diff --git a/Modules/Core/include/mitkPlaneGeometry.h b/Modules/Core/include/mitkPlaneGeometry.h index 9ec4de8475..9c687f83c0 100644 --- a/Modules/Core/include/mitkPlaneGeometry.h +++ b/Modules/Core/include/mitkPlaneGeometry.h @@ -1,577 +1,567 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ /** * \brief Describes the geometry of a plane object * * Describes a two-dimensional manifold, i.e., to put it simply, * an object that can be described using a 2D coordinate-system. * * PlaneGeometry can map points between 3D world coordinates * (in mm) and the described 2D coordinate-system (in mm) by first projecting * the 3D point onto the 2D manifold and then calculating the 2D-coordinates * (in mm). These 2D-mm-coordinates can be further converted into * 2D-unit-coordinates (e.g., pixels), giving a parameter representation of * the object with parameter values inside a rectangle * (e.g., [0,0]..[width, height]), which is the bounding box (bounding range * in z-direction always [0]..[1]). * * A PlaneGeometry describes the 2D representation within a 3D object (derived from BaseGeometry). For example, * a single CT-image (slice) is 2D in the sense that you can access the * pixels using 2D-coordinates, but is also 3D, as the pixels are really * voxels, thus have an extension (thickness) in the 3rd dimension. * * * Optionally, a reference BaseGeometry can be specified, which usually would * be the geometry associated with the underlying dataset. This is currently * used for calculating the intersection of inclined / rotated planes * (represented as PlaneGeometry) with the bounding box of the associated * BaseGeometry. * * \warning The PlaneGeometry are not necessarily up-to-date and not even * initialized. As described in the previous paragraph, one of the * Generate-/Copy-/UpdateOutputInformation methods have to initialize it. * mitk::BaseData::GetPlaneGeometry() makes sure, that the PlaneGeometry is * up-to-date before returning it (by setting the update extent appropriately * and calling UpdateOutputInformation). * * Rule: everything is in mm (or ms for temporal information) if not * stated otherwise. * \ingroup Geometry */ #ifndef PLANEGEOMETRY_H_HEADER_INCLUDED_C1C68A2C #define PLANEGEOMETRY_H_HEADER_INCLUDED_C1C68A2C #include #include "mitkBaseGeometry.h" #include "mitkRestorePlanePositionOperation.h" #include namespace mitk { template < class TCoordRep, unsigned int NPointDimension > class Line; typedef Line Line3D; class PlaneGeometry; /** \deprecatedSince{2014_10} This class is deprecated. Please use PlaneGeometry instead. */ DEPRECATED( typedef PlaneGeometry Geometry2D); /** * \brief Describes a two-dimensional, rectangular plane * * \ingroup Geometry */ class MITKCORE_EXPORT PlaneGeometry : public BaseGeometry { public: mitkClassMacro(PlaneGeometry,BaseGeometry); /** Method for creation through the object factory. */ itkFactorylessNewMacro(Self) itkCloneMacro(Self) enum PlaneOrientation { Axial, Sagittal, Frontal }; virtual void IndexToWorld(const Point2D &pt_units, Point2D &pt_mm) const; virtual void WorldToIndex(const Point2D &pt_mm, Point2D &pt_units) const; //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em vector //## \a vec_units to world coordinates (in mm) //## @deprecated First parameter (Point2D) is not used. If possible, please use void IndexToWorld(const mitk::Vector2D& vec_units, mitk::Vector2D& vec_mm) const. //## For further information about coordinates types, please see the Geometry documentation virtual void IndexToWorld(const mitk::Point2D &atPt2d_untis, const mitk::Vector2D &vec_units, mitk::Vector2D &vec_mm) const; //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em vector //## \a vec_units to world coordinates (in mm) //## For further information about coordinates types, please see the Geometry documentation virtual void IndexToWorld(const mitk::Vector2D &vec_units, mitk::Vector2D &vec_mm) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em vector //## \a vec_mm to (continuous!) index coordinates. //## @deprecated First parameter (Point2D) is not used. If possible, please use void WorldToIndex(const mitk::Vector2D& vec_mm, mitk::Vector2D& vec_units) const. //## For further information about coordinates types, please see the Geometry documentation virtual void WorldToIndex(const mitk::Point2D &atPt2d_mm, const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em vector //## \a vec_mm to (continuous!) index coordinates. //## For further information about coordinates types, please see the Geometry documentation virtual void WorldToIndex(const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units) const; /** * \brief Initialize a plane with orientation \a planeorientation * (default: axial) with respect to \a BaseGeometry (default: identity). * Spacing also taken from \a BaseGeometry. * * \warning A former version of this method created a geometry with unit * spacing. For unit spacing use * * \code * // for in-plane unit spacing: * thisgeometry->SetSizeInUnits(thisgeometry->GetExtentInMM(0), * thisgeometry->GetExtentInMM(1)); * // additionally, for unit spacing in normal direction (former version * // did not do this): * thisgeometry->SetExtentInMM(2, 1.0); * \endcode */ virtual void InitializeStandardPlane( const BaseGeometry* geometry3D, PlaneOrientation planeorientation = Axial, ScalarType zPosition = 0, bool frontside=true, bool rotated=false ); /** * \brief Initialize a plane with orientation \a planeorientation * (default: axial) with respect to \a BaseGeometry (default: identity). * Spacing also taken from \a BaseGeometry. * * \param top if \a true, create plane at top, otherwise at bottom * (for PlaneOrientation Axial, for other plane locations respectively) */ virtual void InitializeStandardPlane( const BaseGeometry* geometry3D, bool top, PlaneOrientation planeorientation = Axial, bool frontside=true, bool rotated=false ); /** * \brief Initialize a plane with orientation \a planeorientation * (default: axial) with respect to \a transform (default: identity) * given width and height in units. * */ virtual void InitializeStandardPlane( ScalarType width, ScalarType height, const AffineTransform3D* transform = NULL, PlaneOrientation planeorientation = Axial, ScalarType zPosition = 0, bool frontside=true, bool rotated=false ); /** * \brief Initialize plane with orientation \a planeorientation * (default: axial) given width, height and spacing. * */ virtual void InitializeStandardPlane( ScalarType width, ScalarType height, const Vector3D & spacing, PlaneOrientation planeorientation = Axial, ScalarType zPosition = 0, bool frontside = true, bool rotated = false ); /** * \brief Initialize plane by width and height in pixels, right-/down-vector * (itk) to describe orientation in world-space (vectors will be normalized) * and spacing (default: 1.0 mm in all directions). * * The vectors are normalized and multiplied by the respective spacing before * they are set in the matrix. */ virtual void InitializeStandardPlane( ScalarType width, ScalarType height, const Vector3D& rightVector, const Vector3D& downVector, const Vector3D *spacing = NULL ); /** * \brief Initialize plane by width and height in pixels, * right-/down-vector (vnl) to describe orientation in world-space (vectors * will be normalized) and spacing (default: 1.0 mm in all directions). * * The vectors are normalized and multiplied by the respective spacing * before they are set in the matrix. */ virtual void InitializeStandardPlane( ScalarType width, ScalarType height, const VnlVector& rightVector, const VnlVector& downVector, const Vector3D * spacing = NULL ); /** * \brief Initialize plane by right-/down-vector (itk) and spacing * (default: 1.0 mm in all directions). * * The length of the right-/-down-vector is used as width/height in units, * respectively. Then, the vectors are normalized and multiplied by the * respective spacing before they are set in the matrix. */ virtual void InitializeStandardPlane( const Vector3D& rightVector, const Vector3D& downVector, const Vector3D * spacing = NULL ); /** * \brief Initialize plane by right-/down-vector (vnl) and spacing * (default: 1.0 mm in all directions). * * The length of the right-/-down-vector is used as width/height in units, * respectively. Then, the vectors are normalized and multiplied by the * respective spacing before they are set in the matrix. */ virtual void InitializeStandardPlane( const VnlVector& rightVector, const VnlVector& downVector, const Vector3D * spacing = NULL ); /** * \brief Initialize plane by origin and normal (size is 1.0 mm in * all directions, direction of right-/down-vector valid but * undefined). * */ virtual void InitializePlane( const Point3D& origin, const Vector3D& normal); /** * \brief Initialize plane by right-/down-vector. * * \warning The vectors are set into the matrix as they are, * \em without normalization! */ void SetMatrixByVectors( const VnlVector& rightVector, const VnlVector& downVector, ScalarType thickness=1.0 ); /** * \brief Change \a transform so that the third column of the * transform-martix is perpendicular to the first two columns * */ static void EnsurePerpendicularNormal( AffineTransform3D* transform ); /** * \brief Normal of the plane * */ Vector3D GetNormal() const; /** * \brief Normal of the plane as VnlVector * */ VnlVector GetNormalVnl() const; virtual ScalarType SignedDistance( const Point3D& pt3d_mm ) const; /** * \brief Calculates, whether a point is below or above the plane. There are two different *calculation methods, with or without consideration of the bounding box. */ virtual bool IsAbove( const Point3D& pt3d_mm , bool considerBoundingBox=false) const; /** * \brief Distance of the point from the plane * (bounding-box \em not considered) * */ ScalarType DistanceFromPlane( const Point3D& pt3d_mm ) const ; /** * \brief Signed distance of the point from the plane * (bounding-box \em not considered) * * > 0 : point is in the direction of the direction vector. */ inline ScalarType SignedDistanceFromPlane( const Point3D& pt3d_mm ) const { ScalarType len = GetNormalVnl().two_norm(); if( len == 0 ) return 0; return (pt3d_mm-GetOrigin())*GetNormal() / len; } /** * \brief Distance of the plane from another plane * (bounding-box \em not considered) * * Result is 0 if planes are not parallel. */ ScalarType DistanceFromPlane(const PlaneGeometry* plane) const { return fabs(SignedDistanceFromPlane(plane)); } /** * \brief Signed distance of the plane from another plane * (bounding-box \em not considered) * * Result is 0 if planes are not parallel. */ inline ScalarType SignedDistanceFromPlane( const PlaneGeometry *plane ) const { if(IsParallel(plane)) { return SignedDistance(plane->GetOrigin()); } return 0; } /** * \brief Calculate the intersecting line of two planes * * \return \a true planes are intersecting * \return \a false planes do not intersect */ bool IntersectionLine( const PlaneGeometry *plane, Line3D &crossline ) const; /** * \brief Calculate two points where another plane intersects the border of this plane * * \return number of intersection points (0..2). First interection point (if existing) * is returned in \a lineFrom, second in \a lineTo. */ unsigned int IntersectWithPlane2D(const PlaneGeometry *plane, Point2D &lineFrom, Point2D &lineTo ) const ; /** * \brief Calculate the angle between two planes * * \return angle in radiants */ double Angle( const PlaneGeometry *plane ) const; /** * \brief Calculate the angle between the plane and a line * * \return angle in radiants */ double Angle( const Line3D &line ) const; /** * \brief Calculate intersection point between the plane and a line * * \param intersectionPoint intersection point * \return \a true if \em unique intersection exists, i.e., if line * is \em not on or parallel to the plane */ bool IntersectionPoint( const Line3D &line, Point3D &intersectionPoint ) const; /** * \brief Calculate line parameter of intersection point between the * plane and a line * * \param t parameter of line: intersection point is * line.GetPoint()+t*line.GetDirection() * \return \a true if \em unique intersection exists, i.e., if line * is \em not on or parallel to the plane */ bool IntersectionPointParam( const Line3D &line, double &t ) const; /** * \brief Returns whether the plane is parallel to another plane * * @return true iff the normal vectors both point to the same or exactly oposit direction */ bool IsParallel( const PlaneGeometry *plane ) const; /** * \brief Returns whether the point is on the plane * (bounding-box \em not considered) */ bool IsOnPlane( const Point3D &point ) const; /** * \brief Returns whether the line is on the plane * (bounding-box \em not considered) */ bool IsOnPlane( const Line3D &line ) const; /** * \brief Returns whether the plane is on the plane * (bounding-box \em not considered) * * @return true iff the normal vector of the planes point to the same or the exactly oposit direction and * the distance of the planes is < eps * */ bool IsOnPlane( const PlaneGeometry *plane ) const; /** * \brief Returns the lot from the point to the plane */ Point3D ProjectPointOntoPlane( const Point3D &pt ) const; virtual itk::LightObject::Pointer InternalClone() const; /** Implements operation to re-orient the plane */ virtual void ExecuteOperation( Operation *operation ); /** * \brief Project a 3D point given in mm (\a pt3d_mm) onto the 2D * geometry. The result is a 2D point in mm (\a pt2d_mm). * * The result is a 2D point in mm (\a pt2d_mm) relative to the upper-left * corner of the geometry. To convert this point into units (e.g., pixels * in case of an image), use WorldToIndex. * \return true projection was possible * \sa Project(const mitk::Point3D &pt3d_mm, mitk::Point3D * &projectedPt3d_mm) */ virtual bool Map(const mitk::Point3D &pt3d_mm, mitk::Point2D &pt2d_mm) const; /** * \brief Converts a 2D point given in mm (\a pt2d_mm) relative to the * upper-left corner of the geometry into the corresponding * world-coordinate (a 3D point in mm, \a pt3d_mm). * * To convert a 2D point given in units (e.g., pixels in case of an * image) into a 2D point given in mm (as required by this method), use * IndexToWorld. */ virtual void Map(const mitk::Point2D &pt2d_mm, mitk::Point3D &pt3d_mm) const; /** * \brief Set the width and height of this 2D-geometry in units by calling * SetBounds. This does \a not change the extent in mm! * * For an image, this is the number of pixels in x-/y-direction. * \note In contrast to calling SetBounds directly, this does \a not change * the extent in mm! */ virtual void SetSizeInUnits(mitk::ScalarType width, mitk::ScalarType height); /** * \brief Project a 3D point given in mm (\a pt3d_mm) onto the 2D * geometry. The result is a 3D point in mm (\a projectedPt3d_mm). * * \return true projection was possible */ virtual bool Project(const mitk::Point3D &pt3d_mm, mitk::Point3D &projectedPt3d_mm) const; /** * \brief Project a 3D vector given in mm (\a vec3d_mm) onto the 2D * geometry. The result is a 2D vector in mm (\a vec2d_mm). * * The result is a 2D vector in mm (\a vec2d_mm) relative to the * upper-left * corner of the geometry. To convert this point into units (e.g., pixels * in case of an image), use WorldToIndex. * \return true projection was possible * \sa Project(const mitk::Vector3D &vec3d_mm, mitk::Vector3D * &projectedVec3d_mm) */ virtual bool Map(const mitk::Point3D & atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector2D &vec2d_mm) const; /** * \brief Converts a 2D vector given in mm (\a vec2d_mm) relative to the * upper-left corner of the geometry into the corresponding * world-coordinate (a 3D vector in mm, \a vec3d_mm). * * To convert a 2D vector given in units (e.g., pixels in case of an * image) into a 2D vector given in mm (as required by this method), use * IndexToWorld. */ virtual void Map(const mitk::Point2D & atPt2d_mm, const mitk::Vector2D &vec2d_mm, mitk::Vector3D &vec3d_mm) const; /** * \brief Project a 3D vector given in mm (\a vec3d_mm) onto the 2D * geometry. The result is a 3D vector in mm (\a projectedVec3d_mm). * * DEPRECATED. Use Project(vector,vector) instead * * \return true projection was possible */ virtual bool Project(const mitk::Point3D & atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const; /** * \brief Project a 3D vector given in mm (\a vec3d_mm) onto the 2D * geometry. The result is a 3D vector in mm (\a projectedVec3d_mm). * * \return true projection was possible */ virtual bool Project( const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const; /** * \brief Distance of the point from the geometry * (bounding-box \em not considered) * */ inline ScalarType Distance(const Point3D& pt3d_mm) const { return fabs(SignedDistance(pt3d_mm)); } /** * \brief Set the geometrical frame of reference in which this PlaneGeometry * is placed. * * This would usually be the BaseGeometry of the underlying dataset, but * setting it is optional. */ void SetReferenceGeometry( mitk::BaseGeometry *geometry ); /** * \brief Get the geometrical frame of reference for this PlaneGeometry. */ BaseGeometry *GetReferenceGeometry() const; bool HasReferenceGeometry() const; protected: PlaneGeometry(); PlaneGeometry(const PlaneGeometry& other); virtual ~PlaneGeometry(); virtual void PrintSelf( std::ostream &os, itk::Indent indent ) const; - /** - * \brief factor to convert x-coordinates from mm to units and vice versa - * - */ - mutable mitk::ScalarType m_ScaleFactorMMPerUnitX; - - /** - * \brief factor to convert y-coordinates from mm to units and vice versa - * - */ - mutable mitk::ScalarType m_ScaleFactorMMPerUnitY; - mitk::BaseGeometry *m_ReferenceGeometry; //##Documentation //## @brief Pre- and Post-functions are empty in BaseGeometry //## //## These virtual functions allow for a different beahiour in subclasses. //## Do implement them in every subclass. If not needed, use {}. virtual void PostInitialize() {} virtual void PostInitializeGeometry(mitk::BaseGeometry::Self * /*newGeometry*/) const {} virtual void PreSetSpacing(const mitk::Vector3D& /*aSpacing*/) {} + virtual void PostSetExtentInMM(int /*direction*/, ScalarType /*extentInMM*/) {} + virtual void PostSetIndexToWorldTransform(mitk::AffineTransform3D* /*transform*/) {} + virtual void PreSetBounds(const BoundsArrayType& bounds); virtual void PreSetIndexToWorldTransform( AffineTransform3D * transform); - virtual void PostSetExtentInMM(int direction, ScalarType extentInMM); - virtual void PostSetIndexToWorldTransform(mitk::AffineTransform3D* transform); + private: /** * \brief Compares plane with another plane: \a true if IsOnPlane * (bounding-box \em not considered) */ virtual bool operator==( const PlaneGeometry * ) const { return false; }; /** * \brief Compares plane with another plane: \a false if IsOnPlane * (bounding-box \em not considered) */ virtual bool operator!