diff --git a/Modules/Core/include/mitkSliceNavigationController.h b/Modules/Core/include/mitkSliceNavigationController.h index a4eb30bea0..019e3aa184 100644 --- a/Modules/Core/include/mitkSliceNavigationController.h +++ b/Modules/Core/include/mitkSliceNavigationController.h @@ -1,439 +1,439 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef MITKSLICENAVIGATIONCONTROLLER_H #define MITKSLICENAVIGATIONCONTROLLER_H #include #include #include #include #include #include #pragma GCC visibility push(default) #include #pragma GCC visibility pop #include namespace mitk { #define mitkTimeGeometryEventMacro(classname, super) \ class MITKCORE_EXPORT classname : public super \ { \ public: \ typedef classname Self; \ typedef super Superclass; \ classname(TimeGeometry *aTimeGeometry, unsigned int aPos) : Superclass(aTimeGeometry, aPos) {} \ virtual ~classname() {} \ virtual const char *GetEventName() const { return #classname; } \ virtual bool CheckEvent(const ::itk::EventObject *e) const { return dynamic_cast(e); } \ virtual ::itk::EventObject *MakeObject() const { return new Self(GetTimeGeometry(), GetPos()); } \ private: \ void operator=(const Self &); \ } class PlaneGeometry; class BaseGeometry; class BaseRenderer; /** * \brief Controls the selection of the slice the associated BaseRenderer * will display * * A SliceNavigationController takes a BaseGeometry or a TimeGeometry as input world geometry * (TODO what are the exact requirements?) and generates a TimeGeometry * as output. The TimeGeometry holds a number of SlicedGeometry3Ds and * these in turn hold a series of PlaneGeometries. One of these PlaneGeometries is * selected as world geometry for the BaseRenderers associated to 2D views. * * The SliceNavigationController holds has Steppers (one for the slice, a * second for the time step), which control the selection of a single * PlaneGeometry from the TimeGeometry. SliceNavigationController generates * ITK events to tell observers, like a BaseRenderer, when the selected slice * or timestep changes. * * Example: * \code * // Initialization * sliceCtrl = mitk::SliceNavigationController::New(); * * // Tell the navigator the geometry to be sliced (with geometry a * // BaseGeometry::ConstPointer) * sliceCtrl->SetInputWorldTimeGeometry(geometry.GetPointer()); * * // Tell the navigator in which direction it shall slice the data * sliceCtrl->SetViewDirection(mitk::SliceNavigationController::Axial); * * // Connect one or more BaseRenderer to this navigator, i.e.: events sent * // by the navigator when stepping through the slices (e.g. by * // sliceCtrl->GetSlice()->Next()) will be received by the BaseRenderer * // (in this example only slice-changes, see also ConnectGeometryTimeEvent * // and ConnectGeometryEvents.) * sliceCtrl->ConnectGeometrySliceEvent(renderer.GetPointer()); * * //create a world geometry and send the information to the connected renderer(s) * sliceCtrl->Update(); * \endcode * * * You can connect visible navigators to a SliceNavigationController, e.g., a * QmitkSliderNavigator (for Qt): * * \code * // Create the visible navigator (a slider with a spin-box) * QmitkSliderNavigator* navigator = * new QmitkSliderNavigator(parent, "slidernavigator"); * * // Connect the navigator to the slice-stepper of the * // SliceNavigationController. For initialization (position, mininal and * // maximal values) the values of the SliceNavigationController are used. * // Thus, accessing methods of a navigator is normally not necessary, since * // everything can be set via the (Qt-independent) SliceNavigationController. * // The QmitkStepperAdapter converts the Qt-signals to Qt-independent * // itk-events. * new QmitkStepperAdapter(navigator, sliceCtrl->GetSlice(), "navigatoradaptor"); * \endcode * * If you do not want that all renderwindows are updated when a new slice is * selected, you can use a specific RenderingManager, which updates only those * renderwindows that should be updated. This is sometimes useful when a 3D view * does not need to be updated when the slices in some 2D views are changed. * QmitkSliderNavigator (for