diff --git a/Modules/DiffusionImaging/FiberTracking/Fiberfox/itkKspaceImageFilter.cpp b/Modules/DiffusionImaging/FiberTracking/Fiberfox/itkKspaceImageFilter.cpp index ee1c3d3df1..4ebef7a526 100644 --- a/Modules/DiffusionImaging/FiberTracking/Fiberfox/itkKspaceImageFilter.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Fiberfox/itkKspaceImageFilter.cpp @@ -1,497 +1,498 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef __itkKspaceImageFilter_txx #define __itkKspaceImageFilter_txx //#endif #include #include #include #include #include "itkKspaceImageFilter.h" #include #include #include #include #include #include #include #include namespace itk { template< class ScalarType > KspaceImageFilter< ScalarType >::KspaceImageFilter() : m_Z(0) , m_RandSeed(-1) , m_SpikesPerSlice(0) , m_IsBaseline(true) { m_DiffusionGradientDirection.Fill(0.0); m_CoilPosition.Fill(0.0); } template< class ScalarType > void KspaceImageFilter< ScalarType > ::BeforeThreadedGenerateData() { m_Spike = vcl_complex(0,0); m_SpikeLog = ""; m_TransX = -m_Translation[0]; m_TransY = -m_Translation[1]; m_TransZ = -m_Translation[2]; kxMax = m_Parameters->m_SignalGen.m_CroppedRegion.GetSize(0); kyMax = m_Parameters->m_SignalGen.m_CroppedRegion.GetSize(1); xMax = m_CompartmentImages.at(0)->GetLargestPossibleRegion().GetSize(0); // scanner coverage in x-direction yMax = m_CompartmentImages.at(0)->GetLargestPossibleRegion().GetSize(1); // scanner coverage in y-direction yMaxFov = yMax; if (m_Parameters->m_Misc.m_DoAddAliasing) { // actual FOV in y-direction (in x-direction FOV=xMax) yMaxFov = static_cast(yMaxFov * m_Parameters->m_SignalGen.m_CroppingFactor); } yMaxFov_half = (yMaxFov-1)/2; numPix = kxMax*kyMax; float ringing_factor = static_cast(m_Parameters->m_SignalGen.m_ZeroRinging)/100.0; ringing_lines_x = static_cast(ceil(kxMax/2 * ringing_factor)); ringing_lines_y = static_cast(ceil(kyMax/2 * ringing_factor)); // Adjust noise variance since it is the intended variance in physical space and not in k-space: float noiseVar = m_Parameters->m_SignalGen.m_PartialFourier*m_Parameters->m_SignalGen.m_NoiseVariance/(kyMax*kxMax); m_RandGen = itk::Statistics::MersenneTwisterRandomVariateGenerator::New(); if (m_RandSeed>=0) // always generate the same random numbers? m_RandGen->SetSeed(m_RandSeed); else m_RandGen->SetSeed(); typename OutputImageType::Pointer outputImage = OutputImageType::New(); itk::ImageRegion<2> region; region.SetSize(0, m_Parameters->m_SignalGen.m_CroppedRegion.GetSize(0)); region.SetSize(1, m_Parameters->m_SignalGen.m_CroppedRegion.GetSize(1)); outputImage->SetLargestPossibleRegion( region ); outputImage->SetBufferedRegion( region ); outputImage->SetRequestedRegion( region ); outputImage->Allocate(); vcl_complex zero = vcl_complex(0, 0); outputImage->FillBuffer(zero); if (m_Parameters->m_SignalGen.m_NoiseVariance>0 && m_Parameters->m_Misc.m_DoAddNoise) { ImageRegionIterator< OutputImageType > oit(outputImage, outputImage->GetLargestPossibleRegion()); while( !oit.IsAtEnd() ) { oit.Set(vcl_complex(m_RandGen->GetNormalVariate(0, noiseVar), m_RandGen->GetNormalVariate(0, noiseVar))); ++oit; } } m_KSpaceImage = InputImageType::New(); m_KSpaceImage->SetLargestPossibleRegion( region ); m_KSpaceImage->SetBufferedRegion( region ); m_KSpaceImage->SetRequestedRegion( region ); m_KSpaceImage->Allocate(); m_KSpaceImage->FillBuffer(0.0); // m_TickImage = InputImageType::New(); // m_TickImage->SetLargestPossibleRegion( region ); // m_TickImage->SetBufferedRegion( region ); // m_TickImage->SetRequestedRegion( region ); // m_TickImage->Allocate(); // m_TickImage->FillBuffer(-1.0); - m_Gamma = 42576000*itk::Math::twopi; // Gyromagnetic ratio in Hz/T (1.5T) + m_Gamma = 