diff --git a/Modules/DiffusionImaging/Algorithms/itkTractsToDWIImageFilter.cpp b/Modules/DiffusionImaging/Algorithms/itkTractsToDWIImageFilter.cpp index 44fda2c997..3a6f40cecb 100644 --- a/Modules/DiffusionImaging/Algorithms/itkTractsToDWIImageFilter.cpp +++ b/Modules/DiffusionImaging/Algorithms/itkTractsToDWIImageFilter.cpp @@ -1,624 +1,624 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "itkTractsToDWIImageFilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace itk { TractsToDWIImageFilter::TractsToDWIImageFilter() : m_CircleDummy(false) - , m_VolumeAccuracy(1) + , m_VolumeAccuracy(10) , m_Upsampling(1) , m_NumberOfRepetitions(1) , m_EnforcePureFiberVoxels(true) { m_Spacing.Fill(2.5); m_Origin.Fill(0.0); m_DirectionMatrix.SetIdentity(); m_ImageRegion.SetSize(0, 10); m_ImageRegion.SetSize(1, 10); m_ImageRegion.SetSize(2, 10); } TractsToDWIImageFilter::~TractsToDWIImageFilter() { } std::vector< TractsToDWIImageFilter::DoubleDwiType::Pointer > TractsToDWIImageFilter::AddKspaceArtifacts( std::vector< DoubleDwiType::Pointer >& images ) { // create slice object SliceType::Pointer slice = SliceType::New(); ImageRegion<2> region; region.SetSize(0, m_UpsampledImageRegion.GetSize()[0]); region.SetSize(1, m_UpsampledImageRegion.GetSize()[1]); slice->SetLargestPossibleRegion( region ); slice->SetBufferedRegion( region ); slice->SetRequestedRegion( region ); slice->Allocate(); boost::progress_display disp(images.size()*images[0]->GetVectorLength()*images[0]->GetLargestPossibleRegion().GetSize(2)); std::vector< DoubleDwiType::Pointer > outImages; for (int i=0; iSetSpacing( m_Spacing ); newImage->SetOrigin( m_Origin ); newImage->SetDirection( m_DirectionMatrix ); newImage->SetLargestPossibleRegion( m_ImageRegion ); newImage->SetBufferedRegion( m_ImageRegion ); newImage->SetRequestedRegion( m_ImageRegion ); newImage->SetVectorLength( image->GetVectorLength() ); newImage->Allocate(); DiffusionSignalModel* signalModel; if (iGetVectorLength(); g++) for (int z=0; zGetLargestPossibleRegion().GetSize(2); z++) { ++disp; // extract slice from channel g for (int y=0; yGetLargestPossibleRegion().GetSize(1); y++) for (int x=0; xGetLargestPossibleRegion().GetSize(0); x++) { SliceType::IndexType index2D; index2D[0]=x; index2D[1]=y; DoubleDwiType::IndexType index3D; index3D[0]=x; index3D[1]=y; index3D[2]=z; SliceType::PixelType pix2D = image->GetPixel(index3D)[g]; slice->SetPixel(index2D, pix2D); } // fourier transform slice itk::FFTRealToComplexConjugateImageFilter< SliceType::PixelType, 2 >::Pointer fft = itk::FFTRealToComplexConjugateImageFilter< SliceType::PixelType, 2 >::New(); fft->SetInput(slice); fft->Update(); ComplexSliceType::Pointer fSlice = fft->GetOutput(); fSlice = RearrangeSlice(fSlice); // add artifacts for (int a=0; aSetRelaxationT2(signalModel->GetRelaxationT2()); fSlice = m_KspaceArtifacts.at(a)->AddArtifact(fSlice); } // save k-space slice of s0 image if (g==0) for (int y=0; yGetLargestPossibleRegion().GetSize(1); y++) for (int x=0; xGetLargestPossibleRegion().GetSize(0); x++) { DoubleDwiType::IndexType index3D; index3D[0]=x; index3D[1]=y; index3D[2]=z; SliceType::IndexType index2D; index2D[0]=x; index2D[1]=y; double kpix = sqrt(fSlice->GetPixel(index2D).real()*fSlice->GetPixel(index2D).real()+fSlice->GetPixel(index2D).imag()*fSlice->GetPixel(index2D).imag()); m_KspaceImage->SetPixel(index3D, kpix); } // inverse fourier transform slice SliceType::Pointer newSlice; itk::FFTComplexConjugateToRealImageFilter< SliceType::PixelType, 2 >::Pointer ifft = itk::FFTComplexConjugateToRealImageFilter< SliceType::PixelType, 2 >::New(); ifft->SetInput(fSlice); ifft->Update(); newSlice = ifft->GetOutput(); // put slice back into channel g for (int y=0; yGetLargestPossibleRegion().GetSize(1); y++) for (int x=0; xGetLargestPossibleRegion().GetSize(0); x++) { DoubleDwiType::IndexType index3D; index3D[0]=x; index3D[1]=y; index3D[2]=z; DoubleDwiType::PixelType pix3D = newImage->GetPixel(index3D); SliceType::IndexType index2D; index2D[0]=x; index2D[1]=y; pix3D[g] = newSlice->GetPixel(index2D); newImage->SetPixel(index3D, pix3D); } } outImages.push_back(newImage); } return outImages; } TractsToDWIImageFilter::ComplexSliceType::Pointer TractsToDWIImageFilter::RearrangeSlice(ComplexSliceType::Pointer slice) { ImageRegion<2> region = slice->GetLargestPossibleRegion(); ComplexSliceType::Pointer rearrangedSlice = ComplexSliceType::New(); rearrangedSlice->SetLargestPossibleRegion( region ); rearrangedSlice->SetBufferedRegion( region ); rearrangedSlice->SetRequestedRegion( region ); rearrangedSlice->Allocate(); int xHalf = region.GetSize(0)/2; int yHalf = region.GetSize(1)/2; for (int y=0; y pix = slice->GetPixel(idx); if( idx[0] < xHalf ) idx[0] = idx[0] + xHalf; else idx[0] = idx[0] - xHalf; if( idx[1] < yHalf ) idx[1] = idx[1] + yHalf; else idx[1] = idx[1] - yHalf; rearrangedSlice->SetPixel(idx, pix); } return rearrangedSlice; } void TractsToDWIImageFilter::GenerateData() { // check input data if (m_FiberBundle.IsNull()) itkExceptionMacro("Input fiber bundle is NULL!"); int numFibers = m_FiberBundle->GetNumFibers(); if (numFibers<=0) itkExceptionMacro("Input fiber bundle contains no fibers!"); if (m_FiberModels.empty()) itkExceptionMacro("No diffusion model for fiber compartments defined!"); if (m_NonFiberModels.empty()) itkExceptionMacro("No diffusion model for non-fiber compartments defined!"); int baselineIndex = m_FiberModels[0]->GetFirstBaselineIndex(); if (baselineIndex<0) itkExceptionMacro("No baseline index found!"); // determine k-space undersampling for (int i=0; i*>(m_KspaceArtifacts.at(i)) ) m_Upsampling = dynamic_cast*>(m_KspaceArtifacts.at(i))->GetKspaceCropping(); if (m_Upsampling<1) m_Upsampling = 1; if (m_TissueMask.IsNotNull()) { // use input tissue mask m_Spacing = m_TissueMask->GetSpacing(); m_Origin = m_TissueMask->GetOrigin(); m_DirectionMatrix = m_TissueMask->GetDirection(); m_ImageRegion = m_TissueMask->GetLargestPossibleRegion(); if (m_Upsampling>1) { ImageRegion<3> region = m_ImageRegion; region.SetSize(0, m_ImageRegion.GetSize(0)*m_Upsampling); region.SetSize(1, m_ImageRegion.GetSize(1)*m_Upsampling); mitk::Vector3D spacing = m_Spacing; spacing[0] /= m_Upsampling; spacing[1] /= m_Upsampling; itk::RescaleIntensityImageFilter::Pointer rescaler = itk::RescaleIntensityImageFilter::New(); rescaler->SetInput(0,m_TissueMask); rescaler->SetOutputMaximum(100); rescaler->SetOutputMinimum(0); rescaler->Update(); itk::ResampleImageFilter::Pointer resampler = itk::ResampleImageFilter::New(); resampler->SetInput(rescaler->GetOutput()); resampler->SetOutputParametersFromImage(m_TissueMask); resampler->SetSize(region.GetSize()); resampler->SetOutputSpacing(spacing); resampler->Update(); m_TissueMask = resampler->GetOutput(); } MITK_INFO << "Using tissue mask"; } // initialize output dwi image OutputImageType::Pointer outImage = OutputImageType::New(); outImage->SetSpacing( m_Spacing ); outImage->SetOrigin( m_Origin ); outImage->SetDirection( m_DirectionMatrix ); outImage->SetLargestPossibleRegion( m_ImageRegion ); outImage->SetBufferedRegion( m_ImageRegion ); outImage->SetRequestedRegion( m_ImageRegion ); outImage->SetVectorLength( m_FiberModels[0]->GetNumGradients() ); outImage->Allocate(); OutputImageType::PixelType temp; temp.SetSize(m_FiberModels[0]->GetNumGradients()); temp.Fill(0.0); outImage->FillBuffer(temp); // is input slize size a power of two? int x=2; int y=2; while (x " << x; m_ImageRegion.SetSize(0, x); } if (y!=m_ImageRegion.GetSize(1)) { MITK_INFO << "Adjusting image height: " << m_ImageRegion.GetSize(1) << " --> " << y; m_ImageRegion.SetSize(1, y); } // initialize k-space image m_KspaceImage = ItkDoubleImgType::New(); m_KspaceImage->SetSpacing( m_Spacing ); m_KspaceImage->SetOrigin( m_Origin ); m_KspaceImage->SetDirection( m_DirectionMatrix ); m_KspaceImage->SetLargestPossibleRegion( m_ImageRegion ); m_KspaceImage->SetBufferedRegion( m_ImageRegion ); m_KspaceImage->SetRequestedRegion( m_ImageRegion ); m_KspaceImage->Allocate(); m_KspaceImage->FillBuffer(0); // apply undersampling to image parameters m_UpsampledSpacing = m_Spacing; m_UpsampledImageRegion = m_ImageRegion; m_UpsampledSpacing[0] /= m_Upsampling; m_UpsampledSpacing[1] /= m_Upsampling; m_UpsampledImageRegion.SetSize(0, m_ImageRegion.GetSize()[0]*m_Upsampling); m_UpsampledImageRegion.SetSize(1, m_ImageRegion.GetSize()[1]*m_Upsampling); // everything from here on is using the upsampled image parameters!!! if (m_TissueMask.IsNull()) { m_TissueMask = ItkUcharImgType::New(); m_TissueMask->SetSpacing( m_UpsampledSpacing ); m_TissueMask->SetOrigin( m_Origin ); m_TissueMask->SetDirection( m_DirectionMatrix ); m_TissueMask->SetLargestPossibleRegion( m_UpsampledImageRegion ); m_TissueMask->SetBufferedRegion( m_UpsampledImageRegion ); m_TissueMask->SetRequestedRegion( m_UpsampledImageRegion ); m_TissueMask->Allocate(); m_TissueMask->FillBuffer(1); } // resample fiber bundle for sufficient voxel coverage float minSpacing = 1; if(m_UpsampledSpacing[0]GetFiberSampling()<=0 || 10/m_FiberBundle->GetFiberSampling()>minSpacing*0.5/m_VolumeAccuracy) { fiberBundle = m_FiberBundle->GetDeepCopy(); - fiberBundle->ResampleFibers(minSpacing*0.5/m_VolumeAccuracy); + fiberBundle->ResampleFibers(minSpacing/m_VolumeAccuracy); } // generate double images to wokr with because we don't want to lose precision // we use a separate image for each compartment model std::vector< DoubleDwiType::Pointer > compartments; for (int i=0; iSetSpacing( m_UpsampledSpacing ); doubleDwi->SetOrigin( m_Origin ); doubleDwi->SetDirection( m_DirectionMatrix ); doubleDwi->SetLargestPossibleRegion( m_UpsampledImageRegion ); doubleDwi->SetBufferedRegion( m_UpsampledImageRegion ); doubleDwi->SetRequestedRegion( m_UpsampledImageRegion ); doubleDwi->SetVectorLength( m_FiberModels[0]->GetNumGradients() ); doubleDwi->Allocate(); DoubleDwiType::PixelType pix; pix.SetSize(m_FiberModels[0]->GetNumGradients()); pix.Fill(0.0); doubleDwi->FillBuffer(pix); compartments.push_back(doubleDwi); } if (m_CircleDummy) { for (int i=0; iGetNumGradients()); pix.Fill(1); DoubleDwiType::Pointer