diff --git a/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp b/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp index a1526b6c26..d1477dd5a0 100644 --- a/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp +++ b/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp @@ -1,1755 +1,1769 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkImageStatisticsCalculator.h" #include "mitkImageAccessByItk.h" #include "mitkImageCast.h" #include "mitkExtractImageFilter.h" #include "mitkImageTimeSelector.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#define DEBUG_HOTSPOTSEARCH #define _USE_MATH_DEFINES #include #if ( ( VTK_MAJOR_VERSION <= 5 ) && ( VTK_MINOR_VERSION<=8) ) #include "mitkvtkLassoStencilSource.h" #else #include "vtkLassoStencilSource.h" #endif #include #include // TODO DM: sort includes, check if they are really needed namespace mitk { ImageStatisticsCalculator::ImageStatisticsCalculator() : m_MaskingMode( MASKING_MODE_NONE ), m_MaskingModeChanged( false ), m_IgnorePixelValue(0.0), m_DoIgnorePixelValue(false), m_IgnorePixelValueChanged(false), m_PlanarFigureAxis (0), m_PlanarFigureSlice (0), m_PlanarFigureCoordinate0 (0), m_PlanarFigureCoordinate1 (0), // TODO DM: check order of variable initialization m_HotspotRadiusInMM(6.2035049089940), // radius of a 1cm3 sphere in mm - m_CalculateHotspot(false) + m_CalculateHotspot(false), + m_HotspotRadiusInMMChanged(false) { m_EmptyHistogram = HistogramType::New(); m_EmptyHistogram->SetMeasurementVectorSize(1); HistogramType::SizeType histogramSize(1); histogramSize.Fill( 256 ); m_EmptyHistogram->Initialize( histogramSize ); m_EmptyStatistics.Reset(); } ImageStatisticsCalculator::~ImageStatisticsCalculator() { } void ImageStatisticsCalculator::SetImage( const mitk::Image *image ) { if ( m_Image != image ) { m_Image = image; this->Modified(); unsigned int numberOfTimeSteps = image->GetTimeSteps(); // Initialize vectors to time-size of this image m_ImageHistogramVector.resize( numberOfTimeSteps ); m_MaskedImageHistogramVector.resize( numberOfTimeSteps ); m_PlanarFigureHistogramVector.resize( numberOfTimeSteps ); m_ImageStatisticsVector.resize( numberOfTimeSteps ); m_MaskedImageStatisticsVector.resize( numberOfTimeSteps ); m_PlanarFigureStatisticsVector.resize( numberOfTimeSteps ); m_ImageStatisticsTimeStampVector.resize( numberOfTimeSteps ); m_MaskedImageStatisticsTimeStampVector.resize( numberOfTimeSteps ); m_PlanarFigureStatisticsTimeStampVector.resize( numberOfTimeSteps ); m_ImageStatisticsCalculationTriggerVector.resize( numberOfTimeSteps ); m_MaskedImageStatisticsCalculationTriggerVector.resize( numberOfTimeSteps ); m_PlanarFigureStatisticsCalculationTriggerVector.resize( numberOfTimeSteps ); for ( unsigned int t = 0; t < image->GetTimeSteps(); ++t ) { m_ImageStatisticsTimeStampVector[t].Modified(); m_ImageStatisticsCalculationTriggerVector[t] = true; } } } void ImageStatisticsCalculator::SetImageMask( const mitk::Image *imageMask ) { if ( m_Image.IsNull() ) { itkExceptionMacro( << "Image needs to be set first!" ); } if ( m_Image->GetTimeSteps() != imageMask->GetTimeSteps() ) { itkExceptionMacro( << "Image and image mask need to have equal number of time steps!" ); } if ( m_ImageMask != imageMask ) { m_ImageMask = imageMask; this->Modified(); for ( unsigned int t = 0; t < m_Image->GetTimeSteps(); ++t ) { m_MaskedImageStatisticsTimeStampVector[t].Modified(); m_MaskedImageStatisticsCalculationTriggerVector[t] = true; } } } void ImageStatisticsCalculator::SetPlanarFigure( mitk::PlanarFigure *planarFigure ) { if ( m_Image.IsNull() ) { itkExceptionMacro( << "Image needs to be set first!" ); } if ( m_PlanarFigure != planarFigure ) { m_PlanarFigure = planarFigure; this->Modified(); for ( unsigned int t = 0; t < m_Image->GetTimeSteps(); ++t ) { m_PlanarFigureStatisticsTimeStampVector[t].Modified(); m_PlanarFigureStatisticsCalculationTriggerVector[t] = true; } } } void ImageStatisticsCalculator::SetMaskingMode( unsigned int mode ) { if ( m_MaskingMode != mode ) { m_MaskingMode = mode; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetMaskingModeToNone() { if ( m_MaskingMode != MASKING_MODE_NONE ) { m_MaskingMode = MASKING_MODE_NONE; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetMaskingModeToImage() { if ( m_MaskingMode != MASKING_MODE_IMAGE ) { m_MaskingMode = MASKING_MODE_IMAGE; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetMaskingModeToPlanarFigure() { if ( m_MaskingMode != MASKING_MODE_PLANARFIGURE ) { m_MaskingMode = MASKING_MODE_PLANARFIGURE; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetIgnorePixelValue(double value) { if ( m_IgnorePixelValue != value ) { m_IgnorePixelValue = value; if(m_DoIgnorePixelValue) { m_IgnorePixelValueChanged = true; } this->Modified(); } } double ImageStatisticsCalculator::GetIgnorePixelValue() { return m_IgnorePixelValue; } void ImageStatisticsCalculator::SetDoIgnorePixelValue(bool value) { if ( m_DoIgnorePixelValue != value ) { m_DoIgnorePixelValue = value; m_IgnorePixelValueChanged = true; this->Modified(); } } bool ImageStatisticsCalculator::GetDoIgnorePixelValue() { return m_DoIgnorePixelValue; } void ImageStatisticsCalculator::SetHotspotRadius(double value) { - m_HotspotRadiusInMM = value; + if ( m_HotspotRadiusInMM != value ) + { + m_HotspotRadiusInMM = value; + if(m_CalculateHotspot) + { + m_HotspotRadiusInMMChanged = true; + } + this->Modified(); + } } double ImageStatisticsCalculator::GetHotspotRadius() { return m_HotspotRadiusInMM; } -void ImageStatisticsCalculator::SetCalculateHotspot(bool value) +void ImageStatisticsCalculator::SetCalculateHotspot(bool on) { - m_CalculateHotspot = value; + if ( m_CalculateHotspot != on ) + { + m_CalculateHotspot = on; + m_HotspotRadiusInMMChanged = true; + this->Modified(); + } } bool ImageStatisticsCalculator::IsHotspotCalculated() { return m_CalculateHotspot; } bool ImageStatisticsCalculator::ComputeStatistics( unsigned int timeStep ) { if (m_Image.IsNull() ) { mitkThrow() << "Image not set!"; } if (!m_Image->IsInitialized()) { mitkThrow() << "Image not initialized!"; } if ( m_Image->GetReferenceCount() == 1 ) { // Image no longer valid; we are the only ones to still hold a reference on it return false; } if ( timeStep >= m_Image->GetTimeSteps() ) { throw std::runtime_error( "Error: invalid time step!" ); } // If a mask was set but we are the only ones to still hold a reference on // it, delete it. if ( m_ImageMask.IsNotNull() && (m_ImageMask->GetReferenceCount() == 1) ) { m_ImageMask = NULL; } // Check if statistics is already up-to-date unsigned long imageMTime = m_ImageStatisticsTimeStampVector[timeStep].GetMTime(); unsigned long maskedImageMTime = m_MaskedImageStatisticsTimeStampVector[timeStep].GetMTime(); unsigned long planarFigureMTime = m_PlanarFigureStatisticsTimeStampVector[timeStep].GetMTime(); bool imageStatisticsCalculationTrigger = m_ImageStatisticsCalculationTriggerVector[timeStep]; bool maskedImageStatisticsCalculationTrigger = m_MaskedImageStatisticsCalculationTriggerVector[timeStep]; bool planarFigureStatisticsCalculationTrigger = m_PlanarFigureStatisticsCalculationTriggerVector[timeStep]; if ( !m_IgnorePixelValueChanged + && !m_HotspotRadiusInMMChanged && ((m_MaskingMode != MASKING_MODE_NONE) || (imageMTime > m_Image->GetMTime() && !imageStatisticsCalculationTrigger)) && ((m_MaskingMode != MASKING_MODE_IMAGE) || (maskedImageMTime > m_ImageMask->GetMTime() && !maskedImageStatisticsCalculationTrigger)) && ((m_MaskingMode != MASKING_MODE_PLANARFIGURE) || (planarFigureMTime > m_PlanarFigure->GetMTime() && !planarFigureStatisticsCalculationTrigger)) ) { // Statistics is up to date! if ( m_MaskingModeChanged ) { m_MaskingModeChanged = false; - return true; } else { return false; } } // Reset state changed flag m_MaskingModeChanged = false; m_IgnorePixelValueChanged = false; // Depending on masking mode, extract and/or generate the required image // and mask data from the user input this->ExtractImageAndMask( timeStep ); StatisticsContainer *statisticsContainer; HistogramContainer *histogramContainer; switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: if(!m_DoIgnorePixelValue) { statisticsContainer = &m_ImageStatisticsVector[timeStep]; histogramContainer = &m_ImageHistogramVector[timeStep]; m_ImageStatisticsTimeStampVector[timeStep].Modified(); m_ImageStatisticsCalculationTriggerVector[timeStep] = false; } else { statisticsContainer = &m_MaskedImageStatisticsVector[timeStep]; histogramContainer = &m_MaskedImageHistogramVector[timeStep]; m_MaskedImageStatisticsTimeStampVector[timeStep].Modified(); m_MaskedImageStatisticsCalculationTriggerVector[timeStep] = false; } break; case MASKING_MODE_IMAGE: statisticsContainer = &m_MaskedImageStatisticsVector[timeStep]; histogramContainer = &m_MaskedImageHistogramVector[timeStep]; m_MaskedImageStatisticsTimeStampVector[timeStep].Modified(); m_MaskedImageStatisticsCalculationTriggerVector[timeStep] = false; break; case MASKING_MODE_PLANARFIGURE: statisticsContainer = &m_PlanarFigureStatisticsVector[timeStep]; histogramContainer = &m_PlanarFigureHistogramVector[timeStep]; m_PlanarFigureStatisticsTimeStampVector[timeStep].Modified(); m_PlanarFigureStatisticsCalculationTriggerVector[timeStep] = false; break; } // Calculate statistics and histogram(s) if ( m_InternalImage->GetDimension() == 3 ) { if ( m_MaskingMode == MASKING_MODE_NONE && !m_DoIgnorePixelValue ) { AccessFixedDimensionByItk_2( m_InternalImage, InternalCalculateStatisticsUnmasked, 3, statisticsContainer, histogramContainer ); } else { AccessFixedDimensionByItk_3( m_InternalImage, InternalCalculateStatisticsMasked, 3, m_InternalImageMask3D.GetPointer(), statisticsContainer, histogramContainer ); } } else if ( m_InternalImage->GetDimension() == 2 ) { if ( m_MaskingMode == MASKING_MODE_NONE && !m_DoIgnorePixelValue ) { AccessFixedDimensionByItk_2( m_InternalImage, InternalCalculateStatisticsUnmasked, 2, statisticsContainer, histogramContainer ); } else { AccessFixedDimensionByItk_3( m_InternalImage, InternalCalculateStatisticsMasked, 2, m_InternalImageMask2D.GetPointer(), statisticsContainer, histogramContainer ); } } else { MITK_ERROR << "ImageStatistics: Image dimension not supported!"; } // Release unused image smart pointers to free memory m_InternalImage = mitk::Image::ConstPointer(); m_InternalImageMask3D = MaskImage3DType::Pointer(); m_InternalImageMask2D = MaskImage2DType::Pointer(); return true; } const ImageStatisticsCalculator::HistogramType * ImageStatisticsCalculator::GetHistogram( unsigned int timeStep, unsigned int label ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return NULL; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageHistogramVector[timeStep][label]; return m_ImageHistogramVector[timeStep][label]; } case MASKING_MODE_IMAGE: return m_MaskedImageHistogramVector[timeStep][label]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureHistogramVector[timeStep][label]; } } const ImageStatisticsCalculator::HistogramContainer & ImageStatisticsCalculator::GetHistogramVector( unsigned int timeStep ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return m_EmptyHistogramContainer; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageHistogramVector[timeStep]; return m_ImageHistogramVector[timeStep]; } case MASKING_MODE_IMAGE: return m_MaskedImageHistogramVector[timeStep]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureHistogramVector[timeStep]; } } const ImageStatisticsCalculator::Statistics & ImageStatisticsCalculator::GetStatistics( unsigned int timeStep, unsigned int label ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return m_EmptyStatistics; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageStatisticsVector[timeStep][label]; return m_ImageStatisticsVector[timeStep][label]; } case MASKING_MODE_IMAGE: return m_MaskedImageStatisticsVector[timeStep][label]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureStatisticsVector[timeStep][label]; } } const ImageStatisticsCalculator::StatisticsContainer & ImageStatisticsCalculator::GetStatisticsVector( unsigned int timeStep ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return m_EmptyStatisticsContainer; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageStatisticsVector[timeStep]; return m_ImageStatisticsVector[timeStep]; } case MASKING_MODE_IMAGE: return m_MaskedImageStatisticsVector[timeStep]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureStatisticsVector[timeStep]; } } void ImageStatisticsCalculator::ExtractImageAndMask( unsigned int timeStep ) { if ( m_Image.IsNull() ) { throw std::runtime_error( "Error: image empty!" ); } if ( timeStep >= m_Image->GetTimeSteps() ) { throw std::runtime_error( "Error: invalid time step!" ); } ImageTimeSelector::Pointer imageTimeSelector = ImageTimeSelector::New(); imageTimeSelector->SetInput( m_Image ); imageTimeSelector->SetTimeNr( timeStep ); imageTimeSelector->UpdateLargestPossibleRegion(); mitk::Image *timeSliceImage = imageTimeSelector->GetOutput(); switch ( m_MaskingMode ) { case MASKING_MODE_NONE: { m_InternalImage = timeSliceImage; m_InternalImageMask2D = NULL; m_InternalImageMask3D = NULL; if(m_DoIgnorePixelValue) { if( m_InternalImage->GetDimension() == 3 ) { CastToItkImage( timeSliceImage, m_InternalImageMask3D ); m_InternalImageMask3D->FillBuffer(1); } if( m_InternalImage->GetDimension() == 2 ) { CastToItkImage( timeSliceImage, m_InternalImageMask2D ); m_InternalImageMask2D->FillBuffer(1); } } break; } case MASKING_MODE_IMAGE: { if ( m_ImageMask.IsNotNull() && (m_ImageMask->GetReferenceCount() > 1) ) { if ( timeStep < m_ImageMask->GetTimeSteps() ) { ImageTimeSelector::Pointer maskedImageTimeSelector = ImageTimeSelector::New(); maskedImageTimeSelector->SetInput( m_ImageMask ); maskedImageTimeSelector->SetTimeNr( timeStep ); maskedImageTimeSelector->UpdateLargestPossibleRegion(); mitk::Image *timeSliceMaskedImage = maskedImageTimeSelector->GetOutput(); m_InternalImage = timeSliceImage; CastToItkImage( timeSliceMaskedImage, m_InternalImageMask3D ); } else { throw std::runtime_error( "Error: image mask has not enough time steps!" ); } } else { throw std::runtime_error( "Error: image mask empty!" ); } break; } case MASKING_MODE_PLANARFIGURE: { m_InternalImageMask2D = NULL; if ( m_PlanarFigure.IsNull() ) { throw std::runtime_error( "Error: planar figure empty!" ); } if ( !m_PlanarFigure->IsClosed() ) { throw std::runtime_error( "Masking not possible for non-closed figures" ); } const Geometry3D *imageGeometry = timeSliceImage->GetGeometry(); if ( imageGeometry == NULL ) { throw std::runtime_error( "Image geometry invalid!" ); } const Geometry2D *planarFigureGeometry2D = m_PlanarFigure->GetGeometry2D(); if ( planarFigureGeometry2D == NULL ) { throw std::runtime_error( "Planar-Figure not yet initialized!" ); } const PlaneGeometry *planarFigureGeometry = dynamic_cast< const PlaneGeometry * >( planarFigureGeometry2D ); if ( planarFigureGeometry == NULL ) { throw std::runtime_error( "Non-planar planar figures not supported!" ); } // Find principal direction of PlanarFigure in input image unsigned int axis; if ( !this->GetPrincipalAxis( imageGeometry, planarFigureGeometry->GetNormal(), axis ) ) { throw std::runtime_error( "Non-aligned planar figures not supported!" ); } m_PlanarFigureAxis = axis; // Find slice number corresponding to PlanarFigure in input image MaskImage3DType::IndexType index; imageGeometry->WorldToIndex( planarFigureGeometry->GetOrigin(), index ); unsigned int slice = index[axis]; m_PlanarFigureSlice = slice; // Extract slice with given position and direction from image unsigned int dimension = timeSliceImage->GetDimension(); if (dimension != 2) { ExtractImageFilter::Pointer imageExtractor = ExtractImageFilter::New(); imageExtractor->SetInput( timeSliceImage ); imageExtractor->SetSliceDimension( axis ); imageExtractor->SetSliceIndex( slice ); imageExtractor->Update(); m_InternalImage = imageExtractor->GetOutput(); } else { m_InternalImage = timeSliceImage; } // Compute mask from PlanarFigure AccessFixedDimensionByItk_1( m_InternalImage, InternalCalculateMaskFromPlanarFigure, 2, axis ); } } if(m_DoIgnorePixelValue) { if ( m_InternalImage->GetDimension() == 3 ) { AccessFixedDimensionByItk_1( m_InternalImage, InternalMaskIgnoredPixels, 3, m_InternalImageMask3D.GetPointer() ); } else if ( m_InternalImage->GetDimension() == 2 ) { AccessFixedDimensionByItk_1( m_InternalImage, InternalMaskIgnoredPixels, 2, m_InternalImageMask2D.GetPointer() ); } } } bool