diff --git a/Modules/DiffusionImaging/FiberTracking/IODataStructures/FiberBundleX/mitkFiberBundleX.cpp b/Modules/DiffusionImaging/FiberTracking/IODataStructures/FiberBundleX/mitkFiberBundleX.cpp index 7d0c024ed6..2c28c0926b 100755 --- a/Modules/DiffusionImaging/FiberTracking/IODataStructures/FiberBundleX/mitkFiberBundleX.cpp +++ b/Modules/DiffusionImaging/FiberTracking/IODataStructures/FiberBundleX/mitkFiberBundleX.cpp @@ -1,1905 +1,1924 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #define _USE_MATH_DEFINES #include "mitkFiberBundleX.h" #include #include #include #include "mitkImagePixelReadAccessor.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const char* mitk::FiberBundleX::FIBER_ID_ARRAY = "Fiber_IDs"; using namespace std; mitk::FiberBundleX::FiberBundleX( vtkPolyData* fiberPolyData ) : m_NumFibers(0) + , m_ReferenceGeometry(NULL) { m_FiberWeights = vtkSmartPointer::New(); m_FiberWeights->SetName("FIBER_WEIGHTS"); m_FiberPolyData = vtkSmartPointer::New(); if (fiberPolyData != NULL) { m_FiberPolyData = fiberPolyData; this->DoColorCodingOrientationBased(); } this->UpdateFiberGeometry(); this->GenerateFiberIds(); } mitk::FiberBundleX::~FiberBundleX() { } mitk::FiberBundleX::Pointer mitk::FiberBundleX::GetDeepCopy() { mitk::FiberBundleX::Pointer newFib = mitk::FiberBundleX::New(m_FiberPolyData); newFib->SetFiberColors(this->m_FiberColors); newFib->SetFiberWeights(this->m_FiberWeights); return newFib; } vtkSmartPointer mitk::FiberBundleX::GeneratePolyDataByIds(std::vector fiberIds) { vtkSmartPointer newFiberPolyData = vtkSmartPointer::New(); vtkSmartPointer newLineSet = vtkSmartPointer::New(); vtkSmartPointer newPointSet = vtkSmartPointer::New(); std::vector::iterator finIt = fiberIds.begin(); while ( finIt != fiberIds.end() ) { if (*finIt < 0 || *finIt>GetNumFibers()){ MITK_INFO << "FiberID can not be negative or >NumFibers!!! check id Extraction!" << *finIt; break; } vtkSmartPointer fiber = m_FiberIdDataSet->GetCell(*finIt);//->DeepCopy(fiber); vtkSmartPointer fibPoints = fiber->GetPoints(); vtkSmartPointer newFiber = vtkSmartPointer::New(); newFiber->GetPointIds()->SetNumberOfIds( fibPoints->GetNumberOfPoints() ); for(int i=0; iGetNumberOfPoints(); i++) { newFiber->GetPointIds()->SetId(i, newPointSet->GetNumberOfPoints()); newPointSet->InsertNextPoint(fibPoints->GetPoint(i)[0], fibPoints->GetPoint(i)[1], fibPoints->GetPoint(i)[2]); } newLineSet->InsertNextCell(newFiber); ++finIt; } newFiberPolyData->SetPoints(newPointSet); newFiberPolyData->SetLines(newLineSet); return newFiberPolyData; } // merge two fiber bundles mitk::FiberBundleX::Pointer mitk::FiberBundleX::AddBundle(mitk::FiberBundleX* fib) { if (fib==NULL) { MITK_WARN << "trying to call AddBundle with NULL argument"; return NULL; } MITK_INFO << "Adding fibers"; vtkSmartPointer vNewPolyData = vtkSmartPointer::New(); vtkSmartPointer vNewLines = vtkSmartPointer::New(); vtkSmartPointer vNewPoints = vtkSmartPointer::New(); // add current fiber bundle vtkSmartPointer weights = vtkSmartPointer::New(); weights->SetNumberOfValues(this->GetNumFibers()+fib->GetNumFibers()); unsigned int counter = 0; for (int i=0; iGetNumberOfCells(); i++) { vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j, p); vtkIdType id = vNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } weights->InsertValue(counter, this->GetFiberWeight(i)); vNewLines->InsertNextCell(container); counter++; } // add new fiber bundle for (int i=0; iGetFiberPolyData()->GetNumberOfCells(); i++) { vtkCell* cell = fib->GetFiberPolyData()->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j, p); vtkIdType id = vNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } weights->InsertValue(counter, fib->GetFiberWeight(i)); vNewLines->InsertNextCell(container); counter++; } // initialize polydata vNewPolyData->SetPoints(vNewPoints); vNewPolyData->SetLines(vNewLines); // initialize fiber bundle mitk::FiberBundleX::Pointer newFib = mitk::FiberBundleX::New(vNewPolyData); newFib->SetFiberWeights(weights); return newFib; } // subtract two fiber bundles mitk::FiberBundleX::Pointer mitk::FiberBundleX::SubtractBundle(mitk::FiberBundleX* fib) { MITK_INFO << "Subtracting fibers"; vtkSmartPointer vNewPolyData = vtkSmartPointer::New(); vtkSmartPointer vNewLines = vtkSmartPointer::New(); vtkSmartPointer vNewPoints = vtkSmartPointer::New(); // iterate over current fibers boost::progress_display disp(m_NumFibers); for( int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (points==NULL || numPoints<=0) continue; int numFibers2 = fib->GetNumFibers(); bool contained = false; for( int i2=0; i2GetFiberPolyData()->GetCell(i2); int numPoints2 = cell2->GetNumberOfPoints(); vtkPoints* points2 = cell2->GetPoints(); if (points2==NULL)// || numPoints2<=0) continue; // check endpoints if (numPoints2==numPoints) { itk::Point point_start = GetItkPoint(points->GetPoint(0)); itk::Point point_end = GetItkPoint(points->GetPoint(numPoints-1)); itk::Point point2_start = GetItkPoint(points2->GetPoint(0)); itk::Point point2_end = GetItkPoint(points2->GetPoint(numPoints2-1)); if ((point_start.SquaredEuclideanDistanceTo(point2_start)<=mitk::eps && point_end.SquaredEuclideanDistanceTo(point2_end)<=mitk::eps) || (point_start.SquaredEuclideanDistanceTo(point2_end)<=mitk::eps && point_end.SquaredEuclideanDistanceTo(point2_start)<=mitk::eps)) { // further checking ??? contained = true; break; } } } // add to result because fiber is not subtracted if (!contained) { vtkSmartPointer container = vtkSmartPointer::New(); for( int j=0; jInsertNextPoint(points->GetPoint(j)); container->GetPointIds()->InsertNextId(id); } vNewLines->InsertNextCell(container); } } if(vNewLines->GetNumberOfCells()==0) return NULL; // initialize polydata vNewPolyData->SetPoints(vNewPoints); vNewPolyData->SetLines(vNewLines); // initialize fiber bundle return mitk::FiberBundleX::New(vNewPolyData); } itk::Point mitk::FiberBundleX::GetItkPoint(double point[3]) { itk::Point itkPoint; itkPoint[0] = point[0]; itkPoint[1] = point[1]; itkPoint[2] = point[2]; return itkPoint; } /* * set polydata (additional flag to recompute fiber geometry, default = true) */ void mitk::FiberBundleX::SetFiberPolyData(vtkSmartPointer fiberPD, bool updateGeometry) { if (fiberPD == NULL) this->m_FiberPolyData = vtkSmartPointer::New(); else { m_FiberPolyData->DeepCopy(fiberPD); DoColorCodingOrientationBased(); } m_NumFibers = m_FiberPolyData->GetNumberOfLines(); if (updateGeometry) UpdateFiberGeometry(); GenerateFiberIds(); } /* * return vtkPolyData */ vtkSmartPointer mitk::FiberBundleX::GetFiberPolyData() const { return m_FiberPolyData; } void mitk::FiberBundleX::DoColorCodingOrientationBased() { //===== FOR WRITING A TEST ======================== // colorT size == tupelComponents * tupelElements // compare color results // to cover this code 100% also polydata needed, where colorarray already exists // + one fiber with exactly 1 point // + one fiber with 0 points //================================================= vtkPoints* extrPoints = NULL; extrPoints = m_FiberPolyData->GetPoints(); int numOfPoints = 0; if (extrPoints!=NULL) numOfPoints = extrPoints->GetNumberOfPoints(); //colors and alpha value for each single point, RGBA = 4 components unsigned char rgba[4] = {0,0,0,0}; int componentSize = 4; m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(numOfPoints * componentSize); m_FiberColors->SetNumberOfComponents(componentSize); m_FiberColors->SetName("FIBER_COLORS"); int numOfFibers = m_FiberPolyData->GetNumberOfLines(); if (numOfFibers < 1) return; /* extract single fibers of fiberBundle */ vtkCellArray* fiberList = m_FiberPolyData->GetLines(); fiberList->InitTraversal(); for (int fi=0; fiGetNextCell(pointsPerFiber, idList); /* single fiber checkpoints: is number of points valid */ if (pointsPerFiber > 1) { /* operate on points of single fiber */ for (int i=0; i 0) { /* The color value of the current point is influenced by the previous point and next point. */ vnl_vector_fixed< double, 3 > currentPntvtk(extrPoints->GetPoint(idList[i])[0], extrPoints->GetPoint(idList[i])[1],extrPoints->GetPoint(idList[i])[2]); vnl_vector_fixed< double, 3 > nextPntvtk(extrPoints->GetPoint(idList[i+1])[0], extrPoints->GetPoint(idList[i+1])[1], extrPoints->GetPoint(idList[i+1])[2]); vnl_vector_fixed< double, 3 > prevPntvtk(extrPoints->GetPoint(idList[i-1])[0], extrPoints->GetPoint(idList[i-1])[1], extrPoints->GetPoint(idList[i-1])[2]); vnl_vector_fixed< double, 3 > diff1; diff1 = currentPntvtk - nextPntvtk; vnl_vector_fixed< double, 3 > diff2; diff2 = currentPntvtk - prevPntvtk; vnl_vector_fixed< double, 3 > diff; diff = (diff1 - diff2) / 2.0; diff.normalize(); rgba[0] = (unsigned char) (255.0 * std::fabs(diff[0])); rgba[1] = (unsigned char) (255.0 * std::fabs(diff[1])); rgba[2] = (unsigned char) (255.0 * std::fabs(diff[2])); rgba[3] = (unsigned char) (255.0); } else if (i==0) { /* First point has no previous point, therefore only diff1 is taken */ vnl_vector_fixed< double, 3 > currentPntvtk(extrPoints->GetPoint(idList[i])[0], extrPoints->GetPoint(idList[i])[1],extrPoints->GetPoint(idList[i])[2]); vnl_vector_fixed< double, 3 > nextPntvtk(extrPoints->GetPoint(idList[i+1])[0], extrPoints->GetPoint(idList[i+1])[1], extrPoints->GetPoint(idList[i+1])[2]); vnl_vector_fixed< double, 3 > diff1; diff1 = currentPntvtk - nextPntvtk; diff1.normalize(); rgba[0] = (unsigned char) (255.0 * std::fabs(diff1[0])); rgba[1] = (unsigned char) (255.0 * std::fabs(diff1[1])); rgba[2] = (unsigned char) (255.0 * std::fabs(diff1[2])); rgba[3] = (unsigned char) (255.0); } else if (i==pointsPerFiber-1) { /* Last point has no next point, therefore only diff2 is taken */ vnl_vector_fixed< double, 3 > currentPntvtk(extrPoints->GetPoint(idList[i])[0], extrPoints->GetPoint(idList[i])[1],extrPoints->GetPoint(idList[i])[2]); vnl_vector_fixed< double, 3 > prevPntvtk(extrPoints->GetPoint(idList[i-1])[0], extrPoints->GetPoint(idList[i-1])[1], extrPoints->GetPoint(idList[i-1])[2]); vnl_vector_fixed< double, 3 > diff2; diff2 = currentPntvtk - prevPntvtk; diff2.normalize(); rgba[0] = (unsigned char) (255.0 * std::fabs(diff2[0])); rgba[1] = (unsigned char) (255.0 * std::fabs(diff2[1])); rgba[2] = (unsigned char) (255.0 * std::fabs(diff2[2])); rgba[3] = (unsigned char) (255.0); } m_FiberColors->InsertTupleValue(idList[i], rgba); } } else if (pointsPerFiber == 1) { /* a single point does not define a fiber (use vertex mechanisms instead */ continue; } else { MITK_DEBUG << "Fiber with 0 points detected... please check your tractography algorithm!" ; continue; } } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundleX::SetFiberOpacity(vtkDoubleArray* FAValArray) { for(long i=0; iGetNumberOfTuples(); i++) { double faValue = FAValArray->GetValue(i); faValue = faValue * 255.0; m_FiberColors->SetComponent(i,3, (unsigned char) faValue ); } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundleX::ResetFiberOpacity() { for(long i=0; iGetNumberOfTuples(); i++) m_FiberColors->SetComponent(i,3, 255.0 ); m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundleX::ColorFibersByScalarMap(mitk::Image::Pointer FAimage, bool opacity) { mitkPixelTypeMultiplex2( ColorFibersByScalarMap, FAimage->GetPixelType(), FAimage, opacity ); m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } template void mitk::FiberBundleX::ColorFibersByScalarMap(const mitk::PixelType, mitk::Image::Pointer image, bool opacity) { m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(m_FiberPolyData->GetNumberOfPoints() * 4); m_FiberColors->SetNumberOfComponents(4); m_FiberColors->SetName("FIBER_COLORS"); mitk::ImagePixelReadAccessor readimage(image, image->GetVolumeData(0)); unsigned char rgba[4] = {0,0,0,0}; vtkPoints* pointSet = m_FiberPolyData->GetPoints(); mitk::LookupTable::Pointer mitkLookup = mitk::LookupTable::New(); vtkSmartPointer lookupTable = vtkSmartPointer::New(); lookupTable->SetTableRange(0.0, 0.8); lookupTable->Build(); mitkLookup->SetVtkLookupTable(lookupTable); mitkLookup->SetType(mitk::LookupTable::JET); for(long i=0; iGetNumberOfPoints(); ++i) { Point3D px; px[0] = pointSet->GetPoint(i)[0]; px[1] = pointSet->GetPoint(i)[1]; px[2] = pointSet->GetPoint(i)[2]; double pixelValue = readimage.GetPixelByWorldCoordinates(px); double color[3]; lookupTable->GetColor(pixelValue, color); rgba[0] = (unsigned char) (255.0 * color[0]); rgba[1] = (unsigned char) (255.0 * color[1]); rgba[2] = (unsigned char) (255.0 * color[2]); if (opacity) rgba[3] = (unsigned char) (255.0 * pixelValue); else rgba[3] = (unsigned char) (255.0); m_FiberColors->InsertTupleValue(i, rgba); } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundleX::SetFiberColors(float r, float g, float b, float alpha) { m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(m_FiberPolyData->GetNumberOfPoints() * 