diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/src/internal/QmitkStreamlineTrackingView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/src/internal/QmitkStreamlineTrackingView.cpp index 503be0b386..8e058b5ec6 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/src/internal/QmitkStreamlineTrackingView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/src/internal/QmitkStreamlineTrackingView.cpp @@ -1,819 +1,839 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Blueberry #include #include #include // Qmitk #include "QmitkStreamlineTrackingView.h" #include "QmitkStdMultiWidget.h" // Qt #include // MITK #include #include #include #include #include #include #include #include #include #include #include #include // VTK #include #include #include #include #include #include #include #include #include const std::string QmitkStreamlineTrackingView::VIEW_ID = "org.mitk.views.streamlinetracking"; const std::string id_DataManager = "org.mitk.views.datamanager"; using namespace berry; QmitkStreamlineTrackingWorker::QmitkStreamlineTrackingWorker(QmitkStreamlineTrackingView* view) : m_View(view) { } void QmitkStreamlineTrackingWorker::run() { m_View->m_Tracker->Update(); m_View->m_TrackingThread.quit(); } QmitkStreamlineTrackingView::QmitkStreamlineTrackingView() : m_TrackingWorker(this) , m_Controls(nullptr) + , m_FirstTensorProbRun(true) + , m_FirstInteractiveRun(true) , m_TrackingHandler(nullptr) , m_ThreadIsRunning(false) + , m_DeleteTrackingHandler(false) { m_TrackingWorker.moveToThread(&m_TrackingThread); connect(&m_TrackingThread, SIGNAL(started()), this, SLOT(BeforeThread())); connect(&m_TrackingThread, SIGNAL(started()), &m_TrackingWorker, SLOT(run())); connect(&m_TrackingThread, SIGNAL(finished()), this, SLOT(AfterThread())); m_TrackingTimer = new QTimer(this); } // Destructor QmitkStreamlineTrackingView::~QmitkStreamlineTrackingView() { if (m_Tracker.IsNull()) return; m_Tracker->SetStopTracking(true); m_TrackingThread.wait(); } void QmitkStreamlineTrackingView::CreateQtPartControl( QWidget *parent ) { if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkStreamlineTrackingViewControls; m_Controls->setupUi( parent ); m_Controls->m_FaImageBox->SetDataStorage(this->GetDataStorage()); m_Controls->m_SeedImageBox->SetDataStorage(this->GetDataStorage()); m_Controls->m_MaskImageBox->SetDataStorage(this->GetDataStorage()); m_Controls->m_StopImageBox->SetDataStorage(this->GetDataStorage()); m_Controls->m_TissueImageBox->SetDataStorage(this->GetDataStorage()); m_Controls->m_ForestBox->SetDataStorage(this->GetDataStorage()); mitk::TNodePredicateDataType::Pointer isImagePredicate = mitk::TNodePredicateDataType::New(); mitk::TNodePredicateDataType::Pointer isTractographyForest = mitk::TNodePredicateDataType::New(); mitk::NodePredicateProperty::Pointer isBinaryPredicate = mitk::NodePredicateProperty::New("binary", mitk::BoolProperty::New(true)); mitk::NodePredicateNot::Pointer isNotBinaryPredicate = mitk::NodePredicateNot::New( isBinaryPredicate ); mitk::NodePredicateAnd::Pointer isNotABinaryImagePredicate = mitk::NodePredicateAnd::New( isImagePredicate, isNotBinaryPredicate ); mitk::NodePredicateDimension::Pointer dimensionPredicate = mitk::NodePredicateDimension::New(3); m_Controls->m_ForestBox->SetPredicate(isTractographyForest); m_Controls->m_FaImageBox->SetPredicate( mitk::NodePredicateAnd::New(isNotABinaryImagePredicate, dimensionPredicate) ); m_Controls->m_FaImageBox->SetZeroEntryText("--"); m_Controls->m_SeedImageBox->SetPredicate( mitk::NodePredicateAnd::New(isBinaryPredicate, dimensionPredicate) ); m_Controls->m_SeedImageBox->SetZeroEntryText("--"); m_Controls->m_MaskImageBox->SetPredicate( mitk::NodePredicateAnd::New(isBinaryPredicate, dimensionPredicate) ); m_Controls->m_MaskImageBox->SetZeroEntryText("--"); m_Controls->m_StopImageBox->SetPredicate( mitk::NodePredicateAnd::New(isBinaryPredicate, dimensionPredicate) ); m_Controls->m_StopImageBox->SetZeroEntryText("--"); m_Controls->m_TissueImageBox->SetPredicate( mitk::NodePredicateAnd::New(isNotABinaryImagePredicate, dimensionPredicate) ); m_Controls->m_TissueImageBox->SetZeroEntryText("--"); connect( m_TrackingTimer, SIGNAL(timeout()), this, SLOT(TimerUpdate()) ); connect( m_Controls->commandLinkButton_2, SIGNAL(clicked()), this, SLOT(StopTractography()) ); connect( m_Controls->commandLinkButton, SIGNAL(clicked()), this, SLOT(DoFiberTracking()) ); connect( m_Controls->m_InteractiveBox, SIGNAL(stateChanged(int)), this, SLOT(ToggleInteractive()) ); connect( m_Controls->m_TissueImageBox, SIGNAL(currentIndexChanged(int)), this, SLOT(UpdateGui()) ); connect( m_Controls->m_ModeBox, SIGNAL(currentIndexChanged(int)), this, SLOT(UpdateGui()) ); connect( m_Controls->m_FaImageBox, SIGNAL(currentIndexChanged(int)), this, SLOT(DeleteTrackingHandler()) ); connect( m_Controls->m_ModeBox, SIGNAL(currentIndexChanged(int)), this, SLOT(DeleteTrackingHandler()) ); connect( m_Controls->m_OutputProbMap, SIGNAL(stateChanged(int)), this, SLOT(OutputStyleSwitched()) ); connect( m_Controls->m_ModeBox, SIGNAL(currentIndexChanged(int)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_StopImageBox, SIGNAL(currentIndexChanged(int)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_MaskImageBox, SIGNAL(currentIndexChanged(int)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_FaImageBox, SIGNAL(currentIndexChanged(int)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_ForestBox, SIGNAL(currentIndexChanged(int)), this, SLOT(ForestSwitched()) ); connect( m_Controls->m_ForestBox, SIGNAL(currentIndexChanged(int)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_SeedsPerVoxelBox, SIGNAL(valueChanged(int)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_NumFibersBox, SIGNAL(valueChanged(int)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_ScalarThresholdBox, SIGNAL(valueChanged(double)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_OdfCutoffBox, SIGNAL(valueChanged(double)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_StepSizeBox, SIGNAL(valueChanged(double)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_SamplingDistanceBox, SIGNAL(valueChanged(double)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_AngularThresholdBox, SIGNAL(valueChanged(int)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_MinTractLengthBox, SIGNAL(valueChanged(double)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_fBox, SIGNAL(valueChanged(double)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_gBox, SIGNAL(valueChanged(double)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_NumSamplesBox, SIGNAL(valueChanged(int)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_SeedRadiusBox, SIGNAL(valueChanged(double)), this, SLOT(InteractiveSeedChanged()) ); connect( m_Controls->m_NumSeedsBox, SIGNAL(valueChanged(int)), this, SLOT(InteractiveSeedChanged()) ); connect( m_Controls->m_OutputProbMap, SIGNAL(stateChanged(int)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_SharpenOdfsBox, SIGNAL(stateChanged(int)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_InterpolationBox, SIGNAL(stateChanged(int)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_SeedGmBox, SIGNAL(stateChanged(int)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_FlipXBox, SIGNAL(stateChanged(int)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_FlipYBox, SIGNAL(stateChanged(int)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_FlipZBox, SIGNAL(stateChanged(int)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_FrontalSamplesBox, SIGNAL(stateChanged(int)), this, SLOT(OnParameterChanged()) ); connect( m_Controls->m_StopVotesBox, SIGNAL(stateChanged(int)), this, SLOT(OnParameterChanged()) ); - m_FirstTensorProbRun = true; StartStopTrackingGui(false); } UpdateGui(); } void QmitkStreamlineTrackingView::StopTractography() { if (m_Tracker.IsNull()) return; m_Tracker->SetStopTracking(true); } void QmitkStreamlineTrackingView::TimerUpdate() { if (m_Tracker.IsNull()) return; QString status_text(m_Tracker->GetStatusText().c_str()); m_Controls->m_StatusTextBox->setText(status_text); } void QmitkStreamlineTrackingView::BeforeThread() { m_TrackingTimer->start(1000); } void QmitkStreamlineTrackingView::AfterThread() { m_TrackingTimer->stop(); if (!m_Tracker->GetUseOutputProbabilityMap()) { vtkSmartPointer fiberBundle = m_Tracker->GetFiberPolyData(); if (!m_Controls->m_InteractiveBox->isChecked() && fiberBundle->GetNumberOfLines() == 0) { QMessageBox warnBox; warnBox.setWindowTitle("Warning"); warnBox.setText("No fiberbundle was generated!"); warnBox.setDetailedText("No fibers were generated using the chosen parameters. Typical reasons are:\n\n- Cutoff too high. Some images feature very low FA/GFA/peak size. Try to lower this parameter.\n- Angular threshold too strict. Try to increase this parameter.