ImageStatisticsCalculator::GetPrincipalAxis( const Geometry3D *geometry, Vector3D vector, unsigned int &axis ) { vector.Normalize(); for ( unsigned int i = 0; i < 3; ++i ) { Vector3D axisVector = geometry->GetAxisVector( i ); axisVector.Normalize(); if ( fabs( fabs( axisVector * vector ) - 1.0) < mitk::eps ) { axis = i; return true; } } return false; } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalCalculateStatisticsUnmasked( const itk::Image< TPixel, VImageDimension > *image, StatisticsContainer *statisticsContainer, HistogramContainer* histogramContainer ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; typedef typename ImageType::IndexType IndexType; typedef itk::Statistics::ScalarImageToHistogramGenerator< ImageType > HistogramGeneratorType; statisticsContainer->clear(); histogramContainer->clear(); // Progress listening... typedef itk::SimpleMemberCommand< ImageStatisticsCalculator > ITKCommandType; ITKCommandType::Pointer progressListener; progressListener = ITKCommandType::New(); progressListener->SetCallbackFunction( this, &ImageStatisticsCalculator::UnmaskedStatisticsProgressUpdate ); // Issue 100 artificial progress events since ScalarIMageToHistogramGenerator // does not (yet?) support progress reporting this->InvokeEvent( itk::StartEvent() ); for ( unsigned int i = 0; i < 100; ++i ) { this->UnmaskedStatisticsProgressUpdate(); } // Calculate statistics (separate filter) typedef itk::StatisticsImageFilter< ImageType > StatisticsFilterType; typename StatisticsFilterType::Pointer statisticsFilter = StatisticsFilterType::New(); statisticsFilter->SetInput( image ); unsigned long observerTag = statisticsFilter->AddObserver( itk::ProgressEvent(), progressListener ); statisticsFilter->Update(); statisticsFilter->RemoveObserver( observerTag ); this->InvokeEvent( itk::EndEvent() ); // Calculate minimum and maximum typedef itk::MinimumMaximumImageCalculator< ImageType > MinMaxFilterType; typename MinMaxFilterType::Pointer minMaxFilter = MinMaxFilterType::New(); minMaxFilter->SetImage( image ); unsigned long observerTag2 = minMaxFilter->AddObserver( itk::ProgressEvent(), progressListener ); minMaxFilter->Compute(); minMaxFilter->RemoveObserver( observerTag2 ); this->InvokeEvent( itk::EndEvent() ); Statistics statistics; statistics.Reset(); statistics.Label = 1; statistics.N = image->GetBufferedRegion().GetNumberOfPixels(); statistics.Min = statisticsFilter->GetMinimum(); statistics.Max = statisticsFilter->GetMaximum(); statistics.Mean = statisticsFilter->GetMean(); statistics.Median = 0.0; statistics.Sigma = statisticsFilter->GetSigma(); statistics.RMS = sqrt( statistics.Mean * statistics.Mean + statistics.Sigma * statistics.Sigma ); statistics.MinIndex.set_size(image->GetImageDimension()); statistics.MaxIndex.set_size(image->GetImageDimension()); for (unsigned int i=0; iGetIndexOfMaximum()[i]; statistics.MinIndex[i] = minMaxFilter->GetIndexOfMinimum()[i]; } statisticsContainer->push_back( statistics ); // Calculate histogram typename HistogramGeneratorType::Pointer histogramGenerator = HistogramGeneratorType::New(); histogramGenerator->SetInput( image ); histogramGenerator->SetMarginalScale( 100 ); histogramGenerator->SetNumberOfBins( 768 ); histogramGenerator->SetHistogramMin( statistics.Min ); histogramGenerator->SetHistogramMax( statistics.Max ); histogramGenerator->Compute(); // TODO DM: add hotspot search here! histogramContainer->push_back( histogramGenerator->GetOutput() ); } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalMaskIgnoredPixels( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; itk::ImageRegionIterator itmask(maskImage, maskImage->GetLargestPossibleRegion()); itk::ImageRegionConstIterator itimage(image, image->GetLargestPossibleRegion()); itmask.GoToBegin(); itimage.GoToBegin(); while( !itmask.IsAtEnd() ) { if(m_IgnorePixelValue == itimage.Get()) { itmask.Set(0); } ++itmask; ++itimage; } } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalCalculateStatisticsMasked( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage, StatisticsContainer* statisticsContainer, HistogramContainer* histogramContainer ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; typedef typename ImageType::IndexType IndexType; typedef typename ImageType::PointType PointType; typedef typename ImageType::SpacingType SpacingType; typedef itk::LabelStatisticsImageFilter< ImageType, MaskImageType > LabelStatisticsFilterType; typedef itk::ChangeInformationImageFilter< MaskImageType > ChangeInformationFilterType; typedef itk::ExtractImageFilter< ImageType, ImageType > ExtractImageFilterType; statisticsContainer->clear(); histogramContainer->clear(); // Make sure that mask is set if ( maskImage == NULL ) { itkExceptionMacro( << "Mask image needs to be set!" ); } // Make sure that spacing of mask and image are the same SpacingType imageSpacing = image->GetSpacing(); SpacingType maskSpacing = maskImage->GetSpacing(); PointType zeroPoint; zeroPoint.Fill( 0.0 ); if ( (zeroPoint + imageSpacing).SquaredEuclideanDistanceTo( (zeroPoint + maskSpacing) ) > mitk::eps ) { itkExceptionMacro( << "Mask needs to have same spacing as image! (Image spacing: " << imageSpacing << "; Mask spacing: " << maskSpacing << ")" ); } // Make sure that orientation of mask and image are the same typedef typename ImageType::DirectionType DirectionType; DirectionType imageDirection = image->GetDirection(); DirectionType maskDirection = maskImage->GetDirection(); for( int i = 0; i < imageDirection.ColumnDimensions; ++i ) { for( int j = 0; j < imageDirection.ColumnDimensions; ++j ) { double differenceDirection = imageDirection[i][j] - maskDirection[i][j]; if ( fabs( differenceDirection ) > mitk::eps ) { itkExceptionMacro( << "Mask needs to have same direction as image! (Image direction: " << imageDirection << "; Mask direction: " << maskDirection << ")" ); } } } // Make sure that the voxels of mask and image are correctly "aligned", i.e., voxel boundaries are the same in both images PointType imageOrigin = image->GetOrigin(); PointType maskOrigin = maskImage->GetOrigin(); long offset[ImageType::ImageDimension]; typedef itk::ContinuousIndex ContinousIndexType; ContinousIndexType maskOriginContinousIndex, imageOriginContinousIndex; image->TransformPhysicalPointToContinuousIndex(maskOrigin, maskOriginContinousIndex); image->TransformPhysicalPointToContinuousIndex(imageOrigin, imageOriginContinousIndex); for ( unsigned int i = 0; i < ImageType::ImageDimension; ++i ) { double misalignment = maskOriginContinousIndex[i] - floor( maskOriginContinousIndex[i] + 0.5 ); if ( fabs( misalignment ) > mitk::eps ) { itkExceptionMacro( << "Pixels/voxels of mask and image are not sufficiently aligned! (Misalignment: " << misalignment << ")" ); } double indexCoordDistance = maskOriginContinousIndex[i] - imageOriginContinousIndex[i]; offset[i] = (int) indexCoordDistance + image->GetBufferedRegion().GetIndex()[i]; } // Adapt the origin and region (index/size) of the mask so that the origin of both are the same typename ChangeInformationFilterType::Pointer adaptMaskFilter; adaptMaskFilter = ChangeInformationFilterType::New(); adaptMaskFilter->ChangeOriginOn(); adaptMaskFilter->ChangeRegionOn(); adaptMaskFilter->SetInput( maskImage ); adaptMaskFilter->SetOutputOrigin( image->GetOrigin() ); adaptMaskFilter->SetOutputOffset( offset ); adaptMaskFilter->Update(); typename MaskImageType::Pointer adaptedMaskImage = adaptMaskFilter->GetOutput(); // Make sure that mask region is contained within image region if ( !image->GetLargestPossibleRegion().IsInside( adaptedMaskImage->GetLargestPossibleRegion() ) ) { itkExceptionMacro( << "Mask region needs to be inside of image region! (Image region: " << image->GetLargestPossibleRegion() << "; Mask region: " << adaptedMaskImage->GetLargestPossibleRegion() << ")" ); } // If mask region is smaller than image region, extract the sub-sampled region from the original image typename ImageType::SizeType imageSize = image->GetBufferedRegion().GetSize(); typename ImageType::SizeType maskSize = maskImage->GetBufferedRegion().GetSize(); bool maskSmallerImage = false; for ( unsigned int i = 0; i < ImageType::ImageDimension; ++i ) { if ( maskSize[i] < imageSize[i] ) { maskSmallerImage = true; } } typename ImageType::ConstPointer adaptedImage; if ( maskSmallerImage ) { typename ExtractImageFilterType::Pointer extractImageFilter = ExtractImageFilterType::New(); extractImageFilter->SetInput( image ); extractImageFilter->SetExtractionRegion( adaptedMaskImage->GetBufferedRegion() ); extractImageFilter->Update(); adaptedImage = extractImageFilter->GetOutput(); } else { adaptedImage = image; } // Initialize Filter typedef itk::StatisticsImageFilter< ImageType > StatisticsFilterType; typename StatisticsFilterType::Pointer statisticsFilter = StatisticsFilterType::New(); statisticsFilter->SetInput( adaptedImage ); statisticsFilter->Update(); int numberOfBins = ( m_DoIgnorePixelValue && (m_MaskingMode == MASKING_MODE_NONE) ) ? 