doubleDwi = compartments.at(i); ImageRegion<3> region = doubleDwi->GetLargestPossibleRegion(); ImageRegionIterator it(doubleDwi, region); while(!it.IsAtEnd()) { DoubleDwiType::IndexType index = it.GetIndex(); double t = region.GetSize(0)/2; double d1 = index[0]-t+0.5; t = region.GetSize(1)/2; double d2 = index[1]-t+0.5; if (sqrt(d1*d1+d2*d2)<20*m_Upsampling) it.Set(pix); ++it; } } } else { vtkSmartPointer fiberPolyData = fiberBundle->GetFiberPolyData(); vtkSmartPointer vLines = fiberPolyData->GetLines(); vLines->InitTraversal(); MITK_INFO << "Generating signal of " << m_FiberModels.size() << " fiber compartments"; double maxFiberDensity = 0; boost::progress_display disp(numFibers); for( int i=0; iGetNextCell ( numPoints, points ); if (numPoints<2) continue; for( int j=0; jGetPoint(points[j]); itk::Point vertex = GetItkPoint(temp); itk::Vector v = GetItkVector(temp); itk::Vector dir(3); if (jGetPoint(points[j+1]))-v; else dir = v-GetItkVector(fiberPolyData->GetPoint(points[j-1])); itk::Index<3> idx; itk::ContinuousIndex contIndex; m_TissueMask->TransformPhysicalPointToIndex(vertex, idx); m_TissueMask->TransformPhysicalPointToContinuousIndex(vertex, contIndex); double frac_x = contIndex[0] - idx[0]; double frac_y = contIndex[1] - idx[1]; double frac_z = contIndex[2] - idx[2]; if (frac_x<0) { idx[0] -= 1; frac_x += 1; } if (frac_y<0) { idx[1] -= 1; frac_y += 1; } if (frac_z<0) { idx[2] -= 1; frac_z += 1; } // use trilinear interpolation itk::Index<3> newIdx; for (int x=0; x<2; x++) { frac_x = 1-frac_x; for (int y=0; y<2; y++) { frac_y = 1-frac_y; for (int z=0; z<2; z++) { frac_z = 1-frac_z; newIdx[0] = idx[0]+x; newIdx[1] = idx[1]+y; newIdx[2] = idx[2]+z; double frac = frac_x*frac_y*frac_z; // is position valid? if (!m_TissueMask->GetLargestPossibleRegion().IsInside(newIdx) || m_TissueMask->GetPixel(newIdx)<=0) continue; // generate signal for each fiber compartment for (int k=0; kSetFiberDirection(dir); doubleDwi->SetPixel(newIdx, doubleDwi->GetPixel(newIdx) + frac*m_FiberModels[k]->SimulateMeasurement()); DoubleDwiType::PixelType pix = doubleDwi->GetPixel(newIdx); if (pix[baselineIndex]>maxFiberDensity) maxFiberDensity = pix[baselineIndex]; } } } } } } MITK_INFO << "Generating signal of " << m_NonFiberModels.size() << " non-fiber compartments"; boost::progress_display disp2(m_NonFiberModels.size()*compartments.at(0)->GetLargestPossibleRegion().GetNumberOfPixels()); for (int i=0; i it(doubleDwi, doubleDwi->GetLargestPossibleRegion()); while(!it.IsAtEnd()) { ++disp2; DoubleDwiType::IndexType index = it.GetIndex(); if (m_TissueMask->GetLargestPossibleRegion().IsInside(index) && m_TissueMask->GetPixel(index)>0) doubleDwi->SetPixel(index, doubleDwi->GetPixel(index) + m_NonFiberModels[i]->SimulateMeasurement()); ++it; } } MITK_INFO << "Adjusting compartment signal intensities according to volume fraction"; ImageRegionIterator it3(m_TissueMask, m_TissueMask->GetLargestPossibleRegion()); boost::progress_display disp3(m_TissueMask->GetLargestPossibleRegion().GetNumberOfPixels()); while(!it3.IsAtEnd()) { ++disp3; DoubleDwiType::IndexType index = it3.GetIndex(); if (it3.Get()>0) { // compartment weights are calculated according to fiber density double w = compartments.at(0)->GetPixel(index)[baselineIndex]/maxFiberDensity; if (m_EnforcePureFiberVoxels && w>0) w = 1; // adjust fiber signal for (int i=0; iGetPixel(index); if (pix[baselineIndex]>0) pix /= pix[baselineIndex]; pix *= w/m_FiberModels.size(); doubleDwi->SetPixel(index, pix); } // adjust non-fiber signal for (int i=0; iGetPixel(index); if (pix[baselineIndex]>0) pix /= pix[baselineIndex]; pix *= (1-w)/m_NonFiberModels.size(); doubleDwi->SetPixel(index, pix); } } ++it3; } } // do k-space stuff if (!m_KspaceArtifacts.empty()) MITK_INFO << "Generating k-space artifacts"; else MITK_INFO << "Generating k-space image"; compartments = AddKspaceArtifacts(compartments); MITK_INFO << "Summing compartments and adding noise"; double correction = m_Upsampling*m_Upsampling; ImageRegionIterator it4 (outImage, outImage->GetLargestPossibleRegion()); DoubleDwiType::PixelType signal; signal.SetSize(m_FiberModels[0]->GetNumGradients()); boost::progress_display disp4(outImage->GetLargestPossibleRegion().GetNumberOfPixels()); while(!it4.IsAtEnd()) { ++disp4; DWIImageType::IndexType index = it4.GetIndex(); signal.Fill(0.0); // adjust fiber signal for (int i=0; iGetSignalScale()/correction; signal += compartments.at(i)->GetPixel(index)*s; } // adjust non-fiber signal for (int i=0; iGetSignalScale()/correction; signal += compartments.at(m_FiberModels.size()+i)->GetPixel(index)*s; } DoubleDwiType::PixelType accu = signal; accu.Fill(0.0); for (int i=0; iAddNoise(temp); accu += temp; } signal = accu/m_NumberOfRepetitions; for (int i=0; i0) signal[i] = floor(signal[i]+0.5); else signal[i] = ceil(signal[i]-0.5); } it4.Set(signal); ++it4; } this->SetNthOutput(0, outImage); } itk::Point TractsToDWIImageFilter::GetItkPoint(double point[3]) { itk::Point itkPoint; itkPoint[0] = point[0]; itkPoint[1] = point[1]; itkPoint[2] = point[2]; return itkPoint; } itk::Vector TractsToDWIImageFilter::GetItkVector(double point[3]) { itk::Vector itkVector; itkVector[0] = point[0]; itkVector[1] = point[1]; itkVector[2] = point[2]; return itkVector; } vnl_vector_fixed TractsToDWIImageFilter::GetVnlVector(double point[3]) { vnl_vector_fixed vnlVector; vnlVector[0] = point[0]; vnlVector[1] = point[1]; vnlVector[2] = point[2]; return vnlVector; } vnl_vector_fixed TractsToDWIImageFilter::GetVnlVector(Vector& vector) { vnl_vector_fixed vnlVector; vnlVector[0] = vector[0]; vnlVector[1] = vector[1]; vnlVector[2] = vector[2]; return vnlVector; } } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/documentation/UserManual/Fiberfox.png b/Plugins/org.mitk.gui.qt.diffusionimaging/documentation/UserManual/Fiberfox.png new file mode 100644 index 0000000000..a49a84de10 Binary files /dev/null and b/Plugins/org.mitk.gui.qt.diffusionimaging/documentation/UserManual/Fiberfox.png differ diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/documentation/UserManual/FiberfoxExamples.png b/Plugins/org.mitk.gui.qt.diffusionimaging/documentation/UserManual/FiberfoxExamples.png new file mode 100644 index 0000000000..2305df8489 Binary files /dev/null and b/Plugins/org.mitk.gui.qt.diffusionimaging/documentation/UserManual/FiberfoxExamples.png differ diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/documentation/UserManual/QmitkFiberfoxViewUserManual.dox b/Plugins/org.mitk.gui.qt.diffusionimaging/documentation/UserManual/QmitkFiberfoxViewUserManual.dox index c9079c01b6..bedc365856 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/documentation/UserManual/QmitkFiberfoxViewUserManual.dox +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/documentation/UserManual/QmitkFiberfoxViewUserManual.dox @@ -1,35 +1,52 @@ /** -\page org_mitk_views_fiberfox Fiberfox +\page org_mitk_views_fiberfoxview Fiberfox This view provides the user interface for Fiberfox, an interactive simulation tool for the generation of complex white matter tissue models and corresponding DW-MRI. Arbitrary fiber configurations like bended, crossing, kissing, twisting, and fanning bundles can be intuitively defined by positioning only a few 3D waypoints to trigger the automated generation of synthetic fibers. From these fibers, a DW-MRI signal is simulated according to the specified acquisition settings such as gradient direction, b-value, signal-to-noise ratio, image size, and resolution. Fiberfox incorporates different models of diffusion, noise, and artifacts to simulate realistic images. Available sections: - \ref QmitkGibbsTrackingUserManualFiberDefinition - \ref QmitkGibbsTrackingUserManualSignalGeneration - \ref QmitkGibbsTrackingUserManualReferences -\image html fiberfoxview.png Screenshot of the Fiberfox framework. The four render windows display an axial, sagittal and coronal 2D cut as well as a 3D view of a synthetic fiber helix and the fiducials used to define its shape. In the 2D views the helix is superimposing the baseline volume of the corresponding diffusion weighted image. The sagittal render window shows a closeup view on one of the circular fiducials. +\image html Fiberfox.png Screenshot of the Fiberfox framework. The four render windows display an axial, sagittal and coronal 2D cut as well as a 3D view of a synthetic fiber helix and the fiducials used to define its shape. In the 2D views the helix is superimposing the baseline volume of the corresponding diffusion weighted image. The sagittal render window shows a closeup view on one of the circular fiducials. \section QmitkGibbsTrackingUserManualFiberDefinition Fiber Definition Fiber strands are defined simply by placing markers in a 3D image volume. The fibers are then interpolated between these fiducials. Example: -\li Chose an image volume to place the markers used to define the fiber pathway. If you don't have such an image available switch to the "Image Generation" tab, define the size and spacing of the desired image ang click "Generate Image". If no fiber bundle is selected, this will generate a dummy image that can be used to place the fiducials. +\li Chose an image volume to place the markers used to define the fiber pathway. If you don't have such an image available switch to the "Signal Generation" tab, define the size and spacing of the desired image ang click "Generate Image". If no fiber bundle is selected, this will generate a dummy image that can be used to place the fiducials. \li Start placing fiducials at the desired positions to define the fiber pathway. To do that, click on the button with the circle pictogram, then click at the desired position and plane in the image volume and drag your mouse while keeping the button pressed to generate a circular shape. Adjust the shape using the control points. The position of the control point with the attached line connecting it to the center of the fiducial introduces a twist of the fibers between two successive fiducials. The actual fiber generation