4); m_FiberColors->SetNumberOfComponents(4); m_FiberColors->SetName("FIBER_COLORS"); unsigned char rgba[4] = {0,0,0,0}; for(long i=0; iGetNumberOfPoints(); ++i) { rgba[0] = (unsigned char) r; rgba[1] = (unsigned char) g; rgba[2] = (unsigned char) b; rgba[3] = (unsigned char) alpha; m_FiberColors->InsertTupleValue(i, rgba); } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundleX::GenerateFiberIds() { if (m_FiberPolyData == NULL) return; vtkSmartPointer idFiberFilter = vtkSmartPointer::New(); idFiberFilter->SetInputData(m_FiberPolyData); idFiberFilter->CellIdsOn(); // idFiberFilter->PointIdsOn(); // point id's are not needed idFiberFilter->SetIdsArrayName(FIBER_ID_ARRAY); idFiberFilter->FieldDataOn(); idFiberFilter->Update(); m_FiberIdDataSet = idFiberFilter->GetOutput(); } mitk::FiberBundleX::Pointer mitk::FiberBundleX::ExtractFiberSubset(ItkUcharImgType* mask, bool anyPoint, bool invert) { vtkSmartPointer polyData = m_FiberPolyData; if (anyPoint) { float minSpacing = 1; if(mask->GetSpacing()[0]GetSpacing()[1] && mask->GetSpacing()[0]GetSpacing()[2]) minSpacing = mask->GetSpacing()[0]; else if (mask->GetSpacing()[1] < mask->GetSpacing()[2]) minSpacing = mask->GetSpacing()[1]; else minSpacing = mask->GetSpacing()[2]; mitk::FiberBundleX::Pointer fibCopy = this->GetDeepCopy(); fibCopy->ResampleSpline(minSpacing/5); polyData = fibCopy->GetFiberPolyData(); } vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Extracting fibers"; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkCell* cellOriginal = m_FiberPolyData->GetCell(i); int numPointsOriginal = cellOriginal->GetNumberOfPoints(); vtkPoints* pointsOriginal = cellOriginal->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); if (numPoints>1 && numPointsOriginal) { if (anyPoint) { if (!invert) { for (int j=0; jGetPoint(j); itk::Point itkP; itkP[0] = p[0]; itkP[1] = p[1]; itkP[2] = p[2]; itk::Index<3> idx; mask->TransformPhysicalPointToIndex(itkP, idx); if ( mask->GetPixel(idx)>0 && mask->GetLargestPossibleRegion().IsInside(idx) ) { for (int k=0; kGetPoint(k); vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } break; } } } else { bool includeFiber = true; for (int j=0; jGetPoint(j); itk::Point itkP; itkP[0] = p[0]; itkP[1] = p[1]; itkP[2] = p[2]; itk::Index<3> idx; mask->TransformPhysicalPointToIndex(itkP, idx); if ( mask->GetPixel(idx)>0 && mask->GetLargestPossibleRegion().IsInside(idx) ) { includeFiber = false; break; } } if (includeFiber) { for (int k=0; kGetPoint(k); vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } } } } else { double* start = pointsOriginal->GetPoint(0); itk::Point itkStart; itkStart[0] = start[0]; itkStart[1] = start[1]; itkStart[2] = start[2]; itk::Index<3> idxStart; mask->TransformPhysicalPointToIndex(itkStart, idxStart); double* end = pointsOriginal->GetPoint(numPointsOriginal-1); itk::Point itkEnd; itkEnd[0] = end[0]; itkEnd[1] = end[1]; itkEnd[2] = end[2]; itk::Index<3> idxEnd; mask->TransformPhysicalPointToIndex(itkEnd, idxEnd); if (invert) { if ( mask->GetPixel(idxStart)==0 && mask->GetPixel(idxEnd)==0 && mask->GetLargestPossibleRegion().IsInside(idxStart) && mask->GetLargestPossibleRegion().IsInside(idxEnd) ) { for (int j=0; jGetPoint(j); vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } } } else { if ( (mask->GetPixel(idxStart)>0 || mask->GetPixel(idxEnd)>0) && mask->GetLargestPossibleRegion().IsInside(idxStart) && mask->GetLargestPossibleRegion().IsInside(idxEnd) ) { for (int j=0; jGetPoint(j); vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } } } } } vtkNewCells->InsertNextCell(container); } if (vtkNewCells->GetNumberOfCells()<=0) return NULL; vtkSmartPointer newPolyData = vtkSmartPointer::New(); newPolyData->SetPoints(vtkNewPoints); newPolyData->SetLines(vtkNewCells); return mitk::FiberBundleX::New(newPolyData); } mitk::FiberBundleX::Pointer mitk::FiberBundleX::RemoveFibersOutside(ItkUcharImgType* mask, bool invert) { float minSpacing = 1; if(mask->GetSpacing()[0]GetSpacing()[1] && mask->GetSpacing()[0]GetSpacing()[2]) minSpacing = mask->GetSpacing()[0]; else if (mask->GetSpacing()[1] < mask->GetSpacing()[2]) minSpacing = mask->GetSpacing()[1]; else minSpacing = mask->GetSpacing()[2]; mitk::FiberBundleX::Pointer fibCopy = this->GetDeepCopy(); fibCopy->ResampleSpline(minSpacing/10); vtkSmartPointer polyData =fibCopy->GetFiberPolyData(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Cutting fibers"; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); if (numPoints>1) { int newNumPoints = 0; for (int j=0; jGetPoint(j); itk::Point itkP; itkP[0] = p[0]; itkP[1] = p[1]; itkP[2] = p[2]; itk::Index<3> idx; mask->TransformPhysicalPointToIndex(itkP, idx); if ( mask->GetPixel(idx)>0 && mask->GetLargestPossibleRegion().IsInside(idx) && !invert ) { vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); newNumPoints++; } else if ( (mask->GetPixel(idx)<=0 || !mask->GetLargestPossibleRegion().IsInside(idx)) && invert ) { vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); newNumPoints++; } else if (newNumPoints>0) { vtkNewCells->InsertNextCell(container); newNumPoints = 0; container = vtkSmartPointer::New(); } } if (newNumPoints>0) vtkNewCells->InsertNextCell(container); } } if (vtkNewCells->GetNumberOfCells()<=0) return NULL; vtkSmartPointer newPolyData = vtkSmartPointer::New(); newPolyData->SetPoints(vtkNewPoints); newPolyData->SetLines(vtkNewCells); mitk::FiberBundleX::Pointer newFib = mitk::FiberBundleX::New(newPolyData); newFib->ResampleSpline(minSpacing/2); return newFib; } mitk::FiberBundleX::Pointer mitk::FiberBundleX::ExtractFiberSubset(BaseData* roi) { if (roi==NULL || !(dynamic_cast(roi) || dynamic_cast(roi)) ) return NULL; std::vector tmp = ExtractFiberIdSubset(roi); if (tmp.size()<=0) return mitk::FiberBundleX::New(); vtkSmartPointer pTmp = GeneratePolyDataByIds(tmp); return mitk::FiberBundleX::New(pTmp); } std::vector mitk::FiberBundleX::ExtractFiberIdSubset(BaseData* roi) { std::vector result; if (roi==NULL) return result; mitk::PlanarFigureComposite::Pointer pfc = dynamic_cast(roi); if (!pfc.IsNull()) // handle composite { switch (pfc->getOperationType()) { case 0: // AND { result = this->ExtractFiberIdSubset(pfc->getChildAt(0)); std::vector::iterator it; for (int i=1; igetNumberOfChildren(); ++i) { std::vector inRoi = this->ExtractFiberIdSubset(pfc->getChildAt(i)); std::vector rest(std::min(result.size(),inRoi.size())); it = std::set_intersection(result.begin(), result.end(), inRoi.begin(), inRoi.end(), rest.begin() ); rest.resize( it - rest.begin() ); result = rest; } break; } case 1: // OR { result = ExtractFiberIdSubset(pfc->getChildAt(0)); std::vector::iterator it; for (int i=1; igetNumberOfChildren(); ++i) { it = result.end(); std::vector inRoi = ExtractFiberIdSubset(pfc->getChildAt(i)); result.insert(it, inRoi.begin(), inRoi.end()); } // remove duplicates sort(result.begin(), result.end()); it = unique(result.begin(), result.end()); result.resize( it - result.begin() ); break; } case 2: // NOT { for(long i=0; iGetNumFibers(); i++) result.push_back(i); std::vector::iterator it; for (long i=0; igetNumberOfChildren(); ++i) { std::vector inRoi = ExtractFiberIdSubset(pfc->getChildAt(i)); std::vector rest(result.size()-inRoi.size()); it = std::set_difference(result.begin(), result.end(), inRoi.begin(), inRoi.end(), rest.begin() ); rest.resize( it - rest.begin() ); result = rest; } break; } } } else if ( dynamic_cast(roi) ) // actual extraction { if ( dynamic_cast(roi) ) { mitk::PlanarFigure::Pointer planarPoly = dynamic_cast(roi); //create vtkPolygon using controlpoints from planarFigure polygon vtkSmartPointer polygonVtk = vtkSmartPointer::New(); for (unsigned int i=0; iGetNumberOfControlPoints(); ++i) { itk::Point p = planarPoly->GetWorldControlPoint(i); vtkIdType id = polygonVtk->GetPoints()->InsertNextPoint(p[0], p[1], p[2] ); polygonVtk->GetPointIds()->InsertNextId(id); } MITK_INFO << "Extracting with polygon"; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; jGetPoint(j, p1); double p2[3] = {0,0,0}; points->GetPoint(j+1, p2); double tolerance = 0.001; // Outputs double t = 0; // Parametric coordinate of intersection (0 (corresponding to p1) to 1 (corresponding to p2)) double x[3] = {0,0,0}; // The coordinate of the intersection double pcoords[3] = {0,0,0}; int subId = 0; int iD = polygonVtk->IntersectWithLine(p1, p2, tolerance, t, x, pcoords, subId); if (iD!=0) { result.push_back(i); break; } } } } else if ( dynamic_cast(roi) ) { mitk::PlanarFigure::Pointer planarFigure = dynamic_cast(roi); Vector3D planeNormal = planarFigure->GetPlaneGeometry()->GetNormal(); planeNormal.Normalize(); //calculate circle radius mitk::Point3D V1w = planarFigure->GetWorldControlPoint(0); //centerPoint mitk::Point3D V2w = planarFigure->GetWorldControlPoint(1); //radiusPoint double radius = V1w.EuclideanDistanceTo(V2w); radius *= radius; MITK_INFO << "Extracting with circle"; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; jGetPoint(j, p1); double p2[3] = {0,0,0}; points->GetPoint(j+1, p2); // Outputs double t = 0; // Parametric coordinate of intersection (0 (corresponding to p1) to 1 (corresponding to p2)) double x[3] = {0,0,0}; // The coordinate of the intersection int iD = vtkPlane::IntersectWithLine(p1,p2,planeNormal.GetDataPointer(),V1w.GetDataPointer(),t,x); if (iD!=0) { double dist = (x[0]-V1w[0])*(x[0]-V1w[0])+(x[1]-V1w[1])*(x[1]-V1w[1])+(x[2]-V1w[2])*(x[2]-V1w[2]); if( dist <= radius) { result.push_back(i); break; } } } } } return result; } return result; } void mitk::FiberBundleX::UpdateFiberGeometry() { vtkSmartPointer cleaner = vtkSmartPointer::New(); cleaner->SetInputData(m_FiberPolyData); cleaner->PointMergingOff(); cleaner->Update(); m_FiberPolyData = cleaner->GetOutput(); m_FiberLengths.clear(); m_MeanFiberLength = 0; m_MedianFiberLength = 0; m_LengthStDev = 0; m_NumFibers = m_FiberPolyData->GetNumberOfCells(); if (m_FiberColors==NULL || m_FiberColors->GetNumberOfTuples()!=m_FiberPolyData->GetNumberOfPoints()) this->DoColorCodingOrientationBased(); if (m_FiberWeights->GetSize()!=m_NumFibers) { m_FiberWeights = vtkSmartPointer::New(); m_FiberWeights->SetName("FIBER_WEIGHTS"); m_FiberWeights->SetNumberOfValues(m_NumFibers); this->SetFiberWeights(1); } if (m_NumFibers<=0) // no fibers present; apply default geometry { m_MinFiberLength = 0; m_MaxFiberLength = 0; mitk::Geometry3D::Pointer geometry = mitk::Geometry3D::New(); geometry->SetImageGeometry(false); float b[] = {0, 1, 0, 1, 0, 1}; geometry->SetFloatBounds(b); SetGeometry(geometry); return; } double b[6]; m_FiberPolyData->GetBounds(b); // calculate statistics for (int i=0; iGetNumberOfCells(); i++) { vtkCell* cell = m_FiberPolyData->GetCell(i); int p = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); float length = 0; for (int j=0; jGetPoint(j, p1); double p2[3]; points->GetPoint(j+1, p2); float dist = std::sqrt((p1[0]-p2[0])*(p1[0]-p2[0])+(p1[1]-p2[1])*(p1[1]-p2[1])+(p1[2]-p2[2])*(p1[2]-p2[2])); length += dist; } m_FiberLengths.push_back(length); m_MeanFiberLength += length; if (i==0) { m_MinFiberLength = length; m_MaxFiberLength = length; } else { if (lengthm_MaxFiberLength) m_MaxFiberLength = length; } } m_MeanFiberLength /= m_NumFibers; std::vector< float > sortedLengths = m_FiberLengths; std::sort(sortedLengths.begin(), sortedLengths.end()); for (int i=0; i1) m_LengthStDev /= (m_NumFibers-1); else m_LengthStDev = 0; m_LengthStDev = std::sqrt(m_LengthStDev); m_MedianFiberLength = sortedLengths.at(m_NumFibers/2); mitk::Geometry3D::Pointer geometry = mitk::Geometry3D::New(); geometry->SetFloatBounds(b); this->SetGeometry(geometry); m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } float mitk::FiberBundleX::GetFiberWeight(unsigned int fiber) { return m_FiberWeights->GetValue(fiber); } void mitk::FiberBundleX::SetFiberWeights(float newWeight) { for (int i=0; iGetSize(); i++) m_FiberWeights->SetValue(i, newWeight); } void mitk::FiberBundleX::SetFiberWeights(vtkSmartPointer weights) { if (m_NumFibers!