768 : 384; typename LabelStatisticsFilterType::Pointer labelStatisticsFilter; labelStatisticsFilter = LabelStatisticsFilterType::New(); labelStatisticsFilter->SetInput( adaptedImage ); labelStatisticsFilter->SetLabelInput( adaptedMaskImage ); labelStatisticsFilter->UseHistogramsOn(); labelStatisticsFilter->SetHistogramParameters( numberOfBins, statisticsFilter->GetMinimum(), statisticsFilter->GetMaximum() ); // Add progress listening typedef itk::SimpleMemberCommand< ImageStatisticsCalculator > ITKCommandType; ITKCommandType::Pointer progressListener; progressListener = ITKCommandType::New(); progressListener->SetCallbackFunction( this, &ImageStatisticsCalculator::MaskedStatisticsProgressUpdate ); unsigned long observerTag = labelStatisticsFilter->AddObserver( itk::ProgressEvent(), progressListener ); // Execute filter this->InvokeEvent( itk::StartEvent() ); // Make sure that only the mask region is considered (otherwise, if the mask region is smaller // than the image region, the Update() would result in an exception). labelStatisticsFilter->GetOutput()->SetRequestedRegion( adaptedMaskImage->GetLargestPossibleRegion() ); // Execute the filter labelStatisticsFilter->Update(); this->InvokeEvent( itk::EndEvent() ); labelStatisticsFilter->RemoveObserver( observerTag ); // Find all relevant labels of mask (other than 0) std::list< int > relevantLabels; bool maskNonEmpty = false; unsigned int i; for ( i = 1; i < 4096; ++i ) { if ( labelStatisticsFilter->HasLabel( i ) ) { relevantLabels.push_back( i ); maskNonEmpty = true; } } if ( maskNonEmpty ) { Statistics statistics; std::list< int >::iterator it; for ( it = relevantLabels.begin(), i = 0; it != relevantLabels.end(); ++it, ++i ) { histogramContainer->push_back( HistogramType::ConstPointer( labelStatisticsFilter->GetHistogram( (*it) ) ) ); statistics.Label = (*it); statistics.N = labelStatisticsFilter->GetCount( *it ); statistics.Min = labelStatisticsFilter->GetMinimum( *it ); statistics.Max = labelStatisticsFilter->GetMaximum( *it ); statistics.Mean = labelStatisticsFilter->GetMean( *it ); statistics.Median = labelStatisticsFilter->GetMedian( *it ); statistics.Sigma = labelStatisticsFilter->GetSigma( *it ); statistics.RMS = sqrt( statistics.Mean * statistics.Mean + statistics.Sigma * statistics.Sigma ); // restrict image to mask area for min/max index calculation typedef itk::MaskImageFilter< ImageType, MaskImageType, ImageType > MaskImageFilterType; typename MaskImageFilterType::Pointer masker = MaskImageFilterType::New(); masker->SetOutsideValue( (statistics.Min+statistics.Max)/2 ); masker->SetInput1(adaptedImage); masker->SetInput2(adaptedMaskImage); masker->Update(); // get index of minimum and maximum typedef itk::MinimumMaximumImageCalculator< ImageType > MinMaxFilterType; typename MinMaxFilterType::Pointer minMaxFilter = MinMaxFilterType::New(); minMaxFilter->SetImage( masker->GetOutput() ); unsigned long observerTag2 = minMaxFilter->AddObserver( itk::ProgressEvent(), progressListener ); minMaxFilter->Compute(); minMaxFilter->RemoveObserver( observerTag2 ); this->InvokeEvent( itk::EndEvent() ); statistics.MinIndex.set_size(adaptedImage->GetImageDimension()); statistics.MaxIndex.set_size(adaptedImage->GetImageDimension()); typename MinMaxFilterType::IndexType tempMaxIndex = minMaxFilter->GetIndexOfMaximum(); typename MinMaxFilterType::IndexType tempMinIndex = minMaxFilter->GetIndexOfMinimum(); // FIX BUG 14644 //If a PlanarFigure is used for segmentation the //adaptedImage is a single slice (2D). Adding the // 3. dimension. if (m_MaskingMode == MASKING_MODE_PLANARFIGURE && m_Image->GetDimension()==3) { statistics.MaxIndex.set_size(m_Image->GetDimension()); statistics.MaxIndex[m_PlanarFigureCoordinate0]=tempMaxIndex[0]; statistics.MaxIndex[m_PlanarFigureCoordinate1]=tempMaxIndex[1]; statistics.MaxIndex[m_PlanarFigureAxis]=m_PlanarFigureSlice; statistics.MinIndex.set_size(m_Image->GetDimension()); statistics.MinIndex[m_PlanarFigureCoordinate0]=tempMinIndex[0]; statistics.MinIndex[m_PlanarFigureCoordinate1]=tempMinIndex[1]; statistics.MinIndex[m_PlanarFigureAxis]=m_PlanarFigureSlice; } else { for (unsigned int i = 0; ipush_back( statistics ); } else { histogramContainer->push_back( HistogramType::ConstPointer( m_EmptyHistogram ) ); statisticsContainer->push_back( Statistics() ); // TODO DM: this is uninitialized! (refactor into real class!) } } // TODO DM: needs to be modified to calculate a specific or multiple(!) labels template ImageStatisticsCalculator::MinMaxIndex ImageStatisticsCalculator::CalculateMinMaxIndex( const itk::Image *inputImage, itk::Image *maskImage) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; typedef itk::ImageRegionConstIterator MaskImageIteratorType; typedef itk::ImageRegionConstIteratorWithIndex InputImageIndexIteratorType; MaskImageIteratorType maskIt(maskImage, maskImage->GetLargestPossibleRegion()); // TODO DM: we should use the same regions here InputImageIndexIteratorType imageIndexIt(inputImage, inputImage->GetLargestPossibleRegion()); float maxValue = itk::NumericTraits::min(); // TODO DM: I DID correct this before: use named functions instead of using - float minValue = itk::NumericTraits::max(); typename ImageType::IndexType maxIndex; typename ImageType::IndexType minIndex; for(maskIt.GoToBegin(), imageIndexIt.GoToBegin(); !maskIt.IsAtEnd() && !imageIndexIt.IsAtEnd(); ++maskIt, ++imageIndexIt) { if(maskIt.Get() > itk::NumericTraits::Zero) // TODO DM: this is where multiple mask values could be used { double value = imageIndexIt.Get(); //Calculate minimum, maximum and corresponding index-values if( value > maxValue ) { maxIndex = imageIndexIt.GetIndex(); maxValue = value; } if(value < minValue ) { minIndex = imageIndexIt.GetIndex(); minValue = value; } } } MinMaxIndex minMax; minMax.MinIndex.set_size(inputImage->GetImageDimension()); minMax.MaxIndex.set_size(inputImage->GetImageDimension()); for(unsigned int i = 0; i < minMax.MaxIndex.size(); ++i) minMax.MaxIndex[i] = maxIndex[i]; for(unsigned int i = 0; i < minMax.MinIndex.size(); ++i) minMax.MinIndex[i] = minIndex[i]; minMax.Max = maxValue; minMax.Min = minValue; return minMax; } template itk::SmartPointer< itk::Image > ImageStatisticsCalculator ::GenerateHotspotSearchConvolutionMask(double spacing[VImageDimension], double radiusInMM) { double radiusInMMSquared = radiusInMM * radiusInMM; typedef itk::Image< float, VImageDimension > MaskImageType; typename MaskImageType::Pointer convolutionMask = MaskImageType::New(); // Calculate size and allocate mask image typedef typename MaskImageType::IndexType IndexType; IndexType maskIndex; maskIndex.Fill(0); typedef typename MaskImageType::SizeType SizeType; SizeType maskSize; Point3D convolutionMaskCenter; convolutionMaskCenter.Fill(0.0); for(unsigned int i = 0; i < VImageDimension; ++i) { maskSize[i] = ::ceil( 2.0 * radiusInMM / spacing[i] ); // We always need an uneven size to determine a clear center point in the convolution mask // TODO DM: actually this is not true, is it? I don't see a reason if(maskSize[i] % 2 == 0 ) { ++maskSize[i]; } // TODO DM: center is wrong (below is the corrected calculation) // convolutionMaskCenterCoordinate[i] = (maskSize[i] -1) / 2; // coordinates are center based: with 1 pixel the center is at 0.0 // coordinates are center based: with 2 pixels the center is at 0.5 // coordinates are center based: with 3 pixels the center is at 1.0 // coordinates are center based: with 4 pixels the center is at 1.5 // etc. convolutionMaskCenter[i] = 