diff --git a/Modules/PhotoacousticsAlgorithms/source/mitkPhotoacousticImage.cpp b/Modules/PhotoacousticsAlgorithms/source/mitkPhotoacousticImage.cpp index c74336ba67..a06f20c76f 100644 --- a/Modules/PhotoacousticsAlgorithms/source/mitkPhotoacousticImage.cpp +++ b/Modules/PhotoacousticsAlgorithms/source/mitkPhotoacousticImage.cpp @@ -1,541 +1,541 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #define _USE_MATH_DEFINES #include #include "mitkPhotoacousticImage.h" #include "../ITKFilter/ITKUltrasound/itkBModeImageFilter.h" #include "../ITKFilter/itkPhotoacousticBModeImageFilter.h" #include "mitkImageCast.h" #include "mitkITKImageImport.h" #include "mitkPhotoacousticBeamformingFilter.h" #include #include #include "./OpenCLFilter/mitkPhotoacousticBModeFilter.h" // itk dependencies #include "itkImage.h" #include "itkResampleImageFilter.h" #include "itkCastImageFilter.h" #include "itkCropImageFilter.h" #include "itkRescaleIntensityImageFilter.h" #include "itkIntensityWindowingImageFilter.h" #include #include "itkMultiplyImageFilter.h" #include "itkBSplineInterpolateImageFunction.h" #include // needed itk image filters #include "mitkITKImageImport.h" #include "itkFFTShiftImageFilter.h" #include "itkMultiplyImageFilter.h" #include "itkComplexToModulusImageFilter.h" #include #include "../ITKFilter/ITKUltrasound/itkFFT1DComplexConjugateToRealImageFilter.h" #include "../ITKFilter/ITKUltrasound/itkFFT1DRealToComplexConjugateImageFilter.h" mitk::PhotoacousticImage::PhotoacousticImage() : m_BeamformingFilter(BeamformingFilter::New()) { MITK_INFO << "[PhotoacousticImage Debug] created that image"; } mitk::PhotoacousticImage::~PhotoacousticImage() { MITK_INFO << "[PhotoacousticImage Debug] destroyed that image"; } mitk::Image::Pointer mitk::PhotoacousticImage::ApplyBmodeFilter(mitk::Image::Pointer inputImage, BModeMethod method, bool UseGPU, bool UseLogFilter, float resampleSpacing) { // the image needs to be of floating point type for the envelope filter to work; the casting is done automatically by the CastToItkImage typedef itk::Image< float, 3 > itkFloatImageType; typedef itk::IdentityTransform TransformType; if (method == BModeMethod::Abs) { mitk::Image::Pointer input; mitk::Image::Pointer out; if (inputImage->GetPixelType().GetTypeAsString() == "scalar (float)" || inputImage->GetPixelType().GetTypeAsString() == " (float)") input = inputImage; else input = ApplyCropping(inputImage, 0, 0, 0, 0, 0, inputImage->GetDimension(2) - 1); if (!UseGPU) { PhotoacousticBModeFilter::Pointer filter = PhotoacousticBModeFilter::New(); filter->SetParameters(UseLogFilter); filter->SetInput(input); filter->Update(); out = filter->GetOutput(); if (resampleSpacing == 0) return out; } #ifdef PHOTOACOUSTICS_USE_GPU else { PhotoacousticOCLBModeFilter::Pointer filter = PhotoacousticOCLBModeFilter::New(); filter->SetParameters(UseLogFilter); filter->SetInput(input); filter->Update(); out = filter->GetOutput(); if (resampleSpacing == 0) return out; } #endif typedef itk::ResampleImageFilter < itkFloatImageType, itkFloatImageType > ResampleImageFilter; ResampleImageFilter::Pointer resampleImageFilter = ResampleImageFilter::New(); itkFloatImageType::Pointer itkImage; mitk::CastToItkImage(out, itkImage); itkFloatImageType::SpacingType outputSpacing; itkFloatImageType::SizeType inputSize = itkImage->GetLargestPossibleRegion().GetSize(); itkFloatImageType::SizeType outputSize = inputSize; outputSpacing[0] = itkImage->GetSpacing()[0]; outputSpacing[1] = resampleSpacing; outputSpacing[2] = itkImage->GetSpacing()[2]; outputSize[1] = inputSize[1] * itkImage->GetSpacing()[1] / outputSpacing[1]; typedef