=weights->GetSize()) return; for (int i=0; iGetSize(); i++) m_FiberWeights->SetValue(i, weights->GetValue(i)); m_FiberWeights->SetName("FIBER_WEIGHTS"); } void mitk::FiberBundleX::SetFiberWeight(unsigned int fiber, float weight) { m_FiberWeights->SetValue(fiber, weight); } void mitk::FiberBundleX::SetFiberColors(vtkSmartPointer fiberColors) { for(long i=0; iGetNumberOfPoints(); ++i) { unsigned char source[4] = {0,0,0,0}; fiberColors->GetTupleValue(i, source); unsigned char target[4] = {0,0,0,0}; target[0] = source[0]; target[1] = source[1]; target[2] = source[2]; target[3] = source[3]; m_FiberColors->InsertTupleValue(i, target); } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } itk::Matrix< double, 3, 3 > mitk::FiberBundleX::TransformMatrix(itk::Matrix< double, 3, 3 > m, double rx, double ry, double rz) { rx = rx*M_PI/180; ry = ry*M_PI/180; rz = rz*M_PI/180; itk::Matrix< double, 3, 3 > rotX; rotX.SetIdentity(); rotX[1][1] = cos(rx); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(rx); rotX[2][1] = -rotX[1][2]; itk::Matrix< double, 3, 3 > rotY; rotY.SetIdentity(); rotY[0][0] = cos(ry); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(ry); rotY[2][0] = -rotY[0][2]; itk::Matrix< double, 3, 3 > rotZ; rotZ.SetIdentity(); rotZ[0][0] = cos(rz); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(rz); rotZ[1][0] = -rotZ[0][1]; itk::Matrix< double, 3, 3 > rot = rotZ*rotY*rotX; m = rot*m; return m; } itk::Point mitk::FiberBundleX::TransformPoint(vnl_vector_fixed< double, 3 > point, double rx, double ry, double rz, double tx, double ty, double tz) { rx = rx*M_PI/180; ry = ry*M_PI/180; rz = rz*M_PI/180; vnl_matrix_fixed< double, 3, 3 > rotX; rotX.set_identity(); rotX[1][1] = cos(rx); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(rx); rotX[2][1] = -rotX[1][2]; vnl_matrix_fixed< double, 3, 3 > rotY; rotY.set_identity(); rotY[0][0] = cos(ry); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(ry); rotY[2][0] = -rotY[0][2]; vnl_matrix_fixed< double, 3, 3 > rotZ; rotZ.set_identity(); rotZ[0][0] = cos(rz); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(rz); rotZ[1][0] = -rotZ[0][1]; vnl_matrix_fixed< double, 3, 3 > rot = rotZ*rotY*rotX; mitk::BaseGeometry::Pointer geom = this->GetGeometry(); mitk::Point3D center = geom->GetCenter(); point[0] -= center[0]; point[1] -= center[1]; point[2] -= center[2]; point = rot*point; point[0] += center[0]+tx; point[1] += center[1]+ty; point[2] += center[2]+tz; itk::Point out; out[0] = point[0]; out[1] = point[1]; out[2] = point[2]; return out; } void mitk::FiberBundleX::TransformFibers(double rx, double ry, double rz, double tx, double ty, double tz) { rx = rx*M_PI/180; ry = ry*M_PI/180; rz = rz*M_PI/180; vnl_matrix_fixed< double, 3, 3 > rotX; rotX.set_identity(); rotX[1][1] = cos(rx); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(rx); rotX[2][1] = -rotX[1][2]; vnl_matrix_fixed< double, 3, 3 > rotY; rotY.set_identity(); rotY[0][0] = cos(ry); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(ry); rotY[2][0] = -rotY[0][2]; vnl_matrix_fixed< double, 3, 3 > rotZ; rotZ.set_identity(); rotZ[0][0] = cos(rz); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(rz); rotZ[1][0] = -rotZ[0][1]; vnl_matrix_fixed< double, 3, 3 > rot = rotZ*rotY*rotX; mitk::BaseGeometry::Pointer geom = this->GetGeometry(); mitk::Point3D center = geom->GetCenter(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vnl_vector_fixed< double, 3 > dir; dir[0] = p[0]-center[0]; dir[1] = p[1]-center[1]; dir[2] = p[2]-center[2]; dir = rot*dir; dir[0] += center[0]+tx; dir[1] += center[1]+ty; dir[2] += center[2]+tz; vtkIdType id = vtkNewPoints->InsertNextPoint(dir.data_block()); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundleX::RotateAroundAxis(double x, double y, double z) { x = x*M_PI/180; y = y*M_PI/180; z = z*M_PI/180; vnl_matrix_fixed< double, 3, 3 > rotX; rotX.set_identity(); rotX[1][1] = cos(x); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(x); rotX[2][1] = -rotX[1][2]; vnl_matrix_fixed< double, 3, 3 > rotY; rotY.set_identity(); rotY[0][0] = cos(y); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(y); rotY[2][0] = -rotY[0][2]; vnl_matrix_fixed< double, 3, 3 > rotZ; rotZ.set_identity(); rotZ[0][0] = cos(z); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(z); rotZ[1][0] = -rotZ[0][1]; mitk::BaseGeometry::Pointer geom = this->GetGeometry(); mitk::Point3D center = geom->GetCenter(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vnl_vector_fixed< double, 3 > dir; dir[0] = p[0]-center[0]; dir[1] = p[1]-center[1]; dir[2] = p[2]-center[2]; dir = rotZ*rotY*rotX*dir; dir[0] += center[0]; dir[1] += center[1]; dir[2] += center[2]; vtkIdType id = vtkNewPoints->InsertNextPoint(dir.data_block()); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundleX::ScaleFibers(double x, double y, double z, bool subtractCenter) { MITK_INFO << "Scaling fibers"; boost::progress_display disp(m_NumFibers); mitk::BaseGeometry* geom = this->GetGeometry(); mitk::Point3D c = geom->GetCenter(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); if (subtractCenter) { p[0] -= c[0]; p[1] -= c[1]; p[2] -= c[2]; } p[0] *= x; p[1] *= y; p[2] *= z; if (subtractCenter) { p[0] += c[0]; p[1] += c[1]; p[2] += c[2]; } vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundleX::TranslateFibers(double x, double y, double z) { vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); p[0] += x; p[1] += y; p[2] += z; vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundleX::MirrorFibers(unsigned int axis) { if (axis>2) return; + mitk::Point3D c; c.Fill(0); + if (m_ReferenceGeometry.IsNotNull()){ +// c = m_ReferenceGeometry->GetCenter(); + c = m_ReferenceGeometry->GetBoundingBox()->GetCenter(); + c[0] -= 0.5; + c[1] -= 0.5; + c[2] -= 0.5; + m_ReferenceGeometry->IndexToWorld(c, c); + } + MITK_INFO << c; + + MITK_INFO << "Mirroring fibers"; boost::progress_display disp(m_NumFibers); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); + p[0] -= c[0]; + p[1] -= c[1]; + p[2] -= c[2]; p[axis] = -p[axis]; + p[0] += c[0]; + p[1] += c[1]; + p[2] += c[2]; vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundleX::RemoveDir(vnl_vector_fixed dir, double threshold) { dir.normalize(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); boost::progress_display disp(m_FiberPolyData->GetNumberOfCells()); for (int i=0; iGetNumberOfCells(); i++) { ++disp ; vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); // calculate curvatures vtkSmartPointer container = vtkSmartPointer::New(); bool discard = false; for (int j=0; jGetPoint(j, p1); double p2[3]; points->GetPoint(j+1, p2); vnl_vector_fixed< double, 3 > v1; v1[0] = p2[0]-p1[0]; v1[1] = p2[1]-p1[1]; v1[2] = p2[2]-p1[2]; if (v1.magnitude()>0.001) { v1.normalize(); if (fabs(dot_product(v1,dir))>threshold) { discard = true; break; } } } if (!discard) { for (int j=0; jGetPoint(j, p1); vtkIdType id = vtkNewPoints->InsertNextPoint(p1); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); // UpdateColorCoding(); // UpdateFiberGeometry(); } bool mitk::FiberBundleX::ApplyCurvatureThreshold(float minRadius, bool deleteFibers) { if (minRadius<0) return true; vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Applying curvature threshold"; boost::progress_display disp(m_FiberPolyData->GetNumberOfCells()); for (int i=0; iGetNumberOfCells(); i++) { ++disp ; vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); // calculate curvatures vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j, p1); double p2[3]; points->GetPoint(j+1, p2); double p3[3]; points->GetPoint(j+2, p3); vnl_vector_fixed< float, 3 > v1, v2, v3; v1[0] = p2[0]-p1[0]; v1[1] = p2[1]-p1[1]; v1[2] = p2[2]-p1[2]; v2[0] = p3[0]-p2[0]; v2[1] = p3[1]-p2[1]; v2[2] = p3[2]-p2[2]; v3[0] = p1[0]-p3[0]; v3[1] = p1[1]-p3[1]; v3[2] = p1[2]-p3[2]; float a = v1.magnitude(); float b = v2.magnitude(); float c = v3.magnitude(); float r = a*b*c/std::sqrt((a+b+c)*(a+b-c)*(b+c-a)*(a-b+c)); // radius of triangle via Heron's formula (area of triangle) vtkIdType id = vtkNewPoints->InsertNextPoint(p1); container->GetPointIds()->InsertNextId(id); if (deleteFibers && rInsertNextCell(container); container = vtkSmartPointer::New(); } else if (j==numPoints-3) { id = vtkNewPoints->InsertNextPoint(p2); container->GetPointIds()->InsertNextId(id); id = vtkNewPoints->InsertNextPoint(p3); container->GetPointIds()->InsertNextId(id); vtkNewCells->InsertNextCell(container); } } } if (vtkNewCells->GetNumberOfCells()<=0) return false; m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); return true; } bool mitk::FiberBundleX::RemoveShortFibers(float lengthInMM) { MITK_INFO << "Removing short fibers"; if (lengthInMM<=0 || lengthInMMm_MaxFiberLength) // can't remove all fibers { MITK_WARN << "Process aborted. No fibers would be left!"; return false; } vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); float min = m_MaxFiberLength; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (m_FiberLengths.at(i)>=lengthInMM) { vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); if (m_FiberLengths.at(i)GetNumberOfCells()<=0) return false; m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); return true; } bool mitk::FiberBundleX::RemoveLongFibers(float lengthInMM) { if (lengthInMM<=0 || lengthInMM>m_MaxFiberLength) return true; if (lengthInMM vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Removing long fibers"; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (m_FiberLengths.at(i)<=lengthInMM) { vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } } if (vtkNewCells->GetNumberOfCells()<=0) return false; m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); return true; } void mitk::FiberBundleX::ResampleSpline(float pointDistance, double tension, double continuity, double bias ) { if (pointDistance<=0) return; vtkSmartPointer vtkSmoothPoints = vtkSmartPointer::New(); //in smoothpoints the interpolated points representing a fiber are stored. //in vtkcells all polylines are stored, actually all id's of them are stored vtkSmartPointer vtkSmoothCells = vtkSmartPointer::New(); //cellcontainer for smoothed lines vtkIdType pointHelperCnt = 0; vtkSmartPointer xSpline = vtkSmartPointer::New(); vtkSmartPointer ySpline = vtkSmartPointer::New(); vtkSmartPointer zSpline = vtkSmartPointer::New(); xSpline->SetDefaultBias(bias); xSpline->SetDefaultTension(tension); xSpline->SetDefaultContinuity(continuity); ySpline->SetDefaultBias(bias); ySpline->SetDefaultTension(tension); ySpline->SetDefaultContinuity(continuity); zSpline->SetDefaultBias(bias); zSpline->SetDefaultTension(tension); zSpline->SetDefaultContinuity(continuity); MITK_INFO << "Smoothing fibers"; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); vtkPoints* points = cell->GetPoints(); float length = m_FiberLengths.at(i); int sampling = std::ceil(length/pointDistance); vtkSmartPointer spline = vtkSmartPointer::New(); spline->SetXSpline(xSpline); spline->SetYSpline(ySpline); spline->SetZSpline(zSpline); spline->SetPoints(points); vtkSmartPointer functionSource = vtkSmartPointer::New(); functionSource->SetParametricFunction(spline); functionSource->SetUResolution(sampling); functionSource->SetVResolution(sampling); functionSource->SetWResolution(sampling); functionSource->Update(); vtkPolyData* outputFunction = functionSource->GetOutput(); vtkPoints* tmpSmoothPnts = outputFunction->GetPoints(); //smoothPoints of current fiber vtkSmartPointer smoothLine = vtkSmartPointer::New(); smoothLine->GetPointIds()->SetNumberOfIds(tmpSmoothPnts->GetNumberOfPoints()); for (int j=0; jGetNumberOfPoints(); j++) { smoothLine->GetPointIds()->SetId(j, j+pointHelperCnt); vtkSmoothPoints->InsertNextPoint(tmpSmoothPnts->GetPoint(j)); } vtkSmoothCells->InsertNextCell(smoothLine); pointHelperCnt += tmpSmoothPnts->GetNumberOfPoints(); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkSmoothPoints); m_FiberPolyData->SetLines(vtkSmoothCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundleX::ResampleSpline(float pointDistance) { ResampleSpline(pointDistance, 0, 0, 0 ); } unsigned long mitk::FiberBundleX::GetNumberOfPoints() { unsigned long points = 0; for (int i=0; iGetNumberOfCells(); i++) { vtkCell* cell = m_FiberPolyData->GetCell(i); points += cell->GetNumberOfPoints(); } return points; } void mitk::FiberBundleX::Noisify(float dist) { MITK_INFO << "Noisifying fibers"; boost::progress_display disp(m_FiberPolyData->GetNumberOfCells()); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); itk::Statistics::MersenneTwisterRandomVariateGenerator::Pointer randGen = itk::Statistics::MersenneTwisterRandomVariateGenerator::New(); randGen->SetSeed((unsigned int)0); for (int i=0; iGetNumberOfCells(); i++) { ++disp; vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); int offset = -numPoints/2; vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j, p); if (j>0 && jGetNormalVariate(0, dist)*mod; p[1] += randGen->GetNormalVariate(0, dist)*mod; p[2] += randGen->GetNormalVariate(0, dist)*mod; } vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundleX::Compress(float error) { vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Compressing fibers"; unsigned long numRemovedPoints = 0; boost::progress_display disp(m_FiberPolyData->GetNumberOfCells()); for (int i=0; iGetNumberOfCells(); i++) { ++disp; vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); // calculate curvatures std::vector< int > removedPoints; removedPoints.resize(numPoints, 0); removedPoints[0]=-1; removedPoints[numPoints-1]=-1; vtkSmartPointer container = vtkSmartPointer::New(); bool pointFound = true; while (pointFound) { pointFound = false; double minError = error; int removeIndex = -1; for (int j=0; jGetPoint(j, cand); vnl_vector_fixed< double, 3 > candV; candV[0]=cand[0]; candV[1]=cand[1]; candV[2]=cand[2]; int validP = -1; vnl_vector_fixed< double, 3 > pred; for (int k=j-1; k>=0; k--) if (removedPoints[k]<=0) { double ref[3]; points->GetPoint(k, ref); pred[0]=ref[0]; pred[1]=ref[1]; pred[2]=ref[2]; validP = k; break; } int validS = -1; vnl_vector_fixed< double, 3 > succ; for (int k=j+1; kGetPoint(k, ref); succ[0]=ref[0]; succ[1]=ref[1]; succ[2]=ref[2]; validS = k; break; } if (validP>=0 && validS>=0) { double a = (candV-pred).magnitude(); double b = (candV-succ).magnitude(); double c = (pred-succ).magnitude(); double s=0.5*(a+b+c); double hc=(2.0/c)*sqrt(fabs(s*(s-a)*(s-b)*(s-c))); if (hcGetPoint(j, cand); vtkIdType id = vtkNewPoints->InsertNextPoint(cand); container->GetPointIds()->InsertNextId(id); } } vtkNewCells->InsertNextCell(container); } if (vtkNewCells->GetNumberOfCells()>0) { MITK_INFO << "Removed points: " << numRemovedPoints; m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } } // reapply selected colorcoding in case polydata structure has changed bool mitk::FiberBundleX::Equals(mitk::FiberBundleX* fib, double eps) { if (fib==NULL) { MITK_INFO << "Reference bundle is NULL!"; return false; } if (m_NumFibers!