0.5 * (double)(maskSize[i]-1); } typedef typename MaskImageType::RegionType RegionType; RegionType maskRegion; maskRegion.SetSize(maskSize); maskRegion.SetIndex(maskIndex); convolutionMask->SetRegions(maskRegion); convolutionMask->SetSpacing(spacing); convolutionMask->Allocate(); // Fill mask image values by subsampling the image grid typedef itk::ImageRegionIteratorWithIndex MaskIteratorType; MaskIteratorType maskIt(convolutionMask,maskRegion); int numberOfSubVoxelsPerDimension = 2; // per dimension! int numberOfSubVoxels = ::pow( static_cast(numberOfSubVoxelsPerDimension), static_cast(VImageDimension) ); double subVoxelSize = 1.0 / (double)numberOfSubVoxelsPerDimension; //(double)numberOfSubVoxels; double valueOfOneSubVoxel = 1.0 / (double)numberOfSubVoxels; double maskValue = 0.0; Point3D subVoxelPosition; double distanceSquared = 0.0; typedef itk::ContinuousIndex ContinuousIndexType; for(maskIt.GoToBegin(); !maskIt.IsAtEnd(); ++maskIt) { ContinuousIndexType indexPoint(maskIt.GetIndex()); Point3D voxelPosition; for (unsigned int dimension = 0; dimension < VImageDimension; ++dimension) { voxelPosition[dimension] = indexPoint[dimension]; } // TODO DM: regard all dimensions, including z! (former code used only x/y) // TODO DM: generalize: not x, y, z but a for loop over dimension // TODO DM: this could be done by calling a recursive method, handing over the "remaining number of dimensions to iterate" maskValue = 0.0; Vector3D subVoxelOffset; subVoxelOffset.Fill(0.0); // iterate sub-voxels by iterating all possible offsets for (subVoxelOffset[0] = -0.5 + subVoxelSize / 2.0; subVoxelOffset[0] < +0.5; subVoxelOffset[0] += subVoxelSize) { for (subVoxelOffset[1] = -0.5 + subVoxelSize / 2.0; subVoxelOffset[1] < +0.5; subVoxelOffset[1] += subVoxelSize) { for (subVoxelOffset[2] = -0.5 + subVoxelSize / 2.0; subVoxelOffset[2] < +0.5; subVoxelOffset[2] += subVoxelSize) { subVoxelPosition = voxelPosition + subVoxelOffset; // TODO DM: this COULD be integrated into the for-loops if neccessary (add voxelPosition to initializer and end condition) //if ( subVoxelPosition.EuclideanDistanceTo( convolutionMaskCenter ) < radiusInMM ) // TODO DM: this is too much matrix operations, we calculate ourselves, check if this time is relevant distanceSquared = (subVoxelPosition[0]-convolutionMaskCenter[0]) / spacing[0] * (subVoxelPosition[0]-convolutionMaskCenter[0]) / spacing[0] + (subVoxelPosition[1]-convolutionMaskCenter[1]) / spacing[1] * (subVoxelPosition[1]-convolutionMaskCenter[1]) / spacing[1] + (subVoxelPosition[2]-convolutionMaskCenter[2]) / spacing[2] * (subVoxelPosition[2]-convolutionMaskCenter[2]) / spacing[2]; if (distanceSquared <= radiusInMMSquared) { maskValue += valueOfOneSubVoxel; } } } } maskIt.Set( maskValue ); } return convolutionMask; } // TODO DM: should be refactored into multiple smaller methosd. This one is too large template < typename TPixel, unsigned int VImageDimension> ImageStatisticsCalculator::Statistics ImageStatisticsCalculator::CalculateHotspotStatistics( const itk::Image* inputImage, itk::Image* maskImage, // TODO DM: this parameter is completely ignored, although the method is currently ONLY called in the masked input case double radiusInMM) { typedef itk::Image< TPixel, VImageDimension > InputImageType; typedef itk::Image< float, VImageDimension > MaskImageType; double spacing[VImageDimension]; for (unsigned int dimension = 0; dimension < VImageDimension; ++dimension) { spacing[dimension] = inputImage->GetSpacing()[dimension]; } typename MaskImageType::Pointer convolutionMask = this->GenerateHotspotSearchConvolutionMask(spacing, radiusInMM); typedef typename InputImageType::IndexType IndexType; typedef typename InputImageType::SizeType SizeType; typedef typename MaskImageType::PointType PointType; // Convolution of spherical mask and input image typedef itk::Image< float, VImageDimension > ConvolutionImageType; typedef itk::FFTConvolutionImageFilter ConvolutionFilterType; // TODO DM: this line said ConvolutionImageFilter before: why?? typedef itk::ConstantBoundaryCondition BoundaryConditionType; BoundaryConditionType boundaryCondition; boundaryCondition.SetConstant(0.0); typename ConvolutionFilterType::Pointer convolutionFilter = ConvolutionFilterType::New(); convolutionFilter->SetBoundaryCondition(&boundaryCondition); convolutionFilter->SetInput(inputImage); convolutionFilter->SetKernelImage(convolutionMask); convolutionFilter->SetNormalize(true); convolutionFilter->Update(); // TODO DM: above Update will calculate the convolution image for ALL of the input image // in cases where we have a masked image (always in the first application use case) // this is too much! it would be enough to calculate the minimum and maximum index of the mask (in each dimension), // in order to define a region for convolutionFilter. This cold save significant time (perhaps enough to fall back to ConvolutionFilterType instead of FFTConvolutionImageFilter) // TODO: performance analysis after these changes! typename ConvolutionImageType::Pointer hotspotImage = convolutionFilter->GetOutput(); hotspotImage->SetSpacing( inputImage->GetSpacing() ); // TODO: only workaround because convolution filter seems to ignore spacing of input image // TODO DM: why a spatial object? Objective here should be to 1. find position and value of maximum value in convolution image /*****************************************************Creating Hotspot Sphere**********************************************/ typedef itk::Image SphereMaskImageType; typename SphereMaskImageType::Pointer hotspotSphere = SphereMaskImageType::New(); typedef itk::EllipseSpatialObject EllipseType; typedef itk::SpatialObjectToImageFilter SpatialObjectToImageFilter; double hotspotMean = itk::NumericTraits::min(); typename SphereMaskImageType::Pointer croppedRegionMask = SphereMaskImageType::New(); typename SphereMaskImageType::IndexType peakStart; peakStart.Fill(0); typename SphereMaskImageType::SizeType sphereMaskSize = hotspotImage->GetLargestPossibleRegion().GetSize(); // TODO DM: this creates an image of the input image size! typename SphereMaskImageType::RegionType peakRegion; peakRegion.SetIndex(peakStart); peakRegion.SetSize(hotspotImage->GetLargestPossibleRegion().GetSize()); croppedRegionMask->SetRegions(peakRegion); croppedRegionMask->Allocate(); int offsetX = static_cast((radiusInMM / spacing[0]) + 0.99999); int offsetY = static_cast((radiusInMM / spacing[1]) + 0.99999); int offsetZ = static_cast((radiusInMM / spacing[2]) + 0.99999); typedef itk::ImageRegionIteratorWithIndex CroppedImageIteratorType; CroppedImageIteratorType sphereMaskIt(croppedRegionMask, peakRegion); for(sphereMaskIt.GoToBegin(); !sphereMaskIt.IsAtEnd(); ++sphereMaskIt) { IndexType index = sphereMaskIt.GetIndex(); if((index[0] >= offsetX && index[0] <= sphereMaskSize[0] - offsetX -1) && (index[1] >= offsetY && index[1] <= sphereMaskSize[1] - offsetY -1) && (index[2] >= offsetZ && index[2] <= sphereMaskSize[2] - offsetZ -1)) sphereMaskIt.Set(1); else sphereMaskIt.Set(0); } typedef typename itk::Image InputMaskImageType; typedef itk::ImageRegionIteratorWithIndex MaskImageIteratorType; MaskImageIteratorType inputMaskIt(maskImage, maskImage->GetLargestPossibleRegion()); CroppedImageIteratorType sphereMaskIterator(croppedRegionMask, croppedRegionMask->GetLargestPossibleRegion()); for(inputMaskIt.GoToBegin(), sphereMaskIterator.GoToBegin(); !inputMaskIt.IsAtEnd() &&!sphereMaskIterator.IsAtEnd(); ++inputMaskIt, ++sphereMaskIterator) { unsigned int maskValue = inputMaskIt.Get(); unsigned int sphereMaskValue = sphereMaskIterator.Get(); if(maskValue > 0 && sphereMaskValue > 0) sphereMaskIterator.Set(1); else sphereMaskIterator.Set(0); } // TODO DM: sphereMaskIt seems to define a box region where a sphere could fit inside the input image // this seems to come from an idea that Hannes mentioned and what I commented on in line 1244 // CONVOLUTION should be restricted to an area where we can possibly find result values (i.e. regions inside the mask) // in addition, if we require the sphere to be completely contained inside the input image (talk to Mathias/Danial for definition) // THEN we should reduce the mask image before working with it (and prior to