\n- A small step sizes also means many steps to go wrong. Especially in the case of probabilistic tractography. Try to adjust the angular threshold."); warnBox.setIcon(QMessageBox::Warning); warnBox.exec(); + + if (m_InteractivePointSetNode.IsNotNull()) + m_InteractivePointSetNode->SetProperty("color", mitk::ColorProperty::New(1,1,1)); + StartStopTrackingGui(false); + if (m_DeleteTrackingHandler) + DeleteTrackingHandler(); + UpdateGui(); + return; } mitk::FiberBundle::Pointer fib = mitk::FiberBundle::New(fiberBundle); fib->SetReferenceGeometry(dynamic_cast(m_InputImageNodes.at(0)->GetData())->GetGeometry()); - if (m_Controls->m_ResampleFibersBox->isChecked()) + if (m_Controls->m_ResampleFibersBox->isChecked() && fiberBundle->GetNumberOfLines()>0) fib->Compress(m_Controls->m_FiberErrorBox->value()); fib->ColorFibersByOrientation(); if (m_Controls->m_InteractiveBox->isChecked()) { if (m_InteractiveNode.IsNull()) { m_InteractiveNode = mitk::DataNode::New(); QString name("Interactive"); m_InteractiveNode->SetName(name.toStdString()); GetDataStorage()->Add(m_InteractiveNode); } m_InteractiveNode->SetData(fib); if (auto renderWindowPart = this->GetRenderWindowPart()) renderWindowPart->RequestUpdate(); } else { mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData(fib); QString name("FiberBundle_"); name += m_InputImageNodes.at(0)->GetName().c_str(); name += "_Streamline"; node->SetName(name.toStdString()); GetDataStorage()->Add(node, m_InputImageNodes.at(0)); } } else { TrackerType::ItkDoubleImgType::Pointer outImg = m_Tracker->GetOutputProbabilityMap(); mitk::Image::Pointer img = mitk::Image::New(); img->InitializeByItk(outImg.GetPointer()); img->SetVolume(outImg->GetBufferPointer()); if (m_Controls->m_InteractiveBox->isChecked()) { if (m_InteractiveNode.IsNull()) { m_InteractiveNode = mitk::DataNode::New(); QString name("Interactive"); m_InteractiveNode->SetName(name.toStdString()); GetDataStorage()->Add(m_InteractiveNode); } m_InteractiveNode->SetData(img); mitk::LookupTable::Pointer lut = mitk::LookupTable::New(); lut->SetType(mitk::LookupTable::JET_TRANSPARENT); mitk::LookupTableProperty::Pointer lut_prop = mitk::LookupTableProperty::New(); lut_prop->SetLookupTable(lut); m_InteractiveNode->SetProperty("LookupTable", lut_prop); m_InteractiveNode->SetProperty("opacity", mitk::FloatProperty::New(0.5)); if (auto renderWindowPart = this->GetRenderWindowPart()) renderWindowPart->RequestUpdate(); } else { mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData(img); QString name("ProbabilityMap_"); name += m_InputImageNodes.at(0)->GetName().c_str(); node->SetName(name.toStdString()); mitk::LookupTable::Pointer lut = mitk::LookupTable::New(); lut->SetType(mitk::LookupTable::JET_TRANSPARENT); mitk::LookupTableProperty::Pointer lut_prop = mitk::LookupTableProperty::New(); lut_prop->SetLookupTable(lut); node->SetProperty("LookupTable", lut_prop); node->SetProperty("opacity", mitk::FloatProperty::New(0.5)); GetDataStorage()->Add(node, m_InputImageNodes.at(0)); } } + if (m_InteractivePointSetNode.IsNotNull()) + m_InteractivePointSetNode->SetProperty("color", mitk::ColorProperty::New(1,1,1)); StartStopTrackingGui(false); + if (m_DeleteTrackingHandler) + DeleteTrackingHandler(); UpdateGui(); } void QmitkStreamlineTrackingView::InteractiveSeedChanged(bool posChanged) { + if (m_ThreadIsRunning) + return; if (!posChanged && (!m_Controls->m_InteractiveBox->isChecked() || !m_Controls->m_ParamUpdateBox->isChecked())) return; std::srand(std::time(0)); m_SeedPoints.clear(); itk::Point world_pos = this->GetRenderWindowPart()->GetSelectedPosition(); m_SeedPoints.push_back(world_pos); float radius = m_Controls->m_SeedRadiusBox->value(); int num = m_Controls->m_NumSeedsBox->value(); mitk::PointSet::Pointer pointset = mitk::PointSet::New(); pointset->InsertPoint(0, world_pos); m_InteractivePointSetNode->SetProperty("pointsize", mitk::FloatProperty::New(radius*2)); m_InteractivePointSetNode->SetProperty("point 2D size", mitk::FloatProperty::New(radius*2)); m_InteractivePointSetNode->SetData(pointset); for (int i=1; i p; p[0] = rand()%1000-500; p[1] = rand()%1000-500; p[2] = rand()%1000-500; p.Normalize(); p *= radius; m_SeedPoints.push_back(world_pos+p); } - + m_InteractivePointSetNode->SetProperty("color", mitk::ColorProperty::New(1,0,0)); DoFiberTracking(); } void QmitkStreamlineTrackingView::OnParameterChanged() { if (m_Controls->m_InteractiveBox->isChecked() && m_Controls->m_ParamUpdateBox->isChecked()) DoFiberTracking(); } void QmitkStreamlineTrackingView::ToggleInteractive() { UpdateGui(); - mitk::IRenderWindowPart* renderWindow = this->GetRenderWindowPart(); - m_Controls->m_SeedsPerVoxelBox->setEnabled(!m_Controls->m_InteractiveBox->isChecked()); m_Controls->m_SeedsPerVoxelLabel->setEnabled(!m_Controls->m_InteractiveBox->isChecked()); m_Controls->m_SeedGmBox->setEnabled(!m_Controls->m_InteractiveBox->isChecked()); m_Controls->m_SeedImageBox->setEnabled(!m_Controls->m_InteractiveBox->isChecked()); m_Controls->label_6->setEnabled(!m_Controls->m_InteractiveBox->isChecked()); m_Controls->m_TissueImageBox->setEnabled(!m_Controls->m_InteractiveBox->isChecked()); m_Controls->label_10->setEnabled(!m_Controls->m_InteractiveBox->isChecked()); if ( m_Controls->m_InteractiveBox->isChecked() ) { + if (m_FirstInteractiveRun) + { + QMessageBox::information(nullptr, "Information", "Place and move a spherical seed region anywhere in the image by left-clicking and dragging. If the seed region is colored red, tracking is in progress. If the seed region is colored white, tracking is finished.\nPlacing the seed region for the first time in a newly selected dataset might cause a short delay, since the tracker needs to be initialized."); + m_FirstInteractiveRun = false; + } + QApplication::setOverrideCursor(Qt::PointingHandCursor); QApplication::processEvents(); m_InteractivePointSetNode = mitk::DataNode::New(); m_InteractivePointSetNode->SetProperty("color", mitk::ColorProperty::New(1,1,1)); m_InteractivePointSetNode->SetName("InteractiveSeedRegion"); mitk::PointSetShapeProperty::Pointer shape_prop = mitk::PointSetShapeProperty::New(); shape_prop->SetValue(mitk::PointSetShapeProperty::PointSetShape::CIRCLE); m_InteractivePointSetNode->SetProperty("Pointset.2D.shape", shape_prop); GetDataStorage()->Add(m_InteractivePointSetNode); - if (renderWindow) - { - { - mitk::SliceNavigationController* slicer = renderWindow->GetQmitkRenderWindow(QString("axial"))->GetSliceNavigationController(); - itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); - command->SetCallbackFunction( this, &QmitkStreamlineTrackingView::OnSliceChanged ); - m_SliceObserverTag1 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(nullptr, 0), command ); - } - - { - mitk::SliceNavigationController* slicer = renderWindow->GetQmitkRenderWindow(QString("sagittal"))->GetSliceNavigationController(); - itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); - command->SetCallbackFunction( this, &QmitkStreamlineTrackingView::OnSliceChanged ); - m_SliceObserverTag2 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(nullptr, 0), command ); - } - { - mitk::SliceNavigationController* slicer = renderWindow->GetQmitkRenderWindow(QString("coronal"))->GetSliceNavigationController(); - itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); - command->SetCallbackFunction( this, &QmitkStreamlineTrackingView::OnSliceChanged ); - m_SliceObserverTag3 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(nullptr, 0), command ); - } - } + m_SliceChangeListener.RenderWindowPartActivated(this->GetRenderWindowPart()); + connect(&m_SliceChangeListener, SIGNAL(SliceChanged()), this, SLOT(OnSliceChanged())); } else { QApplication::restoreOverrideCursor(); QApplication::processEvents(); m_InteractiveNode = nullptr; m_InteractivePointSetNode = nullptr; - if (renderWindow) - { - mitk::SliceNavigationController* slicer = renderWindow->GetQmitkRenderWindow(QString("axial"))->GetSliceNavigationController(); - slicer->RemoveObserver(m_SliceObserverTag1); - slicer = renderWindow->GetQmitkRenderWindow(QString("sagittal"))->GetSliceNavigationController(); - slicer->RemoveObserver(m_SliceObserverTag2); - slicer = renderWindow->GetQmitkRenderWindow(QString("coronal"))->GetSliceNavigationController(); - slicer->RemoveObserver(m_SliceObserverTag3); - } + m_SliceChangeListener.RenderWindowPartActivated(this->GetRenderWindowPart()); + disconnect(&m_SliceChangeListener, SIGNAL(SliceChanged()), this, SLOT(OnSliceChanged())); } } -void QmitkStreamlineTrackingView::OnSliceChanged(const itk::EventObject& /*e*/) +void QmitkStreamlineTrackingView::OnSliceChanged() { InteractiveSeedChanged(true); } void QmitkStreamlineTrackingView::SetFocus() { } void QmitkStreamlineTrackingView::DeleteTrackingHandler() { - if (m_TrackingHandler != nullptr) + if (!m_ThreadIsRunning && m_TrackingHandler != nullptr) { delete m_TrackingHandler; m_TrackingHandler = nullptr; + m_DeleteTrackingHandler = false; + } + else if (m_ThreadIsRunning) + { + m_DeleteTrackingHandler = true; } } void QmitkStreamlineTrackingView::ForestSwitched() { DeleteTrackingHandler(); } void QmitkStreamlineTrackingView::OutputStyleSwitched() { if (m_InteractiveNode.IsNotNull()) GetDataStorage()->Remove(m_InteractiveNode); m_InteractiveNode = nullptr; } void QmitkStreamlineTrackingView::OnSelectionChanged( berry::IWorkbenchPart::Pointer , const QList& nodes ) { + std::vector< mitk::DataNode::Pointer > last_nodes = m_InputImageNodes; m_InputImageNodes.clear(); m_InputImages.clear(); m_AdditionalInputImages.clear(); - DeleteTrackingHandler(); + bool retrack = false; for( auto node : nodes ) { if( node.IsNotNull() && dynamic_cast(node->GetData()) ) { if( dynamic_cast(node->GetData()) ) { m_InputImageNodes.push_back(node); m_InputImages.push_back(dynamic_cast(node->GetData())); + retrack = true; } else if ( dynamic_cast(node->GetData()) ) { m_InputImageNodes.push_back(node); m_InputImages.push_back(dynamic_cast(node->GetData())); + retrack = true; } else if ( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( dynamic_cast(node->GetData())) ) { m_InputImageNodes.push_back(node); m_InputImages.push_back(dynamic_cast(node->GetData())); + retrack = true; } else { mitk::Image* img = dynamic_cast(node->GetData()); if (img!