42576000*itk::Math::twopi; // Gyromagnetic ratio in Hz/T if ( m_Parameters->m_SignalGen.m_EddyStrength>0 && m_DiffusionGradientDirection.GetNorm()>0.001) { m_DiffusionGradientDirection = m_DiffusionGradientDirection * m_Parameters->m_SignalGen.m_EddyStrength/1000 * m_Gamma; m_IsBaseline = false; } else { m_IsBaseline = true; } this->SetNthOutput(0, outputImage); for (int i=0; i<3; i++) for (int j=0; j<3; j++) m_Transform[i][j] = m_Parameters->m_SignalGen.m_ImageDirection[i][j] * m_Parameters->m_SignalGen.m_ImageSpacing[j]/1000; float a = m_Parameters->m_SignalGen.m_ImageRegion.GetSize(0)*m_Parameters->m_SignalGen.m_ImageSpacing[0]; float b = m_Parameters->m_SignalGen.m_ImageRegion.GetSize(1)*m_Parameters->m_SignalGen.m_ImageSpacing[1]; float diagonal = sqrt(a*a+b*b)/1000; // image diagonal in m switch (m_Parameters->m_SignalGen.m_CoilSensitivityProfile) { case SignalGenerationParameters::COIL_CONSTANT: { m_CoilSensitivityFactor = 1; // same signal everywhere break; } case SignalGenerationParameters::COIL_LINEAR: { m_CoilSensitivityFactor = -1/diagonal; // about 50% of the signal in the image center remaining break; } case SignalGenerationParameters::COIL_EXPONENTIAL: { m_CoilSensitivityFactor = -log(0.1)/diagonal; // about 32% of the signal in the image center remaining break; } } switch (m_Parameters->m_SignalGen.m_AcquisitionType) { case SignalGenerationParameters::SingleShotEpi: m_ReadoutScheme = new mitk::SingleShotEpi(m_Parameters); break; case SignalGenerationParameters::ConventionalSpinEcho: m_ReadoutScheme = new mitk::ConventionalSpinEcho(m_Parameters); break; case SignalGenerationParameters::FastSpinEcho: m_ReadoutScheme = new mitk::FastSpinEcho(m_Parameters); break; default: m_ReadoutScheme = new mitk::SingleShotEpi(m_Parameters); } m_ReadoutScheme->AdjustEchoTime(); m_MovedFmap = nullptr; if (m_Parameters->m_Misc.m_DoAddDistortions && m_Parameters->m_SignalGen.m_FrequencyMap.IsNotNull() && m_Parameters->m_SignalGen.m_DoAddMotion) { // we have to account for the head motion since this also moves our frequency map itk::LinearInterpolateImageFunction< itk::Image< float, 3 >, float >::Pointer fmapInterpolator; fmapInterpolator = itk::LinearInterpolateImageFunction< itk::Image< float, 3 >, float >::New(); fmapInterpolator->SetInputImage(m_Parameters->m_SignalGen.m_FrequencyMap); m_MovedFmap = itk::Image< ScalarType, 2 >::New(); m_MovedFmap->SetLargestPossibleRegion( m_CompartmentImages.at(0)->GetLargestPossibleRegion() ); m_MovedFmap->SetBufferedRegion( m_CompartmentImages.at(0)->GetLargestPossibleRegion() ); m_MovedFmap->SetRequestedRegion( m_CompartmentImages.at(0)->GetLargestPossibleRegion() ); m_MovedFmap->Allocate(); m_MovedFmap->FillBuffer(0); ImageRegionIterator< InputImageType > it(m_MovedFmap, m_MovedFmap->GetLargestPossibleRegion() ); while( !it.IsAtEnd() ) { itk::Image::IndexType index; index[0] = it.GetIndex()[0]; index[1] = it.GetIndex()[1]; index[2] = m_Zidx; itk::Point point3D; m_Parameters->m_SignalGen.m_FrequencyMap->TransformIndexToPhysicalPoint(index, point3D); m_FiberBundle->TransformPoint( point3D, m_RotationMatrix, m_TransX, m_TransY, m_TransZ ); it.Set(mitk::imv::GetImageValue(point3D, true, fmapInterpolator)); ++it; } } // calculate T1 relaxation (independent of actual readout) m_T1Relax.clear(); if ( m_Parameters->m_SignalGen.m_DoSimulateRelaxation) for (unsigned int i=0; im_SignalGen.m_tRep/m_T1[i])); // account for inversion pulse and TI if (m_Parameters->m_SignalGen.m_tInv > 0) relaxation *= (1.0-std::exp(std::log(2) - m_Parameters->m_SignalGen.m_tInv/m_T1[i])); m_T1Relax.push_back(relaxation); } } template< class ScalarType > float KspaceImageFilter< ScalarType >::CoilSensitivity(VectorType& pos) { // ************************************************************************* // Coil ring is moving with excited slice (FIX THIS SOMETIME) m_CoilPosition[2] = pos[2]; // ************************************************************************* switch (m_Parameters->m_SignalGen.m_CoilSensitivityProfile) { case SignalGenerationParameters::COIL_CONSTANT: return 1; case SignalGenerationParameters::COIL_LINEAR: { VectorType diff = pos-m_CoilPosition; float sens = diff.GetNorm()*m_CoilSensitivityFactor + 1; if (sens<0) sens = 0; return sens; } case SignalGenerationParameters::COIL_EXPONENTIAL: { VectorType diff = pos-m_CoilPosition; float dist = static_cast(diff.GetNorm()); return std::exp(-dist*m_CoilSensitivityFactor); } default: return 1; } } template< class ScalarType > void KspaceImageFilter< ScalarType > ::ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, ThreadIdType ) { typename OutputImageType::Pointer outputImage = static_cast< OutputImageType * >(this->ProcessObject::GetOutput(0)); ImageRegionIterator< OutputImageType > oit(outputImage, outputRegionForThread); typedef ImageRegionConstIterator< InputImageType > InputIteratorType; // precalculate shifts for DFT float x_shift = 0; float y_shift = 0; if (static_cast(xMax)%2==1) x_shift = (xMax-1)/2; else x_shift = xMax/2; if (static_cast(yMax)%2==1) y_shift = (yMax-1)/2; else y_shift = yMax/2; float kx_shift = 0; float ky_shift = 0; if (static_cast(kxMax)%2==1) kx_shift = (kxMax-1)/2; else kx_shift = kxMax/2; if (static_cast(kyMax)%2==1) ky_shift = (kyMax-1)/2; else ky_shift = kyMax/2; vcl_complex zero = vcl_complex(0, 0); while( !oit.IsAtEnd() ) { int tick = oit.GetIndex()[1] * kxMax + oit.GetIndex()[0]; // get current k-space index (depends on the chosen k-space readout scheme) itk::Index< 2 > kIdx = m_ReadoutScheme->GetActualKspaceIndex(tick); // we have to adjust the ticks to obtain correct times since the DFT is not completely symmetric in the even number of lines case if (static_cast(kyMax)%2 == 0 && !m_Parameters->m_SignalGen.m_ReversePhase) { tick += kxMax; tick %= static_cast(numPix); } // partial fourier // two cases because we always want to skip the "later" parts of k-space // in "normal" phase direction, the higher k-space indices are acquired first // in reversed phase direction, the higher k-space indices are acquired later // if the image has an even number of lines, never skip line zero since it is missing on the other side (DFT not completely syymetric in even case) if ((m_Parameters->m_SignalGen.m_ReversePhase && kIdx[1]>std::ceil(kyMax*m_Parameters->m_SignalGen.m_PartialFourier)) || (!m_Parameters->m_SignalGen.m_ReversePhase && kIdx[1]m_SignalGen.m_PartialFourier)) && (kIdx[1]>0 || static_cast(kyMax)%2 == 1))) { outputImage->SetPixel(kIdx, zero); ++oit; continue; } // m_TickImage->SetPixel(kIdx, tick); // gibbs ringing by setting high frequencies to zero (alternative to using smaller k-space than input image space) if (m_Parameters->m_SignalGen.m_DoAddGibbsRinging && m_Parameters->m_SignalGen.m_ZeroRinging>0) { if (kIdx[0] < ringing_lines_x || kIdx[1] < ringing_lines_y || kIdx[0] >= kxMax - ringing_lines_x || kIdx[1] >= kyMax - ringing_lines_y) { outputImage->SetPixel(kIdx, zero); ++oit; continue; } } - // time passes since application of the RF pulse - float tRf = m_ReadoutScheme->GetTimeFromRf(tick); + // time from maximum echo + float t = m_ReadoutScheme->GetTimeFromMaxEcho(tick); // calculate eddy current decay factor float eddyDecay = 0; if ( m_Parameters->m_Misc.m_DoAddEddyCurrents && m_Parameters->m_SignalGen.m_EddyStrength>0 && !m_IsBaseline) { // time passed since k-space readout started float tRead = m_ReadoutScheme->GetTimeFromLastDiffusionGradient(tick); - eddyDecay = std::exp(-tRead/m_Parameters->m_SignalGen.m_Tau ) * tRead/1000; // time in seconds here + eddyDecay = std::exp(-tRead/m_Parameters->m_SignalGen.m_Tau ) * t/1000; // time in seconds here } // calcualte signal relaxation factors std::vector< float > relaxFactor; if ( m_Parameters->m_SignalGen.m_DoSimulateRelaxation) { - // time from maximum echo - float t = m_ReadoutScheme->GetTimeFromMaxEcho(tick); + // time passes since application of the RF pulse + float tRf = m_ReadoutScheme->GetTimeFromRf(tick); + for (unsigned int i=0; im_SignalGen.m_tInhom)); } } // shift k for DFT: (0 -- N) --> (-N/2 -- N/2) float kx = kIdx[0] - kx_shift; float ky = kIdx[1] - ky_shift; // add ghosting by adding gradient delay induced offset if (m_Parameters->m_Misc.m_DoAddGhosts) { if (kIdx[1]%2 == 1) kx -= m_Parameters->m_SignalGen.m_KspaceLineOffset; else kx += m_Parameters->m_SignalGen.m_KspaceLineOffset; } // pull stuff out of inner loop - tRf /= 1000; // time in seconds + t /= 1000; // time in seconds kx /= xMax; ky /= yMaxFov; // calculate signal s at k-space position (kx, ky) vcl_complex s(0,0); InputIteratorType it(m_CompartmentImages[0], m_CompartmentImages[0]->GetLargestPossibleRegion() ); while( !it.IsAtEnd() ) { typename InputImageType::IndexType input_idx = it.GetIndex(); // shift x,y for DFT: (0 -- N) --> (-N/2 -- N/2) float x = input_idx[0] - x_shift; float y = input_idx[1] - y_shift; // sum compartment signals and simulate relaxation ScalarType f_real = 0; for (unsigned int i=0; im_SignalGen.m_DoSimulateRelaxation) f_real += m_CompartmentImages[i]->GetPixel(input_idx) * relaxFactor[i]; else f_real += m_CompartmentImages[i]->GetPixel(input_idx); // vector from image center to current position (in meter) // only necessary for eddy currents and non-constant coil sensitivity VectorType pos; if ((m_Parameters->m_Misc.m_DoAddEddyCurrents && m_Parameters->m_SignalGen.m_EddyStrength>0 && !m_IsBaseline) || m_Parameters->m_SignalGen.m_CoilSensitivityProfile!=SignalGenerationParameters::COIL_CONSTANT) { pos[0] = x; pos[1] = y; pos[2] = m_Z; pos = m_Transform*pos; } if (m_Parameters->m_SignalGen.m_CoilSensitivityProfile!=SignalGenerationParameters::COIL_CONSTANT) f_real *= CoilSensitivity(pos); // simulate eddy currents and other distortions - float omega = 0; // frequency offset + float phi = 0; // phase shift if ( m_Parameters->m_Misc.m_DoAddEddyCurrents && m_Parameters->m_SignalGen.m_EddyStrength>0 && !m_IsBaseline) { // duration (tRead) already included in "eddyDecay" - omega += (m_DiffusionGradientDirection[0]*pos[0]+m_DiffusionGradientDirection[1]*pos[1]+m_DiffusionGradientDirection[2]*pos[2]) * eddyDecay; + phi += (m_DiffusionGradientDirection[0]*pos[0]+m_DiffusionGradientDirection[1]*pos[1]+m_DiffusionGradientDirection[2]*pos[2]) * eddyDecay; } // simulate distortions if (m_Parameters->m_Misc.m_DoAddDistortions) { if (m_MovedFmap.IsNotNull()) // if we have headmotion, use moved map - omega += m_MovedFmap->GetPixel(input_idx) * tRf; + phi += m_MovedFmap->GetPixel(input_idx) * t; else if (m_Parameters->m_SignalGen.m_FrequencyMap.IsNotNull()) { itk::Image::IndexType index; index[0] = input_idx[0]; index[1] = input_idx[1]; index[2] = m_Zidx; - omega += m_Parameters->m_SignalGen.m_FrequencyMap->GetPixel(index) * tRf; + phi += m_Parameters->m_SignalGen.m_FrequencyMap->GetPixel(index) * t; } } // if signal comes from outside FOV, mirror it back (wrap-around artifact - aliasing if (m_Parameters->m_Misc.m_DoAddAliasing) { if (y<-yMaxFov_half) y += yMaxFov; else if (y>yMaxFov_half) y -= yMaxFov; } // actual DFT term vcl_complex f(f_real * m_Parameters->m_SignalGen.m_SignalScale, 0); - s += f * std::exp( std::complex(0, itk::Math::twopi * (kx*x + ky*y + omega )) ); + s += f * std::exp( std::complex(0, itk::Math::twopi * (kx*x + ky*y + phi )) ); ++it; } s /= numPix; if (m_SpikesPerSlice>0 && sqrt(s.imag()*s.imag()+s.real()*s.real()) > sqrt(m_Spike.imag()*m_Spike.imag()+m_Spike.real()*m_Spike.real()) ) m_Spike = s; s += outputImage->GetPixel(kIdx); // add precalculated noise outputImage->SetPixel(kIdx, s); m_KSpaceImage->SetPixel(kIdx, sqrt(s.imag()*s.imag()+s.real()*s.real()) ); ++oit; } } template< class ScalarType > void KspaceImageFilter< ScalarType > ::AfterThreadedGenerateData() { typename OutputImageType::Pointer outputImage = static_cast< OutputImageType * >(this->ProcessObject::GetOutput(0)); int kxMax = outputImage->GetLargestPossibleRegion().GetSize(0); // k-space size in x-direction int kyMax = outputImage->GetLargestPossibleRegion().GetSize(1); // k-space size in y-direction ImageRegionIterator< OutputImageType > oit(outputImage, outputImage->GetLargestPossibleRegion()); while( !oit.IsAtEnd() ) // use hermitian k-space symmetry to fill empty k-space parts resulting from partial fourier acquisition { int tick = oit.GetIndex()[1] * kxMax + oit.GetIndex()[0]; auto kIdx = m_ReadoutScheme->GetActualKspaceIndex(tick); if ((m_Parameters->m_SignalGen.m_ReversePhase && kIdx[1]>std::ceil(kyMax*m_Parameters->m_SignalGen.m_PartialFourier)) || (!m_Parameters->m_SignalGen.m_ReversePhase && kIdx[1]m_SignalGen.m_PartialFourier)) && (kIdx[1]>0 || static_cast(kyMax)%2 == 1))) { // calculate symmetric index auto sym = m_ReadoutScheme->GetSymmetricIndex(kIdx); // use complex conjugate of symmetric index value at current index vcl_complex s = outputImage->GetPixel(sym); s = vcl_complex(s.real(), -s.imag()); outputImage->SetPixel(kIdx, s); m_KSpaceImage->SetPixel(kIdx, sqrt(s.imag()*s.imag()+s.real()*s.real()) ); } ++oit; } m_Spike *= m_Parameters->m_SignalGen.m_SpikeAmplitude; itk::Index< 2 > spikeIdx; for (unsigned int i=0; iGetIntegerVariate()%kxMax; spikeIdx[1] = m_RandGen->GetIntegerVariate()%kyMax; outputImage->SetPixel(spikeIdx, m_Spike); m_SpikeLog += "[" + boost::lexical_cast(spikeIdx[0]) + "," + boost::lexical_cast(spikeIdx[1]) + "," + boost::lexical_cast(m_Zidx) + "] Magnitude: " + boost::lexical_cast(m_Spike.real()) + "+" + boost::lexical_cast(m_Spike.imag()) + "i\n"; } delete m_ReadoutScheme; // typename itk::ImageFileWriter< InputImageType >::Pointer wr = itk::ImageFileWriter< InputImageType >::New(); // wr->SetInput(m_TickImage); // wr->SetFileName("/home/neher/TimeFromRfImage.nii.gz"); // wr->Update(); } } #endif diff --git a/Modules/DiffusionImaging/FiberTracking/IODataStructures/mitkFiberfoxParameters.h b/Modules/DiffusionImaging/FiberTracking/IODataStructures/mitkFiberfoxParameters.h index 881b1f3cf8..9345aff4f1 100644 --- a/Modules/DiffusionImaging/FiberTracking/IODataStructures/mitkFiberfoxParameters.h +++ b/Modules/DiffusionImaging/FiberTracking/IODataStructures/mitkFiberfoxParameters.h @@ -1,336 +1,339 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _MITK_FiberfoxParameters_H #define _MITK_FiberfoxParameters_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include namespace mitk { class MITKFIBERTRACKING_EXPORT FiberfoxParameters; /** Signal generation */ class MITKFIBERTRACKING_EXPORT SignalGenerationParameters { friend FiberfoxParameters; public: typedef itk::Image ItkFloatImgType; typedef itk::Image ItkUcharImgType; typedef itk::Vector GradientType; typedef std::vector GradientListType; enum CoilSensitivityProfile : int { COIL_CONSTANT, COIL_LINEAR, COIL_EXPONENTIAL }; enum AcquisitionType : int { SingleShotEpi, ConventionalSpinEcho, FastSpinEcho, }; SignalGenerationParameters() : m_AcquisitionType(SignalGenerationParameters::SingleShotEpi) , m_SignalScale(100) , m_tEcho(100) , m_tRep(4000) , m_tInv(0) , m_tLine(1) , m_tInhom(50) , m_EchoTrainLength(8) , m_ReversePhase(false) , m_PartialFourier(1.0) - , m_NoiseVariance(0.001) + , m_NoiseVariance(0.001f) , m_NumberOfCoils(1) , m_CoilSensitivityProfile(SignalGenerationParameters::COIL_CONSTANT) + , m_CoilSensitivity(0.3f) , m_SimulateKspaceAcquisition(false) , m_AxonRadius(0) , m_DoDisablePartialVolume(false) , m_Spikes(0) , m_SpikeAmplitude(1) , m_KspaceLineOffset(0) - , m_EddyStrength(300) + , m_EddyStrength(0.002f) , m_Tau(70) , m_CroppingFactor(1) , m_Drift(0.06) , m_DoAddGibbsRinging(false) , m_ZeroRinging(0) , m_DoSimulateRelaxation(true) , m_DoAddMotion(false) , m_DoRandomizeMotion(true) , m_DoAddDrift(false) , m_FrequencyMap(nullptr) , m_MaskImage(nullptr) , m_Bvalue(1000) { m_ImageRegion.SetSize(0, 12); m_ImageRegion.SetSize(1, 12); m_ImageRegion.SetSize(2, 3); m_ImageSpacing.Fill(2.0); m_ImageOrigin.Fill(0.0); m_ImageDirection.SetIdentity(); m_Translation.Fill(0.0); m_Rotation.Fill(0.0); SetNumWeightedVolumes(6); } /** input/output image specifications */ itk::ImageRegion<3> m_CroppedRegion; ///< Image size with reduced FOV. itk::ImageRegion<3> m_ImageRegion; ///< Image size. itk::Vector m_ImageSpacing; ///< Image voxel size. itk::Point m_ImageOrigin; ///< Image origin. itk::Matrix m_ImageDirection; ///< Image rotation matrix. /** Other acquisitions parameters */ AcquisitionType m_AcquisitionType; ///< determines k-space trajectory and maximum echo position(s) float m_SignalScale; ///< Scaling factor for output signal (before noise is added). float m_tEcho; ///< Echo time TE. float m_tRep; ///< Echo time TR. float m_tInv; ///< Inversion time float m_tLine; ///< k-space line readout time (dwell time). float m_tInhom; ///< T2' unsigned int m_EchoTrainLength; ///< Only relevant for Fast Spin Echo sequence (number of k-space lines acquired with one RF pulse) bool m_ReversePhase; ///< If true, the phase readout direction will be inverted (-y instead of y) float m_PartialFourier; ///< Partial fourier factor (0.5-1) float m_NoiseVariance; ///< Variance of complex gaussian noise unsigned int m_NumberOfCoils; ///< Number of coils in multi-coil acquisition CoilSensitivityProfile m_CoilSensitivityProfile; ///< Choose between constant, linear or exponential sensitivity profile of the used coils + float m_CoilSensitivity; ///< signal remaining in slice center bool m_SimulateKspaceAcquisition;///< Flag to enable/disable k-space acquisition simulation double m_AxonRadius; ///< Determines compartment volume fractions (0 == automatic axon radius estimation) bool m_DoDisablePartialVolume; ///< Disable partial volume effects. Each voxel is either all fiber or all non-fiber. /** Artifacts and other effects */ unsigned int m_Spikes; ///< Number of spikes randomly appearing in the image float m_SpikeAmplitude; ///< amplitude of spikes relative to the largest signal intensity (magnitude of complex) float m_KspaceLineOffset; ///< Causes N/2 ghosts. Larger offset means stronger ghost. float m_EddyStrength; ///< Strength of eddy current induced gradients in mT/m. float m_Tau; ///< Eddy current decay constant (in ms) float m_CroppingFactor; ///< FOV size in y-direction is multiplied by this factor. Causes aliasing artifacts. float m_Drift; ///< Global signal decrease by the end of the acquisition. bool m_DoAddGibbsRinging; ///< Add Gibbs ringing artifact int m_ZeroRinging; ///< If > 0, ringing is simulated by by setting the defined percentage of higher frequencies to 0 in k-space. Otherwise, the input to the k-space simulation is generated with twice the resolution and cropped during k-space simulation (much slower). bool m_DoSimulateRelaxation; ///< Add T2 relaxation effects