=fib->GetNumFibers()) { MITK_INFO << "Unequal number of fibers!"; MITK_INFO << m_NumFibers << " vs. " << fib->GetNumFibers(); return false; } for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkCell* cell2 = fib->GetFiberPolyData()->GetCell(i); int numPoints2 = cell2->GetNumberOfPoints(); vtkPoints* points2 = cell2->GetPoints(); if (numPoints2!=numPoints) { MITK_INFO << "Unequal number of points in fiber " << i << "!"; MITK_INFO << numPoints2 << " vs. " << numPoints; return false; } for (int j=0; jGetPoint(j); double* p2 = points2->GetPoint(j); if (fabs(p1[0]-p2[0])>eps || fabs(p1[1]-p2[1])>eps || fabs(p1[2]-p2[2])>eps) { MITK_INFO << "Unequal points in fiber " << i << " at position " << j << "!"; MITK_INFO << "p1: " << p1[0] << ", " << p1[1] << ", " << p1[2]; MITK_INFO << "p2: " << p2[0] << ", " << p2[1] << ", " << p2[2]; return false; } } } return true; } /* ESSENTIAL IMPLEMENTATION OF SUPERCLASS METHODS */ void mitk::FiberBundleX::UpdateOutputInformation() { } void mitk::FiberBundleX::SetRequestedRegionToLargestPossibleRegion() { } bool mitk::FiberBundleX::RequestedRegionIsOutsideOfTheBufferedRegion() { return false; } bool mitk::FiberBundleX::VerifyRequestedRegion() { return true; } void mitk::FiberBundleX::SetRequestedRegion(const itk::DataObject* ) { } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberProcessingView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberProcessingView.cpp index cba094da2e..bf9461aaeb 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberProcessingView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberProcessingView.cpp @@ -1,1486 +1,1488 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Blueberry #include #include // Qmitk #include "QmitkFiberProcessingView.h" #include // Qt #include // MITK #include #include #include #include #include #include #include #include #include #include #include #include "usModuleRegistry.h" #include #include "mitkNodePredicateDataType.h" #include #include #include #include // ITK #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include const std::string QmitkFiberProcessingView::VIEW_ID = "org.mitk.views.fiberprocessing"; const std::string id_DataManager = "org.mitk.views.datamanager"; using namespace mitk; QmitkFiberProcessingView::QmitkFiberProcessingView() : QmitkFunctionality() , m_Controls( 0 ) , m_MultiWidget( NULL ) , m_CircleCounter(0) , m_PolygonCounter(0) , m_UpsamplingFactor(1) { } // Destructor QmitkFiberProcessingView::~QmitkFiberProcessingView() { } void QmitkFiberProcessingView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkFiberProcessingViewControls; m_Controls->setupUi( parent ); connect( m_Controls->m_CircleButton, SIGNAL( clicked() ), this, SLOT( OnDrawCircle() ) ); connect( m_Controls->m_PolygonButton, SIGNAL( clicked() ), this, SLOT( OnDrawPolygon() ) ); connect(m_Controls->PFCompoANDButton, SIGNAL(clicked()), this, SLOT(GenerateAndComposite()) ); connect(m_Controls->PFCompoORButton, SIGNAL(clicked()), this, SLOT(GenerateOrComposite()) ); connect(m_Controls->PFCompoNOTButton, SIGNAL(clicked()), this, SLOT(GenerateNotComposite()) ); connect(m_Controls->m_GenerateRoiImage, SIGNAL(clicked()), this, SLOT(GenerateRoiImage()) ); connect(m_Controls->m_JoinBundles, SIGNAL(clicked()), this, SLOT(JoinBundles()) ); connect(m_Controls->m_SubstractBundles, SIGNAL(clicked()), this, SLOT(SubstractBundles()) ); connect(m_Controls->m_ExtractFibersButton, SIGNAL(clicked()), this, SLOT(Extract())); connect(m_Controls->m_RemoveButton, SIGNAL(clicked()), this, SLOT(Remove())); connect(m_Controls->m_ModifyButton, SIGNAL(clicked()), this, SLOT(Modify())); connect(m_Controls->m_ExtractionMethodBox, SIGNAL(currentIndexChanged(int)), this, SLOT(UpdateGui())); connect(m_Controls->m_RemovalMethodBox, SIGNAL(currentIndexChanged(int)), this, SLOT(UpdateGui())); connect(m_Controls->m_ModificationMethodBox, SIGNAL(currentIndexChanged(int)), this, SLOT(UpdateGui())); m_Controls->m_ColorMapBox->SetDataStorage(this->GetDataStorage()); mitk::TNodePredicateDataType::Pointer isMitkImage = mitk::TNodePredicateDataType::New(); mitk::NodePredicateDataType::Pointer isDwi = mitk::NodePredicateDataType::New("DiffusionImage"); mitk::NodePredicateDataType::Pointer isDti = mitk::NodePredicateDataType::New("TensorImage"); mitk::NodePredicateDataType::Pointer isQbi = mitk::NodePredicateDataType::New("QBallImage"); mitk::NodePredicateOr::Pointer isDiffusionImage = mitk::NodePredicateOr::New(isDwi, isDti); isDiffusionImage = mitk::NodePredicateOr::New(isDiffusionImage, isQbi); mitk::NodePredicateNot::Pointer noDiffusionImage = mitk::NodePredicateNot::New(isDiffusionImage); mitk::NodePredicateAnd::Pointer finalPredicate = mitk::NodePredicateAnd::New(isMitkImage, noDiffusionImage); m_Controls->m_ColorMapBox->SetPredicate(finalPredicate); } UpdateGui(); } void QmitkFiberProcessingView::Modify() { switch (m_Controls->m_ModificationMethodBox->currentIndex()) { case 0: { ResampleSelectedBundles(); break; } case 1: { CompressSelectedBundles(); break; } case 2: { DoImageColorCoding(); break; } case 3: { MirrorFibers(); break; } case 4: { WeightFibers(); break; } } } void QmitkFiberProcessingView::WeightFibers() { float weight = this->m_Controls->m_BundleWeightBox->value(); for (int i=0; i(m_SelectedFB.at(i)->GetData()); fib->SetFiberWeights(weight); } } void QmitkFiberProcessingView::Remove() { switch (m_Controls->m_RemovalMethodBox->currentIndex()) { case 0: { RemoveDir(); break; } case 1: { PruneBundle(); break; } case 2: { ApplyCurvatureThreshold(); break; } case 3: { RemoveWithMask(false); break; } case 4: { RemoveWithMask(true); break; } } } void QmitkFiberProcessingView::Extract() { switch (m_Controls->m_ExtractionMethodBox->currentIndex()) { case 0: { ExtractWithPlanarFigure(); break; } case 1: { switch (m_Controls->m_ExtractionBoxMask->currentIndex()) { { case 0: ExtractWithMask(true, false); break; } { case 1: ExtractWithMask(true, true); break; } { case 2: ExtractWithMask(false, false); break; } { case 3: ExtractWithMask(false, true); break; } } break; } } } void QmitkFiberProcessingView::PruneBundle() { int minLength = this->m_Controls->m_PruneFibersMinBox->value(); int maxLength = this->m_Controls->m_PruneFibersMaxBox->value(); for (int i=0; i(m_SelectedFB.at(i)->GetData()); if (!fib->RemoveShortFibers(minLength)) QMessageBox::information(NULL, "No output generated:", "The resulting fiber bundle contains no fibers."); else if (!fib->RemoveLongFibers(maxLength)) QMessageBox::information(NULL, "No output generated:", "The resulting fiber bundle contains no fibers."); } RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberProcessingView::ApplyCurvatureThreshold() { int angle = this->m_Controls->m_CurvSpinBox->value(); int dist = this->m_Controls->m_CurvDistanceSpinBox->value(); std::vector< DataNode::Pointer > nodes = m_SelectedFB; for (int i=0; i(nodes.at(i)->GetData()); itk::FiberCurvatureFilter::Pointer filter = itk::FiberCurvatureFilter::New(); filter->SetInputFiberBundle(fib); filter->SetAngularDeviation(angle); filter->SetDistance(dist); filter->SetRemoveFibers(m_Controls->m_RemoveCurvedFibersBox->isChecked()); filter->Update(); mitk::FiberBundleX::Pointer newFib = filter->GetOutputFiberBundle(); if (newFib->GetNumFibers()>0) { nodes.at(i)->SetVisibility(false); DataNode::Pointer newNode = DataNode::New(); newNode->SetData(newFib); newNode->SetName(nodes.at(i)->GetName()+"_Curvature"); GetDefaultDataStorage()->Add(newNode, nodes.at(i)); } else QMessageBox::information(NULL, "No output generated:", "The resulting fiber bundle contains no fibers."); // if (!fib->ApplyCurvatureThreshold(mm, this->m_Controls->m_RemoveCurvedFibersBox->isChecked())) // QMessageBox::information(NULL, "No output generated:", "The resulting fiber bundle contains no fibers."); } RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberProcessingView::RemoveDir() { for (unsigned int i=0; i(m_SelectedFB.at(i)->GetData()); vnl_vector_fixed dir; dir[0] = m_Controls->m_ExtractDirX->value(); dir[1] = m_Controls->m_ExtractDirY->value(); dir[2] = m_Controls->m_ExtractDirZ->value(); fib->RemoveDir(dir,cos((float)m_Controls->m_ExtractAngle->value()*M_PI/180)); } RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberProcessingView::RemoveWithMask(bool removeInside) { if (m_MaskImageNode.IsNull()) return; mitk::Image::Pointer mitkMask = dynamic_cast(m_MaskImageNode->GetData()); for (unsigned int i=0; i(m_SelectedFB.at(i)->GetData()); QString name(m_SelectedFB.at(i)->GetName().c_str()); itkUCharImageType::Pointer mask = itkUCharImageType::New(); mitk::CastToItkImage(mitkMask, mask); mitk::FiberBundleX::Pointer newFib = fib->RemoveFibersOutside(mask, removeInside); if (newFib->GetNumFibers()<=0) { QMessageBox::information(NULL, "No output generated:", "The resulting fiber bundle contains no fibers."); continue; } DataNode::Pointer newNode = DataNode::New(); newNode->SetData(newFib); if (removeInside) name += "_Inside"; else name += "_Outside"; newNode->SetName(name.toStdString()); GetDefaultDataStorage()->Add(newNode); m_SelectedFB.at(i)->SetVisibility(false); } } void QmitkFiberProcessingView::ExtractWithMask(bool onlyEnds, bool invert) { if (m_MaskImageNode.IsNull()) return; mitk::Image::Pointer mitkMask = dynamic_cast(m_MaskImageNode->GetData()); for (unsigned int i=0; i(m_SelectedFB.at(i)->GetData()); QString name(m_SelectedFB.at(i)->GetName().c_str()); itkUCharImageType::Pointer mask = itkUCharImageType::New(); mitk::CastToItkImage(mitkMask, mask); mitk::FiberBundleX::Pointer newFib = fib->ExtractFiberSubset(mask, !onlyEnds, invert); if (newFib->GetNumFibers()<=0) { QMessageBox::information(NULL, "No output generated:", "The resulting fiber bundle contains no fibers."); continue; } DataNode::Pointer newNode = DataNode::New(); newNode->SetData(newFib); if (invert) { name += "_not"; if (onlyEnds) name += "-ending-in-mask"; else name += "-passing-mask"; } else { if (onlyEnds) name += "_ending-in-mask"; else name += "_passing-mask"; } newNode->SetName(name.toStdString()); GetDefaultDataStorage()->Add(newNode); m_SelectedFB.at(i)->SetVisibility(false); } } void QmitkFiberProcessingView::GenerateRoiImage() { if (m_SelectedPF.empty()) return; mitk::BaseGeometry::Pointer geometry; if (!m_SelectedFB.empty()) { mitk::FiberBundleX::Pointer fib = dynamic_cast(m_SelectedFB.front()->GetData()); geometry = fib->GetGeometry(); } else if (m_SelectedImage) geometry = m_SelectedImage->GetGeometry(); else return; itk::Vector spacing = geometry->GetSpacing(); spacing /= m_UpsamplingFactor; mitk::Point3D newOrigin = geometry->GetOrigin(); mitk::Geometry3D::BoundsArrayType bounds = geometry->GetBounds(); newOrigin[0] += bounds.GetElement(0); newOrigin[1] += bounds.GetElement(2); newOrigin[2] += bounds.GetElement(4); itk::Matrix direction; itk::ImageRegion<3> imageRegion; for (int i=0; i<3; i++) for (int j=0; j<3; j++) direction[j][i] = geometry->GetMatrixColumn(i)[j]/spacing[j]; imageRegion.SetSize(0, geometry->GetExtent(0)*m_UpsamplingFactor); imageRegion.SetSize(1, geometry->GetExtent(1)*m_UpsamplingFactor); imageRegion.SetSize(2, geometry->GetExtent(2)*m_UpsamplingFactor); m_PlanarFigureImage = itkUCharImageType::New(); m_PlanarFigureImage->SetSpacing( spacing ); // Set the image spacing m_PlanarFigureImage->SetOrigin( newOrigin ); // Set the image origin m_PlanarFigureImage->SetDirection( direction ); // Set the image direction m_PlanarFigureImage->SetRegions( imageRegion ); m_PlanarFigureImage->Allocate(); m_PlanarFigureImage->FillBuffer( 0 ); Image::Pointer tmpImage = Image::New(); tmpImage->InitializeByItk(m_PlanarFigureImage.GetPointer()); tmpImage->SetVolume(m_PlanarFigureImage->GetBufferPointer()); std::string name = m_SelectedPF.at(0)->GetName(); WritePfToImage(m_SelectedPF.at(0), tmpImage); for (unsigned int i=1; iGetName(); WritePfToImage(m_SelectedPF.at(i), tmpImage); } DataNode::Pointer node = DataNode::New(); tmpImage = Image::New(); tmpImage->InitializeByItk(m_PlanarFigureImage.GetPointer()); tmpImage->SetVolume(m_PlanarFigureImage->GetBufferPointer()); node->SetData(tmpImage); node->SetName(name); this->GetDefaultDataStorage()->Add(node); } void QmitkFiberProcessingView::WritePfToImage(mitk::DataNode::Pointer node, mitk::Image* image) { if (dynamic_cast(node->GetData())) { m_PlanarFigure = dynamic_cast(node->GetData()); AccessFixedDimensionByItk_2( image, InternalReorientImagePlane, 3, m_PlanarFigure->GetGeometry(), -1); AccessFixedDimensionByItk_2( m_InternalImage, InternalCalculateMaskFromPlanarFigure, 3, 2, node->GetName() ); } else if (dynamic_cast(node->GetData())) { mitk::PlanarFigureComposite* pfc = dynamic_cast(node->GetData()); for (int j=0; jgetNumberOfChildren(); j++) { WritePfToImage(pfc->getDataNodeAt(j), image); } } } template < typename TPixel, unsigned int VImageDimension > void QmitkFiberProcessingView::InternalReorientImagePlane( const itk::Image< TPixel, VImageDimension > *image, mitk::BaseGeometry* planegeo3D, int additionalIndex ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< float, VImageDimension > FloatImageType; typedef itk::ResampleImageFilter ResamplerType; typename ResamplerType::Pointer resampler = ResamplerType::New(); mitk::PlaneGeometry* planegeo = dynamic_cast(planegeo3D); float upsamp = m_UpsamplingFactor; float gausssigma = 0.5; // Spacing typename ResamplerType::SpacingType spacing = planegeo->GetSpacing(); spacing[0] = image->GetSpacing()[0] / upsamp; spacing[1] = image->GetSpacing()[1] / upsamp; spacing[2] = image->GetSpacing()[2]; resampler->SetOutputSpacing( spacing ); // Size typename ResamplerType::SizeType size; size[0] = planegeo->GetExtentInMM(0) / spacing[0]; size[1] = planegeo->GetExtentInMM(1) / spacing[1]; size[2] = 1; resampler->SetSize( size ); // Origin typename mitk::Point3D orig = planegeo->GetOrigin(); typename mitk::Point3D corrorig; planegeo3D->WorldToIndex(orig,corrorig); corrorig[0] += 0.5/upsamp; corrorig[1] += 0.5/upsamp; corrorig[2] += 0; planegeo3D->IndexToWorld(corrorig,corrorig); resampler->SetOutputOrigin(corrorig ); // Direction typename ResamplerType::DirectionType direction; typename mitk::AffineTransform3D::MatrixType matrix = planegeo->GetIndexToWorldTransform()->GetMatrix(); for(int c=0; cSetOutputDirection( direction ); // Gaussian interpolation if(gausssigma != 0) { double sigma[3]; for( unsigned int d = 0; d < 3; d++ ) sigma[d] = gausssigma * image->GetSpacing()[d]; double alpha = 2.0; typedef itk::GaussianInterpolateImageFunction GaussianInterpolatorType; typename GaussianInterpolatorType::Pointer interpolator = GaussianInterpolatorType::New(); interpolator->SetInputImage( image ); interpolator->SetParameters( sigma, alpha ); resampler->SetInterpolator( interpolator ); } else { typedef typename itk::LinearInterpolateImageFunction InterpolatorType; typename InterpolatorType::Pointer interpolator = InterpolatorType::New(); interpolator->SetInputImage( image ); resampler->SetInterpolator( interpolator ); } resampler->SetInput( image ); resampler->SetDefaultPixelValue(0); resampler->Update(); if(additionalIndex < 0) { this->m_InternalImage = mitk::Image::New(); this->m_InternalImage->InitializeByItk( resampler->GetOutput() ); this->m_InternalImage->SetVolume( resampler->GetOutput()->GetBufferPointer() ); } } template < typename TPixel, unsigned int VImageDimension > void QmitkFiberProcessingView::InternalCalculateMaskFromPlanarFigure( itk::Image< TPixel, VImageDimension > *image, unsigned int axis, std::string ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::CastImageFilter< ImageType, itkUCharImageType > CastFilterType; // Generate mask image as new image with same header as input image and // initialize with "1". itkUCharImageType::Pointer newMaskImage = itkUCharImageType::New(); newMaskImage->SetSpacing( image->GetSpacing() ); // Set the image spacing newMaskImage->SetOrigin( image->GetOrigin() ); // Set the image origin newMaskImage->SetDirection( image->GetDirection() ); // Set the image direction newMaskImage->SetRegions( image->GetLargestPossibleRegion() ); newMaskImage->Allocate(); newMaskImage->FillBuffer( 1 ); // Generate VTK polygon from (closed) PlanarFigure polyline // (The polyline points are shifted by -0.5 in z-direction to make sure // that the extrusion filter, which afterwards elevates all points by +0.5 // in z-direction, creates a 3D object which is cut by the the plane z=0) const PlaneGeometry *planarFigurePlaneGeometry = m_PlanarFigure->GetPlaneGeometry(); const PlanarFigure::PolyLineType planarFigurePolyline = m_PlanarFigure->GetPolyLine( 0 ); const BaseGeometry *imageGeometry3D = m_InternalImage->GetGeometry( 0 ); vtkPolyData *polyline = vtkPolyData::New(); polyline->Allocate( 1, 1 ); // Determine x- and y-dimensions depending on principal axis int i0, i1; switch ( axis ) { case 0: i0 = 1; i1 = 2; break; case 1: i0 = 0; i1 = 2; break; case 2: default: i0 = 0; i1 = 1; break; } // Create VTK polydata object of polyline contour vtkPoints *points = vtkPoints::New(); PlanarFigure::PolyLineType::const_iterator it; unsigned int numberOfPoints = 0; for ( it = planarFigurePolyline.begin(); it != planarFigurePolyline.end(); ++it ) { Point3D point3D; // Convert 2D point back to the local index coordinates of the selected image Point2D point2D = *it; planarFigurePlaneGeometry->WorldToIndex(point2D, point2D); point2D[0] -= 0.5/m_UpsamplingFactor; point2D[1] -= 0.5/m_UpsamplingFactor; planarFigurePlaneGeometry->IndexToWorld(point2D, point2D); planarFigurePlaneGeometry->Map( point2D, point3D ); // Polygons (partially) outside of the image bounds can not be processed further due to a bug in vtkPolyDataToImageStencil if ( !imageGeometry3D->IsInside( point3D ) ) { float bounds[2] = {0,0}; bounds[0] = this->m_InternalImage->GetLargestPossibleRegion().GetSize().GetElement(i0); bounds[1] = this->m_InternalImage->GetLargestPossibleRegion().GetSize().GetElement(i1); imageGeometry3D->WorldToIndex( point3D, point3D ); if (point3D[i0]<0) point3D[i0] = 0.0; else if (point3D[i0]>bounds[0]) point3D[i0] = bounds[0]-0.001; if (point3D[i1]<0) point3D[i1] = 0.0; else if (point3D[i1]>bounds[1]) point3D[i1] = bounds[1]-0.001; points->InsertNextPoint( point3D[i0], point3D[i1], -0.5 ); numberOfPoints++; } else { imageGeometry3D->WorldToIndex( point3D, point3D ); // Add point to polyline array points->InsertNextPoint( point3D[i0], point3D[i1], -0.5 ); numberOfPoints++; } } polyline->SetPoints( points ); points->Delete(); vtkIdType *ptIds = new vtkIdType[numberOfPoints]; for ( vtkIdType i = 0; i < numberOfPoints; ++i ) ptIds[i] = i; polyline->InsertNextCell( VTK_POLY_LINE, numberOfPoints, ptIds ); // Extrude the generated contour polygon vtkLinearExtrusionFilter *extrudeFilter = vtkLinearExtrusionFilter::New(); extrudeFilter->SetInputData( polyline ); extrudeFilter->SetScaleFactor( 1 ); extrudeFilter->SetExtrusionTypeToNormalExtrusion(); extrudeFilter->SetVector( 0.0, 0.0, 1.0 ); // Make a stencil from the extruded polygon vtkPolyDataToImageStencil *polyDataToImageStencil = vtkPolyDataToImageStencil::New(); polyDataToImageStencil->SetInputConnection( extrudeFilter->GetOutputPort() ); // Export from ITK to VTK (to use a VTK filter) typedef itk::VTKImageImport< itkUCharImageType > ImageImportType; typedef itk::VTKImageExport< itkUCharImageType > ImageExportType; typename ImageExportType::Pointer itkExporter = ImageExportType::New(); itkExporter->SetInput( newMaskImage ); vtkImageImport *vtkImporter = vtkImageImport::New(); this->ConnectPipelines( itkExporter, vtkImporter ); vtkImporter->Update(); // Apply the generated image stencil to the input image vtkImageStencil *imageStencilFilter = vtkImageStencil::New(); imageStencilFilter->SetInputConnection( vtkImporter->GetOutputPort() ); imageStencilFilter->SetStencilConnection(polyDataToImageStencil->GetOutputPort() ); imageStencilFilter->ReverseStencilOff(); imageStencilFilter->SetBackgroundValue( 0 ); imageStencilFilter->Update(); // Export from VTK back to ITK vtkImageExport *vtkExporter = vtkImageExport::New(); vtkExporter->SetInputConnection( imageStencilFilter->GetOutputPort() ); vtkExporter->Update(); typename ImageImportType::Pointer itkImporter = ImageImportType::New(); this->ConnectPipelines( vtkExporter, itkImporter ); itkImporter->Update(); // calculate cropping bounding box m_InternalImageMask3D = itkImporter->GetOutput(); m_InternalImageMask3D->SetDirection(image->GetDirection()); itk::ImageRegionConstIterator itmask(m_InternalImageMask3D, m_InternalImageMask3D->GetLargestPossibleRegion()); itk::ImageRegionIterator itimage(image, image->GetLargestPossibleRegion()); itmask.GoToBegin(); itimage.GoToBegin(); typename ImageType::SizeType lowersize = {{9999999999,9999999999,9999999999}}; typename ImageType::SizeType uppersize = {{0,0,0}}; while( !itmask.IsAtEnd() ) { if(itmask.Get() == 0) itimage.Set(0); else { typename ImageType::IndexType index = itimage.GetIndex(); typename ImageType::SizeType signedindex; signedindex[0] = index[0]; signedindex[1] = index[1]; signedindex[2] = index[2]; lowersize[0] = signedindex[0] < lowersize[0] ? signedindex[0] : lowersize[0]; lowersize[1] = signedindex[1] < lowersize[1] ? signedindex[1] : lowersize[1]; lowersize[2] = signedindex[2] < lowersize[2] ? signedindex[2] : lowersize[2]; uppersize[0] = signedindex[0] > uppersize[0] ? signedindex[0] : uppersize[0]; uppersize[1] = signedindex[1] > uppersize[1] ? signedindex[1] : uppersize[1]; uppersize[2] = signedindex[2] > uppersize[2] ? signedindex[2] : uppersize[2]; } ++itmask; ++itimage; } typename ImageType::IndexType index; index[0] = lowersize[0]; index[1] = lowersize[1]; index[2] = lowersize[2]; typename ImageType::SizeType size; size[0] = uppersize[0] - lowersize[0] + 1; size[1] = uppersize[1] - lowersize[1] + 1; size[2] = uppersize[2] - lowersize[2] + 1; itk::ImageRegion<3> cropRegion = itk::ImageRegion<3>(index, size); // crop internal mask typedef itk::RegionOfInterestImageFilter< itkUCharImageType, itkUCharImageType > ROIMaskFilterType; typename ROIMaskFilterType::Pointer roi2 = ROIMaskFilterType::New(); roi2->SetRegionOfInterest(cropRegion); roi2->SetInput(m_InternalImageMask3D); roi2->Update(); m_InternalImageMask3D = roi2->GetOutput(); Image::Pointer tmpImage = Image::New(); tmpImage->InitializeByItk(m_InternalImageMask3D.GetPointer()); tmpImage->SetVolume(m_InternalImageMask3D->GetBufferPointer()); Image::Pointer tmpImage2 = Image::New(); tmpImage2->InitializeByItk(m_PlanarFigureImage.GetPointer()); const BaseGeometry *pfImageGeometry3D = tmpImage2->GetGeometry( 0 ); const BaseGeometry *intImageGeometry3D = tmpImage->GetGeometry( 0 ); typedef itk::ImageRegionIteratorWithIndex IteratorType; IteratorType imageIterator (m_InternalImageMask3D, m_InternalImageMask3D->GetRequestedRegion()); imageIterator.GoToBegin(); while ( !imageIterator.IsAtEnd() ) { unsigned char val = imageIterator.Value(); if (val>0) { itk::Index<3> index = imageIterator.GetIndex(); Point3D point; point[0] = index[0]; point[1] = index[1]; point[2] = index[2]; intImageGeometry3D->IndexToWorld(point, point); pfImageGeometry3D->WorldToIndex(point, point); point[i0] += 0.5; point[i1] += 0.5; index[0] = point[0]; index[1] = point[1]; index[2] = point[2]; if (pfImageGeometry3D->IsIndexInside(index)) m_PlanarFigureImage->SetPixel(index, 1); } ++imageIterator; } // Clean up VTK objects polyline->Delete(); extrudeFilter->Delete(); polyDataToImageStencil->Delete(); vtkImporter->Delete(); imageStencilFilter->Delete(); //vtkExporter->Delete(); // TODO: crashes when outcommented; memory leak?? delete[] ptIds; } void QmitkFiberProcessingView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkFiberProcessingView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } void QmitkFiberProcessingView::UpdateGui() { m_Controls->m_FibLabel->setText("mandatory"); m_Controls->m_PfLabel->setText("needed for extraction"); m_Controls->m_InputData->setTitle("Please Select Input