Qt): * * \code * // create a specific RenderingManager * mitk::RenderingManager::Pointer myManager = mitk::RenderingManager::New(); * * // tell the RenderingManager to update only renderwindow1 and renderwindow2 * myManager->AddRenderWindow(renderwindow1); * myManager->AddRenderWindow(renderwindow2); * * // tell the SliceNavigationController of renderwindow1 and renderwindow2 * // to use the specific RenderingManager instead of the global one * renderwindow1->GetSliceNavigationController()->SetRenderingManager(myManager); * renderwindow2->GetSliceNavigationController()->SetRenderingManager(myManager); * \endcode * * \todo implement for non-evenly-timed geometry! * \ingroup NavigationControl */ class MITKCORE_EXPORT SliceNavigationController : public BaseController { public: mitkClassMacro(SliceNavigationController, BaseController); itkNewMacro(Self); /** * \brief Possible view directions, \a Original will use * the PlaneGeometry instances in a SlicedGeometry3D provided * as input world geometry (by SetInputWorldTimeGeometry). */ enum ViewDirection { Axial, Sagittal, Coronal, Original }; /** - * \brief Set the input world geometry3D out of which the + * \brief Set the input world time geometry out of which the * geometries for slicing will be created. * * Any previous previous set input geometry (3D or Time) will * be ignored in future. */ void SetInputWorldTimeGeometry(const TimeGeometry* geometry); itkGetConstObjectMacro(InputWorldTimeGeometry, TimeGeometry); /** * \brief Access the created geometry */ itkGetConstObjectMacro(CreatedWorldGeometry, TimeGeometry); itkGetObjectMacro(CreatedWorldGeometry, TimeGeometry); /** * \brief Set the desired view directions * * \sa ViewDirection * \sa Update(ViewDirection viewDirection, bool top = true, * bool frontside = true, bool rotated = false) */ itkSetEnumMacro(ViewDirection, ViewDirection); itkGetEnumMacro(ViewDirection, ViewDirection); /** * \brief Set the default view direction * * This is used to re-initialize the view direction of the SNC to the * default value with SetViewDirectionToDefault() * * \sa ViewDirection * \sa Update(ViewDirection viewDirection, bool top = true, * bool frontside = true, bool rotated = false) */ itkSetEnumMacro(DefaultViewDirection, ViewDirection); itkGetEnumMacro(DefaultViewDirection, ViewDirection); const char *GetViewDirectionAsString() const; virtual void SetViewDirectionToDefault(); /** * \brief Do the actual creation and send it to the connected * observers (renderers) * */ virtual void Update(); /** * \brief Extended version of Update, additionally allowing to * specify the direction/orientation of the created geometry. * */ virtual void Update(ViewDirection viewDirection, bool top = true, bool frontside = true, bool rotated = false); /** * \brief Send the created geometry to the connected * observers (renderers) * * Called by Update(). */ virtual void SendCreatedWorldGeometry(); /** * \brief Tell observers to re-read the currently selected 2D geometry * */ virtual void SendCreatedWorldGeometryUpdate(); /** * \brief Send the currently selected slice to the connected * observers (renderers) * * Called by Update(). */ virtual void SendSlice(); /** * \brief Send the currently selected time to the connected * observers (renderers) * * Called by Update(). */ virtual void SendTime(); class MITKCORE_EXPORT TimeGeometryEvent : public itk::AnyEvent { public: typedef TimeGeometryEvent Self; typedef itk::AnyEvent Superclass; TimeGeometryEvent(TimeGeometry* aTimeGeometry, unsigned int aPos) : m_TimeGeometry(aTimeGeometry), m_Pos(aPos) {} ~TimeGeometryEvent() override {} const char* GetEventName() const override { return "TimeGeometryEvent"; } bool CheckEvent(const ::itk::EventObject* e) const override { return dynamic_cast(e); } ::itk::EventObject* MakeObject() const override { return new Self(m_TimeGeometry, m_Pos); } TimeGeometry* GetTimeGeometry() const { return m_TimeGeometry; } unsigned int GetPos() const { return m_Pos; } private: TimeGeometry::Pointer m_TimeGeometry; unsigned int m_Pos; // TimeGeometryEvent(const Self&); void operator=(const Self&); // just