itk::IdentityTransform TransformType; resampleImageFilter->SetInput(itkImage); resampleImageFilter->SetSize(outputSize); resampleImageFilter->SetOutputSpacing(outputSpacing); resampleImageFilter->SetTransform(TransformType::New()); resampleImageFilter->UpdateLargestPossibleRegion(); return mitk::GrabItkImageMemory(resampleImageFilter->GetOutput()); } else if (method == BModeMethod::EnvelopeDetection) { typedef itk::BModeImageFilter < itkFloatImageType, itkFloatImageType > BModeFilterType; BModeFilterType::Pointer bModeFilter = BModeFilterType::New(); // LogFilter typedef itk::PhotoacousticBModeImageFilter < itkFloatImageType, itkFloatImageType > PhotoacousticBModeImageFilter; PhotoacousticBModeImageFilter::Pointer photoacousticBModeFilter = PhotoacousticBModeImageFilter::New(); // No LogFilter typedef itk::ResampleImageFilter < itkFloatImageType, itkFloatImageType > ResampleImageFilter; ResampleImageFilter::Pointer resampleImageFilter = ResampleImageFilter::New(); itkFloatImageType::Pointer itkImage; mitk::CastToItkImage(inputImage, itkImage); itkFloatImageType::Pointer bmode; if (UseLogFilter) { bModeFilter->SetInput(itkImage); bModeFilter->SetDirection(1); bmode = bModeFilter->GetOutput(); } else { photoacousticBModeFilter->SetInput(itkImage); photoacousticBModeFilter->SetDirection(1); bmode = photoacousticBModeFilter->GetOutput(); } // resampleSpacing == 0 means: do no resampling if (resampleSpacing == 0) { return mitk::GrabItkImageMemory(bmode); } itkFloatImageType::SpacingType outputSpacing; itkFloatImageType::SizeType inputSize = itkImage->GetLargestPossibleRegion().GetSize(); itkFloatImageType::SizeType outputSize = inputSize; outputSpacing[0] = itkImage->GetSpacing()[0]; outputSpacing[1] = resampleSpacing; outputSpacing[2] = itkImage->GetSpacing()[2]; outputSize[1] = inputSize[1] * itkImage->GetSpacing()[1] / outputSpacing[1]; resampleImageFilter->SetInput(bmode); resampleImageFilter->SetSize(outputSize); resampleImageFilter->SetOutputSpacing(outputSpacing); resampleImageFilter->SetTransform(TransformType::New()); resampleImageFilter->UpdateLargestPossibleRegion(); return mitk::GrabItkImageMemory(resampleImageFilter->GetOutput()); } return nullptr; } /*mitk::Image::Pointer mitk::PhotoacousticImage::ApplyScatteringCompensation(mitk::Image::Pointer inputImage, int scattering) { typedef itk::Image< float, 3 > itkFloatImageType; typedef itk::MultiplyImageFilter MultiplyImageFilterType; itkFloatImageType::Pointer itkImage; mitk::CastToItkImage(inputImage, itkImage); MultiplyImageFilterType::Pointer multiplyFilter = MultiplyImageFilterType::New(); multiplyFilter->SetInput1(itkImage); multiplyFilter->SetInput2(m_FluenceCompResizedItk.at(m_ScatteringCoefficient)); return mitk::GrabItkImageMemory(multiplyFilter->GetOutput()); }*/ mitk::Image::Pointer mitk::PhotoacousticImage::ApplyResampling(mitk::Image::Pointer inputImage, unsigned int outputSize[2]) { typedef itk::Image< float, 3 > itkFloatImageType; typedef itk::ResampleImageFilter < itkFloatImageType, itkFloatImageType > ResampleImageFilter; ResampleImageFilter::Pointer resampleImageFilter = ResampleImageFilter::New(); typedef itk::LinearInterpolateImageFunction T_Interpolator; itkFloatImageType::Pointer itkImage; mitk::CastToItkImage(inputImage, itkImage); itkFloatImageType::SpacingType outputSpacingItk; itkFloatImageType::SizeType inputSizeItk = itkImage->GetLargestPossibleRegion().GetSize(); itkFloatImageType::SizeType outputSizeItk = inputSizeItk; outputSizeItk[0] = outputSize[0]; outputSizeItk[1] = outputSize[1]; outputSizeItk[2] = inputSizeItk[2]; outputSpacingItk[0] = itkImage->GetSpacing()[0] * (static_cast(inputSizeItk[0]) / static_cast(outputSizeItk[0])); outputSpacingItk[1] = itkImage->GetSpacing()[1] * (static_cast(inputSizeItk[1]) / static_cast(outputSizeItk[1])); outputSpacingItk[2] = itkImage->GetSpacing()[2]; typedef itk::IdentityTransform TransformType; T_Interpolator::Pointer _pInterpolator = T_Interpolator::New(); resampleImageFilter->SetInput(itkImage); resampleImageFilter->SetSize(outputSizeItk); resampleImageFilter->SetOutputSpacing(outputSpacingItk); resampleImageFilter->SetTransform(TransformType::New()); resampleImageFilter->SetInterpolator(_pInterpolator); resampleImageFilter->UpdateLargestPossibleRegion(); return mitk::GrabItkImageMemory(resampleImageFilter->GetOutput()); } mitk::Image::Pointer mitk::PhotoacousticImage::ApplyCropping(mitk::Image::Pointer inputImage, int above, int below, int right, int left, int minSlice, int maxSlice) { unsigned int inputDim[3] = { inputImage->GetDimension(0), inputImage->GetDimension(1), inputImage->GetDimension(2) }; unsigned int outputDim[3] = { inputImage->GetDimension(0) - left - right, inputImage->GetDimension(1) - (unsigned int)above - (unsigned int)below, (unsigned int)maxSlice - (unsigned int)minSlice + 1 }; void* inputData; float* outputData = new float[outputDim[0] * outputDim[1] * outputDim[2]]; ImageReadAccessor acc(inputImage); inputData = const_cast(acc.GetData()); // convert the data to float by default // as of now only float, short, double are used at all. if (inputImage->GetPixelType().GetTypeAsString() == "scalar (float)" || inputImage->GetPixelType().GetTypeAsString() == " (float)") { // copy the data into the cropped image for (unsigned short sl = 0; sl < outputDim[2]; ++sl) { for (unsigned short l = 0; l < outputDim[0]; ++l) { for (unsigned short s = 0; s < outputDim[1]; ++s) { outputData[l + s*(unsigned short)outputDim[0] + sl*outputDim[0] * outputDim[1]] = (float)((float*)inputData)[(l + left) + (s + above)*(unsigned short)inputDim[0] + (sl + minSlice)*inputDim[0] * inputDim[1]]; } } } } else if (inputImage->GetPixelType().GetTypeAsString() == "scalar (short)" || inputImage->GetPixelType().GetTypeAsString() == " (short)") { // copy the data to the cropped image for (unsigned short sl = 0; sl < outputDim[2]; ++sl) { for (unsigned short l = 0; l < outputDim[0]; ++l) { for (unsigned short s = 0; s < outputDim[1]; ++s) { outputData[l + s*(unsigned short)outputDim[0] + sl*outputDim[0] * outputDim[1]] = (float)((short*)inputData)[(l + left) + (s + above)*(unsigned short)inputDim[0] + (sl + minSlice)*inputDim[0] * inputDim[1]]; } } } } else if (inputImage->GetPixelType().GetTypeAsString() == "scalar (double)" || inputImage->GetPixelType().GetTypeAsString() == " (double)") { // copy the data to the cropped image for (unsigned short sl = 0; sl < outputDim[2]; ++sl) { for (unsigned short l = 0; l < outputDim[0]; ++l) { for (unsigned short s = 0; s < outputDim[1]; ++s) { outputData[l + s*(unsigned short)outputDim[0] + sl*outputDim[0] * outputDim[1]] = (float)((double*)inputData)[(l + left) + (s + above)*(unsigned short)inputDim[0] + (sl + minSlice)*inputDim[0] * inputDim[1]]; } } } } else { MITK_INFO << "Could not determine pixel type"; } mitk::Image::Pointer output = mitk::Image::New(); output->Initialize(mitk::MakeScalarPixelType(), 3, outputDim); output->SetSpacing(inputImage->GetGeometry()->GetSpacing()); output->SetImportVolume(outputData, 0, 