bool m_DoAddMotion; ///< Enable motion artifacts. bool m_DoRandomizeMotion; ///< Toggles between random and linear motion. bool m_DoAddDrift; ///< Add quadratic signal drift. std::vector< bool > m_MotionVolumes; ///< Indicates the image volumes that are affected by motion ///< with positive numbers, inverted logic with negative numbers. itk::Vector m_Translation; ///< Maximum translational motion. itk::Vector m_Rotation; ///< Maximum rotational motion. ItkFloatImgType::Pointer m_FrequencyMap; ///< If != nullptr, distortions are added to the image using this frequency map. ItkUcharImgType::Pointer m_MaskImage; ///< Signal is only genrated inside of the mask image. std::vector< int > GetBaselineIndices(); ///< Returns list of nun-diffusion-weighted image volume indices unsigned int GetFirstBaselineIndex(); ///< Returns index of first non-diffusion-weighted image volume bool IsBaselineIndex(unsigned int idx); ///< Checks if image volume with given index is non-diffusion-weighted volume or not. unsigned int GetNumWeightedVolumes(); ///< Get number of diffusion-weighted image volumes unsigned int GetNumBaselineVolumes(); ///< Get number of non-diffusion-weighted image volumes unsigned int GetNumVolumes(); ///< Get number of baseline and diffusion-weighted image volumes GradientListType GetGradientDirections(); ///< Return gradient direction container mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer GetItkGradientContainer(); GradientType GetGradientDirection(unsigned int i); std::vector< int > GetBvalues(); ///< Returns a vector with all unique b-values (determined by the gradient magnitudes) double GetBvalue(); void ApplyDirectionMatrix(); protected: unsigned int m_NumGradients; ///< Number of diffusion-weighted image volumes. unsigned int m_NumBaseline; ///< Number of non-diffusion-weighted image volumes. GradientListType m_GradientDirections; ///< Total number of image volumes. double m_Bvalue; ///< Acquisition b-value void SetNumWeightedVolumes(int numGradients); ///< Automaticall calls GenerateGradientHalfShell() afterwards. void SetGradienDirections(GradientListType gradientList); void SetGradienDirections(mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer gradientList); void GenerateGradientHalfShell(); ///< Generates half shell of gradient directions (with m_NumGradients non-zero directions) }; /** Fiber generation */ class MITKFIBERTRACKING_EXPORT FiberGenerationParameters { public: enum FiberDistribution { DISTRIBUTE_UNIFORM, // distribute fibers uniformly in the ROIs DISTRIBUTE_GAUSSIAN // distribute fibers using a 2D gaussian }; typedef std::vector< std::vector< mitk::PlanarEllipse::Pointer > > FiducialListType; typedef std::vector< std::vector< unsigned int > > FlipListType; FiberGenerationParameters() : m_Distribution(DISTRIBUTE_UNIFORM) , m_Density(100) , m_Variance(100) , m_Sampling(1) , m_Tension(0) , m_Continuity(0) , m_Bias(0) { m_Rotation.Fill(0.0); m_Translation.Fill(0.0); m_Scale.Fill(1.0); } FiberDistribution m_Distribution; unsigned int m_Density; double m_Variance; double m_Sampling; double m_Tension; double m_Continuity; double m_Bias; mitk::Vector3D m_Rotation; mitk::Vector3D m_Translation; mitk::Vector3D m_Scale; FlipListType m_FlipList; ///< contains flags indicating a flip of the 2D fiber x-coordinates (needed to resolve some unwanted fiber twisting) FiducialListType m_Fiducials; ///< container of the planar ellipses used as fiducials for the fiber generation process }; /** GUI persistence, input, output, ... */ class MITKFIBERTRACKING_EXPORT MiscFiberfoxParameters { public: MiscFiberfoxParameters() : m_ResultNode(DataNode::New()) , m_ParentNode(nullptr) , m_SignalModelString("") , m_ArtifactModelString("") , m_OutputPath("/tmp/") , m_OutputPrefix("fiberfox") , m_AfterSimulationMessage("") , m_BvalsFile("") , m_BvecsFile("") , m_CheckOutputVolumeFractionsBox(false) , m_CheckAdvancedSignalOptionsBox(false) , m_DoAddNoise(false) , m_DoAddGhosts(false) , m_DoAddAliasing(false) , m_DoAddSpikes(false) , m_DoAddEddyCurrents(false) , m_DoAddDistortions(false) , m_MotionVolumesBox("random") , m_CheckRealTimeFibersBox(true) , m_CheckAdvancedFiberOptionsBox(false) , m_CheckConstantRadiusBox(false) , m_CheckIncludeFiducialsBox(true) {} DataNode::Pointer m_ResultNode; ///< Stores resulting image. DataNode::Pointer m_ParentNode; ///< Parent node of result node. std::string m_SignalModelString; ///< Appendet to the name of the result node std::string m_ArtifactModelString; ///< Appendet to the name of the result node std::string m_OutputPath; ///< Image is automatically saved to the specified folder after simulation is finished. std::string m_OutputPrefix; /** Prefix for filename of output files and logfile. */ std::string m_AfterSimulationMessage; ///< Store messages that are displayed after the simulation has finished (e.g. warnings, automatic parameter adjustments etc.) std::string m_BvalsFile; std::string m_BvecsFile; /** member variables that store the check-state of GUI checkboxes */ // image generation bool m_CheckOutputVolumeFractionsBox; bool m_CheckAdvancedSignalOptionsBox; bool m_DoAddNoise; bool m_DoAddGhosts; bool m_DoAddAliasing; bool m_DoAddSpikes; bool m_DoAddEddyCurrents; bool m_DoAddDistortions; std::string m_MotionVolumesBox; // fiber generation bool m_CheckRealTimeFibersBox; bool m_CheckAdvancedFiberOptionsBox; bool m_CheckConstantRadiusBox; bool m_CheckIncludeFiducialsBox; }; /** * \brief Datastructure to manage the Fiberfox signal generation parameters. * */ class MITKFIBERTRACKING_EXPORT FiberfoxParameters { public: typedef itk::Image ItkFloatImgType; typedef itk::Image ItkDoubleImgType; typedef itk::Image ItkUcharImgType; typedef DiffusionSignalModel DiffusionModelType; typedef std::vector< DiffusionModelType* > DiffusionModelListType; typedef DiffusionNoiseModel NoiseModelType; FiberfoxParameters(); FiberfoxParameters(const FiberfoxParameters ¶ms); ~FiberfoxParameters(); /** Not templated parameters */ FiberGenerationParameters m_FiberGen; ///< Fiber generation parameters SignalGenerationParameters m_SignalGen; ///< Signal generation parameters MiscFiberfoxParameters m_Misc; ///< GUI realted and I/O parameters /** Templated parameters */ DiffusionModelListType m_FiberModelList; ///< Intra- and inter-axonal compartments. DiffusionModelListType m_NonFiberModelList; ///< Extra-axonal compartments. std::shared_ptr< NoiseModelType > m_NoiseModel; ///< If != nullptr, noise is added to the image. void GenerateGradientHalfShell(); void SetNumWeightedVolumes(int numGradients); ///< Automaticall calls GenerateGradientHalfShell() afterwards. void SetGradienDirections(mitk::SignalGenerationParameters::GradientListType gradientList); void SetGradienDirections(mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer gradientList); void SetBvalue(double Bvalue); void UpdateSignalModels(); void ClearFiberParameters(); void ClearSignalParameters(); void ApplyDirectionMatrix(); void PrintSelf(); ///< Print parameters to stdout. void SaveParameters(std::string filename); ///< Save image generation parameters to .ffp file. void LoadParameters(std::string filename, bool fix_seed=false); ///< Load image generation parameters from .ffp file. template< class ParameterType > ParameterType ReadVal(boost::property_tree::ptree::value_type const& v, std::string tag, ParameterType defaultValue, bool essential=false); std::string m_MissingTags; }; } #endif