hide }; mitkTimeGeometryEventMacro(GeometrySendEvent, TimeGeometryEvent); mitkTimeGeometryEventMacro(GeometryUpdateEvent, TimeGeometryEvent); mitkTimeGeometryEventMacro(GeometryTimeEvent, TimeGeometryEvent); mitkTimeGeometryEventMacro(GeometrySliceEvent, TimeGeometryEvent); template void ConnectGeometrySendEvent(T* receiver) { auto eventReceptorCommand = itk::ReceptorMemberCommand::New(); eventReceptorCommand->SetCallbackFunction(receiver, &T::SetGeometry); unsigned long tag = AddObserver(GeometrySendEvent(nullptr, 0), eventReceptorCommand); m_ReceiverToObserverTagsMap[static_cast(receiver)].push_back(tag); } template void ConnectGeometryUpdateEvent(T* receiver) { auto eventReceptorCommand = itk::ReceptorMemberCommand::New(); eventReceptorCommand->SetCallbackFunction(receiver, &T::UpdateGeometry); unsigned long tag = AddObserver(GeometryUpdateEvent(nullptr, 0), eventReceptorCommand); m_ReceiverToObserverTagsMap[static_cast(receiver)].push_back(tag); } template void ConnectGeometrySliceEvent(T* receiver) { auto eventReceptorCommand = itk::ReceptorMemberCommand::New(); eventReceptorCommand->SetCallbackFunction(receiver, &T::SetGeometrySlice); unsigned long tag = AddObserver(GeometrySliceEvent(nullptr, 0), eventReceptorCommand); m_ReceiverToObserverTagsMap[static_cast(receiver)].push_back(tag); } template void ConnectGeometryTimeEvent(T* receiver) { auto eventReceptorCommand = itk::ReceptorMemberCommand::New(); eventReceptorCommand->SetCallbackFunction(receiver, &T::SetGeometryTime); unsigned long tag = AddObserver(GeometryTimeEvent(nullptr, 0), eventReceptorCommand); m_ReceiverToObserverTagsMap[static_cast(receiver)].push_back(tag); } template void ConnectGeometryEvents(T* receiver) { // connect sendEvent only once ConnectGeometrySliceEvent(receiver, false); ConnectGeometryTimeEvent(receiver); } // use a templated method to get the right offset when casting to void* template void Disconnect(T* receiver) { auto i = m_ReceiverToObserverTagsMap.find(static_cast(receiver)); if (i == m_ReceiverToObserverTagsMap.end()) return; const std::list& tags = i->second; for (auto tagIter = tags.begin(); tagIter != tags.end(); ++tagIter) { RemoveObserver(*tagIter); } m_ReceiverToObserverTagsMap.erase(i); } Message1 SetCrosshairEvent; /** * \brief To connect multiple SliceNavigationController, we can * act as an observer ourselves: implemented interface * \warning not implemented */ virtual void SetGeometry(const itk::EventObject& geometrySliceEvent); /** * \brief To connect multiple SliceNavigationController, we can * act as an observer ourselves: implemented interface */ virtual void SetGeometrySlice(const itk::EventObject& geometrySliceEvent); /** * \brief To connect multiple SliceNavigationController, we can * act as an observer ourselves: implemented interface */ virtual void SetGeometryTime(const itk::EventObject& geometryTimeEvent); /** \brief Positions the SNC according to the specified point */ void SelectSliceByPoint(const Point3D& point); /** \brief Returns the BaseGeometry of the currently selected time step. */ const BaseGeometry* GetCurrentGeometry3D(); /** \brief Returns the currently selected Plane in the current * BaseGeometry (if existent). */ const PlaneGeometry* GetCurrentPlaneGeometry(); /** \brief Sets / gets the BaseRenderer associated with this SNC (if any). * While the BaseRenderer is not directly used by SNC, this is a convenience * method to enable BaseRenderer access via the SNC. */ itkSetObjectMacro(Renderer, BaseRenderer); itkGetMacro(Renderer, BaseRenderer*); /** \brief Re-orients the slice stack. All slices will be oriented to the given normal vector. The given point (world coordinates) defines the selected slice. Careful: The resulting axis vectors are not clearly defined this way. If you want to define them clearly, use ReorientSlices (const Point3D &point, const Vector3D &axisVec0, const Vector3D &axisVec1). */ void ReorientSlices(const Point3D& point, const Vector3D& normal); /** \brief Re-orients the slice stack so that all planes are oriented according to the * given axis vectors. The given Point