diff --git a/Modules/IGT/Tutorial/mitkIGTTutorialStep2.cpp b/Modules/IGT/Tutorial/mitkIGTTutorialStep2.cpp index 3e3ba99050..67011c2518 100644 --- a/Modules/IGT/Tutorial/mitkIGTTutorialStep2.cpp +++ b/Modules/IGT/Tutorial/mitkIGTTutorialStep2.cpp @@ -1,183 +1,183 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include //The next line starts a snippet to display this code in the documentation. If you don't revise the documentation, don't remove it! //! [What we will do] //************************************************************************* // What we will do... //************************************************************************* // This tutorial shows how to compose navigation datas. Therefore we render two objects. //The first object is a cone that is tracked. The second object is a cylinder at a fixed position //relative to the cone. At the end of the tracking, the cylinder is moved to its new relative position //according to the last output of the tracking device. //In addition to IGT tutorial step 1, the objects are added to a datastorage. Furthermore, a renderwindow //is used for visual output. //! [What we will do] int main(int, char**) { //************************************************************************* // Set up Render Window and Tracking Device //************************************************************************* //! [Render Window] //General code rendering the data in a renderwindow. See MITK Tutorial Step1 for more details. mitk::StandaloneDataStorage::Pointer dataStorage = mitk::StandaloneDataStorage::New(); mitk::RenderWindow::Pointer renderWindow = mitk::RenderWindow::New(); mitk::DataNode::Pointer dataNode = mitk::DataNode::New(); //Here, we want a 3D renderwindow renderWindow->GetRenderer()->SetMapperID(mitk::BaseRenderer::Standard3D); renderWindow->GetVtkRenderWindow()->SetSize(500, 500); renderWindow->GetRenderer()->Resize(500, 500); //Connect datastorage and renderwindow renderWindow->GetRenderer()->SetDataStorage(dataStorage); //! [Render Window] //! [Setup Tracking Device] //Virtual tracking device to generate random positions mitk::VirtualTrackingDevice::Pointer tracker = mitk::VirtualTrackingDevice::New(); //Bounds (within the random numbers are generated) must be set before the tools are added double bound = 10.0; mitk::ScalarType bounds[] = { -bound, bound, -bound, bound, -bound, bound }; tracker->SetBounds(bounds); tracker->AddTool("tool1"); //Tracking device source to get the data mitk::TrackingDeviceSource::Pointer source = mitk::TrackingDeviceSource::New(); source->SetTrackingDevice(tracker); source->Connect(); //! [Setup Tracking Device] //************************************************************************* // Create Objects //************************************************************************* //! [Moving Object] //Cone representation for rendering of the moving object mitk::Cone::Pointer cone = mitk::Cone::New(); dataNode->SetData(cone); dataNode->SetName("My tracked object"); dataNode->SetColor(0.0, 1.0, 1.0); dataStorage->Add(dataNode); //Filter for rendering the cone at correct postion and orientation mitk::NavigationDataObjectVisualizationFilter::Pointer visualizer = mitk::NavigationDataObjectVisualizationFilter::New(); visualizer->SetInput(0, source->GetOutput()); - visualizer->SetRepresentationObject(0, cone); + visualizer->SetRepresentationObject(0, cone.GetPointer()); //! [Moving Object] //! [Fixed Object] //Cylinder representation for rendering of the fixed object mitk::DataNode::Pointer cylinderNode = mitk::DataNode::New(); mitk::Cylinder::Pointer cylinder = mitk::Cylinder::New(); cylinderNode->SetData(cylinder); cylinderNode->SetName("My fixed object"); cylinderNode->SetColor(1.0, 0.0, 0.0); dataStorage->Add(cylinderNode); //Define a rotation and a translation for the fixed object mitk::Matrix3D rotationMatrix; rotationMatrix.SetIdentity(); double alpha = 0.3; rotationMatrix[1][1] = cos(alpha); rotationMatrix[1][2] = -sin(alpha); rotationMatrix[2][1] = sin(alpha); rotationMatrix[2][2] = cos(alpha); mitk::Vector3D offset; offset.Fill(5.0); //Add rotation and translation to affine transform mitk::AffineTransform3D::Pointer affineTransform3D = mitk::AffineTransform3D::New(); affineTransform3D->SetOffset(offset); affineTransform3D->SetMatrix(rotationMatrix); //apply rotation and translation mitk::NavigationData::Pointer fixedNavigationData = mitk::NavigationData::New(affineTransform3D); cylinder->GetGeometry()->SetIndexToWorldTransform(fixedNavigationData->GetAffineTransform3D()); //! [Fixed Object] //************************************************************************* // The Tracking loop //************************************************************************* //! [Initialize views] // Global reinit with the bounds of the virtual tracking device auto timeGeometry = dataStorage->ComputeBoundingGeometry3D(dataStorage->GetAll()); mitk::BaseGeometry::Pointer geometry = timeGeometry->GetGeometryForTimeStep(0); geometry->SetBounds(bounds); mitk::RenderingManager::GetInstance()->InitializeViews(geometry); source->StartTracking(); //! [Initialize views] //! [Tracking] //Generate and render 75 time steps to move the tracked object for (int i = 0; i < 75; ++i) { //Update the cone position visualizer->Update(); //Update rendering renderWindow->GetVtkRenderWindow()->Render(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); MITK_INFO << "Position " << source->GetOutput()->GetPosition(); //Slight delay for the random numbers itksys::SystemTools::Delay(100); } //Stop the tracking device and disconnect it //The tracking is done, now we want to move the fixed object to its correct relative position regarding the tracked object. source->StopTracking(); source->Disconnect(); //! [Tracking] //************************************************************************* // Final Transform //************************************************************************* //! [Calculate Transform] //Now the tracking is finished and we can use the transformation to move //the fixed object to its correct position relative to the new position //of the moving/tracked object. Therefore, we compose the navigation datas. fixedNavigationData->Compose(source->GetOutput(), false); //Update the transformation matrix of the cylinder cylinder->GetGeometry()->SetIndexToWorldTransform(fixedNavigationData->GetAffineTransform3D()); //Update the rendering renderWindow->GetVtkRenderWindow()->Render(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); //Wait a little before closing the renderwindow itksys::SystemTools::Delay(2000); //! [Calculate Transform] }