=nullptr) { int dim = img->GetDimension(); unsigned int* dimensions = img->GetDimensions(); if (dim==4 && dimensions[3]%3==0) { m_InputImageNodes.push_back(node); m_InputImages.push_back(dynamic_cast(node->GetData())); + retrack = true; } else if (dim==3) { m_AdditionalInputImages.push_back(dynamic_cast(node->GetData())); } } } } } + // sometimes the OnSelectionChanged event is sent twice and actually no selection has changed for the first event. We need to catch that. + if (last_nodes.size() == m_InputImageNodes.size()) + { + bool same_nodes = true; + for (unsigned int i=0; im_TensorImageLabel->setText("mandatory"); m_Controls->m_fBox->setEnabled(false); m_Controls->m_fLabel->setEnabled(false); m_Controls->m_gBox->setEnabled(false); m_Controls->m_gLabel->setEnabled(false); m_Controls->m_FaImageBox->setEnabled(false); m_Controls->mFaImageLabel->setEnabled(false); m_Controls->m_OdfCutoffBox->setEnabled(false); m_Controls->m_OdfCutoffLabel->setEnabled(false); m_Controls->m_SharpenOdfsBox->setEnabled(false); m_Controls->m_ForestBox->setEnabled(false); m_Controls->m_ForestLabel->setEnabled(false); m_Controls->commandLinkButton->setEnabled(false); if (m_Controls->m_TissueImageBox->GetSelectedNode().IsNotNull()) m_Controls->m_SeedGmBox->setEnabled(true); else m_Controls->m_SeedGmBox->setEnabled(false); if(!m_InputImageNodes.empty()) { if (m_InputImageNodes.size()>1) m_Controls->m_TensorImageLabel->setText(m_InputImageNodes.size()+" images selected"); else m_Controls->m_TensorImageLabel->setText(m_InputImageNodes.at(0)->GetName().c_str()); m_Controls->m_InputData->setTitle("Input Data"); m_Controls->commandLinkButton->setEnabled(!m_Controls->m_InteractiveBox->isChecked() && !m_ThreadIsRunning); m_Controls->m_ScalarThresholdBox->setEnabled(true); m_Controls->m_FaThresholdLabel->setEnabled(true); if ( dynamic_cast(m_InputImageNodes.at(0)->GetData()) ) { m_Controls->m_fBox->setEnabled(true); m_Controls->m_fLabel->setEnabled(true); m_Controls->m_gBox->setEnabled(true); m_Controls->m_gLabel->setEnabled(true); m_Controls->mFaImageLabel->setEnabled(true); m_Controls->m_FaImageBox->setEnabled(true); } else if ( dynamic_cast(m_InputImageNodes.at(0)->GetData()) ) { m_Controls->mFaImageLabel->setEnabled(true); m_Controls->m_FaImageBox->setEnabled(true); m_Controls->m_OdfCutoffBox->setEnabled(true); m_Controls->m_OdfCutoffLabel->setEnabled(true); m_Controls->m_SharpenOdfsBox->setEnabled(true); } else if ( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( dynamic_cast(m_InputImageNodes.at(0)->GetData())) ) { m_Controls->m_ForestBox->setEnabled(true); m_Controls->m_ForestLabel->setEnabled(true); m_Controls->m_ScalarThresholdBox->setEnabled(false); m_Controls->m_FaThresholdLabel->setEnabled(false); } } else m_Controls->m_InputData->setTitle("Please Select Input Data"); } void QmitkStreamlineTrackingView::StartStopTrackingGui(bool start) { m_ThreadIsRunning = start; if (!m_Controls->m_InteractiveBox->isChecked()) { m_Controls->commandLinkButton_2->setVisible(start); m_Controls->commandLinkButton->setVisible(!start); m_Controls->m_InteractiveBox->setEnabled(!start); m_Controls->m_StatusTextBox->setVisible(start); } } void QmitkStreamlineTrackingView::DoFiberTracking() { if (m_ThreadIsRunning) return; if (m_InputImages.empty()) return; if (m_Controls->m_InteractiveBox->isChecked() && m_SeedPoints.empty()) return; StartStopTrackingGui(true); m_Tracker = TrackerType::New(); if( dynamic_cast(m_InputImageNodes.at(0)->GetData()) ) { typedef itk::Image< itk::DiffusionTensor3D, 3> TensorImageType; typedef mitk::ImageToItk CasterType; if (m_Controls->m_ModeBox->currentIndex()==1) { if (m_InputImages.size()>1) { QMessageBox::information(nullptr, "Information", "Probabilistic tensor tractography is only implemented for single-tensor mode!"); StartStopTrackingGui(false); return; } if (m_FirstTensorProbRun) { QMessageBox::information(nullptr, "Information", "Internally calculating ODF from tensor image and performing probabilistic ODF tractography. ODFs are sharpened (min-max normalized and raised to the power of 4). TEND parameters are ignored."); m_FirstTensorProbRun = false; } if (m_TrackingHandler==nullptr) { typedef mitk::ImageToItk< mitk::TrackingHandlerOdf::ItkOdfImageType > CasterType; m_TrackingHandler = new mitk::TrackingHandlerOdf(); TensorImageType::Pointer itkImg = TensorImageType::New(); mitk::CastToItkImage(m_InputImages.at(0), itkImg); typedef itk::TensorImageToQBallImageFilter< float, float > FilterType; FilterType::Pointer filter = FilterType::New(); filter->SetInput( itkImg ); filter->Update(); dynamic_cast(m_TrackingHandler)->SetOdfImage(filter->GetOutput()); if (m_Controls->m_FaImageBox->GetSelectedNode().IsNotNull()) { ItkFloatImageType::Pointer itkImg = ItkFloatImageType::New(); mitk::CastToItkImage(dynamic_cast(m_Controls->m_FaImageBox->GetSelectedNode()->GetData()), itkImg); dynamic_cast(m_TrackingHandler)->SetGfaImage(itkImg); } } dynamic_cast(m_TrackingHandler)->SetGfaThreshold(m_Controls->m_ScalarThresholdBox->value()); dynamic_cast(m_TrackingHandler)->SetOdfThreshold(0); dynamic_cast(m_TrackingHandler)->SetSharpenOdfs(true); } else { if (m_TrackingHandler==nullptr) { m_TrackingHandler = new mitk::TrackingHandlerTensor(); for (int i=0; i<(int)m_InputImages.size(); i++) { TensorImageType::Pointer itkImg = TensorImageType::New(); mitk::CastToItkImage(m_InputImages.at(i), itkImg); dynamic_cast(m_TrackingHandler)->AddTensorImage(itkImg); } if (m_Controls->m_FaImageBox->GetSelectedNode().IsNotNull()) { ItkFloatImageType::Pointer itkImg = ItkFloatImageType::New(); mitk::CastToItkImage(dynamic_cast(m_Controls->m_FaImageBox->GetSelectedNode()->GetData()), itkImg); dynamic_cast(m_TrackingHandler)->SetFaImage(itkImg); } } dynamic_cast(m_TrackingHandler)->SetFaThreshold(m_Controls->m_ScalarThresholdBox->value()); dynamic_cast(m_TrackingHandler)->SetF((float)m_Controls->m_fBox->value()); dynamic_cast(m_TrackingHandler)->SetG((float)m_Controls->m_gBox->value()); } } else if ( dynamic_cast(m_InputImageNodes.at(0)->GetData()) ) { if (m_TrackingHandler==nullptr) { typedef mitk::ImageToItk< mitk::TrackingHandlerOdf::ItkOdfImageType > CasterType; m_TrackingHandler = new mitk::TrackingHandlerOdf(); mitk::TrackingHandlerOdf::ItkOdfImageType::Pointer itkImg = mitk::TrackingHandlerOdf::ItkOdfImageType::New(); mitk::CastToItkImage(m_InputImages.at(0), itkImg); dynamic_cast(m_TrackingHandler)->SetOdfImage(itkImg); if (m_Controls->m_FaImageBox->GetSelectedNode().IsNotNull()) { ItkFloatImageType::Pointer itkImg = ItkFloatImageType::New(); mitk::CastToItkImage(dynamic_cast(m_Controls->m_FaImageBox->GetSelectedNode()->GetData()), itkImg); dynamic_cast(m_TrackingHandler)->SetGfaImage(itkImg); } } dynamic_cast(m_TrackingHandler)->SetGfaThreshold(m_Controls->m_ScalarThresholdBox->value()); dynamic_cast(m_TrackingHandler)->SetOdfThreshold(m_Controls->m_OdfCutoffBox->value()); dynamic_cast(m_TrackingHandler)->SetSharpenOdfs(m_Controls->m_SharpenOdfsBox->isChecked()); } else if ( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( dynamic_cast(m_InputImageNodes.at(0)->GetData())) ) { if ( m_Controls->m_ForestBox->GetSelectedNode().IsNull() ) { QMessageBox::information(nullptr, "Information", "Not random forest for machine learning based tractography selected."); StartStopTrackingGui(false); return; } if (m_TrackingHandler==nullptr) { mitk::TractographyForest::Pointer forest = dynamic_cast(m_Controls->m_ForestBox->GetSelectedNode()->GetData()); mitk::Image::Pointer dwi = dynamic_cast(m_InputImageNodes.at(0)->GetData()); std::vector< std::vector< ItkFloatImageType::Pointer > > additionalFeatureImages; additionalFeatureImages.push_back(std::vector< ItkFloatImageType::Pointer >()); for (auto img : m_AdditionalInputImages) { ItkFloatImageType::Pointer itkimg = ItkFloatImageType::New(); mitk::CastToItkImage(img, itkimg); additionalFeatureImages.at(0).push_back(itkimg); } bool forest_valid = false; if (forest->GetNumFeatures()>=100) { int num_previous_directions = (forest->GetNumFeatures() - (100 + additionalFeatureImages.at(0).size()))/3; m_TrackingHandler = new mitk::TrackingHandlerRandomForest<6, 