is triggered automatically as soon as you place the third control point. \li In some cases the fibers are entangled in a way that can't be resolved by introducing an additional fiber twist. Fiberfox tries to avoid these situations, which arise from different normal orientations of succeeding fiducials, automatically. In rare cases this is not successful. Use the PICTURE button to flip the fiber positions of the selected fiducial in one dimension. Either the problem is resolved now or you can resolve it manually by adjusting the twist-control point. Parameters: -If not self explanatory please refer to TODO. +If not self-explanatory please refer to TODO. -\section QmitkGibbsTrackingUserManualSignalGeneration Image Generation +\image html FiberfoxExamples.png Examples of artificial crossing, fanning, highly curved, kissing and twisting fibers as well as of the corresponding tensor images generated with Fiberfox. + +\section QmitkGibbsTrackingUserManualSignalGeneration Signal Generation Fiberfox uses a ball-zeppelin model to generate the artificial signal. For details about the signal generation process please refer to TODO. A diffusion weighted image is generated from the fibers by selecting the according fiber bundle in the datamanager and clicking "Generate Image". Additionally to the fiber bundle a binary mask can be specified that defines the tissue area. Voxels outside of this mask will contain no signal, only noise. If no tissue mask is selected, the whole image volume is regarded as tissue. Fiberfox allows the addition of artifcats often present in EPI based diffusion weighted datasets like rician noise, Gibbs ringing and blurring introduced by the T2 signal decay. -Parameters: -\li TODO - -If you want to use the same parameters (b-value, gradient directios, image geometry) as used for an already acquired dataset, simply select it additionally to the other input nodes. Fiberfox will automatically use these parameters for the signal generation. +Image Settings: +\li Enforce Pure Fiber Voxels: Disable partial voluming. All voxels touched by at least one fiber are treated as pure fiber voxles. +\li Output k-Space Image: Output an image of the fourier transformed baseline signal. +\li Image Dimensions: The number of voxels in each image dimension. +\li Image Spacing: The voxel size (in mm) in each dimension. +\li #Gradient Directions: The number of gradient directions distributed over the half-sphere. +\li b-value: The b-value (in mm/s²) used for the diffusion signal generation. +\li Repetitions: Number of averaged repetitions. Used to suppress noise in real acquisitions. +\li Kernel FA: Fractional anisotropy of the zeppelin compartment. +\li Fiber S0: Scaling factor for the fiber tissue signal. +\li Non-fiber S0: Scaling factor for the non-fiber tissue signal. +\li Volume Accuracy: The higher the value, the more accurate the volume fraction estimation for the compartments. Corresponds to the number of sampling points on a fiber over a distance of the minimum spacing value. + +Noise and Artifacts: +\li SNR: The signal-to-noise ratio relative to the fiber signal sacling factor. A rician noise model is used. If the SNR is larger than 99, no noise is added to the image. +\li T2 Blurring: Simulate the exponential signal decay occurring during the application of the readout gradient. This is dependent on the tissue specific T2 relaxation times. The defaults correspond to values for white matter and water taken from literature. +\li Gibbs Ringing: Ringing artifacts occurring on edges in the image due to the frequency low-pass filtering caused by the limited size of the k-space. The higher the oversampling factor, the larger the distance from the corresponding edge in which the ringing is still visible. + +If you want to use the same parameters (b-value, gradient directions, image geometry) as used for an already acquired dataset, simply select it additionally to the other input nodes. Fiberfox will automatically use these parameters for the signal generation. */ diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.cpp index aa89970107..e26d21611b 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.cpp @@ -1,934 +1,934 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //misc #define _USE_MATH_DEFINES #include // Blueberry #include #include // Qmitk #include "QmitkFiberfoxView.h" // MITK #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include const std::string QmitkFiberfoxView::VIEW_ID = "org.mitk.views.fiberfoxview"; QmitkFiberfoxView::QmitkFiberfoxView() : QmitkAbstractView() , m_Controls( 0 ) , m_SelectedImage( NULL ) , m_SelectedBundle( NULL ) { } // Destructor QmitkFiberfoxView::~QmitkFiberfoxView() { } void QmitkFiberfoxView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkFiberfoxViewControls; m_Controls->setupUi( parent ); m_Controls->m_VarianceBox->setVisible(false); m_Controls->m_GeometryMessage->setVisible(false); m_Controls->m_DiffusionPropsMessage->setVisible(false); m_Controls->m_T2bluringParamFrame->setVisible(false); m_Controls->m_KspaceParamFrame->setVisible(false); connect((QObject*) m_Controls->m_GenerateImageButton, SIGNAL(clicked()), (QObject*) this, SLOT(GenerateImage())); connect((QObject*) m_Controls->m_GenerateFibersButton, SIGNAL(clicked()), (QObject*) this, SLOT(GenerateFibers())); connect((QObject*) m_Controls->m_CircleButton, SIGNAL(clicked()), (QObject*) this, SLOT(OnDrawROI())); connect((QObject*) m_Controls->m_FlipButton, SIGNAL(clicked()), (QObject*) this, SLOT(OnFlipButton())); connect((QObject*) m_Controls->m_JoinBundlesButton, SIGNAL(clicked()), (QObject*) this, SLOT(JoinBundles())); connect((QObject*) m_Controls->m_VarianceBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnVarianceChanged(double))); connect((QObject*) m_Controls->m_DistributionBox, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(OnDistributionChanged(int))); connect((QObject*) m_Controls->m_FiberDensityBox, SIGNAL(valueChanged(int)), (QObject*) this, SLOT(OnFiberDensityChanged(int))); connect((QObject*) m_Controls->m_FiberSamplingBox, SIGNAL(valueChanged(int)), (QObject*) this, SLOT(OnFiberSamplingChanged(int))); connect((QObject*) m_Controls->m_TensionBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnTensionChanged(double))); connect((QObject*) m_Controls->m_ContinuityBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnContinuityChanged(double))); connect((QObject*) m_Controls->m_BiasBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnBiasChanged(double))); connect((QObject*) m_Controls->m_AddT2Smearing, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddT2Smearing(int))); connect((QObject*) m_Controls->m_AddGibbsRinging, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddGibbsRinging(int))); connect((QObject*) m_Controls->m_ConstantRadiusBox, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnConstantRadius(int))); connect((QObject*) m_Controls->m_CopyBundlesButton, SIGNAL(clicked()), (QObject*) this, SLOT(CopyBundles())); connect((QObject*) m_Controls->m_TransformBundlesButton, SIGNAL(clicked()), (QObject*) this, SLOT(TransformBundles())); } } void QmitkFiberfoxView::OnConstantRadius(int value) { if (value>0 && m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnAddT2Smearing(int value) { if (value>0) m_Controls->m_T2bluringParamFrame->setVisible(true); else m_Controls->m_T2bluringParamFrame->setVisible(false); } void QmitkFiberfoxView::OnAddGibbsRinging(int value) { if (value>0) m_Controls->m_KspaceParamFrame->setVisible(true); else m_Controls->m_KspaceParamFrame->setVisible(false); } void QmitkFiberfoxView::OnDistributionChanged(int value) { if (value==1) m_Controls->m_VarianceBox->setVisible(true); else m_Controls->m_VarianceBox->setVisible(false); if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnVarianceChanged(double value) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnFiberDensityChanged(int value) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnFiberSamplingChanged(int value) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnTensionChanged(double value) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnContinuityChanged(double value) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnBiasChanged(double value) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnFlipButton() { if (m_SelectedFiducial.IsNull()) return; std::map::iterator it = m_DataNodeToPlanarFigureData.find(m_SelectedFiducial.GetPointer()); if( it != m_DataNodeToPlanarFigureData.end() ) { QmitkPlanarFigureData& data = it->second; data.m_Flipped += 1; data.m_Flipped %= 2; } if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } QmitkFiberfoxView::GradientListType QmitkFiberfoxView::GenerateHalfShell(int NPoints) { NPoints *= 2; GradientListType pointshell; int numB0 = NPoints/10; if (numB0==0) numB0=1; GradientType g; g.Fill(0.0); for (int i=0; i theta; theta.set_size(NPoints); vnl_vector phi; phi.set_size(NPoints); double C = sqrt(4*M_PI); phi(0) = 0.0; phi(NPoints-1) = 0.0; for(int i=0; i0 && i std::vector > QmitkFiberfoxView::MakeGradientList() { std::vector > retval; vnl_matrix_fixed* U = itk::PointShell >::DistributePointShell(); // Add 0 vector for B0 int numB0 = ndirs/10; if (numB0==0) numB0=1; itk::Vector v; v.Fill(0.0); for (int i=0; i v; v[0] = U->get(0,i); v[1] = U->get(1,i); v[2] = U->get(2,i); retval.push_back(v); } return retval; } void QmitkFiberfoxView::OnAddBundle() { if (m_SelectedImage.IsNull()) return; mitk::DataStorage::SetOfObjects::ConstPointer children = GetDataStorage()->GetDerivations(m_SelectedImage); mitk::FiberBundleX::Pointer bundle = mitk::FiberBundleX::New(); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( bundle ); QString name = QString("Bundle_%1").arg(children->size()); node->SetName(name.toStdString()); m_SelectedBundle = node; m_SelectedBundles.push_back(node); UpdateGui(); GetDataStorage()->Add(node, m_SelectedImage); } void QmitkFiberfoxView::OnDrawROI() { if (m_SelectedBundle.IsNull()) OnAddBundle(); if (m_SelectedBundle.IsNull()) return; mitk::DataStorage::SetOfObjects::ConstPointer