diff --git a/Modules/DiffusionImaging/DiffusionCore/include/Algorithms/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.cpp b/Modules/DiffusionImaging/DiffusionCore/include/Algorithms/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.cpp index 7719371cdb..5714634f89 100644 --- a/Modules/DiffusionImaging/DiffusionCore/include/Algorithms/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.cpp +++ b/Modules/DiffusionImaging/DiffusionCore/include/Algorithms/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.cpp @@ -1,839 +1,752 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef __itkAnalyticalDiffusionQballReconstructionImageFilter_cpp #define __itkAnalyticalDiffusionQballReconstructionImageFilter_cpp #include #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include #include #include "itkPointShell.h" using namespace boost::math; namespace itk { -#define QBALL_ANAL_RECON_PI M_PI - -template< class T, class TG, class TO, int L, int NODF> -AnalyticalDiffusionQballReconstructionImageFilter -::AnalyticalDiffusionQballReconstructionImageFilter() : +template< class T, class TG, class TO, int ShOrder, int NrOdfDirections> +AnalyticalDiffusionQballReconstructionImageFilter::AnalyticalDiffusionQballReconstructionImageFilter() : m_GradientDirectionContainer(nullptr), m_NumberOfGradientDirections(0), m_NumberOfBaselineImages(1), m_Threshold(NumericTraits< ReferencePixelType >::NonpositiveMin()), m_BValue(-1), m_Lambda(0.0), m_DirectionsDuplicated(false), m_Delta1(0.001), m_Delta2(0.001), m_UseMrtrixBasis(false) { // At least 1 inputs is necessary for a vector image. // For images added one at a time we need at least six this->SetNumberOfRequiredInputs( 1 ); } template< class TReferenceImagePixelType, class TGradientImagePixelType, class TOdfPixelType, - int NOrderL, + int ShOrder, int NrOdfDirections> -typename itk::AnalyticalDiffusionQballReconstructionImageFilter< -TReferenceImagePixelType,TGradientImagePixelType,TOdfPixelType, -NOrderL,NrOdfDirections>::OdfPixelType -itk::AnalyticalDiffusionQballReconstructionImageFilter - -::Normalize( OdfPixelType odf, - typename NumericTraits::AccumulateType b0 ) +typename itk::AnalyticalDiffusionQballReconstructionImageFilter< TReferenceImagePixelType,TGradientImagePixelType,TOdfPixelType, ShOrder,NrOdfDirections>::OdfPixelType +itk::AnalyticalDiffusionQballReconstructionImageFilter::Normalize( OdfPixelType odf, typename NumericTraits::AccumulateType b0 ) { switch( m_NormalizationMethod ) { case QBAR_STANDARD: { TOdfPixelType sum = 0; for(int i=0; i0) odf /= sum; return odf; break; } case QBAR_B_ZERO_B_VALUE: { for(int i=0; i -vnl_vector -itk::AnalyticalDiffusionQballReconstructionImageFilter - -::PreNormalize( vnl_vector vec, - typename NumericTraits::AccumulateType b0 ) +vnl_vector itk::AnalyticalDiffusionQballReconstructionImageFilter::PreNormalize( vnl_vector vec, typename NumericTraits::AccumulateType b0 ) { switch( m_NormalizationMethod ) { case QBAR_STANDARD: { int n = vec.size(); double b0f = (double)b0; for(int i=0; i=1) vec[i] = 1-m_Delta2/2; else if (vec[i]>=1-m_Delta2) vec[i] = 1-m_Delta2/2-(1-vec[i])*(1-vec[i])/(2*m_Delta2); vec[i] = log(-log(vec[i])); } return vec; break; } } return vec; } -template< class T, class TG, class TO, int L, int NODF> -void AnalyticalDiffusionQballReconstructionImageFilter -::BeforeThreadedGenerateData() +template< class T, class TG, class TO, int ShOrder, int NrOdfDirections> +void AnalyticalDiffusionQballReconstructionImageFilter::BeforeThreadedGenerateData() { // If we have more than 2 inputs, then each input, except the first is a // gradient image. The number of gradient images must match the number of // gradient directions. //const unsigned int numberOfInputs = this->GetNumberOfInputs(); // There need to be at least 6 gradient directions to be able to compute the // tensor basis - if( m_NumberOfGradientDirections < (L*L + L + 2)/2 + L ) + if( m_NumberOfGradientDirections < (ShOrder*ShOrder + ShOrder + 2)/2 + ShOrder ) { - itkExceptionMacro( << "Not enough gradient directions supplied (" << m_NumberOfGradientDirections << "). At least " << (L*L + L + 2)/2 + L << " needed for SH-order " << L); + itkExceptionMacro( << "Not enough gradient directions supplied (" << m_NumberOfGradientDirections << "). At least " << (ShOrder*ShOrder + ShOrder + 2)/2 + ShOrder << " needed for SH-order " << ShOrder); } // Input must be an itk::VectorImage. std::string gradientImageClassName( this->ProcessObject::GetInput(0)->GetNameOfClass()); if ( strcmp(gradientImageClassName.c_str(),"VectorImage") != 0 ) { - itkExceptionMacro( << - "There is only one Gradient image. I expect that to be a VectorImage. " - << "But its of type: " << gradientImageClassName ); + itkExceptionMacro( << "There is only one Gradient image. I expect that to be a VectorImage. " << "But its of type: " << gradientImageClassName ); } this->ComputeReconstructionMatrix(); - typename GradientImagesType::Pointer img = static_cast< GradientImagesType * >( - this->ProcessObject::GetInput(0) ); + typename GradientImagesType::Pointer img = static_cast< GradientImagesType * >( this->ProcessObject::GetInput(0) ); m_BZeroImage = BZeroImageType::New(); m_BZeroImage->SetSpacing( img->GetSpacing() ); // Set the image spacing m_BZeroImage->SetOrigin( img->GetOrigin() ); // Set the image origin m_BZeroImage->SetDirection( img->GetDirection() ); // Set the image direction m_BZeroImage->SetLargestPossibleRegion( img->GetLargestPossibleRegion()); m_BZeroImage->SetBufferedRegion( img->GetLargestPossibleRegion() ); m_BZeroImage->Allocate(); m_ODFSumImage = BZeroImageType::New(); m_ODFSumImage->SetSpacing( img->GetSpacing() ); // Set the image spacing m_ODFSumImage->SetOrigin( img->GetOrigin() ); // Set the image origin m_ODFSumImage->SetDirection( img->GetDirection() ); // Set the image direction m_ODFSumImage->SetLargestPossibleRegion( img->GetLargestPossibleRegion()); m_ODFSumImage->SetBufferedRegion( img->GetLargestPossibleRegion() ); m_ODFSumImage->Allocate(); m_CoefficientImage = CoefficientImageType::New(); m_CoefficientImage->SetSpacing( img->GetSpacing() ); // Set the image spacing m_CoefficientImage->SetOrigin( img->GetOrigin() ); // Set the image origin m_CoefficientImage->SetDirection( img->GetDirection() ); // Set the image direction m_CoefficientImage->SetLargestPossibleRegion( img->GetLargestPossibleRegion()); m_CoefficientImage->SetBufferedRegion( img->GetLargestPossibleRegion() ); m_CoefficientImage->Allocate(); if(m_NormalizationMethod == QBAR_SOLID_ANGLE || m_NormalizationMethod == QBAR_NONNEG_SOLID_ANGLE) m_Lambda = 0.0; } -template< class T, class TG, class TO, int L, int NODF> -void AnalyticalDiffusionQballReconstructionImageFilter +template< class T, class TG, class TO, int ShOrder, int NrOdfDirections> +void AnalyticalDiffusionQballReconstructionImageFilter ::ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, ThreadIdType ) { - typename OutputImageType::Pointer outputImage = - static_cast< OutputImageType * >(this->ProcessObject::GetPrimaryOutput()); + typename OutputImageType::Pointer outputImage = static_cast< OutputImageType * >(this->ProcessObject::GetPrimaryOutput()); ImageRegionIterator< OutputImageType > oit(outputImage, outputRegionForThread); oit.GoToBegin(); ImageRegionIterator< BZeroImageType > oit2(m_BZeroImage, outputRegionForThread); oit2.GoToBegin(); ImageRegionIterator< FloatImageType > oit3(m_ODFSumImage, outputRegionForThread); oit3.GoToBegin(); ImageRegionIterator< CoefficientImageType > oit4(m_CoefficientImage, outputRegionForThread); oit4.GoToBegin(); typedef ImageRegionConstIterator< GradientImagesType > GradientIteratorType; typedef typename GradientImagesType::PixelType GradientVectorType; typename GradientImagesType::Pointer gradientImagePointer = nullptr; // Would have liked a dynamic_cast here, but seems SGI doesn't like it // The enum will ensure that an inappropriate cast is not done gradientImagePointer = static_cast< GradientImagesType * >( this->ProcessObject::GetInput(0) ); GradientIteratorType git(gradientImagePointer, outputRegionForThread ); git.GoToBegin(); // Compute the indicies of the baseline images and gradient images std::vector baselineind; // contains the indicies of // the baseline images std::vector gradientind; // contains the indicies of // the gradient images for(GradientDirectionContainerType::ConstIterator gdcit = this->m_GradientDirectionContainer->Begin(); gdcit != this->m_GradientDirectionContainer->End(); ++gdcit) { float bval = gdcit.Value().two_norm(); bval = bval*bval*m_BValue; if(bval < 100) baselineind.push_back(gdcit.Index()); else gradientind.push_back(gdcit.Index()); } if( m_DirectionsDuplicated ) { int gradIndSize = gradientind.size(); for(int i=0; i::AccumulateType b0 = NumericTraits::Zero; // Average the baseline image pixels for(unsigned int i = 0; i < baselineind.size(); ++i) { b0 += b[baselineind[i]]; } b0 /= this->m_NumberOfBaselineImages; OdfPixelType odf(0.0); typename CoefficientImageType::PixelType coeffPixel(0.0); vnl_vector B(m_NumberOfGradientDirections); if( (b0 != 0) && (b0 >= m_Threshold) ) { for( unsigned int i = 0; i< m_NumberOfGradientDirections; i++ ) { B[i] = static_cast(b[gradientind[i]]); } B = PreNormalize(B, b0); if(m_NormalizationMethod == QBAR_SOLID_ANGLE) { vnl_vector coeffs(m_NumberCoefficients); - coeffs = ( (*m_CoeffReconstructionMatrix) * B ); - coeffs[0] += 1.0/(2.0*sqrt(QBALL_ANAL_RECON_PI)); - odf = ( (*m_SphericalHarmonicBasisMatrix) * coeffs ).data_block(); + coeffs = ( m_CoeffReconstructionMatrix * B ); + coeffs[0] += 1.0/(2.0*sqrt(M_PI)); + odf = ( m_SphericalHarmonicBasisMatrix * coeffs ).data_block(); coeffPixel = coeffs.data_block(); } else if(m_NormalizationMethod == QBAR_NONNEG_SOLID_ANGLE) { /** this would be the place to implement a non-negative * solver for quadratic programming problem: * min .5*|| Bc-s ||^2 subject to -CLPc <= 4*pi*ones * (refer to MICCAI 2009 Goh et al. "Estimating ODFs with PDF constraints") * .5*|| Bc-s ||^2 == .5*c'B'Bc - x'B's + .5*s's */ itkExceptionMacro( << "Nonnegative Solid Angle not yet implemented"); } else { vnl_vector coeffs(m_NumberCoefficients); - coeffs = ( (*m_CoeffReconstructionMatrix) * B ); - coeffs[0] += 1.0/(2.0*sqrt(QBALL_ANAL_RECON_PI)); + coeffs = ( m_CoeffReconstructionMatrix * B ); + coeffs[0] += 1.0/(2.0*sqrt(M_PI)); coeffPixel = coeffs.data_block(); - odf = ( (*m_ReconstructionMatrix) * B ).data_block(); + odf = ( m_ReconstructionMatrix * B ).data_block(); } odf = Normalize(odf, b0); - } oit.Set( odf ); oit2.Set( b0 ); float sum = 0; for (unsigned int k=0; k -void AnalyticalDiffusionQballReconstructionImageFilter -::tofile2(vnl_matrix *pA, std::string fname) +template< class T, class TG, class TO, int ShOrder, int NrOdfDirections> +void AnalyticalDiffusionQballReconstructionImageFilter +::tofile2(vnl_matrix *pA, std::string fname) { - vnl_matrix A = (*pA); + vnl_matrix A = (*pA); std::ofstream myfile; std::locale C("C"); std::locale originalLocale = myfile.getloc(); myfile.imbue(C); myfile.open (fname.c_str()); myfile << "A1=["; for(unsigned int i=0; i -void AnalyticalDiffusionQballReconstructionImageFilter -::Cart2Sph(double x, double y, double z, double *spherical) +template< class T, class TG, class TO, int ShOrder, int NrOdfDirections> +void AnalyticalDiffusionQballReconstructionImageFilter::Cart2Sph(double x, double y, double z, double *spherical) { double phi, theta, r; r = sqrt(x*x+y*y+z*z); if( r -double AnalyticalDiffusionQballReconstructionImageFilter -::Yj(int m, int l, double theta, double phi, bool useMRtrixBasis) +template< class T, class TG, class TO, int ShOrder, int NrOdfDirections> +double AnalyticalDiffusionQballReconstructionImageFilter::Yj(int m, int l, double theta, double phi, bool useMRtrixBasis) { if (!useMRtrixBasis) { if (m<0) return sqrt(2.0)*spherical_harmonic_r(l, -m, theta, phi); else if (m==0) return spherical_harmonic_r(l, m, theta, phi); else return pow(-1.0,m)*sqrt(2.0)*spherical_harmonic_i(l, m, theta, phi); } else { - double plm = legendre_p(l,abs(m),-cos(theta)); - double mag = sqrt((double)(2*l+1)/(4.0*M_PI)*factorial(l-abs(m))/factorial(l+abs(m)))*plm; + double plm = legendre_p(l,abs(m),-cos(theta)); + double mag = sqrt((double)(2*l+1)/(4.0*M_PI)*factorial(l-abs(m))/factorial(l+abs(m)))*plm; if (m>0) return mag*cos(m*phi); else if (m==0) return mag; else return mag*sin(-m*phi); } return 0; } -template< class T, class TG, class TO, int L, int NODF> -double AnalyticalDiffusionQballReconstructionImageFilter -::Legendre0(int l) +template< class T, class TG, class TO, int ShOrder, int NrOdfDirections> +double AnalyticalDiffusionQballReconstructionImageFilter::Legendre0(int l) { if( l%2 != 0 ) { return 0; } else { double prod1 = 1.0; for(int i=1;i -void AnalyticalDiffusionQballReconstructionImageFilter -::ComputeReconstructionMatrix() +template< class T, class TG, class TO, int ShOrder, int NrOdfDirections> +void AnalyticalDiffusionQballReconstructionImageFilter::ComputeReconstructionMatrix() { - - //for(int i=-6;i<7;i++) - // std::cout << boost::math::legendre_p(6, i, 0.65657) << std::endl; - - if( m_NumberOfGradientDirections < (L*L + L + 2)/2 + L ) + m_NumberCoefficients = (ShOrder*ShOrder + ShOrder + 2)/2 + ShOrder; + if( m_NumberOfGradientDirections < m_NumberCoefficients ) { - itkExceptionMacro( << "Not enough gradient directions supplied (" << m_NumberOfGradientDirections << "). At least " << (L*L + L + 2)/2 + L << " needed for SH-order " << L); + itkExceptionMacro( << "Not enough gradient directions supplied (" << m_NumberOfGradientDirections << "). At least " << (ShOrder*ShOrder + ShOrder + 2)/2 + ShOrder << " needed for SH-order " << ShOrder); } + // Gradient preprocessing { // check for duplicate diffusion gradients bool warning = false; for(GradientDirectionContainerType::ConstIterator gdcit1 = this->m_GradientDirectionContainer->Begin(); gdcit1 != this->m_GradientDirectionContainer->End(); ++gdcit1) { for(GradientDirectionContainerType::ConstIterator gdcit2 = this->m_GradientDirectionContainer->Begin(); gdcit2 != this->m_GradientDirectionContainer->End(); ++gdcit2) { if(gdcit1.Value() == gdcit2.Value() && gdcit1.Index() != gdcit2.Index()) { itkWarningMacro( << "Some of the Diffusion Gradients equal each other. Corresponding image data should be averaged before calling this filter." ); warning = true; break; } } - if (warning) break; + if (warning) + break; } // handle acquisition schemes where only half of the spherical // shell is sampled by the gradient directions. In this case, // each gradient direction is duplicated in negative direction. vnl_vector centerMass(3); centerMass.fill(0.0); int count = 0; for(GradientDirectionContainerType::ConstIterator gdcit1 = this->m_GradientDirectionContainer->Begin(); gdcit1 != this->m_GradientDirectionContainer->End(); ++gdcit1) { float bval = gdcit1.Value().two_norm(); bval = bval*bval*m_BValue; if(bval > 100) { centerMass += gdcit1.Value(); count ++; } } centerMass /= count; if(centerMass.two_norm() > 0.1) { m_DirectionsDuplicated = true; m_NumberOfGradientDirections *= 2; } } - vnl_matrix *Q = new vnl_matrix(3, m_NumberOfGradientDirections); - + // Create 3xM matrix Q that contains the gradient vectors in polar coordinates + vnl_matrix Q(3, m_NumberOfGradientDirections); { int i = 0; - for(GradientDirectionContainerType::ConstIterator gdcit = this->m_GradientDirectionContainer->Begin(); - gdcit != this->m_GradientDirectionContainer->End(); ++gdcit) + for(GradientDirectionContainerType::ConstIterator gdcit = this->m_GradientDirectionContainer->Begin(); gdcit != this->m_GradientDirectionContainer->End(); ++gdcit) { float bval = gdcit.Value().two_norm(); bval = bval*bval*m_BValue; if(bval > 100) { double x = gdcit.Value().get(0); double y = gdcit.Value().get(1); double z = gdcit.Value().get(2); double cart[3]; Cart2Sph(x,y,z,cart); - (*Q)(0,i) = cart[0]; - (*Q)(1,i) = cart[1]; - (*Q)(2,i++) = cart[2]; + Q(0,i) = cart[0]; + Q(1,i) = cart[1]; + Q(2,i++) = cart[2]; } } if(m_DirectionsDuplicated) { - for(GradientDirectionContainerType::ConstIterator gdcit = this->m_GradientDirectionContainer->Begin(); - gdcit != this->m_GradientDirectionContainer->End(); ++gdcit) + for(GradientDirectionContainerType::ConstIterator gdcit = this->m_GradientDirectionContainer->Begin(); gdcit != this->m_GradientDirectionContainer->End(); ++gdcit) { float bval = gdcit.Value().two_norm(); bval = bval*bval*m_BValue; if(bval > 100) { double x = gdcit.Value().get(0); double y = gdcit.Value().get(1); double z = gdcit.Value().get(2); double cart[3]; Cart2Sph(x,y,z,cart); - (*Q)(0,i) = cart[0]; - (*Q)(1,i) = cart[1]; - (*Q)(2,i++) = cart[2]; + Q(0,i) = cart[0]; + Q(1,i) = cart[1]; + Q(2,i++) = cart[2]; } } } } - int l = L; - m_NumberCoefficients = (int)(l*l + l + 2.0)/2.0 + l; - vnl_matrix* B = new vnl_matrix(m_NumberOfGradientDirections,m_NumberCoefficients); - vnl_matrix* _L = new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients); - _L->fill(0.0); - vnl_matrix* LL = new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients); - LL->fill(0.0); - vnl_matrix* P = new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients); - P->fill(0.0); - vnl_matrix* Inv = new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients); - P->fill(0.0); - vnl_vector* lj = new vnl_vector(m_NumberCoefficients); - m_LP = new vnl_vector(m_NumberCoefficients); - + // Calcualte SH basis B + vnl_matrix L(m_NumberCoefficients,m_NumberCoefficients, 0); + vnl_vector lj(m_NumberCoefficients); + vnl_matrix B(m_NumberOfGradientDirections,m_NumberCoefficients); for(unsigned int i=0; i temp((*_L)*(*_L)); - LL->update(*_L); - *LL *= *_L; - //tofile2(LL,"LL"); + vnl_matrix P(m_NumberCoefficients,m_NumberCoefficients, 0); + for(unsigned int i=0; i B_transpose(B.transpose()); + vnl_matrix_inverse* pseudoInverse = new vnl_matrix_inverse( B_transpose * B + L*L*m_Lambda ); + m_CoeffReconstructionMatrix = pseudoInverse->pinverse() * B_transpose; - if(m_NormalizationMethod == QBAR_SOLID_ANGLE || m_NormalizationMethod == QBAR_NONNEG_SOLID_ANGLE) - { - (*P)(i,i) = 2.0*QBALL_ANAL_RECON_PI*Legendre0((*lj)[i]); - (*m_LP)(i) *= (*P)(i,i); - } - else - { - (*P)(i,i) = Legendre0((*lj)[i]); - } - } - m_B_t = new vnl_matrix(B->transpose()); - //tofile2(&m_B_t,"m_B_t"); - vnl_matrix B_t_B = (*m_B_t) * (*B); - //tofile2(&B_t_B,"B_t_B"); - vnl_matrix lambdaLL(m_NumberCoefficients,m_NumberCoefficients); - lambdaLL.update((*LL)); - lambdaLL *= m_Lambda; - //tofile2(&lambdaLL,"lLL"); - - vnl_matrix tmp( B_t_B + lambdaLL); - vnl_matrix_inverse *pseudoInverse - = new vnl_matrix_inverse( tmp ); - - (*Inv) = pseudoInverse->pinverse(); - //tofile2(Inv,"Inv"); - vnl_matrix temp((*Inv) * (*m_B_t)); - double fac1 = (1.0/(16.0*QBALL_ANAL_RECON_PI*QBALL_ANAL_RECON_PI)); switch(m_NormalizationMethod) { case QBAR_ADC_ONLY: case QBAR_RAW_SIGNAL: break; case QBAR_STANDARD: case QBAR_B_ZERO_B_VALUE: case QBAR_B_ZERO: case QBAR_NONE: - temp = (*P) * temp; + { + m_CoeffReconstructionMatrix = P * m_CoeffReconstructionMatrix; break; + } case QBAR_SOLID_ANGLE: - temp = fac1 * (*P) * (*_L) * temp; + { + m_CoeffReconstructionMatrix = (float)(1.0/(8.0*M_PI)) * P * L * m_CoeffReconstructionMatrix; break; + } case QBAR_NONNEG_SOLID_ANGLE: break; } - //tofile2(&temp,"A"); - - m_CoeffReconstructionMatrix = new vnl_matrix(m_NumberCoefficients,m_NumberOfGradientDirections); - for(int i=0; iodfs later - - int NOdfDirections = NODF; - vnl_matrix_fixed* U = - itk::PointShell >::DistributePointShell(); - - m_SphericalHarmonicBasisMatrix = new vnl_matrix(NOdfDirections,m_NumberCoefficients); - vnl_matrix* sphericalHarmonicBasisMatrix2 - = new vnl_matrix(NOdfDirections,m_NumberCoefficients); - for(int i=0; i* U = itk::PointShell >::DistributePointShell(); + m_SphericalHarmonicBasisMatrix = vnl_matrix(NrOdfDirections,m_NumberCoefficients); + for(int i=0; i(NOdfDirections,m_NumberOfGradientDirections); - *m_ReconstructionMatrix = (*m_SphericalHarmonicBasisMatrix) * (*m_CoeffReconstructionMatrix); - + m_ReconstructionMatrix = m_SphericalHarmonicBasisMatrix * m_CoeffReconstructionMatrix; } -template< class T, class TG, class TO, int L, int NODF> -void AnalyticalDiffusionQballReconstructionImageFilter +template< class T, class TG, class TO, int ShOrder, int NrOdfDirections> +void AnalyticalDiffusionQballReconstructionImageFilter ::SetGradientImage(const GradientDirectionContainerType *gradientDirection, const GradientImagesType *gradientImage ) { // Copy Gradient Direction Container this->m_GradientDirectionContainer = GradientDirectionContainerType::New(); for(GradientDirectionContainerType::ConstIterator it = gradientDirection->Begin(); it != gradientDirection->End(); it++) { this->m_GradientDirectionContainer->push_back(it.Value()); } if (m_BValue<0) itkExceptionMacro("B-value needs to best before gradient image!"); unsigned int numImages = gradientDirection->Size(); this->m_NumberOfBaselineImages = 0; for(GradientDirectionContainerType::Iterator it = this->m_GradientDirectionContainer->Begin(); it != this->m_GradientDirectionContainer->End(); it++) { float bval = it.Value().two_norm(); bval = bval*bval*m_BValue; if(bval < 100) { this->m_NumberOfBaselineImages++; } else // Normalize non-zero gradient directions { it.Value() = it.Value() / it.Value().two_norm(); } } if (this->m_NumberOfBaselineImages==0) itkExceptionMacro("No baseline image detected (no b-zero image)"); this->m_NumberOfGradientDirections = numImages - this->m_NumberOfBaselineImages; // ensure that the gradient image we received has as many components as // the number of gradient directions if( gradientImage->GetVectorLength() != this->m_NumberOfBaselineImages + m_NumberOfGradientDirections ) { itkExceptionMacro( << m_NumberOfGradientDirections << " gradients + " << this->m_NumberOfBaselineImages << "baselines = " << m_NumberOfGradientDirections + this->m_NumberOfBaselineImages << " directions specified but image has " << gradientImage->GetVectorLength() << " components."); } this->ProcessObject::SetNthInput( 0, const_cast< GradientImagesType* >(gradientImage) ); } -template< class T, class TG, class TO, int L, int NODF> -void AnalyticalDiffusionQballReconstructionImageFilter +template< class T, class TG, class TO, int ShOrder, int NrOdfDirections> +void AnalyticalDiffusionQballReconstructionImageFilter ::PrintSelf(std::ostream& os, Indent indent) const { std::locale C("C"); std::locale originalLocale = os.getloc(); os.imbue(C); Superclass::PrintSelf(os,indent); os << indent << "OdfReconstructionMatrix: " << m_ReconstructionMatrix << std::endl; if ( m_GradientDirectionContainer ) os << indent << "GradientDirectionContainer: " << m_GradientDirectionContainer << std::endl; else os << indent << "GradientDirectionContainer: (Gradient directions not set)" << std::endl; os << indent << "NumberOfGradientDirections: " << m_NumberOfGradientDirections << std::endl; os << indent << "NumberOfBaselineImages: " << m_NumberOfBaselineImages << std::endl; os << indent << "Threshold for reference B0 image: " << m_Threshold << std::endl; os << indent << "BValue: " << m_BValue << std::endl; os.imbue( originalLocale ); } } #endif // __itkAnalyticalDiffusionQballReconstructionImageFilter_cpp diff --git a/Modules/DiffusionImaging/DiffusionCore/include/Algorithms/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.h b/Modules/DiffusionImaging/DiffusionCore/include/Algorithms/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.h index 90b64a5678..e5753bc571 100644 --- a/Modules/DiffusionImaging/DiffusionCore/include/Algorithms/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.h +++ b/Modules/DiffusionImaging/DiffusionCore/include/Algorithms/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.h @@ -1,286 +1,278 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef __itkAnalyticalDiffusionQballReconstructionImageFilter_h_ #define __itkAnalyticalDiffusionQballReconstructionImageFilter_h_ #include "itkImageToImageFilter.h" #include "vnl/vnl_vector_fixed.h" #include "vnl/vnl_matrix.h" #include "vnl/algo/vnl_svd.h" #include "itkVectorContainer.h" #include "itkVectorImage.h" namespace itk{ /** \class AnalyticalDiffusionQballReconstructionImageFilter * \brief This class takes as input one or more reference image (acquired in the * absence of diffusion sensitizing gradients) and 'n' diffusion * weighted images and their gradient directions and computes an image of * orientation distribution function coefficients in a spherical harmonic basis. * * \par Inputs and Usage * \par * When you have the 'n' gradient and one or more reference images in a single * multi-component image (VectorImage), you can specify the images as * \code * filter->SetGradientImage( directionsContainer, vectorImage ); * \endcode * Note that this method is used to specify both the reference and gradient images. * This is convenient when the DWI images are read in using the * NRRD * format. Like the Nrrd format, the reference images are those components of the * vectorImage whose gradient direction is (0,0,0). If more than one reference image * is present, they are averaged prior to the reconstruction. * * \par Outputs * The output image is an image of vectors that must be understood as ODFs: * \code * Image< Vector< TPixelType, OdfNrDirections >, 3 > * \endcode * * \par Parameters * \li Threshold - Threshold on the reference image data. The output ODF will * be a null pdf for pixels in the reference image that have a value less * than this. * \li BValue - See the documentation of SetBValue(). * \li At least 6 gradient images must be specified for the filter to be able * to run. If the input gradient directions g_i are majorly sampled on one half * of the sqhere, then each input image I_i will be duplicated and assign -g_i * in order to guarantee stability of the algorithm. * \li OdfDirections - directions of resulting orientation distribution function * \li EquatorNrSamplingPoints - number of sampling points on equator when * performing Funk Radeon Transform (FRT) * \li BasisFunctionCenters - the centers of the basis functions are used for * the sRBF (spherical radial basis functions interpolation). If not set, they * will be defaulted to equal m_EquatorNrSamplingPoints * * \par Template parameters * The class is templated over * \li the pixel type of the reference and gradient images * (expected to be scalar data types) * \li the internal representation of the ODF pixels (double, float etc). * \li the number of OdfDirections * \li the number of basis function centers for the sRBF * * \par References: * \li[1] * Tuch DS, * "Q-ball imaging", Magn Reson Med. 2004 Dec;52(6):1358-72. * */ template< class TReferenceImagePixelType, class TGradientImagePixelType, class TOdfPixelType, - int NOrderL, + int ShOrder, int NrOdfDirections> class AnalyticalDiffusionQballReconstructionImageFilter : public ImageToImageFilter< Image< TReferenceImagePixelType, 3 >, Image< Vector< TOdfPixelType, NrOdfDirections >, 3 > > { public: enum Normalization { QBAR_STANDARD, QBAR_B_ZERO_B_VALUE, QBAR_B_ZERO, QBAR_NONE, QBAR_ADC_ONLY, QBAR_RAW_SIGNAL, QBAR_SOLID_ANGLE, QBAR_NONNEG_SOLID_ANGLE }; typedef AnalyticalDiffusionQballReconstructionImageFilter Self; typedef SmartPointer Pointer; typedef SmartPointer ConstPointer; typedef ImageToImageFilter< Image< TReferenceImagePixelType, 3>, Image< Vector< TOdfPixelType, NrOdfDirections >, 3 > > Superclass; /** Method for creation through the object factory. */ itkFactorylessNewMacro(Self) itkCloneMacro(Self) /** Runtime information support. */ itkTypeMacro(AnalyticalDiffusionQballReconstructionImageFilter, ImageToImageFilter) typedef TReferenceImagePixelType ReferencePixelType; typedef TGradientImagePixelType GradientPixelType; typedef Vector< TOdfPixelType, NrOdfDirections > OdfPixelType; typedef TOdfPixelType BZeroPixelType; /** Reference image data, This image is aquired in the absence * of a diffusion sensitizing field gradient */ typedef typename Superclass::InputImageType ReferenceImageType; typedef Image< OdfPixelType, 3 > OdfImageType; typedef OdfImageType OutputImageType; - typedef Image< Vector< TOdfPixelType, (NOrderL*NOrderL + NOrderL + 2)/2 + NOrderL >, 3 > CoefficientImageType; + typedef Image< Vector< TOdfPixelType, (ShOrder*ShOrder + ShOrder + 2)/2 + ShOrder >, 3 > CoefficientImageType; typedef Image< BZeroPixelType, 3 > BZeroImageType; typedef typename Superclass::OutputImageRegionType OutputImageRegionType; /** Typedef defining one (of the many) gradient images. */ typedef Image< GradientPixelType, 3 > GradientImageType; /** An alternative typedef defining one (of the many) gradient images. * It will be assumed that the vectorImage has the same dimension as the * Reference image and a vector length parameter of \c n (number of * gradient directions)*/ typedef VectorImage< GradientPixelType, 3 > GradientImagesType; - /** Holds the ODF reconstruction matrix */ - typedef vnl_matrix< TOdfPixelType >* - OdfReconstructionMatrixType; - - typedef vnl_matrix< double > CoefficientMatrixType; - /** Holds each magnetic field gradient used to acquire one DWImage */ typedef vnl_vector_fixed< double, 3 > GradientDirectionType; /** Container to hold gradient directions of the 'n' DW measurements */ typedef VectorContainer< unsigned int, GradientDirectionType > GradientDirectionContainerType; /** set method to add gradient directions and its corresponding * image. The image here is a VectorImage. The user is expected to pass the * gradient directions in a container. The ith element of the container * corresponds to the gradient direction of the ith component image the * VectorImage. For the baseline image, a vector of all zeros * should be set.*/ void SetGradientImage( const GradientDirectionContainerType *, const GradientImagesType *image); /** Get reference image */ virtual ReferenceImageType * GetReferenceImage() { return ( static_cast< ReferenceImageType *>(this->ProcessObject::GetInput(0)) ); } /** Return the gradient direction. idx is 0 based */ virtual GradientDirectionType GetGradientDirection( unsigned int idx) const { if( idx >= m_NumberOfGradientDirections ) itkExceptionMacro( << "Gradient direction " << idx << "does not exist" ); return m_GradientDirectionContainer->ElementAt( idx+1 ); } - static void tofile2(vnl_matrix *A, std::string fname); + static void tofile2(vnl_matrix *A, std::string fname); static void Cart2Sph(double x, double y, double z, double* cart); static double Yj(int m, int k, double theta, double phi, bool useMRtrixBasis = false); double Legendre0(int l); OdfPixelType Normalize(OdfPixelType odf, typename NumericTraits::AccumulateType b0 ); vnl_vector PreNormalize( vnl_vector vec, typename NumericTraits::AccumulateType b0 ); /** Threshold on the reference image data. The output ODF will be a null * pdf for pixels in the reference image that have a value less than this * threshold. */ itkSetMacro( Threshold, ReferencePixelType ) itkGetMacro( Threshold, ReferencePixelType ) itkSetMacro( NormalizationMethod, Normalization) itkGetMacro( NormalizationMethod, Normalization ) typedef Image FloatImageType; itkGetMacro( BZeroImage, typename BZeroImageType::Pointer) itkGetMacro( ODFSumImage, typename FloatImageType::Pointer) itkGetMacro( CoefficientImage, typename CoefficientImageType::Pointer) itkSetMacro( BValue, TOdfPixelType) #ifdef GetBValue #undef GetBValue #endif itkGetConstReferenceMacro( BValue, TOdfPixelType) itkSetMacro( Lambda, double ) itkGetMacro( Lambda, double ) itkSetMacro( UseMrtrixBasis, bool ) #ifdef ITK_USE_CONCEPT_CHECKING /** Begin concept checking */ itkConceptMacro(ReferenceEqualityComparableCheck, (Concept::EqualityComparable)); itkConceptMacro(TensorEqualityComparableCheck, (Concept::EqualityComparable)); itkConceptMacro(GradientConvertibleToDoubleCheck, (Concept::Convertible)); itkConceptMacro(DoubleConvertibleToTensorCheck, (Concept::Convertible)); itkConceptMacro(GradientReferenceAdditiveOperatorsCheck, (Concept::AdditiveOperators)); itkConceptMacro(ReferenceOStreamWritableCheck, (Concept::OStreamWritable)); itkConceptMacro(TensorOStreamWritableCheck, (Concept::OStreamWritable)); /** End concept checking */ #endif protected: AnalyticalDiffusionQballReconstructionImageFilter(); ~AnalyticalDiffusionQballReconstructionImageFilter() {}; void PrintSelf(std::ostream& os, Indent indent) const; void ComputeReconstructionMatrix(); void BeforeThreadedGenerateData(); void ThreadedGenerateData( const OutputImageRegionType &outputRegionForThread, ThreadIdType); private: - OdfReconstructionMatrixType m_ReconstructionMatrix; - OdfReconstructionMatrixType m_CoeffReconstructionMatrix; - OdfReconstructionMatrixType m_SphericalHarmonicBasisMatrix; + vnl_matrix< float > m_ReconstructionMatrix; + vnl_matrix< float > m_CoeffReconstructionMatrix; + vnl_matrix< float > m_SphericalHarmonicBasisMatrix; /** container to hold gradient directions */ GradientDirectionContainerType::Pointer m_GradientDirectionContainer; /** Number of gradient measurements */ unsigned int m_NumberOfGradientDirections; /** Number of baseline images */ unsigned int m_NumberOfBaselineImages; /** Threshold on the reference image data */ ReferencePixelType m_Threshold; /** LeBihan's b-value for normalizing tensors */ TOdfPixelType m_BValue; typename BZeroImageType::Pointer m_BZeroImage; double m_Lambda; bool m_DirectionsDuplicated; Normalization m_NormalizationMethod; - int m_NumberCoefficients; - vnl_matrix* m_B_t; - vnl_vector* m_LP; + unsigned int m_NumberCoefficients; FloatImageType::Pointer m_ODFSumImage; typename CoefficientImageType::Pointer m_CoefficientImage; TOdfPixelType m_Delta1; TOdfPixelType m_Delta2; bool m_UseMrtrixBasis; }; } #ifndef ITK_MANUAL_INSTANTIATION #include "itkAnalyticalDiffusionQballReconstructionImageFilter.cpp" #endif #endif //__itkAnalyticalDiffusionQballReconstructionImageFilter_h_ diff --git a/Modules/DiffusionImaging/FiberTracking/Fiberfox/itkTractsToDWIImageFilter.cpp b/Modules/DiffusionImaging/FiberTracking/Fiberfox/itkTractsToDWIImageFilter.cpp index b86e42f2c7..57db32ab0e 100755 --- a/Modules/DiffusionImaging/FiberTracking/Fiberfox/itkTractsToDWIImageFilter.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Fiberfox/itkTractsToDWIImageFilter.cpp @@ -1,1668 +1,1674 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "itkTractsToDWIImageFilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace itk { template< class PixelType > TractsToDWIImageFilter< PixelType >::TractsToDWIImageFilter() : m_FiberBundle(nullptr) , m_StatusText("") , m_UseConstantRandSeed(false) , m_RandGen(itk::Statistics::MersenneTwisterRandomVariateGenerator::New()) { m_RandGen->SetSeed(); m_DoubleInterpolator = itk::LinearInterpolateImageFunction< ItkDoubleImgType, float >::New(); } template< class PixelType > TractsToDWIImageFilter< PixelType >::~TractsToDWIImageFilter() { } template< class PixelType > TractsToDWIImageFilter< PixelType >::DoubleDwiType::Pointer TractsToDWIImageFilter< PixelType >:: SimulateKspaceAcquisition( std::vector< DoubleDwiType::Pointer >& images ) { unsigned int numFiberCompartments = m_Parameters.m_FiberModelList.size(); // create slice object ImageRegion<2> sliceRegion; sliceRegion.SetSize(0, m_WorkingImageRegion.GetSize()[0]); sliceRegion.SetSize(1, m_WorkingImageRegion.GetSize()[1]); Vector< double, 2 > sliceSpacing; sliceSpacing[0] = m_WorkingSpacing[0]; sliceSpacing[1] = m_WorkingSpacing[1]; DoubleDwiType::PixelType nullPix; nullPix.SetSize(images.at(0)->GetVectorLength()); nullPix.Fill(0.0); auto magnitudeDwiImage = DoubleDwiType::New(); magnitudeDwiImage->SetSpacing( m_Parameters.m_SignalGen.m_ImageSpacing ); magnitudeDwiImage->SetOrigin( m_Parameters.m_SignalGen.m_ImageOrigin ); magnitudeDwiImage->SetDirection( m_Parameters.m_SignalGen.m_ImageDirection ); magnitudeDwiImage->SetLargestPossibleRegion( m_Parameters.m_SignalGen.m_CroppedRegion ); magnitudeDwiImage->SetBufferedRegion( m_Parameters.m_SignalGen.m_CroppedRegion ); magnitudeDwiImage->SetRequestedRegion( m_Parameters.m_SignalGen.m_CroppedRegion ); magnitudeDwiImage->SetVectorLength( images.at(0)->GetVectorLength() ); magnitudeDwiImage->Allocate(); magnitudeDwiImage->FillBuffer(nullPix); m_PhaseImage = DoubleDwiType::New(); m_PhaseImage->SetSpacing( m_Parameters.m_SignalGen.m_ImageSpacing ); m_PhaseImage->SetOrigin( m_Parameters.m_SignalGen.m_ImageOrigin ); m_PhaseImage->SetDirection( m_Parameters.m_SignalGen.m_ImageDirection ); m_PhaseImage->SetLargestPossibleRegion( m_Parameters.m_SignalGen.m_CroppedRegion ); m_PhaseImage->SetBufferedRegion( m_Parameters.m_SignalGen.m_CroppedRegion ); m_PhaseImage->SetRequestedRegion( m_Parameters.m_SignalGen.m_CroppedRegion ); m_PhaseImage->SetVectorLength( images.at(0)->GetVectorLength() ); m_PhaseImage->Allocate(); m_PhaseImage->FillBuffer(nullPix); m_KspaceImage = DoubleDwiType::New(); m_KspaceImage->SetSpacing( m_Parameters.m_SignalGen.m_ImageSpacing ); m_KspaceImage->SetOrigin( m_Parameters.m_SignalGen.m_ImageOrigin ); m_KspaceImage->SetDirection( m_Parameters.m_SignalGen.m_ImageDirection ); m_KspaceImage->SetLargestPossibleRegion( m_Parameters.m_SignalGen.m_CroppedRegion ); m_KspaceImage->SetBufferedRegion( m_Parameters.m_SignalGen.m_CroppedRegion ); m_KspaceImage->SetRequestedRegion( m_Parameters.m_SignalGen.m_CroppedRegion ); m_KspaceImage->SetVectorLength( m_Parameters.m_SignalGen.m_NumberOfCoils ); m_KspaceImage->Allocate(); m_KspaceImage->FillBuffer(nullPix); std::vector< unsigned int > spikeVolume; for (unsigned int i=0; iGetIntegerVariate()%(images.at(0)->GetVectorLength())); std::sort (spikeVolume.begin(), spikeVolume.end()); std::reverse (spikeVolume.begin(), spikeVolume.end()); // calculate coil positions double a = m_Parameters.m_SignalGen.m_ImageRegion.GetSize(0)*m_Parameters.m_SignalGen.m_ImageSpacing[0]; double b = m_Parameters.m_SignalGen.m_ImageRegion.GetSize(1)*m_Parameters.m_SignalGen.m_ImageSpacing[1]; double c = m_Parameters.m_SignalGen.m_ImageRegion.GetSize(2)*m_Parameters.m_SignalGen.m_ImageSpacing[2]; double diagonal = sqrt(a*a+b*b)/1000; // image diagonal in m m_CoilPointset = mitk::PointSet::New(); std::vector< itk::Vector > coilPositions; itk::Vector pos; pos.Fill(0.0); pos[1] = -diagonal/2; itk::Vector center; center[0] = a/2-m_Parameters.m_SignalGen.m_ImageSpacing[0]/2; center[1] = b/2-m_Parameters.m_SignalGen.m_ImageSpacing[2]/2; center[2] = c/2-m_Parameters.m_SignalGen.m_ImageSpacing[1]/2; for (int c=0; cInsertPoint(c, pos*1000 + m_Parameters.m_SignalGen.m_ImageOrigin.GetVectorFromOrigin() + center ); double rz = 360.0/m_Parameters.m_SignalGen.m_NumberOfCoils * M_PI/180; vnl_matrix_fixed< double, 3, 3 > rotZ; rotZ.set_identity(); rotZ[0][0] = cos(rz); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(rz); rotZ[1][0] = -rotZ[0][1]; pos.SetVnlVector(rotZ*pos.GetVnlVector()); } PrintToLog("0% 10 20 30 40 50 60 70 80 90 100%", false, true, false); PrintToLog("|----|----|----|----|----|----|----|----|----|----|\n*", false, false, false); unsigned long lastTick = 0; boost::progress_display disp(images.at(0)->GetVectorLength()*images.at(0)->GetLargestPossibleRegion().GetSize(2)); for (unsigned int g=0; gGetVectorLength(); g++) { std::vector< unsigned int > spikeSlice; while (!spikeVolume.empty() && spikeVolume.back()==g) { spikeSlice.push_back(m_RandGen->GetIntegerVariate()%images.at(0)->GetLargestPossibleRegion().GetSize(2)); spikeVolume.pop_back(); } std::sort (spikeSlice.begin(), spikeSlice.end()); std::reverse (spikeSlice.begin(), spikeSlice.end()); for (unsigned int z=0; zGetLargestPossibleRegion().GetSize(2); z++) { std::vector< SliceType::Pointer > compartmentSlices; std::vector< double > t2Vector; std::vector< double > t1Vector; for (unsigned int i=0; i* signalModel; if (iSetLargestPossibleRegion( sliceRegion ); slice->SetBufferedRegion( sliceRegion ); slice->SetRequestedRegion( sliceRegion ); slice->SetSpacing(sliceSpacing); slice->Allocate(); slice->FillBuffer(0.0); // extract slice from channel g for (unsigned int y=0; yGetLargestPossibleRegion().GetSize(1); y++) for (unsigned int x=0; xGetLargestPossibleRegion().GetSize(0); x++) { SliceType::IndexType index2D; index2D[0]=x; index2D[1]=y; DoubleDwiType::IndexType index3D; index3D[0]=x; index3D[1]=y; index3D[2]=z; slice->SetPixel(index2D, images.at(i)->GetPixel(index3D)[g]); } compartmentSlices.push_back(slice); t2Vector.push_back(signalModel->GetT2()); t1Vector.push_back(signalModel->GetT1()); } int numSpikes = 0; while (!spikeSlice.empty() && spikeSlice.back()==z) { numSpikes++; spikeSlice.pop_back(); } int spikeCoil = m_RandGen->GetIntegerVariate()%m_Parameters.m_SignalGen.m_NumberOfCoils; if (this->GetAbortGenerateData()) return nullptr; #pragma omp parallel for for (int c=0; c::New(); idft->SetCompartmentImages(compartmentSlices); idft->SetT2(t2Vector); idft->SetT1(t1Vector); idft->SetUseConstantRandSeed(m_UseConstantRandSeed); idft->SetParameters(&m_Parameters); idft->SetZ((double)z-(double)( images.at(0)->GetLargestPossibleRegion().GetSize(2) -images.at(0)->GetLargestPossibleRegion().GetSize(2)%2 ) / 2.0); idft->SetZidx(z); idft->SetCoilPosition(coilPositions.at(c)); idft->SetFiberBundle(m_FiberBundleWorkingCopy); idft->SetTranslation(m_Translations.at(g)); idft->SetRotation(m_Rotations.at(g)); idft->SetDiffusionGradientDirection(m_Parameters.m_SignalGen.GetGradientDirection(g)); if (c==spikeCoil) idft->SetSpikesPerSlice(numSpikes); idft->Update(); #pragma omp critical if (c==spikeCoil && numSpikes>0) { m_SpikeLog += "Volume " + boost::lexical_cast(g) + " Coil " + boost::lexical_cast(c) + "\n"; m_SpikeLog += idft->GetSpikeLog(); } ComplexSliceType::Pointer fSlice; fSlice = idft->GetOutput(); // fourier transform slice ComplexSliceType::Pointer newSlice; auto dft = itk::DftImageFilter< SliceType::PixelType >::New(); dft->SetInput(fSlice); dft->SetParameters(m_Parameters); dft->Update(); newSlice = dft->GetOutput(); // put slice back into channel g for (unsigned int y=0; yGetLargestPossibleRegion().GetSize(1); y++) for (unsigned int x=0; xGetLargestPossibleRegion().GetSize(0); x++) { DoubleDwiType::IndexType index3D; index3D[0]=x; index3D[1]=y; index3D[2]=z; ComplexSliceType::IndexType index2D; index2D[0]=x; index2D[1]=y; ComplexSliceType::PixelType cPix = newSlice->GetPixel(index2D); double magn = sqrt(cPix.real()*cPix.real()+cPix.imag()*cPix.imag()); double phase = 0; if (cPix.real()!=0) phase = atan( cPix.imag()/cPix.real() ); DoubleDwiType::PixelType dwiPix = magnitudeDwiImage->GetPixel(index3D); DoubleDwiType::PixelType phasePix = m_PhaseImage->GetPixel(index3D); if (m_Parameters.m_SignalGen.m_NumberOfCoils>1) { dwiPix[g] += magn*magn; phasePix[g] += phase*phase; } else { dwiPix[g] = magn; phasePix[g] = phase; } #pragma omp critical { magnitudeDwiImage->SetPixel(index3D, dwiPix); m_PhaseImage->SetPixel(index3D, phasePix); // k-space image if (g==0) { DoubleDwiType::PixelType kspacePix = m_KspaceImage->GetPixel(index3D); kspacePix[c] = idft->GetKSpaceImage()->GetPixel(index2D); m_KspaceImage->SetPixel(index3D, kspacePix); } } } } if (m_Parameters.m_SignalGen.m_NumberOfCoils>1) { #ifdef WIN32 #pragma omp parallel for #else #pragma omp parallel for collapse(2) #endif for (int y=0; y(magnitudeDwiImage->GetLargestPossibleRegion().GetSize(1)); y++) for (int x=0; x(magnitudeDwiImage->GetLargestPossibleRegion().GetSize(0)); x++) { DoubleDwiType::IndexType index3D; index3D[0]=x; index3D[1]=y; index3D[2]=z; DoubleDwiType::PixelType magPix = magnitudeDwiImage->GetPixel(index3D); magPix[g] = sqrt(magPix[g]/m_Parameters.m_SignalGen.m_NumberOfCoils); DoubleDwiType::PixelType phasePix = m_PhaseImage->GetPixel(index3D); phasePix[g] = sqrt(phasePix[g]/m_Parameters.m_SignalGen.m_NumberOfCoils); #pragma omp critical { magnitudeDwiImage->SetPixel(index3D, magPix); m_PhaseImage->SetPixel(index3D, phasePix); } } } ++disp; unsigned long newTick = 50*disp.count()/disp.expected_count(); for (unsigned long tick = 0; tick<(newTick-lastTick); tick++) PrintToLog("*", false, false, false); lastTick = newTick; } } PrintToLog("\n", false); return magnitudeDwiImage; } template< class PixelType > TractsToDWIImageFilter< PixelType >::ItkDoubleImgType::Pointer TractsToDWIImageFilter< PixelType >:: NormalizeInsideMask(ItkDoubleImgType::Pointer image) { double max = itk::NumericTraits< double >::min(); double min = itk::NumericTraits< double >::max(); itk::ImageRegionIterator< ItkDoubleImgType > it(image, image->GetLargestPossibleRegion()); while(!it.IsAtEnd()) { if (m_Parameters.m_SignalGen.m_MaskImage.IsNotNull() && m_Parameters.m_SignalGen.m_MaskImage->GetPixel(it.GetIndex())<=0) { it.Set(0.0); ++it; continue; } // if (it.Get()>900) // it.Set(900); if (it.Get()>max) max = it.Get(); if (it.Get()::New(); scaler->SetInput(image); scaler->SetShift(-min); scaler->SetScale(1.0/(max-min)); scaler->Update(); return scaler->GetOutput(); } template< class PixelType > void TractsToDWIImageFilter< PixelType >::CheckVolumeFractionImages() { m_UseRelativeNonFiberVolumeFractions = false; // check for fiber volume fraction maps unsigned int fibVolImages = 0; for (std::size_t i=0; iGetVolumeFractionImage().IsNotNull()) { PrintToLog("Using volume fraction map for fiber compartment " + boost::lexical_cast(i+1)); fibVolImages++; } } // check for non-fiber volume fraction maps unsigned int nonfibVolImages = 0; for (std::size_t i=0; iGetVolumeFractionImage().IsNotNull()) { PrintToLog("Using volume fraction map for non-fiber compartment " + boost::lexical_cast(i+1)); nonfibVolImages++; } } // not all fiber compartments are using volume fraction maps // --> non-fiber volume fractions are assumed to be relative to the // non-fiber volume and not absolute voxel-volume fractions. // this means if two non-fiber compartments are used but only one of them // has an associated volume fraction map, the repesctive other volume fraction map // can be determined as inverse (1-val) of the present volume fraction map- if ( fibVolImages::New(); inverter->SetMaximum(1.0); if ( m_Parameters.m_NonFiberModelList[0]->GetVolumeFractionImage().IsNull() && m_Parameters.m_NonFiberModelList[1]->GetVolumeFractionImage().IsNotNull() ) { // m_Parameters.m_NonFiberModelList[1]->SetVolumeFractionImage( // NormalizeInsideMask( m_Parameters.m_NonFiberModelList[1]->GetVolumeFractionImage() ) ); inverter->SetInput( m_Parameters.m_NonFiberModelList[1]->GetVolumeFractionImage() ); inverter->Update(); m_Parameters.m_NonFiberModelList[0]->SetVolumeFractionImage(inverter->GetOutput()); } else if ( m_Parameters.m_NonFiberModelList[1]->GetVolumeFractionImage().IsNull() && m_Parameters.m_NonFiberModelList[0]->GetVolumeFractionImage().IsNotNull() ) { // m_Parameters.m_NonFiberModelList[0]->SetVolumeFractionImage( // NormalizeInsideMask( m_Parameters.m_NonFiberModelList[0]->GetVolumeFractionImage() ) ); inverter->SetInput( m_Parameters.m_NonFiberModelList[0]->GetVolumeFractionImage() ); inverter->Update(); m_Parameters.m_NonFiberModelList[1]->SetVolumeFractionImage(inverter->GetOutput()); } else { itkExceptionMacro("Something went wrong in automatically calculating the missing non-fiber volume fraction image!" " Did you use two non fiber compartments but only one volume fraction image?" " Then it should work and this error is really strange."); } m_UseRelativeNonFiberVolumeFractions = true; nonfibVolImages++; } // Up to two fiber compartments are allowed without volume fraction maps since the volume fractions can then be determined automatically if (m_Parameters.m_FiberModelList.size()>2 && fibVolImages!