Data"); m_Controls->m_RemoveButton->setEnabled(false); m_Controls->m_PlanarFigureButtonsFrame->setEnabled(false); m_Controls->PFCompoANDButton->setEnabled(false); m_Controls->PFCompoORButton->setEnabled(false); m_Controls->PFCompoNOTButton->setEnabled(false); m_Controls->m_GenerateRoiImage->setEnabled(false); m_Controls->m_ExtractFibersButton->setEnabled(false); m_Controls->m_ModifyButton->setEnabled(false); m_Controls->m_JoinBundles->setEnabled(false); m_Controls->m_SubstractBundles->setEnabled(false); // disable alle frames m_Controls->m_BundleWeightFrame->setVisible(false); m_Controls->m_ExtractionBoxMask->setVisible(false); m_Controls->m_ExtactionFramePF->setVisible(false); m_Controls->m_RemoveDirectionFrame->setVisible(false); m_Controls->m_RemoveLengthFrame->setVisible(false); m_Controls->m_RemoveCurvatureFrame->setVisible(false); m_Controls->m_SmoothFibersFrame->setVisible(false); m_Controls->m_CompressFibersFrame->setVisible(false); m_Controls->m_ColorFibersFrame->setVisible(false); m_Controls->m_MirrorFibersFrame->setVisible(false); bool pfSelected = !m_SelectedPF.empty(); bool fibSelected = !m_SelectedFB.empty(); bool multipleFibsSelected = (m_SelectedFB.size()>1); bool maskSelected = m_MaskImageNode.IsNotNull(); bool imageSelected = m_SelectedImage.IsNotNull(); // toggle visibility of elements according to selected method switch ( m_Controls->m_ExtractionMethodBox->currentIndex() ) { case 0: m_Controls->m_ExtactionFramePF->setVisible(true); break; case 1: m_Controls->m_ExtractionBoxMask->setVisible(true); break; } switch ( m_Controls->m_RemovalMethodBox->currentIndex() ) { case 0: m_Controls->m_RemoveDirectionFrame->setVisible(true); if ( fibSelected ) m_Controls->m_RemoveButton->setEnabled(true); break; case 1: m_Controls->m_RemoveLengthFrame->setVisible(true); if ( fibSelected ) m_Controls->m_RemoveButton->setEnabled(true); break; case 2: m_Controls->m_RemoveCurvatureFrame->setVisible(true); if ( fibSelected ) m_Controls->m_RemoveButton->setEnabled(true); break; case 3: break; case 4: break; } switch ( m_Controls->m_ModificationMethodBox->currentIndex() ) { case 0: m_Controls->m_SmoothFibersFrame->setVisible(true); break; case 1: m_Controls->m_CompressFibersFrame->setVisible(true); break; case 2: m_Controls->m_ColorFibersFrame->setVisible(true); break; case 3: m_Controls->m_MirrorFibersFrame->setVisible(true); break; case 4: m_Controls->m_BundleWeightFrame->setVisible(true); } // are fiber bundles selected? if ( fibSelected ) { m_Controls->m_ModifyButton->setEnabled(true); m_Controls->m_PlanarFigureButtonsFrame->setEnabled(true); m_Controls->m_FibLabel->setText(QString(m_SelectedFB.at(0)->GetName().c_str())); // one bundle and one planar figure needed to extract fibers if (pfSelected) { m_Controls->m_InputData->setTitle("Input Data"); m_Controls->m_PfLabel->setText(QString(m_SelectedPF.at(0)->GetName().c_str())); m_Controls->m_ExtractFibersButton->setEnabled(true); } // more than two bundles needed to join/subtract if (multipleFibsSelected) { m_Controls->m_FibLabel->setText("multiple bundles selected"); m_Controls->m_JoinBundles->setEnabled(true); m_Controls->m_SubstractBundles->setEnabled(true); } if (maskSelected) { m_Controls->m_RemoveButton->setEnabled(true); m_Controls->m_ExtractFibersButton->setEnabled(true); } } // are planar figures selected? if (pfSelected) { if ( fibSelected || m_SelectedImage.IsNotNull()) m_Controls->m_GenerateRoiImage->setEnabled(true); if (m_SelectedPF.size() > 1) { m_Controls->PFCompoANDButton->setEnabled(true); m_Controls->PFCompoORButton->setEnabled(true); } else m_Controls->PFCompoNOTButton->setEnabled(true); } // is image selected if (imageSelected || maskSelected) { m_Controls->m_PlanarFigureButtonsFrame->setEnabled(true); } } void QmitkFiberProcessingView::NodeRemoved(const mitk::DataNode* node) { std::vector nodes; OnSelectionChanged(nodes); } void QmitkFiberProcessingView::NodeAdded(const mitk::DataNode* node) { std::vector nodes; OnSelectionChanged(nodes); } void QmitkFiberProcessingView::OnSelectionChanged( std::vector nodes ) { //reset existing Vectors containing FiberBundles and PlanarFigures from a previous selection m_SelectedFB.clear(); m_SelectedPF.clear(); m_SelectedSurfaces.clear(); m_SelectedImage = NULL; m_MaskImageNode = NULL; for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if ( dynamic_cast(node->GetData()) ) m_SelectedFB.push_back(node); else if (dynamic_cast(node->GetData()) || dynamic_cast(node->GetData()) || dynamic_cast(node->GetData())) m_SelectedPF.push_back(node); else if (dynamic_cast(node->GetData())) { m_SelectedImage = dynamic_cast(node->GetData()); bool isBinary = false; node->GetPropertyValue("binary", isBinary); if (isBinary) m_MaskImageNode = node; } else if (dynamic_cast(node->GetData())) m_SelectedSurfaces.push_back(dynamic_cast(node->GetData())); } if (m_SelectedFB.empty()) { int maxLayer = 0; itk::VectorContainer::ConstPointer nodes = this->GetDefaultDataStorage()->GetAll(); for (unsigned int i=0; iSize(); i++) if (dynamic_cast(nodes->at(i)->GetData())) { mitk::DataStorage::SetOfObjects::ConstPointer sources = GetDataStorage()->GetSources(nodes->at(i)); if (sources->Size()>0) continue; int layer = 0; nodes->at(i)->GetPropertyValue("layer", layer); if (layer>=maxLayer) { maxLayer = layer; m_SelectedFB.clear(); m_SelectedFB.push_back(nodes->at(i)); } } } if (m_SelectedPF.empty()) { int maxLayer = 0; itk::VectorContainer::ConstPointer nodes = this->GetDefaultDataStorage()->GetAll(); for (unsigned int i=0; iSize(); i++) if (dynamic_cast(nodes->at(i)->GetData()) || dynamic_cast(nodes->at(i)->GetData()) || dynamic_cast(nodes->at(i)->GetData())) { mitk::DataStorage::SetOfObjects::ConstPointer sources = GetDataStorage()->GetSources(nodes->at(i)); if (sources->Size()>0) continue; int layer = 0; nodes->at(i)->GetPropertyValue("layer", layer); if (layer>=maxLayer) { maxLayer = layer; m_SelectedPF.clear(); m_SelectedPF.push_back(nodes->at(i)); } } } UpdateGui(); } void QmitkFiberProcessingView::OnDrawPolygon() { mitk::PlanarPolygon::Pointer figure = mitk::PlanarPolygon::New(); figure->ClosedOn(); this->AddFigureToDataStorage(figure, QString("Polygon%1").arg(++m_PolygonCounter)); } void QmitkFiberProcessingView::OnDrawCircle() { mitk::PlanarCircle::Pointer figure = mitk::PlanarCircle::New(); this->AddFigureToDataStorage(figure, QString("Circle%1").arg(++m_CircleCounter)); } void QmitkFiberProcessingView::Activated() { } void QmitkFiberProcessingView::AddFigureToDataStorage(mitk::PlanarFigure* figure, const QString& name, const char *, mitk::BaseProperty* ) { // initialize figure's geometry with empty geometry mitk::PlaneGeometry::Pointer emptygeometry = mitk::PlaneGeometry::New(); figure->SetPlaneGeometry( emptygeometry ); //set desired data to DataNode where Planarfigure is stored mitk::DataNode::Pointer newNode = mitk::DataNode::New(); newNode->SetName(name.toStdString()); newNode->SetData(figure); newNode->SetBoolProperty("planarfigure.3drendering", true); mitk::PlanarFigureInteractor::Pointer figureInteractor = dynamic_cast(newNode->GetDataInteractor().GetPointer()); if(figureInteractor.IsNull()) { figureInteractor = mitk::PlanarFigureInteractor::New(); us::Module* planarFigureModule = us::ModuleRegistry::GetModule( "MitkPlanarFigure" ); figureInteractor->LoadStateMachine("PlanarFigureInteraction.xml", planarFigureModule ); figureInteractor->SetEventConfig( "PlanarFigureConfig.xml", planarFigureModule ); figureInteractor->SetDataNode(newNode); } // figure drawn on the topmost layer / image GetDataStorage()->Add(newNode ); for(unsigned int i = 0; i < m_SelectedPF.size(); i++) m_SelectedPF[i]->SetSelected(false); newNode->SetSelected(true); m_SelectedPF.clear(); m_SelectedPF.push_back(newNode); UpdateGui(); } void QmitkFiberProcessingView::ExtractWithPlanarFigure() { if ( m_SelectedFB.empty() || m_SelectedPF.empty() ){ QMessageBox::information( NULL, "Warning", "No fibe bundle selected!"); return; } std::vector fiberBundles = m_SelectedFB; mitk::DataNode::Pointer planarFigure = m_SelectedPF.at(0); for (unsigned int i=0; i(fiberBundles.at(i)->GetData()); mitk::BaseData::Pointer roi = planarFigure->GetData(); mitk::FiberBundleX::Pointer extFB = fib->ExtractFiberSubset(roi); if (extFB->GetNumFibers()<=0) { QMessageBox::information(NULL, "No output generated:", "The resulting fiber bundle contains no fibers."); continue; } mitk::DataNode::Pointer node; node = mitk::DataNode::New(); node->SetData(extFB); QString name(fiberBundles.at(i)->GetName().c_str()); name += "*"; //name += planarFigure->GetName().c_str(); node->SetName(name.toStdString()); fiberBundles.at(i)->SetVisibility(false); GetDataStorage()->Add(node); } } void QmitkFiberProcessingView::GenerateAndComposite() { mitk::PlanarFigureComposite::Pointer PFCAnd = mitk::PlanarFigureComposite::New(); PFCAnd->setOperationType(mitk::PFCOMPOSITION_AND_OPERATION); for( std::vector::iterator it = m_SelectedPF.begin(); it != m_SelectedPF.end(); ++it ) { mitk::DataNode::Pointer nodePF = *it; PFCAnd->addPlanarFigure( nodePF->GetData() ); PFCAnd->addDataNode( nodePF ); PFCAnd->setDisplayName("AND"); } AddCompositeToDatastorage(PFCAnd); } void QmitkFiberProcessingView::GenerateOrComposite() { mitk::PlanarFigureComposite::Pointer PFCOr = mitk::PlanarFigureComposite::New(); PFCOr->setOperationType(mitk::PFCOMPOSITION_OR_OPERATION); for( std::vector::iterator it = m_SelectedPF.begin(); it != m_SelectedPF.end(); ++it ) { mitk::DataNode::Pointer nodePF = *it; PFCOr->addPlanarFigure( nodePF->GetData() ); PFCOr->addDataNode( nodePF ); PFCOr->setDisplayName("OR"); } AddCompositeToDatastorage(PFCOr); } void QmitkFiberProcessingView::GenerateNotComposite() { mitk::PlanarFigureComposite::Pointer PFCNot = mitk::PlanarFigureComposite::New(); PFCNot->setOperationType(mitk::PFCOMPOSITION_NOT_OPERATION); for( std::vector::iterator it = m_SelectedPF.begin(); it != m_SelectedPF.end(); ++it ) { mitk::DataNode::Pointer nodePF = *it; PFCNot->addPlanarFigure( nodePF->GetData() ); PFCNot->addDataNode( nodePF ); PFCNot->setDisplayName("NOT"); } AddCompositeToDatastorage(PFCNot); } /* CLEANUP NEEDED */ void QmitkFiberProcessingView::AddCompositeToDatastorage(mitk::PlanarFigureComposite::Pointer pfc, mitk::DataNode::Pointer parentNode ) { mitk::DataNode::Pointer newPFCNode; newPFCNode = mitk::DataNode::New(); newPFCNode->SetName( pfc->getDisplayName() ); newPFCNode->SetData(pfc); switch (pfc->getOperationType()) { case 0: { if (parentNode.IsNotNull()) GetDataStorage()->Add(newPFCNode, parentNode); else GetDataStorage()->Add(newPFCNode); //iterate through its childs for(int i=0; igetNumberOfChildren(); ++i) { mitk::BaseData::Pointer tmpPFchild = pfc->getChildAt(i); mitk::DataNode::Pointer savedPFchildNode = pfc->getDataNodeAt(i); mitk::PlanarFigureComposite::Pointer pfcompcast= dynamic_cast(tmpPFchild.GetPointer()); if ( pfcompcast.IsNotNull() ) { // child is of type planar Figure composite // make new node of the child, cuz later the child has to be removed of its old position in datamanager // feed new dataNode with information of the savedDataNode, which is gonna be removed soon mitk::DataNode::Pointer newChildPFCNode; newChildPFCNode = mitk::DataNode::New(); newChildPFCNode->SetData(tmpPFchild); newChildPFCNode->SetName( savedPFchildNode->GetName() ); pfcompcast->setDisplayName( savedPFchildNode->GetName() ); //name might be changed in DataManager by user //update inside vector the dataNodePointer pfc->replaceDataNodeAt(i, newChildPFCNode); AddCompositeToDatastorage(pfcompcast, newPFCNode); //the current PFCNode becomes the childs parent // remove savedNode here, cuz otherwise its children will change their position in the dataNodeManager // without having its parent anymore GetDataStorage()->Remove(savedPFchildNode); } else { // child is not of type PlanarFigureComposite, so its one of the planarFigures // create new dataNode containing the data of the old dataNode, but position in dataManager will be // modified cuz we re setting a (new) parent. mitk::DataNode::Pointer newPFchildNode = mitk::DataNode::New(); newPFchildNode->SetName(savedPFchildNode->GetName() ); newPFchildNode->SetData(tmpPFchild); newPFchildNode->SetVisibility(true); newPFchildNode->SetBoolProperty("planarfigure.3drendering", true); // replace the dataNode in PFComp DataNodeVector pfc->replaceDataNodeAt(i, newPFchildNode); // remove old child position in dataStorage GetDataStorage()->Remove(savedPFchildNode); //add new child to datamanager with its new position as child of newPFCNode parent GetDataStorage()->Add(newPFchildNode, newPFCNode); } } break; } case 1: { if (!parentNode.IsNull()) GetDataStorage()->Add(newPFCNode, parentNode); else GetDataStorage()->Add(newPFCNode); for(int i=0; igetNumberOfChildren(); ++i) { mitk::BaseData::Pointer tmpPFchild = pfc->getChildAt(i); mitk::DataNode::Pointer savedPFchildNode = pfc->getDataNodeAt(i); mitk::PlanarFigureComposite::Pointer pfcompcast= dynamic_cast(tmpPFchild.GetPointer()); if ( !pfcompcast.IsNull() ) { // child