children = GetDataStorage()->GetDerivations(m_SelectedBundle); mitk::PlanarEllipse::Pointer figure = mitk::PlanarEllipse::New(); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( figure ); QList nodes = this->GetDataManagerSelection(); for( int i=0; iSetSelected(false); m_SelectedFiducial = node; QString name = QString("Fiducial_%1").arg(children->size()); node->SetName(name.toStdString()); node->SetSelected(true); GetDataStorage()->Add(node, m_SelectedBundle); this->DisableCrosshairNavigation(); mitk::PlanarFigureInteractor::Pointer figureInteractor = dynamic_cast(node->GetInteractor()); if(figureInteractor.IsNull()) figureInteractor = mitk::PlanarFigureInteractor::New("PlanarFigureInteractor", node); mitk::GlobalInteraction::GetInstance()->AddInteractor(figureInteractor); UpdateGui(); } bool CompareLayer(mitk::DataNode::Pointer i,mitk::DataNode::Pointer j) { int li = -1; i->GetPropertyValue("layer", li); int lj = -1; j->GetPropertyValue("layer", lj); return li > fiducials; vector< vector< unsigned int > > fliplist; for (int i=0; iGetDerivations(m_SelectedBundles.at(i)); std::vector< mitk::DataNode::Pointer > childVector; for( mitk::DataStorage::SetOfObjects::const_iterator it = children->begin(); it != children->end(); ++it ) childVector.push_back(*it); sort(childVector.begin(), childVector.end(), CompareLayer); vector< mitk::PlanarEllipse::Pointer > fib; vector< unsigned int > flip; float radius = 1; int count = 0; for( std::vector< mitk::DataNode::Pointer >::const_iterator it = childVector.begin(); it != childVector.end(); ++it ) { mitk::DataNode::Pointer node = *it; if ( node.IsNotNull() && dynamic_cast(node->GetData()) ) { mitk::PlanarEllipse* ellipse = dynamic_cast(node->GetData()); if (m_Controls->m_ConstantRadiusBox->isChecked()) { ellipse->SetTreatAsCircle(true); mitk::Point2D c = ellipse->GetControlPoint(0); mitk::Point2D p = ellipse->GetControlPoint(1); mitk::Vector2D v = p-c; if (count==0) radius = v.GetVnlVector().magnitude(); else { v.Normalize(); v *= radius; ellipse->SetControlPoint(1, c+v); } } fib.push_back(ellipse); std::map::iterator it = m_DataNodeToPlanarFigureData.find(node.GetPointer()); if( it != m_DataNodeToPlanarFigureData.end() ) { QmitkPlanarFigureData& data = it->second; flip.push_back(data.m_Flipped); } else flip.push_back(0); } count++; } if (fib.size()>1) { fiducials.push_back(fib); fliplist.push_back(flip); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); if (fib.size()<3) return; } itk::FibersFromPlanarFiguresFilter::Pointer filter = itk::FibersFromPlanarFiguresFilter::New(); filter->SetFiducials(fiducials); filter->SetFlipList(fliplist); switch(m_Controls->m_DistributionBox->currentIndex()){ case 0: filter->SetFiberDistribution(itk::FibersFromPlanarFiguresFilter::DISTRIBUTE_UNIFORM); break; case 1: filter->SetFiberDistribution(itk::FibersFromPlanarFiguresFilter::DISTRIBUTE_GAUSSIAN); filter->SetVariance(m_Controls->m_VarianceBox->value()); break; } filter->SetDensity(m_Controls->m_FiberDensityBox->value()); filter->SetTension(m_Controls->m_TensionBox->value()); filter->SetContinuity(m_Controls->m_ContinuityBox->value()); filter->SetBias(m_Controls->m_BiasBox->value()); filter->SetFiberSampling(m_Controls->m_FiberSamplingBox->value()); filter->Update(); vector< mitk::FiberBundleX::Pointer > fiberBundles = filter->GetFiberBundles(); for (int i=0; iSetData( fiberBundles.at(i) ); if (fiberBundles.at(i)->GetNumFibers()>50000) m_SelectedBundles.at(i)->SetVisibility(false); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberfoxView::GenerateImage() { itk::ImageRegion<3> imageRegion; - imageRegion.SetSize(0, m_Controls->m_SizeX->currentText().toInt()); - imageRegion.SetSize(1, m_Controls->m_SizeY->currentText().toInt()); - imageRegion.SetSize(2, m_Controls->m_SizeZ->currentText().toInt()); + imageRegion.SetSize(0, m_Controls->m_SizeX->value()); + imageRegion.SetSize(1, m_Controls->m_SizeY->value()); + imageRegion.SetSize(2, m_Controls->m_SizeZ->value()); mitk::Vector3D spacing; spacing[0] = m_Controls->m_SpacingX->value(); spacing[1] = m_Controls->m_SpacingY->value(); spacing[2] = m_Controls->m_SpacingZ->value(); mitk::Point3D origin; origin.Fill(0.0); itk::Matrix directionMatrix; directionMatrix.SetIdentity(); if (m_SelectedBundle.IsNull()) { mitk::Image::Pointer image = mitk::ImageGenerator::GenerateGradientImage( - m_Controls->m_SizeX->currentText().toInt(), - m_Controls->m_SizeY->currentText().toInt(), - m_Controls->m_SizeZ->currentText().toInt(), + m_Controls->m_SizeX->value(), + m_Controls->m_SizeY->value(), + m_Controls->m_SizeZ->value(), m_Controls->m_SpacingX->value(), m_Controls->m_SpacingY->value(), m_Controls->m_SpacingZ->value()); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("Dummy"); GetDataStorage()->Add(node); m_SelectedImage = node; mitk::BaseData::Pointer basedata = node->GetData(); if (basedata.IsNotNull()) { mitk::RenderingManager::GetInstance()->InitializeViews( basedata->GetTimeSlicedGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } UpdateGui(); return; } DiffusionSignalModel::GradientListType gradientList; double bVal = 1000; if (m_SelectedDWI.IsNull()) { gradientList = GenerateHalfShell(m_Controls->m_NumGradientsBox->value());; bVal = m_Controls->m_BvalueBox->value(); } else { mitk::DiffusionImage::Pointer dwi = dynamic_cast*>(m_SelectedDWI->GetData()); bVal = dwi->GetB_Value(); mitk::DiffusionImage::GradientDirectionContainerType::Pointer dirs = dwi->GetDirectionsWithMeasurementFrame(); for (int i=0; iSize(); i++) { DiffusionSignalModel::GradientType g; g[0] = dirs->at(i)[0]; g[1] = dirs->at(i)[1]; g[2] = dirs->at(i)[2]; gradientList.push_back(g); } } // signal models mitk::TensorModel extraAxonal; extraAxonal.SetGradientList(gradientList); extraAxonal.SetBvalue(bVal); extraAxonal.SetKernelFA(m_Controls->m_MaxFaBox->value()); extraAxonal.SetSignalScale(m_Controls->m_FiberS0Box->value()); extraAxonal.SetRelaxationT2(m_Controls->m_FiberRelaxationT2Box->value()); // mitk::StickModel intraAxonal; // intraAxonal.SetGradientList(gradientList); // intraAxonal.SetDiffusivity(m_Controls->m_MaxFaBox->value()); // intraAxonal.SetSignalScale(m_Controls->m_FiberS0Box->value()); // intraAxonal.SetRelaxationT2(m_Controls->m_FiberRelaxationT2Box->value()); mitk::BallModel freeDiffusion; freeDiffusion.SetGradientList(gradientList); freeDiffusion.SetBvalue(bVal); freeDiffusion.SetSignalScale(m_Controls->m_NonFiberS0Box->value()); freeDiffusion.SetRelaxationT2(m_Controls->m_NonFiberRelaxationT2Box->value()); itk::TractsToDWIImageFilter::DiffusionModelList modelList; itk::TractsToDWIImageFilter::KspaceArtifactList artifactList; // noise model double snr = m_Controls->m_NoiseLevel->value(); double noiseVariance = 0; if (snr <= 0) snr = 0.0001; if (snr<=99) { noiseVariance = (double)m_Controls->m_FiberS0Box->value()/snr; noiseVariance *= noiseVariance; } mitk::RicianNoiseModel noiseModel; noiseModel.SetNoiseVariance(noiseVariance); // artifact models mitk::GibbsRingingArtifact gibbsModel; if (m_Controls->m_AddGibbsRinging->isChecked()) { gibbsModel.SetKspaceCropping((double)m_Controls->m_KspaceUndersamplingBox->currentText().toInt()); artifactList.push_back(&gibbsModel); } mitk::T2SmearingArtifact t2Model; if (m_Controls->m_AddT2Smearing->isChecked()) { t2Model.SetReadoutPulseLength(1); artifactList.push_back(&t2Model); } for (int i=0; i(m_SelectedBundles.at(i)->GetData()); if (fiberBundle->GetNumFibers()<=0) continue; itk::TractsToDWIImageFilter::Pointer filter = itk::TractsToDWIImageFilter::New(); filter->SetImageRegion(imageRegion); filter->SetSpacing(spacing); filter->SetFiberBundle(fiberBundle); modelList.push_back(&extraAxonal); // modelList.push_back(&intraAxonal); filter->SetFiberModels(modelList); modelList.clear(); modelList.push_back(&freeDiffusion); filter->SetNonFiberModels(modelList); filter->SetNoiseModel(&noiseModel); filter->SetKspaceArtifacts(artifactList); filter->SetVolumeAccuracy(m_Controls->m_VolumeAccuracyBox->value()); filter->SetNumberOfRepetitions(m_Controls->m_RepetitionsBox->value()); filter->SetEnforcePureFiberVoxels(m_Controls->m_EnforcePureFiberVoxelsBox->isChecked()); if (m_TissueMask.IsNotNull()) { ItkUcharImgType::Pointer mask = ItkUcharImgType::New(); mitk::CastToItkImage(m_TissueMask, mask); filter->SetTissueMask(mask); } filter->Update(); mitk::DiffusionImage::Pointer image = mitk::DiffusionImage::New(); image->SetVectorImage( filter->GetOutput() ); image->SetB_Value(bVal); image->SetDirections(gradientList); image->InitializeFromVectorImage(); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName(m_Controls->m_ImageName->text().toStdString()); GetDataStorage()->Add(node, m_SelectedBundle); if (m_Controls->m_KspaceImageBox->isChecked()) { itk::Image::Pointer kspace = filter->GetKspaceImage(); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(kspace.GetPointer()); image->SetVolume(kspace->GetBufferPointer()); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("k-space"); node->SetBoolProperty("use color", false); GetDataStorage()->Add(node, m_SelectedBundle); } mitk::BaseData::Pointer basedata = node->GetData(); if (basedata.IsNotNull()) { mitk::RenderingManager::GetInstance()->InitializeViews( basedata->GetTimeSlicedGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } } void QmitkFiberfoxView::TransformBundles() { if ( m_SelectedBundles.size()<1 ){ QMessageBox::information( NULL, "Warning", "Select at least one fiber bundle!"); MITK_WARN("QmitkFiberProcessingView") << "Select at least one fiber bundle!"; return; } std::vector::const_iterator it = m_SelectedBundles.begin(); for (it; it!=m_SelectedBundles.end(); ++it) { mitk::FiberBundleX::Pointer fib = dynamic_cast((*it)->GetData()); fib->RotateAroundAxis(m_Controls->m_XrotBox->value(), m_Controls->m_YrotBox->value(), m_Controls->m_ZrotBox->value()); fib->TranslateFibers(m_Controls->m_XtransBox->value(), m_Controls->m_YtransBox->value(), m_Controls->m_ZtransBox->value()); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberfoxView::CopyBundles() { if ( m_SelectedBundles.size()<1 ){ QMessageBox::information( NULL, "Warning", "Select at least one fiber bundle!"); MITK_WARN("QmitkFiberProcessingView") << "Select at least one fiber bundle!"; return; } std::vector::const_iterator it = m_SelectedBundles.begin(); for (it; it!