=( const PlaneGeometry * ) const { return false; }; }; } // namespace mitk #endif /* PLANEGEOMETRY_H_HEADER_INCLUDED_C1C68A2C */ diff --git a/Modules/Core/src/DataManagement/mitkDisplayGeometry.cpp b/Modules/Core/src/DataManagement/mitkDisplayGeometry.cpp index 41fa7dc5ed..02c5844a35 100644 --- a/Modules/Core/src/DataManagement/mitkDisplayGeometry.cpp +++ b/Modules/Core/src/DataManagement/mitkDisplayGeometry.cpp @@ -1,623 +1,622 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkDisplayGeometry.h" itk::LightObject::Pointer mitk::DisplayGeometry::InternalClone() const { // itkExceptionMacro(<<"calling mitk::DisplayGeometry::Clone does not make much sense."); DisplayGeometry* returnValue = const_cast(this); return returnValue; } bool mitk::DisplayGeometry::IsValid() const { return m_WorldGeometry.IsNotNull() && m_WorldGeometry->IsValid(); } unsigned long mitk::DisplayGeometry::GetMTime() const { if((m_WorldGeometry.IsNotNull()) && (PlaneGeometry::GetMTime() < m_WorldGeometry->GetMTime())) { Modified(); } return PlaneGeometry::GetMTime(); } //const mitk::TimeBounds& mitk::DisplayGeometry::GetTimeBounds() const //{ // if(m_WorldGeometry.IsNull()) // { // return m_TimeBounds; // } // // return m_WorldGeometry->GetTimeBounds(); //} // size definition methods void mitk::DisplayGeometry::SetWorldGeometry(const PlaneGeometry* aWorldGeometry) { m_WorldGeometry = aWorldGeometry; Modified(); } bool mitk::DisplayGeometry::SetOriginInMM(const Vector2D& origin_mm) { m_OriginInMM = origin_mm; WorldToDisplay(m_OriginInMM, m_OriginInDisplayUnits); Modified(); return !this->RefitVisibleRect(); } mitk::Vector2D mitk::DisplayGeometry::GetOriginInMM() const { return m_OriginInMM; } mitk::Vector2D mitk::DisplayGeometry::GetOriginInDisplayUnits() const { return m_OriginInDisplayUnits; } void mitk::DisplayGeometry::SetSizeInDisplayUnits(unsigned int width, unsigned int height, bool keepDisplayedRegion) { Vector2D oldSizeInMM( m_SizeInMM ); Point2D oldCenterInMM; if(keepDisplayedRegion) { Point2D centerInDisplayUnits; centerInDisplayUnits[0] = m_SizeInDisplayUnits[0]*0.5; centerInDisplayUnits[1] = m_SizeInDisplayUnits[1]*0.5; DisplayToWorld(centerInDisplayUnits, oldCenterInMM); } m_SizeInDisplayUnits[0]=width; m_SizeInDisplayUnits[1]=height; if(m_SizeInDisplayUnits[0] <= 0) m_SizeInDisplayUnits[0] = 1; if(m_SizeInDisplayUnits[1] <= 0) m_SizeInDisplayUnits[1] = 1; DisplayToWorld(m_SizeInDisplayUnits, m_SizeInMM); if(keepDisplayedRegion) { Point2D positionOfOldCenterInCurrentDisplayUnits; WorldToDisplay(oldCenterInMM, positionOfOldCenterInCurrentDisplayUnits); Point2D currentNewCenterInDisplayUnits; currentNewCenterInDisplayUnits[0] = m_SizeInDisplayUnits[0]*0.5; currentNewCenterInDisplayUnits[1] = m_SizeInDisplayUnits[1]*0.5; Vector2D shift; shift=positionOfOldCenterInCurrentDisplayUnits-currentNewCenterInDisplayUnits; MoveBy(shift); Zoom(m_SizeInMM.GetNorm()/oldSizeInMM.GetNorm(), currentNewCenterInDisplayUnits); } Modified(); } mitk::Vector2D mitk::DisplayGeometry::GetSizeInDisplayUnits() const { return m_SizeInDisplayUnits; } mitk::Vector2D mitk::DisplayGeometry::GetSizeInMM() const { return m_SizeInMM; } unsigned int mitk::DisplayGeometry::GetDisplayWidth() const { assert(m_SizeInDisplayUnits[0] >= 0); return (unsigned int)m_SizeInDisplayUnits[0]; } unsigned int mitk::DisplayGeometry::GetDisplayHeight() const { assert(m_SizeInDisplayUnits[1] >= 0); return (unsigned int)m_SizeInDisplayUnits[1]; } // zooming, panning, restriction of both void mitk::DisplayGeometry::SetConstrainZoomingAndPanning(bool constrain) { m_ConstrainZoomingAndPanning = constrain; if (m_ConstrainZoomingAndPanning) { this->RefitVisibleRect(); } } bool mitk::DisplayGeometry::GetConstrainZommingAndPanning() const { return m_ConstrainZoomingAndPanning; } bool mitk::DisplayGeometry::SetScaleFactor(ScalarType mmPerDisplayUnit) { if(mmPerDisplayUnit<0.0001) { mmPerDisplayUnit=0.0001; } m_ScaleFactorMMPerDisplayUnit = mmPerDisplayUnit; assert(m_ScaleFactorMMPerDisplayUnit < itk::NumericTraits::infinity()); DisplayToWorld(m_SizeInDisplayUnits, m_SizeInMM); return !this->RefitVisibleRect(); } mitk::ScalarType mitk::DisplayGeometry::GetScaleFactorMMPerDisplayUnit() const { return m_ScaleFactorMMPerDisplayUnit; } // Zooms with a factor (1.0=identity) around the specified center in display units bool mitk::DisplayGeometry::Zoom(ScalarType factor, const Point2D& centerInDisplayUnits) { assert(factor > 0); if ( SetScaleFactor(m_ScaleFactorMMPerDisplayUnit/factor) ) { return SetOriginInMM(m_OriginInMM-centerInDisplayUnits.GetVectorFromOrigin()*(1-factor)*m_ScaleFactorMMPerDisplayUnit); } else { return false; } } // Zooms with a factor (1.0=identity) around the specified center, but tries (if its within view contraints) to match the center in display units with the center in world coordinates. bool mitk::DisplayGeometry::ZoomWithFixedWorldCoordinates(ScalarType factor, const Point2D& focusDisplayUnits, const Point2D& focusUnitsInMM ) { assert(factor > 0); if (factor != 1.0) { SetScaleFactor(m_ScaleFactorMMPerDisplayUnit/factor); SetOriginInMM(focusUnitsInMM.GetVectorFromOrigin()-focusDisplayUnits.GetVectorFromOrigin()*m_ScaleFactorMMPerDisplayUnit); } return true; } bool mitk::DisplayGeometry::MoveBy(const Vector2D& shiftInDisplayUnits) { SetOriginInMM(m_OriginInMM+shiftInDisplayUnits*m_ScaleFactorMMPerDisplayUnit); Modified(); return !this->RefitVisibleRect(); } void mitk::DisplayGeometry::Fit() { if((m_WorldGeometry.IsNull()) || (m_WorldGeometry->IsValid() == false)) return; /// \FIXME: try to remove all the casts int width=(int)m_SizeInDisplayUnits[0]; int height=(int)m_SizeInDisplayUnits[1]; ScalarType w = width; ScalarType h = height; const ScalarType& widthInMM = m_WorldGeometry->GetExtentInMM(0); const ScalarType& heightInMM = m_WorldGeometry->GetExtentInMM(1); ScalarType aspRatio=((ScalarType)widthInMM)/heightInMM; ScalarType x = (ScalarType)w/widthInMM; ScalarType y = (ScalarType)h/heightInMM; if (x > y) { w = (int) (aspRatio*h); } else { h = (int) (w/aspRatio); } if(w>0) { SetScaleFactor(widthInMM/w); } Vector2D origin_display; origin_display[0]=-(width-w)/2.0; origin_display[1]=-(height-h)/2.0; SetOriginInMM(origin_display*m_ScaleFactorMMPerDisplayUnit); this->RefitVisibleRect(); Modified(); } // conversion methods void mitk::DisplayGeometry::DisplayToWorld(const Point2D &pt_display, Point2D &pt_mm) const { //pt_display is in pixel units. It is scaled by the zooming factor and moved by the origin of the image (world geometry). pt_mm[0]=m_ScaleFactorMMPerDisplayUnit*pt_display[0]+m_OriginInMM[0]; pt_mm[1]=m_ScaleFactorMMPerDisplayUnit*pt_display[1]+m_OriginInMM[1]; - MITK_INFO <<"m_originInMM aus DisplayGeo: "<< m_OriginInMM; //the result is a 2D vector from the origin of the world geometry to the projection of the requested point onto the first slice. } void mitk::DisplayGeometry::WorldToDisplay(const Point2D &pt_mm, Point2D &pt_display) const { pt_display[0]=(pt_mm[0]-m_OriginInMM[0])*(1.0/m_ScaleFactorMMPerDisplayUnit); pt_display[1]=(pt_mm[1]-m_OriginInMM[1])*(1.0/m_ScaleFactorMMPerDisplayUnit); } void mitk::DisplayGeometry::DisplayToWorld(const Vector2D &vec_display, Vector2D &vec_mm) const { vec_mm=vec_display*m_ScaleFactorMMPerDisplayUnit; } void mitk::DisplayGeometry::WorldToDisplay(const Vector2D &vec_mm, Vector2D &vec_display) const { vec_display=vec_mm*(1.0/m_ScaleFactorMMPerDisplayUnit); } void mitk::DisplayGeometry::ULDisplayToMM(const Point2D &pt_ULdisplay, Point2D &pt_mm) const { ULDisplayToDisplay(pt_ULdisplay, pt_mm); DisplayToWorld(pt_mm, pt_mm); } void mitk::DisplayGeometry::MMToULDisplay(const Point2D &pt_mm, Point2D &pt_ULdisplay) const { WorldToDisplay(pt_mm, pt_ULdisplay); DisplayToULDisplay(pt_ULdisplay, pt_ULdisplay); } void mitk::DisplayGeometry::ULDisplayToMM(const Vector2D &vec_ULdisplay, Vector2D &vec_mm) const { ULDisplayToDisplay(vec_ULdisplay, vec_mm); DisplayToWorld(vec_mm, vec_mm); } void mitk::DisplayGeometry::MMToULDisplay(const Vector2D &vec_mm, Vector2D &vec_ULdisplay) const { WorldToDisplay(vec_mm, vec_ULdisplay); DisplayToULDisplay(vec_ULdisplay, vec_ULdisplay); } //TODO 18735 remove this functions... not needed... can be done directly. Or delete this class... void mitk::DisplayGeometry::ULDisplayToDisplay(const Point2D &pt_ULdisplay, Point2D &pt_display) const { pt_display[0]=pt_ULdisplay[0]; pt_display[1]=GetDisplayHeight()-pt_ULdisplay[1]; } //TODO 18735 remove this functions... not needed... can be done directly. Or delete this class... void mitk::DisplayGeometry::DisplayToULDisplay(const Point2D &pt_display, Point2D &pt_ULdisplay) const { ULDisplayToDisplay(pt_display, pt_ULdisplay); } void mitk::DisplayGeometry::ULDisplayToDisplay(const Vector2D &vec_ULdisplay, Vector2D &vec_display) const { vec_display[0]= vec_ULdisplay[0]; vec_display[1]=-vec_ULdisplay[1]; } void mitk::DisplayGeometry::DisplayToULDisplay(const Vector2D &vec_display, Vector2D &vec_ULdisplay) const { ULDisplayToDisplay(vec_display, vec_ULdisplay); } bool mitk::DisplayGeometry::Project(const Point3D &pt3d_mm, Point3D &projectedPt3d_mm) const { if(m_WorldGeometry.IsNotNull()) { return m_WorldGeometry->Project(pt3d_mm, projectedPt3d_mm); } else { return false; } } bool mitk::DisplayGeometry::Project(const Point3D & atPt3d_mm, const Vector3D &vec3d_mm, Vector3D &projectedVec3d_mm) const { if(m_WorldGeometry.IsNotNull()) { return m_WorldGeometry->Project(atPt3d_mm, vec3d_mm, projectedVec3d_mm); } else { return false; } } bool mitk::DisplayGeometry::Project(const Vector3D &vec3d_mm, Vector3D &projectedVec3d_mm) const { if(m_WorldGeometry.IsNotNull()) { return m_WorldGeometry->Project(vec3d_mm, projectedVec3d_mm); } else { return false; } } bool mitk::DisplayGeometry::Map(const Point3D &pt3d_mm, Point2D &pt2d_mm) const { if(m_WorldGeometry.IsNotNull()) { return m_WorldGeometry->Map(pt3d_mm, pt2d_mm); } else { return false; } } void mitk::DisplayGeometry::Map(const Point2D &pt2d_mm, Point3D &pt3d_mm) const { if(m_WorldGeometry.IsNull()) return; m_WorldGeometry->Map(pt2d_mm, pt3d_mm); } bool mitk::DisplayGeometry::Map(const Point3D & atPt3d_mm, const Vector3D &vec3d_mm, Vector2D &vec2d_mm) const { if(m_WorldGeometry.IsNotNull()) { return m_WorldGeometry->Map(atPt3d_mm, vec3d_mm, vec2d_mm); } else { return false; } } void mitk::DisplayGeometry::Map(const Point2D & atPt2d_mm, const Vector2D &vec2d_mm, Vector3D &vec3d_mm) const { if(m_WorldGeometry.IsNull()) return; m_WorldGeometry->Map(atPt2d_mm, vec2d_mm, vec3d_mm); } // protected methods mitk::DisplayGeometry::DisplayGeometry() : PlaneGeometry() ,m_ScaleFactorMMPerDisplayUnit(1.0) ,m_WorldGeometry(NULL) ,m_ConstrainZoomingAndPanning(true) ,m_MaxWorldViewPercentage(1.0) ,m_MinWorldViewPercentage(0.1) { m_OriginInMM.Fill(0.0); m_OriginInDisplayUnits.Fill(0.0); m_SizeInMM.Fill(1.0); m_SizeInDisplayUnits.Fill(10.0); } mitk::DisplayGeometry::~DisplayGeometry() { } bool mitk::DisplayGeometry::RefitVisibleRect() { // do nothing if not asked to if (!m_ConstrainZoomingAndPanning) return false; // don't allow recursion (need to be fixed, singleton) static bool inRecalculate = false; if (inRecalculate) return false; inRecalculate = true; // rename some basic measures of the current viewport and world geometry (MM = milimeters Px = Pixels = display units) float displayXMM = m_OriginInMM[0]; float displayYMM = m_OriginInMM[1]; float displayWidthPx = m_SizeInDisplayUnits[0]; float displayHeightPx = m_SizeInDisplayUnits[1]; float displayWidthMM = m_SizeInDisplayUnits[0] * m_ScaleFactorMMPerDisplayUnit; float displayHeightMM = m_SizeInDisplayUnits[1] * m_ScaleFactorMMPerDisplayUnit; float worldWidthMM = m_WorldGeometry->GetExtentInMM(0); float worldHeightMM = m_WorldGeometry->GetExtentInMM(1); // reserve variables for the correction logic to save a corrected origin and zoom factor Vector2D newOrigin = m_OriginInMM; bool correctPanning = false; float newScaleFactor = m_ScaleFactorMMPerDisplayUnit; bool correctZooming = false; // start of the correction logic // zoom to big means: // at a given percentage of the world's width/height should be visible. Otherwise // the whole screen could show only one pixel // // zoom to small means: // zooming out should be limited at the point where the smaller of the world's sides is completely visible bool zoomXtooSmall = displayWidthPx * m_ScaleFactorMMPerDisplayUnit > m_MaxWorldViewPercentage * worldWidthMM; bool zoomXtooBig = displayWidthPx * m_ScaleFactorMMPerDisplayUnit < m_MinWorldViewPercentage * worldWidthMM; bool zoomYtooSmall = displayHeightPx * m_ScaleFactorMMPerDisplayUnit > m_MaxWorldViewPercentage * worldHeightMM; bool zoomYtooBig = displayHeightPx * m_ScaleFactorMMPerDisplayUnit < m_MinWorldViewPercentage * worldHeightMM; // constrain zooming in both direction if ( zoomXtooBig && zoomYtooBig) { double fx = worldWidthMM * m_MinWorldViewPercentage / displayWidthPx; double fy = worldHeightMM * m_MinWorldViewPercentage / displayHeightPx; newScaleFactor = fx < fy ? fx : fy; correctZooming = true; } // constrain zooming in x direction else if ( zoomXtooBig ) { newScaleFactor = worldWidthMM * m_MinWorldViewPercentage / displayWidthPx; correctZooming = true; } // constrain zooming in y direction else if ( zoomYtooBig ) { newScaleFactor = worldHeightMM * m_MinWorldViewPercentage / displayHeightPx; correctZooming = true; } // constrain zooming out // we stop zooming out at these situations: // // *** display // --- image // // ********************** // * * x side maxed out // * * // *--------------------* // *| |* // *| |* // *--------------------* // * * // * * // * * // ********************** // // ********************** // * |------| * y side maxed out // * | | * // * | | * // * | | * // * | | * // * | | * // * | | * // * | | * // * |------| * // ********************** // // In both situations we center the not-maxed out direction // if ( zoomXtooSmall && zoomYtooSmall ) { // determine and set the bigger scale factor float fx = worldWidthMM * m_MaxWorldViewPercentage / displayWidthPx; float fy = worldHeightMM * m_MaxWorldViewPercentage / displayHeightPx; newScaleFactor = fx > fy ? fx : fy; correctZooming = true; } // actually execute correction if (correctZooming) { SetScaleFactor(newScaleFactor); } displayWidthMM = m_SizeInDisplayUnits[0] * m_ScaleFactorMMPerDisplayUnit; displayHeightMM = m_SizeInDisplayUnits[1] * m_ScaleFactorMMPerDisplayUnit; // constrain panning if(worldWidthMM center x newOrigin[0] = (worldWidthMM - displayWidthMM) / 2.0; correctPanning = true; } else { // make sure left display border inside our world if (displayXMM < 0) { newOrigin[0] = 0; correctPanning = true; } // make sure right display border inside our world else if (displayXMM + displayWidthMM > worldWidthMM) { newOrigin[0] = worldWidthMM - displayWidthMM; correctPanning = true; } } if (worldHeightMM center y newOrigin[1] = (worldHeightMM - displayHeightMM) / 2.0; correctPanning = true; } else { // make sure top display border inside our world if (displayYMM + displayHeightMM > worldHeightMM) { newOrigin[1] = worldHeightMM - displayHeightMM; correctPanning = true; } // make sure bottom display border inside our world else if (displayYMM < 0) { newOrigin[1] = 0; correctPanning = true; } } if (correctPanning) { SetOriginInMM( newOrigin ); } inRecalculate = false; if ( correctPanning || correctZooming ) { Modified(); } // return true if any correction has been made return correctPanning || correctZooming; } void mitk::DisplayGeometry::PrintSelf(std::ostream& os, itk::Indent indent) const { if(m_WorldGeometry.IsNull()) { os << indent << " WorldGeometry: " << "NULL" << std::endl; } else { m_WorldGeometry->Print(os, indent); os << indent << " OriginInMM: " << m_OriginInMM << std::endl; os << indent << " OriginInDisplayUnits: " << m_OriginInDisplayUnits << std::endl; os << indent << " SizeInMM: " << m_SizeInMM << std::endl; os << indent << " SizeInDisplayUnits: " << m_SizeInDisplayUnits << std::endl; os << indent << " ScaleFactorMMPerDisplayUni: " << m_ScaleFactorMMPerDisplayUnit << std::endl; } Superclass::PrintSelf(os,indent); } diff --git a/Modules/Core/src/DataManagement/mitkPlaneGeometry.cpp b/Modules/Core/src/DataManagement/mitkPlaneGeometry.cpp index e8707a8257..cfcea89df2 100644 --- a/Modules/Core/src/DataManagement/mitkPlaneGeometry.cpp +++ b/Modules/Core/src/DataManagement/mitkPlaneGeometry.cpp @@ -1,922 +1,900 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlaneGeometry.h" #include "mitkPlaneOperation.h" #include "mitkInteractionConst.h" #include "mitkLine.h" #include #include namespace mitk { PlaneGeometry::PlaneGeometry() - : Superclass(), m_ScaleFactorMMPerUnitX( 1.0 ), - m_ScaleFactorMMPerUnitY( 1.0 ), + : Superclass(), m_ReferenceGeometry( NULL ) { Initialize(); } PlaneGeometry::~PlaneGeometry() { } PlaneGeometry::PlaneGeometry(const PlaneGeometry& other) - : Superclass(other), m_ScaleFactorMMPerUnitX( other.m_ScaleFactorMMPerUnitX), - m_ScaleFactorMMPerUnitY( other.m_ScaleFactorMMPerUnitY), + : Superclass(other), m_ReferenceGeometry( other.m_ReferenceGeometry ) { } void PlaneGeometry::EnsurePerpendicularNormal(mitk::AffineTransform3D *transform) { //ensure row(2) of transform to be perpendicular to plane, keep length. VnlVector normal = vnl_cross_3d( transform->GetMatrix().GetVnlMatrix().get_column(0), transform->GetMatrix().GetVnlMatrix().get_column(1) ); normal.normalize(); ScalarType len = transform->GetMatrix() .GetVnlMatrix().get_column(2).two_norm(); if (len==0) len = 1; normal*=len; Matrix3D matrix = transform->GetMatrix(); matrix.GetVnlMatrix().set_column(2, normal); transform->SetMatrix(matrix); } void PlaneGeometry::PreSetIndexToWorldTransform(mitk::AffineTransform3D *transform) { EnsurePerpendicularNormal(transform); } void PlaneGeometry::PreSetBounds(const