=m_Parameters.m_FiberModelList.size()) itkExceptionMacro("More than two fiber compartment selected but no corresponding volume fraction maps set!"); // One non-fiber compartment is allowed without volume fraction map since the volume fraction can then be determined automatically if (m_Parameters.m_NonFiberModelList.size()>1 && nonfibVolImages!=m_Parameters.m_NonFiberModelList.size()) itkExceptionMacro("More than one non-fiber compartment selected but no volume fraction maps set!"); if (fibVolImages0) { PrintToLog("Not all fiber compartments are using an associated volume fraction image.\n" "Assuming non-fiber volume fraction images to contain values relative to the" " remaining non-fiber volume, not absolute values."); m_UseRelativeNonFiberVolumeFractions = true; // itk::ImageFileWriter::Pointer wr = itk::ImageFileWriter::New(); // wr->SetInput(m_Parameters.m_NonFiberModelList[1]->GetVolumeFractionImage()); // wr->SetFileName("/local/volumefraction.nrrd"); // wr->Update(); } // initialize the images that store the output volume fraction of each compartment m_VolumeFractions.clear(); for (std::size_t i=0; iSetSpacing( m_WorkingSpacing ); doubleImg->SetOrigin( m_WorkingOrigin ); doubleImg->SetDirection( m_Parameters.m_SignalGen.m_ImageDirection ); doubleImg->SetLargestPossibleRegion( m_WorkingImageRegion ); doubleImg->SetBufferedRegion( m_WorkingImageRegion ); doubleImg->SetRequestedRegion( m_WorkingImageRegion ); doubleImg->Allocate(); doubleImg->FillBuffer(0); m_VolumeFractions.push_back(doubleImg); } } template< class PixelType > void TractsToDWIImageFilter< PixelType >::InitializeData() { m_Rotations.clear(); m_Translations.clear(); m_MotionLog = ""; m_SpikeLog = ""; // initialize output dwi image m_Parameters.m_SignalGen.m_CroppedRegion = m_Parameters.m_SignalGen.m_ImageRegion; m_Parameters.m_SignalGen.m_CroppedRegion.SetSize( 1, m_Parameters.m_SignalGen.m_CroppedRegion.GetSize(1) *m_Parameters.m_SignalGen.m_CroppingFactor); itk::Point shiftedOrigin = m_Parameters.m_SignalGen.m_ImageOrigin; shiftedOrigin[1] += (m_Parameters.m_SignalGen.m_ImageRegion.GetSize(1) -m_Parameters.m_SignalGen.m_CroppedRegion.GetSize(1))*m_Parameters.m_SignalGen.m_ImageSpacing[1]/2; m_OutputImage = OutputImageType::New(); m_OutputImage->SetSpacing( m_Parameters.m_SignalGen.m_ImageSpacing ); m_OutputImage->SetOrigin( shiftedOrigin ); m_OutputImage->SetDirection( m_Parameters.m_SignalGen.m_ImageDirection ); m_OutputImage->SetLargestPossibleRegion( m_Parameters.m_SignalGen.m_CroppedRegion ); m_OutputImage->SetBufferedRegion( m_Parameters.m_SignalGen.m_CroppedRegion ); m_OutputImage->SetRequestedRegion( m_Parameters.m_SignalGen.m_CroppedRegion ); m_OutputImage->SetVectorLength( m_Parameters.m_SignalGen.GetNumVolumes() ); m_OutputImage->Allocate(); typename OutputImageType::PixelType temp; temp.SetSize(m_Parameters.m_SignalGen.GetNumVolumes()); temp.Fill(0.0); m_OutputImage->FillBuffer(temp); + MITK_INFO << "Output image parameters:"; + MITK_INFO << "Size:" << m_Parameters.m_SignalGen.m_CroppedRegion; + MITK_INFO << "Spacing:" << m_Parameters.m_SignalGen.m_ImageSpacing; + MITK_INFO << "Origin:" << shiftedOrigin; + MITK_INFO << "Matrix:" << m_Parameters.m_SignalGen.m_ImageDirection; + // Apply in-plane upsampling for Gibbs ringing artifact double upsampling = 1; if (m_Parameters.m_SignalGen.m_DoAddGibbsRinging) upsampling = 2; m_WorkingSpacing = m_Parameters.m_SignalGen.m_ImageSpacing; m_WorkingSpacing[0] /= upsampling; m_WorkingSpacing[1] /= upsampling; m_WorkingImageRegion = m_Parameters.m_SignalGen.m_ImageRegion; m_WorkingImageRegion.SetSize(0, m_Parameters.m_SignalGen.m_ImageRegion.GetSize()[0]*upsampling); m_WorkingImageRegion.SetSize(1, m_Parameters.m_SignalGen.m_ImageRegion.GetSize()[1]*upsampling); m_WorkingOrigin = m_Parameters.m_SignalGen.m_ImageOrigin; m_WorkingOrigin[0] -= m_Parameters.m_SignalGen.m_ImageSpacing[0]/2; m_WorkingOrigin[0] += m_WorkingSpacing[0]/2; m_WorkingOrigin[1] -= m_Parameters.m_SignalGen.m_ImageSpacing[1]/2; m_WorkingOrigin[1] += m_WorkingSpacing[1]/2; m_WorkingOrigin[2] -= m_Parameters.m_SignalGen.m_ImageSpacing[2]/2; m_WorkingOrigin[2] += m_WorkingSpacing[2]/2; m_VoxelVolume = m_WorkingSpacing[0]*m_WorkingSpacing[1]*m_WorkingSpacing[2]; // generate double images to store the individual compartment signals m_CompartmentImages.clear(); int numFiberCompartments = m_Parameters.m_FiberModelList.size(); int numNonFiberCompartments = m_Parameters.m_NonFiberModelList.size(); for (int i=0; iSetSpacing( m_WorkingSpacing ); doubleDwi->SetOrigin( m_WorkingOrigin ); doubleDwi->SetDirection( m_Parameters.m_SignalGen.m_ImageDirection ); doubleDwi->SetLargestPossibleRegion( m_WorkingImageRegion ); doubleDwi->SetBufferedRegion( m_WorkingImageRegion ); doubleDwi->SetRequestedRegion( m_WorkingImageRegion ); doubleDwi->SetVectorLength( m_Parameters.m_SignalGen.GetNumVolumes() ); doubleDwi->Allocate(); DoubleDwiType::PixelType pix; pix.SetSize(m_Parameters.m_SignalGen.GetNumVolumes()); pix.Fill(0.0); doubleDwi->FillBuffer(pix); m_CompartmentImages.push_back(doubleDwi); } if (m_FiberBundle.IsNull() && m_InputImage.IsNotNull()) { m_CompartmentImages.clear(); m_Parameters.m_SignalGen.m_DoAddMotion = false; m_Parameters.m_SignalGen.m_DoSimulateRelaxation = false; PrintToLog("Simulating acquisition for input diffusion-weighted image.", false); auto caster = itk::CastImageFilter< OutputImageType, DoubleDwiType >::New(); caster->SetInput(m_InputImage); caster->Update(); if (m_Parameters.m_SignalGen.m_DoAddGibbsRinging) { PrintToLog("Upsampling input diffusion-weighted image for Gibbs ringing simulation.", false); auto resampler = itk::ResampleDwiImageFilter< double >::New(); resampler->SetInput(caster->GetOutput()); itk::Vector< double, 3 > samplingFactor; samplingFactor[0] = upsampling; samplingFactor[1] = upsampling; samplingFactor[2] = 1; resampler->SetSamplingFactor(samplingFactor); resampler->SetInterpolation(itk::ResampleDwiImageFilter< double >::Interpolate_WindowedSinc); resampler->Update(); m_CompartmentImages.push_back(resampler->GetOutput()); } else m_CompartmentImages.push_back(caster->GetOutput()); for (unsigned int g=0; g::New(); rescaler->SetInput(0,m_Parameters.m_SignalGen.m_MaskImage); rescaler->SetOutputMaximum(100); rescaler->SetOutputMinimum(0); rescaler->Update(); // resample mask image auto resampler = itk::ResampleImageFilter::New(); resampler->SetInput(rescaler->GetOutput()); resampler->SetOutputParametersFromImage(m_Parameters.m_SignalGen.m_MaskImage); resampler->SetSize(m_WorkingImageRegion.GetSize()); resampler->SetOutputSpacing(m_WorkingSpacing); resampler->SetOutputOrigin(m_WorkingOrigin); auto nn_interpolator = itk::NearestNeighborInterpolateImageFunction::New(); resampler->SetInterpolator(nn_interpolator); resampler->Update(); m_Parameters.m_SignalGen.m_MaskImage = resampler->GetOutput(); } // resample frequency map if (m_Parameters.m_SignalGen.m_FrequencyMap.IsNotNull()) { auto resampler = itk::ResampleImageFilter::New(); resampler->SetInput(m_Parameters.m_SignalGen.m_FrequencyMap); resampler->SetOutputParametersFromImage(m_Parameters.m_SignalGen.m_FrequencyMap); resampler->SetSize(m_WorkingImageRegion.GetSize()); resampler->SetOutputSpacing(m_WorkingSpacing); resampler->SetOutputOrigin(m_WorkingOrigin); auto nn_interpolator = itk::NearestNeighborInterpolateImageFunction::New(); resampler->SetInterpolator(nn_interpolator); resampler->Update(); m_Parameters.m_SignalGen.m_FrequencyMap = resampler->GetOutput(); } } m_MaskImageSet = true; if (m_Parameters.m_SignalGen.m_MaskImage.IsNull()) { // no input tissue mask is set -> create default PrintToLog("No tissue mask set", false); m_Parameters.m_SignalGen.m_MaskImage = ItkUcharImgType::New(); m_Parameters.m_SignalGen.m_MaskImage->SetSpacing( m_WorkingSpacing ); m_Parameters.m_SignalGen.m_MaskImage->SetOrigin( m_WorkingOrigin ); m_Parameters.m_SignalGen.m_MaskImage->SetDirection( m_Parameters.m_SignalGen.m_ImageDirection ); m_Parameters.m_SignalGen.m_MaskImage->SetLargestPossibleRegion( m_WorkingImageRegion ); m_Parameters.m_SignalGen.m_MaskImage->SetBufferedRegion( m_WorkingImageRegion ); m_Parameters.m_SignalGen.m_MaskImage->SetRequestedRegion( m_WorkingImageRegion ); m_Parameters.m_SignalGen.m_MaskImage->Allocate(); m_Parameters.m_SignalGen.m_MaskImage->FillBuffer(100); m_MaskImageSet = false; } else { if (m_Parameters.m_SignalGen.m_MaskImage->GetLargestPossibleRegion()!=m_WorkingImageRegion) { itkExceptionMacro("Mask image and specified DWI geometry are not matching!"); } PrintToLog("Using tissue mask", false); } if (m_Parameters.m_SignalGen.m_DoAddMotion) { if (m_Parameters.m_SignalGen.m_DoRandomizeMotion) { PrintToLog("Random motion artifacts:", false); PrintToLog("Maximum rotation: +/-" + boost::lexical_cast(m_Parameters.m_SignalGen.m_Rotation) + "°", false); PrintToLog("Maximum translation: +/-" + boost::lexical_cast(m_Parameters.m_SignalGen.m_Translation) + "mm", false); } else { PrintToLog("Linear motion artifacts:", false); PrintToLog("Maximum rotation: " + boost::lexical_cast(m_Parameters.m_SignalGen.m_Rotation) + "°", false); PrintToLog("Maximum translation: " + boost::lexical_cast(m_Parameters.m_SignalGen.m_Translation) + "mm", false); } } if ( m_Parameters.m_SignalGen.m_MotionVolumes.empty() ) { // no motion in first volume m_Parameters.m_SignalGen.m_MotionVolumes.push_back(false); // motion in all other volumes while ( m_Parameters.m_SignalGen.m_MotionVolumes.size() < m_Parameters.m_SignalGen.GetNumVolumes() ) { m_Parameters.m_SignalGen.m_MotionVolumes.push_back(true); } } // we need to know for every volume if there is motion. if this information is missing, then set corresponding fal to false while ( m_Parameters.m_SignalGen.m_MotionVolumes.size()::New(); duplicator->SetInputImage(m_Parameters.m_SignalGen.m_MaskImage); duplicator->Update(); m_TransformedMaskImage = duplicator->GetOutput(); // second upsampling needed for motion artifacts ImageRegion<3> upsampledImageRegion = m_WorkingImageRegion; DoubleVectorType upsampledSpacing = m_WorkingSpacing; upsampledSpacing[0] /= 4; upsampledSpacing[1] /= 4; upsampledSpacing[2] /= 4; upsampledImageRegion.SetSize(0, m_WorkingImageRegion.GetSize()[0]*4); upsampledImageRegion.SetSize(1, m_WorkingImageRegion.GetSize()[1]*4); upsampledImageRegion.SetSize(2, m_WorkingImageRegion.GetSize()[2]*4); itk::Point upsampledOrigin = m_WorkingOrigin; upsampledOrigin[0] -= m_WorkingSpacing[0]/2; upsampledOrigin[0] += upsampledSpacing[0]/2; upsampledOrigin[1] -= m_WorkingSpacing[1]/2; upsampledOrigin[1] += upsampledSpacing[1]/2; upsampledOrigin[2] -= m_WorkingSpacing[2]/2; upsampledOrigin[2] += upsampledSpacing[2]/2; m_UpsampledMaskImage = ItkUcharImgType::New(); auto upsampler = itk::ResampleImageFilter::New(); upsampler->SetInput(m_Parameters.m_SignalGen.m_MaskImage); upsampler->SetOutputParametersFromImage(m_Parameters.m_SignalGen.m_MaskImage); upsampler->SetSize(upsampledImageRegion.GetSize()); upsampler->SetOutputSpacing(upsampledSpacing); upsampler->SetOutputOrigin(upsampledOrigin); auto nn_interpolator = itk::NearestNeighborInterpolateImageFunction::New(); upsampler->SetInterpolator(nn_interpolator); upsampler->Update(); m_UpsampledMaskImage = upsampler->GetOutput(); } template< class PixelType > void TractsToDWIImageFilter< PixelType >::InitializeFiberData() { // resample fiber bundle for sufficient voxel coverage PrintToLog("Resampling fibers ..."); m_SegmentVolume = 0.0001; float minSpacing = 1; if( m_WorkingSpacing[0]GetDeepCopy(); double volumeAccuracy = 10; m_FiberBundleWorkingCopy->ResampleLinear(minSpacing/volumeAccuracy); m_mmRadius = m_Parameters.m_SignalGen.m_AxonRadius/1000; auto caster = itk::CastImageFilter< itk::Image, itk::Image >::New(); caster->SetInput(m_TransformedMaskImage); caster->Update(); auto density_calculator = itk::TractDensityImageFilter< itk::Image >::New(); density_calculator->SetFiberBundle(m_FiberBundleWorkingCopy); density_calculator->SetInputImage(caster->GetOutput()); density_calculator->SetBinaryOutput(false); density_calculator->SetUseImageGeometry(true); density_calculator->SetDoFiberResampling(false); density_calculator->SetOutputAbsoluteValues(true); density_calculator->SetWorkOnFiberCopy(false); density_calculator->Update(); float max_density = density_calculator->GetMaxDensity(); if (m_mmRadius>0) { m_SegmentVolume = M_PI*m_mmRadius*m_mmRadius*minSpacing/volumeAccuracy; std::stringstream stream; stream << std::fixed << setprecision(2) << max_density * m_SegmentVolume; std::string s = stream.str(); PrintToLog("\nMax. fiber volume: " + s + "mm².", false, true, true); } else { std::stringstream stream; stream << std::fixed << setprecision(2) << max_density * m_SegmentVolume; std::string s = stream.str(); PrintToLog("\nMax. fiber volume: " + s + "mm² (before rescaling to voxel volume).", false, true, true); } float voxel_volume = m_WorkingSpacing[0]*m_WorkingSpacing[1]*m_WorkingSpacing[2]; float new_seg_vol = voxel_volume/max_density; float new_fib_radius = 1000*std::sqrt(new_seg_vol*volumeAccuracy/(minSpacing*M_PI)); std::stringstream stream; stream << std::fixed << setprecision(2) << new_fib_radius; std::string s = stream.str(); PrintToLog("\nA full fiber voxel corresponds to a fiber radius of ~" + s + "µm, given the current fiber configuration.", false, true, true); // a second fiber bundle is needed to store the transformed version of the m_FiberBundleWorkingCopy m_FiberBundleTransformed = m_FiberBundleWorkingCopy; } template< class PixelType > bool TractsToDWIImageFilter< PixelType >::PrepareLogFile() { assert( ! m_Logfile.is_open() ); std::string filePath; std::string fileName; // Get directory name: if (m_Parameters.m_Misc.m_OutputPath.size() > 0) { filePath = m_Parameters.m_Misc.m_OutputPath; if( *(--(filePath.cend())) != '/') { filePath.push_back('/'); } } else { filePath = mitk::IOUtil::GetTempPath() + '/'; } // check if directory exists, else use /tmp/: if( itksys::SystemTools::FileIsDirectory( filePath ) ) { while( *(--(filePath.cend())) == '/') { filePath.pop_back(); } filePath = filePath + '/'; } else { filePath = mitk::IOUtil::GetTempPath() + '/'; } // Get file name: if( ! m_Parameters.m_Misc.m_ResultNode->GetName().empty() ) { fileName = m_Parameters.m_Misc.m_ResultNode->GetName(); } else { fileName = ""; } if( ! m_Parameters.m_Misc.m_OutputPrefix.empty() ) { fileName = m_Parameters.m_Misc.m_OutputPrefix + fileName; } else { fileName = "fiberfox"; } // check if file already exists and DO NOT overwrite existing files: std::string NameTest = fileName; int c = 0; while( itksys::SystemTools::FileExists( filePath + '/' + fileName + ".log" ) && c <= std::numeric_limits::max() ) { fileName = NameTest + "_" + boost::lexical_cast(c); ++c; } try { m_Logfile.open( ( filePath + '/' + fileName + ".log" ).c_str() ); } catch (const std::ios_base::failure &fail) { MITK_ERROR << "itkTractsToDWIImageFilter.cpp: Exception " << fail.what() << " while trying to open file" << filePath << '/' << fileName << ".log"; return false; } if ( m_Logfile.is_open() ) { PrintToLog( "Logfile: " + filePath + '/' + fileName + ".log", false ); return true; } else { m_StatusText += "Logfile could not be opened!\n"; MITK_ERROR << "itkTractsToDWIImageFilter.cpp: Logfile could not be opened!"; return false; } } template< class PixelType > void TractsToDWIImageFilter< PixelType >::GenerateData() { // prepare logfile if ( ! PrepareLogFile() ) { this->SetAbortGenerateData( true ); return; } m_TimeProbe.Start(); // check input data if (m_FiberBundle.IsNull() && m_InputImage.IsNull()) itkExceptionMacro("Input fiber bundle and input diffusion-weighted image is nullptr!"); if (m_Parameters.m_FiberModelList.empty() && m_InputImage.IsNull()) itkExceptionMacro("No diffusion model for fiber compartments defined and input diffusion-weighted" " image is nullptr! At least one fiber compartment is necessary to simulate diffusion."); if (m_Parameters.m_NonFiberModelList.empty() && m_InputImage.IsNull()) itkExceptionMacro("No diffusion model for non-fiber compartments defined and input diffusion-weighted" " image is nullptr! At least one non-fiber compartment is necessary to simulate diffusion."); int baselineIndex = m_Parameters.m_SignalGen.GetFirstBaselineIndex(); if (baselineIndex<0) { itkExceptionMacro("No baseline index found!"); } if (!m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition) // No upsampling of input image needed if no k-space simulation is performed { m_Parameters.m_SignalGen.m_DoAddGibbsRinging = false; } if (m_UseConstantRandSeed) // always generate the same random numbers? { m_RandGen->SetSeed(0); } else { m_RandGen->SetSeed(); } InitializeData(); if ( m_FiberBundle.IsNotNull() ) // if no fiber bundle is found, we directly proceed to the k-space acquisition simulation { CheckVolumeFractionImages(); InitializeFiberData(); int numFiberCompartments = m_Parameters.m_FiberModelList.size(); int numNonFiberCompartments = m_Parameters.m_NonFiberModelList.size(); double maxVolume = 0; unsigned long lastTick = 0; int signalModelSeed = m_RandGen->GetIntegerVariate(); PrintToLog("\n", false, false); PrintToLog("Generating " + boost::lexical_cast(numFiberCompartments+numNonFiberCompartments) + "-compartment diffusion-weighted signal."); std::vector< int > bVals = m_Parameters.m_SignalGen.GetBvalues(); PrintToLog("b-values: ", false, false, true); for (auto v : bVals) PrintToLog(boost::lexical_cast(v) + " ", false, false, true); PrintToLog("\n", false, false, true); PrintToLog("\n", false, false, true); int numFibers = m_FiberBundleWorkingCopy->GetNumFibers(); boost::progress_display disp(numFibers*m_Parameters.m_SignalGen.GetNumVolumes()); PrintToLog("0% 10 20 30 40 50 60 70 80 90 100%", false, true, false); PrintToLog("|----|----|----|----|----|----|----|----|----|----|\n*", false, false, false); for (unsigned int g=0; gSetSeed(signalModelSeed); for (std::size_t i=0; iSetSeed(signalModelSeed); // storing voxel-wise intra-axonal volume in mm³ auto intraAxonalVolumeImage = ItkDoubleImgType::New(); intraAxonalVolumeImage->SetSpacing( m_WorkingSpacing ); intraAxonalVolumeImage->SetOrigin( m_WorkingOrigin ); intraAxonalVolumeImage->SetDirection( m_Parameters.m_SignalGen.m_ImageDirection ); intraAxonalVolumeImage->SetLargestPossibleRegion( m_WorkingImageRegion ); intraAxonalVolumeImage->SetBufferedRegion( m_WorkingImageRegion ); intraAxonalVolumeImage->SetRequestedRegion( m_WorkingImageRegion ); intraAxonalVolumeImage->Allocate(); intraAxonalVolumeImage->FillBuffer(0); maxVolume = 0; vtkPolyData* fiberPolyData = m_FiberBundleTransformed->GetFiberPolyData(); // generate fiber signal (if there are any fiber models present) if (!m_Parameters.m_FiberModelList.empty()) for( int i=0; iGetFiberWeight(i); vtkCell* cell = fiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (numPoints<2) continue; for( int j=0; jGetAbortGenerateData()) { PrintToLog("\n", false, false); PrintToLog("Simulation aborted"); return; } double* temp = points->GetPoint(j); itk::Point vertex = GetItkPoint(temp); itk::Vector v = GetItkVector(temp); itk::Vector dir(3); if (jGetPoint(j+1))-v; } else { dir = v-GetItkVector(points->GetPoint(j-1)); } if ( dir.GetSquaredNorm()<0.0001 || dir[0]!=dir[0] || dir[1]!=dir[1] || dir[2]!=dir[2] ) { continue; } itk::Index<3> idx; itk::ContinuousIndex contIndex; m_TransformedMaskImage->TransformPhysicalPointToIndex(vertex, idx); m_TransformedMaskImage->TransformPhysicalPointToContinuousIndex(vertex, contIndex); if (!m_TransformedMaskImage->GetLargestPossibleRegion().IsInside(idx) || m_TransformedMaskImage->GetPixel(idx)<=0) { continue; } // generate signal for each fiber compartment for (int k=0; kSetFiberDirection(dir); DoubleDwiType::PixelType pix = m_CompartmentImages.at(k)->GetPixel(idx); pix[g] += fiberWeight*m_SegmentVolume*m_Parameters.m_FiberModelList[k]->SimulateMeasurement(g); m_CompartmentImages.at(k)->SetPixel(idx, pix); } // update fiber volume image double vol = intraAxonalVolumeImage->GetPixel(idx) + m_SegmentVolume*fiberWeight; intraAxonalVolumeImage->SetPixel(idx, vol); // we assume that the first volume is always unweighted! if (vol>maxVolume) { maxVolume = vol; } } // progress report ++disp; unsigned long newTick = 50*disp.count()/disp.expected_count(); for (unsigned int tick = 0; tick<(newTick-lastTick); tick++) { PrintToLog("*", false, false, false); } lastTick = newTick; } // generate non-fiber signal ImageRegionIterator it3(m_TransformedMaskImage, m_TransformedMaskImage->GetLargestPossibleRegion()); double fact = 1; // density correction factor in mm³ if (m_Parameters.m_SignalGen.m_AxonRadius<0.0001 || maxVolume>m_VoxelVolume) // the fullest voxel is always completely full fact = m_VoxelVolume/maxVolume; while(!it3.IsAtEnd()) { if (it3.Get()>0) { DoubleDwiType::IndexType index = it3.GetIndex(); itk::Point point; m_TransformedMaskImage->TransformIndexToPhysicalPoint(index, point); if ( m_Parameters.m_SignalGen.m_DoAddMotion && g>=0 && m_Parameters.m_SignalGen.m_MotionVolumes[g] ) { if (m_Parameters.m_SignalGen.m_DoRandomizeMotion) { point = m_FiberBundleWorkingCopy->TransformPoint( point.GetVnlVector(), -m_Rotation[0], -m_Rotation[1], -m_Rotation[2], -m_Translation[0], -m_Translation[1], -m_Translation[2] ); } else { point = m_FiberBundleWorkingCopy->TransformPoint( point.GetVnlVector(), -m_Rotation[0]*m_MotionCounter, -m_Rotation[1]*m_MotionCounter, -m_Rotation[2]*m_MotionCounter, -m_Translation[0]*m_MotionCounter, -m_Translation[1]*m_MotionCounter, -m_Translation[2]*m_MotionCounter ); } } double iAxVolume = intraAxonalVolumeImage->GetPixel(index); // if volume fraction image is set use it, otherwise use scaling factor to obtain one full fiber voxel double fact2 = fact; if ( m_Parameters.m_FiberModelList[0]->GetVolumeFractionImage()!