using it as a bounding region for convolution) // // Besides the comment above, a spatial object is not useful here. A simple itk::ImageRegion would be enough! (and it would fit into the iterator initialization) MinMaxIndex peakInformations = CalculateMinMaxIndex(hotspotImage.GetPointer(), croppedRegionMask.GetPointer()); hotspotMean = peakInformations.Max; typename SphereMaskImageType::IndexType hotspotIndex; for(int i = 0; i < VImageDimension; ++i) hotspotIndex[i] = peakInformations.MaxIndex[i]; typename SphereMaskImageType::SizeType hotspotSphereSize; typename SphereMaskImageType::SpacingType hotspotSphereSpacing = inputImage->GetSpacing(); // TODO DM: we don't need a third spacing definition; all our calculations are for one and the same image with just one spacing in variable "spacing" // TODO DM: remove this and use previously calculated mask size! This is redundant for(unsigned int i = 0; i < VImageDimension; ++i) { double countIndex = 2.0 * radiusInMM / hotspotSphereSpacing[i]; // Rounding up to the next integer by cast countIndex += 0.9999999; int castedIndex = static_cast(countIndex); // We always have an uneven number in size to determine a center-point in the convolution mask if(castedIndex % 2 > 0 ) { hotspotSphereSize[i] = castedIndex; } else { hotspotSphereSize[i] = castedIndex +1; } } // Initialize SpatialObjectoToImageFilter typename itk::SpatialObjectToImageFilter::Pointer spatialObjectToImageFilter = SpatialObjectToImageFilter::New(); spatialObjectToImageFilter->SetSize(hotspotSphereSize); spatialObjectToImageFilter->SetSpacing(hotspotSphereSpacing); // Creating spatial sphere object typename EllipseType::Pointer sphere = EllipseType::New(); sphere->SetRadius(radiusInMM); typedef typename EllipseType::TransformType TransformType; typename TransformType::Pointer transform = TransformType::New(); transform->SetIdentity(); typename TransformType::OutputVectorType translation; // Transform sphere on center-position, set pixelValues inside sphere on 1 and update for(int i = 0; i < VImageDimension; ++i) translation[i] = static_cast((hotspotSphereSize[i] -1) * hotspotSphereSpacing[i] / 2); transform->Translate(translation, false); sphere->SetObjectToParentTransform(transform); spatialObjectToImageFilter->SetInput(sphere); sphere->SetDefaultInsideValue(1.00); sphere->SetDefaultOutsideValue(0.00); spatialObjectToImageFilter->SetUseObjectValue(true); spatialObjectToImageFilter->SetOutsideValue(0); spatialObjectToImageFilter->Update(); hotspotSphere = spatialObjectToImageFilter->GetOutput(); // Calculate new origin for hotspot sphere IndexType offsetInIndex; for(int i = 0; i < VImageDimension; ++i) offsetInIndex[i] = hotspotSphereSize[i] / 2; typename ConvolutionImageType::PointType hotspotOrigin; hotspotImage->TransformIndexToPhysicalPoint(hotspotIndex, hotspotOrigin); PointType offsetInPhysicalPoint; hotspotSphere->TransformIndexToPhysicalPoint(offsetInIndex, offsetInPhysicalPoint); for(int i = 0; i < VImageDimension; ++i) hotspotOrigin[i] -= offsetInPhysicalPoint[i]; hotspotSphere->SetOrigin(hotspotOrigin); hotspotSphere->Allocate(); /* TODO DM: you don't need all of the above "spatial object sphere" code. It should be possible to replace all of the below code with a single call to your CalculateMinMaxIndex method. */ #ifdef DEBUG_HOTSPOTSEARCH std::cout << std::endl << std::endl; std::cout << "hotspotMask: " << std::endl; unsigned int lastZ = 1000000000; unsigned int lastY = 1000000000; unsigned int hotspotMaskIndexCounter = 0; typedef itk::ImageRegionConstIteratorWithIndex SphereMaskIteratorType; SphereMaskIteratorType hotspotMaskIt(hotspotSphere, hotspotSphere->GetLargestPossibleRegion() ); for(hotspotMaskIt.GoToBegin();!hotspotMaskIt.IsAtEnd();++hotspotMaskIt) { double tmp = hotspotMaskIt.Get(); if (hotspotMaskIt.GetIndex()[1] != lastY) { std::cout << std::endl; lastY = hotspotMaskIt.GetIndex()[1]; } if (hotspotMaskIt.GetIndex()[0] != lastZ) { std::cout << tmp << " "; lastZ = hotspotMaskIt.GetIndex()[0]; } hotspotMaskIndexCounter++; if(hotspotMaskIndexCounter > hotspotSphereSize[0] * hotspotSphereSize[1] -1) { std::cout << std::endl; hotspotMaskIndexCounter = 0; } } std::cout << std::endl << std::endl; #endif /*********************************Creating cropped inputImage for calculation of hotspot statistics****************************/ typename InputImageType::IndexType croppedStart; hotspotImage->TransformPhysicalPointToIndex(hotspotOrigin,croppedStart); typename InputImageType::RegionType::SizeType croppedSize = hotspotSphere->GetLargestPossibleRegion().GetSize(); typename InputImageType::RegionType inputRegion; inputRegion.SetIndex(croppedStart); inputRegion.SetSize(croppedSize); typename InputImageType::IndexType croppedOutputStart; croppedOutputStart.Fill(0); typename InputImageType::RegionType croppedOutputRegion; croppedOutputRegion.SetIndex(croppedOutputStart); croppedOutputRegion.SetSize(hotspotSphere->GetLargestPossibleRegion().GetSize()); typename InputImageType::Pointer croppedOutputImage = InputImageType::New(); croppedOutputImage->SetRegions(croppedOutputRegion); croppedOutputImage->Allocate(); typedef itk::ImageRegionConstIterator ImageIteratorType; ImageIteratorType inputIt(inputImage, inputRegion); ImageIteratorType croppedOutputImageIt(croppedOutputImage, croppedOutputRegion); for(inputIt.GoToBegin(), croppedOutputImageIt.GoToBegin(); !inputIt.IsAtEnd(); ++inputIt, ++croppedOutputImageIt) { croppedOutputImage->SetPixel(croppedOutputImageIt.GetIndex(), inputIt.Get()); } // Calculate statistics in Hotspot MinMaxIndex hotspotInformations; Statistics hotspotStatistics; hotspotInformations = CalculateMinMaxIndex(croppedOutputImage.GetPointer(), hotspotSphere.GetPointer()); // Add offset to cropped indices for(int i = 0; i < VImageDimension; ++i) { hotspotInformations.MaxIndex[i] += croppedStart[i]; hotspotInformations.MinIndex[i] += croppedStart[i]; } hotspotStatistics.HotspotMin = hotspotInformations.Min; hotspotStatistics.HotspotMinIndex = hotspotInformations.MinIndex; hotspotStatistics.HotspotMax = hotspotInformations.Max; hotspotStatistics.HotspotMaxIndex = hotspotInformations.MaxIndex; hotspotStatistics.HotspotMean = hotspotMean; hotspotStatistics.HotspotIndex.set_size(inputImage->GetImageDimension()); for (int i = 0; i< hotspotStatistics.HotspotIndex.size(); ++i) { hotspotStatistics.HotspotIndex[i] = hotspotIndex[i]; } return hotspotStatistics; } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalCalculateMaskFromPlanarFigure( const itk::Image< TPixel, VImageDimension > *image, unsigned int axis ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::CastImageFilter< ImageType, MaskImage2DType > CastFilterType; // Generate mask image as new image with same header as input image and // initialize with "1". typename CastFilterType::Pointer castFilter = CastFilterType::New(); castFilter->SetInput( image ); castFilter->Update(); castFilter->GetOutput()->FillBuffer( 1 ); // all PolylinePoints of the PlanarFigure are stored in a vtkPoints object. // These points are used by the vtkLassoStencilSource to create // a vtkImageStencil. const mitk::Geometry2D *planarFigureGeometry2D = m_PlanarFigure->GetGeometry2D(); const typename PlanarFigure::PolyLineType planarFigurePolyline = m_PlanarFigure->GetPolyLine( 0 ); const mitk::Geometry3D *imageGeometry3D = m_Image->GetGeometry( 0 ); // Determine x- and y-dimensions depending on principal axis int i0, i1; switch ( axis ) { case 0: i0 = 1; i1 = 2; break; case 1: i0 = 0; i1 = 2; break; case 2: default: i0 = 0; i1 = 1; break; } m_PlanarFigureCoordinate0= i0; m_PlanarFigureCoordinate1= i1; // store the polyline contour as vtkPoints object bool outOfBounds = false; vtkSmartPointer points = vtkSmartPointer::New(); typename PlanarFigure::PolyLineType::const_iterator it; for ( it = planarFigurePolyline.begin(); it != planarFigurePolyline.end(); ++it ) { Point3D point3D; // Convert 2D point back to the local index coordinates of the selected // image planarFigureGeometry2D->Map( it->Point, point3D ); // Polygons (partially) outside of the image bounds can not be processed // further due to a bug in vtkPolyDataToImageStencil if ( !imageGeometry3D->IsInside( point3D ) ) { outOfBounds = true; } imageGeometry3D->WorldToIndex( point3D, point3D ); points->InsertNextPoint( point3D[i0], point3D[i1], 0 ); } // mark a malformed 2D planar figure ( i.e. area = 0 ) as out of bounds // this can happen when all control points of a rectangle lie on the same line = two of the three extents are zero double bounds[6] = {0, 0, 0, 0, 0, 0}; points->GetBounds( bounds ); bool extent_x = (fabs(bounds[0] - bounds[1])) < mitk::eps; bool extent_y = (fabs(bounds[2] - bounds[3])) < mitk::eps; bool extent_z = (fabs(bounds[4] - bounds[5])) < mitk::eps; // throw an exception if a closed planar figure is deformed, i.e. has only one non-zero extent if ( m_PlanarFigure->IsClosed() && ((extent_x && extent_y) || (extent_x && extent_z) || (extent_y && extent_z))) { mitkThrow() << "Figure has a zero area and cannot be used for masking."; } if ( outOfBounds ) { throw std::runtime_error( "Figure at least partially outside of image bounds!" ); } // create a vtkLassoStencilSource and set the points of the Polygon vtkSmartPointer lassoStencil = vtkSmartPointer::New(); lassoStencil->SetShapeToPolygon(); lassoStencil->SetPoints( points ); // Export from ITK to VTK (to use a VTK filter) typedef itk::VTKImageImport< MaskImage2DType > ImageImportType; typedef itk::VTKImageExport< MaskImage2DType > ImageExportType; typename ImageExportType::Pointer itkExporter = ImageExportType::New(); itkExporter->SetInput( castFilter->GetOutput() ); vtkSmartPointer vtkImporter = vtkSmartPointer::New(); this->ConnectPipelines( itkExporter, vtkImporter ); // Apply the generated image stencil to the input image vtkSmartPointer imageStencilFilter = vtkSmartPointer::New(); imageStencilFilter->SetInputConnection( vtkImporter->GetOutputPort() ); imageStencilFilter->SetStencil( lassoStencil->GetOutput() ); imageStencilFilter->ReverseStencilOff(); imageStencilFilter->SetBackgroundValue( 0 ); imageStencilFilter->Update(); // Export from VTK back to ITK vtkSmartPointer vtkExporter = vtkImageExport::New(); // TODO: this is WRONG, should be vtkSmartPointer::New(), but bug # 14455 vtkExporter->SetInputConnection( imageStencilFilter->GetOutputPort() ); vtkExporter->Update(); typename ImageImportType::Pointer itkImporter = ImageImportType::New(); this->ConnectPipelines( vtkExporter, itkImporter ); itkImporter->Update(); // Store mask m_InternalImageMask2D = itkImporter->GetOutput(); } void ImageStatisticsCalculator::UnmaskedStatisticsProgressUpdate() { // Need to throw away every second progress event to reach a final count of // 100 since two consecutive filters are used in this case static int updateCounter = 0; if ( updateCounter++ % 2 == 0 ) { this->InvokeEvent( itk::ProgressEvent() ); } } void ImageStatisticsCalculator::MaskedStatisticsProgressUpdate() { this->InvokeEvent( itk::ProgressEvent() ); } } diff --git a/Modules/ImageStatistics/mitkImageStatisticsCalculator.h b/Modules/ImageStatistics/mitkImageStatisticsCalculator.h index 6b48fd18a7..c6b3a859c6 100644 --- a/Modules/ImageStatistics/mitkImageStatisticsCalculator.h +++ b/Modules/ImageStatistics/mitkImageStatisticsCalculator.h @@ -1,397 +1,398 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkImageStatisticsCalculator_h #define mitkImageStatisticsCalculator_h #include "mitkImage.h" #include "mitkPlanarFigure.h" // TODO DM: why the ifndef? #ifndef __itkHistogram_h #include #endif #include #include #include "ImageStatisticsExports.h" namespace mitk { /** * \brief Class for calculating statistics and histogram for an (optionally * masked) image. * * Images can be masked by either a label image (of the same dimensions as * the original image) or by a closed mitk::PlanarFigure, e.g. a circle or * polygon. When masking with a planar figure, the slice corresponding to the * plane containing the figure is extracted and then clipped with contour * defined by the figure. Planar figures need to be aligned along the main axes * of the image (axial, sagittal, coronal). Planar figures on arbitrary * rotated planes are not supported. * * For each operating mode (no masking, masking by image, masking by planar * figure), the calculated statistics and histogram are cached so that, when * switching back and forth between operation modes without modifying mask or * image, the information doesn't need to be recalculated. * * The class also has the possibility to calculate minimum, maximum, mean * and their corresponding indicies in the hottest spot in a given ROI / VOI. * The size of the hotspot is defined by a sphere with a radius specified by * the user. This procedure is required for the calculation of SUV-statistics * in PET-images for example. * * Note: currently time-resolved and multi-channel pictures are not properly * supported. */ class ImageStatistics_EXPORT ImageStatisticsCalculator : public itk::Object { public: /** TODO DM: document */ enum { MASKING_MODE_NONE = 0, MASKING_MODE_IMAGE = 1, MASKING_MODE_PLANARFIGURE = 2 }; typedef itk::Statistics::Histogram HistogramType; typedef HistogramType::ConstIterator HistogramConstIteratorType; /** TODO DM: document */ struct Statistics { int Label; unsigned int N; //< number of voxels double Min; //< mimimum value double Max; //< maximum value double Mean; //< mean value double Median; //< median value double Variance; //< variance of values // TODO DM: remove, was never filled with values ; check if any calling code within MITK used this member! double Sigma; //< standard deviation of values (== square root of variance) double RMS; //< root means square (TODO DM: check mesning) double HotspotMin; //< mimimum value inside hotspot double HotspotMax; //< maximum value inside hotspot double HotspotMean; //< mean value inside hotspot double HotspotSigma; //< standard deviation of values inside hotspot //TODO DM: where is variance? does not make much sense, but should be consistent with usual statistics //TODO DM: same goes for N //TODO DM: same goes for RMS double HotspotPeak; //< TODO DM: should this not replace "mean" the two values could be irritating vnl_vector< int > MinIndex; vnl_vector< int > MaxIndex; vnl_vector HotspotMaxIndex; vnl_vector HotspotMinIndex; vnl_vector HotspotIndex; //< TODO DM: couldn't this be named "hotspot index"? We need to clear naming of hotspotmean, hotspotpeakindex, and hotspotpeak // TODO DM: make this struct a real class and put this into a constructor void Reset() // TODO DM: move to .cpp file (mitk::ImageStatisticsCalculator::Statistics::Reset() {...}) { Label = 0; N = 0; Min = 0.0; Max = 0.0; Mean = 0.0; Median = 0.0; Variance = 0.0; Sigma = 0.0; RMS = 0.0; HotspotMin = 0.0; HotspotMax = 0.0; HotspotMean = 0.0; HotspotPeak = 0.0; HotspotSigma = 0.0; // TODO DM: also reset index values! Check that everything is initialized } }; struct MinMaxIndex // TODO DM: why this structure? could at least be private { double Max; double Min; vnl_vector MaxIndex; vnl_vector MinIndex; }; typedef std::vector< HistogramType::ConstPointer > HistogramContainer; typedef std::vector< Statistics > StatisticsContainer; mitkClassMacro( ImageStatisticsCalculator, itk::Object ); itkNewMacro( ImageStatisticsCalculator ); /** \brief Set image from which to compute statistics. */ void SetImage( const mitk::Image *image ); /** \brief Set image for masking. */ void SetImageMask( const mitk::Image *imageMask ); /** \brief Set planar figure for masking. */ void SetPlanarFigure( mitk::PlanarFigure *planarFigure ); /** \brief Set/Get operation mode for masking */ void SetMaskingMode( unsigned int mode ); /** \brief Set/Get operation mode for masking */ itkGetMacro( MaskingMode, unsigned int ); /** \brief Set/Get operation mode for masking */ void SetMaskingModeToNone(); /** \brief Set/Get operation mode for masking */ void SetMaskingModeToImage(); /** \brief Set/Get operation mode for masking */ void SetMaskingModeToPlanarFigure(); /** \brief Set a pixel value for pixels that will be ignored in the statistics */ void SetIgnorePixelValue(double value); /** \brief Get the pixel value for pixels that will be ignored in the statistics */ double GetIgnorePixelValue(); /** \brief Set whether a pixel value should be ignored in the statistics */ void SetDoIgnorePixelValue(bool doit); /** \brief Get whether a pixel value will be ignored in the statistics */ bool GetDoIgnorePixelValue(); /** \brief Sets the radius for the hotspot */ void SetHotspotRadius (double hotspotRadiusInMM); // TODO in mm /** \brief Returns the radius of the hotspot */ double GetHotspotRadius(); // TODO in mm /** \brief Sets whether the hotspot should be calculated */ void SetCalculateHotspot(bool calculateHotspot); /** \brief Returns true whether the hotspot should be calculated, otherwise false */ bool IsHotspotCalculated(); /** \brief Compute statistics (together with histogram) for the current * masking mode. * * Computation is not executed if statistics is already up to date. In this * case, false is returned; otherwise, true.