=m_SelectedBundles.end(); ++it) { mitk::FiberBundleX::Pointer fib = dynamic_cast((*it)->GetData()); mitk::FiberBundleX::Pointer newBundle = fib->GetDeepCopy(); QString name((*it)->GetName().c_str()); name += "_copy"; mitk::DataNode::Pointer fbNode = mitk::DataNode::New(); fbNode->SetData(newBundle); fbNode->SetName(name.toStdString()); fbNode->SetVisibility(true); GetDataStorage()->Add(fbNode); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberfoxView::JoinBundles() { if ( m_SelectedBundles.size()<2 ){ QMessageBox::information( NULL, "Warning", "Select at least two fiber bundles!"); MITK_WARN("QmitkFiberProcessingView") << "Select at least two fiber bundles!"; return; } std::vector::const_iterator it = m_SelectedBundles.begin(); mitk::FiberBundleX::Pointer newBundle = dynamic_cast((*it)->GetData()); QString name(""); name += QString((*it)->GetName().c_str()); ++it; for (it; it!=m_SelectedBundles.end(); ++it) { newBundle = newBundle->AddBundle(dynamic_cast((*it)->GetData())); name += "+"+QString((*it)->GetName().c_str()); } mitk::DataNode::Pointer fbNode = mitk::DataNode::New(); fbNode->SetData(newBundle); fbNode->SetName(name.toStdString()); fbNode->SetVisibility(true); GetDataStorage()->Add(fbNode); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberfoxView::UpdateGui() { if (m_SelectedFiducial.IsNotNull()) m_Controls->m_FlipButton->setEnabled(true); else m_Controls->m_FlipButton->setEnabled(false); if (m_SelectedImage.IsNotNull()) { m_Controls->m_CircleButton->setEnabled(true); m_Controls->m_FiberGenMessage->setVisible(false); } else if (m_SelectedBundle.IsNull()) { m_Controls->m_CircleButton->setEnabled(false); m_Controls->m_FiberGenMessage->setVisible(true); } if (m_SelectedDWI.IsNotNull()) { m_Controls->m_DiffusionPropsMessage->setVisible(true); m_Controls->m_BvalueBox->setEnabled(false); m_Controls->m_NumGradientsBox->setEnabled(false); } else { m_Controls->m_DiffusionPropsMessage->setVisible(false); m_Controls->m_BvalueBox->setEnabled(true); m_Controls->m_NumGradientsBox->setEnabled(true); } if (m_SelectedBundle.IsNotNull()) { m_Controls->m_TransformBundlesButton->setEnabled(true); m_Controls->m_CopyBundlesButton->setEnabled(true); m_Controls->m_GenerateFibersButton->setEnabled(true); m_Controls->m_FiberBundleLabel->setText(m_SelectedBundle->GetName().c_str()); } else { m_Controls->m_TransformBundlesButton->setEnabled(false); m_Controls->m_CopyBundlesButton->setEnabled(false); m_Controls->m_GenerateFibersButton->setEnabled(false); m_Controls->m_FiberBundleLabel->setText("mandatory"); } if (m_SelectedBundles.size()>1) m_Controls->m_JoinBundlesButton->setEnabled(true); else m_Controls->m_JoinBundlesButton->setEnabled(false); } void QmitkFiberfoxView::OnSelectionChanged( berry::IWorkbenchPart::Pointer, const QList& nodes ) { m_SelectedFiducial = NULL; m_TissueMask = NULL; m_SelectedBundles.clear(); m_SelectedBundle = NULL; m_SelectedImage = NULL; m_SelectedDWI = NULL; m_Controls->m_TissueMaskLabel->setText("optional"); m_Controls->m_GeometryMessage->setVisible(false); m_Controls->m_GeometryFrame->setEnabled(true); // iterate all selected objects, adjust warning visibility for( int i=0; i*>(node->GetData()) ) { m_SelectedDWI = node; } else if( node.IsNotNull() && dynamic_cast(node->GetData()) ) { m_SelectedImage = node; bool isBinary = false; node->GetPropertyValue("binary", isBinary); if (isBinary) { m_TissueMask = dynamic_cast(node->GetData()); m_Controls->m_TissueMaskLabel->setText(node->GetName().c_str()); m_Controls->m_GeometryMessage->setVisible(true); m_Controls->m_GeometryFrame->setEnabled(false); } } else if ( node.IsNotNull() && dynamic_cast(node->GetData()) ) { if (m_Controls->m_RealTimeFibers->isChecked() && node!=m_SelectedBundle) { m_SelectedBundle = node; m_SelectedBundles.push_back(node); mitk::FiberBundleX::Pointer newFib = dynamic_cast(node->GetData()); if (newFib->GetNumFibers()!=m_Controls->m_FiberDensityBox->value()) GenerateFibers(); } else { m_SelectedBundle = node; m_SelectedBundles.push_back(node); } } else if ( node.IsNotNull() && dynamic_cast(node->GetData()) ) { m_SelectedFiducial = node; m_SelectedBundles.clear(); mitk::DataStorage::SetOfObjects::ConstPointer parents = GetDataStorage()->GetSources(node); for( mitk::DataStorage::SetOfObjects::const_iterator it = parents->begin(); it != parents->end(); ++it ) { mitk::DataNode::Pointer pNode = *it; if ( pNode.IsNotNull() && dynamic_cast(pNode->GetData()) ) { m_SelectedBundle = pNode; m_SelectedBundles.push_back(pNode); } } } } UpdateGui(); } void QmitkFiberfoxView::EnableCrosshairNavigation() { MITK_DEBUG << "EnableCrosshairNavigation"; // enable the crosshair navigation if (mitk::ILinkedRenderWindowPart* linkedRenderWindow = dynamic_cast(this->GetRenderWindowPart())) { MITK_DEBUG << "enabling linked navigation"; linkedRenderWindow->EnableLinkedNavigation(true); // linkedRenderWindow->EnableSlicingPlanes(true); } if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::DisableCrosshairNavigation() { MITK_DEBUG << "DisableCrosshairNavigation"; // disable the crosshair navigation during the drawing if (mitk::ILinkedRenderWindowPart* linkedRenderWindow = dynamic_cast(this->GetRenderWindowPart())) { MITK_DEBUG << "disabling linked navigation"; linkedRenderWindow->EnableLinkedNavigation(false); // linkedRenderWindow->EnableSlicingPlanes(false); } } void QmitkFiberfoxView::NodeRemoved(const mitk::DataNode* node) { if (node == m_SelectedImage) m_SelectedImage = NULL; if (node == m_SelectedBundle) m_SelectedBundle = NULL; mitk::DataNode* nonConstNode = const_cast(node); std::map::iterator it = m_DataNodeToPlanarFigureData.find(nonConstNode); if( it != m_DataNodeToPlanarFigureData.end() ) { QmitkPlanarFigureData& data = it->second; // remove observers data.m_Figure->RemoveObserver( data.m_EndPlacementObserverTag ); data.m_Figure->RemoveObserver( data.m_SelectObserverTag ); data.m_Figure->RemoveObserver( data.m_StartInteractionObserverTag ); data.m_Figure->RemoveObserver( data.m_EndInteractionObserverTag ); m_DataNodeToPlanarFigureData.erase( it ); } } void QmitkFiberfoxView::NodeAdded( const mitk::DataNode* node ) { // add observer for selection in renderwindow mitk::PlanarFigure* figure = dynamic_cast(node->GetData()); bool isPositionMarker (false); node->GetBoolProperty("isContourMarker", isPositionMarker); if( figure && !isPositionMarker ) { MITK_DEBUG << "figure added. will add interactor if needed."; mitk::PlanarFigureInteractor::Pointer figureInteractor = dynamic_cast(node->GetInteractor()); mitk::DataNode* nonConstNode = const_cast( node ); if(figureInteractor.IsNull()) { figureInteractor = mitk::PlanarFigureInteractor::New("PlanarFigureInteractor", nonConstNode); } else { // just to be sure that the interactor is not added twice mitk::GlobalInteraction::GetInstance()->RemoveInteractor(figureInteractor); } MITK_DEBUG << "adding interactor to globalinteraction"; mitk::GlobalInteraction::GetInstance()->AddInteractor(figureInteractor); MITK_DEBUG << "will now add observers for planarfigure"; QmitkPlanarFigureData data; data.m_Figure = figure; // // add observer for event when figure has been placed typedef itk::SimpleMemberCommand< QmitkFiberfoxView > SimpleCommandType; // SimpleCommandType::Pointer initializationCommand = SimpleCommandType::New(); // initializationCommand->SetCallbackFunction( this, &QmitkFiberfoxView::PlanarFigureInitialized ); // data.m_EndPlacementObserverTag = figure->AddObserver( mitk::EndPlacementPlanarFigureEvent(), initializationCommand ); // add observer for event when figure is picked (selected) typedef itk::MemberCommand< QmitkFiberfoxView > MemberCommandType; MemberCommandType::Pointer selectCommand = MemberCommandType::New(); selectCommand->SetCallbackFunction( this, &QmitkFiberfoxView::PlanarFigureSelected ); data.m_SelectObserverTag = figure->AddObserver( mitk::SelectPlanarFigureEvent(), selectCommand ); // add observer for event when interaction with figure starts SimpleCommandType::Pointer startInteractionCommand = SimpleCommandType::New(); startInteractionCommand->SetCallbackFunction( this, &QmitkFiberfoxView::DisableCrosshairNavigation); data.m_StartInteractionObserverTag = figure->AddObserver( mitk::StartInteractionPlanarFigureEvent(), startInteractionCommand ); // add observer for event when interaction with figure starts SimpleCommandType::Pointer endInteractionCommand = SimpleCommandType::New(); endInteractionCommand->SetCallbackFunction( this, &QmitkFiberfoxView::EnableCrosshairNavigation); data.m_EndInteractionObserverTag = figure->AddObserver( mitk::EndInteractionPlanarFigureEvent(), endInteractionCommand ); m_DataNodeToPlanarFigureData[nonConstNode] = data; } } void QmitkFiberfoxView::PlanarFigureSelected( itk::Object* object, const itk::EventObject& ) { mitk::TNodePredicateDataType::Pointer isPf = mitk::TNodePredicateDataType::New(); mitk::DataStorage::SetOfObjects::ConstPointer allPfs = this->GetDataStorage()->GetSubset( isPf ); for ( mitk::DataStorage::SetOfObjects::const_iterator it = allPfs->begin(); it!