0, mitk::Image::ReferenceMemory); return output; } mitk::Image::Pointer mitk::PhotoacousticImage::ApplyBeamforming(mitk::Image::Pointer inputImage, BeamformingSettings config, std::string& message, std::function progressHandle) { Image::Pointer processedImage = inputImage; if (inputImage->GetDimension() != 3) { processedImage->Initialize(mitk::MakeScalarPixelType(), 3, inputImage->GetDimensions()); processedImage->SetSpacing(inputImage->GetGeometry()->GetSpacing()); mitk::ImageReadAccessor copy(inputImage); processedImage->SetImportVolume(copy.GetData()); } config.RecordTime = config.RecordTime - (float)(config.upperCutoff) / (float)inputImage->GetDimension(1) * config.RecordTime; // adjust the recorded time lost by cropping progressHandle(0, "converting image"); if (!config.partial) { config.CropBounds[0] = 0; config.CropBounds[1] = inputImage->GetDimension(2) - 1; } processedImage = ApplyCropping(inputImage, config.upperCutoff, 0, 0, 0, config.CropBounds[0], config.CropBounds[1]); config.inputDim[0] = processedImage->GetDimension(0); config.inputDim[1] = processedImage->GetDimension(1); config.inputDim[2] = processedImage->GetDimension(2); // perform the beamforming m_BeamformingFilter->SetInput(processedImage); m_BeamformingFilter->Configure(config); m_BeamformingFilter->SetProgressHandle(progressHandle); m_BeamformingFilter->UpdateLargestPossibleRegion(); processedImage = m_BeamformingFilter->GetOutput(); message = m_BeamformingFilter->GetMessageString(); return processedImage; } mitk::Image::Pointer mitk::PhotoacousticImage::BandpassFilter(mitk::Image::Pointer data, float recordTime, float BPHighPass, float BPLowPass, float alpha) { bool powerOfTwo = false; int finalPower = 0; for (int i = 1; pow(2, i) <= data->GetDimension(1); ++i) { finalPower = i; if (pow(2, i) == data->GetDimension(1)) { powerOfTwo = true; } } if (!powerOfTwo) { unsigned int dim[2] = { data->GetDimension(0), (unsigned int)pow(2,finalPower+1)}; data = ApplyResampling(data, dim); } MITK_INFO << data->GetDimension(0); // do a fourier transform, multiply with an appropriate window for the filter, and transform back typedef float PixelType; typedef itk::Image< PixelType, 3 > RealImageType; RealImageType::Pointer image; mitk::CastToItkImage(data, image); typedef itk::FFT1DRealToComplexConjugateImageFilter ForwardFFTFilterType; typedef ForwardFFTFilterType::OutputImageType ComplexImageType; ForwardFFTFilterType::Pointer forwardFFTFilter = ForwardFFTFilterType::New(); forwardFFTFilter->SetInput(image); forwardFFTFilter->SetDirection(1); try { forwardFFTFilter->UpdateOutputInformation(); } catch (itk::ExceptionObject & error) { std::cerr << "Error: " << error << std::endl; MITK_WARN << "Bandpass could not be applied"; return data; } float singleVoxel = 1 / (recordTime / data->GetDimension(1)) / 2 / 1000; float cutoffPixelHighPass = std::min(BPHighPass / singleVoxel, (float)data->GetDimension(1) / 2); float cutoffPixelLowPass = std::min(BPLowPass / singleVoxel, (float)data->GetDimension(1) / 2 - cutoffPixelHighPass); RealImageType::Pointer fftMultiplicator = BPFunction(data, cutoffPixelHighPass, cutoffPixelLowPass, alpha); typedef itk::MultiplyImageFilter< ComplexImageType, RealImageType, ComplexImageType > MultiplyFilterType; MultiplyFilterType::Pointer multiplyFilter = MultiplyFilterType::New(); multiplyFilter->SetInput1(forwardFFTFilter->GetOutput()); multiplyFilter->SetInput2(fftMultiplicator); /*itk::ComplexToModulusImageFilter::Pointer toReal = itk::ComplexToModulusImageFilter::New(); toReal->SetInput(forwardFFTFilter->GetOutput()); return