BoundingBox::BoundsArrayType &bounds) { // error: unused parameter 'bounds' // this happens in release mode, where the assert macro is defined empty // hence we "use" the parameter: (void)bounds; //currently the unit rectangle must be starting at the origin [0,0] assert(bounds[0]==0); assert(bounds[2]==0); //the unit rectangle must be two-dimensional assert(bounds[1]>0); assert(bounds[3]>0); } void PlaneGeometry::IndexToWorld( const Point2D &pt_units, Point2D &pt_mm ) const { - pt_mm[0]=m_ScaleFactorMMPerUnitX*pt_units[0]; - pt_mm[1]=m_ScaleFactorMMPerUnitY*pt_units[1]; + pt_mm[0] = GetExtentInMM(0) / GetExtent(0)*pt_units[0]; + pt_mm[1] = GetExtentInMM(1) / GetExtent(1)*pt_units[1]; } void PlaneGeometry::WorldToIndex( const Point2D &pt_mm, Point2D &pt_units ) const { - pt_units[0]=pt_mm[0]*(1.0/m_ScaleFactorMMPerUnitX); - pt_units[1]=pt_mm[1]*(1.0/m_ScaleFactorMMPerUnitY); + pt_units[0] = pt_mm[0] * (1.0 / (GetExtentInMM(0) / GetExtent(0))); + pt_units[1] = pt_mm[1] * (1.0 / (GetExtentInMM(1) / GetExtent(1))); } void PlaneGeometry::IndexToWorld( const Point2D & /*atPt2d_units*/, const Vector2D &vec_units, Vector2D &vec_mm) const { MITK_WARN<<"Warning! Call of the deprecated function PlaneGeometry::IndexToWorld(point, vec, vec). Use PlaneGeometry::IndexToWorld(vec, vec) instead!"; this->IndexToWorld(vec_units, vec_mm); } void PlaneGeometry::IndexToWorld(const Vector2D &vec_units, Vector2D &vec_mm) const { - vec_mm[0] = m_ScaleFactorMMPerUnitX * vec_units[0]; - vec_mm[1] = m_ScaleFactorMMPerUnitY * vec_units[1]; + vec_mm[0] = (GetExtentInMM(0) / GetExtent(0)) * vec_units[0]; + vec_mm[1] = (GetExtentInMM(1) / GetExtent(1)) * vec_units[1]; } void PlaneGeometry::WorldToIndex( const Point2D & /*atPt2d_mm*/, const Vector2D &vec_mm, Vector2D &vec_units) const { MITK_WARN<<"Warning! Call of the deprecated function PlaneGeometry::WorldToIndex(point, vec, vec). Use PlaneGeometry::WorldToIndex(vec, vec) instead!"; this->WorldToIndex(vec_mm, vec_units); } void PlaneGeometry::WorldToIndex( const Vector2D &vec_mm, Vector2D &vec_units) const { - vec_units[0] = vec_mm[0] * ( 1.0 / m_ScaleFactorMMPerUnitX ); - vec_units[1] = vec_mm[1] * ( 1.0 / m_ScaleFactorMMPerUnitY ); + vec_units[0] = vec_mm[0] * (1.0 / (GetExtentInMM(0) / GetExtent(0))); + vec_units[1] = vec_mm[1] * (1.0 / (GetExtentInMM(1) / GetExtent(1))); } void PlaneGeometry::InitializeStandardPlane( mitk::ScalarType width, ScalarType height, const Vector3D & spacing, PlaneGeometry::PlaneOrientation planeorientation, ScalarType zPosition, bool frontside, bool rotated ) { AffineTransform3D::Pointer transform; transform = AffineTransform3D::New(); AffineTransform3D::MatrixType matrix; AffineTransform3D::MatrixType::InternalMatrixType &vnlmatrix = matrix.GetVnlMatrix(); vnlmatrix.set_identity(); vnlmatrix(0,0) = spacing[0]; vnlmatrix(1,1) = spacing[1]; vnlmatrix(2,2) = spacing[2]; transform->SetIdentity(); transform->SetMatrix(matrix); InitializeStandardPlane(width, height, transform.GetPointer(), planeorientation, zPosition, frontside, rotated); } void PlaneGeometry::InitializeStandardPlane( mitk::ScalarType width, ScalarType height, const AffineTransform3D* transform, PlaneGeometry::PlaneOrientation planeorientation, ScalarType zPosition, bool frontside, bool rotated ) { Superclass::Initialize(); //construct standard view Point3D origin; VnlVector rightDV(3), bottomDV(3); origin.Fill(0); int normalDirection; switch(planeorientation) { case Axial: if(frontside) { if(rotated==false) { FillVector3D(origin, 0, 0, zPosition); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, 1, 0); } else { FillVector3D(origin, width, height, zPosition); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, -1, 0); } } else { if(rotated==false) { FillVector3D(origin, width, 0, zPosition); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, 1, 0); } else { FillVector3D(origin, 0, height, zPosition); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, -1, 0); } } normalDirection = 2; break; case Frontal: if(frontside) { if(rotated==false) { FillVector3D(origin, 0, zPosition, 0); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, 0, 1); } else { FillVector3D(origin, width, zPosition, height); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, 0, -1); } } else { if(rotated==false) { FillVector3D(origin, width, zPosition, 0); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, 0, 1); } else { FillVector3D(origin, 0, zPosition, height); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, 0, -1); } } normalDirection = 1; break; case Sagittal: if(frontside) { if(rotated==false) { FillVector3D(origin, zPosition, 0, 0); FillVector3D(rightDV, 0, 1, 0); FillVector3D(bottomDV, 0, 0, 1); } else { FillVector3D(origin, zPosition, width, height); FillVector3D(rightDV, 0, -1, 0); FillVector3D(bottomDV, 0, 0, -1); } } else { if(rotated==false) { FillVector3D(origin, zPosition, width, 0); FillVector3D(rightDV, 0, -1, 0); FillVector3D(bottomDV, 0, 0, 1); } else { FillVector3D(origin, zPosition, 0, height); FillVector3D(rightDV, 0, 1, 0); FillVector3D(bottomDV, 0, 0, -1); } } normalDirection = 0; break; default: itkExceptionMacro("unknown PlaneOrientation"); } if ( transform != NULL ) { origin = transform->TransformPoint( origin ); rightDV = transform->TransformVector( rightDV ); bottomDV = transform->TransformVector( bottomDV ); } ScalarType bounds[6]= { 0, width, 0, height, 0, 1 }; this->SetBounds( bounds ); if ( transform == NULL ) { this->SetMatrixByVectors( rightDV, bottomDV ); } else { this->SetMatrixByVectors( rightDV, bottomDV, transform->GetMatrix().GetVnlMatrix() .get_column(normalDirection).magnitude() ); } this->SetOrigin(origin); } void PlaneGeometry::InitializeStandardPlane( const BaseGeometry *geometry3D, PlaneOrientation planeorientation, ScalarType zPosition, bool frontside, bool rotated ) { this->SetReferenceGeometry( const_cast< BaseGeometry * >( geometry3D ) ); ScalarType width, height; const BoundingBox::BoundsArrayType& boundsarray = geometry3D->GetBoundingBox()->GetBounds(); Vector3D originVector; FillVector3D(originVector, boundsarray[0], boundsarray[2], boundsarray[4]); if(geometry3D->GetImageGeometry()) { FillVector3D( originVector, originVector[0] - 0.5, originVector[1] - 0.5, originVector[2] - 0.5 ); } switch(planeorientation) { case Axial: width = geometry3D->GetExtent(0); height = geometry3D->GetExtent(1); break; case Frontal: width = geometry3D->GetExtent(0); height = geometry3D->GetExtent(2); break; case Sagittal: width = geometry3D->GetExtent(1); height = geometry3D->GetExtent(2); break; default: itkExceptionMacro("unknown PlaneOrientation"); } InitializeStandardPlane( width, height, geometry3D->GetIndexToWorldTransform(), planeorientation, zPosition, frontside, rotated ); ScalarType bounds[6]= { 0, width, 0, height, 0, 1 }; this->SetBounds( bounds ); Point3D origin; originVector = geometry3D->GetIndexToWorldTransform() ->TransformVector( originVector ); origin = GetOrigin() + originVector; SetOrigin(origin); } void PlaneGeometry::InitializeStandardPlane( const BaseGeometry *geometry3D, bool top, PlaneOrientation planeorientation, bool frontside, bool rotated ) { ScalarType zPosition; switch(planeorientation) { case Axial: zPosition = (top ? 0.5 : geometry3D->GetExtent(2)-1+0.5); break; case Frontal: zPosition = (top ? 0.5 : geometry3D->GetExtent(1)-1+0.5); break; case Sagittal: zPosition = (top ? 0.5 : geometry3D->GetExtent(0)-1+0.5); break; default: itkExceptionMacro("unknown PlaneOrientation"); } InitializeStandardPlane( geometry3D, planeorientation, zPosition, frontside, rotated ); } void PlaneGeometry::InitializeStandardPlane( const Vector3D &rightVector, const Vector3D &downVector, const Vector3D *spacing ) { InitializeStandardPlane( rightVector.GetVnlVector(), downVector.GetVnlVector(), spacing ); } void PlaneGeometry::InitializeStandardPlane( const VnlVector& rightVector, const VnlVector &downVector, const Vector3D *spacing ) { ScalarType width = rightVector.magnitude(); ScalarType height = downVector.magnitude(); InitializeStandardPlane( width, height, rightVector, downVector, spacing ); } void PlaneGeometry::InitializeStandardPlane( mitk::ScalarType width, ScalarType height, const Vector3D &rightVector, const Vector3D &downVector, const Vector3D *spacing ) { InitializeStandardPlane( width, height, rightVector.GetVnlVector(), downVector.GetVnlVector(), spacing ); } void PlaneGeometry::InitializeStandardPlane( mitk::ScalarType width, ScalarType height, const VnlVector &rightVector, const VnlVector &downVector, const Vector3D *spacing ) { assert(width > 0); assert(height > 0); VnlVector rightDV = rightVector; rightDV.normalize(); VnlVector downDV = downVector; downDV.normalize(); VnlVector normal = vnl_cross_3d(rightVector, downVector); normal.normalize(); if(spacing!=NULL) { rightDV *= (*spacing)[0]; downDV *= (*spacing)[1]; normal *= (*spacing)[2]; } AffineTransform3D::Pointer transform = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, rightDV); matrix.GetVnlMatrix().set_column(1, downDV); matrix.GetVnlMatrix().set_column(2, normal); transform->SetMatrix(matrix); transform->SetOffset(this->GetIndexToWorldTransform()->GetOffset()); ScalarType bounds[6] = { 0, width, 0, height, 0, 1 }; this->SetBounds( bounds ); this->SetIndexToWorldTransform( transform ); } void PlaneGeometry::InitializePlane( const Point3D &origin, const Vector3D &normal ) { VnlVector rightVectorVnl(3), downVectorVnl; if( Equal( normal[1], 0.0f ) == false ) { FillVector3D( rightVectorVnl, 1.0f, -normal[0]/normal[1], 0.0f ); rightVectorVnl.normalize(); } else { FillVector3D( rightVectorVnl, 0.0f, 1.0f, 0.0f ); } downVectorVnl = vnl_cross_3d( normal.GetVnlVector(), rightVectorVnl ); downVectorVnl.normalize(); InitializeStandardPlane( rightVectorVnl, downVectorVnl ); SetOrigin(origin); } void PlaneGeometry::SetMatrixByVectors( const VnlVector &rightVector, const VnlVector &downVector, ScalarType thickness ) { VnlVector normal = vnl_cross_3d(rightVector, downVector); normal.normalize(); normal *= thickness; AffineTransform3D::Pointer transform = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, rightVector); matrix.GetVnlMatrix().set_column(1, downVector); matrix.GetVnlMatrix().set_column(2, normal); transform->SetMatrix(matrix); transform->SetOffset(this->GetIndexToWorldTransform()->GetOffset()); SetIndexToWorldTransform(transform); } Vector3D PlaneGeometry::GetNormal() const { Vector3D frontToBack; frontToBack.SetVnlVector( this->GetIndexToWorldTransform() ->GetMatrix().GetVnlMatrix().get_column(2) ); return frontToBack; } VnlVector PlaneGeometry::GetNormalVnl() const { return this->GetIndexToWorldTransform() ->GetMatrix().GetVnlMatrix().get_column(2); } ScalarType PlaneGeometry::DistanceFromPlane( const Point3D &pt3d_mm ) const { return fabs(SignedDistance( pt3d_mm )); } ScalarType PlaneGeometry::SignedDistance( const Point3D &pt3d_mm ) const { return SignedDistanceFromPlane(pt3d_mm); } //Function from Geometry2D // mitk::ScalarType // PlaneGeometry::SignedDistance(const mitk::Point3D& pt3d_mm) const //{ // Point3D projectedPoint; // Project(pt3d_mm, projectedPoint); // Vector3D direction = pt3d_mm-projectedPoint; // ScalarType distance = direction.GetNorm(); // if(IsAbove(pt3d_mm) == false) // distance*=-1.0; // return distance; //} bool PlaneGeometry::IsAbove( const Point3D &pt3d_mm , bool considerBoundingBox) const { if(considerBoundingBox) { Point3D pt3d_units; BaseGeometry::WorldToIndex(pt3d_mm, pt3d_units); return (pt3d_units[2] > this->GetBoundingBox()->GetBounds()[4]); } else return SignedDistanceFromPlane(pt3d_mm) > 0; } bool PlaneGeometry::IntersectionLine( const PlaneGeometry* plane, Line3D& crossline ) const { Vector3D normal = this->GetNormal(); normal.Normalize(); Vector3D planeNormal = plane->GetNormal(); planeNormal.Normalize(); Vector3D direction = itk::CrossProduct( normal, planeNormal ); if ( direction.GetSquaredNorm() < eps ) return false; crossline.SetDirection( direction ); double N1dN2 = normal * planeNormal; double determinant = 1.0 - N1dN2 * N1dN2; Vector3D origin = this->GetOrigin().GetVectorFromOrigin(); Vector3D planeOrigin = plane->GetOrigin().GetVectorFromOrigin(); double d1 = normal * origin; double d2 = planeNormal * planeOrigin; double c1 = ( d1 - d2 * N1dN2 ) / determinant; double c2 = ( d2 - d1 * N1dN2 ) / determinant; Vector3D p = normal * c1 + planeNormal * c2; crossline.GetPoint().GetVnlVector() = p.GetVnlVector(); return true; } unsigned int PlaneGeometry::IntersectWithPlane2D( const PlaneGeometry* plane, Point2D& lineFrom, Point2D &lineTo ) const { Line3D crossline; if ( this->IntersectionLine( plane, crossline ) == false ) return 0; Point2D point2; Vector2D direction2; this->Map( crossline.GetPoint(), point2 ); this->Map( crossline.GetPoint(), crossline.GetDirection(), direction2 ); return Line3D::RectangleLineIntersection( 0, 0, GetExtentInMM(0), GetExtentInMM(1), point2, direction2, lineFrom, lineTo ); } double PlaneGeometry::Angle( const PlaneGeometry *plane ) const { return angle(plane->GetMatrixColumn(2), GetMatrixColumn(2)); } double PlaneGeometry::Angle( const Line3D &line ) const { return vnl_math::pi_over_2 - angle( line.GetDirection().GetVnlVector(), GetMatrixColumn(2) ); } bool PlaneGeometry::IntersectionPoint( const Line3D &line, Point3D &intersectionPoint ) const { Vector3D planeNormal = this->GetNormal(); planeNormal.Normalize(); Vector3D lineDirection = line.GetDirection(); lineDirection.Normalize(); double t = planeNormal * lineDirection; if ( fabs( t ) < eps ) { return false; } Vector3D diff; diff = this->GetOrigin() - line.GetPoint(); t = ( planeNormal * diff ) / t; intersectionPoint = line.GetPoint() + lineDirection * t; return true; } bool PlaneGeometry::IntersectionPointParam( const Line3D &line, double &t ) const { Vector3D planeNormal = this->GetNormal(); Vector3D lineDirection = line.GetDirection(); t = planeNormal * lineDirection; if ( fabs( t ) < eps ) { return false; } Vector3D diff; diff = this->GetOrigin() - line.GetPoint(); t = ( planeNormal * diff ) / t; return true; } bool PlaneGeometry::IsParallel( const PlaneGeometry *plane ) const { return ( (Angle(plane) < 10.0 * mitk::sqrteps ) || ( Angle(plane) > ( vnl_math::pi - 10.0 * sqrteps ) ) ) ; } bool PlaneGeometry::IsOnPlane( const Point3D &point ) const { return Distance(point) < eps; } bool PlaneGeometry::IsOnPlane( const Line3D &line ) const { return ( (Distance( line.GetPoint() ) < eps) && (Distance( line.GetPoint2() ) < eps) ); } bool PlaneGeometry::IsOnPlane( const PlaneGeometry *plane ) const { return ( IsParallel( plane ) && (Distance( plane->GetOrigin() ) < eps) ); } Point3D PlaneGeometry::ProjectPointOntoPlane( const Point3D& pt ) const { ScalarType len = this->GetNormalVnl().two_norm(); return pt - this->GetNormal() * this->SignedDistanceFromPlane( pt ) / len; } itk::LightObject::Pointer PlaneGeometry::InternalClone() const { Self::Pointer newGeometry = new PlaneGeometry(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } void PlaneGeometry::ExecuteOperation( Operation *operation ) { vtkTransform *transform = vtkTransform::New(); transform->SetMatrix( this->GetVtkMatrix()); switch ( operation->GetOperationType() ) { case OpORIENT: { mitk::PlaneOperation *planeOp = dynamic_cast< mitk::PlaneOperation * >( operation ); if ( planeOp == NULL ) { return; } Point3D center = planeOp->GetPoint(); Vector3D orientationVector = planeOp->GetNormal(); Vector3D defaultVector; FillVector3D( defaultVector, 0.0, 0.0, 1.0 ); Vector3D rotationAxis = itk::CrossProduct( orientationVector, defaultVector ); //double rotationAngle = acos( orientationVector[2] / orientationVector.GetNorm() ); double rotationAngle = atan2( (double) rotationAxis.GetNorm(), (double) (orientationVector * defaultVector) ); rotationAngle *= 180.0 / vnl_math::pi; transform->PostMultiply(); transform->Identity(); transform->Translate( center[0], center[1], center[2] ); transform->RotateWXYZ( rotationAngle, rotationAxis[0], rotationAxis[1], rotationAxis[2] ); transform->Translate( -center[0], -center[1], -center[2] ); break; } case OpRESTOREPLANEPOSITION: { RestorePlanePositionOperation *op = dynamic_cast< mitk::RestorePlanePositionOperation* >(operation); if(op == NULL) { return; } AffineTransform3D::Pointer transform2 = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, op->GetTransform()->GetMatrix().GetVnlMatrix().get_column(0)); matrix.GetVnlMatrix().set_column(1, op->GetTransform()->GetMatrix().GetVnlMatrix().get_column(1)); matrix.GetVnlMatrix().set_column(2, op->GetTransform()->GetMatrix().GetVnlMatrix().get_column(2)); transform2->SetMatrix(matrix); Vector3D offset = op->GetTransform()->GetOffset(); transform2->SetOffset(offset); this->SetIndexToWorldTransform(transform2); ScalarType bounds[6] = {0, op->GetWidth(), 0, op->GetHeight(), 0 ,1 }; this->SetBounds(bounds); this->Modified(); transform->Delete(); return; } default: Superclass::ExecuteOperation( operation ); transform->Delete(); return; } this->SetVtkMatrixDeepCopy(transform); this->Modified(); transform->Delete(); } void PlaneGeometry::PrintSelf( std::ostream& os, itk::Indent indent ) const { Superclass::PrintSelf(os,indent); os << indent << " ScaleFactorMMPerUnitX: " - << m_ScaleFactorMMPerUnitX << std::endl; + << GetExtentInMM(0) / GetExtent(0) << std::endl; os << indent << " ScaleFactorMMPerUnitY: " - << m_ScaleFactorMMPerUnitY << std::endl; + << GetExtentInMM(1) / GetExtent(1) << std::endl; os << indent << " Normal: " << GetNormal() << std::endl; } - void PlaneGeometry::PostSetIndexToWorldTransform( - mitk::AffineTransform3D* /*transform*/) - { - m_ScaleFactorMMPerUnitX=GetExtentInMM(0)/GetExtent(0); - m_ScaleFactorMMPerUnitY=GetExtentInMM(1)/GetExtent(1); - - assert(m_ScaleFactorMMPerUnitX::infinity()); - assert(m_ScaleFactorMMPerUnitY::infinity()); - } - - void PlaneGeometry::PostSetExtentInMM(int /*direction*/, ScalarType /*extentInMM*/) - { - m_ScaleFactorMMPerUnitX=GetExtentInMM(0)/GetExtent(0); - m_ScaleFactorMMPerUnitY=GetExtentInMM(1)/GetExtent(1); - - assert(m_ScaleFactorMMPerUnitX::infinity()); - assert(m_ScaleFactorMMPerUnitY::infinity()); - } bool PlaneGeometry::Map(const mitk::Point3D &pt3d_mm, mitk::Point2D &pt2d_mm) const { assert(this->IsBoundingBoxNull()==false); Point3D