RegEvalStyleProperty::Pointer evalStyleProp = mitk::RegEvalStyleProperty::New(); datanode->GetProperty(evalStyleProp, mitk::nodeProp_RegEvalStyle); switch (evalStyleProp->GetValueAsId()) { case 0 : { PrepareBlend(datanode, localStorage); break; } case 1 : { PrepareColorBlend(localStorage); break; } case 2 : { PrepareCheckerBoard(datanode, localStorage); break; } case 3 : { const PlaneGeometry *worldGeometry = renderer->GetCurrentWorldPlaneGeometry(); Point3D currentPos3D; datanode->GetPropertyValue(mitk::nodeProp_RegEvalCurrentPosition, currentPos3D); Point2D currentPos2D; worldGeometry->Map(currentPos3D, currentPos2D); Point2D currentIndex2D; worldGeometry->WorldToIndex(currentPos2D, currentIndex2D); PrepareWipe(datanode, localStorage, currentIndex2D); break; } case 4 : { PrepareDifference(localStorage); break; } case 5 : { PrepareContour(datanode, localStorage); break; } } updated = true; } if(updated || (localStorage->m_LastUpdateTime < datanode->GetPropertyList()->GetMTime()) //was a property modified? || (localStorage->m_LastUpdateTime < datanode->GetPropertyList(renderer)->GetMTime()) ) { this->ApplyOpacity( renderer ); // do not use a VTK lookup table (we do that ourselves in m_LevelWindowFilter) localStorage->m_Texture->SetColorModeToDirectScalars(); // check for texture interpolation property bool textureInterpolation = false; GetDataNode()->GetBoolProperty( "texture interpolation", textureInterpolation, renderer ); //set the interpolation modus according to the property localStorage->m_Texture->SetInterpolate(textureInterpolation); // connect the texture with the output of the levelwindow filter localStorage->m_Texture->SetInputData(localStorage->m_EvaluationImage); this->TransformActor( renderer ); vtkActor* contourShadowActor = dynamic_cast (localStorage->m_Actors->GetParts()->GetItemAsObject(0)); //Connect the mapper with the input texture. This is the standard case. //setup the textured plane this->GeneratePlane( renderer, sliceBounds ); //set the plane as input for the mapper localStorage->m_Mapper->SetInputConnection(localStorage->m_Plane->GetOutputPort()); //set the texture for the actor localStorage->m_Actor->SetTexture(localStorage->m_Texture); contourShadowActor->SetVisibility( false ); // We have been modified => save this for next Update() localStorage->m_LastUpdateTime.Modified(); } } void mitk::RegEvaluationMapper2D::PrepareContour( mitk::DataNode* datanode, LocalStorage * localStorage ) { bool targetContour = true; datanode->GetBoolProperty(mitk::nodeProp_RegEvalTargetContour,targetContour); vtkSmartPointer magFilter = vtkSmartPointer::New(); if(targetContour) { magFilter->SetInputConnection(localStorage->m_TargetExtractFilter->GetOutputPort()); } else { magFilter->SetInputConnection(localStorage->m_MappedExtractFilter->GetOutputPort()); } vtkSmartPointer appendFilter = vtkSmartPointer::New(); appendFilter->AddInputConnection(magFilter->GetOutputPort()); appendFilter->AddInputConnection(magFilter->GetOutputPort()); if(targetContour) { appendFilter->AddInputConnection(localStorage->m_MappedExtractFilter->GetOutputPort()); } else { appendFilter->AddInputConnection(localStorage->m_TargetExtractFilter->GetOutputPort()); } appendFilter->Update(); localStorage->m_EvaluationImage = appendFilter->GetOutput(); } void mitk::RegEvaluationMapper2D::PrepareDifference( LocalStorage * localStorage ) { vtkSmartPointer diffFilter = vtkSmartPointer::New(); vtkSmartPointer minFilter = vtkSmartPointer::New(); vtkSmartPointer