=nullptr && iAxVolume>0.0001 ) { m_DoubleInterpolator->SetInputImage(m_Parameters.m_FiberModelList[0]->GetVolumeFractionImage()); double val = mitk::imv::GetImageValue(point, true, m_DoubleInterpolator); if (val<0) mitkThrow() << "Volume fraction image (index 1) contains negative values (intra-axonal compartment)!"; fact2 = m_VoxelVolume*val/iAxVolume; } // adjust intra-axonal image value for (int i=0; iGetPixel(index); pix[g] *= fact2; m_CompartmentImages.at(i)->SetPixel(index, pix); } // simulate other compartments SimulateExtraAxonalSignal(index, iAxVolume*fact2, g); } ++it3; } } PrintToLog("\n", false); if (this->GetAbortGenerateData()) { PrintToLog("\n", false, false); PrintToLog("Simulation aborted"); return; } } DoubleDwiType::Pointer doubleOutImage; double signalScale = m_Parameters.m_SignalGen.m_SignalScale; if ( m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition ) // do k-space stuff { PrintToLog("\n", false, false); PrintToLog("Simulating k-space acquisition using " +boost::lexical_cast(m_Parameters.m_SignalGen.m_NumberOfCoils) +" coil(s)"); switch (m_Parameters.m_SignalGen.m_AcquisitionType) { case SignalGenerationParameters::SingleShotEpi: { PrintToLog("Acquisition type: single shot EPI", false); break; } case SignalGenerationParameters::SpinEcho: { PrintToLog("Acquisition type: classic spin echo with cartesian k-space trajectory", false); break; } default: { PrintToLog("Acquisition type: single shot EPI", false); break; } } if (m_Parameters.m_SignalGen.m_NoiseVariance>0) PrintToLog("Simulating complex Gaussian noise", false); if (m_Parameters.m_SignalGen.m_DoSimulateRelaxation) PrintToLog("Simulating signal relaxation", false); if (m_Parameters.m_SignalGen.m_FrequencyMap.IsNotNull()) PrintToLog("Simulating distortions", false); if (m_Parameters.m_SignalGen.m_DoAddGibbsRinging) PrintToLog("Simulating ringing artifacts", false); if (m_Parameters.m_SignalGen.m_EddyStrength>0) PrintToLog("Simulating eddy currents", false); if (m_Parameters.m_SignalGen.m_Spikes>0) PrintToLog("Simulating spikes", false); if (m_Parameters.m_SignalGen.m_CroppingFactor<1.0) PrintToLog("Simulating aliasing artifacts", false); if (m_Parameters.m_SignalGen.m_KspaceLineOffset>0) PrintToLog("Simulating ghosts", false); doubleOutImage = SimulateKspaceAcquisition(m_CompartmentImages); signalScale = 1; // already scaled in SimulateKspaceAcquisition() } else // don't do k-space stuff, just sum compartments { PrintToLog("Summing compartments"); doubleOutImage = m_CompartmentImages.at(0); for (unsigned int i=1; i::New(); adder->SetInput1(doubleOutImage); adder->SetInput2(m_CompartmentImages.at(i)); adder->Update(); doubleOutImage = adder->GetOutput(); } } if (this->GetAbortGenerateData()) { PrintToLog("\n", false, false); PrintToLog("Simulation aborted"); return; } PrintToLog("Finalizing image"); if (signalScale>1) PrintToLog(" Scaling signal", false); if (m_Parameters.m_NoiseModel) PrintToLog(" Adding noise", false); unsigned int window = 0; unsigned int min = itk::NumericTraits::max(); ImageRegionIterator it4 (m_OutputImage, m_OutputImage->GetLargestPossibleRegion()); DoubleDwiType::PixelType signal; signal.SetSize(m_Parameters.m_SignalGen.GetNumVolumes()); boost::progress_display disp2(m_OutputImage->GetLargestPossibleRegion().GetNumberOfPixels()); PrintToLog("0% 10 20 30 40 50 60 70 80 90 100%", false, true, false); PrintToLog("|----|----|----|----|----|----|----|----|----|----|\n*", false, false, false); int lastTick = 0; while(!it4.IsAtEnd()) { if (this->GetAbortGenerateData()) { PrintToLog("\n", false, false); PrintToLog("Simulation aborted"); return; } ++disp2; unsigned long newTick = 50*disp2.count()/disp2.expected_count(); for (unsigned long tick = 0; tick<(newTick-lastTick); tick++) PrintToLog("*", false, false, false); lastTick = newTick; typename OutputImageType::IndexType index = it4.GetIndex(); signal = doubleOutImage->GetPixel(index)*signalScale; if (m_Parameters.m_NoiseModel) m_Parameters.m_NoiseModel->AddNoise(signal); for (unsigned int i=0; i0) signal[i] = floor(signal[i]+0.5); else signal[i] = ceil(signal[i]-0.5); if ( (!m_Parameters.m_SignalGen.IsBaselineIndex(i) || signal.Size()==1) && signal[i]>window) window = signal[i]; if ( (!m_Parameters.m_SignalGen.IsBaselineIndex(i) || signal.Size()==1) && signal[i]SetNthOutput(0, m_OutputImage); PrintToLog("\n", false); PrintToLog("Finished simulation"); m_TimeProbe.Stop(); if (m_Parameters.m_SignalGen.m_DoAddMotion) { PrintToLog("\nHead motion log:", false); PrintToLog(m_MotionLog, false, false); } if (m_Parameters.m_SignalGen.m_Spikes>0) { PrintToLog("\nSpike log:", false); PrintToLog(m_SpikeLog, false, false); } if (m_Logfile.is_open()) m_Logfile.close(); } template< class PixelType > void TractsToDWIImageFilter< PixelType >::PrintToLog(std::string m, bool addTime, bool linebreak, bool stdOut) { // timestamp if (addTime) { m_Logfile << this->GetTime() << " > "; m_StatusText += this->GetTime() + " > "; if (stdOut) std::cout << this->GetTime() << " > "; } // message if (m_Logfile.is_open()) m_Logfile << m; m_StatusText += m; if (stdOut) std::cout << m; // new line if (linebreak) { if (m_Logfile.is_open()) m_Logfile << "\n"; m_StatusText += "\n"; if (stdOut) std::cout << "\n"; } } template< class PixelType > void TractsToDWIImageFilter< PixelType >::SimulateMotion(int g) { // is motion artifact enabled? // is the current volume g affected by motion? if ( m_Parameters.m_SignalGen.m_DoAddMotion && m_Parameters.m_SignalGen.m_MotionVolumes[g] && g(m_Parameters.m_SignalGen.GetNumVolumes()) ) { if ( m_Parameters.m_SignalGen.m_DoRandomizeMotion ) { // either undo last transform or work on fresh copy of untransformed fibers m_FiberBundleTransformed = m_FiberBundleWorkingCopy->GetDeepCopy(); m_Rotation[0] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_SignalGen.m_Rotation[0]*2) -m_Parameters.m_SignalGen.m_Rotation[0]; m_Rotation[1] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_SignalGen.m_Rotation[1]*2) -m_Parameters.m_SignalGen.m_Rotation[1]; m_Rotation[2] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_SignalGen.m_Rotation[2]*2) -m_Parameters.m_SignalGen.m_Rotation[2]; m_Translation[0] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_SignalGen.m_Translation[0]*2) -m_Parameters.m_SignalGen.m_Translation[0]; m_Translation[1] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_SignalGen.m_Translation[1]*2) -m_Parameters.m_SignalGen.m_Translation[1]; m_Translation[2] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_SignalGen.m_Translation[2]*2) -m_Parameters.m_SignalGen.m_Translation[2]; } else { m_Rotation = m_Parameters.m_SignalGen.m_Rotation / m_NumMotionVolumes; m_Translation = m_Parameters.m_SignalGen.m_Translation / m_NumMotionVolumes; m_MotionCounter++; } // move mask image if (m_MaskImageSet) { ImageRegionIterator maskIt(m_UpsampledMaskImage, m_UpsampledMaskImage->GetLargestPossibleRegion()); m_TransformedMaskImage->FillBuffer(0); while(!maskIt.IsAtEnd()) { if (maskIt.Get()<=0) { ++maskIt; continue; } DoubleDwiType::IndexType index = maskIt.GetIndex(); itk::Point point; m_UpsampledMaskImage->TransformIndexToPhysicalPoint(index, point); if (m_Parameters.m_SignalGen.m_DoRandomizeMotion) { point = m_FiberBundleWorkingCopy->TransformPoint(point.GetVnlVector(), m_Rotation[0],m_Rotation[1],m_Rotation[2], m_Translation[0],m_Translation[1],m_Translation[2]); } else { point = m_FiberBundleWorkingCopy->TransformPoint(point.GetVnlVector(), m_Rotation[0]*m_MotionCounter,m_Rotation[1]*m_MotionCounter,m_Rotation[2]*m_MotionCounter, m_Translation[0]*m_MotionCounter,m_Translation[1]*m_MotionCounter,m_Translation[2]*m_MotionCounter); } m_TransformedMaskImage->TransformPhysicalPointToIndex(point, index); if (m_TransformedMaskImage->GetLargestPossibleRegion().IsInside(index)) { m_TransformedMaskImage->SetPixel(index,100); } ++maskIt; } } if (m_Parameters.m_SignalGen.m_DoRandomizeMotion) { m_Rotations.push_back(m_Rotation); m_Translations.push_back(m_Translation); m_MotionLog += boost::lexical_cast(g) + " rotation: " + boost::lexical_cast(m_Rotation[0]) + "," + boost::lexical_cast(m_Rotation[1]) + "," + boost::lexical_cast(m_Rotation[2]) + ";"; m_MotionLog += " translation: " + boost::lexical_cast(m_Translation[0]) + "," + boost::lexical_cast(m_Translation[1]) + "," + boost::lexical_cast(m_Translation[2]) + "\n"; } else { m_Rotations.push_back(m_Rotation*m_MotionCounter); m_Translations.push_back(m_Translation*m_MotionCounter); m_MotionLog += boost::lexical_cast(g) + " rotation: " + boost::lexical_cast(m_Rotation[0]*m_MotionCounter) + "," + boost::lexical_cast(m_Rotation[1]*m_MotionCounter) + "," + boost::lexical_cast(m_Rotation[2]*m_MotionCounter) + ";"; m_MotionLog += " translation: " + boost::lexical_cast(m_Translation[0]*m_MotionCounter) + "," + boost::lexical_cast(m_Translation[1]*m_MotionCounter) + "," + boost::lexical_cast(m_Translation[2]*m_MotionCounter) + "\n"; } m_FiberBundleTransformed->TransformFibers(m_Rotation[0],m_Rotation[1],m_Rotation[2],m_Translation[0],m_Translation[1],m_Translation[2]); } else { m_Rotation.Fill(0.0); m_Translation.Fill(0.0); m_Rotations.push_back(m_Rotation); m_Translations.push_back(m_Translation); m_MotionLog += boost::lexical_cast(g) + " rotation: " + boost::lexical_cast(m_Rotation[0]) + "," + boost::lexical_cast(m_Rotation[1]) + "," + boost::lexical_cast(m_Rotation[2]) + ";"; m_MotionLog += " translation: " + boost::lexical_cast(m_Translation[0]) + "," + boost::lexical_cast(m_Translation[1]) + "," + boost::lexical_cast(m_Translation[2]) + "\n"; } } template< class PixelType > void TractsToDWIImageFilter< PixelType >:: SimulateExtraAxonalSignal(ItkUcharImgType::IndexType index, double intraAxonalVolume, int g) { int numFiberCompartments = m_Parameters.m_FiberModelList.size(); int numNonFiberCompartments = m_Parameters.m_NonFiberModelList.size(); if (intraAxonalVolume>0.0001 && m_Parameters.m_SignalGen.m_DoDisablePartialVolume) // only fiber in voxel { DoubleDwiType::PixelType pix = m_CompartmentImages.at(0)->GetPixel(index); if (g>=0) pix[g] *= m_VoxelVolume/intraAxonalVolume; else pix *= m_VoxelVolume/intraAxonalVolume; m_CompartmentImages.at(0)->SetPixel(index, pix); if (g==0) m_VolumeFractions.at(0)->SetPixel(index, 1); for (int i=1; iGetPixel(index); if (g>=0) pix[g] = 0.0; else pix.Fill(0.0); m_CompartmentImages.at(i)->SetPixel(index, pix); } } else { if (g==0) { m_VolumeFractions.at(0)->SetPixel(index, intraAxonalVolume/m_VoxelVolume); } // get non-transformed point (remove headmotion tranformation) // this point can then be transformed to each of the original images, regardless of their geometry itk::Point point; m_TransformedMaskImage->TransformIndexToPhysicalPoint(index, point); if ( m_Parameters.m_SignalGen.m_DoAddMotion && g>=0 && m_Parameters.m_SignalGen.m_MotionVolumes[g] ) { if (m_Parameters.m_SignalGen.m_DoRandomizeMotion) { point = m_FiberBundleWorkingCopy->TransformPoint(point.GetVnlVector(), -m_Rotation[0],-m_Rotation[1],-m_Rotation[2], -m_Translation[0],-m_Translation[1],-m_Translation[2]); } else { point = m_FiberBundleWorkingCopy->TransformPoint(point.GetVnlVector(), -m_Rotation[0]*m_MotionCounter,-m_Rotation[1]*m_MotionCounter,-m_Rotation[2]*m_MotionCounter, -m_Translation[0]*m_MotionCounter,-m_Translation[1]*m_MotionCounter,-m_Translation[2]*m_MotionCounter); } } if (m_Parameters.m_SignalGen.m_DoDisablePartialVolume) { int maxVolumeIndex = 0; double maxWeight = 0; for (int i=0; i1) { m_DoubleInterpolator->SetInputImage(m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()); double val = mitk::imv::GetImageValue(point, true, m_DoubleInterpolator); if (val<0) mitkThrow() << "Volume fraction image (index " << i << ") contains values less than zero!"; else weight = val; } if (weight>maxWeight) { maxWeight = weight; maxVolumeIndex = i; } } DoubleDwiType::Pointer doubleDwi = m_CompartmentImages.at(maxVolumeIndex+numFiberCompartments); DoubleDwiType::PixelType pix = doubleDwi->GetPixel(index); if (g>=0) pix[g] += m_Parameters.m_NonFiberModelList[maxVolumeIndex]->SimulateMeasurement(g)*m_VoxelVolume; else pix += m_Parameters.m_NonFiberModelList[maxVolumeIndex]->SimulateMeasurement()*m_VoxelVolume; doubleDwi->SetPixel(index, pix); if (g==0) m_VolumeFractions.at(maxVolumeIndex+numFiberCompartments)->SetPixel(index, 1); } else { double extraAxonalVolume = m_VoxelVolume-intraAxonalVolume; // non-fiber volume if (extraAxonalVolume<0) { if (extraAxonalVolume<-0.001) MITK_ERROR << "Corrupted intra-axonal signal voxel detected. Fiber volume larger voxel volume! " << m_VoxelVolume << "<" << intraAxonalVolume; extraAxonalVolume = 0; } double interAxonalVolume = 0; if (numFiberCompartments>1) interAxonalVolume = extraAxonalVolume * intraAxonalVolume/m_VoxelVolume; // inter-axonal fraction of non fiber compartment double other = extraAxonalVolume - interAxonalVolume; // rest of compartment if (other<0) { if (other<-0.001) MITK_ERROR << "Corrupted signal voxel detected. Fiber volume larger voxel volume!"; other = 0; interAxonalVolume = extraAxonalVolume; } double compartmentSum = intraAxonalVolume; // adjust non-fiber and intra-axonal signal for (int i=1; iGetPixel(index); if (intraAxonalVolume>0) // remove scaling by intra-axonal volume from inter-axonal compartment { if (g>=0) pix[g] /= intraAxonalVolume; else pix /= intraAxonalVolume; } else { if (g>=0) pix[g] = 0; else pix *= 0; } if (m_Parameters.m_FiberModelList[i]->GetVolumeFractionImage()!=nullptr) { m_DoubleInterpolator->SetInputImage(m_Parameters.m_FiberModelList[i]->GetVolumeFractionImage()); double val = mitk::imv::GetImageValue(point, true, m_DoubleInterpolator); if (val<0) mitkThrow() << "Volume fraction image (index " << i+1 << ") contains negative values!"; else weight = val*m_VoxelVolume; } compartmentSum += weight; if (g>=0) pix[g] *= weight; else pix *= weight; m_CompartmentImages.at(i)->SetPixel(index, pix); if (g==0) m_VolumeFractions.at(i)->SetPixel(index, weight/m_VoxelVolume); } for (int i=0; iGetPixel(index); if (m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()!=nullptr) { m_DoubleInterpolator->SetInputImage(m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()); double val = mitk::imv::GetImageValue(point, true, m_DoubleInterpolator); if (val<0) mitkThrow() << "Volume fraction image (index " << numFiberCompartments+i+1 << ") contains negative values (non-fiber compartment)!"; else weight = val*m_VoxelVolume; if (m_UseRelativeNonFiberVolumeFractions) weight *= other/m_VoxelVolume; } compartmentSum += weight; if (g>=0) pix[g] += m_Parameters.m_NonFiberModelList[i]->SimulateMeasurement(g)*weight; else pix += m_Parameters.m_NonFiberModelList[i]->SimulateMeasurement()*weight; m_CompartmentImages.at(i+numFiberCompartments)->SetPixel(index, pix); if (g==0) m_VolumeFractions.at(i+numFiberCompartments)->SetPixel(index, weight/m_VoxelVolume); } if (compartmentSum/m_VoxelVolume>1.05) MITK_ERROR << "Compartments do not sum to 1 in voxel " << index << " (" << compartmentSum/m_VoxelVolume << ")"; } } } template< class PixelType > itk::Point TractsToDWIImageFilter< PixelType >::GetItkPoint(double point[3]) { itk::Point itkPoint; itkPoint[0] = point[0]; itkPoint[1] = point[1]; itkPoint[2] = point[2]; return itkPoint; } template< class PixelType > itk::Vector TractsToDWIImageFilter< PixelType >::GetItkVector(double point[3]) { itk::Vector itkVector; itkVector[0] = point[0]; itkVector[1] = point[1]; itkVector[2] = point[2]; return itkVector; } template< class PixelType > vnl_vector_fixed TractsToDWIImageFilter< PixelType >::GetVnlVector(double point[3]) { vnl_vector_fixed vnlVector; vnlVector[0] = point[0]; vnlVector[1] = point[1]; vnlVector[2] = point[2]; return vnlVector; } template< class PixelType > vnl_vector_fixed TractsToDWIImageFilter< PixelType >::GetVnlVector(Vector& vector) { vnl_vector_fixed vnlVector; vnlVector[0] = vector[0]; vnlVector[1] = vector[1]; vnlVector[2] = vector[2]; return vnlVector; } template< class PixelType > double TractsToDWIImageFilter< PixelType >::RoundToNearest(double num) { return (num > 0.0) ? floor(num + 0.5) : ceil(num - 0.5); } template< class PixelType > std::string TractsToDWIImageFilter< PixelType >::GetTime() { m_TimeProbe.Stop(); unsigned long total = RoundToNearest(m_TimeProbe.GetTotal()); unsigned long hours = total/3600; unsigned long minutes = (total%3600)/60; unsigned long seconds = total%60; std::string out = ""; out.append(boost::lexical_cast(hours)); out.append(":"); out.append(boost::lexical_cast(minutes)); out.append(":"); out.append(boost::lexical_cast(seconds)); m_TimeProbe.Start(); return out; } } diff --git a/Modules/DiffusionImaging/FiberTracking/IODataStructures/FiberBundle/mitkFiberBundle.cpp b/Modules/DiffusionImaging/FiberTracking/IODataStructures/FiberBundle/mitkFiberBundle.cpp index 3b77f7fa17..80f3f7b5c2 100755 --- a/Modules/DiffusionImaging/FiberTracking/IODataStructures/FiberBundle/mitkFiberBundle.cpp +++ b/Modules/DiffusionImaging/FiberTracking/IODataStructures/FiberBundle/mitkFiberBundle.cpp @@ -1,2544 +1,2549 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #define _USE_MATH_DEFINES #include "mitkFiberBundle.h" #include #include #include #include "mitkImagePixelReadAccessor.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const char* mitk::FiberBundle::FIBER_ID_ARRAY = "Fiber_IDs"; mitk::FiberBundle::FiberBundle( vtkPolyData* fiberPolyData ) : m_NumFibers(0) { m_FiberWeights = vtkSmartPointer::New(); m_FiberWeights->SetName("FIBER_WEIGHTS"); m_FiberPolyData = vtkSmartPointer::New(); if (fiberPolyData != nullptr) m_FiberPolyData = fiberPolyData; else { this->m_FiberPolyData->SetPoints(vtkSmartPointer::New()); this->m_FiberPolyData->SetLines(vtkSmartPointer::New()); } this->UpdateFiberGeometry(); this->GenerateFiberIds(); this->ColorFibersByOrientation(); } mitk::FiberBundle::~FiberBundle() { } mitk::FiberBundle::Pointer mitk::FiberBundle::GetDeepCopy() { mitk::FiberBundle::Pointer newFib = mitk::FiberBundle::New(m_FiberPolyData); newFib->SetFiberColors(this->m_FiberColors); newFib->SetFiberWeights(this->m_FiberWeights); return newFib; } vtkSmartPointer mitk::FiberBundle::GeneratePolyDataByIds(std::vector fiberIds, vtkSmartPointer weights) { vtkSmartPointer newFiberPolyData = vtkSmartPointer::New(); vtkSmartPointer newLineSet = vtkSmartPointer::New(); vtkSmartPointer newPointSet = vtkSmartPointer::New(); weights->SetNumberOfValues(fiberIds.size()); int counter = 0; auto finIt = fiberIds.begin(); while ( finIt != fiberIds.end() ) { if (*finIt < 0 || *finIt>GetNumFibers()){ MITK_INFO << "FiberID can not be negative or >NumFibers!!! check id Extraction!" << *finIt; break; } vtkSmartPointer fiber = m_FiberIdDataSet->GetCell(*finIt);//->DeepCopy(fiber); vtkSmartPointer fibPoints = fiber->GetPoints(); vtkSmartPointer newFiber = vtkSmartPointer::New(); newFiber->GetPointIds()->SetNumberOfIds( fibPoints->GetNumberOfPoints() ); for(int i=0; iGetNumberOfPoints(); i++) { newFiber->GetPointIds()->SetId(i, newPointSet->GetNumberOfPoints()); newPointSet->InsertNextPoint(fibPoints->GetPoint(i)[0], fibPoints->GetPoint(i)[1], fibPoints->GetPoint(i)[2]); } weights->InsertValue(counter, this->GetFiberWeight(*finIt)); newLineSet->InsertNextCell(newFiber); ++finIt; ++counter; } newFiberPolyData->SetPoints(newPointSet); newFiberPolyData->SetLines(newLineSet); return newFiberPolyData; } // merge two fiber bundles mitk::FiberBundle::Pointer mitk::FiberBundle::AddBundles(std::vector< mitk::FiberBundle::Pointer > fibs) { vtkSmartPointer vNewPolyData = vtkSmartPointer::New(); vtkSmartPointer vNewLines = vtkSmartPointer::New(); vtkSmartPointer vNewPoints = vtkSmartPointer::New(); // add current fiber bundle vtkSmartPointer weights = vtkSmartPointer::New(); int num_weights = this->GetNumFibers(); for (auto fib : fibs) num_weights += fib->GetNumFibers(); weights->SetNumberOfValues(num_weights); unsigned int counter = 0; for (int i=0; iGetNumberOfCells(); i++) { vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j, p); vtkIdType id = vNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } weights->InsertValue(counter, this->GetFiberWeight(i)); vNewLines->InsertNextCell(container); counter++; } for (auto fib : fibs) { // add new fiber bundle for (int i=0; iGetFiberPolyData()->GetNumberOfCells(); i++) { vtkCell* cell = fib->GetFiberPolyData()->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j, p); vtkIdType id = vNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } weights->InsertValue(counter, fib->GetFiberWeight(i)); vNewLines->InsertNextCell(container); counter++; } } // initialize PolyData vNewPolyData->SetPoints(vNewPoints); vNewPolyData->SetLines(vNewLines); // initialize fiber bundle mitk::FiberBundle::Pointer newFib = mitk::FiberBundle::New(vNewPolyData); newFib->SetFiberWeights(weights); return newFib; } // merge two fiber bundles mitk::FiberBundle::Pointer mitk::FiberBundle::AddBundle(mitk::FiberBundle* fib) { if (fib==nullptr) return this->GetDeepCopy(); MITK_INFO << "Adding fibers"; vtkSmartPointer vNewPolyData = vtkSmartPointer::New(); vtkSmartPointer vNewLines = vtkSmartPointer::New(); vtkSmartPointer vNewPoints = vtkSmartPointer::New(); // add current fiber bundle vtkSmartPointer weights = vtkSmartPointer::New(); weights->SetNumberOfValues(this->GetNumFibers()+fib->GetNumFibers()); unsigned int counter = 0; for (int i=0; iGetNumberOfCells(); i++) { vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j, p); vtkIdType id = vNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } weights->InsertValue(counter, this->GetFiberWeight(i)); vNewLines->InsertNextCell(container); counter++; } // add