=allPfs->end(); ++it) { mitk::DataNode* node = *it; if( node->GetData() == object ) { node->SetSelected(true); m_SelectedFiducial = node; } else node->SetSelected(false); } UpdateGui(); this->RequestRenderWindowUpdate(); } void QmitkFiberfoxView::SetFocus() { m_Controls->m_CircleButton->setFocus(); } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxViewControls.ui b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxViewControls.ui index 65d6ee769a..614ab0d8db 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxViewControls.ui +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxViewControls.ui @@ -1,1757 +1,1615 @@ QmitkFiberfoxViewControls 0 0 493 909 Form 0 - Fiber Generation + Fiber Definition Disable to only generate fibers if "Generate Fibers" button is pressed. Real Time Fibers true color: rgb(255, 0, 0); Please select an image to draw the fiber fiducials. If you can't provide a suitable image, generate one using the "Signal Generation" tab. Qt::AutoText Qt::AlignJustify|Qt::AlignVCenter true All fiducials are treated as circles with the same radius as the first fiducial. Use Constant Fiducial Radius false Fiber Operations false Transform Bundles QFrame::NoFrame QFrame::Raised 0 X false Y false Translation: false Rotation: false Z false Axis: false Rotation angle (in degree) around x-axis. -360.000000000000000 360.000000000000000 0.100000000000000 Rotation angle (in degree) around y-axis. -360.000000000000000 360.000000000000000 0.100000000000000 Rotation angle (in degree) around z-axis. -360.000000000000000 360.000000000000000 0.100000000000000 Translation (in mm) in direction of the x-axis. -100.000000000000000 100.000000000000000 0.100000000000000 Translation (in mm) in direction of the y-axis. -100.000000000000000 100.000000000000000 0.100000000000000 Translation (in mm) in direction of the z-axis. -100.000000000000000 100.000000000000000 0.100000000000000 false Copy Bundles false Join Bundles Qt::Vertical 20 40 QFrame::NoFrame QFrame::Raised 0 QFrame::NoFrame QFrame::Raised QFormLayout::AllNonFixedFieldsGrow 6 0 #Fibers: false Specify number of fibers to generate for the selected bundle. 1 1000000 100 100 Fiber Sampling: false Fiber sampling points (per cm) 1 100 1 10 Tension: false 3 -1.000000000000000 1.000000000000000 0.100000000000000 0.000000000000000 Continuity: false 3 -1.000000000000000 1.000000000000000 0.100000000000000 0.000000000000000 Bias: false 3 -1.000000000000000 1.000000000000000 0.100000000000000 0.000000000000000 QFrame::NoFrame QFrame::Raised 0 false 30 30 Draw elliptical fiducial. :/QmitkDiffusionImaging/circle.png:/QmitkDiffusionImaging/circle.png 32 32 false true false 30 30 Flip fiber waypoints of selcted fiducial around one axis. :/QmitkDiffusionImaging/refresh.xpm:/QmitkDiffusionImaging/refresh.xpm 32 32 false true Qt::Horizontal 40 20 QFrame::NoFrame QFrame::Raised 0 Select fiber distribution inside of the fiducials. Uniform Gaussian Fiber Distribution: false 3 0.001000000000000 10.000000000000000 0.010000000000000 0.100000000000000 false Generate Fibers Signal Generation true Start DWI generation from selected fiebr bundle. If no fiber bundle is selected, a grayscale image containing a simple gradient is generated. Generate Image Noise and Artifacts true QFrame::NoFrame QFrame::Raised 6 0 - k-Space undersampling: + k-Space Undersampling: false Image is upsampled using this factor, afterwards fourier transformed, cropped to the original size and then inverse fourier transformed. 1 2 4 8 16 32 64 128 256 Add T2 Blurring false QFrame::NoFrame QFrame::Raised 0 SNR: Signal to noise ratio (for values > 99, no noise at all is added to the image). Value relative to the fiber signal scaling factor. 4 0.000000000000000 100.000000000000000 0.001000000000000 15.000000000000000 true QFrame::NoFrame QFrame::Raised 0 Fiber T2: false T2 of fiber tissue (in milliseconds). 1 10000 1 90 Non Fiber T2: false T2 of non-fiber tissue (in milliseconds). 1 10000 1 2200 - Add Gibbs ringing + Add Gibbs Ringing false Data Fiber Bundle: false <html><head/><body><p><span style=" color:#ff0000;">mandatory</span></p></body></html> Output Name: false phantom Tissue Mask: false <html><head/><body><p><span style=" color:#969696;">optional</span></p></body></html> Image Settings QFrame::NoFrame QFrame::Raised 0 - - + + 3 0.100000000000000 50.000000000000000 0.100000000000000 2.500000000000000 - - + + + + Image Spacing: + + + + + 3 0.100000000000000 50.000000000000000 0.100000000000000 2.500000000000000 - - - - Image Spacing: + + + + 3 + + + 0.100000000000000 + + + 50.000000000000000 + + + 0.100000000000000 + + + 2.500000000000000 Image Dimensions: - - - - 4 + + + + Fiber sampling factor which determines the accuracy of the calculated fiber and non-fiber volume fractions. - - - 4 - - - - - 8 - - - - - 16 - - - - - 32 - - - - - 64 - - - - - 128 - - - - - 256 - - - - - 512 - - - - - 1024 - - - - - 2048 - - - - - 4096 - - - - - - - - 4 + + 1 + + + 1000 + + + 1 + + + 32 - - - 1 - - - - - 2 - - - - - 4 - - - - - 8 - - - - - 16 - - - - - 32 - - - - - 64 - - - - - 128 - - - - - 256 - - - - - 512 - - - - - 1024 - - - - - 2048 - - - - - 4096 - - - - - - 3 + + + + Fiber sampling factor which determines the accuracy of the calculated fiber and non-fiber volume fractions. - 0.100000000000000 + 1 - 50.000000000000000 + 100 - 0.100000000000000 + 1 - 2.500000000000000 + 32 - - - - 4 + + + + Fiber sampling factor which determines the accuracy of the calculated fiber and non-fiber volume fractions. + + + 1 + + + 100 + + + 1 + + + 5 - - - 4 - - - - - 8 - - - - - 16 - - - - - 32 - - - - - 64 - - - - - 128 - - - - - 256 - - - - - 512 - - - - - 1024 - - - - - 2048 - - - - - 4096 - - - Output k-space image + Output k-Space Image false QFrame::NoFrame QFrame::Raised QFormLayout::AllNonFixedFieldsGrow 6 6 0 #Gradient Directions: 0 10000 1 60 - b-value: + b-Value: false 0 10000 100 1000 Kernel FA: Signal model parameter. Determins anisotropy of kernel tensor. 0.010000000000000 1.000000000000000 0.100000000000000 0.700000000000000 Fiber S0: false Scaling factor of fiber signal. 0 10000 1 200 - Non Fiber S0: + Non-fiber S0: false Scaling factor of non-fiber signal. 0 10000 1 1000 Volume Accuracy: false Fiber sampling factor which determines the accuracy of the calculated fiber and non-fiber volume fractions. 1 100 1 - 5 + 10 Repetitions: 1 100 1 1 color: rgb(255, 0, 0); Using mask image geometry! Treat voxel content as fiber-only if at least one fiber is present. Enforce Pure Fiber Voxels false color: rgb(255, 0, 0); Using gradients of selected DWI! Qt::Vertical 20 40 tabWidget m_RealTimeFibers m_CircleButton m_FlipButton m_FiberDensityBox m_FiberSamplingBox m_TensionBox m_ContinuityBox m_BiasBox m_DistributionBox m_VarianceBox m_GenerateFibersButton m_ImageName m_GenerateImageButton m_KspaceImageBox - m_SizeX - m_SizeY - m_SizeZ m_SpacingX m_SpacingY m_SpacingZ m_NumGradientsBox m_BvalueBox m_MaxFaBox m_FiberS0Box m_NonFiberS0Box m_VolumeAccuracyBox m_NoiseLevel m_AddT2Smearing m_FiberRelaxationT2Box m_NonFiberRelaxationT2Box m_AddGibbsRinging m_KspaceUndersamplingBox diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkGibbsTrackingView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkGibbsTrackingView.cpp index d80421fc4d..27e37dd688 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkGibbsTrackingView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkGibbsTrackingView.cpp @@ -1,751 +1,752 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Blueberry #include #include // Qmitk #include "QmitkGibbsTrackingView.h" #include // Qt #include #include #include // MITK #include #include #include #include #include // ITK #include #include #include // MISC #include QmitkTrackingWorker::QmitkTrackingWorker(QmitkGibbsTrackingView* view) : m_View(view) { } void QmitkTrackingWorker::run() { m_View->m_GlobalTracker = QmitkGibbsTrackingView::GibbsTrackingFilterType::New(); m_View->m_GlobalTracker->SetQBallImage(m_View->m_ItkQBallImage); m_View->m_GlobalTracker->SetTensorImage(m_View->m_ItkTensorImage); m_View->m_GlobalTracker->SetMaskImage(m_View->m_MaskImage); m_View->m_GlobalTracker->SetStartTemperature((float)m_View->m_Controls->m_StartTempSlider->value()/100); m_View->m_GlobalTracker->SetEndTemperature((float)m_View->m_Controls->m_EndTempSlider->value()/10000); m_View->m_GlobalTracker->SetIterations(m_View->m_Iterations); m_View->m_GlobalTracker->SetParticleWeight((float)m_View->m_Controls->m_ParticleWeightSlider->value()/10000); m_View->m_GlobalTracker->SetParticleWidth((float)(m_View->m_Controls->m_ParticleWidthSlider->value())/10); m_View->m_GlobalTracker->SetParticleLength((float)(m_View->m_Controls->m_ParticleLengthSlider->value())/10); m_View->m_GlobalTracker->SetInexBalance((float)m_View->m_Controls->m_InExBalanceSlider->value()/10); m_View->m_GlobalTracker->SetMinFiberLength(m_View->m_Controls->m_FiberLengthSlider->value()); m_View->m_GlobalTracker->SetCurvatureThreshold(cos((float)m_View->m_Controls->m_CurvatureThresholdSlider->value()*M_PI/180)); m_View->m_GlobalTracker->SetRandomSeed(m_View->m_Controls->m_RandomSeedSlider->value()); try{ m_View->m_GlobalTracker->Update(); } catch( mitk::Exception e ) { MITK_ERROR << "Internal error occured: " << e.what() << "\nAborting"; } m_View->m_TrackingThread.quit(); } const std::string QmitkGibbsTrackingView::VIEW_ID = "org.mitk.views.gibbstracking"; QmitkGibbsTrackingView::QmitkGibbsTrackingView() : QmitkFunctionality() , m_Controls( 0 ) , m_MultiWidget( NULL ) , m_ThreadIsRunning(false) , m_GlobalTracker(NULL) , m_QBallImage(NULL) , m_MaskImage(NULL) , m_ImageNode(NULL) , m_ItkQBallImage(NULL) , m_ItkTensorImage(NULL) , m_FiberBundleNode(NULL) , m_MaskImageNode(NULL) , m_TrackingWorker(this) , m_Iterations(10000000) , m_LastStep(0) { m_TrackingWorker.moveToThread(&m_TrackingThread); connect(&m_TrackingThread, SIGNAL(started()), this, SLOT(BeforeThread())); connect(&m_TrackingThread, SIGNAL(started()), &m_TrackingWorker, SLOT(run())); connect(&m_TrackingThread, SIGNAL(finished()), this, SLOT(AfterThread())); connect(&m_TrackingThread, SIGNAL(terminated()), this, SLOT(AfterThread())); m_TrackingTimer = new QTimer(this); } QmitkGibbsTrackingView::~QmitkGibbsTrackingView() { delete m_TrackingTimer; } // update tracking status and generate fiber bundle void QmitkGibbsTrackingView::TimerUpdate() { int currentStep = m_GlobalTracker->GetCurrentStep(); mitk::ProgressBar::GetInstance()->Progress(currentStep-m_LastStep); UpdateTrackingStatus(); GenerateFiberBundle(); m_LastStep = currentStep; } // tell global tractography filter to stop after current step void QmitkGibbsTrackingView::StopGibbsTracking() { if (m_GlobalTracker.IsNull()) return; //mitk::ProgressBar::GetInstance()->Progress(m_GlobalTracker->GetSteps()-m_LastStep+1); m_GlobalTracker->SetAbortTracking(true); m_Controls->m_TrackingStop->setEnabled(false); m_Controls->m_TrackingStop->setText("Stopping Tractography ..."); } // update gui elements and generate fiber bundle after tracking is finished void QmitkGibbsTrackingView::AfterThread() { m_ThreadIsRunning = false; m_TrackingTimer->stop(); mitk::ProgressBar::GetInstance()->Progress(m_GlobalTracker->GetSteps()-m_LastStep+1); UpdateGUI(); if( !m_GlobalTracker->GetIsInValidState() ) { QMessageBox::critical( NULL, "Gibbs Tracking", "An internal error occured. Tracking aborted.