maxFilter = vtkSmartPointer::New(); minFilter->SetInputConnection(0, localStorage->m_TargetExtractFilter->GetOutputPort()); minFilter->SetInputConnection(1, localStorage->m_MappedExtractFilter->GetOutputPort()); minFilter->SetOperationToMin(); maxFilter->SetInputConnection(0, localStorage->m_TargetExtractFilter->GetOutputPort()); maxFilter->SetInputConnection(1, localStorage->m_MappedExtractFilter->GetOutputPort()); maxFilter->SetOperationToMax(); diffFilter->SetInputConnection(0, maxFilter->GetOutputPort()); diffFilter->SetInputConnection(1, minFilter->GetOutputPort()); diffFilter->SetOperationToSubtract(); diffFilter->Update(); localStorage->m_EvaluationImage = diffFilter->GetOutput(); } void mitk::RegEvaluationMapper2D::PrepareWipe(mitk::DataNode* datanode, LocalStorage * localStorage, const Point2D& currentIndex2D) { mitk::RegEvalWipeStyleProperty::Pointer evalWipeStyleProp = mitk::RegEvalWipeStyleProperty::New(); datanode->GetProperty(evalWipeStyleProp, mitk::nodeProp_RegEvalWipeStyle); vtkSmartPointer wipedFilter = vtkSmartPointer::New(); wipedFilter->SetInputConnection(0, localStorage->m_TargetLevelWindowFilter->GetOutputPort()); wipedFilter->SetInputConnection(1, localStorage->m_MappedLevelWindowFilter->GetOutputPort()); wipedFilter->SetPosition(currentIndex2D[0], currentIndex2D[1]); if (evalWipeStyleProp->GetValueAsId() == 0) { wipedFilter->SetWipeToQuad(); } else if (evalWipeStyleProp->GetValueAsId() == 1) { wipedFilter->SetWipeToHorizontal(); } else if (evalWipeStyleProp->GetValueAsId() == 2) { wipedFilter->SetWipeToVertical(); } wipedFilter->Update(); localStorage->m_EvaluationImage = wipedFilter->GetOutput(); } void mitk::RegEvaluationMapper2D::PrepareCheckerBoard( mitk::DataNode* datanode, LocalStorage * localStorage ) { int checkerCount = 5; datanode->GetIntProperty(mitk::nodeProp_RegEvalCheckerCount,checkerCount); vtkSmartPointer checkerboardFilter = vtkSmartPointer::New(); checkerboardFilter->SetInputConnection(0, localStorage->m_TargetLevelWindowFilter->GetOutputPort()); checkerboardFilter->SetInputConnection(1, localStorage->m_MappedLevelWindowFilter->GetOutputPort()); checkerboardFilter->SetNumberOfDivisions(checkerCount, checkerCount, 1); checkerboardFilter->Update(); localStorage->m_EvaluationImage = checkerboardFilter->GetOutput(); } void mitk::RegEvaluationMapper2D::PrepareColorBlend( LocalStorage * localStorage ) { vtkSmartPointer appendFilter = vtkSmartPointer::New(); //red channel appendFilter->AddInputConnection(localStorage->m_MappedExtractFilter->GetOutputPort()); //green channel appendFilter->AddInputConnection(localStorage->m_MappedExtractFilter->GetOutputPort()); //blue channel appendFilter->AddInputConnection(localStorage->m_TargetExtractFilter->GetOutputPort()); appendFilter->Update(); localStorage->m_EvaluationImage = appendFilter->GetOutput(); } void mitk::RegEvaluationMapper2D::PrepareBlend( mitk::DataNode* datanode, LocalStorage * localStorage ) { int blendfactor = 50; datanode->GetIntProperty(mitk::nodeProp_RegEvalBlendFactor,blendfactor); vtkSmartPointer blendFilter = vtkSmartPointer::New(); blendFilter->AddInputConnection(localStorage->m_TargetExtractFilter->GetOutputPort()); blendFilter->AddInputConnection(localStorage->m_MappedExtractFilter->GetOutputPort()); blendFilter->SetWeight(0, (100 - blendfactor) / 100.); blendFilter->SetWeight(1,blendfactor/100.); blendFilter->Update(); localStorage->m_EvaluationImage = blendFilter->GetOutput(); } void mitk::RegEvaluationMapper2D::ApplyLevelWindow(mitk::BaseRenderer *renderer, const mitk::DataNode* dataNode, vtkMitkLevelWindowFilter* levelFilter) { LevelWindow levelWindow; dataNode->GetLevelWindow(levelWindow, renderer, "levelwindow"); levelFilter->GetLookupTable()->SetRange(levelWindow.GetLowerWindowBound(), levelWindow.GetUpperWindowBound()); mitk::LevelWindow opacLevelWindow; if (dataNode->GetLevelWindow(opacLevelWindow, renderer, "opaclevelwindow")) { //pass the opaque level window to the filter levelFilter->SetMinOpacity(opacLevelWindow.GetLowerWindowBound()); levelFilter->SetMaxOpacity(opacLevelWindow.GetUpperWindowBound()); } else { //no opaque level window levelFilter->SetMinOpacity(0.0); levelFilter->SetMaxOpacity(255.0); } } void mitk::RegEvaluationMapper2D::ApplyLookuptable(mitk::BaseRenderer* renderer, const mitk::DataNode* dataNode, vtkMitkLevelWindowFilter* levelFilter) { LocalStorage* localStorage = m_LSH.GetLocalStorage(renderer); vtkLookupTable* usedLookupTable = localStorage->m_ColorLookupTable; // If lookup table or transferfunction use is requested... mitk::LookupTableProperty::Pointer lookupTableProp = dynamic_cast(dataNode->GetProperty("LookupTable")); if (lookupTableProp.IsNotNull()) // is a lookuptable set? { usedLookupTable = lookupTableProp->GetLookupTable()->GetVtkLookupTable(); } else { //"Image Rendering.Mode was set to use a lookup table but there is no property 'LookupTable'. //A default (rainbow) lookup table will be used. //Here have to do nothing. Warning for the user has been removed, due to unwanted console output //in every interation of the rendering. } levelFilter->SetLookupTable(usedLookupTable); } void mitk::RegEvaluationMapper2D::ApplyOpacity( mitk::BaseRenderer* renderer ) { LocalStorage* localStorage = this->GetLocalStorage( renderer ); float opacity = 1.0f; // check for opacity prop and use it for rendering if it exists GetDataNode()->GetOpacity( opacity, renderer, "opacity" ); //set the opacity according to the properties localStorage->m_Actor->GetProperty()->SetOpacity(opacity); if ( localStorage->m_Actors->GetParts()->GetNumberOfItems() > 1 ) { dynamic_cast( localStorage->m_Actors->GetParts()->GetItemAsObject(0) )->GetProperty()->SetOpacity(opacity); } } void mitk::RegEvaluationMapper2D::Update(mitk::BaseRenderer* renderer) { bool visible = true; GetDataNode()->GetVisibility(visible, renderer, "visible"); if ( !visible ) { return; } mitk::Image* data = const_cast( this->GetTargetImage() ); if ( data == nullptr ) { return; } // Calculate time step of the input data for the specified renderer (integer value) this->CalculateTimeStep( renderer ); // Check if time step is valid const TimeGeometry *dataTimeGeometry = data->GetTimeGeometry(); if ( ( dataTimeGeometry == nullptr ) || ( dataTimeGeometry->CountTimeSteps() == 0 ) || ( !dataTimeGeometry->IsValidTimeStep( this->GetTimestep() ) ) ) { return; } const DataNode *node = this->GetDataNode(); data->UpdateOutputInformation(); LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); //check if something important has changed and we need to rerender if ( (localStorage->m_LastUpdateTime < node->GetMTime()) //was the node modified? || (localStorage->m_LastUpdateTime < data->GetPipelineMTime()) //Was the data modified? || (localStorage->m_LastUpdateTime < renderer->GetCurrentWorldPlaneGeometryUpdateTime()) //was the geometry modified? || (localStorage->m_LastUpdateTime < renderer->GetCurrentWorldPlaneGeometry()->GetMTime()) || (localStorage->m_LastUpdateTime < node->GetPropertyList()->GetMTime()) //was