new fiber bundle for (int i=0; iGetFiberPolyData()->GetNumberOfCells(); i++) { vtkCell* cell = fib->GetFiberPolyData()->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j, p); vtkIdType id = vNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } weights->InsertValue(counter, fib->GetFiberWeight(i)); vNewLines->InsertNextCell(container); counter++; } // initialize PolyData vNewPolyData->SetPoints(vNewPoints); vNewPolyData->SetLines(vNewLines); // initialize fiber bundle mitk::FiberBundle::Pointer newFib = mitk::FiberBundle::New(vNewPolyData); newFib->SetFiberWeights(weights); return newFib; } // Only retain fibers with a weight larger than the specified threshold mitk::FiberBundle::Pointer mitk::FiberBundle::FilterByWeights(float weight_thr, bool invert) { vtkSmartPointer vNewPolyData = vtkSmartPointer::New(); vtkSmartPointer vNewLines = vtkSmartPointer::New(); vtkSmartPointer vNewPoints = vtkSmartPointer::New(); std::vector weights; for (int i=0; iGetNumFibers(); i++) { if ( (invert && this->GetFiberWeight(i)>weight_thr) || (!invert && this->GetFiberWeight(i)<=weight_thr)) continue; vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j, p); vtkIdType id = vNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vNewLines->InsertNextCell(container); weights.push_back(this->GetFiberWeight(i)); } // initialize PolyData vNewPolyData->SetPoints(vNewPoints); vNewPolyData->SetLines(vNewLines); // initialize fiber bundle mitk::FiberBundle::Pointer newFib = mitk::FiberBundle::New(vNewPolyData); for (unsigned int i=0; iSetFiberWeight(i, weights.at(i)); return newFib; } // Only retain a subsample of the fibers mitk::FiberBundle::Pointer mitk::FiberBundle::SubsampleFibers(float factor) { vtkSmartPointer vNewPolyData = vtkSmartPointer::New(); vtkSmartPointer vNewLines = vtkSmartPointer::New(); vtkSmartPointer vNewPoints = vtkSmartPointer::New(); int new_num_fibs = this->GetNumFibers()*factor; MITK_INFO << "Subsampling fibers with factor " << factor << "(" << new_num_fibs << "/" << this->GetNumFibers() << ")"; // add current fiber bundle vtkSmartPointer weights = vtkSmartPointer::New(); weights->SetNumberOfValues(new_num_fibs); std::vector< int > ids; for (int i=0; iGetNumFibers(); i++) ids.push_back(i); std::random_shuffle(ids.begin(), ids.end()); unsigned int counter = 0; for (int i=0; iGetCell(ids.at(i)); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j, p); vtkIdType id = vNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } weights->InsertValue(counter, this->GetFiberWeight(ids.at(i))); vNewLines->InsertNextCell(container); counter++; } // initialize PolyData vNewPolyData->SetPoints(vNewPoints); vNewPolyData->SetLines(vNewLines); // initialize fiber bundle mitk::FiberBundle::Pointer newFib = mitk::FiberBundle::New(vNewPolyData); newFib->SetFiberWeights(weights); return newFib; } // subtract two fiber bundles mitk::FiberBundle::Pointer mitk::FiberBundle::SubtractBundle(mitk::FiberBundle* fib) { if (fib==nullptr) return this->GetDeepCopy(); MITK_INFO << "Subtracting fibers"; vtkSmartPointer vNewPolyData = vtkSmartPointer::New(); vtkSmartPointer vNewLines = vtkSmartPointer::New(); vtkSmartPointer vNewPoints = vtkSmartPointer::New(); std::vector< std::vector< itk::Point > > points1; for( int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (points==nullptr || numPoints<=0) continue; itk::Point start = GetItkPoint(points->GetPoint(0)); itk::Point end = GetItkPoint(points->GetPoint(numPoints-1)); points1.push_back( {start, end} ); } std::vector< std::vector< itk::Point > > points2; for( int i=0; iGetNumFibers(); i++ ) { vtkCell* cell = fib->GetFiberPolyData()->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (points==nullptr || numPoints<=0) continue; itk::Point start = GetItkPoint(points->GetPoint(0)); itk::Point end = GetItkPoint(points->GetPoint(numPoints-1)); points2.push_back( {start, end} ); } // int progress = 0; std::vector< int > ids; #pragma omp parallel for for (int i=0; i<(int)points1.size(); i++) { //#pragma omp critical // { // progress++; // std::cout << (int)(100*(float)progress/points1.size()) << "%" << '\r'; // cout.flush(); // } bool match = false; for (unsigned int j=0; jGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (points==nullptr || numPoints<=0) continue; vtkSmartPointer container = vtkSmartPointer::New(); for( int j=0; jInsertNextPoint(points->GetPoint(j)); container->GetPointIds()->InsertNextId(id); } vNewLines->InsertNextCell(container); } if(vNewLines->GetNumberOfCells()==0) return mitk::FiberBundle::New(); // initialize PolyData vNewPolyData->SetPoints(vNewPoints); vNewPolyData->SetLines(vNewLines); // initialize fiber bundle return mitk::FiberBundle::New(vNewPolyData); } itk::Point mitk::FiberBundle::GetItkPoint(double point[3]) { itk::Point itkPoint; itkPoint[0] = point[0]; itkPoint[1] = point[1]; itkPoint[2] = point[2]; return itkPoint; } /* * set PolyData (additional flag to recompute fiber geometry, default = true) */ void mitk::FiberBundle::SetFiberPolyData(vtkSmartPointer fiberPD, bool updateGeometry) { if (fiberPD == nullptr) this->m_FiberPolyData = vtkSmartPointer::New(); else m_FiberPolyData->DeepCopy(fiberPD); m_NumFibers = m_FiberPolyData->GetNumberOfLines(); if (updateGeometry) UpdateFiberGeometry(); GenerateFiberIds(); ColorFibersByOrientation(); } /* * return vtkPolyData */ vtkSmartPointer mitk::FiberBundle::GetFiberPolyData() const { return m_FiberPolyData; } void mitk::FiberBundle::ColorFibersByOrientation() { //===== FOR WRITING A TEST ======================== // colorT size == tupelComponents * tupelElements // compare color results // to cover this code 100% also PolyData needed, where colorarray already exists // + one fiber with exactly 1 point // + one fiber with 0 points //================================================= vtkPoints* extrPoints = nullptr; extrPoints = m_FiberPolyData->GetPoints(); int numOfPoints = 0; if (extrPoints!=nullptr) numOfPoints = extrPoints->GetNumberOfPoints(); //colors and alpha value for each single point, RGBA = 4 components unsigned char rgba[4] = {0,0,0,0}; int componentSize = 4; m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(numOfPoints * componentSize); m_FiberColors->SetNumberOfComponents(componentSize); m_FiberColors->SetName("FIBER_COLORS"); int numOfFibers = m_FiberPolyData->GetNumberOfLines(); if (numOfFibers < 1) return; /* extract single fibers of fiberBundle */ vtkCellArray* fiberList = m_FiberPolyData->GetLines(); fiberList->InitTraversal(); for (int fi=0; fiGetNextCell(pointsPerFiber, idList); /* single fiber checkpoints: is number of points valid */ if (pointsPerFiber > 1) { /* operate on points of single fiber */ for (int i=0; i 0) { /* The color value of the current point is influenced by the previous point and next point. */ vnl_vector_fixed< double, 3 > currentPntvtk(extrPoints->GetPoint(idList[i])[0], extrPoints->GetPoint(idList[i])[1],extrPoints->GetPoint(idList[i])[2]); vnl_vector_fixed< double, 3 > nextPntvtk(extrPoints->GetPoint(idList[i+1])[0], extrPoints->GetPoint(idList[i+1])[1], extrPoints->GetPoint(idList[i+1])[2]); vnl_vector_fixed< double, 3 > prevPntvtk(extrPoints->GetPoint(idList[i-1])[0], extrPoints->GetPoint(idList[i-1])[1], extrPoints->GetPoint(idList[i-1])[2]); vnl_vector_fixed< double, 3 > diff1; diff1 = currentPntvtk - nextPntvtk; vnl_vector_fixed< double, 3 > diff2; diff2 = currentPntvtk - prevPntvtk; vnl_vector_fixed< double, 3 > diff; diff = (diff1 - diff2) / 2.0; diff.normalize(); rgba[0] = (unsigned char) (255.0 * std::fabs(diff[0])); rgba[1] = (unsigned char) (255.0 * std::fabs(diff[1])); rgba[2] = (unsigned char) (255.0 * std::fabs(diff[2])); rgba[3] = (unsigned char) (255.0); } else if (i==0) { /* First point has no previous point, therefore only diff1 is taken */ vnl_vector_fixed< double, 3 > currentPntvtk(extrPoints->GetPoint(idList[i])[0], extrPoints->GetPoint(idList[i])[1],extrPoints->GetPoint(idList[i])[2]); vnl_vector_fixed< double, 3 > nextPntvtk(extrPoints->GetPoint(idList[i+1])[0], extrPoints->GetPoint(idList[i+1])[1], extrPoints->GetPoint(idList[i+1])[2]); vnl_vector_fixed< double, 3 > diff1; diff1 = currentPntvtk - nextPntvtk; diff1.normalize(); rgba[0] = (unsigned char) (255.0 * std::fabs(diff1[0])); rgba[1] = (unsigned char) (255.0 * std::fabs(diff1[1])); rgba[2] = (unsigned char) (255.0 * std::fabs(diff1[2])); rgba[3] = (unsigned char) (255.0); } else if (i==pointsPerFiber-1) { /* Last point has no next point, therefore only diff2 is taken */ vnl_vector_fixed< double, 3 > currentPntvtk(extrPoints->GetPoint(idList[i])[0], extrPoints->GetPoint(idList[i])[1],extrPoints->GetPoint(idList[i])[2]); vnl_vector_fixed< double, 3 > prevPntvtk(extrPoints->GetPoint(idList[i-1])[0], extrPoints->GetPoint(idList[i-1])[1], extrPoints->GetPoint(idList[i-1])[2]); vnl_vector_fixed< double, 3 > diff2; diff2 = currentPntvtk - prevPntvtk; diff2.normalize(); rgba[0] = (unsigned char) (255.0 * std::fabs(diff2[0])); rgba[1] = (unsigned char) (255.0 * std::fabs(diff2[1])); rgba[2] = (unsigned char) (255.0 * std::fabs(diff2[2])); rgba[3] = (unsigned char) (255.0); } m_FiberColors->InsertTypedTuple(idList[i], rgba); } } else if (pointsPerFiber == 1) { /* a single point does not define a fiber (use vertex mechanisms instead */ continue; } else { MITK_DEBUG << "Fiber with 0 points detected... please check your tractography algorithm!" ; continue; } } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::ColorFibersByCurvature(bool, bool normalize) { double window = 5; //colors and alpha value for each single point, RGBA = 4 components unsigned char rgba[4] = {0,0,0,0}; int componentSize = 4; m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(m_FiberPolyData->GetNumberOfPoints() * componentSize); m_FiberColors->SetNumberOfComponents(componentSize); m_FiberColors->SetName("FIBER_COLORS"); mitk::LookupTable::Pointer mitkLookup = mitk::LookupTable::New(); vtkSmartPointer lookupTable = vtkSmartPointer::New(); lookupTable->SetTableRange(0.0, 0.8); lookupTable->Build(); mitkLookup->SetVtkLookupTable(lookupTable); mitkLookup->SetType(mitk::LookupTable::JET); std::vector< double > values; double min = 1; double max = 0; MITK_INFO << "Coloring fibers by curvature"; boost::progress_display disp(m_FiberPolyData->GetNumberOfCells()); for (int i=0; iGetNumberOfCells(); i++) { ++disp; vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); // calculate curvatures for (int j=0; j > vectors; vnl_vector_fixed< float, 3 > meanV; meanV.fill(0.0); while(dist1) { double p1[3]; points->GetPoint(c-1, p1); double p2[3]; points->GetPoint(c, p2); vnl_vector_fixed< float, 3 > v; v[0] = p2[0]-p1[0]; v[1] = p2[1]-p1[1]; v[2] = p2[2]-p1[2]; dist += v.magnitude(); v.normalize(); vectors.push_back(v); meanV += v; c--; } c = j; dist = 0; while(distGetPoint(c, p1); double p2[3]; points->GetPoint(c+1, p2); vnl_vector_fixed< float, 3 > v; v[0] = p2[0]-p1[0]; v[1] = p2[1]-p1[1]; v[2] = p2[2]-p1[2]; dist += v.magnitude(); v.normalize(); vectors.push_back(v); meanV += v; c++; } meanV.normalize(); double dev = 0; for (unsigned int c=0; c1.0) angle = 1.0; if (angle<-1.0) angle = -1.0; dev += acos(angle)*180/M_PI; } if (vectors.size()>0) dev /= vectors.size(); dev = 1.0-dev/180.0; values.push_back(dev); if (devmax) max = dev; } } unsigned int count = 0; for (int i=0; iGetNumberOfCells(); i++) { vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); for (int j=0; j1) dev = 1; lookupTable->GetColor(dev, color); rgba[0] = (unsigned char) (255.0 * color[0]); rgba[1] = (unsigned char) (255.0 * color[1]); rgba[2] = (unsigned char) (255.0 * color[2]); rgba[3] = (unsigned char) (255.0); m_FiberColors->InsertTypedTuple(cell->GetPointId(j), rgba); count++; } } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::SetFiberOpacity(vtkDoubleArray* FAValArray) { for(long i=0; iGetNumberOfTuples(); i++) { double faValue = FAValArray->GetValue(i); faValue = faValue * 255.0; m_FiberColors->SetComponent(i,3, (unsigned char) faValue ); } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::ResetFiberOpacity() { for(long i=0; iGetNumberOfTuples(); i++) m_FiberColors->SetComponent(i,3, 255.0 ); m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::ColorFibersByScalarMap(mitk::Image::Pointer FAimage, bool opacity, bool normalize) { mitkPixelTypeMultiplex3( ColorFibersByScalarMap, FAimage->GetPixelType(), FAimage, opacity, normalize ); m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } template void mitk::FiberBundle::ColorFibersByScalarMap(const mitk::PixelType, mitk::Image::Pointer image, bool opacity, bool normalize) { m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(m_FiberPolyData->GetNumberOfPoints() * 4); m_FiberColors->SetNumberOfComponents(4); m_FiberColors->SetName("FIBER_COLORS"); mitk::ImagePixelReadAccessor readimage(image, image->GetVolumeData(0)); unsigned char rgba[4] = {0,0,0,0}; vtkPoints* pointSet = m_FiberPolyData->GetPoints(); mitk::LookupTable::Pointer mitkLookup = mitk::LookupTable::New(); vtkSmartPointer lookupTable = vtkSmartPointer::New(); lookupTable->SetTableRange(0.0, 0.8); lookupTable->Build(); mitkLookup->SetVtkLookupTable(lookupTable); mitkLookup->SetType(mitk::LookupTable::JET); double min = 9999999; double max = -9999999; for(long i=0; iGetNumberOfPoints(); ++i) { Point3D px; px[0] = pointSet->GetPoint(i)[0]; px[1] = pointSet->GetPoint(i)[1]; px[2] = pointSet->GetPoint(i)[2]; double pixelValue = readimage.GetPixelByWorldCoordinates(px); if (pixelValue>max) max = pixelValue; if (pixelValueGetNumberOfPoints(); ++i) { Point3D px; px[0] = pointSet->GetPoint(i)[0]; px[1] = pointSet->GetPoint(i)[1]; px[2] = pointSet->GetPoint(i)[2]; double pixelValue = readimage.GetPixelByWorldCoordinates(px); if (normalize) pixelValue = (pixelValue-min)/(max-min); else if (pixelValue>1) pixelValue = 1; double color[3]; lookupTable->GetColor(1-pixelValue, color); rgba[0] = (unsigned char) (255.0 * color[0]); rgba[1] = (unsigned char) (255.0 * color[1]); rgba[2] = (unsigned char) (255.0 * color[2]); if (opacity) rgba[3] = (unsigned char) (255.0 * pixelValue); else rgba[3] = (unsigned char) (255.0); m_FiberColors->InsertTypedTuple(i, rgba); } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::ColorFibersByFiberWeights(bool opacity, bool normalize) { m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(m_FiberPolyData->GetNumberOfPoints() * 4); m_FiberColors->SetNumberOfComponents(4); m_FiberColors->SetName("FIBER_COLORS"); mitk::LookupTable::Pointer mitkLookup = mitk::LookupTable::New(); vtkSmartPointer lookupTable = vtkSmartPointer::New(); lookupTable->SetTableRange(0.0, 0.8); lookupTable->Build(); mitkLookup->SetVtkLookupTable(lookupTable); mitkLookup->SetType(mitk::LookupTable::JET); unsigned char rgba[4] = {0,0,0,0}; unsigned int counter = 0; float max = -999999; float min = 999999; for (int i=0; iGetFiberWeight(i); if (weight>max) max = weight; if (weightGetCell(i); int numPoints = cell->GetNumberOfPoints(); double weight = this->GetFiberWeight(i); for (int j=0; j1) v = 1; double color[3]; lookupTable->GetColor(1-v, color); rgba[0] = (unsigned char) (255.0 * color[0]); rgba[1] = (unsigned char) (255.0 * color[1]); rgba[2] = (unsigned char) (255.0 * color[2]); if (opacity) rgba[3] = (unsigned char) (255.0 * v); else rgba[3] = (unsigned char) (255.0); m_FiberColors->InsertTypedTuple(counter, rgba); counter++; } } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::SetFiberColors(float r, float g, float b, float alpha) { m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(m_FiberPolyData->GetNumberOfPoints() * 4); m_FiberColors->SetNumberOfComponents(4); m_FiberColors->SetName("FIBER_COLORS"); unsigned char rgba[4] = {0,0,0,0}; for(long i=0; iGetNumberOfPoints(); ++i) { rgba[0] = (unsigned char) r; rgba[1] = (unsigned char) g; rgba[2] = (unsigned char) b; rgba[3] = (unsigned char) alpha; m_FiberColors->InsertTypedTuple(i, rgba); } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::GenerateFiberIds() { if (m_FiberPolyData == nullptr) return; vtkSmartPointer idFiberFilter = vtkSmartPointer::New(); idFiberFilter->SetInputData(m_FiberPolyData); idFiberFilter->CellIdsOn(); // idFiberFilter->PointIdsOn(); // point id's are not needed idFiberFilter->SetIdsArrayName(FIBER_ID_ARRAY); idFiberFilter->FieldDataOn(); idFiberFilter->Update(); m_FiberIdDataSet = idFiberFilter->GetOutput(); } float mitk::FiberBundle::GetOverlap(ItkUcharImgType* mask, bool do_resampling) { vtkSmartPointer PolyData = m_FiberPolyData; mitk::FiberBundle::Pointer fibCopy = this; if (do_resampling) { float minSpacing = 1; if(mask->GetSpacing()[0]GetSpacing()[1] && mask->GetSpacing()[0]GetSpacing()[2]) minSpacing = mask->GetSpacing()[0]; else if (mask->GetSpacing()[1] < mask->GetSpacing()[2]) minSpacing = mask->GetSpacing()[1]; else minSpacing = mask->GetSpacing()[2]; fibCopy = this->GetDeepCopy(); fibCopy->ResampleLinear(minSpacing/5); PolyData = fibCopy->GetFiberPolyData(); } MITK_INFO << "Calculating overlap"; int inside = 0; int outside = 0; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; jGetPoint(j); itk::Point itkP; itkP[0] = p[0]; itkP[1] = p[1]; itkP[2] = p[2]; itk::Index<3> idx; mask->TransformPhysicalPointToIndex(itkP, idx); if ( mask->GetLargestPossibleRegion().IsInside(idx) && mask->GetPixel(idx) != 0 ) inside++; else outside++; } } if (inside+outside==0) outside = 1; return (float)inside/(inside+outside); } mitk::FiberBundle::Pointer mitk::FiberBundle::RemoveFibersOutside(ItkUcharImgType* mask, bool invert) { float minSpacing = 1; if(mask->GetSpacing()[0]GetSpacing()[1] && mask->GetSpacing()[0]GetSpacing()[2]) minSpacing = mask->GetSpacing()[0]; else if (mask->GetSpacing()[1] < mask->GetSpacing()[2]) minSpacing = mask->GetSpacing()[1]; else minSpacing = mask->GetSpacing()[2]; mitk::FiberBundle::Pointer fibCopy = this->GetDeepCopy(); fibCopy->ResampleLinear(minSpacing/10); vtkSmartPointer PolyData =fibCopy->GetFiberPolyData(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Cutting fibers"; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); if (numPoints>1) { int newNumPoints = 0; for (int j=0; jGetPoint(j); itk::Point itkP; itkP[0] = p[0]; itkP[1] = p[1]; itkP[2] = p[2]; itk::Index<3> idx; mask->TransformPhysicalPointToIndex(itkP, idx); if ( mask->GetPixel(idx) != 0 && mask->GetLargestPossibleRegion().IsInside(idx) && !invert ) { vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); newNumPoints++; } else if ( (mask->GetPixel(idx) == 0 || !mask->GetLargestPossibleRegion().IsInside(idx)) && invert ) { vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); newNumPoints++; } else if (newNumPoints>0) { vtkNewCells->InsertNextCell(container); newNumPoints = 0; container = vtkSmartPointer::New(); } } if (newNumPoints>0) vtkNewCells->InsertNextCell(container); } } if (vtkNewCells->GetNumberOfCells()<=0) return nullptr; vtkSmartPointer newPolyData = vtkSmartPointer::New(); newPolyData->SetPoints(vtkNewPoints); newPolyData->SetLines(vtkNewCells); mitk::FiberBundle::Pointer newFib = mitk::FiberBundle::New(newPolyData); newFib->Compress(0.1); return newFib; } mitk::FiberBundle::Pointer mitk::FiberBundle::ExtractFiberSubset(DataNode* roi, DataStorage* storage) { if (roi==nullptr || !(dynamic_cast(roi->GetData()) || dynamic_cast(roi->GetData())) ) return nullptr; std::vector tmp = ExtractFiberIdSubset(roi, storage); if (tmp.size()<=0) return mitk::FiberBundle::New(); vtkSmartPointer weights = vtkSmartPointer::New(); vtkSmartPointer pTmp = GeneratePolyDataByIds(tmp, weights); mitk::FiberBundle::Pointer fib = mitk::FiberBundle::New(pTmp); fib->SetFiberWeights(weights); return fib; } std::vector mitk::FiberBundle::ExtractFiberIdSubset(DataNode *roi, DataStorage* storage) { std::vector result; if (roi==nullptr || roi->GetData()==nullptr) return result; mitk::PlanarFigureComposite::Pointer pfc = dynamic_cast(roi->GetData()); if (!pfc.IsNull()) // handle composite { DataStorage::SetOfObjects::ConstPointer children = storage->GetDerivations(roi); if (children->size()==0) return result; switch (pfc->getOperationType()) { case 0: // AND { MITK_INFO << "AND"; result = this->ExtractFiberIdSubset(children->ElementAt(0), storage); std::vector::iterator it; for (unsigned int i=1; iSize(); ++i) { std::vector inRoi = this->ExtractFiberIdSubset(children->ElementAt(i), storage); std::vector rest(std::min(result.size(),inRoi.size())); it = std::set_intersection(result.begin(), result.end(), inRoi.begin(), inRoi.end(), rest.begin() ); rest.resize( it - rest.begin() ); result = rest; } break; } case 1: // OR { MITK_INFO << "OR"; result = ExtractFiberIdSubset(children->ElementAt(0), storage); std::vector::iterator it; for (unsigned int i=1; iSize(); ++i) { it = result.end(); std::vector inRoi = ExtractFiberIdSubset(children->ElementAt(i), storage); result.insert(it, inRoi.begin(), inRoi.end()); } // remove duplicates sort(result.begin(), result.end()); it = unique(result.begin(), result.end()); result.resize( it - result.begin() ); break; } case 2: // NOT { MITK_INFO << "NOT"; for(long i=0; iGetNumFibers(); i++) result.push_back(i); std::vector::iterator it; for (unsigned int i=0; iSize(); ++i) { std::vector inRoi = ExtractFiberIdSubset(children->ElementAt(i), storage); std::vector rest(result.size()-inRoi.size()); it = std::set_difference(result.begin(), result.end(), inRoi.begin(), inRoi.end(), rest.begin() ); rest.resize( it - rest.begin() ); result = rest; } break; } } } else if ( dynamic_cast(roi->GetData()) ) // actual extraction { if ( dynamic_cast(roi->GetData()) ) { mitk::PlanarFigure::Pointer planarPoly = dynamic_cast(roi->GetData()); //create vtkPolygon using controlpoints from planarFigure polygon vtkSmartPointer polygonVtk = vtkSmartPointer::New(); for (unsigned int i=0; iGetNumberOfControlPoints(); ++i) { itk::Point p = planarPoly->GetWorldControlPoint(i); vtkIdType id = polygonVtk->GetPoints()->InsertNextPoint(p[0], p[1], p[2] ); polygonVtk->GetPointIds()->InsertNextId(id); } MITK_INFO << "Extracting with polygon"; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; jGetPoint(j, p1); double p2[3] = {0,0,0}; points->GetPoint(j+1, p2); double tolerance = 0.001; // Outputs double t = 0; // Parametric coordinate of intersection (0 (corresponding to p1) to 1 (corresponding to p2)) double x[3] = {0,0,0}; // The coordinate of the intersection double pcoords[3] = {0,0,0}; int subId = 0; int iD = polygonVtk->IntersectWithLine(p1, p2, tolerance, t, x, pcoords, subId); if (iD!