pt3d_units; BackTransform(pt3d_mm, pt3d_units); - pt2d_mm[0]=pt3d_units[0]*m_ScaleFactorMMPerUnitX; - pt2d_mm[1]=pt3d_units[1]*m_ScaleFactorMMPerUnitY; + pt2d_mm[0] = pt3d_units[0] * GetExtentInMM(0) / GetExtent(0); + pt2d_mm[1] = pt3d_units[1] * GetExtentInMM(1) / GetExtent(1); pt3d_units[2]=0; return const_cast(this->GetBoundingBox())->IsInside(pt3d_units); } void PlaneGeometry::Map(const mitk::Point2D &pt2d_mm, mitk::Point3D &pt3d_mm) const { //pt2d_mm is measured from the origin of the world geometry (at leats it called form BaseRendere::Mouse...Event) Point3D pt3d_units; - pt3d_units[0]=pt2d_mm[0]/m_ScaleFactorMMPerUnitX; - pt3d_units[1]=pt2d_mm[1]/m_ScaleFactorMMPerUnitY; + pt3d_units[0] = pt2d_mm[0] / (GetExtentInMM(0) / GetExtent(0)); + pt3d_units[1] = pt2d_mm[1] / (GetExtentInMM(1) / GetExtent(1)); pt3d_units[2]=0; //pt3d_units is a continuos index. We divided it with the Scale Factor (= spacing in x and y) to convert it from mm to index units. // pt3d_mm = GetIndexToWorldTransform()->TransformPoint(pt3d_units); - MITK_INFO << "ITWT der PlaneGeometry: "; - GetIndexToWorldTransform()->Print(std::cout); //now we convert the 3d index to a 3D world point in mm. We could have used IndexToWorld as well as GetITW->Transform... } void PlaneGeometry::SetSizeInUnits(mitk::ScalarType width, mitk::ScalarType height) { ScalarType bounds[6]={0, width, 0, height, 0, 1}; ScalarType extent, newextentInMM; if(GetExtent(0)>0) { extent = GetExtent(0); if(width>extent) newextentInMM = GetExtentInMM(0)/width*extent; else newextentInMM = GetExtentInMM(0)*extent/width; SetExtentInMM(0, newextentInMM); } if(GetExtent(1)>0) { extent = GetExtent(1); if(width>extent) newextentInMM = GetExtentInMM(1)/height*extent; else newextentInMM = GetExtentInMM(1)*extent/height; SetExtentInMM(1, newextentInMM); } SetBounds(bounds); } bool PlaneGeometry::Project( const mitk::Point3D &pt3d_mm, mitk::Point3D &projectedPt3d_mm) const { assert(this->IsBoundingBoxNull()==false); Point3D pt3d_units; BackTransform(pt3d_mm, pt3d_units); pt3d_units[2] = 0; projectedPt3d_mm = GetIndexToWorldTransform()->TransformPoint(pt3d_units); return const_cast(this->GetBoundingBox())->IsInside(pt3d_units); } bool PlaneGeometry::Project(const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const { assert(this->IsBoundingBoxNull()==false); Vector3D vec3d_units; BackTransform(vec3d_mm, vec3d_units); vec3d_units[2] = 0; projectedVec3d_mm = GetIndexToWorldTransform()->TransformVector(vec3d_units); return true; } bool PlaneGeometry::Project(const mitk::Point3D & atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const { MITK_WARN << "Deprecated function! Call Project(vec3D,vec3D) instead."; assert(this->IsBoundingBoxNull()==false); Vector3D vec3d_units; BackTransform(atPt3d_mm, vec3d_mm, vec3d_units); vec3d_units[2] = 0; projectedVec3d_mm = GetIndexToWorldTransform()->TransformVector(vec3d_units); Point3D pt3d_units; BackTransform(atPt3d_mm, pt3d_units); return const_cast(this->GetBoundingBox())->IsInside(pt3d_units); } bool PlaneGeometry::Map(const mitk::Point3D & atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector2D &vec2d_mm) const { Point2D pt2d_mm_start, pt2d_mm_end; Point3D pt3d_mm_end; bool inside=Map(atPt3d_mm, pt2d_mm_start); pt3d_mm_end = atPt3d_mm+vec3d_mm; inside&=Map(pt3d_mm_end, pt2d_mm_end); vec2d_mm=pt2d_mm_end-pt2d_mm_start; return inside; } void PlaneGeometry::Map(const mitk::Point2D &/*atPt2d_mm*/, const mitk::Vector2D &/*vec2d_mm*/, mitk::Vector3D &/*vec3d_mm*/) const { //@todo implement parallel to the other Map method! assert(false); } void PlaneGeometry::SetReferenceGeometry( mitk::BaseGeometry *geometry ) { m_ReferenceGeometry = geometry; } mitk::BaseGeometry * PlaneGeometry::GetReferenceGeometry() const { return m_ReferenceGeometry; } bool PlaneGeometry::HasReferenceGeometry() const { return ( m_ReferenceGeometry != NULL ); } } // namespace diff --git a/Modules/DataTypesExt/include/mitkAffineDataInteractor3D.h b/Modules/DataTypesExt/include/mitkAffineDataInteractor3D.h index 24d2ccf4d2..81d328bae5 100644 --- a/Modules/DataTypesExt/include/mitkAffineDataInteractor3D.h +++ b/Modules/DataTypesExt/include/mitkAffineDataInteractor3D.h @@ -1,101 +1,101 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkAffineDataInteractor3D_h_ #define mitkAffineDataInteractor3D_h_ #include #include #include "MitkDataTypesExtExports.h" namespace mitk { /** * \brief Affine interaction with objects in 3D windows. * * \ingroup Interaction */ // Inherit from DataInteratcor, this provides functionality of a state machine and configurable inputs. class MITKDATATYPESEXT_EXPORT AffineDataInteractor3D: public DataInteractor { public: mitkClassMacro(AffineDataInteractor3D, DataInteractor); itkFactorylessNewMacro(Self) itkCloneMacro(Self) virtual void SetDataNode(NodeType node); void TranslateGeometry(mitk::Vector3D translate, mitk::BaseGeometry* geometry); void RotateGeometry(mitk::ScalarType angle, int rotationaxis, mitk::BaseGeometry* geometry); void ScaleGeometry(mitk::Point3D newScale, mitk::BaseGeometry* geometry); mitk::BaseGeometry *GetUpdatedTimeGeometry(mitk::InteractionEvent *interactionEvent); protected: AffineDataInteractor3D(); virtual ~AffineDataInteractor3D(); /** * Here actions strings from the loaded state machine pattern are mapped to functions of * the DataInteractor. These functions are called when an action from the state machine pattern is executed. */ virtual void ConnectActionsAndFunctions(); /** * This function is called when a DataNode has been set/changed. */ virtual void DataNodeChanged(); /** * Initializes the movement, stores starting position. */ virtual bool CheckOverObject (const InteractionEvent*); virtual bool SelectObject (StateMachineAction*, InteractionEvent*); virtual bool DeselectObject (StateMachineAction*, InteractionEvent*); virtual bool InitTranslate (StateMachineAction*, InteractionEvent*); virtual bool InitRotate (StateMachineAction*, InteractionEvent*); virtual bool TranslateObject (StateMachineAction*, InteractionEvent*); virtual bool RotateObject (StateMachineAction*, InteractionEvent*); virtual bool TranslateUpKey(StateMachineAction*, InteractionEvent* interactionEvent); virtual bool TranslateDownKey(StateMachineAction*, InteractionEvent* interactionEvent); virtual bool TranslateLeftKey(StateMachineAction*, InteractionEvent* interactionEvent); virtual bool TranslateRightKey(StateMachineAction*, InteractionEvent* interactionEvent); virtual bool TranslateUpModifierKey(StateMachineAction*, InteractionEvent* interactionEvent); virtual bool TranslateDownModifierKey(StateMachineAction*, InteractionEvent* interactionEvent); virtual bool RotateUpKey(StateMachineAction*, InteractionEvent* interactionEvent); virtual bool RotateDownKey(StateMachineAction*, InteractionEvent* interactionEvent); virtual bool RotateLeftKey(StateMachineAction*, InteractionEvent* interactionEvent); virtual bool RotateRightKey(StateMachineAction*, InteractionEvent* interactionEvent); virtual bool RotateUpModifierKey(StateMachineAction*, InteractionEvent* interactionEvent); virtual bool RotateDownModifierKey(StateMachineAction*, InteractionEvent* interactionEvent); virtual bool ScaleDownKey(mitk::StateMachineAction *, mitk::InteractionEvent* interactionEvent); virtual bool ScaleUpKey(mitk::StateMachineAction *, mitk::InteractionEvent* interactionEvent); virtual void RestoreNodeProperties(); private: - double m_InitialPickedWorldPoint[4]; + Point3D m_InitialPickedWorldPoint; Point2D m_InitialPickedDisplayPoint; Geometry3D::Pointer m_OriginalGeometry; Vector3D m_ObjectNormal; }; } #endif diff --git a/Modules/DataTypesExt/src/mitkAffineDataInteractor3D.cpp b/Modules/DataTypesExt/src/mitkAffineDataInteractor3D.cpp index 0b1206a7cf..85f732cc51 100644 --- a/Modules/DataTypesExt/src/mitkAffineDataInteractor3D.cpp +++ b/Modules/DataTypesExt/src/mitkAffineDataInteractor3D.cpp @@ -1,544 +1,533 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkAffineDataInteractor3D.h" #include #include #include #include #include #include #include #include #include #include #include const char* translationStepSizePropertyName = "AffineDataInteractor3D.Translation Step Size"; const char* selectedColorPropertyName = "AffineDataInteractor3D.Selected Color"; const char* deselectedColorPropertyName = "AffineDataInteractor3D.Deselected Color"; const char* priorPropertyName = "AffineDataInteractor3D.Prior Color"; const char* rotationStepSizePropertyName = "AffineDataInteractor3D.Rotation Step Size"; const char* scaleStepSizePropertyName = "AffineDataInteractor3D.Scale Step Size"; mitk::AffineDataInteractor3D::AffineDataInteractor3D() { m_OriginalGeometry = mitk::Geometry3D::New(); // Initialize vector arithmetic m_ObjectNormal[0] = 0.0; m_ObjectNormal[1] = 0.0; m_ObjectNormal[2] = 1.0; } mitk::AffineDataInteractor3D::~AffineDataInteractor3D() { this->RestoreNodeProperties(); } void mitk::AffineDataInteractor3D::ConnectActionsAndFunctions() { // **Conditions** that can be used in the state machine, to ensure that certain conditions are met, before actually executing an action CONNECT_CONDITION("isOverObject", CheckOverObject); // **Function** in the statmachine patterns also referred to as **Actions** CONNECT_FUNCTION("selectObject",SelectObject); CONNECT_FUNCTION("deselectObject",DeselectObject); CONNECT_FUNCTION("initTranslate",InitTranslate); CONNECT_FUNCTION("initRotate",InitRotate); CONNECT_FUNCTION("translateObject",TranslateObject); CONNECT_FUNCTION("rotateObject",RotateObject); CONNECT_FUNCTION("translateUpKey",TranslateUpKey); CONNECT_FUNCTION("translateDownKey",TranslateDownKey); CONNECT_FUNCTION("translateLeftKey",TranslateLeftKey); CONNECT_FUNCTION("translateRightKey",TranslateRightKey); CONNECT_FUNCTION("translateUpModifierKey",TranslateUpModifierKey); CONNECT_FUNCTION("translateDownModifierKey",TranslateDownModifierKey); CONNECT_FUNCTION("scaleDownKey",ScaleDownKey); CONNECT_FUNCTION("scaleUpKey",ScaleUpKey); CONNECT_FUNCTION("rotateUpKey",RotateUpKey); CONNECT_FUNCTION("rotateDownKey",RotateDownKey); CONNECT_FUNCTION("rotateLeftKey",RotateLeftKey); CONNECT_FUNCTION("rotateRightKey",RotateRightKey); CONNECT_FUNCTION("rotateUpModifierKey",RotateUpModifierKey); CONNECT_FUNCTION("rotateDownModifierKey",RotateDownModifierKey); } bool mitk::AffineDataInteractor3D::TranslateUpKey(StateMachineAction*, InteractionEvent* interactionEvent) { float stepSize = 1.0f; this->GetDataNode()->GetFloatProperty(translationStepSizePropertyName, stepSize); mitk::Vector3D movementVector; movementVector.Fill(0.0); movementVector.SetElement(2, stepSize); this->TranslateGeometry(movementVector, this->GetUpdatedTimeGeometry(interactionEvent)); return true; } bool mitk::AffineDataInteractor3D::TranslateDownKey(mitk::StateMachineAction*, mitk::InteractionEvent* interactionEvent) { float stepSize = 1.0f; this->GetDataNode()->GetFloatProperty(translationStepSizePropertyName, stepSize); mitk::Vector3D movementVector; movementVector.Fill(0.0); movementVector.SetElement(2, -stepSize); this->TranslateGeometry(movementVector, this->GetUpdatedTimeGeometry(interactionEvent)); return true; } bool mitk::AffineDataInteractor3D::TranslateLeftKey(mitk::StateMachineAction*, mitk::InteractionEvent* interactionEvent) { float stepSize = 1.0f; this->GetDataNode()->GetFloatProperty(translationStepSizePropertyName, stepSize); mitk::Vector3D movementVector; movementVector.Fill(0.0); movementVector.SetElement(0, -stepSize); this->TranslateGeometry(movementVector, this->GetUpdatedTimeGeometry(interactionEvent)); return true; } bool mitk::AffineDataInteractor3D::TranslateRightKey(mitk::StateMachineAction*, mitk::InteractionEvent* interactionEvent) { float stepSize = 1.0f; this->GetDataNode()->GetFloatProperty(translationStepSizePropertyName, stepSize); mitk::Vector3D movementVector; movementVector.Fill(0.0); movementVector.SetElement(0, stepSize); this->TranslateGeometry(movementVector, this->GetUpdatedTimeGeometry(interactionEvent)); return true; } bool mitk::AffineDataInteractor3D::TranslateUpModifierKey(mitk::StateMachineAction*, mitk::InteractionEvent* interactionEvent) { float stepSize = 1.0f; this->GetDataNode()->GetFloatProperty(translationStepSizePropertyName, stepSize); mitk::Vector3D movementVector; movementVector.Fill(0.0); movementVector.SetElement(1, stepSize); this->TranslateGeometry(movementVector, this->GetUpdatedTimeGeometry(interactionEvent)); return true; } bool mitk::AffineDataInteractor3D::TranslateDownModifierKey(mitk::StateMachineAction*, mitk::InteractionEvent* interactionEvent) { float stepSize = 1.0f; this->GetDataNode()->GetFloatProperty(translationStepSizePropertyName, stepSize); mitk::Vector3D movementVector; movementVector.Fill(0.0); movementVector.SetElement(1, -stepSize); this->TranslateGeometry(movementVector, this->GetUpdatedTimeGeometry(interactionEvent)); return true; } bool mitk::AffineDataInteractor3D::RotateUpKey(mitk::StateMachineAction*, mitk::InteractionEvent* interactionEvent) { float stepSize = 1.0f; this->GetDataNode()->GetFloatProperty(rotationStepSizePropertyName, stepSize); this->RotateGeometry(-stepSize, 0, this->GetUpdatedTimeGeometry(interactionEvent)); return true; } bool mitk::AffineDataInteractor3D::RotateDownKey(mitk::StateMachineAction*, mitk::InteractionEvent* interactionEvent) { float stepSize = 1.0f; this->GetDataNode()->GetFloatProperty(rotationStepSizePropertyName, stepSize); this->RotateGeometry(stepSize, 0, this->GetUpdatedTimeGeometry(interactionEvent)); return true; } bool mitk::AffineDataInteractor3D::RotateLeftKey(mitk::StateMachineAction*, mitk::InteractionEvent* interactionEvent) { float stepSize = 1.0f; this->GetDataNode()->GetFloatProperty(rotationStepSizePropertyName, stepSize); this->RotateGeometry(-stepSize, 2, this->GetUpdatedTimeGeometry(interactionEvent)); return true; } bool mitk::AffineDataInteractor3D::RotateRightKey(mitk::StateMachineAction*, mitk::InteractionEvent* interactionEvent) { float stepSize = 1.0f; this->GetDataNode()->GetFloatProperty(rotationStepSizePropertyName, stepSize); this->RotateGeometry(stepSize, 2, this->GetUpdatedTimeGeometry(interactionEvent)); return true; } bool mitk::AffineDataInteractor3D::RotateUpModifierKey(mitk::StateMachineAction*, mitk::InteractionEvent* interactionEvent) { float stepSize = 1.0f; this->GetDataNode()->GetFloatProperty(rotationStepSizePropertyName, stepSize); this->RotateGeometry(stepSize, 1, this->GetUpdatedTimeGeometry(interactionEvent)); return true; } bool mitk::AffineDataInteractor3D::RotateDownModifierKey(mitk::StateMachineAction*, mitk::InteractionEvent* interactionEvent) { float stepSize = 1.0f; this->GetDataNode()->GetFloatProperty(rotationStepSizePropertyName, stepSize); this->RotateGeometry(-stepSize, 1, this->GetUpdatedTimeGeometry(interactionEvent)); return true; } bool mitk::AffineDataInteractor3D::ScaleUpKey(mitk::StateMachineAction*, mitk::InteractionEvent* interactionEvent) { float stepSize = 0.1f; this->GetDataNode()->GetFloatProperty(scaleStepSizePropertyName, stepSize); mitk::Point3D newScale; newScale.Fill(stepSize); this->ScaleGeometry(newScale, this->GetUpdatedTimeGeometry(interactionEvent)); return true; } bool mitk::AffineDataInteractor3D::ScaleDownKey(mitk::StateMachineAction*, mitk::InteractionEvent* interactionEvent) { float stepSize = 0.1f; this->GetDataNode()->GetFloatProperty(scaleStepSizePropertyName, stepSize); mitk::Point3D newScale; newScale.Fill(-stepSize); this->ScaleGeometry(newScale, this->GetUpdatedTimeGeometry(interactionEvent)); return true; } void mitk::AffineDataInteractor3D::ScaleGeometry(mitk::Point3D newScale, mitk::BaseGeometry* geometry) { PointOperation* doOp = new mitk::PointOperation(OpSCALE, newScale, 0); geometry->ExecuteOperation(doOp); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void mitk::AffineDataInteractor3D::RotateGeometry(mitk::ScalarType angle, int rotationaxis, mitk::BaseGeometry* geometry) { mitk::Vector3D rotationAxis = geometry->GetAxisVector(rotationaxis); mitk::Point3D center = geometry->GetCenter(); mitk::RotationOperation* doOp = new mitk::RotationOperation(OpROTATE, center, rotationAxis, angle); geometry->ExecuteOperation(doOp); delete doOp; mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void mitk::AffineDataInteractor3D::TranslateGeometry(mitk::Vector3D translate, mitk::BaseGeometry* geometry) { geometry->Translate(translate); this->GetDataNode()->Modified(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } mitk::BaseGeometry* mitk::AffineDataInteractor3D::GetUpdatedTimeGeometry(mitk::InteractionEvent* interactionEvent) { //Get the correct time geometry to support 3D + t int timeStep = interactionEvent->GetSender()->GetTimeStep(this->GetDataNode()->GetData()); BaseGeometry* geometry = this->GetDataNode()->GetData()->GetUpdatedTimeGeometry()->GetGeometryForTimeStep( timeStep ); if(geometry == NULL) MITK_ERROR << "Geometry is NULL. Cannot modify it."; return geometry; } void mitk::AffineDataInteractor3D::DataNodeChanged() { mitk::DataNode::Pointer newInputNode = this->GetDataNode(); //add default properties newInputNode->AddProperty( selectedColorPropertyName, mitk::ColorProperty::New(0.0,1.0,0.0) ); newInputNode->AddProperty( deselectedColorPropertyName, mitk::ColorProperty::New(0.0,0.0,1.0) ); newInputNode->AddProperty( translationStepSizePropertyName, mitk::FloatProperty::New(1.0f) ); newInputNode->AddProperty( rotationStepSizePropertyName, mitk::FloatProperty::New(1.0f) ); newInputNode->AddProperty( scaleStepSizePropertyName, mitk::FloatProperty::New(0.1f) ); //save the previous color of the node, in order to restore it after the interactor is destroyed mitk::ColorProperty::Pointer priorColor = dynamic_cast(newInputNode->GetProperty("color")); if ( priorColor.IsNotNull() ) { mitk::ColorProperty::Pointer tmpCopyOfPriorColor = mitk::ColorProperty::New(); tmpCopyOfPriorColor->SetColor( priorColor->GetColor() ); newInputNode->AddProperty( priorPropertyName, tmpCopyOfPriorColor ); } newInputNode->SetColor(0.0,0.0,1.0); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void mitk::AffineDataInteractor3D::SetDataNode(mitk::DataInteractor::NodeType node) { this->RestoreNodeProperties(); //if there was another node set, restore it's color DataInteractor::SetDataNode(node); } bool mitk::AffineDataInteractor3D::CheckOverObject(const