is of type planar Figure composite // make new node of the child, cuz later the child has to be removed of its old position in datamanager // feed new dataNode with information of the savedDataNode, which is gonna be removed soon mitk::DataNode::Pointer newChildPFCNode; newChildPFCNode = mitk::DataNode::New(); newChildPFCNode->SetData(tmpPFchild); newChildPFCNode->SetName( savedPFchildNode->GetName() ); pfcompcast->setDisplayName( savedPFchildNode->GetName() ); //name might be changed in DataManager by user //update inside vector the dataNodePointer pfc->replaceDataNodeAt(i, newChildPFCNode); AddCompositeToDatastorage(pfcompcast, newPFCNode); //the current PFCNode becomes the childs parent // remove old child position in dataStorage GetDataStorage()->Remove(savedPFchildNode); } else { // child is not of type PlanarFigureComposite, so its one of the planarFigures // create new dataNode containing the data of the old dataNode, but position in dataManager will be // modified cuz we re setting a (new) parent. mitk::DataNode::Pointer newPFchildNode = mitk::DataNode::New(); newPFchildNode->SetName(savedPFchildNode->GetName() ); newPFchildNode->SetData(tmpPFchild); newPFchildNode->SetVisibility(true); newPFchildNode->SetBoolProperty("planarfigure.3drendering", true); // replace the dataNode in PFComp DataNodeVector pfc->replaceDataNodeAt(i, newPFchildNode); // remove old child position in dataStorage GetDataStorage()->Remove(savedPFchildNode); //add new child to datamanager with its new position as child of newPFCNode parent GetDataStorage()->Add(newPFchildNode, newPFCNode); } } break; } case 2: { if (!parentNode.IsNull()) GetDataStorage()->Add(newPFCNode, parentNode); else GetDataStorage()->Add(newPFCNode); //iterate through its childs for(int i=0; igetNumberOfChildren(); ++i) { mitk::BaseData::Pointer tmpPFchild = pfc->getChildAt(i); mitk::DataNode::Pointer savedPFchildNode = pfc->getDataNodeAt(i); mitk::PlanarFigureComposite::Pointer pfcompcast= dynamic_cast(tmpPFchild.GetPointer()); if ( !pfcompcast.IsNull() ) { // child is of type planar Figure composite // makeRemoveBundle new node of the child, cuz later the child has to be removed of its old position in datamanager // feed new dataNode with information of the savedDataNode, which is gonna be removed soon mitk::DataNode::Pointer newChildPFCNode; newChildPFCNode = mitk::DataNode::New(); newChildPFCNode->SetData(tmpPFchild); newChildPFCNode->SetName( savedPFchildNode->GetName() ); pfcompcast->setDisplayName( savedPFchildNode->GetName() ); //name might be changed in DataManager by user //update inside vector the dataNodePointer pfc->replaceDataNodeAt(i, newChildPFCNode); AddCompositeToDatastorage(pfcompcast, newPFCNode); //the current PFCNode becomes the childs parent // remove old child position in dataStorage GetDataStorage()->Remove(savedPFchildNode); } else { // child is not of type PlanarFigureComposite, so its one of the planarFigures // create new dataNode containing the data of the old dataNode, but position in dataManager will be // modified cuz we re setting a (new) parent. mitk::DataNode::Pointer newPFchildNode = mitk::DataNode::New(); newPFchildNode->SetName(savedPFchildNode->GetName() ); newPFchildNode->SetData(tmpPFchild); newPFchildNode->SetVisibility(true); newPFchildNode->SetBoolProperty("planarfigure.3drendering", true); // replace the dataNode in PFComp DataNodeVector pfc->replaceDataNodeAt(i, newPFchildNode); // remove old child position in dataStorage GetDataStorage()->Remove(savedPFchildNode); //add new child to datamanager with its new position as child of newPFCNode parent GetDataStorage()->Add(newPFchildNode, newPFCNode); } } break; } default: MITK_DEBUG << "we have an UNDEFINED composition... ERROR" ; break; } for(unsigned int i = 0; i < m_SelectedPF.size(); i++) m_SelectedPF[i]->SetSelected(false); newPFCNode->SetSelected(true); m_SelectedPF.clear(); m_SelectedPF.push_back(newPFCNode); UpdateGui(); } void QmitkFiberProcessingView::JoinBundles() { if ( m_SelectedFB.size()<2 ){ QMessageBox::information( NULL, "Warning", "Select at least two fiber bundles!"); MITK_WARN("QmitkFiberProcessingView") << "Select at least two fiber bundles!"; return; } mitk::FiberBundleX::Pointer newBundle = dynamic_cast(m_SelectedFB.at(0)->GetData()); m_SelectedFB.at(0)->SetVisibility(false); QString name(""); name += QString(m_SelectedFB.at(0)->GetName().c_str()); for (unsigned int i=1; iAddBundle(dynamic_cast(m_SelectedFB.at(i)->GetData())); name += "+"+QString(m_SelectedFB.at(i)->GetName().c_str()); m_SelectedFB.at(i)->SetVisibility(false); } mitk::DataNode::Pointer fbNode = mitk::DataNode::New(); fbNode->SetData(newBundle); fbNode->SetName(name.toStdString()); fbNode->SetVisibility(true); GetDataStorage()->Add(fbNode); } void QmitkFiberProcessingView::SubstractBundles() { if ( m_SelectedFB.size()<2 ){ QMessageBox::information( NULL, "Warning", "Select at least two fiber bundles!"); MITK_WARN("QmitkFiberProcessingView") << "Select at least two fiber bundles!"; return; } mitk::FiberBundleX::Pointer newBundle = dynamic_cast(m_SelectedFB.at(0)->GetData()); m_SelectedFB.at(0)->SetVisibility(false); QString name(""); name += QString(m_SelectedFB.at(0)->GetName().c_str()); for (unsigned int i=1; iSubtractBundle(dynamic_cast(m_SelectedFB.at(i)->GetData())); if (newBundle.IsNull()) break; name += "-"+QString(m_SelectedFB.at(i)->GetName().c_str()); m_SelectedFB.at(i)->SetVisibility(false); } if (newBundle.IsNull()) { QMessageBox::information(NULL, "No output generated:", "The resulting fiber bundle contains no fibers. Did you select the fiber bundles in the correct order? X-Y is not equal to Y-X!"); return; } mitk::DataNode::Pointer fbNode = mitk::DataNode::New(); fbNode->SetData(newBundle); fbNode->SetName(name.toStdString()); fbNode->SetVisibility(true); GetDataStorage()->Add(fbNode); } void QmitkFiberProcessingView::ResampleSelectedBundles() { double factor = this->m_Controls->m_SmoothFibersBox->value(); for (unsigned int i=0; i(m_SelectedFB.at(i)->GetData()); fib->ResampleSpline(factor); } RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberProcessingView::CompressSelectedBundles() { double factor = this->m_Controls->m_ErrorThresholdBox->value(); for (unsigned int i=0; i(m_SelectedFB.at(i)->GetData()); fib->Compress(factor); } RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberProcessingView::DoImageColorCoding() { if (m_Controls->m_ColorMapBox->GetSelectedNode().IsNull()) { QMessageBox::information(NULL, "Bundle coloring aborted:", "No image providing the scalar values for coloring the selected bundle available."); return; } for(unsigned int i=0; i(m_SelectedFB.at(i)->GetData()); fib->ColorFibersByScalarMap(dynamic_cast(m_Controls->m_ColorMapBox->GetSelectedNode()->GetData()), m_Controls->m_FiberOpacityBox->isChecked()); } if(m_MultiWidget) m_MultiWidget->RequestUpdate(); } void QmitkFiberProcessingView::MirrorFibers() { unsigned int axis = this->m_Controls->m_MirrorFibersBox->currentIndex(); for (int i=0; i(m_SelectedFB.at(i)->GetData()); + if (m_SelectedImage.IsNotNull()) + fib->SetReferenceGeometry(m_SelectedImage->GetGeometry()); fib->MirrorFibers(axis); } if (m_SelectedSurfaces.size()>0) { for (int i=0; i poly = surf->GetVtkPolyData(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); for (int i=0; iGetNumberOfPoints(); i++) { double* point = poly->GetPoint(i); point[axis] *= -1; vtkNewPoints->InsertNextPoint(point); } poly->SetPoints(vtkNewPoints); surf->CalculateBoundingBox(); } } RenderingManager::GetInstance()->RequestUpdateAll(); } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberProcessingViewControls.ui b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberProcessingViewControls.ui index 4127bda448..4e21fead9b 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberProcessingViewControls.ui +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberProcessingViewControls.ui @@ -1,1320 +1,1320 @@ QmitkFiberProcessingViewControls 0 0 386 540 Form 0 0 0 355 302 Fiber Extraction Extract a fiber subset from the selected fiber bundle using manually placed planar figures as waypoints or binary regions of interest. false 0 0 200 16777215 11 Extract fibers passing through selected ROI or composite ROI. Select ROI and fiber bundle to execute. Extract Qt::Vertical 20 40 0 0 Ending in mask Not ending in mask Passing mask Not passing mask QFrame::NoFrame QFrame::Raised 9 9 9 9 0 false 0 0 16777215 16777215 11 Generate a binary image containing all selected ROIs. Select at least one ROI (planar figure) and a reference fiber bundle or image. Generate ROI Image 0 0 200 0 16777215 60 QFrame::NoFrame QFrame::Raised 0 0 0 0 false 60 16777215 Create OR composition with selected ROIs. OR Qt::Horizontal 40 20 false 60 16777215 Create NOT composition from selected ROI. NOT false 60 16777215 Create AND composition with selected ROIs. AND 0 0 200 0 16777215 60 QFrame::NoFrame QFrame::Raised 0 0 0 0 30 30 Draw circular ROI. Select reference fiber bundle to execute. :/QmitkDiffusionImaging/circle.png:/QmitkDiffusionImaging/circle.png 32 32 false true Qt::Horizontal 40 20 30 30 Draw polygonal ROI. Select reference fiber bundle to execute. :/QmitkDiffusionImaging/polygon.png:/QmitkDiffusionImaging/polygon.png 32 32 true true 0 0 Extract using planar figures Extract using binary ROI image 0 0 270 380 Fiber Removal Remove fibers that satisfy certain criteria from the selected bundle. 0 0 Remove fibers in direction Remove fibers by length Remove fibers by curvature Remove fiber parts outside mask Remove fiber parts inside mask QFrame::NoFrame QFrame::Raised 0 0 0 0 Qt::Horizontal 40 20 Minimum fiber length in mm 0 999999999 20 Max. Length: Min. Length: Maximum fiber length in mm 0 999999999 300 QFrame::NoFrame QFrame::Raised 0 0 0 0 0 X: Y: Z: Angle: Angular deviation threshold in degree 1 90.000000000000000 1.000000000000000 5.000000000000000 QFrame::NoFrame QFrame::Raised 0 0 0 0 If unchecked, the fiber exceeding the threshold will be split in two instead of removed. Remove Fiber false QFrame::NoFrame QFrame::Raised 0 0 0 0 0 Max. Angular Deviation: Qt::Horizontal 40 20 Maximum angular deviation in degree 180.000000000000000 0.100000000000000 15.000000000000000 Distance: Distance in mm 1 999.000000000000000 1.000000000000000 10.000000000000000 false 0 0 200 16777215 11 Remove Qt::Vertical 20 40 0 0 355 349 Bundle Modification Modify the selected bundle with operations such as fiber resampling, FA coloring, etc. QFrame::NoFrame QFrame::Raised 0 0 0 0 0 Error threshold in mm: 999999999.000000000000000 0.100000000000000 0.100000000000000 QFrame::NoFrame QFrame::Raised 0 0 0 0 0 - Axial + Sagittal - Sagittal + Coronal - Coronal + Axial Select direction: QFrame::NoFrame QFrame::Raised 0 0 0 0 0 Scalar map: If checked, the image values are not only used to color the fibers but are also used as opaxity values. Values as opacity true 0 0 Smooth fibers Compress fibers Color fibers by scalar map (e.g. FA) Mirror fibers Weight Bundle QFrame::NoFrame QFrame::Raised 0 0 0 0 0 0.010000000000000 999999999.000000000000000 1.000000000000000 Point distance in mm: Qt::Vertical 20 40 false 0 0 200 16777215 11 Execute QFrame::NoFrame QFrame::Raised 0 0 0 0 0 Weight: 7 999999999.000000000000000 0.100000000000000 1.000000000000000 0 0 360 61 Binary Bundle Operations Join or subtract bundles. false 0 0 200 16777215 11 Returns all fibers contained in bundle X that are not contained in bundle Y (not commutative!). Select at least two fiber bundles to execute. Substract false 0 0 200 16777215 11 Merge selected fiber bundles. Select at least two fiber bundles to execute. Join Qt::Vertical 20 40 Please Select Input Data <html><head/><body><p><span style=" color:#ff0000;">mandatory</span></p></body></html> true <html><head/><body><p><span style=" color:#969696;">needed for extraction</span></p></body></html> true Input DTI Fiber Bundle: Binary seed ROI. If not specified, the whole image area is seeded. ROI: Qt::Vertical 20 40 QmitkDataStorageComboBox QComboBox
QmitkDataStorageComboBox.h
diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxViewControls.ui b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxViewControls.ui index 82fed1491d..8a1452baff 100755 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxViewControls.ui +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxViewControls.ui @@ -1,3117 +1,3135 @@ QmitkFiberfoxViewControls 0 0 479 2397 Form Load Parameters :/QmitkDiffusionImaging/general_icons/upload.ico:/QmitkDiffusionImaging/general_icons/upload.ico 0 Fiber Definition Qt::Vertical 20 40 color: rgb(255, 0, 0); Please select an image or an existing fiber bundle to draw the fiber fiducials. If you can't provide a suitable image, generate one using the "Signal Generation" tab. Qt::AutoText Qt::AlignJustify|Qt::AlignVCenter true Fiducial Options All fiducials are treated as circles with the same radius as the first fiducial. Use Constant Fiducial Radius false false Align selected fiducials with voxel grid. Shifts selected fiducials to nearest voxel center. Align With Grid :/QmitkDiffusionImaging/general_icons/right.ico:/QmitkDiffusionImaging/general_icons/right.ico Operations false Join Bundles :/QmitkDiffusionImaging/general_icons/plus.ico:/QmitkDiffusionImaging/general_icons/plus.ico QFrame::NoFrame QFrame::Raised 0 0 0 0 Y false Rotation angle (in degree) around x-axis. + + 3 + -360.000000000000000 360.000000000000000 0.100000000000000 Axis: false Rotation angle (in degree) around y-axis. + + 3 + -360.000000000000000 360.000000000000000 0.100000000000000 Translation: false Translation (in mm) in direction of the z-axis. + + 3 + -1000.000000000000000 1000.000000000000000 0.100000000000000 Translation (in mm) in direction of the y-axis. + + 3 + -1000.000000000000000 1000.000000000000000 0.100000000000000 X false Rotation: false Z false Rotation angle (in degree) around z-axis. + + 3 + -360.000000000000000 360.000000000000000 0.100000000000000 Translation (in mm) in direction of the x-axis. + + 3 + -1000.000000000000000 1000.000000000000000 0.100000000000000 Scaling: false Scaling factor for selected fiber bundle along the x-axis. 0.010000000000000 10.000000000000000 0.010000000000000 1.000000000000000 Scaling factor for selected fiber bundle along the y-axis. 0.010000000000000 10.000000000000000 0.010000000000000 1.000000000000000 Scaling factor for selected fiber bundle along the z-axis. 0.010000000000000 10.000000000000000 0.010000000000000 1.000000000000000 false Copy Bundles :/QmitkDiffusionImaging/general_icons/copy2.ico:/QmitkDiffusionImaging/general_icons/copy2.ico false Transform Selection :/QmitkDiffusionImaging/general_icons/refresh.ico:/QmitkDiffusionImaging/general_icons/refresh.ico If checked, the fiducials belonging to the modified bundle are also modified. Include Fiducials true Fiber Options QFrame::NoFrame QFrame::Raised 0 0 0 0 QFrame::NoFrame QFrame::Raised 0 0 0 0 Tension: false Fiber Sampling: false 3 -1.000000000000000 1.000000000000000 0.100000000000000 0.000000000000000 3 -1.000000000000000 1.000000000000000 0.100000000000000 0.000000000000000 Bias: false Continuity: false 3 -1.000000000000000 1.000000000000000 0.100000000000000 0.000000000000000 Distance of fiber sampling points (in mm) 1 0.100000000000000 0.100000000000000 1.000000000000000 QFrame::NoFrame QFrame::Raised 0 0 0 0 6 #Fibers: false Specify number of fibers to generate for the selected bundle. 1 1000000 100 100 false Generate Fibers :/QmitkDiffusionImaging/general_icons/right.ico:/QmitkDiffusionImaging/general_icons/right.ico QFrame::NoFrame QFrame::Raised 0 0 0 0 Select fiber distribution inside of the fiducials. Uniform Gaussian Fiber Distribution: false Variance of the gaussian 3 0.001000000000000 10.000000000000000 0.010000000000000 0.100000000000000 QFrame::NoFrame QFrame::Raised 0 0 0 0 Disable to only generate fibers if "Generate Fibers" button is pressed. Real Time Fibers true Disable to only generate fibers if "Generate Fibers" button is pressed. Advanced Options false QFrame::NoFrame QFrame::Raised 0 0 0 0 false 30 30 Draw elliptical fiducial. :/QmitkDiffusionImaging/circle.png:/QmitkDiffusionImaging/circle.png 32 32 false true false 30 30 Flip fiber waypoints of selcted fiducial around one axis. :/QmitkDiffusionImaging/refresh.xpm:/QmitkDiffusionImaging/refresh.xpm 32 32 false true Qt::Horizontal 40 20 Signal Generation Extra-axonal Compartments QFrame::NoFrame QFrame::Raised 0 0 0 0 Volume Fraction: Select signal model for extra-axonal compartment. Ball Model Astrosticks Model Dot Model Prototype Signal Qt::Horizontal Select signal model for extra-axonal compartment. -- Ball Model Astrosticks Model Dot Model Prototype Signal Qt::Vertical 20 40 Image Settings Advanced Options QFrame::NoFrame QFrame::Raised 0 0 0 0 6 Gradient Directions: Number of gradient directions distributed over the half sphere. 0 10000 1 30 <html><head/><body><p>b-Value<span style=" font-style:italic;"> [s/mm</span><span style=" font-style:italic; vertical-align:super;">2</span><span style=" font-style:italic;">]</span>:</p></body></html> false b-value in s/mm² 0 10000 100 1000 color: rgb(255, 0, 0); Using geometry of selected image! color: rgb(255, 0, 0); Using gradients of selected DWI! QFrame::NoFrame QFrame::Raised 0 0 0 0 6 TE in milliseconds 1 10000 1 100 <html><head/><body><p>Echo Time <span style=" font-style:italic;">TE</span>: </p></body></html> false T2* relaxation time (in milliseconds). 100.000000000000000 0.100000000000000 1.000000000000000 Output one image per compartment containing the corresponding volume fractions per voxel. Output Volume Fractions false Fiber tangent Main fiber directions Random <html><head/><body><p><span style=" font-style:italic;">TE</span>, <span style=" font-style:italic;">T</span><span style=" font-style:italic; vertical-align:sub;">inhom</span> and <span style=" font-style:italic;">T2</span> will have no effect if unchecked.</p></body></html> Simulate Signal Relaxation true Fiber Radius: Line Readout Time: false <html><head/><body><p><span style=" font-style:italic;">T</span><span style=" font-style:italic; vertical-align:sub;">inhom</span> Relaxation: </p></body></html> false Diffusion Direction: Relaxation time due to magnetic field inhomogeneities (T2', in milliseconds). 1 10000 1 50 TE in milliseconds 1 10000 1 100 Signal Scale: Fiber radius used to calculate volume fractions (in µm). Set to 0 for automatic radius estimation. 0 1000 0 Separation Angle: Disable partial volume. Treat voxel content as fiber-only if at least one fiber is present. Disable Partial Volume Effects false 1 90.000000000000000 45.000000000000000 QFrame::NoFrame QFrame::Raised 0 0 0 0 3 0.100000000000000 50.000000000000000 0.100000000000000 2.000000000000000 Image Spacing: 3 0.100000000000000 50.000000000000000 0.100000000000000 2.000000000000000 3 0.100000000000000 50.000000000000000 0.100000000000000 2.000000000000000 Image Dimensions: Fiber sampling factor which determines the accuracy of the calculated fiber and non-fiber volume fractions. 1 1000 1 11 Fiber sampling factor which determines the accuracy of the calculated fiber and non-fiber volume fractions. 1 1000 1 11 Fiber sampling factor which determines the accuracy of the calculated fiber and non-fiber volume fractions. 1 1000 1 3 Inter-axonal Compartment Select signal model for intra-axonal compartment. -- Stick Model Zeppelin Model Tensor Model true Stop current simulation. Abort Simulation :/QmitkDiffusionImaging/general_icons/abort.ico:/QmitkDiffusionImaging/general_icons/abort.ico Data QFrame::NoFrame QFrame::Raised 0 0 0 0 0 - ... <html><head/><body><p>Select a binary image to define the area of signal generation. Outside of the mask image only noise will be actively generated.</p></body></html> QComboBox::AdjustToMinimumContentsLength Fiber Bundle: false Save path: false Tissue Mask: false <html><head/><body><p>Select a fiber bundle to generate the white matter signal from. You can either use the fiber definition tab to manually define an input fiber bundle or you can also use any existing bundle, e.g. yielded by a tractography algorithm.</p></body></html> QComboBox::AdjustToMinimumContentsLength Template Image: false <html><head/><body><p>The parameters for the simulation (e.g. spacing, size, diffuison-weighted gradients, b-value) are adopted from this image.</p></body></html> QComboBox::AdjustToMinimumContentsLength 8 true Noise and other Artifacts Qt::Horizontal Add Noise false Add ringing artifacts occuring at strong edges in the image. Add Gibbs Ringing false true QFrame::NoFrame QFrame::Raised 6 0 0 0 0 Shrink FOV (%): false Shrink FOV by this percentage. 1 0.000000000000000 90.000000000000000 0.100000000000000 25.000000000000000 Qt::Horizontal QFrame::NoFrame QFrame::Raised 0 0 0 0 Num. Spikes: The number of randomly occurring signal spikes. 1 Spike amplitude relative to the largest signal amplitude of the corresponding k-space slice. 0.100000000000000 0.100000000000000 Scale: !!!EXPERIMENTAL!!! Add Eddy Current Effects false Add Spikes false QFrame::NoFrame QFrame::Raised 0 0 0 0 Variance: Variance of selected noise distribution. 4 0.000000000000000 999999999.000000000000000 0.001000000000000 50.000000000000000 Distribution: Noise distribution Rician Chi-squared Add N/2 Ghosts false true QFrame::NoFrame QFrame::Raised 6 0 0 0 0 Frequency Map: false Select image specifying the frequency inhomogeneities (in Hz). Qt::Horizontal Qt::Horizontal Qt::Horizontal true QFrame::NoFrame QFrame::Raised QFormLayout::AllNonFixedFieldsGrow 6 0 6 0 0 Toggle between random movement and linear movement. Randomize motion true Rotation 0 9 0 0 Degree: false x false Axis: false Maximum rotation around x-axis. 1 360.000000000000000 1.000000000000000 0.000000000000000 Maximum rotation around z-axis. 1 360.000000000000000 1.000000000000000 15.000000000000000 y false z false Maximum rotation around y-axis. 1 360.000000000000000 1.000000000000000 0.000000000000000 Translation 0 0 0 Distance: false x false y false Axis: false z false Maximum translation along x-axis. 1 1000.000000000000000 1.000000000000000 0.000000000000000 Maximum translation along y-axis. 1 1000.000000000000000 1.000000000000000 0.000000000000000 Maximum translation along z-axis. 1 1000.000000000000000 1.000000000000000 0.000000000000000 Add Motion Artifacts false Add Distortions false Add Aliasing false true QFrame::NoFrame QFrame::Raised 6 0 0 0 0 K-Space Line Offset: false A larger offset increases the inensity of the ghost image. 3 1.000000000000000 0.010000000000000 0.250000000000000 true QFrame::NoFrame QFrame::Raised QFormLayout::AllNonFixedFieldsGrow 6 0 0 0 0 Magnitude: false Maximum magnitude of eddy current induced magnetic field inhomogeneities (in mT). 5 1000.000000000000000 0.001000000000000 0.005000000000000 color: rgb(255, 0, 0); Experimental! Qt::Horizontal Qt::Horizontal true <html><head/><body><p>Start DWI generation from selected fiber bundle.</p><p>If no fiber bundle but an existing diffusion weighted image is selected, the enabled artifacts are added to this image.</p><p>If neither a fiber bundle nor a diffusion weighted image is selected, a grayscale image containing a simple gradient is generated.</p></body></html> Start Simulation :/QmitkDiffusionImaging/general_icons/right.ico:/QmitkDiffusionImaging/general_icons/right.ico Intra-axonal Compartment Select signal model for intra-axonal compartment. Stick Model Zeppelin Model Tensor Model Prototype Signal Save Parameters :/QmitkDiffusionImaging/general_icons/download.ico:/QmitkDiffusionImaging/general_icons/download.ico QmitkDataStorageComboBox QComboBox
QmitkDataStorageComboBox.h
QmitkTensorModelParametersWidget QWidget
QmitkTensorModelParametersWidget.h
1
QmitkStickModelParametersWidget QWidget
QmitkStickModelParametersWidget.h
1
QmitkZeppelinModelParametersWidget QWidget
QmitkZeppelinModelParametersWidget.h
1
QmitkBallModelParametersWidget QWidget
QmitkBallModelParametersWidget.h
1
QmitkAstrosticksModelParametersWidget QWidget
QmitkAstrosticksModelParametersWidget.h
1
QmitkDotModelParametersWidget QWidget
QmitkDotModelParametersWidget.h
1
QmitkPrototypeSignalParametersWidget QWidget
QmitkPrototypeSignalParametersWidget.h
1
QmitkDataStorageComboBoxWithSelectNone QComboBox
QmitkDataStorageComboBoxWithSelectNone.h
m_CircleButton m_FlipButton m_RealTimeFibers m_AdvancedOptionsBox m_DistributionBox m_VarianceBox m_FiberDensityBox m_FiberSamplingBox m_TensionBox m_ContinuityBox m_BiasBox m_GenerateFibersButton m_ConstantRadiusBox m_AlignOnGrid m_XrotBox m_YrotBox m_ZrotBox m_XtransBox m_YtransBox m_ZtransBox m_XscaleBox m_YscaleBox m_ZscaleBox m_TransformBundlesButton m_CopyBundlesButton m_JoinBundlesButton m_IncludeFiducials m_GenerateImageButton m_SizeX m_SizeY m_SizeZ m_SpacingX m_SpacingY m_SpacingZ m_NumGradientsBox m_BvalueBox m_AdvancedOptionsBox_2 m_SignalScaleBox m_TEbox m_LineReadoutTimeBox m_T2starBox m_FiberRadius m_RelaxationBox m_EnforcePureFiberVoxelsBox m_VolumeFractionsBox m_Compartment1Box m_Compartment2Box m_Compartment3Box m_Compartment4Box m_AddNoise m_NoiseLevel m_AddSpikes m_SpikeNumBox m_SpikeScaleBox m_AddGhosts m_kOffsetBox m_AddAliasing m_WrapBox m_AddDistortions m_FrequencyMapBox m_AddMotion m_RandomMotion m_MaxRotationBoxX m_MaxRotationBoxY m_MaxRotationBoxZ m_MaxTranslationBoxX m_MaxTranslationBoxY m_MaxTranslationBoxZ m_AddEddy m_EddyGradientStrength m_AddGibbsRinging m_SaveParametersButton m_LoadParametersButton tabWidget