=0) { result.push_back(i); break; } } } } else if ( dynamic_cast(roi->GetData()) ) { mitk::PlanarFigure::Pointer planarFigure = dynamic_cast(roi->GetData()); Vector3D planeNormal = planarFigure->GetPlaneGeometry()->GetNormal(); planeNormal.Normalize(); //calculate circle radius mitk::Point3D V1w = planarFigure->GetWorldControlPoint(0); //centerPoint mitk::Point3D V2w = planarFigure->GetWorldControlPoint(1); //radiusPoint double radius = V1w.EuclideanDistanceTo(V2w); radius *= radius; MITK_INFO << "Extracting with circle"; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; jGetPoint(j, p1); double p2[3] = {0,0,0}; points->GetPoint(j+1, p2); // Outputs double t = 0; // Parametric coordinate of intersection (0 (corresponding to p1) to 1 (corresponding to p2)) double x[3] = {0,0,0}; // The coordinate of the intersection int iD = vtkPlane::IntersectWithLine(p1,p2,planeNormal.GetDataPointer(),V1w.GetDataPointer(),t,x); if (iD!=0) { double dist = (x[0]-V1w[0])*(x[0]-V1w[0])+(x[1]-V1w[1])*(x[1]-V1w[1])+(x[2]-V1w[2])*(x[2]-V1w[2]); if( dist <= radius) { result.push_back(i); break; } } } } } return result; } return result; } void mitk::FiberBundle::UpdateFiberGeometry() { vtkSmartPointer cleaner = vtkSmartPointer::New(); cleaner->SetInputData(m_FiberPolyData); cleaner->PointMergingOff(); cleaner->Update(); m_FiberPolyData = cleaner->GetOutput(); m_FiberLengths.clear(); m_MeanFiberLength = 0; m_MedianFiberLength = 0; m_LengthStDev = 0; m_NumFibers = m_FiberPolyData->GetNumberOfCells(); if (m_FiberColors==nullptr || m_FiberColors->GetNumberOfTuples()!=m_FiberPolyData->GetNumberOfPoints()) this->ColorFibersByOrientation(); if (m_FiberWeights->GetNumberOfValues()!=m_NumFibers) { m_FiberWeights = vtkSmartPointer::New(); m_FiberWeights->SetName("FIBER_WEIGHTS"); m_FiberWeights->SetNumberOfValues(m_NumFibers); this->SetFiberWeights(1); } if (m_NumFibers<=0) // no fibers present; apply default geometry { m_MinFiberLength = 0; m_MaxFiberLength = 0; mitk::Geometry3D::Pointer geometry = mitk::Geometry3D::New(); geometry->SetImageGeometry(false); float b[] = {0, 1, 0, 1, 0, 1}; geometry->SetFloatBounds(b); SetGeometry(geometry); return; } double b[6]; m_FiberPolyData->GetBounds(b); // calculate statistics for (int i=0; iGetNumberOfCells(); i++) { vtkCell* cell = m_FiberPolyData->GetCell(i); int p = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); float length = 0; for (int j=0; jGetPoint(j, p1); double p2[3]; points->GetPoint(j+1, p2); float dist = std::sqrt((p1[0]-p2[0])*(p1[0]-p2[0])+(p1[1]-p2[1])*(p1[1]-p2[1])+(p1[2]-p2[2])*(p1[2]-p2[2])); length += dist; } m_FiberLengths.push_back(length); m_MeanFiberLength += length; if (i==0) { m_MinFiberLength = length; m_MaxFiberLength = length; } else { if (lengthm_MaxFiberLength) m_MaxFiberLength = length; } } m_MeanFiberLength /= m_NumFibers; std::vector< float > sortedLengths = m_FiberLengths; std::sort(sortedLengths.begin(), sortedLengths.end()); for (int i=0; i1) m_LengthStDev /= (m_NumFibers-1); else m_LengthStDev = 0; m_LengthStDev = std::sqrt(m_LengthStDev); m_MedianFiberLength = sortedLengths.at(m_NumFibers/2); mitk::Geometry3D::Pointer geometry = mitk::Geometry3D::New(); geometry->SetFloatBounds(b); this->SetGeometry(geometry); m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } float mitk::FiberBundle::GetFiberWeight(unsigned int fiber) const { return m_FiberWeights->GetValue(fiber); } void mitk::FiberBundle::SetFiberWeights(float newWeight) { for (int i=0; iGetNumberOfValues(); i++) m_FiberWeights->SetValue(i, newWeight); } void mitk::FiberBundle::SetFiberWeights(vtkSmartPointer weights) { if (m_NumFibers!=weights->GetNumberOfValues()) { MITK_INFO << "Weights array not equal to number of fibers! " << weights->GetNumberOfValues() << " vs " << m_NumFibers; return; } for (int i=0; iGetNumberOfValues(); i++) m_FiberWeights->SetValue(i, weights->GetValue(i)); m_FiberWeights->SetName("FIBER_WEIGHTS"); } void mitk::FiberBundle::SetFiberWeight(unsigned int fiber, float weight) { m_FiberWeights->SetValue(fiber, weight); } void mitk::FiberBundle::SetFiberColors(vtkSmartPointer fiberColors) { for(long i=0; iGetNumberOfPoints(); ++i) { unsigned char source[4] = {0,0,0,0}; fiberColors->GetTypedTuple(i, source); unsigned char target[4] = {0,0,0,0}; target[0] = source[0]; target[1] = source[1]; target[2] = source[2]; target[3] = source[3]; m_FiberColors->InsertTypedTuple(i, target); } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } itk::Matrix< double, 3, 3 > mitk::FiberBundle::TransformMatrix(itk::Matrix< double, 3, 3 > m, double rx, double ry, double rz) { rx = rx*M_PI/180; ry = ry*M_PI/180; rz = rz*M_PI/180; itk::Matrix< double, 3, 3 > rotX; rotX.SetIdentity(); rotX[1][1] = cos(rx); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(rx); rotX[2][1] = -rotX[1][2]; itk::Matrix< double, 3, 3 > rotY; rotY.SetIdentity(); rotY[0][0] = cos(ry); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(ry); rotY[2][0] = -rotY[0][2]; itk::Matrix< double, 3, 3 > rotZ; rotZ.SetIdentity(); rotZ[0][0] = cos(rz); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(rz); rotZ[1][0] = -rotZ[0][1]; itk::Matrix< double, 3, 3 > rot = rotZ*rotY*rotX; m = rot*m; return m; } itk::Point mitk::FiberBundle::TransformPoint(vnl_vector_fixed< double, 3 > point, double rx, double ry, double rz, double tx, double ty, double tz) { rx = rx*M_PI/180; ry = ry*M_PI/180; rz = rz*M_PI/180; vnl_matrix_fixed< double, 3, 3 > rotX; rotX.set_identity(); rotX[1][1] = cos(rx); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(rx); rotX[2][1] = -rotX[1][2]; vnl_matrix_fixed< double, 3, 3 > rotY; rotY.set_identity(); rotY[0][0] = cos(ry); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(ry); rotY[2][0] = -rotY[0][2]; vnl_matrix_fixed< double, 3, 3 > rotZ; rotZ.set_identity(); rotZ[0][0] = cos(rz); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(rz); rotZ[1][0] = -rotZ[0][1]; vnl_matrix_fixed< double, 3, 3 > rot = rotZ*rotY*rotX; mitk::BaseGeometry::Pointer geom = this->GetGeometry(); mitk::Point3D center = geom->GetCenter(); point[0] -= center[0]; point[1] -= center[1]; point[2] -= center[2]; point = rot*point; point[0] += center[0]+tx; point[1] += center[1]+ty; point[2] += center[2]+tz; itk::Point out; out[0] = point[0]; out[1] = point[1]; out[2] = point[2]; return out; } void mitk::FiberBundle::TransformFibers(itk::ScalableAffineTransform< mitk::ScalarType >::Pointer transform) { vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; j p = GetItkPoint(points->GetPoint(j)); p = transform->TransformPoint(p); vtkIdType id = vtkNewPoints->InsertNextPoint(p.GetDataPointer()); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::TransformFibers(double rx, double ry, double rz, double tx, double ty, double tz) { rx = rx*M_PI/180; ry = ry*M_PI/180; rz = rz*M_PI/180; vnl_matrix_fixed< double, 3, 3 > rotX; rotX.set_identity(); rotX[1][1] = cos(rx); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(rx); rotX[2][1] = -rotX[1][2]; vnl_matrix_fixed< double, 3, 3 > rotY; rotY.set_identity(); rotY[0][0] = cos(ry); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(ry); rotY[2][0] = -rotY[0][2]; vnl_matrix_fixed< double, 3, 3 > rotZ; rotZ.set_identity(); rotZ[0][0] = cos(rz); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(rz); rotZ[1][0] = -rotZ[0][1]; vnl_matrix_fixed< double, 3, 3 > rot = rotZ*rotY*rotX; mitk::BaseGeometry::Pointer geom = this->GetGeometry(); mitk::Point3D center = geom->GetCenter(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vnl_vector_fixed< double, 3 > dir; dir[0] = p[0]-center[0]; dir[1] = p[1]-center[1]; dir[2] = p[2]-center[2]; dir = rot*dir; dir[0] += center[0]+tx; dir[1] += center[1]+ty; dir[2] += center[2]+tz; vtkIdType id = vtkNewPoints->InsertNextPoint(dir.data_block()); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::RotateAroundAxis(double x, double y, double z) { x = x*M_PI/180; y = y*M_PI/180; z = z*M_PI/180; vnl_matrix_fixed< double, 3, 3 > rotX; rotX.set_identity(); rotX[1][1] = cos(x); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(x); rotX[2][1] = -rotX[1][2]; vnl_matrix_fixed< double, 3, 3 > rotY; rotY.set_identity(); rotY[0][0] = cos(y); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(y); rotY[2][0] = -rotY[0][2]; vnl_matrix_fixed< double, 3, 3 > rotZ; rotZ.set_identity(); rotZ[0][0] = cos(z); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(z); rotZ[1][0] = -rotZ[0][1]; mitk::BaseGeometry::Pointer geom = this->GetGeometry(); mitk::Point3D center = geom->GetCenter(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vnl_vector_fixed< double, 3 > dir; dir[0] = p[0]-center[0]; dir[1] = p[1]-center[1]; dir[2] = p[2]-center[2]; dir = rotZ*rotY*rotX*dir; dir[0] += center[0]; dir[1] += center[1]; dir[2] += center[2]; vtkIdType id = vtkNewPoints->InsertNextPoint(dir.data_block()); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::ScaleFibers(double x, double y, double z, bool subtractCenter) { MITK_INFO << "Scaling fibers"; boost::progress_display disp(m_NumFibers); mitk::BaseGeometry* geom = this->GetGeometry(); mitk::Point3D c = geom->GetCenter(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); if (subtractCenter) { p[0] -= c[0]; p[1] -= c[1]; p[2] -= c[2]; } p[0] *= x; p[1] *= y; p[2] *= z; if (subtractCenter) { p[0] += c[0]; p[1] += c[1]; p[2] += c[2]; } vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::TranslateFibers(double x, double y, double z) { vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); p[0] += x; p[1] += y; p[2] += z; vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::MirrorFibers(unsigned int axis) { if (axis>2) return; MITK_INFO << "Mirroring fibers"; boost::progress_display disp(m_NumFibers); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); p[axis] = -p[axis]; vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::RemoveDir(vnl_vector_fixed dir, double threshold) { dir.normalize(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); boost::progress_display disp(m_FiberPolyData->GetNumberOfCells()); for (int i=0; iGetNumberOfCells(); i++) { ++disp ; vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); // calculate curvatures vtkSmartPointer container = vtkSmartPointer::New(); bool discard = false; for (int j=0; jGetPoint(j, p1); double p2[3]; points->GetPoint(j+1, p2); vnl_vector_fixed< double, 3 > v1; v1[0] = p2[0]-p1[0]; v1[1] = p2[1]-p1[1]; v1[2] = p2[2]-p1[2]; if (v1.magnitude()>0.001) { v1.normalize(); if (fabs(dot_product(v1,dir))>threshold) { discard = true; break; } } } if (!discard) { for (int j=0; jGetPoint(j, p1); vtkIdType id = vtkNewPoints->InsertNextPoint(p1); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); // UpdateColorCoding(); // UpdateFiberGeometry(); } bool mitk::FiberBundle::ApplyCurvatureThreshold(float minRadius, bool deleteFibers) { if (minRadius<0) return true; vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Applying curvature threshold"; boost::progress_display disp(m_FiberPolyData->GetNumberOfCells()); for (int i=0; iGetNumberOfCells(); i++) { ++disp ; vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); // calculate curvatures vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j, p1); double p2[3]; points->GetPoint(j+1, p2); double p3[3]; points->GetPoint(j+2, p3); vnl_vector_fixed< float, 3 > v1, v2, v3; v1[0] = p2[0]-p1[0]; v1[1] = p2[1]-p1[1]; v1[2] = p2[2]-p1[2]; v2[0] = p3[0]-p2[0]; v2[1] = p3[1]-p2[1]; v2[2] = p3[2]-p2[2]; v3[0] = p1[0]-p3[0]; v3[1] = p1[1]-p3[1]; v3[2] = p1[2]-p3[2]; float a = v1.magnitude(); float b = v2.magnitude(); float c = v3.magnitude(); float r = a*b*c/std::sqrt((a+b+c)*(a+b-c)*(b+c-a)*(a-b+c)); // radius of triangle via Heron's formula (area of triangle) vtkIdType id = vtkNewPoints->InsertNextPoint(p1); container->GetPointIds()->InsertNextId(id); if (deleteFibers && rInsertNextCell(container); container = vtkSmartPointer::New(); } else if (j==numPoints-3) { id = vtkNewPoints->InsertNextPoint(p2); container->GetPointIds()->InsertNextId(id); id = vtkNewPoints->InsertNextPoint(p3); container->GetPointIds()->InsertNextId(id); vtkNewCells->InsertNextCell(container); } } } if (vtkNewCells->GetNumberOfCells()<=0) return false; m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); return true; } bool mitk::FiberBundle::RemoveShortFibers(float lengthInMM) { MITK_INFO << "Removing short fibers"; if (lengthInMM<=0 || lengthInMMm_MaxFiberLength) // can't remove all fibers { MITK_WARN << "Process aborted. No fibers would be left!"; return false; } vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); float min = m_MaxFiberLength; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (m_FiberLengths.at(i)>=lengthInMM) { vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); if (m_FiberLengths.at(i)GetNumberOfCells()<=0) return false; m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); return true; } bool mitk::FiberBundle::RemoveLongFibers(float lengthInMM) { if (lengthInMM<=0 || lengthInMM>m_MaxFiberLength) return true; if (lengthInMM vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Removing long fibers"; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (m_FiberLengths.at(i)<=lengthInMM) { vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } } if (vtkNewCells->GetNumberOfCells()<=0) return false; m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); return true; } void mitk::FiberBundle::ResampleSpline(float pointDistance, double tension, double continuity, double bias ) { if (pointDistance<=0) return; vtkSmartPointer vtkSmoothPoints = vtkSmartPointer::New(); //in smoothpoints the interpolated points representing a fiber are stored. //in vtkcells all polylines are stored, actually all id's of them are stored vtkSmartPointer vtkSmoothCells = vtkSmartPointer::New(); //cellcontainer for smoothed lines MITK_INFO << "Smoothing fibers"; vtkSmartPointer newFiberWeights = vtkSmartPointer::New(); newFiberWeights->SetName("FIBER_WEIGHTS"); newFiberWeights->SetNumberOfValues(m_NumFibers); std::vector< vtkSmartPointer > resampled_streamlines; resampled_streamlines.resize(m_NumFibers); boost::progress_display disp(m_NumFibers); #pragma omp parallel for for (int i=0; i newPoints = vtkSmartPointer::New(); float length = 0; #pragma omp critical { length = m_FiberLengths.at(i); ++disp; vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; jInsertNextPoint(points->GetPoint(j)); } int sampling = std::ceil(length/pointDistance); vtkSmartPointer xSpline = vtkSmartPointer::New(); vtkSmartPointer ySpline = vtkSmartPointer::New(); vtkSmartPointer zSpline = vtkSmartPointer::New(); xSpline->SetDefaultBias(bias); xSpline->SetDefaultTension(tension); xSpline->SetDefaultContinuity(continuity); ySpline->SetDefaultBias(bias); ySpline->SetDefaultTension(tension); ySpline->SetDefaultContinuity(continuity); zSpline->SetDefaultBias(bias); zSpline->SetDefaultTension(tension); zSpline->SetDefaultContinuity(continuity); vtkSmartPointer spline = vtkSmartPointer::New(); spline->SetXSpline(xSpline); spline->SetYSpline(ySpline); spline->SetZSpline(zSpline); spline->SetPoints(newPoints); vtkSmartPointer functionSource = vtkSmartPointer::New(); functionSource->SetParametricFunction(spline); functionSource->SetUResolution(sampling); functionSource->SetVResolution(sampling); functionSource->SetWResolution(sampling); functionSource->Update(); vtkPolyData* outputFunction = functionSource->GetOutput(); vtkPoints* tmpSmoothPnts = outputFunction->GetPoints(); //smoothPoints of current fiber vtkSmartPointer smoothLine = vtkSmartPointer::New(); #pragma omp critical { for (int j=0; jGetNumberOfPoints(); j++) { vtkIdType id = vtkSmoothPoints->InsertNextPoint(tmpSmoothPnts->GetPoint(j)); smoothLine->GetPointIds()->InsertNextId(id); } resampled_streamlines[i] = smoothLine; } } for (auto container : resampled_streamlines) { vtkSmoothCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkSmoothPoints); m_FiberPolyData->SetLines(vtkSmoothCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::ResampleSpline(float pointDistance) { ResampleSpline(pointDistance, 0, 0, 0 ); } unsigned long mitk::FiberBundle::GetNumberOfPoints() const { unsigned long points = 0; for (int i=0; iGetNumberOfCells(); i++) { vtkCell* cell = m_FiberPolyData->GetCell(i); points += cell->GetNumberOfPoints(); } return points; } void mitk::FiberBundle::Compress(float error) { vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Compressing fibers"; unsigned long numRemovedPoints = 0; boost::progress_display disp(m_FiberPolyData->GetNumberOfCells()); vtkSmartPointer newFiberWeights = vtkSmartPointer::New(); newFiberWeights->SetName("FIBER_WEIGHTS"); newFiberWeights->SetNumberOfValues(m_NumFibers); #pragma omp parallel for for (int i=0; iGetNumberOfCells(); i++) { std::vector< vnl_vector_fixed< double, 3 > > vertices; float weight = 1; #pragma omp critical { ++disp; weight = m_FiberWeights->GetValue(i); vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; jGetPoint(j, cand); vnl_vector_fixed< double, 3 > candV; candV[0]=cand[0]; candV[1]=cand[1]; candV[2]=cand[2]; vertices.push_back(candV); } } // calculate curvatures int numPoints = vertices.size(); std::vector< int > removedPoints; removedPoints.resize(numPoints, 0); removedPoints[0]=-1; removedPoints[numPoints-1]=-1; vtkSmartPointer container = vtkSmartPointer::New(); int remCounter = 0; bool pointFound = true; while (pointFound) { pointFound = false; double minError = error; int removeIndex = -1; for (unsigned int j=0; j candV = vertices.at(j); int validP = -1; vnl_vector_fixed< double, 3 > pred; for (int k=j-1; k>=0; k--) if (removedPoints[k]<=0) { pred = vertices.at(k); validP = k; break; } int validS = -1; vnl_vector_fixed< double, 3 > succ; for (int k=j+1; k=0 && validS>=0) { double a = (candV-pred).magnitude(); double b = (candV-succ).magnitude(); double c = (pred-succ).magnitude(); double s=0.5*(a+b+c); double hc=(2.0/c)*sqrt(fabs(s*(s-a)*(s-b)*(s-c))); if (hcInsertNextPoint(vertices.at(j).data_block()); container->GetPointIds()->InsertNextId(id); } } } #pragma omp critical { newFiberWeights->SetValue(vtkNewCells->GetNumberOfCells(), weight); numRemovedPoints += remCounter; vtkNewCells->InsertNextCell(container); } } if (vtkNewCells->GetNumberOfCells()>0) { MITK_INFO << "Removed points: " << numRemovedPoints; SetFiberWeights(newFiberWeights); m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } } void mitk::FiberBundle::ResampleToNumPoints(unsigned int targetPoints) { if (targetPoints<2) mitkThrow() << "Minimum two points required for resampling!"; MITK_INFO << "Resampling fibers (number of points " << targetPoints << ")"; bool unequal_fibs = true; while (unequal_fibs) { vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); vtkSmartPointer newFiberWeights = vtkSmartPointer::New(); newFiberWeights->SetName("FIBER_WEIGHTS"); newFiberWeights->SetNumberOfValues(m_NumFibers); unequal_fibs = false; //#pragma omp parallel for for (int i=0; iGetNumberOfCells(); i++) { std::vector< vnl_vector_fixed< double, 3 > > vertices; float weight = 1; double seg_len = 0; //#pragma omp critical { weight = m_FiberWeights->GetValue(i); vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); if ((unsigned int)numPoints!=targetPoints) seg_len = this->GetFiberLength(i)/(targetPoints-1);; vtkPoints* points = cell->GetPoints(); for (int j=0; jGetPoint(j, cand); vnl_vector_fixed< double, 3 > candV; candV[0]=cand[0]; candV[1]=cand[1]; candV[2]=cand[2]; vertices.push_back(candV); } } vtkSmartPointer container = vtkSmartPointer::New(); vnl_vector_fixed< double, 3 > lastV = vertices.at(0); //#pragma omp critical { vtkIdType id = vtkNewPoints->InsertNextPoint(lastV.data_block()); container->GetPointIds()->InsertNextId(id); } for (unsigned int j=1; j vec = vertices.at(j) - lastV; double new_dist = vec.magnitude(); if (new_dist >= seg_len && seg_len>0) { vnl_vector_fixed< double, 3 > newV = lastV; if ( new_dist-seg_len <= mitk::eps ) { vec.normalize(); newV += vec * seg_len; } else { // intersection between sphere (radius 'pointDistance', center 'lastV') and line (direction 'd' and point 'p') vnl_vector_fixed< double, 3 > p = vertices.at(j-1); vnl_vector_fixed< double, 3 > d = vertices.at(j) - p; double a = d[0]*d[0] + d[1]*d[1] + d[2]*d[2]; double b = 2 * (d[0] * (p[0] - lastV[0]) + d[1] * (p[1] - lastV[1]) + d[2] * (p[2] - lastV[2])); double c = (p[0] - lastV[0])*(p[0] - lastV[0]) + (p[1] - lastV[1])*(p[1] - lastV[1]) + (p[2] - lastV[2])*(p[2] - lastV[2]) - seg_len*seg_len; double v1 =(-b + std::sqrt(b*b-4*a*c))/(2*a); double v2 =(-b - std::sqrt(b*b-4*a*c))/(2*a); if (v1>0) newV = p + d * v1; else if (v2>0) newV = p + d * v2; else MITK_INFO << "ERROR1 - linear resampling"; j--; } //#pragma omp critical { vtkIdType id = vtkNewPoints->InsertNextPoint(newV.data_block()); container->GetPointIds()->InsertNextId(id); } lastV = newV; } else if ( (j==vertices.size()-1 && new_dist>0.0001) || seg_len==0) { //#pragma omp critical { vtkIdType id = vtkNewPoints->InsertNextPoint(vertices.at(j).data_block()); container->GetPointIds()->InsertNextId(id); } } } //#pragma omp critical { newFiberWeights->SetValue(vtkNewCells->GetNumberOfCells(), weight); vtkNewCells->InsertNextCell(container); if (container->GetNumberOfPoints()!=targetPoints) unequal_fibs = true; } } if (vtkNewCells->GetNumberOfCells()>0) { SetFiberWeights(newFiberWeights); m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } } } void mitk::FiberBundle::ResampleLinear(double pointDistance) { vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Resampling fibers (linear)"; boost::progress_display disp(m_FiberPolyData->GetNumberOfCells()); vtkSmartPointer newFiberWeights = vtkSmartPointer::New(); newFiberWeights->SetName("FIBER_WEIGHTS"); newFiberWeights->SetNumberOfValues(m_NumFibers); std::vector< vtkSmartPointer > resampled_streamlines; resampled_streamlines.resize(m_FiberPolyData->GetNumberOfCells()); #pragma omp parallel for for (int i=0; iGetNumberOfCells(); i++) { std::vector< vnl_vector_fixed< double, 3 > > vertices; #pragma omp critical { ++disp; vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; jGetPoint(j, cand); vnl_vector_fixed< double, 3 > candV; candV[0]=cand[0]; candV[1]=cand[1]; candV[2]=cand[2]; vertices.push_back(candV); } } vtkSmartPointer container = vtkSmartPointer::New(); vnl_vector_fixed< double, 3 > lastV = vertices.at(0); #pragma omp critical { vtkIdType id = vtkNewPoints->InsertNextPoint(lastV.data_block()); container->GetPointIds()->InsertNextId(id); } for (unsigned int j=1; j vec = vertices.at(j) - lastV; double new_dist = vec.magnitude(); if (new_dist >= pointDistance) { vnl_vector_fixed< double, 3 > newV = lastV; if ( new_dist-pointDistance <= mitk::eps ) { vec.normalize(); newV += vec * pointDistance; } else { // intersection between sphere (radius 'pointDistance', center 'lastV') and line (direction 'd' and point 'p') vnl_vector_fixed< double, 3 > p = vertices.at(j-1); vnl_vector_fixed< double, 3 > d = vertices.at(j) - p; double a = d[0]*d[0] + d[1]*d[1] + d[2]*d[2]; double b = 2 * (d[0] * (p[0] - lastV[0]) + d[1] * (p[1] - lastV[1]) + d[2] * (p[2] - lastV[2])); double c = (p[0] - lastV[0])*(p[0] - lastV[0]) + (p[1] - lastV[1])*(p[1] - lastV[1]) + (p[2] - lastV[2])*(p[2] - lastV[2]) - pointDistance*pointDistance; double v1 =(-b + std::sqrt(b*b-4*a*c))/(2*a); double v2 =(-b - std::sqrt(b*b-4*a*c))/(2*a); if (v1>0) newV = p + d * v1; else if (v2>0) newV = p + d * v2; else MITK_INFO << "ERROR1 - linear resampling"; j--; } #pragma omp critical { vtkIdType id = vtkNewPoints->InsertNextPoint(newV.data_block()); container->GetPointIds()->InsertNextId(id); } lastV = newV; } else if (j==vertices.size()-1 && new_dist>0.0001) { #pragma omp critical { vtkIdType id = vtkNewPoints->InsertNextPoint(vertices.at(j).data_block()); container->GetPointIds()->InsertNextId(id); } } } #pragma omp critical { resampled_streamlines[i] = container; } } for (auto container : resampled_streamlines) { vtkNewCells->InsertNextCell(container); } if (vtkNewCells->GetNumberOfCells()>0) { m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } } // reapply selected colorcoding in case PolyData structure has changed bool mitk::FiberBundle::Equals(mitk::FiberBundle* fib, double eps) { if (fib==nullptr) { MITK_INFO << "Reference bundle is nullptr!"; return false; } if (m_NumFibers!