InteractionEvent* interactionEvent) { const InteractionPositionEvent* positionEvent = dynamic_cast(interactionEvent); if(positionEvent == NULL) return false; Point3D currentWorldPoint; if(interactionEvent->GetSender()->PickObject(positionEvent->GetPointerPositionOnScreen(), currentWorldPoint) == this->GetDataNode().GetPointer()) return true; return false; } bool mitk::AffineDataInteractor3D::SelectObject(StateMachineAction*, InteractionEvent* interactionEvent) { DataNode::Pointer node = this->GetDataNode(); if (node.IsNull()) return false; mitk::ColorProperty::Pointer selectedColor = dynamic_cast(node->GetProperty(selectedColorPropertyName)); if ( selectedColor.IsNotNull() ) { node->GetPropertyList()->SetProperty("color", selectedColor); } interactionEvent->GetSender()->GetRenderingManager()->RequestUpdateAll(); return true; } bool mitk::AffineDataInteractor3D::DeselectObject(StateMachineAction*, InteractionEvent* interactionEvent) { DataNode::Pointer node = this->GetDataNode(); if (node.IsNull()) return false; mitk::ColorProperty::Pointer selectedColor = dynamic_cast(node->GetProperty(deselectedColorPropertyName)); if ( selectedColor.IsNotNull() ) { node->GetPropertyList()->SetProperty("color", selectedColor); } interactionEvent->GetSender()->GetRenderingManager()->RequestUpdateAll(); return true; } bool mitk::AffineDataInteractor3D::InitTranslate(StateMachineAction*, InteractionEvent* interactionEvent) { InteractionPositionEvent* positionEvent = dynamic_cast(interactionEvent); if(positionEvent == NULL) return false; m_InitialPickedDisplayPoint = positionEvent->GetPointerPositionOnScreen(); + m_InitialPickedWorldPoint = positionEvent->GetPositionInWorld(); - vtkInteractorObserver::ComputeDisplayToWorld( - interactionEvent->GetSender()->GetVtkRenderer(), - m_InitialPickedDisplayPoint[0], - m_InitialPickedDisplayPoint[1], - 0.0, //m_InitialInteractionPickedPoint[2], - m_InitialPickedWorldPoint ); // Get the timestep to also support 3D+t int timeStep = 0; if ((interactionEvent->GetSender()) != NULL) timeStep = interactionEvent->GetSender()->GetTimeStep(this->GetDataNode()->GetData()); // Make deep copy of current Geometry3D of the plane this->GetDataNode()->GetData()->UpdateOutputInformation(); // make sure that the Geometry is up-to-date m_OriginalGeometry = static_cast(this->GetDataNode()->GetData()->GetGeometry(timeStep)->Clone().GetPointer()); return true; } bool mitk::AffineDataInteractor3D::InitRotate(StateMachineAction*, InteractionEvent* interactionEvent) { InteractionPositionEvent* positionEvent = dynamic_cast(interactionEvent); m_InitialPickedDisplayPoint = positionEvent->GetPointerPositionOnScreen(); - - vtkInteractorObserver::ComputeDisplayToWorld( - interactionEvent->GetSender()->GetVtkRenderer(), - m_InitialPickedDisplayPoint[0], - m_InitialPickedDisplayPoint[1], - 0.0, //m_InitialInteractionPickedPoint[2], - m_InitialPickedWorldPoint ); + m_InitialPickedWorldPoint = positionEvent->GetPositionInWorld(); // Get the timestep to also support 3D+t int timeStep = interactionEvent->GetSender()->GetTimeStep(this->GetDataNode()->GetData()); // Make deep copy of current Geometry3D of the plane this->GetDataNode()->GetData()->UpdateOutputInformation(); // make sure that the Geometry is up-to-date m_OriginalGeometry = static_cast(this->GetDataNode()->GetData()->GetGeometry(timeStep)->Clone().GetPointer()); return true; } bool mitk::AffineDataInteractor3D::TranslateObject (StateMachineAction*, InteractionEvent* interactionEvent) { InteractionPositionEvent* positionEvent = dynamic_cast(interactionEvent); if(positionEvent == NULL) return false; double currentWorldPoint[4]; mitk::Point2D currentDisplayPoint = positionEvent->GetPointerPositionOnScreen(); vtkInteractorObserver::ComputeDisplayToWorld( interactionEvent->GetSender()->GetVtkRenderer(), currentDisplayPoint[0], currentDisplayPoint[1], 0.0, //m_InitialInteractionPickedPoint[2], currentWorldPoint); Vector3D interactionMove; interactionMove[0] = currentWorldPoint[0] - m_InitialPickedWorldPoint[0]; interactionMove[1] = currentWorldPoint[1] - m_InitialPickedWorldPoint[1]; interactionMove[2] = currentWorldPoint[2] - m_InitialPickedWorldPoint[2]; Point3D origin = m_OriginalGeometry->GetOrigin(); // Get the timestep to also support 3D+t int timeStep = interactionEvent->GetSender()->GetTimeStep(this->GetDataNode()->GetData()); // If data is an mitk::Surface, extract it Surface::Pointer surface = dynamic_cast< Surface* >(this->GetDataNode()->GetData()); vtkPolyData* polyData = NULL; if (surface.IsNotNull()) { polyData = surface->GetVtkPolyData( timeStep ); // Extract surface normal from surface (if existent, otherwise use default) vtkPointData* pointData = polyData->GetPointData(); if (pointData != NULL) { vtkDataArray* normal = polyData->GetPointData()->GetVectors("planeNormal"); if (normal != NULL) { m_ObjectNormal[0] = normal->GetComponent( 0, 0 ); m_ObjectNormal[1] = normal->GetComponent( 0, 1 ); m_ObjectNormal[2] = normal->GetComponent( 0, 2 ); } } } Vector3D transformedObjectNormal; this->GetDataNode()->GetData()->GetGeometry( timeStep )->IndexToWorld(m_ObjectNormal, transformedObjectNormal); this->GetDataNode()->GetData()->GetGeometry( timeStep )->SetOrigin(origin + transformedObjectNormal * (interactionMove * transformedObjectNormal)); interactionEvent->GetSender()->GetRenderingManager()->RequestUpdateAll(); return true; } bool mitk::AffineDataInteractor3D::RotateObject (StateMachineAction*, InteractionEvent* interactionEvent) { InteractionPositionEvent* positionEvent = dynamic_cast(interactionEvent); if(positionEvent == NULL) return false; double currentWorldPoint[4]; Point2D currentPickedDisplayPoint = positionEvent->GetPointerPositionOnScreen(); vtkInteractorObserver::ComputeDisplayToWorld( interactionEvent->GetSender()->GetVtkRenderer(), currentPickedDisplayPoint[0], currentPickedDisplayPoint[1], 0.0, //m_InitialInteractionPickedPoint[2], currentWorldPoint); vtkCamera* camera = NULL; vtkRenderer* currentVtkRenderer = NULL; if ((interactionEvent->GetSender()) != NULL) { vtkRenderWindow* renderWindow = interactionEvent->GetSender()->GetRenderWindow(); if (renderWindow != NULL) { vtkRenderWindowInteractor* renderWindowInteractor = renderWindow->GetInteractor(); if ( renderWindowInteractor != NULL ) { currentVtkRenderer = renderWindowInteractor->GetInteractorStyle()->GetCurrentRenderer(); if (currentVtkRenderer != NULL) camera = currentVtkRenderer->GetActiveCamera(); } } } if ( camera ) { double vpn[3]; camera->GetViewPlaneNormal( vpn ); Vector3D viewPlaneNormal; viewPlaneNormal[0] = vpn[0]; viewPlaneNormal[1] = vpn[1]; viewPlaneNormal[2] = vpn[2]; Vector3D interactionMove; interactionMove[0] = currentWorldPoint[0] - m_InitialPickedWorldPoint[0]; interactionMove[1] = currentWorldPoint[1] - m_InitialPickedWorldPoint[1]; interactionMove[2] = currentWorldPoint[2] - m_InitialPickedWorldPoint[2]; if (interactionMove[0] == 0 && interactionMove[1] == 0 && interactionMove[2] == 0) return true; Vector3D rotationAxis = itk::CrossProduct(viewPlaneNormal, interactionMove); rotationAxis.Normalize(); int* size = currentVtkRenderer->GetSize(); double l2 = (currentPickedDisplayPoint[0] - m_InitialPickedDisplayPoint[0]) * (currentPickedDisplayPoint[0] - m_InitialPickedDisplayPoint[0]) + (currentPickedDisplayPoint[1] - m_InitialPickedDisplayPoint[1]) * (currentPickedDisplayPoint[1] - m_InitialPickedDisplayPoint[1]); double rotationAngle = 360.0 * sqrt(l2 / (size[0] * size[0] + size[1] * size[1])); // Use center of data bounding box as center of rotation Point3D rotationCenter = m_OriginalGeometry->GetCenter(); int timeStep = 0; if ((interactionEvent->GetSender()) != NULL) timeStep = interactionEvent->GetSender()->GetTimeStep(this->GetDataNode()->GetData()); // Reset current Geometry3D to original state (pre-interaction) and // apply rotation RotationOperation op( OpROTATE, rotationCenter, rotationAxis, rotationAngle ); Geometry3D::Pointer newGeometry = static_cast(m_OriginalGeometry->Clone().GetPointer()); newGeometry->ExecuteOperation( &op ); mitk::TimeGeometry::Pointer timeGeometry = this->GetDataNode()->GetData()->GetTimeGeometry(); if (timeGeometry.IsNotNull()) timeGeometry->SetTimeStepGeometry(newGeometry, timeStep); interactionEvent->GetSender()->GetRenderingManager()->RequestUpdateAll(); return true; } else return false; } void mitk::AffineDataInteractor3D::RestoreNodeProperties() { mitk::DataNode::Pointer inputNode = this->GetDataNode(); if(inputNode.IsNull()) return; mitk::ColorProperty::Pointer color = dynamic_cast(inputNode->GetProperty(priorPropertyName)); if ( color.IsNotNull() ) { inputNode->GetPropertyList()->SetProperty("color", color); } inputNode->GetPropertyList()->DeleteProperty(selectedColorPropertyName); inputNode->GetPropertyList()->DeleteProperty(deselectedColorPropertyName); inputNode->GetPropertyList()->DeleteProperty(priorPropertyName); inputNode->GetPropertyList()->DeleteProperty(translationStepSizePropertyName); inputNode->GetPropertyList()->DeleteProperty(rotationStepSizePropertyName); inputNode->GetPropertyList()->DeleteProperty(scaleStepSizePropertyName); //update rendering mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } diff --git a/Modules/QtWidgets/src/QmitkStdMultiWidget.cpp b/Modules/QtWidgets/src/QmitkStdMultiWidget.cpp index 71ce1ece7e..4f46abb405 100644 --- a/Modules/QtWidgets/src/QmitkStdMultiWidget.cpp +++ b/Modules/QtWidgets/src/QmitkStdMultiWidget.cpp @@ -1,2283 +1,2284 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #define SMW_INFO MITK_INFO("widget.stdmulti") #include "QmitkStdMultiWidget.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include QmitkStdMultiWidget::QmitkStdMultiWidget(QWidget* parent, Qt::WindowFlags f, mitk::RenderingManager* renderingManager, mitk::BaseRenderer::RenderingMode::Type renderingMode, const QString& name) : QWidget(parent, f), mitkWidget1(NULL), mitkWidget2(NULL), mitkWidget3(NULL), mitkWidget4(NULL), levelWindowWidget(NULL), QmitkStdMultiWidgetLayout(NULL), m_Layout(LAYOUT_DEFAULT), m_PlaneMode(PLANE_MODE_SLICING), m_RenderingManager(renderingManager), m_GradientBackgroundFlag(true), m_TimeNavigationController(NULL), m_MainSplit(NULL), m_LayoutSplit(NULL), m_SubSplit1(NULL), m_SubSplit2(NULL), mitkWidget1Container(NULL), mitkWidget2Container(NULL), mitkWidget3Container(NULL), mitkWidget4Container(NULL), m_PendingCrosshairPositionEvent(false), m_CrosshairNavigationEnabled(false) { /****************************************************** * Use the global RenderingManager if none was specified * ****************************************************/ if (m_RenderingManager == NULL) { m_RenderingManager = mitk::RenderingManager::GetInstance(); } m_TimeNavigationController = m_RenderingManager->GetTimeNavigationController(); /*******************************/ //Create Widget manually /*******************************/ //create Layouts QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); QmitkStdMultiWidgetLayout->setContentsMargins(0,0,0,0); //Set Layout to widget this->setLayout(QmitkStdMultiWidgetLayout); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( Qt::Vertical, m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //create m_SubSplit1 and m_SubSplit2 m_SubSplit1 = new QSplitter( m_LayoutSplit ); m_SubSplit2 = new QSplitter( m_LayoutSplit ); //creae Widget Container mitkWidget1Container = new QWidget(m_SubSplit1); mitkWidget2Container = new QWidget(m_SubSplit1); mitkWidget3Container = new QWidget(m_SubSplit2); mitkWidget4Container = new QWidget(m_SubSplit2); mitkWidget1Container->setContentsMargins(0,0,0,0); mitkWidget2Container->setContentsMargins(0,0,0,0); mitkWidget3Container->setContentsMargins(0,0,0,0); mitkWidget4Container->setContentsMargins(0,0,0,0); //create Widget Layout QHBoxLayout *mitkWidgetLayout1 = new QHBoxLayout(mitkWidget1Container); QHBoxLayout *mitkWidgetLayout2 = new QHBoxLayout(mitkWidget2Container); QHBoxLayout *mitkWidgetLayout3 = new QHBoxLayout(mitkWidget3Container); QHBoxLayout *mitkWidgetLayout4 = new QHBoxLayout(mitkWidget4Container); mitkWidgetLayout1->setMargin(0); mitkWidgetLayout2->setMargin(0); mitkWidgetLayout3->setMargin(0); mitkWidgetLayout4->setMargin(0); //set Layout to Widget Container mitkWidget1Container->setLayout(mitkWidgetLayout1); mitkWidget2Container->setLayout(mitkWidgetLayout2); mitkWidget3Container->setLayout(mitkWidgetLayout3); mitkWidget4Container->setLayout(mitkWidgetLayout4); //set SizePolicy mitkWidget1Container->setSizePolicy(QSizePolicy::Expanding,QSizePolicy::Expanding); mitkWidget2Container->setSizePolicy(QSizePolicy::Expanding,QSizePolicy::Expanding); mitkWidget3Container->setSizePolicy(QSizePolicy::Expanding,QSizePolicy::Expanding); mitkWidget4Container->setSizePolicy(QSizePolicy::Expanding,QSizePolicy::Expanding); //insert Widget Container into the splitters m_SubSplit1->addWidget( mitkWidget1Container ); m_SubSplit1->addWidget( mitkWidget2Container ); m_SubSplit2->addWidget( mitkWidget3Container ); m_SubSplit2->addWidget( mitkWidget4Container ); // m_RenderingManager->SetGlobalInteraction( mitk::GlobalInteraction::GetInstance() ); //Create RenderWindows 1 mitkWidget1 = new QmitkRenderWindow(mitkWidget1Container, name + ".widget1", NULL, m_RenderingManager,renderingMode); mitkWidget1->setMaximumSize(2000,2000); mitkWidget1->SetLayoutIndex( AXIAL ); mitkWidgetLayout1->addWidget(mitkWidget1); //Create RenderWindows 2 mitkWidget2 = new QmitkRenderWindow(mitkWidget2Container, name + ".widget2", NULL, m_RenderingManager,renderingMode); mitkWidget2->setMaximumSize(2000,2000); mitkWidget2->setEnabled( true ); mitkWidget2->SetLayoutIndex( SAGITTAL ); mitkWidgetLayout2->addWidget(mitkWidget2); //Create RenderWindows 3 mitkWidget3 = new QmitkRenderWindow(mitkWidget3Container, name + ".widget3", NULL, m_RenderingManager,renderingMode); mitkWidget3->setMaximumSize(2000,2000); mitkWidget3->SetLayoutIndex( CORONAL ); mitkWidgetLayout3->addWidget(mitkWidget3); //Create RenderWindows 4 mitkWidget4 = new QmitkRenderWindow(mitkWidget4Container, name + ".widget4", NULL, m_RenderingManager,renderingMode); mitkWidget4->setMaximumSize(2000,2000); mitkWidget4->SetLayoutIndex( THREE_D ); mitkWidgetLayout4->addWidget(mitkWidget4); //create SignalSlot Connection connect( mitkWidget1, SIGNAL( SignalLayoutDesignChanged(int) ), this, SLOT( OnLayoutDesignChanged(int) ) ); connect( mitkWidget1, SIGNAL( ResetView() ), this, SLOT( ResetCrosshair() ) ); connect( mitkWidget1, SIGNAL( ChangeCrosshairRotationMode(int) ), this, SLOT( SetWidgetPlaneMode(int) ) ); connect( this, SIGNAL(WidgetNotifyNewCrossHairMode(int)), mitkWidget1, SLOT(OnWidgetPlaneModeChanged(int)) ); connect( mitkWidget2, SIGNAL( SignalLayoutDesignChanged(int) ), this, SLOT( OnLayoutDesignChanged(int) ) ); connect( mitkWidget2, SIGNAL( ResetView() ), this, SLOT( ResetCrosshair() ) ); connect( mitkWidget2, SIGNAL( ChangeCrosshairRotationMode(int) ), this, SLOT( SetWidgetPlaneMode(int) ) ); connect( this, SIGNAL(WidgetNotifyNewCrossHairMode(int)), mitkWidget2, SLOT(OnWidgetPlaneModeChanged(int)) ); connect( mitkWidget3, SIGNAL( SignalLayoutDesignChanged(int) ), this, SLOT( OnLayoutDesignChanged(int) ) ); connect( mitkWidget3, SIGNAL( ResetView() ), this, SLOT( ResetCrosshair() ) ); connect( mitkWidget3, SIGNAL( ChangeCrosshairRotationMode(int) ), this, SLOT( SetWidgetPlaneMode(int) ) ); connect( this, SIGNAL(WidgetNotifyNewCrossHairMode(int)), mitkWidget3, SLOT(OnWidgetPlaneModeChanged(int)) ); connect( mitkWidget4, SIGNAL( SignalLayoutDesignChanged(int) ), this, SLOT( OnLayoutDesignChanged(int) ) ); connect( mitkWidget4, SIGNAL( ResetView() ), this, SLOT( ResetCrosshair() ) ); connect( mitkWidget4, SIGNAL( ChangeCrosshairRotationMode(int) ), this, SLOT( SetWidgetPlaneMode(int) ) ); connect( this, SIGNAL(WidgetNotifyNewCrossHairMode(int)), mitkWidget4, SLOT(OnWidgetPlaneModeChanged(int)) ); //Create Level Window Widget levelWindowWidget = new QmitkLevelWindowWidget( m_MainSplit ); //this levelWindowWidget->setObjectName(QString::fromUtf8("levelWindowWidget")); QSizePolicy sizePolicy(QSizePolicy::Preferred, QSizePolicy::Preferred); sizePolicy.setHorizontalStretch(0); sizePolicy.setVerticalStretch(0); sizePolicy.setHeightForWidth(levelWindowWidget->sizePolicy().hasHeightForWidth()); levelWindowWidget->setSizePolicy(sizePolicy); levelWindowWidget->setMaximumSize(QSize(50, 2000)); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //show mainSplitt and add to Layout m_MainSplit->show(); //resize Image. this->resize( QSize(364, 477).expandedTo(minimumSizeHint()) ); //Initialize the widgets. this->InitializeWidget(); //Activate Widget Menu this->ActivateMenuWidget( true ); } void QmitkStdMultiWidget::InitializeWidget() { m_PositionTracker = NULL; //Make all black and overwrite renderwindow 4 this->FillGradientBackgroundWithBlack(); //This is #191919 in hex float tmp1[3] = { 0.098f, 0.098f, 0.098f}; //This is #7F7F7F in hex float tmp2[3] = { 0.498f, 0.498f, 0.498f}; m_GradientBackgroundColors[3] = std::make_pair(mitk::Color(tmp1), mitk::Color(tmp2)); //Yellow is default color for widget4 m_DecorationColorWidget4[0] = 1.0f; m_DecorationColorWidget4[1] = 1.0f; m_DecorationColorWidget4[2] = 0.0f; // transfer colors in WorldGeometry-Nodes of the associated Renderer mitk::IntProperty::Pointer layer; // of widget 1 m_PlaneNode1 = mitk::BaseRenderer::GetInstance(mitkWidget1->GetRenderWindow())->GetCurrentWorldPlaneGeometryNode(); m_PlaneNode1->SetColor(GetDecorationColor(0)); layer = mitk::IntProperty::New(1000); m_PlaneNode1->SetProperty("layer",layer); // ... of widget 2 m_PlaneNode2 = mitk::BaseRenderer::GetInstance(mitkWidget2->GetRenderWindow())->GetCurrentWorldPlaneGeometryNode(); m_PlaneNode2->SetColor(GetDecorationColor(1)); layer = mitk::IntProperty::New(1000); m_PlaneNode2->SetProperty("layer",layer); // ... of widget 3 m_PlaneNode3 = mitk::BaseRenderer::GetInstance(mitkWidget3->GetRenderWindow())->GetCurrentWorldPlaneGeometryNode(); m_PlaneNode3->SetColor(GetDecorationColor(2)); layer = mitk::IntProperty::New(1000); m_PlaneNode3->SetProperty("layer",layer); //The parent node m_ParentNodeForGeometryPlanes = mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow())->GetCurrentWorldPlaneGeometryNode(); layer = mitk::IntProperty::New(1000); m_ParentNodeForGeometryPlanes->SetProperty("layer",layer); mitk::OverlayManager::Pointer