a property modified? || (localStorage->m_LastUpdateTime < node->GetPropertyList(renderer)->GetMTime()) || (localStorage->m_LastUpdateTime < this->GetTargetNode()->GetMTime()) //was the target node modified? || (localStorage->m_LastUpdateTime < this->GetMovingNode()->GetMTime()) //was the moving node modified? || (localStorage->m_LastUpdateTime < this->GetTargetNode()->GetPropertyList()->GetMTime()) //was a target node property modified? || (localStorage->m_LastUpdateTime < this->GetTargetNode()->GetPropertyList(renderer)->GetMTime()) || (localStorage->m_LastUpdateTime < this->GetMovingNode()->GetPropertyList()->GetMTime()) //was a moving node property modified? || (localStorage->m_LastUpdateTime < this->GetMovingNode()->GetPropertyList(renderer)->GetMTime())) { this->GenerateDataForRenderer( renderer ); } // since we have checked that nothing important has changed, we can set // m_LastUpdateTime to the current time localStorage->m_LastUpdateTime.Modified(); } void mitk::RegEvaluationMapper2D::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { mitk::RegEvaluationObject* regEval = dynamic_cast(node->GetData()); if(!regEval) { return; } // Properties common for both images and segmentations node->AddProperty( "depthOffset", mitk::FloatProperty::New( 0.0 ), renderer, overwrite ); if(regEval->GetTargetImage() && regEval->GetTargetImage()->IsRotated()) node->AddProperty( "reslice interpolation", mitk::VtkResliceInterpolationProperty::New(VTK_RESLICE_CUBIC) ); else node->AddProperty( "reslice interpolation", mitk::VtkResliceInterpolationProperty::New() ); node->AddProperty( "texture interpolation", mitk::BoolProperty::New( false ) ); // set to user configurable default value (see global options) node->AddProperty( "in plane resample extent by geometry", mitk::BoolProperty::New( false ) ); node->AddProperty( "bounding box", mitk::BoolProperty::New( false ) ); mitk::RenderingModeProperty::Pointer renderingModeProperty = mitk::RenderingModeProperty::New(); node->AddProperty( "Image Rendering.Mode", renderingModeProperty); // Set default grayscale look-up table mitk::LookupTable::Pointer mitkLut = mitk::LookupTable::New(); mitk::LookupTableProperty::Pointer mitkLutProp = mitk::LookupTableProperty::New(); mitkLutProp->SetLookupTable(mitkLut); node->SetProperty("LookupTable", mitkLutProp); node->AddProperty( "opacity", mitk::FloatProperty::New(1.0f), renderer, overwrite ); node->AddProperty( "color", ColorProperty::New(1.0,1.0,1.0), renderer, overwrite ); node->AddProperty( "binary", mitk::BoolProperty::New( false ), renderer, overwrite ); node->AddProperty("layer", mitk::IntProperty::New(0), renderer, overwrite); node->AddProperty(mitk::nodeProp_RegEvalStyle, mitk::RegEvalStyleProperty::New(0), renderer, overwrite); node->AddProperty(mitk::nodeProp_RegEvalBlendFactor, mitk::IntProperty::New(50), renderer, overwrite); node->AddProperty(mitk::nodeProp_RegEvalCheckerCount, mitk::IntProperty::New(3), renderer, overwrite); node->AddProperty(mitk::nodeProp_RegEvalTargetContour, mitk::BoolProperty::New(true), renderer, overwrite); node->AddProperty(mitk::nodeProp_RegEvalWipeStyle, mitk::RegEvalWipeStyleProperty::New(0), renderer, overwrite); node->AddProperty(mitk::nodeProp_RegEvalCurrentPosition, mitk::GenericProperty::New(mitk::Point3D()), renderer, overwrite); Superclass::SetDefaultProperties(node, renderer, overwrite); } mitk::RegEvaluationMapper2D::LocalStorage* mitk::RegEvaluationMapper2D::GetLocalStorage(mitk::BaseRenderer* renderer) { return