=fib->GetNumFibers()) { MITK_INFO << "Unequal number of fibers!"; MITK_INFO << m_NumFibers << " vs. " << fib->GetNumFibers(); return false; } for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkCell* cell2 = fib->GetFiberPolyData()->GetCell(i); int numPoints2 = cell2->GetNumberOfPoints(); vtkPoints* points2 = cell2->GetPoints(); if (numPoints2!=numPoints) { MITK_INFO << "Unequal number of points in fiber " << i << "!"; MITK_INFO << numPoints2 << " vs. " << numPoints; return false; } for (int j=0; jGetPoint(j); double* p2 = points2->GetPoint(j); if (fabs(p1[0]-p2[0])>eps || fabs(p1[1]-p2[1])>eps || fabs(p1[2]-p2[2])>eps) { MITK_INFO << "Unequal points in fiber " << i << " at position " << j << "!"; MITK_INFO << "p1: " << p1[0] << ", " << p1[1] << ", " << p1[2]; MITK_INFO << "p2: " << p2[0] << ", " << p2[1] << ", " << p2[2]; return false; } } } return true; } void mitk::FiberBundle::PrintSelf(std::ostream &os, itk::Indent indent) const { os << indent << this->GetNameOfClass() << ":\n"; os << indent << "Number of fibers: " << this->GetNumFibers() << std::endl; os << indent << "Min. fiber length: " << this->GetMinFiberLength() << std::endl; os << indent << "Max. fiber length: " << this->GetMaxFiberLength() << std::endl; os << indent << "Mean fiber length: " << this->GetMeanFiberLength() << std::endl; os << indent << "Median fiber length: " << this->GetMedianFiberLength() << std::endl; os << indent << "STDEV fiber length: " << this->GetLengthStDev() << std::endl; os << indent << "Number of points: " << this->GetNumberOfPoints() << std::endl; + + os << indent << "Extent x: " << this->GetGeometry()->GetExtentInMM(0) << "mm" << std::endl; + os << indent << "Extent y: " << this->GetGeometry()->GetExtentInMM(1) << "mm" << std::endl; + os << indent << "Extent z: " << this->GetGeometry()->GetExtentInMM(2) << "mm" << std::endl; + os << indent << "Diagonal: " << this->GetGeometry()->GetDiagonalLength() << "mm" << std::endl; Superclass::PrintSelf(os, indent); } /* ESSENTIAL IMPLEMENTATION OF SUPERCLASS METHODS */ void mitk::FiberBundle::UpdateOutputInformation() { } void mitk::FiberBundle::SetRequestedRegionToLargestPossibleRegion() { } bool mitk::FiberBundle::RequestedRegionIsOutsideOfTheBufferedRegion() { return false; } bool mitk::FiberBundle::VerifyRequestedRegion() { return true; } void mitk::FiberBundle::SetRequestedRegion(const itk::DataObject* ) { } diff --git a/Modules/DiffusionImaging/FiberTracking/IODataStructures/mitkFiberfoxParameters.cpp b/Modules/DiffusionImaging/FiberTracking/IODataStructures/mitkFiberfoxParameters.cpp index b1e9857193..a2afd47c82 100644 --- a/Modules/DiffusionImaging/FiberTracking/IODataStructures/mitkFiberfoxParameters.cpp +++ b/Modules/DiffusionImaging/FiberTracking/IODataStructures/mitkFiberfoxParameters.cpp @@ -1,872 +1,876 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #define RAPIDXML_NO_EXCEPTIONS #include #include #include #include #include #include #include template< class ScalarType > mitk::FiberfoxParameters< ScalarType >::FiberfoxParameters() : m_NoiseModel(nullptr) { } template< class ScalarType > mitk::FiberfoxParameters< ScalarType >::~FiberfoxParameters() { // if (m_NoiseModel!=nullptr) // delete m_NoiseModel; } void mitk::SignalGenerationParameters::GenerateGradientHalfShell() { int NPoints = 2*m_NumGradients; m_GradientDirections.clear(); m_NumBaseline = NPoints/20; if (m_NumBaseline==0) m_NumBaseline=1; GradientType g; g.Fill(0.0); for (unsigned int i=0; i theta; theta.set_size(NPoints); vnl_vector phi; phi.set_size(NPoints); double C = sqrt(4*M_PI); phi(0) = 0.0; phi(NPoints-1) = 0.0; for(int i=0; i0 && i mitk::SignalGenerationParameters::GetBaselineIndices() { std::vector< int > result; for( unsigned int i=0; im_GradientDirections.size(); i++) if (m_GradientDirections.at(i).GetNorm()<0.0001) result.push_back(i); return result; } unsigned int mitk::SignalGenerationParameters::GetFirstBaselineIndex() { for( unsigned int i=0; im_GradientDirections.size(); i++) if (m_GradientDirections.at(i).GetNorm()<0.0001) return i; return -1; } bool mitk::SignalGenerationParameters::IsBaselineIndex(unsigned int idx) { if (m_GradientDirections.size()>idx && m_GradientDirections.at(idx).GetNorm()<0.0001) return true; return false; } unsigned int mitk::SignalGenerationParameters::GetNumWeightedVolumes() { return m_NumGradients; } unsigned int mitk::SignalGenerationParameters::GetNumBaselineVolumes() { return m_NumBaseline; } unsigned int mitk::SignalGenerationParameters::GetNumVolumes() { return m_GradientDirections.size(); } mitk::SignalGenerationParameters::GradientListType mitk::SignalGenerationParameters::GetGradientDirections() { return m_GradientDirections; } mitk::SignalGenerationParameters::GradientType mitk::SignalGenerationParameters::GetGradientDirection(unsigned int i) { return m_GradientDirections.at(i); } void mitk::SignalGenerationParameters::SetNumWeightedVolumes(int numGradients) { m_NumGradients = numGradients; GenerateGradientHalfShell(); } std::vector< int > mitk::SignalGenerationParameters::GetBvalues() { std::vector< int > bVals; for( GradientType g : m_GradientDirections) { float norm = g.GetNorm(); int bVal = std::round(norm*norm*m_Bvalue); if ( std::find(bVals.begin(), bVals.end(), bVal) == bVals.end() ) bVals.push_back(bVal); } return bVals; } void mitk::SignalGenerationParameters::SetGradienDirections(GradientListType gradientList) { m_GradientDirections = gradientList; m_NumGradients = 0; m_NumBaseline = 0; for( unsigned int i=0; im_GradientDirections.size(); i++) { float norm = m_GradientDirections.at(i).GetNorm(); if (norm>0.0001) m_NumGradients++; else m_NumBaseline++; } } void mitk::SignalGenerationParameters::SetGradienDirections(mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer gradientList) { m_NumGradients = 0; m_NumBaseline = 0; m_GradientDirections.clear(); for( unsigned int i=0; iSize(); i++) { GradientType g; g[0] = gradientList->at(i)[0]; g[1] = gradientList->at(i)[1]; g[2] = gradientList->at(i)[2]; m_GradientDirections.push_back(g); float norm = m_GradientDirections.at(i).GetNorm(); if (norm>0.0001) m_NumGradients++; else m_NumBaseline++; } } template< class ScalarType > void mitk::FiberfoxParameters< ScalarType >::SaveParameters(std::string filename) { if(filename.empty()) return; if(".ffp"!=filename.substr(filename.size()-4, 4)) filename += ".ffp"; const std::string& locale = "C"; const std::string& currLocale = setlocale( LC_ALL, nullptr ); if ( locale.compare(currLocale)!=0 ) { try { setlocale(LC_ALL, locale.c_str()); } catch(...) { MITK_INFO << "Could not set locale " << locale; } } boost::property_tree::ptree parameters; // fiber generation parameters parameters.put("fiberfox.fibers.distribution", m_FiberGen.m_Distribution); parameters.put("fiberfox.fibers.variance", m_FiberGen.m_Variance); parameters.put("fiberfox.fibers.density", m_FiberGen.m_Density); parameters.put("fiberfox.fibers.spline.sampling", m_FiberGen.m_Sampling); parameters.put("fiberfox.fibers.spline.tension", m_FiberGen.m_Tension); parameters.put("fiberfox.fibers.spline.continuity", m_FiberGen.m_Continuity); parameters.put("fiberfox.fibers.spline.bias", m_FiberGen.m_Bias); parameters.put("fiberfox.fibers.rotation.x", m_FiberGen.m_Rotation[0]); parameters.put("fiberfox.fibers.rotation.y", m_FiberGen.m_Rotation[1]); parameters.put("fiberfox.fibers.rotation.z", m_FiberGen.m_Rotation[2]); parameters.put("fiberfox.fibers.translation.x", m_FiberGen.m_Translation[0]); parameters.put("fiberfox.fibers.translation.y", m_FiberGen.m_Translation[1]); parameters.put("fiberfox.fibers.translation.z", m_FiberGen.m_Translation[2]); parameters.put("fiberfox.fibers.scale.x", m_FiberGen.m_Scale[0]); parameters.put("fiberfox.fibers.scale.y", m_FiberGen.m_Scale[1]); parameters.put("fiberfox.fibers.scale.z", m_FiberGen.m_Scale[2]); // image generation parameters parameters.put("fiberfox.image.basic.size.x", m_SignalGen.m_ImageRegion.GetSize(0)); parameters.put("fiberfox.image.basic.size.y", m_SignalGen.m_ImageRegion.GetSize(1)); parameters.put("fiberfox.image.basic.size.z", m_SignalGen.m_ImageRegion.GetSize(2)); parameters.put("fiberfox.image.basic.spacing.x", m_SignalGen.m_ImageSpacing[0]); parameters.put("fiberfox.image.basic.spacing.y", m_SignalGen.m_ImageSpacing[1]); parameters.put("fiberfox.image.basic.spacing.z", m_SignalGen.m_ImageSpacing[2]); parameters.put("fiberfox.image.basic.origin.x", m_SignalGen.m_ImageOrigin[0]); parameters.put("fiberfox.image.basic.origin.y", m_SignalGen.m_ImageOrigin[1]); parameters.put("fiberfox.image.basic.origin.z", m_SignalGen.m_ImageOrigin[2]); parameters.put("fiberfox.image.basic.direction.1", m_SignalGen.m_ImageDirection[0][0]); parameters.put("fiberfox.image.basic.direction.2", m_SignalGen.m_ImageDirection[0][1]); parameters.put("fiberfox.image.basic.direction.3", m_SignalGen.m_ImageDirection[0][2]); parameters.put("fiberfox.image.basic.direction.4", m_SignalGen.m_ImageDirection[1][0]); parameters.put("fiberfox.image.basic.direction.5", m_SignalGen.m_ImageDirection[1][1]); parameters.put("fiberfox.image.basic.direction.6", m_SignalGen.m_ImageDirection[1][2]); parameters.put("fiberfox.image.basic.direction.7", m_SignalGen.m_ImageDirection[2][0]); parameters.put("fiberfox.image.basic.direction.8", m_SignalGen.m_ImageDirection[2][1]); parameters.put("fiberfox.image.basic.direction.9", m_SignalGen.m_ImageDirection[2][2]); parameters.put("fiberfox.image.basic.numgradients", m_SignalGen.GetNumWeightedVolumes()); for( unsigned int i=0; im_SignalGen.GetNumVolumes(); i++) { parameters.put("fiberfox.image.gradients."+boost::lexical_cast(i)+".x", m_SignalGen.GetGradientDirection(i)[0]); parameters.put("fiberfox.image.gradients."+boost::lexical_cast(i)+".y", m_SignalGen.GetGradientDirection(i)[1]); parameters.put("fiberfox.image.gradients."+boost::lexical_cast(i)+".z", m_SignalGen.GetGradientDirection(i)[2]); } parameters.put("fiberfox.image.acquisitiontype", m_SignalGen.m_AcquisitionType); parameters.put("fiberfox.image.coilsensitivityprofile", m_SignalGen.m_CoilSensitivityProfile); parameters.put("fiberfox.image.numberofcoils", m_SignalGen.m_NumberOfCoils); parameters.put("fiberfox.image.reversephase", m_SignalGen.m_ReversePhase); parameters.put("fiberfox.image.partialfourier", m_SignalGen.m_PartialFourier); parameters.put("fiberfox.image.noisevariance", m_SignalGen.m_NoiseVariance); parameters.put("fiberfox.image.trep", m_SignalGen.m_tRep); parameters.put("fiberfox.image.signalScale", m_SignalGen.m_SignalScale); parameters.put("fiberfox.image.tEcho", m_SignalGen.m_tEcho); parameters.put("fiberfox.image.tLine", m_SignalGen.m_tLine); parameters.put("fiberfox.image.tInhom", m_SignalGen.m_tInhom); parameters.put("fiberfox.image.bvalue", m_SignalGen.m_Bvalue); parameters.put("fiberfox.image.simulatekspace", m_SignalGen.m_SimulateKspaceAcquisition); parameters.put("fiberfox.image.axonRadius", m_SignalGen.m_AxonRadius); parameters.put("fiberfox.image.doSimulateRelaxation", m_SignalGen.m_DoSimulateRelaxation); parameters.put("fiberfox.image.doDisablePartialVolume", m_SignalGen.m_DoDisablePartialVolume); parameters.put("fiberfox.image.artifacts.spikesnum", m_SignalGen.m_Spikes); parameters.put("fiberfox.image.artifacts.spikesscale", m_SignalGen.m_SpikeAmplitude); parameters.put("fiberfox.image.artifacts.kspaceLineOffset", m_SignalGen.m_KspaceLineOffset); parameters.put("fiberfox.image.artifacts.eddyStrength", m_SignalGen.m_EddyStrength); parameters.put("fiberfox.image.artifacts.eddyTau", m_SignalGen.m_Tau); parameters.put("fiberfox.image.artifacts.aliasingfactor", m_SignalGen.m_CroppingFactor); parameters.put("fiberfox.image.artifacts.addringing", m_SignalGen.m_DoAddGibbsRinging); parameters.put("fiberfox.image.artifacts.doAddMotion", m_SignalGen.m_DoAddMotion); parameters.put("fiberfox.image.artifacts.randomMotion", m_SignalGen.m_DoRandomizeMotion); parameters.put("fiberfox.image.artifacts.translation0", m_SignalGen.m_Translation[0]); parameters.put("fiberfox.image.artifacts.translation1", m_SignalGen.m_Translation[1]); parameters.put("fiberfox.image.artifacts.translation2", m_SignalGen.m_Translation[2]); parameters.put("fiberfox.image.artifacts.rotation0", m_SignalGen.m_Rotation[0]); parameters.put("fiberfox.image.artifacts.rotation1", m_SignalGen.m_Rotation[1]); parameters.put("fiberfox.image.artifacts.rotation2", m_SignalGen.m_Rotation[2]); parameters.put("fiberfox.image.artifacts.motionvolumes", m_Misc.m_MotionVolumesBox); parameters.put("fiberfox.image.artifacts.addnoise", m_Misc.m_CheckAddNoiseBox); parameters.put("fiberfox.image.artifacts.addghosts", m_Misc.m_CheckAddGhostsBox); parameters.put("fiberfox.image.artifacts.addaliasing", m_Misc.m_CheckAddAliasingBox); parameters.put("fiberfox.image.artifacts.addspikes", m_Misc.m_CheckAddSpikesBox); parameters.put("fiberfox.image.artifacts.addeddycurrents", m_Misc.m_CheckAddEddyCurrentsBox); parameters.put("fiberfox.image.artifacts.doAddDistortions", m_Misc.m_CheckAddDistortionsBox); parameters.put("fiberfox.image.outputvolumefractions", m_Misc.m_CheckOutputVolumeFractionsBox); parameters.put("fiberfox.image.showadvanced", m_Misc.m_CheckAdvancedSignalOptionsBox); parameters.put("fiberfox.image.signalmodelstring", m_Misc.m_SignalModelString); parameters.put("fiberfox.image.artifactmodelstring", m_Misc.m_ArtifactModelString); parameters.put("fiberfox.image.outpath", m_Misc.m_OutputPath); parameters.put("fiberfox.fibers.realtime", m_Misc.m_CheckRealTimeFibersBox); parameters.put("fiberfox.fibers.showadvanced", m_Misc.m_CheckAdvancedFiberOptionsBox); parameters.put("fiberfox.fibers.constantradius", m_Misc.m_CheckConstantRadiusBox); parameters.put("fiberfox.fibers.includeFiducials", m_Misc.m_CheckIncludeFiducialsBox); if (m_NoiseModel!=nullptr) { parameters.put("fiberfox.image.artifacts.noisevariance", m_NoiseModel->GetNoiseVariance()); if (dynamic_cast*>(m_NoiseModel.get())) parameters.put("fiberfox.image.artifacts.noisetype", "rice"); else if (dynamic_cast*>(m_NoiseModel.get())) parameters.put("fiberfox.image.artifacts.noisetype", "chisquare"); } for (std::size_t i=0; i* signalModel = nullptr; if (i(i)+".type", "fiber"); } else { signalModel = m_NonFiberModelList.at(i-m_FiberModelList.size()); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".type", "non-fiber"); } if (dynamic_cast*>(signalModel)) { mitk::StickModel* model = dynamic_cast*>(signalModel); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".model", "stick"); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".d", model->GetDiffusivity()); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".t2", model->GetT2()); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".t1", model->GetT1()); } else if (dynamic_cast*>(signalModel)) { mitk::TensorModel* model = dynamic_cast*>(signalModel); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".model", "tensor"); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".d1", model->GetDiffusivity1()); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".d2", model->GetDiffusivity2()); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".d3", model->GetDiffusivity3()); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".t2", model->GetT2()); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".t1", model->GetT1()); } else if (dynamic_cast*>(signalModel)) { mitk::RawShModel* model = dynamic_cast*>(signalModel); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".model", "prototype"); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".minFA", model->GetFaRange().first); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".maxFA", model->GetFaRange().second); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".minADC", model->GetAdcRange().first); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".maxADC", model->GetAdcRange().second); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".maxNumSamples", model->GetMaxNumKernels()); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".numSamples", model->GetNumberOfKernels()); int shOrder = model->GetShOrder(); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".numCoeffs", (shOrder*shOrder + shOrder + 2)/2 + shOrder); for (unsigned int j=0; jGetNumberOfKernels(); j++) { vnl_vector< double > coeffs = model->GetCoefficients(j); for (unsigned int k=0; k(i)+".kernels."+boost::lexical_cast(j)+".coeffs."+boost::lexical_cast(k), coeffs[k]); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".kernels."+boost::lexical_cast(j)+".B0", model->GetBaselineSignal(j)); } } else if (dynamic_cast*>(signalModel)) { mitk::BallModel* model = dynamic_cast*>(signalModel); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".model", "ball"); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".d", model->GetDiffusivity()); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".t2", model->GetT2()); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".t1", model->GetT1()); } else if (dynamic_cast*>(signalModel)) { mitk::AstroStickModel* model = dynamic_cast*>(signalModel); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".model", "astrosticks"); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".d", model->GetDiffusivity()); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".t2", model->GetT2()); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".t1", model->GetT1()); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".randomize", model->GetRandomizeSticks()); } else if (dynamic_cast*>(signalModel)) { mitk::DotModel* model = dynamic_cast*>(signalModel); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".model", "dot"); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".t2", model->GetT2()); parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".t1", model->GetT1()); } if (signalModel!=nullptr) { parameters.put("fiberfox.image.compartments."+boost::lexical_cast(i)+".ID", signalModel->m_CompartmentId); if (signalModel->GetVolumeFractionImage().IsNotNull()) { try{ itk::ImageFileWriter::Pointer writer = itk::ImageFileWriter::New(); writer->SetFileName(filename+"_VOLUME"+boost::lexical_cast(signalModel->m_CompartmentId)+".nrrd"); writer->SetInput(signalModel->GetVolumeFractionImage()); writer->Update(); MITK_INFO << "Volume fraction image for compartment "+boost::lexical_cast(signalModel->m_CompartmentId)+" saved."; } catch(...) { } } } } boost::property_tree::xml_writer_settings writerSettings(' ', 2); boost::property_tree::xml_parser::write_xml(filename, parameters, std::locale(), writerSettings); try{ itk::ImageFileWriter::Pointer writer = itk::ImageFileWriter::New(); writer->SetFileName(filename+"_FMAP.nrrd"); writer->SetInput(m_SignalGen.m_FrequencyMap); writer->Update(); } catch(...) { MITK_INFO << "No frequency map saved."; } try{ itk::ImageFileWriter::Pointer writer = itk::ImageFileWriter::New(); writer->SetFileName(filename+"_MASK.nrrd"); writer->SetInput(m_SignalGen.m_MaskImage); writer->Update(); } catch(...) { MITK_INFO << "No mask image saved."; } setlocale(LC_ALL, currLocale.c_str()); } template< class ScalarType > template< class ParameterType > ParameterType mitk::FiberfoxParameters< ScalarType >::ReadVal(boost::property_tree::ptree::value_type const& v, std::string tag, ParameterType defaultValue, bool essential) { try { return v.second.get(tag); } catch (...) { if (essential) { mitkThrow() << "Parameter file corrupted. Essential tag is missing: '" << tag << "'"; } if (tag!="artifacts.noisetype") { MITK_INFO << "Tag '" << tag << "' not found. Using default value '" << defaultValue << "'."; m_MissingTags += "\n- "; m_MissingTags += tag; } return defaultValue; } } template< class ScalarType > void mitk::FiberfoxParameters< ScalarType >::LoadParameters(std::string filename) { m_MissingTags = ""; if(filename.empty()) { return; } const std::string& locale = "C"; const std::string& currLocale = setlocale( LC_ALL, nullptr ); if ( locale.compare(currLocale)!