OverlayManager = mitk::OverlayManager::New(); mitk::BaseRenderer::GetInstance(mitkWidget1->GetRenderWindow())->SetOverlayManager(OverlayManager); mitk::BaseRenderer::GetInstance(mitkWidget2->GetRenderWindow())->SetOverlayManager(OverlayManager); mitk::BaseRenderer::GetInstance(mitkWidget3->GetRenderWindow())->SetOverlayManager(OverlayManager); mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow())->SetOverlayManager(OverlayManager); mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow())->SetMapperID(mitk::BaseRenderer::Standard3D); // Set plane mode (slicing/rotation behavior) to slicing (default) m_PlaneMode = PLANE_MODE_SLICING; // Set default view directions for SNCs mitkWidget1->GetSliceNavigationController()->SetDefaultViewDirection( mitk::SliceNavigationController::Axial ); mitkWidget2->GetSliceNavigationController()->SetDefaultViewDirection( mitk::SliceNavigationController::Sagittal ); mitkWidget3->GetSliceNavigationController()->SetDefaultViewDirection( mitk::SliceNavigationController::Frontal ); mitkWidget4->GetSliceNavigationController()->SetDefaultViewDirection( mitk::SliceNavigationController::Original ); SetCornerAnnotation("Axial", GetDecorationColor(0), 0); SetCornerAnnotation("Sagittal", GetDecorationColor(1), 1); SetCornerAnnotation("Coronal", GetDecorationColor(2), 2); SetCornerAnnotation("3D", GetDecorationColor(3), 3); // create a slice rotator m_SlicesRotator = mitk::SlicesRotator::New("slices-rotator"); m_SlicesRotator->AddSliceController( mitkWidget1->GetSliceNavigationController() ); m_SlicesRotator->AddSliceController( mitkWidget2->GetSliceNavigationController() ); m_SlicesRotator->AddSliceController( mitkWidget3->GetSliceNavigationController() ); // create a slice swiveller (using the same state-machine as SlicesRotator) m_SlicesSwiveller = mitk::SlicesSwiveller::New("slices-rotator"); m_SlicesSwiveller->AddSliceController( mitkWidget1->GetSliceNavigationController() ); m_SlicesSwiveller->AddSliceController( mitkWidget2->GetSliceNavigationController() ); m_SlicesSwiveller->AddSliceController( mitkWidget3->GetSliceNavigationController() ); //connect to the "time navigation controller": send time via sliceNavigationControllers m_TimeNavigationController->ConnectGeometryTimeEvent( mitkWidget1->GetSliceNavigationController() , false); m_TimeNavigationController->ConnectGeometryTimeEvent( mitkWidget2->GetSliceNavigationController() , false); m_TimeNavigationController->ConnectGeometryTimeEvent( mitkWidget3->GetSliceNavigationController() , false); m_TimeNavigationController->ConnectGeometryTimeEvent( mitkWidget4->GetSliceNavigationController() , false); mitkWidget1->GetSliceNavigationController() ->ConnectGeometrySendEvent(mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow())); //reverse connection between sliceNavigationControllers and m_TimeNavigationController mitkWidget1->GetSliceNavigationController() ->ConnectGeometryTimeEvent(m_TimeNavigationController, false); mitkWidget2->GetSliceNavigationController() ->ConnectGeometryTimeEvent(m_TimeNavigationController, false); mitkWidget3->GetSliceNavigationController() ->ConnectGeometryTimeEvent(m_TimeNavigationController, false); mitkWidget4->GetSliceNavigationController() ->ConnectGeometryTimeEvent(m_TimeNavigationController, false); m_MouseModeSwitcher = mitk::MouseModeSwitcher::New(); m_LastLeftClickPositionSupplier = mitk::CoordinateSupplier::New("navigation", NULL); mitk::GlobalInteraction::GetInstance()->AddListener( m_LastLeftClickPositionSupplier ); // setup the department logo rendering m_LogoRendering = mitk::LogoOverlay::New(); mitk::BaseRenderer::Pointer renderer4 = mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow()); m_LogoRendering->SetOpacity(0.5); mitk::Point2D offset; offset.Fill(0.03); m_LogoRendering->SetOffsetVector(offset); m_LogoRendering->SetRelativeSize(0.15); m_LogoRendering->SetCornerPosition(1); renderer4->GetOverlayManager()->AddOverlay(m_LogoRendering.GetPointer(),renderer4); // setup gradient background and renderwindow rectangle frame for(unsigned int i = 0; i < 4; ++i) { m_GradientBackground[i] = mitk::GradientBackground::New(); m_GradientBackground[i]->SetRenderWindow(GetRenderWindow(i)->GetVtkRenderWindow()); m_GradientBackground[i]->Enable(); m_RectangleRendering[i] = mitk::RenderWindowFrame::New(); m_RectangleRendering[i]->SetRenderWindow(GetRenderWindow(i)->GetVtkRenderWindow()); m_RectangleRendering[i]->Enable(GetDecorationColor(i)[0], GetDecorationColor(i)[1], GetDecorationColor(i)[2]); } } void QmitkStdMultiWidget::FillGradientBackgroundWithBlack() { //We have 4 widgets and ... for(unsigned int i = 0; i < 4; ++i) { float black[3] = {0.0f, 0.0f, 0.0f}; m_GradientBackgroundColors[i] = std::make_pair(mitk::Color(black), mitk::Color(black)); } } std::pair QmitkStdMultiWidget::GetGradientColors(unsigned int widgetNumber) { if(widgetNumber > 3) { MITK_ERROR << "Decoration color for unknown widget!"; float black[3] = { 0.0f, 0.0f, 0.0f}; return std::make_pair(mitk::Color(black), mitk::Color(black)); } return m_GradientBackgroundColors[widgetNumber]; } mitk::Color QmitkStdMultiWidget::GetDecorationColor(unsigned int widgetNumber) { //The implementation looks a bit messy here, but it avoids //synchronization of the color of the geometry nodes and an //internal member here. //Default colors were chosen for decent visibitliy. //Feel free to change your preferences in the workbench. float tmp[3] = {0.0f,0.0f,0.0f}; switch (widgetNumber) { case 0: { if(m_PlaneNode1.IsNotNull()) { if(m_PlaneNode1->GetColor(tmp)) { return dynamic_cast( m_PlaneNode1->GetProperty("color"))->GetColor(); } } float red[3] = { 0.753f, 0.0f, 0.0f};//This is #C00000 in hex return mitk::Color(red); } case 1: { if(m_PlaneNode2.IsNotNull()) { if(m_PlaneNode2->GetColor(tmp)) { return dynamic_cast( m_PlaneNode2->GetProperty("color"))->GetColor(); } } float green[3] = { 0.0f, 0.69f, 0.0f};//This is #00B000 in hex return mitk::Color(green); } case 2: { if(m_PlaneNode3.IsNotNull()) { if(m_PlaneNode3->GetColor(tmp)) { return dynamic_cast( m_PlaneNode3->GetProperty("color"))->GetColor(); } } float blue[3] = { 0.0, 0.502f, 1.0f};//This is #0080FF in hex return mitk::Color(blue); } case 3: { return m_DecorationColorWidget4; } default: MITK_ERROR << "Decoration color for unknown widget!"; float black[3] = { 0.0f, 0.0f, 0.0f}; return mitk::Color(black); } } std::string QmitkStdMultiWidget::GetCornerAnnotationText(unsigned int widgetNumber) { if(widgetNumber > 3) { MITK_ERROR << "Decoration color for unknown widget!"; return std::string(""); } return std::string(m_CornerAnnotations[widgetNumber].cornerText->GetText(0)); } QmitkStdMultiWidget::~QmitkStdMultiWidget() { DisablePositionTracking(); DisableNavigationControllerEventListening(); m_TimeNavigationController->Disconnect(mitkWidget1->GetSliceNavigationController()); m_TimeNavigationController->Disconnect(mitkWidget2->GetSliceNavigationController()); m_TimeNavigationController->Disconnect(mitkWidget3->GetSliceNavigationController()); m_TimeNavigationController->Disconnect(mitkWidget4->GetSliceNavigationController()); } QmitkStdMultiWidget::CornerAnnotation QmitkStdMultiWidget::CreateCornerAnnotation(std::string text, mitk::Color color) { CornerAnnotation annotation; annotation.cornerText = vtkSmartPointer::New(); annotation.cornerText->SetText(0, text.c_str()); annotation.cornerText->SetMaximumFontSize(12); annotation.textProp = vtkSmartPointer::New(); annotation.textProp->SetColor( color[0],color[1],color[2] ); annotation.cornerText->SetTextProperty( annotation.textProp ); annotation.ren = vtkSmartPointer::New(); annotation.ren->AddActor(annotation.cornerText); annotation.ren->InteractiveOff(); return annotation; } void QmitkStdMultiWidget::RemovePlanesFromDataStorage() { if (m_PlaneNode1.IsNotNull() && m_PlaneNode2.IsNotNull() && m_PlaneNode3.IsNotNull() && m_ParentNodeForGeometryPlanes.IsNotNull()) { if(m_DataStorage.IsNotNull()) { m_DataStorage->Remove(m_PlaneNode1); m_DataStorage->Remove(m_PlaneNode2); m_DataStorage->Remove(m_PlaneNode3); m_DataStorage->Remove(m_ParentNodeForGeometryPlanes); } } } void QmitkStdMultiWidget::AddPlanesToDataStorage() { if (m_PlaneNode1.IsNotNull() && m_PlaneNode2.IsNotNull() && m_PlaneNode3.IsNotNull() && m_ParentNodeForGeometryPlanes.IsNotNull()) { if (m_DataStorage.IsNotNull()) { m_DataStorage->Add(m_ParentNodeForGeometryPlanes); m_DataStorage->Add(m_PlaneNode1, m_ParentNodeForGeometryPlanes); m_DataStorage->Add(m_PlaneNode2, m_ParentNodeForGeometryPlanes); m_DataStorage->Add(m_PlaneNode3, m_ParentNodeForGeometryPlanes); } } } void QmitkStdMultiWidget::changeLayoutTo2DImagesUp() { SMW_INFO << "changing layout to 2D images up... " << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //Set Layout to widget this->setLayout(QmitkStdMultiWidgetLayout); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( Qt::Vertical, m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //create m_SubSplit1 and m_SubSplit2 m_SubSplit1 = new QSplitter( m_LayoutSplit ); m_SubSplit2 = new QSplitter( m_LayoutSplit ); //insert Widget Container into splitter top m_SubSplit1->addWidget( mitkWidget1Container ); m_SubSplit1->addWidget( mitkWidget2Container ); m_SubSplit1->addWidget( mitkWidget3Container ); //set SplitterSize for splitter top QList splitterSize; splitterSize.push_back(1000); splitterSize.push_back(1000); splitterSize.push_back(1000); m_SubSplit1->setSizes( splitterSize ); //insert Widget Container into splitter bottom m_SubSplit2->addWidget( mitkWidget4Container ); //set SplitterSize for splitter m_LayoutSplit splitterSize.clear(); splitterSize.push_back(400); splitterSize.push_back(1000); m_LayoutSplit->setSizes( splitterSize ); //show mainSplitt m_MainSplit->show(); //show Widget if hidden if ( mitkWidget1->isHidden() ) mitkWidget1->show(); if ( mitkWidget2->isHidden() ) mitkWidget2->show(); if ( mitkWidget3->isHidden() ) mitkWidget3->show(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); //Change Layout Name m_Layout = LAYOUT_2D_IMAGES_UP; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_2D_IMAGES_UP ); mitkWidget2->LayoutDesignListChanged( LAYOUT_2D_IMAGES_UP ); mitkWidget3->LayoutDesignListChanged( LAYOUT_2D_IMAGES_UP ); mitkWidget4->LayoutDesignListChanged( LAYOUT_2D_IMAGES_UP ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutTo2DImagesLeft() { SMW_INFO << "changing layout to 2D images left... " << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //create m_SubSplit1 and m_SubSplit2 m_SubSplit1 = new QSplitter( Qt::Vertical, m_LayoutSplit ); m_SubSplit2 = new QSplitter( m_LayoutSplit ); //insert Widget into the splitters m_SubSplit1->addWidget( mitkWidget1Container ); m_SubSplit1->addWidget( mitkWidget2Container ); m_SubSplit1->addWidget( mitkWidget3Container ); //set splitterSize of SubSplit1 QList splitterSize; splitterSize.push_back(1000); splitterSize.push_back(1000); splitterSize.push_back(1000); m_SubSplit1->setSizes( splitterSize ); m_SubSplit2->addWidget( mitkWidget4Container ); //set splitterSize of Layout Split splitterSize.clear(); splitterSize.push_back(400); splitterSize.push_back(1000); m_LayoutSplit->setSizes( splitterSize ); //show mainSplitt and add to Layout m_MainSplit->show(); //show Widget if hidden if ( mitkWidget1->isHidden() ) mitkWidget1->show(); if ( mitkWidget2->isHidden() ) mitkWidget2->show(); if ( mitkWidget3->isHidden() ) mitkWidget3->show(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); //update Layout Name m_Layout = LAYOUT_2D_IMAGES_LEFT; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_2D_IMAGES_LEFT ); mitkWidget2->LayoutDesignListChanged( LAYOUT_2D_IMAGES_LEFT ); mitkWidget3->LayoutDesignListChanged( LAYOUT_2D_IMAGES_LEFT ); mitkWidget4->LayoutDesignListChanged( LAYOUT_2D_IMAGES_LEFT ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::SetCornerAnnotation( std::string text, mitk::Color color, int widgetNumber) { if( widgetNumber > 3) { MITK_ERROR << "Unknown render window for annotation."; return; } mitk::VtkLayerController* layercontroller = mitk::VtkLayerController::GetInstance(this->GetRenderWindow(widgetNumber)->GetRenderWindow()); //remove the old renderer, because the layercontroller holds a list (vector) of all renderes //which needs to be updated if(m_CornerAnnotations[widgetNumber].ren != NULL) { layercontroller->RemoveRenderer(m_CornerAnnotations[widgetNumber].ren); } //make a new one m_CornerAnnotations[widgetNumber] = this->CreateCornerAnnotation(text, color); //add it to the list layercontroller->InsertForegroundRenderer(m_CornerAnnotations[widgetNumber].ren,true); } QmitkRenderWindow* QmitkStdMultiWidget::GetRenderWindow(unsigned int number) { switch (number) { case 0: return this->GetRenderWindow1(); case 1: return this->GetRenderWindow2(); case 2: return this->GetRenderWindow3(); case 3: return this->GetRenderWindow4(); default: MITK_ERROR << "Requested unknown render window"; break; } return NULL; } void QmitkStdMultiWidget::changeLayoutToDefault() { SMW_INFO << "changing layout to default... " << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( Qt::Vertical, m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //create m_SubSplit1 and m_SubSplit2 m_SubSplit1 = new QSplitter( m_LayoutSplit ); m_SubSplit2 = new QSplitter( m_LayoutSplit ); //insert Widget container into the splitters m_SubSplit1->addWidget( mitkWidget1Container ); m_SubSplit1->addWidget( mitkWidget2Container ); m_SubSplit2->addWidget( mitkWidget3Container ); m_SubSplit2->addWidget( mitkWidget4Container ); //set splitter Size QList splitterSize; splitterSize.push_back(1000); splitterSize.push_back(1000); m_SubSplit1->setSizes( splitterSize ); m_SubSplit2->setSizes( splitterSize ); m_LayoutSplit->setSizes( splitterSize ); //show mainSplitt and add to Layout m_MainSplit->show(); //show Widget if hidden if ( mitkWidget1->isHidden() ) mitkWidget1->show(); if ( mitkWidget2->isHidden() ) mitkWidget2->show(); if ( mitkWidget3->isHidden() ) mitkWidget3->show(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); m_Layout = LAYOUT_DEFAULT; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_DEFAULT ); mitkWidget2->LayoutDesignListChanged( LAYOUT_DEFAULT ); mitkWidget3->LayoutDesignListChanged( LAYOUT_DEFAULT ); mitkWidget4->LayoutDesignListChanged( LAYOUT_DEFAULT ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutToBig3D() { SMW_INFO << "changing layout to big 3D ..." << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //add widget Splitter to main Splitter m_MainSplit->addWidget( mitkWidget4Container ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //show mainSplitt and add to Layout m_MainSplit->show(); //show/hide Widgets mitkWidget1->hide(); mitkWidget2->hide(); mitkWidget3->hide(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); m_Layout = LAYOUT_BIG_3D; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_BIG_3D ); mitkWidget2->LayoutDesignListChanged( LAYOUT_BIG_3D ); mitkWidget3->LayoutDesignListChanged( LAYOUT_BIG_3D ); mitkWidget4->LayoutDesignListChanged( LAYOUT_BIG_3D ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutToWidget1() { SMW_INFO << "changing layout to big Widget1 ..." << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //add widget Splitter to main Splitter m_MainSplit->addWidget( mitkWidget1Container ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //show mainSplitt and add to Layout m_MainSplit->show(); //show/hide Widgets if ( mitkWidget1->isHidden() ) mitkWidget1->show(); mitkWidget2->hide(); mitkWidget3->hide(); mitkWidget4->hide(); m_Layout = LAYOUT_WIDGET1; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_WIDGET1 ); mitkWidget2->LayoutDesignListChanged( LAYOUT_WIDGET1 ); mitkWidget3->LayoutDesignListChanged( LAYOUT_WIDGET1 ); mitkWidget4->LayoutDesignListChanged( LAYOUT_WIDGET1 ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutToWidget2() { SMW_INFO << "changing layout to big Widget2 ..." << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //add widget Splitter to main Splitter m_MainSplit->addWidget( mitkWidget2Container ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //show mainSplitt and add to Layout m_MainSplit->show(); //show/hide Widgets mitkWidget1->hide(); if ( mitkWidget2->isHidden() ) mitkWidget2->show(); mitkWidget3->hide(); mitkWidget4->hide(); m_Layout = LAYOUT_WIDGET2; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_WIDGET2 ); mitkWidget2->LayoutDesignListChanged( LAYOUT_WIDGET2 ); mitkWidget3->LayoutDesignListChanged( LAYOUT_WIDGET2 ); mitkWidget4->LayoutDesignListChanged( LAYOUT_WIDGET2 ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutToWidget3() { SMW_INFO << "changing layout to big Widget3 ..." << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //add widget Splitter to main Splitter m_MainSplit->addWidget( mitkWidget3Container ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //show mainSplitt and add to Layout m_MainSplit->show(); //show/hide Widgets mitkWidget1->hide(); mitkWidget2->hide(); if ( mitkWidget3->isHidden() ) mitkWidget3->show(); mitkWidget4->hide(); m_Layout = LAYOUT_WIDGET3; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_WIDGET3 ); mitkWidget2->LayoutDesignListChanged( LAYOUT_WIDGET3 ); mitkWidget3->LayoutDesignListChanged( LAYOUT_WIDGET3 ); mitkWidget4->LayoutDesignListChanged( LAYOUT_WIDGET3 ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutToRowWidget3And4() { SMW_INFO << "changing layout to Widget3 and 4 in a Row..." << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( Qt::Vertical, m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //add Widgets to splitter m_LayoutSplit->addWidget( mitkWidget3Container ); m_LayoutSplit->addWidget( mitkWidget4Container ); //set Splitter Size QList splitterSize; splitterSize.push_back(1000); splitterSize.push_back(1000); m_LayoutSplit->setSizes( splitterSize ); //show mainSplitt and add to Layout m_MainSplit->show(); //show/hide Widgets mitkWidget1->hide(); mitkWidget2->hide(); if ( mitkWidget3->isHidden() ) mitkWidget3->show(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); m_Layout = LAYOUT_ROW_WIDGET_3_AND_4; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_ROW_WIDGET_3_AND_4 ); mitkWidget2->LayoutDesignListChanged( LAYOUT_ROW_WIDGET_3_AND_4 ); mitkWidget3->LayoutDesignListChanged( LAYOUT_ROW_WIDGET_3_AND_4 ); mitkWidget4->LayoutDesignListChanged( LAYOUT_ROW_WIDGET_3_AND_4 ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutToColumnWidget3And4() { SMW_INFO << "changing layout to Widget3 and 4 in one Column..." << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //add Widgets to splitter m_LayoutSplit->addWidget( mitkWidget3Container ); m_LayoutSplit->addWidget( mitkWidget4Container ); //set SplitterSize QList splitterSize; splitterSize.push_back(1000); splitterSize.push_back(1000); m_LayoutSplit->setSizes( splitterSize ); //show mainSplitt and add to Layout m_MainSplit->show(); //show/hide Widgets mitkWidget1->hide(); mitkWidget2->hide(); if ( mitkWidget3->isHidden() ) mitkWidget3->show(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); m_Layout = LAYOUT_COLUMN_WIDGET_3_AND_4; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_COLUMN_WIDGET_3_AND_4 ); mitkWidget2->LayoutDesignListChanged( LAYOUT_COLUMN_WIDGET_3_AND_4 ); mitkWidget3->LayoutDesignListChanged( LAYOUT_COLUMN_WIDGET_3_AND_4 ); mitkWidget4->LayoutDesignListChanged( LAYOUT_COLUMN_WIDGET_3_AND_4 ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutToRowWidgetSmall3andBig4() { SMW_INFO << "changing layout to Widget3 and 4 in a Row..." << std::endl; this->changeLayoutToRowWidget3And4(); m_Layout = LAYOUT_ROW_WIDGET_SMALL3_AND_BIG4; } void QmitkStdMultiWidget::changeLayoutToSmallUpperWidget2Big3and4() { SMW_INFO << "changing layout to Widget3 and 4 in a Row..." << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( Qt::Vertical, m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //create m_SubSplit1 and m_SubSplit2 m_SubSplit1 = new QSplitter( Qt::Vertical, m_LayoutSplit ); m_SubSplit2 = new QSplitter( m_LayoutSplit ); //insert Widget into the splitters m_SubSplit1->addWidget( mitkWidget2Container ); m_SubSplit2->addWidget( mitkWidget3Container ); m_SubSplit2->addWidget( mitkWidget4Container ); //set Splitter Size QList splitterSize; splitterSize.push_back(1000); splitterSize.push_back(1000); m_SubSplit2->setSizes( splitterSize ); splitterSize.clear(); splitterSize.push_back(500); splitterSize.push_back(1000); m_LayoutSplit->setSizes( splitterSize ); //show mainSplitt m_MainSplit->show(); //show Widget if hidden mitkWidget1->hide(); if ( mitkWidget2->isHidden() ) mitkWidget2->show(); if ( mitkWidget3->isHidden() ) mitkWidget3->show(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); m_Layout = LAYOUT_SMALL_UPPER_WIDGET2_BIG3_AND4; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_SMALL_UPPER_WIDGET2_BIG3_AND4 ); mitkWidget2->LayoutDesignListChanged( LAYOUT_SMALL_UPPER_WIDGET2_BIG3_AND4 ); mitkWidget3->LayoutDesignListChanged( LAYOUT_SMALL_UPPER_WIDGET2_BIG3_AND4 ); mitkWidget4->LayoutDesignListChanged( LAYOUT_SMALL_UPPER_WIDGET2_BIG3_AND4 ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutTo2x2Dand3DWidget() { SMW_INFO << "changing layout to 2 x 2D and 3D Widget" << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //create m_SubSplit1 and m_SubSplit2 m_SubSplit1 = new QSplitter( Qt::Vertical, m_LayoutSplit ); m_SubSplit2 = new QSplitter( m_LayoutSplit ); //add Widgets to splitter m_SubSplit1->addWidget( mitkWidget1Container ); m_SubSplit1->addWidget( mitkWidget2Container ); m_SubSplit2->addWidget( mitkWidget4Container ); //set Splitter Size QList splitterSize; splitterSize.push_back(1000); splitterSize.push_back(1000); m_SubSplit1->setSizes( splitterSize ); m_LayoutSplit->setSizes( splitterSize ); //show mainSplitt and add to Layout m_MainSplit->show(); //show/hide Widgets if ( mitkWidget1->isHidden() ) mitkWidget1->show(); if ( mitkWidget2->isHidden() ) mitkWidget2->show(); mitkWidget3->hide(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); m_Layout = LAYOUT_2X_2D_AND_3D_WIDGET; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_2X_2D_AND_3D_WIDGET ); mitkWidget2->LayoutDesignListChanged( LAYOUT_2X_2D_AND_3D_WIDGET ); mitkWidget3->LayoutDesignListChanged( LAYOUT_2X_2D_AND_3D_WIDGET ); mitkWidget4->LayoutDesignListChanged( LAYOUT_2X_2D_AND_3D_WIDGET ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutToLeft2Dand3DRight2D() { SMW_INFO << "changing layout to 2D and 3D left, 2D right Widget" << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //create m_SubSplit1 and m_SubSplit2 m_SubSplit1 = new QSplitter( Qt::Vertical, m_LayoutSplit ); m_SubSplit2 = new QSplitter( m_LayoutSplit ); //add Widgets to splitter m_SubSplit1->addWidget( mitkWidget1Container ); m_SubSplit1->addWidget( mitkWidget4Container ); m_SubSplit2->addWidget( mitkWidget2Container ); //set Splitter Size QList splitterSize; splitterSize.push_back(1000); splitterSize.push_back(1000); m_SubSplit1->setSizes( splitterSize ); m_LayoutSplit->setSizes( splitterSize ); //show mainSplitt and add to Layout m_MainSplit->show(); //show/hide Widgets if ( mitkWidget1->isHidden() ) mitkWidget1->show(); if ( mitkWidget2->isHidden() ) mitkWidget2->show(); mitkWidget3->hide(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); m_Layout = LAYOUT_2D_AND_3D_LEFT_2D_RIGHT_WIDGET; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_2D_AND_3D_LEFT_2D_RIGHT_WIDGET ); mitkWidget2->LayoutDesignListChanged( LAYOUT_2D_AND_3D_LEFT_2D_RIGHT_WIDGET ); mitkWidget3->LayoutDesignListChanged( LAYOUT_2D_AND_3D_LEFT_2D_RIGHT_WIDGET ); mitkWidget4->LayoutDesignListChanged( LAYOUT_2D_AND_3D_LEFT_2D_RIGHT_WIDGET ); //update Alle Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::changeLayoutTo2DUpAnd3DDown() { SMW_INFO << "changing layout to 2D up and 3D down" << std::endl; //Hide all Menu Widgets this->HideAllWidgetToolbars(); delete QmitkStdMultiWidgetLayout ; //create Main Layout QmitkStdMultiWidgetLayout = new QHBoxLayout( this ); //Set Layout to widget this->setLayout(QmitkStdMultiWidgetLayout); //create main splitter m_MainSplit = new QSplitter( this ); QmitkStdMultiWidgetLayout->addWidget( m_MainSplit ); //create m_LayoutSplit and add to the mainSplit m_LayoutSplit = new QSplitter( Qt::Vertical, m_MainSplit ); m_MainSplit->addWidget( m_LayoutSplit ); //add LevelWindow Widget to mainSplitter m_MainSplit->addWidget( levelWindowWidget ); //create m_SubSplit1 and m_SubSplit2 m_SubSplit1 = new QSplitter( m_LayoutSplit ); m_SubSplit2 = new QSplitter( m_LayoutSplit ); //insert Widget Container into splitter top m_SubSplit1->addWidget( mitkWidget1Container ); //set SplitterSize for splitter top QList splitterSize; //insert Widget Container into splitter bottom m_SubSplit2->addWidget( mitkWidget4Container ); //set SplitterSize for splitter m_LayoutSplit splitterSize.clear(); splitterSize.push_back(700); splitterSize.push_back(700); m_LayoutSplit->setSizes( splitterSize ); //show mainSplitt m_MainSplit->show(); //show/hide Widgets if ( mitkWidget1->isHidden() ) mitkWidget1->show(); mitkWidget2->hide(); mitkWidget3->hide(); if ( mitkWidget4->isHidden() ) mitkWidget4->show(); m_Layout = LAYOUT_2D_UP_AND_3D_DOWN; //update Layout Design List mitkWidget1->LayoutDesignListChanged( LAYOUT_2D_UP_AND_3D_DOWN ); mitkWidget2->LayoutDesignListChanged( LAYOUT_2D_UP_AND_3D_DOWN ); mitkWidget3->LayoutDesignListChanged( LAYOUT_2D_UP_AND_3D_DOWN ); mitkWidget4->LayoutDesignListChanged( LAYOUT_2D_UP_AND_3D_DOWN ); //update all Widgets this->UpdateAllWidgets(); } void QmitkStdMultiWidget::SetDataStorage( mitk::DataStorage* ds ) { mitk::BaseRenderer::GetInstance(mitkWidget1->GetRenderWindow())->SetDataStorage(ds); mitk::BaseRenderer::GetInstance(mitkWidget2->GetRenderWindow())->SetDataStorage(ds); mitk::BaseRenderer::GetInstance(mitkWidget3->GetRenderWindow())->SetDataStorage(ds); mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow())->SetDataStorage(ds); m_DataStorage = ds; } void QmitkStdMultiWidget::Fit() { vtkSmartPointer vtkrenderer; mitk::BaseRenderer::GetInstance(mitkWidget1->GetRenderWindow())->GetDisplayGeometry()->Fit(); mitk::BaseRenderer::GetInstance(mitkWidget2->GetRenderWindow())->GetDisplayGeometry()->Fit(); mitk::BaseRenderer::GetInstance(mitkWidget3->GetRenderWindow())->GetDisplayGeometry()->Fit(); mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow())->GetDisplayGeometry()->Fit(); int w = vtkObject::GetGlobalWarningDisplay(); vtkObject::GlobalWarningDisplayOff(); vtkrenderer = mitk::BaseRenderer::GetInstance(mitkWidget1->GetRenderWindow())->GetVtkRenderer(); if ( vtkrenderer!= NULL ) vtkrenderer->ResetCamera(); vtkrenderer = mitk::BaseRenderer::GetInstance(mitkWidget2->GetRenderWindow())->GetVtkRenderer(); if ( vtkrenderer!= NULL ) vtkrenderer->ResetCamera(); vtkrenderer = mitk::BaseRenderer::GetInstance(mitkWidget3->GetRenderWindow())->GetVtkRenderer(); if ( vtkrenderer!= NULL ) vtkrenderer->ResetCamera(); vtkrenderer = mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow())->GetVtkRenderer(); if ( vtkrenderer!= NULL ) vtkrenderer->ResetCamera(); vtkObject::SetGlobalWarningDisplay(w); } void QmitkStdMultiWidget::InitPositionTracking() { //PoinSetNode for MouseOrientation m_PositionTrackerNode = mitk::DataNode::New(); m_PositionTrackerNode->SetProperty("name", mitk::StringProperty::New("Mouse Position")); m_PositionTrackerNode->SetData( mitk::PointSet::New() ); m_PositionTrackerNode->SetColor(1.0,0.33,0.0); m_PositionTrackerNode->SetProperty("layer", mitk::IntProperty::New(1001)); m_PositionTrackerNode->SetVisibility(true); m_PositionTrackerNode->SetProperty("inputdevice", mitk::BoolProperty::New(true) ); m_PositionTrackerNode->SetProperty("BaseRendererMapperID", mitk::IntProperty::New(0) );//point position 2D mouse m_PositionTrackerNode->SetProperty("baserenderer", mitk::StringProperty::New("N/A")); } void QmitkStdMultiWidget::AddDisplayPlaneSubTree() { // add the displayed planes of the multiwidget to a node to which the subtree // @a planesSubTree points ... mitk::PlaneGeometryDataMapper2D::Pointer mapper; // ... of widget 1 mitk::BaseRenderer* renderer1 = mitk::BaseRenderer::GetInstance(mitkWidget1->GetRenderWindow()); m_PlaneNode1 = renderer1->GetCurrentWorldPlaneGeometryNode(); m_PlaneNode1->SetProperty("visible", mitk::BoolProperty::New(true)); m_PlaneNode1->SetProperty("name", mitk::StringProperty::New(std::string(renderer1->GetName()) + ".plane")); m_PlaneNode1->SetProperty("includeInBoundingBox", mitk::BoolProperty::New(false)); m_PlaneNode1->SetProperty("helper object", mitk::BoolProperty::New(true)); mapper = mitk::PlaneGeometryDataMapper2D::New(); m_PlaneNode1->SetMapper(mitk::BaseRenderer::Standard2D, mapper); // ... of widget 2 mitk::BaseRenderer* renderer2 = mitk::BaseRenderer::GetInstance(mitkWidget2->GetRenderWindow()); m_PlaneNode2 = renderer2->GetCurrentWorldPlaneGeometryNode(); m_PlaneNode2->SetProperty("visible", mitk::BoolProperty::New(true)); m_PlaneNode2->SetProperty("name", mitk::StringProperty::New(std::string(renderer2->GetName()) + ".plane")); m_PlaneNode2->SetProperty("includeInBoundingBox", mitk::BoolProperty::New(false)); m_PlaneNode2->SetProperty("helper object", mitk::BoolProperty::New(true)); mapper = mitk::PlaneGeometryDataMapper2D::New(); m_PlaneNode2->SetMapper(mitk::BaseRenderer::Standard2D, mapper); // ... of widget 3 mitk::BaseRenderer* renderer3 = mitk::BaseRenderer::GetInstance(mitkWidget3->GetRenderWindow()); m_PlaneNode3 = renderer3->GetCurrentWorldPlaneGeometryNode(); m_PlaneNode3->SetProperty("visible", mitk::BoolProperty::New(true)); m_PlaneNode3->SetProperty("name", mitk::StringProperty::New(std::string(renderer3->GetName()) + ".plane")); m_PlaneNode3->SetProperty("includeInBoundingBox", mitk::BoolProperty::New(false)); m_PlaneNode3->SetProperty("helper object", mitk::BoolProperty::New(true)); mapper = mitk::PlaneGeometryDataMapper2D::New(); m_PlaneNode3->SetMapper(mitk::BaseRenderer::Standard2D, mapper); m_ParentNodeForGeometryPlanes = mitk::DataNode::New(); m_ParentNodeForGeometryPlanes->SetProperty("name", mitk::StringProperty::New("Widgets")); m_ParentNodeForGeometryPlanes->SetProperty("helper object", mitk::BoolProperty::New(true)); } mitk::SliceNavigationController* QmitkStdMultiWidget::GetTimeNavigationController() { return m_TimeNavigationController; } void QmitkStdMultiWidget::EnableStandardLevelWindow() { levelWindowWidget->disconnect(this); levelWindowWidget->SetDataStorage(mitk::BaseRenderer::GetInstance(mitkWidget1->GetRenderWindow())->GetDataStorage()); levelWindowWidget->show(); } void QmitkStdMultiWidget::DisableStandardLevelWindow() { levelWindowWidget->disconnect(this); levelWindowWidget->hide(); } // CAUTION: Legacy code for enabling Qt-signal-controlled view initialization. // Use RenderingManager::InitializeViews() instead. bool QmitkStdMultiWidget::InitializeStandardViews( const mitk::Geometry3D * geometry ) { return m_RenderingManager->InitializeViews( geometry ); } void QmitkStdMultiWidget::RequestUpdate() { m_RenderingManager->RequestUpdate(mitkWidget1->GetRenderWindow()); m_RenderingManager->RequestUpdate(mitkWidget2->GetRenderWindow()); m_RenderingManager->RequestUpdate(mitkWidget3->GetRenderWindow()); m_RenderingManager->RequestUpdate(mitkWidget4->GetRenderWindow()); } void QmitkStdMultiWidget::ForceImmediateUpdate() { m_RenderingManager->ForceImmediateUpdate(mitkWidget1->GetRenderWindow()); m_RenderingManager->ForceImmediateUpdate(mitkWidget2->GetRenderWindow()); m_RenderingManager->ForceImmediateUpdate(mitkWidget3->GetRenderWindow()); m_RenderingManager->ForceImmediateUpdate(mitkWidget4->GetRenderWindow()); } void QmitkStdMultiWidget::wheelEvent( QWheelEvent * e ) { emit WheelMoved( e ); } void QmitkStdMultiWidget::mousePressEvent(QMouseEvent * e) { if (e->button() == Qt::LeftButton) { mitk::Point3D pointValue = this->GetLastLeftClickPosition(); emit LeftMouseClicked(pointValue); } } void QmitkStdMultiWidget::moveEvent( QMoveEvent* e ) { QWidget::moveEvent( e ); // it is necessary to readjust the position of the overlays as the StdMultiWidget has moved // unfortunately it's not done by QmitkRenderWindow::moveEvent -> must be done here emit Moved(); } void QmitkStdMultiWidget::leaveEvent ( QEvent * /*e*/ ) { //set cursor back to initial state m_SlicesRotator->ResetMouseCursor(); } QmitkRenderWindow* QmitkStdMultiWidget::GetRenderWindow1() const { return mitkWidget1; } QmitkRenderWindow* QmitkStdMultiWidget::GetRenderWindow2() const { return mitkWidget2; } QmitkRenderWindow* QmitkStdMultiWidget::GetRenderWindow3() const { return mitkWidget3; } QmitkRenderWindow* QmitkStdMultiWidget::GetRenderWindow4() const { return mitkWidget4; } const mitk::Point3D& QmitkStdMultiWidget::GetLastLeftClickPosition() const { return m_LastLeftClickPositionSupplier->GetCurrentPoint(); } const mitk::Point3D QmitkStdMultiWidget::GetCrossPosition() const { const mitk::PlaneGeometry *plane1 = mitkWidget1->GetSliceNavigationController()->GetCurrentPlaneGeometry(); const mitk::PlaneGeometry *plane2 = mitkWidget2->GetSliceNavigationController()->GetCurrentPlaneGeometry(); const mitk::PlaneGeometry *plane3 = mitkWidget3->GetSliceNavigationController()->GetCurrentPlaneGeometry(); mitk::Line3D line; if ( (plane1 != NULL) && (plane2 != NULL) && (plane1->IntersectionLine( plane2, line )) ) { mitk::Point3D point; if ( (plane3 != NULL) && (plane3->IntersectionPoint( line, point )) ) { return point; } } return m_LastLeftClickPositionSupplier->GetCurrentPoint(); } void QmitkStdMultiWidget::EnablePositionTracking() { if (!m_PositionTracker) { m_PositionTracker = mitk::PositionTracker::New("PositionTracker", NULL); } mitk::GlobalInteraction* globalInteraction = mitk::GlobalInteraction::GetInstance(); if (globalInteraction) { if(m_DataStorage.IsNotNull()) m_DataStorage->Add(m_PositionTrackerNode); globalInteraction->AddListener(m_PositionTracker); } } void QmitkStdMultiWidget::DisablePositionTracking() { mitk::GlobalInteraction* globalInteraction = mitk::GlobalInteraction::GetInstance(); if(globalInteraction) { if (m_DataStorage.IsNotNull()) m_DataStorage->Remove(m_PositionTrackerNode); globalInteraction->RemoveListener(m_PositionTracker); } } void QmitkStdMultiWidget::EnsureDisplayContainsPoint( mitk::DisplayGeometry* displayGeometry, const mitk::Point3D& p) { mitk::Point2D pointOnPlane; displayGeometry->Map( p, pointOnPlane ); // point minus origin < width or height ==> outside ? mitk::Vector2D pointOnRenderWindow_MM; pointOnRenderWindow_MM = pointOnPlane.GetVectorFromOrigin() - displayGeometry->GetOriginInMM(); mitk::Vector2D sizeOfDisplay( displayGeometry->GetSizeInMM() ); if ( sizeOfDisplay[0] < pointOnRenderWindow_MM[0] || 0 > pointOnRenderWindow_MM[0] || sizeOfDisplay[1] < pointOnRenderWindow_MM[1] || 0 > pointOnRenderWindow_MM[1] ) { // point is not visible -> move geometry mitk::Vector2D offset( (pointOnRenderWindow_MM - sizeOfDisplay / 2.0) / displayGeometry->GetScaleFactorMMPerDisplayUnit() ); displayGeometry->MoveBy( offset ); } } void QmitkStdMultiWidget::MoveCrossToPosition(const mitk::Point3D& newPosition) { // create a PositionEvent with the given position and // tell the slice navigation controllers to move there mitk::Point2D p2d; mitk::PositionEvent event( mitk::BaseRenderer::GetInstance(mitkWidget1->GetRenderWindow()), 0, 0, 0, mitk::Key_unknown, p2d, newPosition ); mitk::StateEvent stateEvent(mitk::EIDLEFTMOUSEBTN, &event); mitk::StateEvent stateEvent2(mitk::EIDLEFTMOUSERELEASE, &event); switch ( m_PlaneMode ) { default: case PLANE_MODE_SLICING: mitkWidget1->GetSliceNavigationController()->HandleEvent( &stateEvent ); mitkWidget2->GetSliceNavigationController()->HandleEvent( &stateEvent ); mitkWidget3->GetSliceNavigationController()->HandleEvent( &stateEvent ); // just in case SNCs will develop something that depends on the mouse // button being released again mitkWidget1->GetSliceNavigationController()->HandleEvent( &stateEvent2 ); mitkWidget2->GetSliceNavigationController()->HandleEvent( &stateEvent2 ); mitkWidget3->GetSliceNavigationController()->HandleEvent( &stateEvent2 ); break; case PLANE_MODE_ROTATION: m_SlicesRotator->HandleEvent( &stateEvent ); // just in case SNCs will develop something that depends on the mouse // button being released again m_SlicesRotator->HandleEvent( &stateEvent2 ); break; case PLANE_MODE_SWIVEL: m_SlicesSwiveller->HandleEvent( &stateEvent ); // just in case SNCs will develop something that depends on the mouse // button being released again m_SlicesSwiveller->HandleEvent( &stateEvent2 ); break; } // determine if cross is now out of display // if so, move the display window EnsureDisplayContainsPoint( mitk::BaseRenderer::GetInstance(mitkWidget1->GetRenderWindow()) ->GetDisplayGeometry(), newPosition ); EnsureDisplayContainsPoint( mitk::BaseRenderer::GetInstance(mitkWidget2->GetRenderWindow()) ->GetDisplayGeometry(), newPosition ); EnsureDisplayContainsPoint( mitk::BaseRenderer::GetInstance(mitkWidget3->GetRenderWindow()) ->GetDisplayGeometry(), newPosition ); // update displays m_RenderingManager->RequestUpdateAll(); } void QmitkStdMultiWidget::HandleCrosshairPositionEvent() { if(!m_PendingCrosshairPositionEvent) { m_PendingCrosshairPositionEvent=true; QTimer::singleShot(0,this,SLOT( HandleCrosshairPositionEventDelayed() ) ); } } mitk::DataNode::Pointer QmitkStdMultiWidget::GetTopLayerNode(mitk::DataStorage::SetOfObjects::ConstPointer nodes) { mitk::Point3D crosshairPos = this->GetCrossPosition(); mitk::DataNode::Pointer node; int maxlayer = -32768; if(nodes.IsNotNull()) { mitk::BaseRenderer* baseRenderer = this->mitkWidget1->GetSliceNavigationController()->GetRenderer(); // find node with largest layer, that is the node shown on top in the render window for (unsigned int x = 0; x < nodes->size(); x++) { if ( (nodes->at(x)->GetData()->GetGeometry() != NULL) && nodes->at(x)->GetData()->GetGeometry()->IsInside(crosshairPos) ) { int layer = 0; if(!