\n Please check the log for details." ); m_FiberBundleNode = NULL; return; } UpdateTrackingStatus(); if(m_Controls->m_ParticleWeightSlider->value()==0) { m_Controls->m_ParticleWeightLabel->setText(QString::number(m_GlobalTracker->GetParticleWeight())); m_Controls->m_ParticleWeightSlider->setValue(m_GlobalTracker->GetParticleWeight()*10000); } if(m_Controls->m_ParticleWidthSlider->value()==0) { m_Controls->m_ParticleWidthLabel->setText(QString::number(m_GlobalTracker->GetParticleWidth())); m_Controls->m_ParticleWidthSlider->setValue(m_GlobalTracker->GetParticleWidth()*10); } if(m_Controls->m_ParticleLengthSlider->value()==0) { m_Controls->m_ParticleLengthLabel->setText(QString::number(m_GlobalTracker->GetParticleLength())); m_Controls->m_ParticleLengthSlider->setValue(m_GlobalTracker->GetParticleLength()*10); } GenerateFiberBundle(); m_FiberBundleNode = NULL; + m_GlobalTracker = NULL; } // start tracking timer and update gui elements before tracking is started void QmitkGibbsTrackingView::BeforeThread() { m_ThreadIsRunning = true; m_TrackingTime = QTime::currentTime(); m_ElapsedTime = 0; m_TrackingTimer->start(1000); m_LastStep = 0; UpdateGUI(); } // setup gui elements and signal/slot connections void QmitkGibbsTrackingView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkGibbsTrackingViewControls; m_Controls->setupUi( parent ); AdvancedSettings(); connect( m_TrackingTimer, SIGNAL(timeout()), this, SLOT(TimerUpdate()) ); connect( m_Controls->m_TrackingStop, SIGNAL(clicked()), this, SLOT(StopGibbsTracking()) ); connect( m_Controls->m_TrackingStart, SIGNAL(clicked()), this, SLOT(StartGibbsTracking()) ); connect( m_Controls->m_AdvancedSettingsCheckbox, SIGNAL(clicked()), this, SLOT(AdvancedSettings()) ); connect( m_Controls->m_SaveTrackingParameters, SIGNAL(clicked()), this, SLOT(SaveTrackingParameters()) ); connect( m_Controls->m_LoadTrackingParameters, SIGNAL(clicked()), this, SLOT(LoadTrackingParameters()) ); connect( m_Controls->m_IterationsSlider, SIGNAL(valueChanged(int)), this, SLOT(SetIterations(int)) ); connect( m_Controls->m_ParticleWidthSlider, SIGNAL(valueChanged(int)), this, SLOT(SetParticleWidth(int)) ); connect( m_Controls->m_ParticleLengthSlider, SIGNAL(valueChanged(int)), this, SLOT(SetParticleLength(int)) ); connect( m_Controls->m_InExBalanceSlider, SIGNAL(valueChanged(int)), this, SLOT(SetInExBalance(int)) ); connect( m_Controls->m_FiberLengthSlider, SIGNAL(valueChanged(int)), this, SLOT(SetFiberLength(int)) ); connect( m_Controls->m_ParticleWeightSlider, SIGNAL(valueChanged(int)), this, SLOT(SetParticleWeight(int)) ); connect( m_Controls->m_StartTempSlider, SIGNAL(valueChanged(int)), this, SLOT(SetStartTemp(int)) ); connect( m_Controls->m_EndTempSlider, SIGNAL(valueChanged(int)), this, SLOT(SetEndTemp(int)) ); connect( m_Controls->m_CurvatureThresholdSlider, SIGNAL(valueChanged(int)), this, SLOT(SetCurvatureThreshold(int)) ); connect( m_Controls->m_RandomSeedSlider, SIGNAL(valueChanged(int)), this, SLOT(SetRandomSeed(int)) ); connect( m_Controls->m_OutputFileButton, SIGNAL(clicked()), this, SLOT(SetOutputFile()) ); } } void QmitkGibbsTrackingView::SetInExBalance(int value) { m_Controls->m_InExBalanceLabel->setText(QString::number((float)value/10)); } void QmitkGibbsTrackingView::SetFiberLength(int value) { m_Controls->m_FiberLengthLabel->setText(QString::number(value)+"mm"); } void QmitkGibbsTrackingView::SetRandomSeed(int value) { if (value>=0) m_Controls->m_RandomSeedLabel->setText(QString::number(value)); else m_Controls->m_RandomSeedLabel->setText("auto"); } void QmitkGibbsTrackingView::SetParticleWeight(int value) { if (value>0) m_Controls->m_ParticleWeightLabel->setText(QString::number((float)value/10000)); else m_Controls->m_ParticleWeightLabel->setText("auto"); } void QmitkGibbsTrackingView::SetStartTemp(int value) { m_Controls->m_StartTempLabel->setText(QString::number((float)value/100)); } void QmitkGibbsTrackingView::SetEndTemp(int value) { m_Controls->m_EndTempLabel->setText(QString::number((float)value/10000)); } void QmitkGibbsTrackingView::SetParticleWidth(int value) { if (value>0) m_Controls->m_ParticleWidthLabel->setText(QString::number((float)value/10)+" mm"); else m_Controls->m_ParticleWidthLabel->setText("auto"); } void QmitkGibbsTrackingView::SetParticleLength(int value) { if (value>0) m_Controls->m_ParticleLengthLabel->setText(QString::number((float)value/10)+" mm"); else m_Controls->m_ParticleLengthLabel->setText("auto"); } void QmitkGibbsTrackingView::SetCurvatureThreshold(int value) { m_Controls->m_CurvatureThresholdLabel->setText(QString::number(value)+"°"); } void QmitkGibbsTrackingView::SetIterations(int value) { switch(value) { case 0: m_Controls->m_IterationsLabel->setText("Iterations: 1x10^4"); m_Iterations = 10000; break; case 1: m_Controls->m_IterationsLabel->setText("Iterations: 5x10^4"); m_Iterations = 50000; break; case 2: m_Controls->m_IterationsLabel->setText("Iterations: 1x10^5"); m_Iterations = 100000; break; case 3: m_Controls->m_IterationsLabel->setText("Iterations: 5x10^5"); m_Iterations = 500000; break; case 4: m_Controls->m_IterationsLabel->setText("Iterations: 1x10^6"); m_Iterations = 1000000; break; case 5: m_Controls->m_IterationsLabel->setText("Iterations: 5x10^6"); m_Iterations = 5000000; break; case 6: m_Controls->m_IterationsLabel->setText("Iterations: 1x10^7"); m_Iterations = 10000000; break; case 7: m_Controls->m_IterationsLabel->setText("Iterations: 5x10^7"); m_Iterations = 50000000; break; case 8: m_Controls->m_IterationsLabel->setText("Iterations: 1x10^8"); m_Iterations = 100000000; break; case 9: m_Controls->m_IterationsLabel->setText("Iterations: 5x10^8"); m_Iterations = 500000000; break; } } void QmitkGibbsTrackingView::StdMultiWidgetAvailable(QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkGibbsTrackingView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } // called if datamanager selection changes void QmitkGibbsTrackingView::OnSelectionChanged( std::vector nodes ) { if (m_ThreadIsRunning) return; m_ImageNode = NULL; m_MaskImageNode = NULL; // iterate all selected objects for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if( node.IsNotNull() && dynamic_cast(node->GetData()) ) m_ImageNode = node; else if( node.IsNotNull() && dynamic_cast(node->GetData()) ) m_ImageNode = node; else if( node.IsNotNull() && dynamic_cast(node->GetData()) ) { bool isBinary = false; node->GetPropertyValue("binary", isBinary); if (isBinary) m_MaskImageNode = node; } } UpdateGUI(); } // update gui elements displaying trackings status void QmitkGibbsTrackingView::UpdateTrackingStatus() { if (m_GlobalTracker.IsNull()) return; m_ElapsedTime += m_TrackingTime.elapsed()/1000; m_TrackingTime.restart(); unsigned long hours = m_ElapsedTime/3600; unsigned long minutes = (m_ElapsedTime%3600)/60; unsigned long seconds = m_ElapsedTime%60; m_Controls->m_ProposalAcceptance->setText(QString::number(m_GlobalTracker->GetProposalAcceptance()*100)+"%"); m_Controls->m_TrackingTimeLabel->setText( QString::number(hours)+QString("h ")+QString::number(minutes)+QString("m ")+QString::number(seconds)+QString("s") ); m_Controls->m_NumConnectionsLabel->setText( QString::number(m_GlobalTracker->GetNumConnections()) ); m_Controls->m_NumParticlesLabel->setText( QString::number(m_GlobalTracker->GetNumParticles()) ); m_Controls->m_CurrentStepLabel->setText( QString::number(100*(float)(m_GlobalTracker->GetCurrentStep()-1)/m_GlobalTracker->GetSteps())+"%" ); m_Controls->m_AcceptedFibersLabel->setText( QString::number(m_GlobalTracker->GetNumAcceptedFibers()) ); } // update gui elements (enable/disable elements and set tooltips) void QmitkGibbsTrackingView::UpdateGUI() { if (m_ImageNode.IsNotNull()) { m_Controls->m_QballImageLabel->setText(m_ImageNode->GetName().c_str()); m_Controls->m_DataFrame->setTitle("Input Data"); } else { m_Controls->m_QballImageLabel->setText("mandatory"); m_Controls->m_DataFrame->setTitle("Please Select Input Data"); } if (m_MaskImageNode.IsNotNull()) m_Controls->m_MaskImageLabel->setText(m_MaskImageNode->GetName().c_str()); else m_Controls->m_MaskImageLabel->setText("optional"); if (!m_ThreadIsRunning && m_ImageNode.IsNotNull()) { m_Controls->m_TrackingStop->setEnabled(false); m_Controls->m_TrackingStart->setEnabled(true); m_Controls->m_LoadTrackingParameters->setEnabled(true); m_Controls->m_IterationsSlider->setEnabled(true); m_Controls->m_AdvancedFrame->setEnabled(true); m_Controls->m_TrackingStop->setText("Stop Tractography"); m_Controls->m_TrackingStart->setToolTip("Start tractography. No further change of parameters possible."); m_Controls->m_TrackingStop->setToolTip(""); } else if (!m_ThreadIsRunning) { m_Controls->m_TrackingStop->setEnabled(false); m_Controls->m_TrackingStart->setEnabled(false); m_Controls->m_LoadTrackingParameters->setEnabled(true); m_Controls->m_IterationsSlider->setEnabled(true); m_Controls->m_AdvancedFrame->setEnabled(true); m_Controls->m_TrackingStop->setText("Stop Tractography"); m_Controls->m_TrackingStart->setToolTip("No Q-Ball image selected."); m_Controls->m_TrackingStop->setToolTip(""); } else { m_Controls->m_TrackingStop->setEnabled(true); m_Controls->m_TrackingStart->setEnabled(false); m_Controls->m_LoadTrackingParameters->setEnabled(false); m_Controls->m_IterationsSlider->setEnabled(false); m_Controls->m_AdvancedFrame->setEnabled(false); m_Controls->m_AdvancedFrame->setVisible(false); m_Controls->m_AdvancedSettingsCheckbox->setChecked(false); m_Controls->m_TrackingStart->setToolTip("Tracking in progress."); m_Controls->m_TrackingStop->setToolTip("Stop tracking