100>(); dynamic_cast*>(m_TrackingHandler)->AddDwi(dwi); dynamic_cast*>(m_TrackingHandler)->SetAdditionalFeatureImages(additionalFeatureImages); dynamic_cast*>(m_TrackingHandler)->SetForest(forest); dynamic_cast*>(m_TrackingHandler)->SetNumPreviousDirections(num_previous_directions); forest_valid = dynamic_cast*>(m_TrackingHandler)->IsForestValid(); } else { int num_previous_directions = (forest->GetNumFeatures() - (28 + additionalFeatureImages.at(0).size()))/3; m_TrackingHandler = new mitk::TrackingHandlerRandomForest<6, 28>(); dynamic_cast*>(m_TrackingHandler)->AddDwi(dwi); dynamic_cast*>(m_TrackingHandler)->SetAdditionalFeatureImages(additionalFeatureImages); dynamic_cast*>(m_TrackingHandler)->SetForest(forest); dynamic_cast*>(m_TrackingHandler)->SetNumPreviousDirections(num_previous_directions); forest_valid = dynamic_cast*>(m_TrackingHandler)->IsForestValid(); } if (!forest_valid) { QMessageBox::information(nullptr, "Information", "Random forest is invalid. The forest signatue does not match the parameters of TrackingHandlerRandomForest."); StartStopTrackingGui(false); return; } } } else { if (m_Controls->m_ModeBox->currentIndex()==1) { QMessageBox::information(nullptr, "Information", "Probabilstic tractography is not implemented for peak images."); StartStopTrackingGui(false); return; } try { if (m_TrackingHandler==nullptr) { typedef mitk::ImageToItk< mitk::TrackingHandlerPeaks::PeakImgType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(m_InputImages.at(0)); caster->Update(); mitk::TrackingHandlerPeaks::PeakImgType::Pointer itkImg = caster->GetOutput(); m_TrackingHandler = new mitk::TrackingHandlerPeaks(); dynamic_cast(m_TrackingHandler)->SetPeakImage(itkImg); } dynamic_cast(m_TrackingHandler)->SetPeakThreshold(m_Controls->m_ScalarThresholdBox->value()); } catch(...) { StartStopTrackingGui(false); return; } } m_TrackingHandler->SetFlipX(m_Controls->m_FlipXBox->isChecked()); m_TrackingHandler->SetFlipY(m_Controls->m_FlipYBox->isChecked()); m_TrackingHandler->SetFlipZ(m_Controls->m_FlipZBox->isChecked()); m_TrackingHandler->SetInterpolate(m_Controls->m_InterpolationBox->isChecked()); switch (m_Controls->m_ModeBox->currentIndex()) { case 0: m_TrackingHandler->SetMode(mitk::TrackingDataHandler::MODE::DETERMINISTIC); break; case 1: m_TrackingHandler->SetMode(mitk::TrackingDataHandler::MODE::PROBABILISTIC); break; default: m_TrackingHandler->SetMode(mitk::TrackingDataHandler::MODE::DETERMINISTIC); } if (m_Controls->m_InteractiveBox->isChecked()) { m_Tracker->SetSeedPoints(m_SeedPoints); } else if (m_Controls->m_SeedImageBox->GetSelectedNode().IsNotNull()) { ItkUCharImageType::Pointer mask = ItkUCharImageType::New(); mitk::CastToItkImage(dynamic_cast(m_Controls->m_SeedImageBox->GetSelectedNode()->GetData()), mask); m_Tracker->SetSeedImage(mask); } if (m_Controls->m_MaskImageBox->GetSelectedNode().IsNotNull()) { ItkUCharImageType::Pointer mask = ItkUCharImageType::New(); mitk::CastToItkImage(dynamic_cast(m_Controls->m_MaskImageBox->GetSelectedNode()->GetData()), mask); m_Tracker->SetMaskImage(mask); } if (m_Controls->m_StopImageBox->GetSelectedNode().IsNotNull()) { ItkUCharImageType::Pointer mask = ItkUCharImageType::New(); mitk::CastToItkImage(dynamic_cast(m_Controls->m_StopImageBox->GetSelectedNode()->GetData()), mask); m_Tracker->SetStoppingRegions(mask); } if (m_Controls->m_TissueImageBox->GetSelectedNode().IsNotNull()) { ItkUCharImageType::Pointer mask = ItkUCharImageType::New(); mitk::CastToItkImage(dynamic_cast(m_Controls->m_TissueImageBox->GetSelectedNode()->GetData()), mask); m_Tracker->SetTissueImage(mask); m_Tracker->SetSeedOnlyGm(m_Controls->m_SeedGmBox->isChecked()); } + m_Tracker->SetVerbose(!m_Controls->m_InteractiveBox->isChecked()); m_Tracker->SetSeedsPerVoxel(m_Controls->m_SeedsPerVoxelBox->value()); m_Tracker->SetStepSize(m_Controls->m_StepSizeBox->value()); m_Tracker->SetSamplingDistance(m_Controls->m_SamplingDistanceBox->value()); m_Tracker->SetUseStopVotes(m_Controls->m_StopVotesBox->isChecked()); m_Tracker->SetOnlyForwardSamples(m_Controls->m_FrontalSamplesBox->isChecked()); m_Tracker->SetAposterioriCurvCheck(false); m_Tracker->SetMaxNumTracts(m_Controls->m_NumFibersBox->value()); m_Tracker->SetNumberOfSamples(m_Controls->m_NumSamplesBox->value()); m_Tracker->SetTrackingHandler(m_TrackingHandler); m_Tracker->SetAngularThreshold(m_Controls->m_AngularThresholdBox->value()); m_Tracker->SetMinTractLength(m_Controls->m_MinTractLengthBox->value()); m_Tracker->SetUseOutputProbabilityMap(m_Controls->m_OutputProbMap->isChecked()); m_TrackingThread.start(QThread::LowestPriority); } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/src/internal/QmitkStreamlineTrackingView.h b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/src/internal/QmitkStreamlineTrackingView.h index 4c377537d2..097653bee0 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/src/internal/QmitkStreamlineTrackingView.h +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/src/internal/QmitkStreamlineTrackingView.h @@ -1,140 +1,143 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef QmitkStreamlineTrackingView_h #define QmitkStreamlineTrackingView_h #include #include "ui_QmitkStreamlineTrackingViewControls.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include +#include class QmitkStreamlineTrackingView; class QmitkStreamlineTrackingWorker : public QObject { Q_OBJECT public: QmitkStreamlineTrackingWorker(QmitkStreamlineTrackingView* view); public slots: void run(); private: QmitkStreamlineTrackingView* m_View; }; /*! \brief View for tensor based deterministic streamline fiber tracking. */ class QmitkStreamlineTrackingView : public QmitkAbstractView { // this is needed for all Qt objects that should have a Qt meta-object // (everything that derives from QObject and wants to have signal/slots) Q_OBJECT public: static const std::string VIEW_ID; typedef itk::Image< unsigned char, 3 > ItkUCharImageType; typedef itk::Image< float, 3 > ItkFloatImageType; typedef itk::StreamlineTrackingFilter TrackerType; QmitkStreamlineTrackingView(); virtual ~QmitkStreamlineTrackingView(); virtual void CreateQtPartControl(QWidget *parent) override; /// /// Sets the focus to an internal widget. /// virtual void SetFocus() override; TrackerType::Pointer m_Tracker; QmitkStreamlineTrackingWorker m_TrackingWorker; QThread m_TrackingThread; protected slots: void DoFiberTracking(); ///< start fiber tracking void UpdateGui(); void ToggleInteractive(); void DeleteTrackingHandler(); void OnParameterChanged(); void InteractiveSeedChanged(bool posChanged=false); void ForestSwitched(); void OutputStyleSwitched(); void AfterThread(); ///< update gui etc. after tracking has finished void BeforeThread(); ///< start timer etc. void TimerUpdate(); void StopTractography(); + void OnSliceChanged(); protected: /// \brief called by QmitkAbstractView when DataManager's selection has changed virtual void OnSelectionChanged(berry::IWorkbenchPart::Pointer part, const QList& nodes) override; Ui::QmitkStreamlineTrackingViewControls* m_Controls; protected slots: private: void StartStopTrackingGui(bool start); - void OnSliceChanged(const itk::EventObject& e); - int m_SliceObserverTag1; - int m_SliceObserverTag2; - int m_SliceObserverTag3; std::vector< itk::Point > m_SeedPoints; mitk::DataNode::Pointer m_InteractiveNode; mitk::DataNode::Pointer m_InteractivePointSetNode; std::vector< mitk::DataNode::Pointer > m_InputImageNodes; ///< input image nodes std::vector< mitk::Image::Pointer > m_InputImages; ///< input images std::vector< mitk::Image::Pointer > m_AdditionalInputImages; bool m_FirstTensorProbRun; + bool m_FirstInteractiveRun; mitk::TrackingDataHandler* m_TrackingHandler; bool m_ThreadIsRunning; QTimer* m_TrackingTimer; + bool m_DeleteTrackingHandler; + QmitkSliceNavigationListener m_SliceChangeListener; + }; #endif // _QMITKFIBERTRACKINGVIEW_H_INCLUDED diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkControlVisualizationPropertiesView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkControlVisualizationPropertiesView.cpp index 6f3df84521..7fe4b64111 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkControlVisualizationPropertiesView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkControlVisualizationPropertiesView.cpp @@ -1,1178 +1,1179 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkControlVisualizationPropertiesView.h" #include "mitkNodePredicateDataType.h" #include "mitkDataNodeObject.h" #include "mitkOdfNormalizationMethodProperty.h" #include "mitkOdfScaleByProperty.h" #include "mitkResliceMethodProperty.h" #include "mitkRenderingManager.h" #include "mitkTbssImage.h" #include "mitkPlanarFigure.h" #include "mitkFiberBundle.h" #include "QmitkDataStorageComboBox.h" #include "mitkPlanarFigureInteractor.h" #include #include #include #include #include #include "usModuleRegistry.h" #include #include "mitkPlaneGeometry.h" #include #include "berryIWorkbenchWindow.h" #include "berryIWorkbenchPage.h" #include "berryISelectionService.h" #include "berryConstants.h" #include "berryPlatformUI.h" #include "itkRGBAPixel.h" #include #include "qwidgetaction.h" #include "qcolordialog.h" #include #include #include #define ROUND(a) ((a)>0 ? (int)((a)+0.5) : -(int)(0.5-(a))) const std::string QmitkControlVisualizationPropertiesView::VIEW_ID = "org.mitk.views.controlvisualizationpropertiesview"; using namespace berry; QmitkControlVisualizationPropertiesView::QmitkControlVisualizationPropertiesView() : QmitkAbstractView(), m_Controls(nullptr), m_CurrentSelection(0), m_IconTexOFF(new QIcon(":/QmitkDiffusionImaging/texIntOFFIcon.png")), m_IconTexON(new QIcon(":/QmitkDiffusionImaging/texIntONIcon.png")), m_IconGlyOFF_T(new QIcon(":/QmitkDiffusionImaging/glyphsoff_T.png")), m_IconGlyON_T(new QIcon(":/QmitkDiffusionImaging/glyphson_T.png")), m_IconGlyOFF_C(new QIcon(":/QmitkDiffusionImaging/glyphsoff_C.png")), m_IconGlyON_C(new QIcon(":/QmitkDiffusionImaging/glyphson_C.png")), m_IconGlyOFF_S(new QIcon(":/QmitkDiffusionImaging/glyphsoff_S.png")), m_IconGlyON_S(new QIcon(":/QmitkDiffusionImaging/glyphson_S.png")), m_GlyIsOn_T(false), m_GlyIsOn_C(false), m_GlyIsOn_S(false), m_CurrentPickingNode(0), m_FiberBundleObserverTag(0), m_FiberBundleObserveOpacityTag(0) { currentThickSlicesMode = 1; m_MyMenu = nullptr; int numThread = itk::MultiThreader::GetGlobalMaximumNumberOfThreads(); if (numThread > 12) numThread = 12; itk::MultiThreader::SetGlobalDefaultNumberOfThreads(numThread); } QmitkControlVisualizationPropertiesView::~QmitkControlVisualizationPropertiesView() { this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->RemovePostSelectionListener(/*"org.mitk.views.datamanager",*/ m_SelListener.data()); } void QmitkControlVisualizationPropertiesView::OnThickSlicesModeSelected( QAction* action ) { currentThickSlicesMode = action->data().toInt(); switch( currentThickSlicesMode ) { case 0: // toInt() returns 0 'otherwise'. return; // dummy code/todo: implement stuff. case 1: this->m_Controls->m_TSMenu->setText("MIP"); break; case 2: this->m_Controls->m_TSMenu->setText("SUM"); break; case 3: this->m_Controls->m_TSMenu->setText("WEIGH"); break; default: return; // dummy code/todo: implement stuff. } if (auto renderWindowPart = this->GetRenderWindowPart(OPEN)) { /// TODO There is no way to access the individual crosshair planes through the render window part API. /// There could be a new 'mitk::DataNode* mitk::ILinkedRenderWindowPart::GetSlicingPlane(const std::string& name) const' /// function for this purpose. For the time being, I comment out the lines below, but they are valid /// and they have to be re-enabled after the crosshair planes can be accessed again. // mitk::DataNode* n; // n = renderWindowPart->GetSlicingPlane("axial"); // if (n) { n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( currentThickSlicesMode ) ); } // n = renderWindowPart->GetSlicingPlane("sagittal"); // if (n) { n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( currentThickSlicesMode ) ); } // n = renderWindowPart->GetSlicingPlane("coronal"); // if (n) { n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( currentThickSlicesMode ) ); } mitk::BaseRenderer::Pointer renderer; renderer = renderWindowPart->GetQmitkRenderWindow("axial")->GetRenderer(); if (renderer.IsNotNull()) { renderer->SendUpdateSlice(); } renderer = renderWindowPart->GetQmitkRenderWindow("sagittal")->GetRenderer(); if (renderer.IsNotNull()) { renderer->SendUpdateSlice(); } renderer = renderWindowPart->GetQmitkRenderWindow("coronal")->GetRenderer(); if (renderer.IsNotNull()) { renderer->SendUpdateSlice(); } renderer->GetRenderingManager()->RequestUpdateAll(); } } void QmitkControlVisualizationPropertiesView::OnTSNumChanged( int num ) { if (auto renderWindowPart = this->GetRenderWindowPart(OPEN)) { /// TODO There is no way to access the individual crosshair planes through the render window part API. /// There could be a new 'mitk::DataNode* mitk::ILinkedRenderWindowPart::GetSlicingPlane(const std::string& name) const' /// function for this purpose. For the time being, I comment out the lines below, but they are valid /// and they have to be re-enabled after the crosshair planes can be accessed again. // if(num==0) // { // mitk::DataNode* n; // n = renderWindowPart->GetSlicingPlane("axial"); // if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( 0 ) ); // if(n) n->SetProperty( "reslice.thickslices.num", mitk::IntProperty::New( num ) ); // if(n) n->SetProperty( "reslice.thickslices.showarea", mitk::BoolProperty::New( false ) ); // // n = renderWindowPart->GetSlicingPlane("sagittal"); // if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( 0 ) ); // if(n) n->SetProperty( "reslice.thickslices.num", mitk::IntProperty::New( num ) ); // if(n) n->SetProperty( "reslice.thickslices.showarea", mitk::BoolProperty::New( false ) ); // // n = renderWindowPart->GetSlicingPlane("coronal"); // if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( 0 ) ); // if(n) n->SetProperty( "reslice.thickslices.num", mitk::IntProperty::New( num ) ); // if(n) n->SetProperty( "reslice.thickslices.showarea", mitk::BoolProperty::New( false ) ); // } // else // { // mitk::DataNode* n; // n = renderWindowPart->GetSlicingPlane("axial"); // if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( currentThickSlicesMode ) ); // if(n) n->SetProperty( "reslice.thickslices.num", mitk::IntProperty::New( num ) ); // if(n) n->SetProperty( "reslice.thickslices.showarea", mitk::BoolProperty::New( (num>0) ) ); // // n = renderWindowPart->GetSlicingPlane("sagittal"); // if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( currentThickSlicesMode ) ); // if(n) n->SetProperty( "reslice.thickslices.num", mitk::IntProperty::New( num ) ); // if(n) n->SetProperty( "reslice.thickslices.showarea", mitk::BoolProperty::New( (num>0) ) ); // // n = renderWindowPart->GetSlicingPlane("coronal"); // if(n) n->SetProperty( "reslice.thickslices", mitk::ResliceMethodProperty::New( currentThickSlicesMode ) ); // if(n) n->SetProperty( "reslice.thickslices.num", mitk::IntProperty::New( num ) ); // if(n) n->SetProperty( "reslice.thickslices.showarea", mitk::BoolProperty::New( (num>0) ) ); // } m_TSLabel->setText(QString::number( num*2 + 1 )); mitk::BaseRenderer::Pointer renderer; renderer = renderWindowPart->GetQmitkRenderWindow("axial")->GetRenderer(); if(renderer.IsNotNull()) { renderer->SendUpdateSlice(); } renderer = nullptr; renderer = renderWindowPart->GetQmitkRenderWindow("sagittal")->GetRenderer(); if(renderer.IsNotNull()) { renderer->SendUpdateSlice(); } renderer = nullptr; renderer = renderWindowPart->GetQmitkRenderWindow("coronal")->GetRenderer(); if(renderer.IsNotNull()) { renderer->SendUpdateSlice(); } renderer->GetRenderingManager()->RequestUpdateAll(mitk::RenderingManager::REQUEST_UPDATE_2DWINDOWS); } } void QmitkControlVisualizationPropertiesView::CreateQtPartControl(QWidget *parent) { if (!m_Controls) { // create GUI widgets m_Controls = new Ui::QmitkControlVisualizationPropertiesViewControls; m_Controls->setupUi(parent); this->CreateConnections(); // hide warning (ODFs in rotated planes) m_Controls->m_lblRotatedPlanesWarning->hide(); m_MyMenu = new QMenu(parent); m_Controls->m_TSMenu->setMenu( m_MyMenu ); QIcon iconFiberFade(":/QmitkDiffusionImaging/MapperEfx2D.png"); m_Controls->m_FiberFading2D->setIcon(iconFiberFade); #ifndef DIFFUSION_IMAGING_EXTENDED int size = m_Controls->m_AdditionalScaling->count(); for(int t=0; tm_AdditionalScaling->itemText(t).toStdString() == "Scale by ASR") { m_Controls->m_AdditionalScaling->removeItem(t); } } #endif m_Controls->m_ScalingFrame->setVisible(false); m_Controls->m_NormalizationFrame->setVisible(false); + m_Controls->m_Crosshair->setVisible(false); } } void QmitkControlVisualizationPropertiesView::SetFocus() { m_Controls->m_TSMenu->setFocus(); } void QmitkControlVisualizationPropertiesView::SliceRotation(const itk::EventObject&) { // test if plane rotated if( m_GlyIsOn_T || m_GlyIsOn_C || m_GlyIsOn_S ) { if( this->IsPlaneRotated() ) { // show label m_Controls->m_lblRotatedPlanesWarning->show(); } else { //hide label m_Controls->m_lblRotatedPlanesWarning->hide(); } } } void QmitkControlVisualizationPropertiesView::NodeRemoved(const mitk::DataNode* /*node*/) { } #include void QmitkControlVisualizationPropertiesView::CreateConnections() { if ( m_Controls ) { connect( (QObject*)(m_Controls->m_VisibleOdfsON_T), SIGNAL(clicked()), this, SLOT(VisibleOdfsON_T()) ); connect( (QObject*)(m_Controls->m_VisibleOdfsON_S), SIGNAL(clicked()), this, SLOT(VisibleOdfsON_S()) ); connect( (QObject*)(m_Controls->m_VisibleOdfsON_C), SIGNAL(clicked()), this, SLOT(VisibleOdfsON_C()) ); connect( (QObject*)(m_Controls->m_ShowMaxNumber), SIGNAL(editingFinished()), this, SLOT(ShowMaxNumberChanged()) ); connect( (QObject*)(m_Controls->m_NormalizationDropdown), SIGNAL(currentIndexChanged(int)), this, SLOT(NormalizationDropdownChanged(int)) ); connect( (QObject*)(m_Controls->m_ScalingFactor), SIGNAL(valueChanged(double)), this, SLOT(ScalingFactorChanged(double)) ); connect( (QObject*)(m_Controls->m_AdditionalScaling), SIGNAL(currentIndexChanged(int)), this, SLOT(AdditionalScaling(int)) ); connect( (QObject*)(m_Controls->m_ScalingCheckbox), SIGNAL(clicked()), this, SLOT(ScalingCheckbox()) ); connect((QObject*) m_Controls->m_ResetColoring, SIGNAL(clicked()), (QObject*) this, SLOT(BundleRepresentationResetColoring())); connect((QObject*) m_Controls->m_FiberFading2D, SIGNAL(clicked()), (QObject*) this, SLOT( Fiber2DfadingEFX() ) ); connect((QObject*) m_Controls->m_FiberThicknessSlider, SIGNAL(sliderReleased()), (QObject*) this, SLOT( FiberSlicingThickness2D() ) ); connect((QObject*) m_Controls->m_FiberThicknessSlider, SIGNAL(valueChanged(int)), (QObject*) this, SLOT( FiberSlicingUpdateLabel(int) )); connect((QObject*) m_Controls->m_Crosshair, SIGNAL(clicked()), (QObject*) this, SLOT(SetInteractor())); connect((QObject*) m_Controls->m_LineWidth, SIGNAL(editingFinished()), (QObject*) this, SLOT(LineWidthChanged())); connect((QObject*) m_Controls->m_TubeWidth, SIGNAL(editingFinished()), (QObject*) this, SLOT(TubeRadiusChanged())); connect( (QObject*) m_Controls->m_EllipsoidViewRadioButton, SIGNAL(toggled(bool)), (QObject*) this, SLOT(OnTensorViewChanged() ) ); connect( (QObject*) m_Controls->m_colouriseRainbowRadioButton, SIGNAL(toggled(bool)), (QObject*) this, SLOT(OnColourisationModeChanged() ) ); connect( (QObject*) m_Controls->m_randomModeRadioButton, SIGNAL(toggled(bool)), (QObject*) this, SLOT(OnRandomModeChanged() ) ); } } // set diffusion image channel to b0 volume void QmitkControlVisualizationPropertiesView::NodeAdded(const mitk::DataNode *node) { mitk::DataNode* notConst = const_cast(node); bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( dynamic_cast(node->GetData())) ); if (isDiffusionImage) { mitk::Image::Pointer dimg = dynamic_cast(notConst->GetData()); // if there is no b0 image in the dataset, the GetB0Indices() returns a vector of size 0 // and hence we cannot set the Property directly to .front() int displayChannelPropertyValue = 0; mitk::BValueMapProperty* bmapproperty = static_cast (dimg->GetProperty(mitk::DiffusionPropertyHelper::BVALUEMAPPROPERTYNAME.c_str()).GetPointer() ); mitk::DiffusionPropertyHelper::BValueMapType map = bmapproperty->GetBValueMap(); if( map[0].size() > 0) { displayChannelPropertyValue = map[0].front(); } notConst->SetIntProperty("DisplayChannel", displayChannelPropertyValue ); } } /* OnSelectionChanged is registered to SelectionService, therefore no need to implement SelectionService Listener explicitly */ void QmitkControlVisualizationPropertiesView::OnSelectionChanged(berry::IWorkbenchPart::Pointer /*part*/, const QList& nodes) { m_Controls->m_BundleControlsFrame->setVisible(false); m_Controls->m_ImageControlsFrame->setVisible(false); if (nodes.size()>1) // only do stuff if one node is selected return; m_Controls->m_NumberGlyphsFrame->setVisible(false); m_Controls->m_GlyphFrame->setVisible(false); m_Controls->m_TSMenu->setVisible(false); m_SelectedNode = nullptr; int numOdfImages = 0; for (mitk::DataNode::Pointer node: nodes) { if(node.IsNull()) continue; mitk::BaseData* nodeData = node->GetData(); if(nodeData == nullptr) continue; m_SelectedNode = node; if (dynamic_cast(nodeData)) { // handle fiber bundle property observers if (m_Color.IsNotNull()) { m_Color->RemoveObserver(m_FiberBundleObserverTag); } itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkControlVisualizationPropertiesView::SetFiberBundleCustomColor ); m_Color = dynamic_cast(node->GetProperty("color", nullptr)); if (m_Color.IsNotNull()) m_FiberBundleObserverTag = m_Color->AddObserver( itk::ModifiedEvent(), command ); if (m_Opacity.IsNotNull()) { m_Opacity->RemoveObserver(m_FiberBundleObserveOpacityTag); } itk::ReceptorMemberCommand::Pointer command2 = itk::ReceptorMemberCommand::New(); command2->SetCallbackFunction( this, &QmitkControlVisualizationPropertiesView::SetFiberBundleOpacity ); m_Opacity = dynamic_cast(node->GetProperty("opacity", nullptr)); if (m_Opacity.IsNotNull()) { m_FiberBundleObserveOpacityTag = m_Opacity->AddObserver( itk::ModifiedEvent(), command2 ); } m_Controls->m_BundleControlsFrame->setVisible(true); if(m_CurrentPickingNode != 0 && node.GetPointer() != m_CurrentPickingNode) { m_Controls->m_Crosshair->setEnabled(false); } else { m_Controls->m_Crosshair->setEnabled(true); } int width; node->GetIntProperty("shape.linewidth", width); m_Controls->m_LineWidth->setValue(width); float radius; node->GetFloatProperty("shape.tuberadius", radius); m_Controls->m_TubeWidth->setValue(radius); float range; node->GetFloatProperty("Fiber2DSliceThickness",range); mitk::FiberBundle::Pointer fib = dynamic_cast(node->GetData()); mitk::BaseGeometry::Pointer geo = fib->GetGeometry(); mitk::ScalarType max = geo->GetExtentInMM(0); max = std::max(max, geo->GetExtentInMM(1)); max = std::max(max, geo->GetExtentInMM(2)); m_Controls->m_FiberThicknessSlider->setMaximum(max * 10); m_Controls->m_FiberThicknessSlider->setValue(range * 10); } else if(dynamic_cast(nodeData) || dynamic_cast(nodeData)) { m_Controls->m_ImageControlsFrame->setVisible(true); m_Controls->m_NumberGlyphsFrame->setVisible(true); m_Controls->m_GlyphFrame->setVisible(true); m_Controls->m_NormalizationFrame->setVisible(true); if(m_NodeUsedForOdfVisualization.IsNotNull()) { m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_S", false); m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_C", false); m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_T", false); } m_NodeUsedForOdfVisualization = node; m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_S", m_GlyIsOn_S); m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_C", m_GlyIsOn_C); m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_T", m_GlyIsOn_T); int val; node->GetIntProperty("ShowMaxNumber", val); m_Controls->m_ShowMaxNumber->setValue(val); m_Controls->m_NormalizationDropdown ->setCurrentIndex(dynamic_cast(node->GetProperty("Normalization")) ->GetValueAsId()); float fval; node->GetFloatProperty("Scaling",fval); m_Controls->m_ScalingFactor->setValue(fval); m_Controls->m_AdditionalScaling ->setCurrentIndex(dynamic_cast(node->GetProperty("ScaleBy"))->GetValueAsId()); bool switchTensorViewValue = false; node->GetBoolProperty( "DiffusionCore.Rendering.OdfVtkMapper.SwitchTensorView", switchTensorViewValue ); if( dynamic_cast(nodeData) ) { m_Controls-> m_EllipsoidViewRadioButton-> setEnabled( true ); m_Controls-> m_EllipsoidViewRadioButton-> setChecked( switchTensorViewValue ); } else { m_Controls-> m_EllipsoidViewRadioButton-> setEnabled( false ); m_Controls-> m_EllipsoidViewRadioButton-> setChecked( false ); } bool colourisationModeBit = false; node-> GetBoolProperty( "DiffusionCore.Rendering.OdfVtkMapper.ColourisationModeBit", colourisationModeBit ); m_Controls-> m_colouriseSimpleRadioButton-> setChecked( colourisationModeBit ); bool randomModeBit = false; node-> GetBoolProperty( "DiffusionCore.Rendering.OdfVtkMapper.RandomModeBit", randomModeBit ); m_Controls-> m_randomModeRadioButton-> setChecked( randomModeBit ); numOdfImages++; } else if(dynamic_cast(nodeData)) { PlanarFigureFocus(); } else if( dynamic_cast(nodeData) ) { m_Controls->m_ImageControlsFrame->setVisible(true); m_Controls->m_TSMenu->setVisible(true); } } if( nodes.empty() ) { return; } mitk::DataNode::Pointer node = nodes.at(0); if( node.IsNull() ) { return; } QMenu *myMenu = m_MyMenu; myMenu->clear(); QActionGroup* thickSlicesActionGroup = new QActionGroup(myMenu); thickSlicesActionGroup->setExclusive(true); int currentTSMode = 0; { mitk::ResliceMethodProperty::Pointer m = dynamic_cast(node->GetProperty( "reslice.thickslices" )); if( m.IsNotNull() ) currentTSMode = m->GetValueAsId(); } int maxTS = 30; for (auto node: nodes) { mitk::Image* image = dynamic_cast(node->GetData()); if (image) { int size = std::max(image->GetDimension(0), std::max(image->GetDimension(1), image->GetDimension(2))); if (size>maxTS) { maxTS=size; } } } maxTS /= 2; int currentNum = 0; { mitk::IntProperty::Pointer m = dynamic_cast(node->GetProperty( "reslice.thickslices.num" )); if( m.IsNotNull() ) { currentNum = m->GetValue(); if(currentNum < 0) { currentNum = 0; } if(currentNum > maxTS) { currentNum = maxTS; } } } if(currentTSMode==0) { currentNum=0; } QSlider *m_TSSlider = new QSlider(myMenu); m_TSSlider->setMinimum(0); m_TSSlider->setMaximum(maxTS-1); m_TSSlider->setValue(currentNum); m_TSSlider->setOrientation(Qt::Horizontal); connect( m_TSSlider, SIGNAL( valueChanged(int) ), this, SLOT( OnTSNumChanged(int) ) ); QHBoxLayout* _TSLayout = new QHBoxLayout; _TSLayout->setContentsMargins(4,4,4,4); _TSLayout->addWidget(m_TSSlider); _TSLayout->addWidget(m_TSLabel=new QLabel(QString::number(currentNum*2+1),myMenu)); QWidget* _TSWidget = new QWidget; _TSWidget->setLayout(_TSLayout); QActionGroup* thickSliceModeActionGroup = new QActionGroup(myMenu); thickSliceModeActionGroup->setExclusive(true); QWidgetAction *m_TSSliderAction = new QWidgetAction(myMenu); m_TSSliderAction->setDefaultWidget(_TSWidget); myMenu->addAction(m_TSSliderAction); QAction* mipThickSlicesAction = new QAction(myMenu); mipThickSlicesAction->setActionGroup(thickSliceModeActionGroup); mipThickSlicesAction->setText("MIP (max. intensity proj.)"); mipThickSlicesAction->setCheckable(true); mipThickSlicesAction->setChecked(currentThickSlicesMode==1); mipThickSlicesAction->setData(1); myMenu->addAction( mipThickSlicesAction ); QAction* sumThickSlicesAction = new QAction(myMenu); sumThickSlicesAction->setActionGroup(thickSliceModeActionGroup); sumThickSlicesAction->setText("SUM (sum intensity proj.)"); sumThickSlicesAction->setCheckable(true); sumThickSlicesAction->setChecked(currentThickSlicesMode==2); sumThickSlicesAction->setData(2); myMenu->addAction( sumThickSlicesAction ); QAction* weightedThickSlicesAction = new QAction(myMenu); weightedThickSlicesAction->setActionGroup(thickSliceModeActionGroup); weightedThickSlicesAction->setText("WEIGHTED (gaussian proj.)"); weightedThickSlicesAction->setCheckable(true); weightedThickSlicesAction->setChecked(currentThickSlicesMode==3); weightedThickSlicesAction->setData(3); myMenu->addAction( weightedThickSlicesAction ); connect( thickSliceModeActionGroup, SIGNAL(triggered(QAction*)), this, SLOT(OnThickSlicesModeSelected(QAction*)) ); } void QmitkControlVisualizationPropertiesView::VisibleOdfsON_S() { m_GlyIsOn_S = m_Controls->m_VisibleOdfsON_S->isChecked(); if (m_NodeUsedForOdfVisualization.IsNull()) { MITK_WARN << "ODF visualization activated but m_NodeUsedForOdfVisualization is nullptr"; return; } m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_S", m_GlyIsOn_S); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::VisibleOdfsON_T() { m_GlyIsOn_T = m_Controls->m_VisibleOdfsON_T->isChecked(); if (m_NodeUsedForOdfVisualization.IsNull()) { MITK_WARN << "ODF visualization activated but m_NodeUsedForOdfVisualization is nullptr"; return; } m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_T", m_GlyIsOn_T); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::VisibleOdfsON_C() { m_GlyIsOn_C = m_Controls->m_VisibleOdfsON_C->isChecked(); if (m_NodeUsedForOdfVisualization.IsNull()) { MITK_WARN << "ODF visualization activated but m_NodeUsedForOdfVisualization is nullptr"; return; } m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_C", m_GlyIsOn_C); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } bool QmitkControlVisualizationPropertiesView::IsPlaneRotated() { mitk::Image* currentImage = dynamic_cast( m_NodeUsedForOdfVisualization->GetData() ); if( currentImage == nullptr ) { MITK_ERROR << " Casting problems. Returning false"; return false; } mitk::Vector3D imageNormal0 = currentImage->GetSlicedGeometry()->GetAxisVector(0); mitk::Vector3D imageNormal1 = currentImage->GetSlicedGeometry()->GetAxisVector(1); mitk::Vector3D imageNormal2 = currentImage->GetSlicedGeometry()->GetAxisVector(2); imageNormal0.Normalize(); imageNormal1.Normalize(); imageNormal2.Normalize(); auto renderWindowPart = this->GetRenderWindowPart(); double eps = 0.000001; // for all 2D renderwindows of the render window part check alignment { mitk::PlaneGeometry::ConstPointer displayPlane = dynamic_cast ( renderWindowPart->GetQmitkRenderWindow("axial")->GetRenderer()->GetCurrentWorldPlaneGeometry() ); if (displayPlane.IsNull()) { return false; } mitk::Vector3D normal = displayPlane->GetNormal(); normal.Normalize(); int test = 0; if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal0.GetVnlVector()))-1) > eps ) { test++; } if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal1.GetVnlVector()))-1) > eps ) { test++; } if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal2.GetVnlVector()))-1) > eps ) { test++; } if (test==3) { return true; } } { mitk::PlaneGeometry::ConstPointer displayPlane = dynamic_cast ( renderWindowPart->GetQmitkRenderWindow("sagittal")->GetRenderer()->GetCurrentWorldPlaneGeometry() ); if (displayPlane.IsNull()) { return false; } mitk::Vector3D normal = displayPlane->GetNormal(); normal.Normalize(); int test = 0; if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal0.GetVnlVector()))-1) > eps ) { test++; } if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal1.GetVnlVector()))-1) > eps ) { test++; } if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal2.GetVnlVector()))-1) > eps ) { test++; } if (test==3) { return true; } } { mitk::PlaneGeometry::ConstPointer displayPlane = dynamic_cast ( renderWindowPart->GetQmitkRenderWindow("coronal")->GetRenderer()->GetCurrentWorldPlaneGeometry() ); if (displayPlane.IsNull()) { return false; } mitk::Vector3D normal = displayPlane->GetNormal(); normal.Normalize(); int test = 0; if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal0.GetVnlVector()))-1) > eps ) { test++; } if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal1.GetVnlVector()))-1) > eps ) { test++; } if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal2.GetVnlVector()))-1) > eps ) { test++; } if (test==3) { return true; } } return false; } void QmitkControlVisualizationPropertiesView::ShowMaxNumberChanged() { int maxNr = m_Controls->m_ShowMaxNumber->value(); if ( maxNr < 1 ) { m_Controls->m_ShowMaxNumber->setValue( 1 ); maxNr = 1; } if ( dynamic_cast(m_SelectedNode->GetData()) || dynamic_cast(m_SelectedNode->GetData()) ) { m_SelectedNode->SetIntProperty("ShowMaxNumber", maxNr); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::NormalizationDropdownChanged(int normDropdown) { typedef mitk::OdfNormalizationMethodProperty PropType; PropType::Pointer normMeth = PropType::New(); switch(normDropdown) { case 0: normMeth->SetNormalizationToMinMax(); break; case 1: normMeth->SetNormalizationToMax(); break; case 2: normMeth->SetNormalizationToNone(); break; case 3: normMeth->SetNormalizationToGlobalMax(); break; default: normMeth->SetNormalizationToMinMax(); } if ( dynamic_cast(m_SelectedNode->GetData()) || dynamic_cast(m_SelectedNode->GetData()) ) { m_SelectedNode->SetProperty("Normalization", normMeth.GetPointer()); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::ScalingFactorChanged(double scalingFactor) { if ( dynamic_cast(m_SelectedNode->GetData()) || dynamic_cast(m_SelectedNode->GetData()) ) { m_SelectedNode->SetFloatProperty("Scaling", scalingFactor); } if (auto renderWindowPart = this->GetRenderWindowPart()) { renderWindowPart->RequestUpdate(); } } void QmitkControlVisualizationPropertiesView::AdditionalScaling(int additionalScaling) { typedef mitk::OdfScaleByProperty PropType; PropType::Pointer scaleBy = PropType::New(); switch(additionalScaling) { case 0: scaleBy->SetScaleByNothing(); break; case 1: scaleBy->SetScaleByGFA(); //m_Controls->params_frame->setVisible(true); break; #ifdef DIFFUSION_IMAGING_EXTENDED case 2: scaleBy->SetScaleByPrincipalCurvature(); // commented in for SPIE paper, Principle curvature scaling //m_Controls->params_frame->setVisible(true); break; #endif default: scaleBy->SetScaleByNothing(); } if ( dynamic_cast(m_SelectedNode->GetData()) || dynamic_cast(m_SelectedNode->GetData()) ) { m_SelectedNode->SetProperty("Normalization", scaleBy.GetPointer()); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::ScalingCheckbox() { m_Controls->m_ScalingFrame->setVisible( m_Controls->m_ScalingCheckbox->isChecked() ); if( ! m_Controls->m_ScalingCheckbox->isChecked() ) { m_Controls->m_AdditionalScaling->setCurrentIndex(0); m_Controls->m_ScalingFactor->setValue(1.0); } } void QmitkControlVisualizationPropertiesView::Fiber2DfadingEFX() { if (m_SelectedNode && dynamic_cast(m_SelectedNode->GetData()) ) { bool currentMode; m_SelectedNode->GetBoolProperty("Fiber2DfadeEFX", currentMode); m_SelectedNode->SetProperty("Fiber2DfadeEFX", mitk::BoolProperty::New(!currentMode)); dynamic_cast(m_SelectedNode->GetData())->RequestUpdate2D(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkControlVisualizationPropertiesView::FiberSlicingThickness2D() { if (m_SelectedNode && dynamic_cast(m_SelectedNode->GetData())) { float fibThickness = m_Controls->m_FiberThicknessSlider->value() * 0.1; float currentThickness = 0; m_SelectedNode->GetFloatProperty("Fiber2DSliceThickness", currentThickness); if ( fabs(fibThickness-currentThickness) < 0.001 ) { return; } m_SelectedNode->SetProperty("Fiber2DSliceThickness", mitk::FloatProperty::New(fibThickness)); dynamic_cast(m_SelectedNode->GetData())->RequestUpdate2D(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkControlVisualizationPropertiesView::FiberSlicingUpdateLabel(int value) { QString label = "Range %1 mm"; label = label.arg(value * 0.1); m_Controls->label_range->setText(label); FiberSlicingThickness2D(); } void QmitkControlVisualizationPropertiesView::SetFiberBundleOpacity(const itk::EventObject& /*e*/) { if(m_SelectedNode) { mitk::FiberBundle::Pointer fib = dynamic_cast(m_SelectedNode->GetData()); fib->RequestUpdate(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkControlVisualizationPropertiesView::SetFiberBundleCustomColor(const itk::EventObject& /*e*/) { if(m_SelectedNode && dynamic_cast(m_SelectedNode->GetData())) { float color[3]; m_SelectedNode->GetColor(color); mitk::FiberBundle::Pointer fib = dynamic_cast(m_SelectedNode->GetData()); fib->SetFiberColors(color[0]*255, color[1]*255, color[2]*255); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkControlVisualizationPropertiesView::BundleRepresentationResetColoring() { if(m_SelectedNode && dynamic_cast(m_SelectedNode->GetData())) { mitk::FiberBundle::Pointer fib = dynamic_cast(m_SelectedNode->GetData()); fib->ColorFibersByOrientation(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkControlVisualizationPropertiesView::PlanarFigureFocus() { if(m_SelectedNode) { mitk::PlanarFigure* _PlanarFigure = 0; _PlanarFigure = dynamic_cast (m_SelectedNode->GetData()); if (_PlanarFigure && _PlanarFigure->GetPlaneGeometry()) { QmitkRenderWindow* selectedRenderWindow = 0; bool PlanarFigureInitializedWindow = false; auto renderWindowPart = this->GetRenderWindowPart(OPEN); QmitkRenderWindow* axialRenderWindow = renderWindowPart->GetQmitkRenderWindow("axial"); if (m_SelectedNode->GetBoolProperty("PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, axialRenderWindow->GetRenderer())) { selectedRenderWindow = axialRenderWindow; } QmitkRenderWindow* sagittalRenderWindow = renderWindowPart->GetQmitkRenderWindow("sagittal"); if (!selectedRenderWindow && m_SelectedNode->GetBoolProperty( "PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, sagittalRenderWindow->GetRenderer())) { selectedRenderWindow = sagittalRenderWindow; } QmitkRenderWindow* coronalRenderWindow = renderWindowPart->GetQmitkRenderWindow("coronal"); if (!selectedRenderWindow && m_SelectedNode->GetBoolProperty( "PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, coronalRenderWindow->GetRenderer())) { selectedRenderWindow = coronalRenderWindow; } QmitkRenderWindow* _3DRenderWindow = renderWindowPart->GetQmitkRenderWindow("3d"); if (!selectedRenderWindow && m_SelectedNode->GetBoolProperty( "PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, _3DRenderWindow->GetRenderer())) { selectedRenderWindow = _3DRenderWindow; } const mitk::PlaneGeometry* _PlaneGeometry = _PlanarFigure->GetPlaneGeometry(); mitk::VnlVector normal = _PlaneGeometry->GetNormalVnl(); mitk::Geometry2D::ConstPointer worldGeometry1 = axialRenderWindow->GetRenderer()->GetCurrentWorldPlaneGeometry(); mitk::PlaneGeometry::ConstPointer _Plane1 = dynamic_cast( worldGeometry1.GetPointer() ); mitk::VnlVector normal1 = _Plane1->GetNormalVnl(); mitk::Geometry2D::ConstPointer worldGeometry2 = sagittalRenderWindow->GetRenderer()->GetCurrentWorldPlaneGeometry(); mitk::PlaneGeometry::ConstPointer _Plane2 = dynamic_cast( worldGeometry2.GetPointer() ); mitk::VnlVector normal2 = _Plane2->GetNormalVnl(); mitk::Geometry2D::ConstPointer worldGeometry3 = coronalRenderWindow->GetRenderer()->GetCurrentWorldPlaneGeometry(); mitk::PlaneGeometry::ConstPointer _Plane3 = dynamic_cast( worldGeometry3.GetPointer() ); mitk::VnlVector normal3 = _Plane3->GetNormalVnl(); normal[0] = fabs(normal[0]); normal[1] = fabs(normal[1]); normal[2] = fabs(normal[2]); normal1[0] = fabs(normal1[0]); normal1[1] = fabs(normal1[1]); normal1[2] = fabs(normal1[2]); normal2[0] = fabs(normal2[0]); normal2[1] = fabs(normal2[1]); normal2[2] = fabs(normal2[2]); normal3[0] = fabs(normal3[0]); normal3[1] = fabs(normal3[1]); normal3[2] = fabs(normal3[2]); double ang1 = angle(normal, normal1); double ang2 = angle(normal, normal2); double ang3 = angle(normal, normal3); if(ang1 < ang2 && ang1 < ang3) { selectedRenderWindow = axialRenderWindow; } else { if(ang2 < ang3) { selectedRenderWindow = sagittalRenderWindow; } else { selectedRenderWindow = coronalRenderWindow; } } // make node visible if (selectedRenderWindow) { const mitk::Point3D& centerP = _PlaneGeometry->GetOrigin(); selectedRenderWindow->GetSliceNavigationController()->ReorientSlices( centerP, _PlaneGeometry->GetNormal()); } } // set interactor for new node (if not already set) mitk::PlanarFigureInteractor::Pointer figureInteractor = dynamic_cast(m_SelectedNode->GetDataInteractor().GetPointer()); if(figureInteractor.IsNull()) { figureInteractor = mitk::PlanarFigureInteractor::New(); us::Module* planarFigureModule = us::ModuleRegistry::GetModule( "MitkPlanarFigure" ); figureInteractor->LoadStateMachine("PlanarFigureInteraction.xml", planarFigureModule ); figureInteractor->SetEventConfig( "PlanarFigureConfig.xml", planarFigureModule ); figureInteractor->SetDataNode( m_SelectedNode ); } m_SelectedNode->SetProperty("planarfigure.iseditable",mitk::BoolProperty::New(true)); } } void QmitkControlVisualizationPropertiesView::SetInteractor() { // BUG 19179 // typedef std::vector Container; // Container _NodeSet = this->GetDataManagerSelection(); // mitk::DataNode* node = 0; // mitk::FiberBundle* bundle = 0; // mitk::FiberBundleInteractor::Pointer bundleInteractor = 0; // // finally add all nodes to the model // for(Container::const_iterator it=_NodeSet.begin(); it!=_NodeSet.end() // ; it++) // { // node = const_cast(*it); // bundle = dynamic_cast(node->GetData()); // if(bundle) // { // bundleInteractor = dynamic_cast(node->GetInteractor()); // if(bundleInteractor.IsNotNull()) // mitk::GlobalInteraction::GetInstance()->RemoveInteractor(bundleInteractor); // if(!m_Controls->m_Crosshair->isChecked()) // { // m_Controls->m_Crosshair->setChecked(false); // this->GetActiveStdMultiWidget()->GetRenderWindow4()->setCursor(Qt::ArrowCursor); // m_CurrentPickingNode = 0; // } // else // { // m_Controls->m_Crosshair->setChecked(true); // bundleInteractor = mitk::FiberBundleInteractor::New("FiberBundleInteractor", node); // mitk::GlobalInteraction::GetInstance()->AddInteractor(bundleInteractor); // this->GetActiveStdMultiWidget()->GetRenderWindow4()->setCursor(Qt::CrossCursor); // m_CurrentPickingNode = node; // } // } // } } void QmitkControlVisualizationPropertiesView::TubeRadiusChanged() { if(m_SelectedNode && dynamic_cast(m_SelectedNode->GetData())) { float newRadius = m_Controls->m_TubeWidth->value(); m_SelectedNode->SetFloatProperty("shape.tuberadius", newRadius); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkControlVisualizationPropertiesView::LineWidthChanged() { if(m_SelectedNode && dynamic_cast(m_SelectedNode->GetData())) { int newWidth = m_Controls->m_LineWidth->value(); int currentWidth = 0; m_SelectedNode->GetIntProperty("shape.linewidth", currentWidth); if (currentWidth==newWidth) return; m_SelectedNode->SetIntProperty("shape.linewidth", newWidth); dynamic_cast(m_SelectedNode->GetData())->RequestUpdate(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkControlVisualizationPropertiesView::Welcome() { berry::PlatformUI::GetWorkbench()->GetIntroManager() ->ShowIntro(GetSite()->GetWorkbenchWindow(), false); } void QmitkControlVisualizationPropertiesView::OnTensorViewChanged() { if( m_NodeUsedForOdfVisualization.IsNotNull() ) { if( m_Controls-> m_EllipsoidViewRadioButton-> isChecked() ) { if ( m_SelectedNode and dynamic_cast( m_SelectedNode->GetData() ) ) { m_SelectedNode-> SetProperty( "DiffusionCore.Rendering.OdfVtkMapper.SwitchTensorView", mitk::BoolProperty::New( true ) ); mitk::OdfNormalizationMethodProperty::Pointer normalizationProperty = mitk::OdfNormalizationMethodProperty::New( mitk::ODFN_MAX ); m_SelectedNode-> SetProperty( "Normalization", normalizationProperty ); // type OdfNormalizationMethodProperty m_Controls-> m_NormalizationDropdown->setCurrentIndex ( dynamic_cast( m_SelectedNode->GetProperty("Normalization") )->GetValueAsId() ); } else { m_SelectedNode-> SetProperty( "DiffusionCore.Rendering.OdfVtkMapper.SwitchTensorView", mitk::BoolProperty::New( false ) ); m_Controls-> m_OdfViewRadioButton-> setChecked(true); m_Controls-> m_EllipsoidViewRadioButton-> setEnabled(false); } } else if( m_Controls-> m_OdfViewRadioButton-> isChecked() ) { m_SelectedNode-> SetProperty( "DiffusionCore.Rendering.OdfVtkMapper.SwitchTensorView", mitk::BoolProperty::New( false ) ); } mitk::RenderingManager::GetInstance()-> RequestUpdateAll(); } else { MITK_DEBUG << "QmitkControlVisualizationPropertiesView::OnTensorViewChanged()" " was called but m_NodeUsedForOdfVisualization was Null."; } } void QmitkControlVisualizationPropertiesView::OnColourisationModeChanged() { if( m_SelectedNode and m_NodeUsedForOdfVisualization.IsNotNull() ) { if( m_Controls-> m_colouriseRainbowRadioButton-> isChecked() ) { m_SelectedNode-> SetProperty( "DiffusionCore.Rendering.OdfVtkMapper.ColourisationModeBit", mitk::BoolProperty::New( false ) ); } else if ( m_Controls-> m_colouriseSimpleRadioButton-> isChecked() ) { m_SelectedNode-> SetProperty( "DiffusionCore.Rendering.OdfVtkMapper.ColourisationModeBit", mitk::BoolProperty::New( true ) ); } mitk::RenderingManager::GetInstance()-> RequestUpdateAll(); } else { MITK_DEBUG << "QmitkControlVisualizationPropertiesView::OnColourisationModeChanged()" " was called but m_NodeUsedForOdfVisualization was Null."; } } void QmitkControlVisualizationPropertiesView::OnRandomModeChanged() { if( m_SelectedNode and m_NodeUsedForOdfVisualization.IsNotNull() ) { if( m_Controls-> m_randomModeRadioButton-> isChecked() ) { m_SelectedNode-> SetProperty( "DiffusionCore.Rendering.OdfVtkMapper.RandomModeBit", mitk::BoolProperty::New( true ) ); } else if ( m_Controls-> m_orderedModeRadioButton-> isChecked() ) { m_SelectedNode-> SetProperty( "DiffusionCore.Rendering.OdfVtkMapper.RandomModeBit", mitk::BoolProperty::New( false ) ); } mitk::RenderingManager::GetInstance()-> RequestUpdateAll(); } else { MITK_DEBUG << "QmitkControlVisualizationPropertiesView::OnRandomModeChanged()" " was called but m_NodeUsedForOdfVisualization was Null."; } }