*/ virtual bool ComputeStatistics( unsigned int timeStep = 0 ); /** \brief Retrieve the histogram depending on the current masking mode. * * \param label The label for which to retrieve the histogram in multi-label situations (ascending order). */ const HistogramType *GetHistogram( unsigned int timeStep = 0, unsigned int label = 0 ) const; /** \brief Retrieve the histogram depending on the current masking mode (for all image labels. */ const HistogramContainer &GetHistogramVector( unsigned int timeStep = 0 ) const; /** \brief Retrieve statistics depending on the current masking mode. * * \param label The label for which to retrieve the statistics in multi-label situations (ascending order). */ const Statistics &GetStatistics( unsigned int timeStep = 0, unsigned int label = 0 ) const; /** \brief Retrieve statistics depending on the current masking mode (for all image labels). */ const StatisticsContainer &GetStatisticsVector( unsigned int timeStep = 0 ) const; protected: typedef std::vector< HistogramContainer > HistogramVector; typedef std::vector< StatisticsContainer > StatisticsVector; typedef std::vector< itk::TimeStamp > TimeStampVectorType; typedef std::vector< bool > BoolVectorType; typedef itk::Image< unsigned short, 3 > MaskImage3DType; typedef itk::Image< unsigned short, 2 > MaskImage2DType; ImageStatisticsCalculator(); virtual ~ImageStatisticsCalculator(); /** \brief Depending on the masking mode, the image and mask from which to * calculate statistics is extracted from the original input image and mask * data. * * For example, a when using a PlanarFigure as mask, the 2D image slice * corresponding to the PlanarFigure will be extracted from the original * image. If masking is disabled, the original image is simply passed * through. */ void ExtractImageAndMask( unsigned int timeStep = 0 ); /** \brief If the passed vector matches any of the three principal axes * of the passed geometry, the ínteger value corresponding to the axis * is set and true is returned. */ bool GetPrincipalAxis( const Geometry3D *geometry, Vector3D vector, unsigned int &axis ); template < typename TPixel, unsigned int VImageDimension > void InternalCalculateStatisticsUnmasked( const itk::Image< TPixel, VImageDimension > *image, StatisticsContainer* statisticsContainer, HistogramContainer *histogramContainer ); template < typename TPixel, unsigned int VImageDimension > void InternalCalculateStatisticsMasked( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage, StatisticsContainer* statisticsContainer, HistogramContainer* histogramContainer ); template < typename TPixel, unsigned int VImageDimension > void InternalCalculateMaskFromPlanarFigure( const itk::Image< TPixel, VImageDimension > *image, unsigned int axis ); template < typename TPixel, unsigned int VImageDimension > void InternalMaskIgnoredPixels( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage ); /** \brief Calculates minimum, maximum, mean value and their * corresponding indices in a given ROI. As input the function * needs an image and a mask. It returns a MinMaxIndex object. */ template MinMaxIndex CalculateMinMaxIndex( const itk::Image *inputImage, itk::Image *maskImage); /** \brief Calculates the hotspot statistics within a given * ROI. As input the function needs an image, a mask which * represents the ROI and a radius which defines the size of * the sphere. The function returns a Statistics object. */ template < typename TPixel, unsigned int VImageDimension> Statistics CalculateHotspotStatistics( const itk::Image *inputImage, itk::Image *maskImage, double radiusInMM); /** Connection from ITK to VTK */ template void ConnectPipelines(ITK_Exporter exporter, vtkSmartPointer importer) { importer->SetUpdateInformationCallback(exporter->GetUpdateInformationCallback()); importer->SetPipelineModifiedCallback(exporter->GetPipelineModifiedCallback()); importer->SetWholeExtentCallback(exporter->GetWholeExtentCallback()); importer->SetSpacingCallback(exporter->GetSpacingCallback()); importer->SetOriginCallback(exporter->GetOriginCallback()); importer->SetScalarTypeCallback(exporter->GetScalarTypeCallback()); importer->SetNumberOfComponentsCallback(exporter->GetNumberOfComponentsCallback()); importer->SetPropagateUpdateExtentCallback(exporter->GetPropagateUpdateExtentCallback()); importer->SetUpdateDataCallback(exporter->GetUpdateDataCallback()); importer->SetDataExtentCallback(exporter->GetDataExtentCallback()); importer->SetBufferPointerCallback(exporter->GetBufferPointerCallback()); importer->SetCallbackUserData(exporter->GetCallbackUserData()); } /** Connection from VTK to ITK */ template void ConnectPipelines(vtkSmartPointer exporter, ITK_Importer importer) { importer->SetUpdateInformationCallback(exporter->GetUpdateInformationCallback()); importer->SetPipelineModifiedCallback(exporter->GetPipelineModifiedCallback()); importer->SetWholeExtentCallback(exporter->GetWholeExtentCallback()); importer->SetSpacingCallback(exporter->GetSpacingCallback()); importer->SetOriginCallback(exporter->GetOriginCallback()); importer->SetScalarTypeCallback(exporter->GetScalarTypeCallback()); importer->SetNumberOfComponentsCallback(exporter->GetNumberOfComponentsCallback()); importer->SetPropagateUpdateExtentCallback(exporter->GetPropagateUpdateExtentCallback()); importer->SetUpdateDataCallback(exporter->GetUpdateDataCallback()); importer->SetDataExtentCallback(exporter->GetDataExtentCallback()); importer->SetBufferPointerCallback(exporter->GetBufferPointerCallback()); importer->SetCallbackUserData(exporter->GetCallbackUserData()); } void UnmaskedStatisticsProgressUpdate(); void MaskedStatisticsProgressUpdate(); template itk::SmartPointer< itk::Image > GenerateHotspotSearchConvolutionMask(double spacing[VImageDimension], double radiusInMM); /** m_Image contains the input image (e.g. 2D, 3D, 3D+t)*/ mitk::Image::ConstPointer m_Image; mitk::Image::ConstPointer m_ImageMask; mitk::PlanarFigure::Pointer m_PlanarFigure; HistogramVector m_ImageHistogramVector; HistogramVector m_MaskedImageHistogramVector; HistogramVector m_PlanarFigureHistogramVector; HistogramType::Pointer m_EmptyHistogram; HistogramContainer m_EmptyHistogramContainer; StatisticsVector m_ImageStatisticsVector; StatisticsVector m_MaskedImageStatisticsVector; StatisticsVector m_PlanarFigureStatisticsVector; StatisticsVector m_MaskedImageHotspotStatisticsVector; Statistics m_EmptyStatistics; StatisticsContainer m_EmptyStatisticsContainer; unsigned int m_MaskingMode; bool m_MaskingModeChanged; /** m_InternalImage contains a image volume at one time step (e.g. 2D, 3D)*/ mitk::Image::ConstPointer m_InternalImage; MaskImage3DType::Pointer m_InternalImageMask3D; MaskImage2DType::Pointer m_InternalImageMask2D; TimeStampVectorType m_ImageStatisticsTimeStampVector; TimeStampVectorType m_MaskedImageStatisticsTimeStampVector; TimeStampVectorType m_PlanarFigureStatisticsTimeStampVector; BoolVectorType m_ImageStatisticsCalculationTriggerVector; BoolVectorType m_MaskedImageStatisticsCalculationTriggerVector; BoolVectorType m_PlanarFigureStatisticsCalculationTriggerVector; double m_IgnorePixelValue; bool m_DoIgnorePixelValue; bool m_IgnorePixelValueChanged; double m_HotspotRadiusInMM; bool m_CalculateHotspot; + bool m_HotspotRadiusInMMChanged; unsigned int m_PlanarFigureAxis; // Normal axis for PlanarFigure unsigned int m_PlanarFigureSlice; // Slice which contains PlanarFigure int m_PlanarFigureCoordinate0; // First plane-axis for PlanarFigure int m_PlanarFigureCoordinate1; // Second plane-axis for PlanarFigure }; } // namespace #endif