=0 ) { try { setlocale(LC_ALL, locale.c_str()); } catch(...) { MITK_INFO << "Could not set locale " << locale; } } boost::property_tree::ptree parameterTree; boost::property_tree::xml_parser::read_xml( filename, parameterTree ); m_FiberModelList.clear(); m_NonFiberModelList.clear(); if (m_NoiseModel) { m_NoiseModel = nullptr; } BOOST_FOREACH( boost::property_tree::ptree::value_type const& v1, parameterTree.get_child("fiberfox") ) { if( v1.first == "fibers" ) { m_Misc.m_CheckRealTimeFibersBox = ReadVal(v1,"realtime", m_Misc.m_CheckRealTimeFibersBox); m_Misc.m_CheckAdvancedFiberOptionsBox = ReadVal(v1,"showadvanced", m_Misc.m_CheckAdvancedFiberOptionsBox); m_Misc.m_CheckConstantRadiusBox = ReadVal(v1,"constantradius", m_Misc.m_CheckConstantRadiusBox); m_Misc.m_CheckIncludeFiducialsBox = ReadVal(v1,"includeFiducials", m_Misc.m_CheckIncludeFiducialsBox); switch (ReadVal(v1,"distribution", 0)) { case 0: m_FiberGen.m_Distribution = FiberGenerationParameters::DISTRIBUTE_UNIFORM; break; case 1: m_FiberGen.m_Distribution = FiberGenerationParameters::DISTRIBUTE_GAUSSIAN; break; default: m_FiberGen.m_Distribution = FiberGenerationParameters::DISTRIBUTE_UNIFORM; } m_FiberGen.m_Variance = ReadVal(v1,"variance", m_FiberGen.m_Variance); m_FiberGen.m_Density = ReadVal(v1,"density", m_FiberGen.m_Density); m_FiberGen.m_Sampling = ReadVal(v1,"spline.sampling", m_FiberGen.m_Sampling); m_FiberGen.m_Tension = ReadVal(v1,"spline.tension", m_FiberGen.m_Tension); m_FiberGen.m_Continuity = ReadVal(v1,"spline.continuity", m_FiberGen.m_Continuity); m_FiberGen.m_Bias = ReadVal(v1,"spline.bias", m_FiberGen.m_Bias); m_FiberGen.m_Rotation[0] = ReadVal(v1,"rotation.x", m_FiberGen.m_Rotation[0]); m_FiberGen.m_Rotation[1] = ReadVal(v1,"rotation.y", m_FiberGen.m_Rotation[1]); m_FiberGen.m_Rotation[2] = ReadVal(v1,"rotation.z", m_FiberGen.m_Rotation[2]); m_FiberGen.m_Translation[0] = ReadVal(v1,"translation.x", m_FiberGen.m_Translation[0]); m_FiberGen.m_Translation[1] = ReadVal(v1,"translation.y", m_FiberGen.m_Translation[1]); m_FiberGen.m_Translation[2] = ReadVal(v1,"translation.z", m_FiberGen.m_Translation[2]); m_FiberGen.m_Scale[0] = ReadVal(v1,"scale.x", m_FiberGen.m_Scale[0]); m_FiberGen.m_Scale[1] = ReadVal(v1,"scale.y", m_FiberGen.m_Scale[1]); m_FiberGen.m_Scale[2] = ReadVal(v1,"scale.z", m_FiberGen.m_Scale[2]); } else if ( v1.first == "image" ) { m_Misc.m_SignalModelString = ReadVal(v1,"signalmodelstring", m_Misc.m_SignalModelString); m_Misc.m_ArtifactModelString = ReadVal(v1,"artifactmodelstring", m_Misc.m_ArtifactModelString); m_Misc.m_OutputPath = ReadVal(v1,"outpath", m_Misc.m_OutputPath); m_Misc.m_CheckOutputVolumeFractionsBox = ReadVal(v1,"outputvolumefractions", m_Misc.m_CheckOutputVolumeFractionsBox); m_Misc.m_CheckAdvancedSignalOptionsBox = ReadVal(v1,"showadvanced", m_Misc.m_CheckAdvancedSignalOptionsBox); m_Misc.m_CheckAddDistortionsBox = ReadVal(v1,"artifacts.doAddDistortions", m_Misc.m_CheckAddDistortionsBox); m_Misc.m_CheckAddNoiseBox = ReadVal(v1,"artifacts.addnoise", m_Misc.m_CheckAddNoiseBox); m_Misc.m_CheckAddGhostsBox = ReadVal(v1,"artifacts.addghosts", m_Misc.m_CheckAddGhostsBox); m_Misc.m_CheckAddAliasingBox = ReadVal(v1,"artifacts.addaliasing", m_Misc.m_CheckAddAliasingBox); m_Misc.m_CheckAddSpikesBox = ReadVal(v1,"artifacts.addspikes", m_Misc.m_CheckAddSpikesBox); m_Misc.m_CheckAddEddyCurrentsBox = ReadVal(v1,"artifacts.addeddycurrents", m_Misc.m_CheckAddEddyCurrentsBox); m_SignalGen.m_ImageRegion.SetSize(0, ReadVal(v1,"basic.size.x",m_SignalGen.m_ImageRegion.GetSize(0))); m_SignalGen.m_ImageRegion.SetSize(1, ReadVal(v1,"basic.size.y",m_SignalGen.m_ImageRegion.GetSize(1))); m_SignalGen.m_ImageRegion.SetSize(2, ReadVal(v1,"basic.size.z",m_SignalGen.m_ImageRegion.GetSize(2))); m_SignalGen.m_ImageSpacing[0] = ReadVal(v1,"basic.spacing.x",m_SignalGen.m_ImageSpacing[0]); m_SignalGen.m_ImageSpacing[1] = ReadVal(v1,"basic.spacing.y",m_SignalGen.m_ImageSpacing[1]); m_SignalGen.m_ImageSpacing[2] = ReadVal(v1,"basic.spacing.z",m_SignalGen.m_ImageSpacing[2]); m_SignalGen.m_ImageOrigin[0] = ReadVal(v1,"basic.origin.x",m_SignalGen.m_ImageOrigin[0]); m_SignalGen.m_ImageOrigin[1] = ReadVal(v1,"basic.origin.y",m_SignalGen.m_ImageOrigin[1]); m_SignalGen.m_ImageOrigin[2] = ReadVal(v1,"basic.origin.z",m_SignalGen.m_ImageOrigin[2]); m_SignalGen.m_ImageDirection[0][0] = ReadVal(v1,"basic.direction.1",m_SignalGen.m_ImageDirection[0][0]); m_SignalGen.m_ImageDirection[0][1] = ReadVal(v1,"basic.direction.2",m_SignalGen.m_ImageDirection[0][1]); m_SignalGen.m_ImageDirection[0][2] = ReadVal(v1,"basic.direction.3",m_SignalGen.m_ImageDirection[0][2]); m_SignalGen.m_ImageDirection[1][0] = ReadVal(v1,"basic.direction.4",m_SignalGen.m_ImageDirection[1][0]); m_SignalGen.m_ImageDirection[1][1] = ReadVal(v1,"basic.direction.5",m_SignalGen.m_ImageDirection[1][1]); m_SignalGen.m_ImageDirection[1][2] = ReadVal(v1,"basic.direction.6",m_SignalGen.m_ImageDirection[1][2]); m_SignalGen.m_ImageDirection[2][0] = ReadVal(v1,"basic.direction.7",m_SignalGen.m_ImageDirection[2][0]); m_SignalGen.m_ImageDirection[2][1] = ReadVal(v1,"basic.direction.8",m_SignalGen.m_ImageDirection[2][1]); m_SignalGen.m_ImageDirection[2][2] = ReadVal(v1,"basic.direction.9",m_SignalGen.m_ImageDirection[2][2]); m_SignalGen.m_AcquisitionType = (SignalGenerationParameters::AcquisitionType) ReadVal(v1,"acquisitiontype", m_SignalGen.m_AcquisitionType); m_SignalGen.m_CoilSensitivityProfile = (SignalGenerationParameters::CoilSensitivityProfile) ReadVal(v1,"coilsensitivityprofile", m_SignalGen.m_CoilSensitivityProfile); m_SignalGen.m_NumberOfCoils = ReadVal(v1,"numberofcoils", m_SignalGen.m_NumberOfCoils); m_SignalGen.m_ReversePhase = ReadVal(v1,"reversephase", m_SignalGen.m_ReversePhase); m_SignalGen.m_PartialFourier = ReadVal(v1,"partialfourier", m_SignalGen.m_PartialFourier); m_SignalGen.m_NoiseVariance = ReadVal(v1,"noisevariance", m_SignalGen.m_NoiseVariance); m_SignalGen.m_tRep = ReadVal(v1,"trep", m_SignalGen.m_tRep); m_SignalGen.m_SignalScale = ReadVal(v1,"signalScale", m_SignalGen.m_SignalScale); m_SignalGen.m_tEcho = ReadVal(v1,"tEcho", m_SignalGen.m_tEcho); m_SignalGen.m_tLine = ReadVal(v1,"tLine", m_SignalGen.m_tLine); m_SignalGen.m_tInhom = ReadVal(v1,"tInhom", m_SignalGen.m_tInhom); m_SignalGen.m_Bvalue = ReadVal(v1,"bvalue", m_SignalGen.m_Bvalue); m_SignalGen.m_SimulateKspaceAcquisition = ReadVal(v1,"simulatekspace", m_SignalGen.m_SimulateKspaceAcquisition); m_SignalGen.m_AxonRadius = ReadVal(v1,"axonRadius", m_SignalGen.m_AxonRadius); m_SignalGen.m_Spikes = ReadVal(v1,"artifacts.spikesnum", m_SignalGen.m_Spikes); m_SignalGen.m_SpikeAmplitude = ReadVal(v1,"artifacts.spikesscale", m_SignalGen.m_SpikeAmplitude); m_SignalGen.m_KspaceLineOffset = ReadVal(v1,"artifacts.kspaceLineOffset", m_SignalGen.m_KspaceLineOffset); m_SignalGen.m_EddyStrength = ReadVal(v1,"artifacts.eddyStrength", m_SignalGen.m_EddyStrength); m_SignalGen.m_Tau = ReadVal(v1,"artifacts.eddyTau", m_SignalGen.m_Tau); m_SignalGen.m_CroppingFactor = ReadVal(v1,"artifacts.aliasingfactor", m_SignalGen.m_CroppingFactor); m_SignalGen.m_DoAddGibbsRinging = ReadVal(v1,"artifacts.addringing", m_SignalGen.m_DoAddGibbsRinging); m_SignalGen.m_DoSimulateRelaxation = ReadVal(v1,"doSimulateRelaxation", m_SignalGen.m_DoSimulateRelaxation); m_SignalGen.m_DoDisablePartialVolume = ReadVal(v1,"doDisablePartialVolume", m_SignalGen.m_DoDisablePartialVolume); m_SignalGen.m_DoAddMotion = ReadVal(v1,"artifacts.doAddMotion", m_SignalGen.m_DoAddMotion); m_SignalGen.m_DoRandomizeMotion = ReadVal(v1,"artifacts.randomMotion", m_SignalGen.m_DoRandomizeMotion); m_SignalGen.m_Translation[0] = ReadVal(v1,"artifacts.translation0", m_SignalGen.m_Translation[0]); m_SignalGen.m_Translation[1] = ReadVal(v1,"artifacts.translation1", m_SignalGen.m_Translation[1]); m_SignalGen.m_Translation[2] = ReadVal(v1,"artifacts.translation2", m_SignalGen.m_Translation[2]); m_SignalGen.m_Rotation[0] = ReadVal(v1,"artifacts.rotation0", m_SignalGen.m_Rotation[0]); m_SignalGen.m_Rotation[1] = ReadVal(v1,"artifacts.rotation1", m_SignalGen.m_Rotation[1]); m_SignalGen.m_Rotation[2] = ReadVal(v1,"artifacts.rotation2", m_SignalGen.m_Rotation[2]); // m_SignalGen.SetNumWeightedVolumes(ReadVal(v1,"numgradients", m_SignalGen.GetNumWeightedVolumes())); SignalGenerationParameters::GradientListType gradients; BOOST_FOREACH( boost::property_tree::ptree::value_type const& v2, v1.second.get_child("gradients") ) { SignalGenerationParameters::GradientType g; g[0] = ReadVal(v2,"x",0); g[1] = ReadVal(v2,"y",0); g[2] = ReadVal(v2,"z",0); gradients.push_back(g); } m_SignalGen.SetGradienDirections(gradients); m_Misc.m_MotionVolumesBox = ReadVal(v1,"artifacts.motionvolumes", m_Misc.m_MotionVolumesBox); m_SignalGen.m_MotionVolumes.clear(); if ( m_Misc.m_MotionVolumesBox == "random" ) { for ( size_t i=0; i < m_SignalGen.GetNumVolumes(); ++i ) { m_SignalGen.m_MotionVolumes.push_back( bool( rand()%2 ) ); } MITK_DEBUG << "mitkFiberfoxParameters.cpp: Case m_Misc.m_MotionVolumesBox == \"random\"."; } else if ( ! m_Misc.m_MotionVolumesBox.empty() ) { std::stringstream stream( m_Misc.m_MotionVolumesBox ); std::vector numbers; int nummer = std::numeric_limits::max(); while( stream >> nummer ) { if( nummer < std::numeric_limits::max() ) { numbers.push_back( nummer ); } } // If a list of negative numbers is given: if( *(std::min_element( numbers.begin(), numbers.end() )) < 0 && *(std::max_element( numbers.begin(), numbers.end() )) <= 0 ) // cave: -0 == +0 { for ( size_t i=0; i(m_SignalGen.GetNumVolumes()) && -number >= 0 ) m_SignalGen.m_MotionVolumes.at(-number) = false; } MITK_DEBUG << "mitkFiberfoxParameters.cpp: Case list of negative numbers."; } // If a list of positive numbers is given: else if( *(std::min_element( numbers.begin(), numbers.end() )) >= 0 && *(std::max_element( numbers.begin(), numbers.end() )) >= 0 ) { for ( size_t i=0; i(m_SignalGen.GetNumVolumes()) && number >= 0) m_SignalGen.m_MotionVolumes.at(number) = true; } MITK_DEBUG << "mitkFiberfoxParameters.cpp: Case list of positive numbers."; } else { MITK_WARN << "mitkFiberfoxParameters.cpp: Inconsistent list of numbers in m_MotionVolumesBox."; break; } } else { MITK_WARN << "mitkFiberfoxParameters.cpp: Cannot make sense of string in m_MotionVolumesBox."; break; } try { if (ReadVal(v1,"artifacts.noisetype","")=="rice") { m_NoiseModel = std::make_shared< mitk::RicianNoiseModel >(); m_NoiseModel->SetNoiseVariance(ReadVal(v1,"artifacts.noisevariance",m_NoiseModel->GetNoiseVariance())); } } catch(...) { MITK_DEBUG << "mitkFiberfoxParameters.cpp: caught some error while trying m_NoiseModel->SetNoiseVariance()"; // throw; } try { if (ReadVal(v1,"artifacts.noisetype","")=="chisquare") { m_NoiseModel = std::make_shared< mitk::ChiSquareNoiseModel >(); m_NoiseModel->SetNoiseVariance(ReadVal(v1,"artifacts.noisevariance",m_NoiseModel->GetNoiseVariance())); } } catch(...) { MITK_DEBUG << "mitkFiberfoxParameters.cpp: caught some error while trying m_NoiseModel->SetNoiseVariance()"; // throw; } BOOST_FOREACH( boost::property_tree::ptree::value_type const& v2, v1.second.get_child("compartments") ) { mitk::DiffusionSignalModel* signalModel = nullptr; std::string model = ReadVal(v2,"model","",true); if (model=="stick") { mitk::StickModel* model = new mitk::StickModel(); model->SetDiffusivity(ReadVal(v2,"d",model->GetDiffusivity())); model->SetT2(ReadVal(v2,"t2",model->GetT2())); model->SetT1(ReadVal(v2,"t1",model->GetT1())); model->SetBvalue(m_SignalGen.m_Bvalue); model->m_CompartmentId = ReadVal(v2,"ID",0,true); if (ReadVal(v2,"type","",true)=="fiber") m_FiberModelList.push_back(model); else if (ReadVal(v2,"type","",true)=="non-fiber") m_NonFiberModelList.push_back(model); signalModel = model; } else if (model=="tensor") { mitk::TensorModel* model = new mitk::TensorModel(); model->SetDiffusivity1(ReadVal(v2,"d1",model->GetDiffusivity1())); model->SetDiffusivity2(ReadVal(v2,"d2",model->GetDiffusivity2())); model->SetDiffusivity3(ReadVal(v2,"d3",model->GetDiffusivity3())); model->SetT2(ReadVal(v2,"t2",model->GetT2())); model->SetT1(ReadVal(v2,"t1",model->GetT1())); model->SetBvalue(m_SignalGen.m_Bvalue); model->m_CompartmentId = ReadVal(v2,"ID",0,true); if (ReadVal(v2,"type","",true)=="fiber") m_FiberModelList.push_back(model); else if (ReadVal(v2,"type","",true)=="non-fiber") m_NonFiberModelList.push_back(model); signalModel = model; } else if (model=="ball") { mitk::BallModel* model = new mitk::BallModel(); model->SetDiffusivity(ReadVal(v2,"d",model->GetDiffusivity())); model->SetT2(ReadVal(v2,"t2",model->GetT2())); model->SetT1(ReadVal(v2,"t1",model->GetT1())); model->SetBvalue(m_SignalGen.m_Bvalue); model->m_CompartmentId = ReadVal(v2,"ID",0,true); if (ReadVal(v2,"type","",true)=="fiber") m_FiberModelList.push_back(model); else if (ReadVal(v2,"type","",true)=="non-fiber") m_NonFiberModelList.push_back(model); signalModel = model; } else if (model=="astrosticks") { mitk::AstroStickModel* model = new AstroStickModel(); model->SetDiffusivity(ReadVal(v2,"d",model->GetDiffusivity())); model->SetT2(ReadVal(v2,"t2",model->GetT2())); model->SetT1(ReadVal(v2,"t1",model->GetT1())); model->SetBvalue(m_SignalGen.m_Bvalue); model->SetRandomizeSticks(ReadVal(v2,"randomize",model->GetRandomizeSticks())); model->m_CompartmentId = ReadVal(v2,"ID",0,true); if (ReadVal(v2,"type","",true)=="fiber") m_FiberModelList.push_back(model); else if (ReadVal(v2,"type","",true)=="non-fiber") m_NonFiberModelList.push_back(model); signalModel = model; } else if (model=="dot") { mitk::DotModel* model = new mitk::DotModel(); model->SetT2(ReadVal(v2,"t2",model->GetT2())); model->SetT1(ReadVal(v2,"t1",model->GetT1())); model->m_CompartmentId = ReadVal(v2,"ID",0,true); if (ReadVal(v2,"type","",true)=="fiber") m_FiberModelList.push_back(model); else if (ReadVal(v2,"type","",true)=="non-fiber") m_NonFiberModelList.push_back(model); signalModel = model; } else if (model=="prototype") { mitk::RawShModel* model = new mitk::RawShModel(); model->SetMaxNumKernels(ReadVal(v2,"maxNumSamples",model->GetMaxNumKernels())); model->SetFaRange(ReadVal(v2,"minFA",model->GetFaRange().first), ReadVal(v2,"maxFA",model->GetFaRange().second)); model->SetAdcRange(ReadVal(v2,"minADC",model->GetAdcRange().first), ReadVal(v2,"maxADC",model->GetAdcRange().second)); model->m_CompartmentId = ReadVal(v2,"ID",0,true); unsigned int numCoeffs = ReadVal(v2,"numCoeffs",0,true); unsigned int numSamples = ReadVal(v2,"numSamples",0,true); for (unsigned int j=0; j coeffs(numCoeffs); for (unsigned int k=0; k(v2,"kernels."+boost::lexical_cast(j)+".coeffs."+boost::lexical_cast(k),0,true); } model->SetShCoefficients( coeffs, ReadVal(v2,"kernels."+boost::lexical_cast(j)+".B0",0,true) ); } if (ReadVal(v2,"type","",true)=="fiber") { m_FiberModelList.push_back(model); } else if (ReadVal(v2,"type","",true)=="non-fiber") { m_NonFiberModelList.push_back(model); } // else ? signalModel = model; } if (signalModel!=nullptr) { signalModel->SetGradientList(gradients); try { itk::ImageFileReader::Pointer reader = itk::ImageFileReader::New(); reader->SetFileName(filename+"_VOLUME"+ReadVal(v2,"ID","")+".nrrd"); reader->Update(); signalModel->SetVolumeFractionImage(reader->GetOutput()); MITK_INFO << "Volume fraction image loaded for compartment " << signalModel->m_CompartmentId; } catch(...) { MITK_INFO << "No volume fraction image found for compartment " << signalModel->m_CompartmentId; } } } } else { } } try { itk::ImageFileReader::Pointer reader = itk::ImageFileReader::New(); reader->SetFileName(filename+"_FMAP.nrrd"); reader->Update(); m_SignalGen.m_FrequencyMap = reader->GetOutput(); MITK_INFO << "Frequency map loaded."; } catch(...) { MITK_INFO << "No frequency map found."; } try { itk::ImageFileReader::Pointer reader = itk::ImageFileReader::New(); reader->SetFileName(filename+"_MASK.nrrd"); reader->Update(); m_SignalGen.m_MaskImage = reader->GetOutput(); + m_SignalGen.m_ImageRegion = m_SignalGen.m_MaskImage->GetLargestPossibleRegion(); + m_SignalGen.m_ImageSpacing = m_SignalGen.m_MaskImage->GetSpacing(); + m_SignalGen.m_ImageOrigin = m_SignalGen.m_MaskImage->GetOrigin(); + m_SignalGen.m_ImageDirection = m_SignalGen.m_MaskImage->GetDirection(); MITK_INFO << "Mask image loaded."; } catch(...) { MITK_INFO << "No mask image found."; } setlocale(LC_ALL, currLocale.c_str()); } template< class ScalarType > void mitk::FiberfoxParameters< ScalarType >::PrintSelf() { MITK_INFO << "Not implemented :("; } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.preprocessing/src/internal/QmitkPreprocessingViewControls.ui b/Plugins/org.mitk.gui.qt.diffusionimaging.preprocessing/src/internal/QmitkPreprocessingViewControls.ui index e386ad0ad0..7e24f546a6 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.preprocessing/src/internal/QmitkPreprocessingViewControls.ui +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.preprocessing/src/internal/QmitkPreprocessingViewControls.ui @@ -1,1720 +1,1729 @@ QmitkPreprocessingViewControls 0 0 503 - 812 + 813 0 0 false QmitkPreprocessingViewControls true 25 Please Select Input Data 0 0 0 0 Image: QComboBox::AdjustToMinimumContentsLength 0 Gradients + + 25 + Qt::Vertical 20 40 0 0 Qt::ScrollBarAsNeeded Qt::ScrollBarAlwaysOff true 100 true false true b-Value Number of gradients QFrame::NoFrame QFrame::Raised 0 0 0 0 6 <html><head/><body><p>Define the sampling frame the b-Values are rounded with.</p></body></html> Sampling frame: false <html><head/><body><p>Round b-values to nearest multiple of this value (click &quot;Round b-value&quot; to create new image with these values).</p></body></html> QAbstractSpinBox::CorrectToNearestValue 1 10000 10 false Sometimes the gradient directions are not located on one half sphere. Mirror gradients to half sphere false Generate pointset displaying the gradient vectors (applied measurement frame). Show gradients false Generate pointset displaying the gradient vectors (applied measurement frame). Flip gradients false Retain only the specified number of gradient directions and according image volumes. The retained directions are spread equally over the half sphere using an iterative energy repulsion strategy. Reduce number of gradients QFrame::NoFrame QFrame::Plain 0 0 0 0 0 x y z false Round b-values false By default, the image matrix is applied to the image gradients. This button removes this additional rotation. Clear rotation of gradients Remove or extract gradient volumes 6 6 0 0 0 0 false Remove gradient volume false Extract gradient volume Image Values + + 25 + Qt::Vertical 20 40 QFrame::NoFrame QFrame::Raised 0 0 0 0 - 0 + 6 QFrame::NoFrame QFrame::Raised 0 0 0 0 Accumulates the information that was acquired with multiple repetitions for one gradient. Vectors do not have to be precisely equal in order to be merged, if a "Merge radius" > 0 is configured. Accumulates the information that was acquired with multiple repetitions for one gradient. Vectors do not have to be precisely equal in order to be merged, if a "Merge radius" > 0 is configured. Accumulates the information that was acquired with multiple repetitions for one gradient. Vectors do not have to be precisely equal in order to be merged, if a "Merge radius" > 0 is configured. 6 2.000000000000000 0.000100000000000 0.001000000000000 Accumulates the information that was acquired with multiple repetitions for one gradient. Vectors do not have to be precisely equal in order to be merged, if a "Merge radius" > 0 is configured. Accumulates the information that was acquired with multiple repetitions for one gradient. Vectors do not have to be precisely equal in order to be merged, if a "Merge radius" > 0 is configured. Accumulates the information that was acquired with multiple repetitions for one gradient. Vectors do not have to be precisely equal in order to be merged, if a "Merge radius" > 0 is configured. Merge radius false Merges selected DWIs of same dimension. If several b-values are present, the resulting image will contain multiple b-shells. Merge selected DWIs false Normalizes the diffusion-weighted image values across all weighted volumes to the given mean and standard deviation. Normalize image values QFrame::NoFrame QFrame::Raised 0 0 0 0 0 false Target b-value 100000 500 Select projection method. QComboBox::AdjustToMinimumContentsLength ADC Average AKC Bi-Exponential false Multiple acquistions of one gradient direction can be averaged. Due to rounding errors, similar gradients often differ in the last decimal positions. The Merge radius allows to average them by taking all directions within a certain radius into account. Average repetitions false Project image values onto one b-shell. Project onto shell QFrame::NoFrame QFrame::Raised 0 0 0 0 0 true New stdev 100000 100 500 Select binary mask image. The mask is used to calculate the old mean and standard deviation. QComboBox::AdjustToMinimumContentsLength true New mean value 100000 100 1000 false Merges selected DWIs of same dimension. If several b-values are present, the resulting image will contain multiple b-shells. Flip axis QFrame::NoFrame QFrame::Raised 0 0 0 0 Y Qt::Horizontal 40 20 X Z Axis: QComboBox::AdjustToMinimumContentsLength Resample image 0 0 0 0 6 QFrame::NoFrame QFrame::Raised 0 0 0 0 0 0.010000000000000 2.000000000000000 0.010000000000000 2.000000000000000 0.010000000000000 2.000000000000000 Sampling factor New image spacing New image size QFrame::NoFrame QFrame::Raised 0 0 0 0 0 Interpolator: Nearest neighbour Linear B-spline Windowed sinc false Resample image QFrame::NoFrame QFrame::Raised 0 0 0 0 0 1 10000 1 10000 1 10000 Crop Image 0 0 0 0 6 x: y: z: Crop Image Header + + 25 + Voxel size 0 0 0 0 4 0.000000000000000 99.989999999999995 4 4 false Apply new header information Direction matrix 0 0 0 0 false 0 0 0 0 IBeamCursor true Qt::ScrollBarAlwaysOff Qt::ScrollBarAlwaysOff true false false true true 0 false true true New Row New Row New Row New Column New Column New Column Qt::Horizontal 40 20 0 0 Measurment frame 0 0 0 0 false 0 0 0 0 IBeamCursor true Qt::ScrollBarAlwaysOff Qt::ScrollBarAlwaysOff true false false true true 0 false true true New Row New Row New Row New Column New Column New Column Qt::Horizontal 40 20 Qt::Vertical 20 40 Origin 0 0 0 0 4 -999999999.000000000000000 999999999.000000000000000 4 -99999999.000000000000000 999999999.000000000000000 4 -999999999.000000000000000 999999999.000000000000000 Align origins 0 0 0 0 QComboBox::AdjustToMinimumContentsLength Align to Other false If multiple baseline acquisitions are present, the default behaviour is to output an averaged image. Estimate binary brain mask Maximum number of iterations. 10000 10000 Qt::Vertical 20 40 false If multiple baseline acquisitions are present, the default behaviour is to output an averaged image. Extract baseline image Create a 3D+t data set containing all b0 images as timesteps Disable averaging QmitkDataStorageComboBox QComboBox
QmitkDataStorageComboBox.h
QmitkDataStorageComboBoxWithSelectNone QComboBox
QmitkDataStorageComboBoxWithSelectNone.h
m_SelctedImageComboBox tabWidget m_B_ValueMap_TableWidget m_CreateLengthCorrectedDwi m_B_ValueMap_Rounder_SpinBox m_FlipGradientsButton m_FlipGradBoxX m_FlipGradBoxY m_FlipGradBoxZ m_ShowGradientsButton m_MirrorGradientToHalfSphereButton m_ReduceGradientsButton m_ClearRotationButton m_RemoveGradientButton m_RemoveGradientBox m_ExtractGradientButton m_ExtractGradientBox m_ButtonAverageGradients m_Blur m_ProjectSignalButton m_targetBValueSpinBox m_ProjectionMethodBox m_NormalizeImageValuesButton m_NewMean m_NewStdev m_NormalizationMaskBox m_FlipAxis m_FlipX m_FlipY m_FlipZ m_MergeDwisButton m_MergeDwiBox m_ResampleTypeBox m_ResampleDoubleX m_ResampleDoubleY m_ResampleDoubleZ m_ResampleIntX m_ResampleIntY m_ResampleIntZ m_InterpolatorBox m_ResampleImageButton m_XstartBox m_XendBox m_YstartBox m_YendBox m_ZstartBox m_ZendBox m_CropImageButton m_ModifyHeader m_HeaderOriginX m_HeaderOriginY m_HeaderOriginZ m_HeaderSpacingX m_HeaderSpacingY m_HeaderSpacingZ m_DirectionMatrixTable m_MeasurementFrameTable m_ButtonExtractB0 m_CheckExtractAll m_ExtractBrainMask m_BrainMaskIterationsBox