and display results."); } } // show/hide advanced settings frame void QmitkGibbsTrackingView::AdvancedSettings() { m_Controls->m_AdvancedFrame->setVisible(m_Controls->m_AdvancedSettingsCheckbox->isChecked()); } // set mask image data node void QmitkGibbsTrackingView::SetMask() { std::vector nodes = GetDataManagerSelection(); if (nodes.empty()) { m_MaskImageNode = NULL; m_Controls->m_MaskImageLabel->setText("-"); return; } for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if (node.IsNotNull() && dynamic_cast(node->GetData())) { m_MaskImageNode = node; m_Controls->m_MaskImageLabel->setText(node->GetName().c_str()); return; } } } // check for mask and qbi and start tracking thread void QmitkGibbsTrackingView::StartGibbsTracking() { if(m_ThreadIsRunning) { MITK_WARN("QmitkGibbsTrackingView")<<"Thread already running!"; return; } m_GlobalTracker = NULL; if (m_ImageNode.IsNull()) { QMessageBox::information( NULL, "Warning", "Please load and select a qball image before starting image processing."); return; } if (dynamic_cast(m_ImageNode->GetData())) m_QBallImage = dynamic_cast(m_ImageNode->GetData()); else if (dynamic_cast(m_ImageNode->GetData())) m_TensorImage = dynamic_cast(m_ImageNode->GetData()); if (m_QBallImage.IsNull() && m_TensorImage.IsNull()) return; // cast qbi to itk m_ItkTensorImage = NULL; m_ItkQBallImage = NULL; m_MaskImage = NULL; if (m_QBallImage.IsNotNull()) { m_ItkQBallImage = ItkQBallImgType::New(); mitk::CastToItkImage(m_QBallImage, m_ItkQBallImage); } else { m_ItkTensorImage = ItkTensorImage::New(); mitk::CastToItkImage(m_TensorImage, m_ItkTensorImage); } // mask image found? // catch exceptions thrown by the itkAccess macros try{ if(m_MaskImageNode.IsNotNull()) { if (dynamic_cast(m_MaskImageNode->GetData())) mitk::CastToItkImage(dynamic_cast(m_MaskImageNode->GetData()), m_MaskImage); } } catch(...){}; unsigned int steps = m_Iterations/10000; if (steps<10) steps = 10; m_LastStep = 1; mitk::ProgressBar::GetInstance()->AddStepsToDo(steps); // start worker thread m_TrackingThread.start(QThread::LowestPriority); } // generate mitkFiberBundle from tracking filter output void QmitkGibbsTrackingView::GenerateFiberBundle() { if (m_GlobalTracker.IsNull() || (!(m_Controls->m_VisualizationCheckbox->isChecked() || m_Controls->m_VisualizeOnceButton->isChecked()) && m_ThreadIsRunning)) return; if (m_Controls->m_VisualizeOnceButton->isChecked()) m_Controls->m_VisualizeOnceButton->setChecked(false); vtkSmartPointer fiberBundle = m_GlobalTracker->GetFiberBundle(); if ( m_GlobalTracker->GetNumAcceptedFibers()==0 ) return; m_FiberBundle = mitk::FiberBundleX::New(fiberBundle); if (m_FiberBundleNode.IsNotNull()){ GetDefaultDataStorage()->Remove(m_FiberBundleNode); m_FiberBundleNode = 0; } m_FiberBundleNode = mitk::DataNode::New(); m_FiberBundleNode->SetData(m_FiberBundle); QString name(m_ImageNode->GetName().c_str()); name += "_Gibbs"; m_FiberBundleNode->SetName(name.toStdString()); m_FiberBundleNode->SetVisibility(true); if (!m_OutputFileName.isEmpty()) { QString filename = m_OutputFileName; mitk::FiberBundleXWriter::Pointer writer = mitk::FiberBundleXWriter::New(); writer->SetFileName(filename.toStdString()); writer->SetInputFiberBundleX(m_FiberBundle.GetPointer()); try { writer->Update(); QMessageBox::information(NULL, "Fiber bundle saved to", filename); } catch (itk::ExceptionObject &ex) { QMessageBox::information(NULL, "Fiber bundle could not be saved", QString("%1\n%2\n%3\n%4\n%5\n%6").arg(ex.GetNameOfClass()).arg(ex.GetFile()).arg(ex.GetLine()).arg(ex.GetLocation()).arg(ex.what()).arg(ex.GetDescription())); if(m_ImageNode.IsNull()) GetDataStorage()->Add(m_FiberBundleNode); else GetDataStorage()->Add(m_FiberBundleNode, m_ImageNode); } } else { if(m_ImageNode.IsNull()) GetDataStorage()->Add(m_FiberBundleNode); else GetDataStorage()->Add(m_FiberBundleNode, m_ImageNode); } } void QmitkGibbsTrackingView::SetOutputFile() { // SELECT FOLDER DIALOG m_OutputFileName = QFileDialog::getSaveFileName(0, tr("Set file name"), QDir::currentPath()+"/FiberBundle.fib", tr("Fiber Bundle (*.fib)") ); if (m_OutputFileName.isEmpty()) m_Controls->m_OutputFileLabel->setText("N/A"); else m_Controls->m_OutputFileLabel->setText(m_OutputFileName); } // save current tracking paramters as xml file (.gtp) void QmitkGibbsTrackingView::SaveTrackingParameters() { TiXmlDocument documentXML; TiXmlDeclaration* declXML = new TiXmlDeclaration( "1.0", "", "" ); documentXML.LinkEndChild( declXML ); TiXmlElement* mainXML = new TiXmlElement("global_tracking_parameter_file"); mainXML->SetAttribute("file_version", "0.1"); documentXML.LinkEndChild(mainXML); TiXmlElement* paramXML = new TiXmlElement("parameter_set"); paramXML->SetAttribute("iterations", QString::number(m_Iterations).toStdString()); paramXML->SetAttribute("particle_length", QString::number((float)m_Controls->m_ParticleLengthSlider->value()/10).toStdString()); paramXML->SetAttribute("particle_width", QString::number((float)m_Controls->m_ParticleWidthSlider->value()/10).toStdString()); paramXML->SetAttribute("particle_weight", QString::number((float)m_Controls->m_ParticleWeightSlider->value()/10000).toStdString()); paramXML->SetAttribute("temp_start", QString::number((float)m_Controls->m_StartTempSlider->value()/100).toStdString()); paramXML->SetAttribute("temp_end", QString::number((float)m_Controls->m_EndTempSlider->value()/10000).toStdString()); paramXML->SetAttribute("inexbalance", QString::number((float)m_Controls->m_InExBalanceSlider->value()/10).toStdString()); paramXML->SetAttribute("fiber_length", QString::number(m_Controls->m_FiberLengthSlider->value()).toStdString()); paramXML->SetAttribute("curvature_threshold", QString::number(m_Controls->m_CurvatureThresholdSlider->value()).toStdString()); mainXML->LinkEndChild(paramXML); QString filename = QFileDialog::getSaveFileName( 0, tr("Save Parameters"), QDir::currentPath()+"/param.gtp", tr("Global Tracking Parameters (*.gtp)") ); if(filename.isEmpty() || filename.isNull()) return; if(!filename.endsWith(".gtp")) filename += ".gtp"; documentXML.SaveFile( filename.toStdString() ); } void QmitkGibbsTrackingView::UpdateIteraionsGUI(unsigned long iterations) { switch(iterations) { case 10000: m_Controls->m_IterationsSlider->setValue(0); m_Controls->m_IterationsLabel->setText("Iterations: 10^4"); break; case 50000: m_Controls->m_IterationsSlider->setValue(1); m_Controls->m_IterationsLabel->setText("Iterations: 5x10^4"); break; case 100000: m_Controls->m_IterationsSlider->setValue(2); m_Controls->m_IterationsLabel->setText("Iterations: 10^5"); break; case 500000: m_Controls->m_IterationsSlider->setValue(3); m_Controls->m_IterationsLabel->setText("Iterations: 5x10^5"); break; case 1000000: m_Controls->m_IterationsSlider->setValue(4); m_Controls->m_IterationsLabel->setText("Iterations: 10^6"); break; case 5000000: m_Controls->m_IterationsSlider->setValue(5); m_Controls->m_IterationsLabel->setText("Iterations: 5x10^6"); break; case 10000000: m_Controls->m_IterationsSlider->setValue(6); m_Controls->m_IterationsLabel->setText("Iterations: 10^7"); break; case 50000000: m_Controls->m_IterationsSlider->setValue(7); m_Controls->m_IterationsLabel->setText("Iterations: 5x10^7"); break; case 100000000: m_Controls->m_IterationsSlider->setValue(8); m_Controls->m_IterationsLabel->setText("Iterations: 10^8"); break; case 500000000: m_Controls->m_IterationsSlider->setValue(9); m_Controls->m_IterationsLabel->setText("Iterations: 5x10^8"); break; case 1000000000: m_Controls->m_IterationsSlider->setValue(10); m_Controls->m_IterationsLabel->setText("Iterations: 10^9"); break; case 5000000000: m_Controls->m_IterationsSlider->setValue(11); m_Controls->m_IterationsLabel->setText("Iterations: 5x10^9"); break; } } // load current tracking paramters from xml file (.gtp) void QmitkGibbsTrackingView::LoadTrackingParameters() { QString filename = QFileDialog::getOpenFileName(0, tr("Load Parameters"), QDir::currentPath(), tr("Global Tracking Parameters (*.gtp)") ); if(filename.isEmpty() || filename.isNull()) return; TiXmlDocument doc( filename.toStdString() ); doc.LoadFile(); TiXmlHandle hDoc(&doc); TiXmlElement* pElem; TiXmlHandle hRoot(0); pElem = hDoc.FirstChildElement().Element(); hRoot = TiXmlHandle(pElem); pElem = hRoot.FirstChildElement("parameter_set").Element(); QString iterations(pElem->Attribute("iterations")); m_Iterations = iterations.toULong(); UpdateIteraionsGUI(m_Iterations); QString particleLength(pElem->Attribute("particle_length")); float pLength = particleLength.toFloat(); QString particleWidth(pElem->Attribute("particle_width")); float pWidth = particleWidth.toFloat(); if (pLength==0) m_Controls->m_ParticleLengthLabel->setText("auto"); else m_Controls->m_ParticleLengthLabel->setText(particleLength+" mm"); if (pWidth==0) m_Controls->m_ParticleWidthLabel->setText("auto"); else m_Controls->m_ParticleWidthLabel->setText(particleWidth+" mm"); m_Controls->m_ParticleWidthSlider->setValue(pWidth*10); m_Controls->m_ParticleLengthSlider->setValue(pLength*10); QString partWeight(pElem->Attribute("particle_weight")); m_Controls->m_ParticleWeightSlider->setValue(partWeight.toFloat()*10000); m_Controls->m_ParticleWeightLabel->setText(partWeight); QString startTemp(pElem->Attribute("temp_start")); m_Controls->m_StartTempSlider->setValue(startTemp.toFloat()*100); m_Controls->m_StartTempLabel->setText(startTemp); QString endTemp(pElem->Attribute("temp_end")); m_Controls->m_EndTempSlider->setValue(endTemp.toFloat()*10000); m_Controls->m_EndTempLabel->setText(endTemp); QString inExBalance(pElem->Attribute("inexbalance")); m_Controls->m_InExBalanceSlider->setValue(inExBalance.toFloat()*10); m_Controls->m_InExBalanceLabel->setText(inExBalance); QString fiberLength(pElem->Attribute("fiber_length")); m_Controls->m_FiberLengthSlider->setValue(fiberLength.toInt()); m_Controls->m_FiberLengthLabel->setText(fiberLength+"mm"); QString curvThres(pElem->Attribute("curvature_threshold")); m_Controls->m_CurvatureThresholdSlider->setValue(curvThres.toInt()); m_Controls->m_CurvatureThresholdLabel->setText(curvThres+"°"); }