eventually defines selected slice. */ void ReorientSlices(const Point3D& point, const Vector3D& axisVec0, const Vector3D& axisVec1); void ExecuteOperation(Operation* operation) override; /** * \brief Feature option to lock planes during mouse interaction. * This option flag disables the mouse event which causes the center * cross to move near by. */ itkSetMacro(SliceLocked, bool); itkGetMacro(SliceLocked, bool); itkBooleanMacro(SliceLocked); /** * \brief Feature option to lock slice rotation. * * This option flag disables separately the rotation of a slice which is * implemented in mitkSliceRotator. */ itkSetMacro(SliceRotationLocked, bool); itkGetMacro(SliceRotationLocked, bool); itkBooleanMacro(SliceRotationLocked); /** * \brief Adjusts the numerical range of the slice stepper according to * the current geometry orientation of this SNC's SlicedGeometry. */ void AdjustSliceStepperRange(); /** \brief Convenience method that returns the time step currently selected by the controller.*/ TimeStepType GetSelectedTimeStep() const; /** \brief Convenience method that returns the time point that corresponds to the selected * time step. The conversion is done using the time geometry of the SliceNavigationController. * If the time geometry is not yet set, this function will always return 0.0.*/ TimePointType GetSelectedTimePoint() const; protected: SliceNavigationController(); ~SliceNavigationController() override; void CreateWorldGeometry(bool top, bool frontside, bool rotated); TimeGeometry::ConstPointer m_InputWorldTimeGeometry; TimeGeometry::Pointer m_CreatedWorldGeometry; ViewDirection m_ViewDirection; ViewDirection m_DefaultViewDirection; RenderingManager::Pointer m_RenderingManager; BaseRenderer* m_Renderer; bool m_BlockUpdate; bool m_SliceLocked; bool m_SliceRotationLocked; typedef std::map> ObserverTagsMapType; ObserverTagsMapType m_ReceiverToObserverTagsMap; }; } // namespace mitk #endif // MITKSLICENAVIGATIONCONTROLLER_H diff --git a/Modules/Core/test/mitkSliceNavigationControllerTest.cpp b/Modules/Core/test/mitkSliceNavigationControllerTest.cpp index c9ba5b24a0..3cae978167 100644 --- a/Modules/Core/test/mitkSliceNavigationControllerTest.cpp +++ b/Modules/Core/test/mitkSliceNavigationControllerTest.cpp @@ -1,198 +1,196 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include #include #include #include #include #include #include // T22254 class mitkSliceNavigationControllerTestSuite : public mitk::TestFixture { CPPUNIT_TEST_SUITE(mitkSliceNavigationControllerTestSuite); CPPUNIT_TEST(validateAxialViewDirection); CPPUNIT_TEST(validateCoronalViewDirection); CPPUNIT_TEST(validateSagittalViewDirection); CPPUNIT_TEST(GetSelectedTimePoint); CPPUNIT_TEST_SUITE_END(); mitk::Geometry3D::Pointer m_Geometry3D; mitk::ArbitraryTimeGeometry::Pointer m_TimeGeometry; public: void setUp() override { mitk::Point3D origin; mitk::FillVector3D(origin, 10.0, 20.0, 30.0); mitk::Vector3D firstAxisVector; mitk::FillVector3D(firstAxisVector, 100.0, 0.0, 0.0); mitk::Vector3D secondAxisVector; mitk::FillVector3D(secondAxisVector, 0.0, 50.0, 0.0); mitk::Vector3D spacing; mitk::FillVector3D(spacing, 1.0, 1.0, 2.0); auto planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->InitializeStandardPlane(firstAxisVector, secondAxisVector, &spacing); planeGeometry->SetOrigin(origin); unsigned int numberOfSlices = 100U; auto slicedGeometry3D = mitk::SlicedGeometry3D::New(); slicedGeometry3D->InitializeEvenlySpaced(planeGeometry, numberOfSlices); m_Geometry3D = mitk::Geometry3D::New(); m_Geometry3D->SetBounds(slicedGeometry3D->GetBounds()); m_Geometry3D->SetIndexToWorldTransform(slicedGeometry3D->GetIndexToWorldTransform()); m_TimeGeometry = mitk::ArbitraryTimeGeometry::New(); m_TimeGeometry->AppendNewTimeStepClone(m_Geometry3D, 0.5, 10.); m_TimeGeometry->AppendNewTimeStepClone(m_Geometry3D, 10., 30.); m_TimeGeometry->AppendNewTimeStepClone(m_Geometry3D, 30., 50.); m_TimeGeometry->AppendNewTimeStepClone(m_Geometry3D, 50., 60.); m_TimeGeometry->Update(); } void tearDown() override { } void validateAxialViewDirection() { auto sliceNavigationController = mitk::SliceNavigationController::New(); sliceNavigationController->SetInputWorldTimeGeometry(m_TimeGeometry); sliceNavigationController->SetViewDirection(mitk::SliceNavigationController::Axial); sliceNavigationController->Update(); mitk::Point3D origin; mitk::FillVector3D(origin, 10.0, 70.0, 229.0); mitk::Vector3D firstAxisVector; mitk::FillVector3D(firstAxisVector, 100.0, 0.0, 0.0); mitk::Vector3D secondAxisVector; mitk::FillVector3D(secondAxisVector, 0.0, -50.0, 0.0); mitk::Vector3D thirdAxisVector; mitk::FillVector3D(thirdAxisVector, 0.0, 0.0, -200.0); std::cout << "Axial view direction" << std::endl; CPPUNIT_ASSERT(this->validateGeometry(sliceNavigationController->GetCurrentGeometry3D(), origin, firstAxisVector, secondAxisVector, thirdAxisVector)); } void validateCoronalViewDirection() { auto sliceNavigationController = mitk::SliceNavigationController::New(); sliceNavigationController->SetInputWorldTimeGeometry(m_TimeGeometry); sliceNavigationController->SetViewDirection(mitk::SliceNavigationController::Coronal); sliceNavigationController->Update(); mitk::Point3D origin; mitk::FillVector3D(origin, 10.0, 69.5, 30.0); mitk::Vector3D firstAxisVector; mitk::FillVector3D(firstAxisVector, 100.0, 0.0, 0.0); mitk::Vector3D secondAxisVector; mitk::FillVector3D(secondAxisVector, 0.0, 0.0, 200.0); mitk::Vector3D thirdAxisVector; mitk::FillVector3D(thirdAxisVector, 0.0, -50.0, 0.0); std::cout << "Coronal view direction" << std::endl; CPPUNIT_ASSERT(this->validateGeometry(sliceNavigationController->GetCurrentGeometry3D(), origin, firstAxisVector, secondAxisVector, thirdAxisVector)); } void validateSagittalViewDirection() { auto sliceNavigationController = mitk::SliceNavigationController::New(); sliceNavigationController->SetInputWorldTimeGeometry(m_TimeGeometry); sliceNavigationController->SetViewDirection(mitk::SliceNavigationController::Sagittal); sliceNavigationController->Update(); mitk::Point3D origin; mitk::FillVector3D(origin, 10.5, 20.0, 30.0); mitk::Vector3D firstAxisVector; mitk::FillVector3D(firstAxisVector, 0.0, 50.0, 0.0); mitk::Vector3D secondAxisVector; mitk::FillVector3D(secondAxisVector, 0.0, 0.0, 200.0); mitk::Vector3D thirdAxisVector; mitk::FillVector3D(thirdAxisVector, 100.0, 0.0, 0.0); std::cout << "Sagittal view direction" << std::endl; CPPUNIT_ASSERT(this->validateGeometry(sliceNavigationController->GetCurrentGeometry3D(), origin, firstAxisVector, secondAxisVector, thirdAxisVector)); } void GetSelectedTimePoint() { auto sliceNavigationController = mitk::SliceNavigationController::New(); CPPUNIT_ASSERT(sliceNavigationController->GetSelectedTimePoint() == 0.); sliceNavigationController->SetInputWorldTimeGeometry(m_TimeGeometry); sliceNavigationController->SetViewDirection(mitk::SliceNavigationController::Sagittal); sliceNavigationController->Update(); CPPUNIT_ASSERT(sliceNavigationController->GetSelectedTimeStep() == 0); CPPUNIT_ASSERT(sliceNavigationController->GetSelectedTimePoint() == 0.5); sliceNavigationController->GetTime()->SetPos(2); CPPUNIT_ASSERT(sliceNavigationController->GetSelectedTimeStep() == 2); CPPUNIT_ASSERT(sliceNavigationController->GetSelectedTimePoint() == 30.0); - - auto sliceNavigationController2 = mitk::SliceNavigationController::New(); } private: bool validateGeometry(mitk::BaseGeometry::ConstPointer geometry, const mitk::Point3D &origin, const mitk::Vector3D &firstAxisVector, const mitk::Vector3D &secondAxisVector, const mitk::Vector3D &thirdAxisVector) { bool result = true; std::cout << " Origin" << std::endl; if (!mitk::Equal(geometry->GetOrigin(), origin, mitk::eps, true)) result = false; std::cout << " First axis vector" << std::endl; if (!mitk::Equal(geometry->GetAxisVector(0), firstAxisVector, mitk::eps, true)) result = false; std::cout << " Second axis vector" << std::endl; if (!mitk::Equal(geometry->GetAxisVector(1), secondAxisVector, mitk::eps, true)) result = false; std::cout << " Third axis vector" << std::endl; if (!mitk::Equal(geometry->GetAxisVector(2), thirdAxisVector, mitk::eps, true)) result = false; return result; } }; MITK_TEST_SUITE_REGISTRATION(mitkSliceNavigationController)