(nodes->at(x)->GetIntProperty("layer", layer))) continue; if(layer > maxlayer) { if( static_cast(nodes->at(x))->IsVisible( baseRenderer ) ) { node = nodes->at(x); maxlayer = layer; } } } } } return node; } void QmitkStdMultiWidget::HandleCrosshairPositionEventDelayed() { m_PendingCrosshairPositionEvent = false; // find image with highest layer mitk::TNodePredicateDataType::Pointer isImageData = mitk::TNodePredicateDataType::New(); mitk::DataStorage::SetOfObjects::ConstPointer nodes = this->m_DataStorage->GetSubset(isImageData).GetPointer(); mitk::DataNode::Pointer node; mitk::DataNode::Pointer topSourceNode; mitk::Image::Pointer image; bool isBinary = false; node = this->GetTopLayerNode(nodes); int component = 0; if(node.IsNotNull()) { node->GetBoolProperty("binary",isBinary); if(isBinary) { mitk::DataStorage::SetOfObjects::ConstPointer sourcenodes = m_DataStorage->GetSources(node, NULL, true); if(!sourcenodes->empty()) { topSourceNode = this->GetTopLayerNode(sourcenodes); } if(topSourceNode.IsNotNull()) { image = dynamic_cast(topSourceNode->GetData()); topSourceNode->GetIntProperty("Image.Displayed Component", component); } else { image = dynamic_cast(node->GetData()); node->GetIntProperty("Image.Displayed Component", component); } } else { image = dynamic_cast(node->GetData()); node->GetIntProperty("Image.Displayed Component", component); } } mitk::Point3D crosshairPos = this->GetCrossPosition(); std::string statusText; std::stringstream stream; itk::Index<3> p; mitk::BaseRenderer* baseRenderer = this->mitkWidget1->GetSliceNavigationController()->GetRenderer(); unsigned int timestep = baseRenderer->GetTimeStep(); if(image.IsNotNull() && (image->GetTimeSteps() > timestep )) { image->GetGeometry()->WorldToIndex(crosshairPos, p); stream.precision(2); stream<<"Position: <" << std::fixed < mm"; stream<<"; Index: <"< "; mitk::ScalarType pixelValue = image->GetPixelValueByIndex(p, timestep, component); if (fabs(pixelValue)>1000000 || fabs(pixelValue) < 0.01) { stream<<"; Time: " << baseRenderer->GetTime() << " ms; Pixelvalue: "<< std::scientific<< pixelValue <<" "; } else { stream<<"; Time: " << baseRenderer->GetTime() << " ms; Pixelvalue: "<< pixelValue <<" "; } } else { stream << "No image information at this position!"; } statusText = stream.str(); mitk::StatusBar::GetInstance()->DisplayGreyValueText(statusText.c_str()); } void QmitkStdMultiWidget::EnableNavigationControllerEventListening() { // Let NavigationControllers listen to GlobalInteraction mitk::GlobalInteraction *gi = mitk::GlobalInteraction::GetInstance(); - // Listen for SliceNavigationController - mitkWidget1->GetSliceNavigationController()->crosshairPositionEvent.AddListener( mitk::MessageDelegate( this, &QmitkStdMultiWidget::HandleCrosshairPositionEvent ) ); - mitkWidget2->GetSliceNavigationController()->crosshairPositionEvent.AddListener( mitk::MessageDelegate( this, &QmitkStdMultiWidget::HandleCrosshairPositionEvent ) ); - mitkWidget3->GetSliceNavigationController()->crosshairPositionEvent.AddListener( mitk::MessageDelegate( this, &QmitkStdMultiWidget::HandleCrosshairPositionEvent ) ); + //// Listen for SliceNavigationController + //TODO 18735 kann das weg ?? + //mitkWidget1->GetSliceNavigationController()->crosshairPositionEvent.AddListener( mitk::MessageDelegate( this, &QmitkStdMultiWidget::HandleCrosshairPositionEvent ) ); + //mitkWidget2->GetSliceNavigationController()->crosshairPositionEvent.AddListener( mitk::MessageDelegate( this, &QmitkStdMultiWidget::HandleCrosshairPositionEvent ) ); + //mitkWidget3->GetSliceNavigationController()->crosshairPositionEvent.AddListener( mitk::MessageDelegate( this, &QmitkStdMultiWidget::HandleCrosshairPositionEvent ) ); switch ( m_PlaneMode ) { default: case PLANE_MODE_SLICING: gi->AddListener( mitkWidget1->GetSliceNavigationController() ); gi->AddListener( mitkWidget2->GetSliceNavigationController() ); gi->AddListener( mitkWidget3->GetSliceNavigationController() ); gi->AddListener( mitkWidget4->GetSliceNavigationController() ); break; case PLANE_MODE_ROTATION: gi->AddListener( m_SlicesRotator ); break; case PLANE_MODE_SWIVEL: gi->AddListener( m_SlicesSwiveller ); break; } gi->AddListener( m_TimeNavigationController ); m_CrosshairNavigationEnabled = true; } void QmitkStdMultiWidget::DisableNavigationControllerEventListening() { // Do not let NavigationControllers listen to GlobalInteraction mitk::GlobalInteraction *gi = mitk::GlobalInteraction::GetInstance(); switch ( m_PlaneMode ) { default: case PLANE_MODE_SLICING: gi->RemoveListener( mitkWidget1->GetSliceNavigationController() ); gi->RemoveListener( mitkWidget2->GetSliceNavigationController() ); gi->RemoveListener( mitkWidget3->GetSliceNavigationController() ); gi->RemoveListener( mitkWidget4->GetSliceNavigationController() ); break; case PLANE_MODE_ROTATION: m_SlicesRotator->ResetMouseCursor(); gi->RemoveListener( m_SlicesRotator ); break; case PLANE_MODE_SWIVEL: m_SlicesSwiveller->ResetMouseCursor(); gi->RemoveListener( m_SlicesSwiveller ); break; } gi->RemoveListener( m_TimeNavigationController ); m_CrosshairNavigationEnabled = false; } int QmitkStdMultiWidget::GetLayout() const { return m_Layout; } bool QmitkStdMultiWidget::GetGradientBackgroundFlag() const { return m_GradientBackgroundFlag; } void QmitkStdMultiWidget::EnableGradientBackground() { // gradient background is by default only in widget 4, otherwise // interferences between 2D rendering and VTK rendering may occur. for(unsigned int i = 0; i < 4; ++i) { m_GradientBackground[i]->Enable(); } m_GradientBackgroundFlag = true; } void QmitkStdMultiWidget::DisableGradientBackground() { for(unsigned int i = 0; i < 4; ++i) { m_GradientBackground[i]->Disable(); } m_GradientBackgroundFlag = false; } void QmitkStdMultiWidget::EnableDepartmentLogo() { m_LogoRendering->SetVisibility(true); } void QmitkStdMultiWidget::DisableDepartmentLogo() { m_LogoRendering->SetVisibility(false); } bool QmitkStdMultiWidget::IsDepartmentLogoEnabled() const { return m_LogoRendering->IsVisible(mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow())); } bool QmitkStdMultiWidget::IsCrosshairNavigationEnabled() const { return m_CrosshairNavigationEnabled; } mitk::SlicesRotator * QmitkStdMultiWidget::GetSlicesRotator() const { return m_SlicesRotator; } mitk::SlicesSwiveller * QmitkStdMultiWidget::GetSlicesSwiveller() const { return m_SlicesSwiveller; } void QmitkStdMultiWidget::SetWidgetPlaneVisibility(const char* widgetName, bool visible, mitk::BaseRenderer *renderer) { if (m_DataStorage.IsNotNull()) { mitk::DataNode* n = m_DataStorage->GetNamedNode(widgetName); if (n != NULL) n->SetVisibility(visible, renderer); } } void QmitkStdMultiWidget::SetWidgetPlanesVisibility(bool visible, mitk::BaseRenderer *renderer) { if (m_PlaneNode1.IsNotNull()) { m_PlaneNode1->SetVisibility(visible, renderer); } if (m_PlaneNode2.IsNotNull()) { m_PlaneNode2->SetVisibility(visible, renderer); } if (m_PlaneNode3.IsNotNull()) { m_PlaneNode3->SetVisibility(visible, renderer); } m_RenderingManager->RequestUpdateAll(); } void QmitkStdMultiWidget::SetWidgetPlanesLocked(bool locked) { //do your job and lock or unlock slices. GetRenderWindow1()->GetSliceNavigationController()->SetSliceLocked(locked); GetRenderWindow2()->GetSliceNavigationController()->SetSliceLocked(locked); GetRenderWindow3()->GetSliceNavigationController()->SetSliceLocked(locked); } void QmitkStdMultiWidget::SetWidgetPlanesRotationLocked(bool locked) { //do your job and lock or unlock slices. GetRenderWindow1()->GetSliceNavigationController()->SetSliceRotationLocked(locked); GetRenderWindow2()->GetSliceNavigationController()->SetSliceRotationLocked(locked); GetRenderWindow3()->GetSliceNavigationController()->SetSliceRotationLocked(locked); } void QmitkStdMultiWidget::SetWidgetPlanesRotationLinked( bool link ) { m_SlicesRotator->SetLinkPlanes( link ); m_SlicesSwiveller->SetLinkPlanes( link ); emit WidgetPlanesRotationLinked( link ); } void QmitkStdMultiWidget::SetWidgetPlaneMode( int userMode ) { MITK_DEBUG << "Changing crosshair mode to " << userMode; // first of all reset left mouse button interaction to default if PACS interaction style is active m_MouseModeSwitcher->SelectMouseMode( mitk::MouseModeSwitcher::MousePointer ); emit WidgetNotifyNewCrossHairMode( userMode ); int mode = m_PlaneMode; bool link = false; // Convert user interface mode to actual mode { switch(userMode) { case 0: mode = PLANE_MODE_SLICING; link = false; break; case 1: mode = PLANE_MODE_ROTATION; link = false; break; case 2: mode = PLANE_MODE_ROTATION; link = true; break; case 3: mode = PLANE_MODE_SWIVEL; link = false; break; } } // Slice rotation linked m_SlicesRotator->SetLinkPlanes( link ); m_SlicesSwiveller->SetLinkPlanes( link ); // Do nothing if mode didn't change if ( m_PlaneMode == mode ) { return; } mitk::GlobalInteraction *gi = mitk::GlobalInteraction::GetInstance(); // Remove listeners of previous mode switch ( m_PlaneMode ) { default: case PLANE_MODE_SLICING: // Notify MainTemplate GUI that this mode has been deselected emit WidgetPlaneModeSlicing( false ); gi->RemoveListener( mitkWidget1->GetSliceNavigationController() ); gi->RemoveListener( mitkWidget2->GetSliceNavigationController() ); gi->RemoveListener( mitkWidget3->GetSliceNavigationController() ); gi->RemoveListener( mitkWidget4->GetSliceNavigationController() ); break; case PLANE_MODE_ROTATION: // Notify MainTemplate GUI that this mode has been deselected emit WidgetPlaneModeRotation( false ); m_SlicesRotator->ResetMouseCursor(); gi->RemoveListener( m_SlicesRotator ); break; case PLANE_MODE_SWIVEL: // Notify MainTemplate GUI that this mode has been deselected emit WidgetPlaneModeSwivel( false ); m_SlicesSwiveller->ResetMouseCursor(); gi->RemoveListener( m_SlicesSwiveller ); break; } // Set new mode and add corresponding listener to GlobalInteraction m_PlaneMode = mode; switch ( m_PlaneMode ) { default: case PLANE_MODE_SLICING: // Notify MainTemplate GUI that this mode has been selected emit WidgetPlaneModeSlicing( true ); // Add listeners gi->AddListener( mitkWidget1->GetSliceNavigationController() ); gi->AddListener( mitkWidget2->GetSliceNavigationController() ); gi->AddListener( mitkWidget3->GetSliceNavigationController() ); gi->AddListener( mitkWidget4->GetSliceNavigationController() ); m_RenderingManager->InitializeViews(); break; case PLANE_MODE_ROTATION: // Notify MainTemplate GUI that this mode has been selected emit WidgetPlaneModeRotation( true ); // Add listener gi->AddListener( m_SlicesRotator ); break; case PLANE_MODE_SWIVEL: // Notify MainTemplate GUI that this mode has been selected emit WidgetPlaneModeSwivel( true ); // Add listener gi->AddListener( m_SlicesSwiveller ); break; } // Notify MainTemplate GUI that mode has changed emit WidgetPlaneModeChange(m_PlaneMode); } void QmitkStdMultiWidget::SetGradientBackgroundColorForRenderWindow( const mitk::Color & upper, const mitk::Color & lower, unsigned int widgetNumber ) { if(widgetNumber > 3) { MITK_ERROR << "Gradientbackground for unknown widget!"; return; } m_GradientBackgroundColors[widgetNumber].first = upper; m_GradientBackgroundColors[widgetNumber].second = lower; m_GradientBackground[widgetNumber]->SetGradientColors(upper, lower); m_GradientBackgroundFlag = true; } void QmitkStdMultiWidget::SetGradientBackgroundColors( const mitk::Color & upper, const mitk::Color & lower ) { for(unsigned int i = 0; i < 4; ++i) { m_GradientBackground[i]->SetGradientColors(upper, lower); } m_GradientBackgroundFlag = true; } void QmitkStdMultiWidget::SetDepartmentLogoPath( const char * path ) { m_LogoRendering->SetLogoImagePath(path); mitk::BaseRenderer* renderer = mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow()); m_LogoRendering->Update(renderer); RequestUpdate(); } void QmitkStdMultiWidget::SetWidgetPlaneModeToSlicing( bool activate ) { if ( activate ) { this->SetWidgetPlaneMode( PLANE_MODE_SLICING ); } } void QmitkStdMultiWidget::SetWidgetPlaneModeToRotation( bool activate ) { if ( activate ) { this->SetWidgetPlaneMode( PLANE_MODE_ROTATION ); } } void QmitkStdMultiWidget::SetWidgetPlaneModeToSwivel( bool activate ) { if ( activate ) { this->SetWidgetPlaneMode( PLANE_MODE_SWIVEL ); } } void QmitkStdMultiWidget::OnLayoutDesignChanged( int layoutDesignIndex ) { switch( layoutDesignIndex ) { case LAYOUT_DEFAULT: { this->changeLayoutToDefault(); break; } case LAYOUT_2D_IMAGES_UP: { this->changeLayoutTo2DImagesUp(); break; } case LAYOUT_2D_IMAGES_LEFT: { this->changeLayoutTo2DImagesLeft(); break; } case LAYOUT_BIG_3D: { this->changeLayoutToBig3D(); break; } case LAYOUT_WIDGET1: { this->changeLayoutToWidget1(); break; } case LAYOUT_WIDGET2: { this->changeLayoutToWidget2(); break; } case LAYOUT_WIDGET3: { this->changeLayoutToWidget3(); break; } case LAYOUT_2X_2D_AND_3D_WIDGET: { this->changeLayoutTo2x2Dand3DWidget(); break; } case LAYOUT_ROW_WIDGET_3_AND_4: { this->changeLayoutToRowWidget3And4(); break; } case LAYOUT_COLUMN_WIDGET_3_AND_4: { this->changeLayoutToColumnWidget3And4(); break; } case LAYOUT_ROW_WIDGET_SMALL3_AND_BIG4: { this->changeLayoutToRowWidgetSmall3andBig4(); break; } case LAYOUT_SMALL_UPPER_WIDGET2_BIG3_AND4: { this->changeLayoutToSmallUpperWidget2Big3and4(); break; } case LAYOUT_2D_AND_3D_LEFT_2D_RIGHT_WIDGET: { this->changeLayoutToLeft2Dand3DRight2D(); break; } }; } void QmitkStdMultiWidget::UpdateAllWidgets() { mitkWidget1->resize( mitkWidget1Container->frameSize().width()-1, mitkWidget1Container->frameSize().height() ); mitkWidget1->resize( mitkWidget1Container->frameSize().width(), mitkWidget1Container->frameSize().height() ); mitkWidget2->resize( mitkWidget2Container->frameSize().width()-1, mitkWidget2Container->frameSize().height() ); mitkWidget2->resize( mitkWidget2Container->frameSize().width(), mitkWidget2Container->frameSize().height() ); mitkWidget3->resize( mitkWidget3Container->frameSize().width()-1, mitkWidget3Container->frameSize().height() ); mitkWidget3->resize( mitkWidget3Container->frameSize().width(), mitkWidget3Container->frameSize().height() ); mitkWidget4->resize( mitkWidget4Container->frameSize().width()-1, mitkWidget4Container->frameSize().height() ); mitkWidget4->resize( mitkWidget4Container->frameSize().width(), mitkWidget4Container->frameSize().height() ); } void QmitkStdMultiWidget::HideAllWidgetToolbars() { mitkWidget1->HideRenderWindowMenu(); mitkWidget2->HideRenderWindowMenu(); mitkWidget3->HideRenderWindowMenu(); mitkWidget4->HideRenderWindowMenu(); } void QmitkStdMultiWidget::ActivateMenuWidget( bool state ) { mitkWidget1->ActivateMenuWidget( state, this ); mitkWidget2->ActivateMenuWidget( state, this ); mitkWidget3->ActivateMenuWidget( state, this ); mitkWidget4->ActivateMenuWidget( state, this ); } bool QmitkStdMultiWidget::IsMenuWidgetEnabled() const { return mitkWidget1->GetActivateMenuWidgetFlag(); } void QmitkStdMultiWidget::SetDecorationColor(unsigned int widgetNumber, mitk::Color color) { switch (widgetNumber) { case 0: if(m_PlaneNode1.IsNotNull()) { m_PlaneNode1->SetColor(color); } break; case 1: if(m_PlaneNode2.IsNotNull()) { m_PlaneNode2->SetColor(color); } break; case 2: if(m_PlaneNode3.IsNotNull()) { m_PlaneNode3->SetColor(color); } break; case 3: m_DecorationColorWidget4 = color; break; default: MITK_ERROR << "Decoration color for unknown widget!"; break; } } void QmitkStdMultiWidget::ResetCrosshair() { if (m_DataStorage.IsNotNull()) { m_RenderingManager->InitializeViewsByBoundingObjects(m_DataStorage); //m_RenderingManager->InitializeViews( m_DataStorage->ComputeVisibleBoundingGeometry3D() ); // reset interactor to normal slicing this->SetWidgetPlaneMode(PLANE_MODE_SLICING); } } void QmitkStdMultiWidget::EnableColoredRectangles() { for(unsigned int i = 0; i < 4; ++i) { m_RectangleRendering[i]->Enable( GetDecorationColor(i)[0], GetDecorationColor(i)[1], GetDecorationColor(i)[2]); } } void QmitkStdMultiWidget::DisableColoredRectangles() { m_RectangleRendering[0]->Disable(); m_RectangleRendering[1]->Disable(); m_RectangleRendering[2]->Disable(); m_RectangleRendering[3]->Disable(); } bool QmitkStdMultiWidget::IsColoredRectanglesEnabled() const { return m_RectangleRendering[0]->IsEnabled(); } mitk::MouseModeSwitcher* QmitkStdMultiWidget::GetMouseModeSwitcher() { return m_MouseModeSwitcher; } void QmitkStdMultiWidget::MouseModeSelected( mitk::MouseModeSwitcher::MouseMode mouseMode ) { if ( mouseMode == 0 ) { this->EnableNavigationControllerEventListening(); } else { this->DisableNavigationControllerEventListening(); } } mitk::DataNode::Pointer QmitkStdMultiWidget::GetWidgetPlane1() { return this->m_PlaneNode1; } mitk::DataNode::Pointer QmitkStdMultiWidget::GetWidgetPlane2() { return this->m_PlaneNode2; } mitk::DataNode::Pointer QmitkStdMultiWidget::GetWidgetPlane3() { return this->m_PlaneNode3; } mitk::DataNode::Pointer QmitkStdMultiWidget::GetWidgetPlane(int id) { switch(id) { case 1: return this->m_PlaneNode1; break; case 2: return this->m_PlaneNode2; break; case 3: return this->m_PlaneNode3; break; default: return NULL; } }