GrabItkImageMemory(toReal->GetOutput()); return GrabItkImageMemory(fftMultiplicator); *///DEBUG typedef itk::FFT1DComplexConjugateToRealImageFilter< ComplexImageType, RealImageType > InverseFilterType; InverseFilterType::Pointer inverseFFTFilter = InverseFilterType::New(); inverseFFTFilter->SetInput(multiplyFilter->GetOutput()); inverseFFTFilter->SetDirection(1); return GrabItkImageMemory(inverseFFTFilter->GetOutput()); } itk::Image::Pointer mitk::PhotoacousticImage::BPFunction(mitk::Image::Pointer reference, int cutoffFrequencyPixelHighPass, int cutoffFrequencyPixelLowPass, float alpha) { float* imageData = new float[reference->GetDimension(0)*reference->GetDimension(1)]; // tukey window float width = reference->GetDimension(1) / 2 - (float)cutoffFrequencyPixelHighPass - (float)cutoffFrequencyPixelLowPass; float center = (float)cutoffFrequencyPixelHighPass / 2 + width / 2; MITK_INFO << width << "width " << center << "center " << alpha; for (unsigned int n = 0; n < reference->GetDimension(1); ++n) { imageData[reference->GetDimension(0)*n] = 0; } if (alpha < 0.00001) { for (int n = 0; n < width; ++n) { if (n <= (alpha*(width - 1)) / 2) { imageData[reference->GetDimension(0)*(int)(n + center - (width / 2))] = (1 + cos(M_PI*(2 * n / (alpha*(width - 1)) - 1))) / 2; } else if (n >= (width - 1)*(1 - alpha / 2)) { imageData[reference->GetDimension(0)*(int)(n + center - (width / 2))] = (1 + cos(M_PI*(2 * n / (alpha*(width - 1)) + 1 - 2 / alpha))) / 2; } else { imageData[reference->GetDimension(0)*(int)(n + center - (width / 2))] = 1; } } } else { for (int n = 0; n < width; ++n) { imageData[reference->GetDimension(0)*(int)(n + center - (width / 2))] = 1; } } // Butterworth-Filter /* // first, write the HighPass if (cutoffFrequencyPixelHighPass != reference->GetDimension(1) / 2) { for (int n = 0; n < reference->GetDimension(1) / 2; ++n) { imageData[reference->GetDimension(0)*n] = 1 / (1 + pow( (float)n / (float)(reference->GetDimension(1) / 2 - cutoffFrequencyPixelHighPass) , 2 * butterworthOrder)); } } else { for (int n = 0; n < reference->GetDimension(1) / 2; ++n) { imageData[reference->GetDimension(0)*n] = 1; } } // now, the LowPass for (int n = 0; n < reference->GetDimension(1) / 2; ++n) { imageData[reference->GetDimension(0)*n] *= 1 / (1 + pow( (float)(reference->GetDimension(1) / 2 - 1 - n) / (float)(reference->GetDimension(1) / 2 - cutoffFrequencyPixelLowPass) , 2 * butterworthOrder)); } */ // mirror the first half of the image for (unsigned int n = reference->GetDimension(1) / 2; n < reference->GetDimension(1); ++n) { imageData[reference->GetDimension(0)*n] = imageData[(reference->GetDimension(1) - (n + 1)) * reference->GetDimension(0)]; } // copy and paste to all lines for (unsigned int line = 1; line < reference->GetDimension(0); ++line) { for (unsigned int sample = 0; sample < reference->GetDimension(1); ++sample) { imageData[reference->GetDimension(0)*sample + line] = imageData[reference->GetDimension(0)*sample]; } } typedef itk::Image< float, 3U > ImageType; ImageType::RegionType region; ImageType::IndexType start; start.Fill(0); region.SetIndex(start); ImageType::SizeType size; size[0] = reference->GetDimension(0); size[1] = reference->GetDimension(1); size[2] = reference->GetDimension(2); region.SetSize(size); ImageType::SpacingType SpacingItk; SpacingItk[0] = reference->GetGeometry()->GetSpacing()[0]; SpacingItk[1] = reference->GetGeometry()->GetSpacing()[1]; SpacingItk[2] = reference->GetGeometry()->GetSpacing()[2]; ImageType::Pointer image = ImageType::New(); image->SetRegions(region); image->Allocate(); image->FillBuffer(itk::NumericTraits::Zero); image->SetSpacing(SpacingItk); ImageType::IndexType pixelIndex; - for (ImageType::IndexValueType slice = 0; slice < reference->GetDimension(2); ++slice) + for (unsigned int slice = 0; slice < reference->GetDimension(2); ++slice) { - for (ImageType::IndexValueType line = 0; line < reference->GetDimension(0); ++line) + for (unsigned int line = 0; line < reference->GetDimension(0); ++line) { - for (ImageType::IndexValueType sample = 0; sample < reference->GetDimension(1); ++sample) + for (unsigned int sample = 0; sample < reference->GetDimension(1); ++sample) { pixelIndex[0] = line; pixelIndex[1] = sample; pixelIndex[2] = slice; image->SetPixel(pixelIndex, imageData[line + sample*reference->GetDimension(0)]); } } } delete[] imageData; return image; } diff --git a/Modules/ToFProcessing/Testing/mitkToFDistanceImageToSurfaceFilterTest.cpp b/Modules/ToFProcessing/Testing/mitkToFDistanceImageToSurfaceFilterTest.cpp index d3df4f152e..04086ec2e8 100644 --- a/Modules/ToFProcessing/Testing/mitkToFDistanceImageToSurfaceFilterTest.cpp +++ b/Modules/ToFProcessing/Testing/mitkToFDistanceImageToSurfaceFilterTest.cpp @@ -1,390 +1,390 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include /** * @brief Test for the class "ToFDistanceImageToSurfaceFilter". */ typedef mitk::ToFProcessingCommon::ToFPoint2D ToFPoint2D; typedef mitk::ToFProcessingCommon::ToFPoint3D ToFPoint3D; typedef mitk::ToFProcessingCommon::ToFScalarType ToFScalarType; int mitkToFDistanceImageToSurfaceFilterTest(int /* argc */, char* /*argv*/[]) { MITK_TEST_BEGIN("ToFDistanceImageToSurfaceFilter"); mitk::ToFDistanceImageToSurfaceFilter::Pointer filter = mitk::ToFDistanceImageToSurfaceFilter::New(); // create test image unsigned int dimX =204; unsigned int dimY =204; mitk::Image::Pointer image = mitk::ImageGenerator::GenerateRandomImage(dimX,dimY); //initialize intrinsic parameters with some arbitrary values ToFScalarType focalLengthX = 295.78960; ToFScalarType focalLengthY = 296.348535; ToFPoint2D focalLengthXY; focalLengthXY[0]=focalLengthX; focalLengthXY[1]=focalLengthY; ToFScalarType k1=-0.36,k2=-0.14,p1=0.001,p2=-0.00; ToFPoint2D principalPoint; principalPoint[0] = 103.576546; principalPoint[1] = 100.1532; mitk::CameraIntrinsics::Pointer cameraIntrinsics = mitk::CameraIntrinsics::New(); cameraIntrinsics->SetFocalLength(focalLengthX,focalLengthY); cameraIntrinsics->SetPrincipalPoint(principalPoint[0],principalPoint[1]); cameraIntrinsics->SetDistorsionCoeffs(k1,k2,p1,p2); // test SetCameraIntrinsics() filter->SetCameraIntrinsics(cameraIntrinsics); MITK_TEST_CONDITION_REQUIRED((focalLengthX==filter->GetCameraIntrinsics()->GetFocalLengthX()),"Testing SetCameraIntrinsics with focalLength"); ToFPoint2D pp; pp[0] = filter->GetCameraIntrinsics()->GetPrincipalPointX(); pp[1] = filter->GetCameraIntrinsics()->GetPrincipalPointY(); MITK_TEST_CONDITION_REQUIRED(mitk::Equal(principalPoint,pp),"Testing SetCameraIntrinsics with principalPoint()"); // test SetInterPixelDistance() ToFPoint2D interPixelDistance; interPixelDistance[0] = 0.04564; interPixelDistance[1] = 0.0451564; filter->SetInterPixelDistance(interPixelDistance); ToFPoint2D ipD = filter->GetInterPixelDistance(); MITK_TEST_CONDITION_REQUIRED(mitk::Equal(ipD,interPixelDistance),"Testing Set/GetInterPixelDistance()"); // test SetReconstructionMode() filter->SetReconstructionMode(mitk::ToFDistanceImageToSurfaceFilter::WithInterPixelDistance); MITK_TEST_CONDITION_REQUIRED(filter->GetReconstructionMode() == mitk::ToFDistanceImageToSurfaceFilter::WithInterPixelDistance,"Testing