m_LSH.GetLocalStorage(renderer); } void mitk::RegEvaluationMapper2D::TransformActor(mitk::BaseRenderer* renderer) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); //get the transformation matrix of the reslicer in order to render the slice as axial, coronal or saggital vtkSmartPointer trans = vtkSmartPointer::New(); vtkSmartPointer matrix = localStorage->m_Reslicer->GetResliceAxes(); trans->SetMatrix(matrix); //transform the plane/contour (the actual actor) to the corresponding view (axial, coronal or saggital) localStorage->m_Actor->SetUserTransform(trans); //transform the origin to center based coordinates, because MITK is center based. localStorage->m_Actor->SetPosition( -0.5*localStorage->m_mmPerPixel[0], -0.5*localStorage->m_mmPerPixel[1], 0.0); if ( localStorage->m_Actors->GetNumberOfPaths() > 1 ) { vtkActor* secondaryActor = dynamic_cast( localStorage->m_Actors->GetParts()->GetItemAsObject(0) ); secondaryActor->SetUserTransform(trans); secondaryActor->SetPosition( -0.5*localStorage->m_mmPerPixel[0], -0.5*localStorage->m_mmPerPixel[1], 0.0); } } bool mitk::RegEvaluationMapper2D::RenderingGeometryIntersectsImage( const PlaneGeometry* renderingGeometry, SlicedGeometry3D* imageGeometry ) { // if either one of the two geometries is nullptr we return true // for safety reasons if ( renderingGeometry == nullptr || imageGeometry == nullptr ) return true; // get the distance for the first cornerpoint ScalarType initialDistance = renderingGeometry->SignedDistance( imageGeometry->GetCornerPoint( 0 ) ); for( int i=1; i<8; i++ ) { mitk::Point3D cornerPoint = imageGeometry->GetCornerPoint( i ); // get the distance to the other cornerpoints ScalarType distance = renderingGeometry->SignedDistance( cornerPoint ); // if it has not the same signing as the distance of the first point if ( initialDistance * distance < 0 ) { // we have an intersection and return true return true; } } // all distances have the same sign, no intersection and we return false return false; } mitk::RegEvaluationMapper2D::LocalStorage::~LocalStorage() { } mitk::RegEvaluationMapper2D::LocalStorage::LocalStorage() { m_TargetLevelWindowFilter = vtkSmartPointer::New(); m_MappedLevelWindowFilter = vtkSmartPointer::New(); m_TargetExtractFilter = vtkSmartPointer::New(); m_MappedExtractFilter = vtkSmartPointer::New(); - + m_mmPerPixel = nullptr; //Do as much actions as possible in here to avoid double executions. m_Plane = vtkSmartPointer::New(); //m_Texture = vtkSmartPointer::New().GetPointer(); m_Texture = vtkSmartPointer::New().GetPointer(); m_DefaultLookupTable = vtkSmartPointer::New(); m_ColorLookupTable = vtkSmartPointer::New(); m_Mapper = vtkSmartPointer::New(); m_Actor = vtkSmartPointer::New(); m_Actors = vtkSmartPointer::New(); m_Reslicer = mitk::ExtractSliceFilter::New(); m_EvaluationImage = vtkSmartPointer::New(); m_EmptyPolyData = vtkSmartPointer::New(); mitk::LookupTable::Pointer mitkLUT = mitk::LookupTable::New(); //built a default lookuptable mitkLUT->SetType(mitk::LookupTable::GRAYSCALE); m_DefaultLookupTable = mitkLUT->GetVtkLookupTable(); mitkLUT->SetType(mitk::LookupTable::JET); m_ColorLookupTable = mitkLUT->GetVtkLookupTable(); //do not repeat the texture (the image) m_Texture->RepeatOff(); //set the mapper for the actor m_Actor->SetMapper( m_Mapper ); vtkSmartPointer outlineShadowActor = vtkSmartPointer::New(); outlineShadowActor->SetMapper( m_Mapper ); m_Actors->AddPart( outlineShadowActor ); m_Actors->AddPart( m_Actor ); }