Set/GetReconstructionMode()"); // test Set/GetInput() filter->SetInput(image); MITK_TEST_CONDITION_REQUIRED((image==filter->GetInput()),"Testing Set/GetInput()"); // test filter without subset (without interpixeldistance) MITK_INFO<<"Test filter with subset without interpixeldistance "; filter->SetReconstructionMode(mitk::ToFDistanceImageToSurfaceFilter::WithOutInterPixelDistance); MITK_TEST_CONDITION_REQUIRED(filter->GetReconstructionMode() == mitk::ToFDistanceImageToSurfaceFilter::WithOutInterPixelDistance,"Testing Set/GetReconstructionMode()"); vtkSmartPointer expectedResult = vtkSmartPointer::New(); expectedResult->SetDataTypeToDouble(); unsigned int counter = 0; double* point = new double[3]; // MITK_INFO<<"Test"; // MITK_INFO<<"focal: "< index = {{ i, j }}; + itk::Index<2> index = { static_cast(i), static_cast< itk::IndexValueType >( j) }; float distance = 0.0; try { mitk::ImagePixelReadAccessor readAccess(image, image->GetSliceData()); distance = readAccess.GetPixelByIndex(index); } catch(mitk::Exception& e) { MITK_ERROR << "Image read exception!" << e.what(); } ToFPoint3D coordinate = mitk::ToFProcessingCommon::IndexToCartesianCoordinates(i,j,distance,focalLengthX,focalLengthY,principalPoint[0],principalPoint[1]); // if ((i==0)&&(j==0)) // { // MITK_INFO<<"Distance test: "<InsertPoint(pointID,point); } counter++; } } filter->Update(); mitk::Surface::Pointer resultSurface = filter->GetOutput(); vtkSmartPointer result = vtkSmartPointer::New(); result->SetDataTypeToDouble(); result = resultSurface->GetVtkPolyData()->GetPoints(); MITK_TEST_CONDITION_REQUIRED((expectedResult->GetNumberOfPoints()==result->GetNumberOfPoints()),"Test if number of points in surface is equal"); bool pointSetsEqual = true; - for (unsigned int i=0; iGetNumberOfPoints(); i++) + for (int i=0; iGetNumberOfPoints(); i++) { double* expected = expectedResult->GetPoint(i); double* res = result->GetPoint(i); ToFPoint3D expectedPoint; expectedPoint[0] = expected[0]; expectedPoint[1] = expected[1]; expectedPoint[2] = expected[2]; ToFPoint3D resultPoint; resultPoint[0] = res[0]; resultPoint[1] = res[1]; resultPoint[2] = res[2]; if (!mitk::Equal(expectedPoint,resultPoint)) { // MITK_INFO << i; pointSetsEqual = false; } } MITK_TEST_CONDITION_REQUIRED(pointSetsEqual,"Testing filter without subset"); // test filter without subset (with interpixeldistance) MITK_INFO<<"Test filter with subset with interpixeldistance "; filter->SetReconstructionMode(mitk::ToFDistanceImageToSurfaceFilter::WithInterPixelDistance); MITK_TEST_CONDITION_REQUIRED(filter->GetReconstructionMode() == mitk::ToFDistanceImageToSurfaceFilter::WithInterPixelDistance,"Testing Set/GetReconstructionMode()"); // calculate focal length considering inter pixel distance ToFScalarType focalLength = (focalLengthX*interPixelDistance[0]+focalLengthY*interPixelDistance[1])/2.0; expectedResult = vtkSmartPointer::New(); expectedResult->SetDataTypeToDouble(); counter = 0; point = new double[3]; // MITK_INFO<<"Test"; // MITK_INFO<<"focal: "< index = {{ i, j }}; + itk::Index<2> index = {{ static_cast(i), static_cast< itk::IndexValueType >( j )}}; float distance = 0.0; try { mitk::ImagePixelReadAccessor readAccess(image, image->GetSliceData()); distance = readAccess.GetPixelByIndex(index); } catch(mitk::Exception& e) { MITK_ERROR << "Image read exception!" << e.what(); } ToFPoint3D coordinate = mitk::ToFProcessingCommon::IndexToCartesianCoordinatesWithInterpixdist(i,j,distance,focalLength,interPixelDistance,principalPoint); // if ((i==0)&&(j==0)) // { // MITK_INFO<<"Distance test: "<InsertPoint(pointID,point); } counter++; } } filter->Modified(); filter->Update(); resultSurface = filter->GetOutput(); result = vtkSmartPointer::New(); result->SetDataTypeToDouble(); result = resultSurface->GetVtkPolyData()->GetPoints(); MITK_TEST_CONDITION_REQUIRED((expectedResult->GetNumberOfPoints()==result->GetNumberOfPoints()),"Test if number of points in surface is equal"); pointSetsEqual = true; - for (unsigned int i=0; iGetNumberOfPoints(); i++) + for (int i=0; iGetNumberOfPoints(); i++) { double* expected = expectedResult->GetPoint(i); double* res = result->GetPoint(i); ToFPoint3D expectedPoint; expectedPoint[0] = expected[0]; expectedPoint[1] = expected[1]; expectedPoint[2] = expected[2]; ToFPoint3D resultPoint; resultPoint[0] = res[0]; resultPoint[1] = res[1]; resultPoint[2] = res[2]; if (!mitk::Equal(expectedPoint,resultPoint)) { // MITK_INFO << i; MITK_INFO<<"expected: "<GetNumberOfPoints(); i++) + for (int i=0; iGetNumberOfPoints(); i++) { double* expected = expectedResult->GetPoint(i); double* res = result->GetPoint(i); ToFPoint3D expectedPoint; expectedPoint[0] = expected[0]; expectedPoint[1] = expected[1]; expectedPoint[2] = expected[2]; ToFPoint3D resultPoint; resultPoint[0] = res[0]; resultPoint[1] = res[1]; resultPoint[2] = res[2]; ToFPoint3D expectedPointBackward = mitk::ToFProcessingCommon::CartesianToIndexCoordinates(expectedPoint,focalLengthXY,principalPoint); ToFPoint3D resultPointBackward = mitk::ToFProcessingCommon::CartesianToIndexCoordinates(resultPoint,focalLengthXY,principalPoint); if (!mitk::Equal(expectedPointBackward,resultPointBackward)) { // MITK_INFO << i; // MITK_INFO<<"expected: "<GetNumberOfPoints(); i++) + for ( int i=0; iGetNumberOfPoints(); i++) { double* expected = expectedResult->GetPoint(i); double* res = result->GetPoint(i); ToFPoint3D expectedPoint; expectedPoint[0] = expected[0]; expectedPoint[1] = expected[1]; expectedPoint[2] = expected[2]; ToFPoint3D resultPoint; resultPoint[0] = res[0]; resultPoint[1] = res[1]; resultPoint[2] = res[2]; ToFPoint3D expectedPointBackward = mitk::ToFProcessingCommon::CartesianToIndexCoordinatesWithInterpixdist(expectedPoint,focalLength,interPixelDistance,principalPoint); ToFPoint3D resultPointBackward = mitk::ToFProcessingCommon::CartesianToIndexCoordinatesWithInterpixdist(resultPoint,focalLength,interPixelDistance,principalPoint); if (!mitk::Equal(expectedPointBackward,resultPointBackward)) { // MITK_INFO << i; // MITK_INFO<<"expected: "<GetNumberOfPoints(); i++) + for ( int i=0; iGetNumberOfPoints(); i++) { double* res = result->GetPoint(i); ToFPoint3D resultPoint; resultPoint[0] = res[0]; resultPoint[1] = res[1]; resultPoint[2] = res[2]; ToFPoint3D resultPointBackward = mitk::ToFProcessingCommon::CartesianToIndexCoordinates(resultPoint,focalLengthXY,principalPoint); itk::Index<2> index = {{ (int) (resultPointBackward[0]+0.5), (int) (resultPointBackward[1]+0.5) }}; float distanceBackward = 0.0; try { mitk::ImagePixelReadAccessor readAccess(image, image->GetSliceData()); distanceBackward = readAccess.GetPixelByIndex(index); } catch(mitk::Exception& e) { MITK_ERROR << "Image read exception!" << e.what(); } if (!mitk::Equal(distanceBackward,(float) resultPointBackward[2])) { MITK_INFO<<"expected: " << resultPointBackward[2]; MITK_INFO<<"result: "<< distanceBackward; compareToInput = false; } } MITK_TEST_CONDITION_REQUIRED(compareToInput,"Testing backward transformation compared to original image without interpixeldistance"); //Backwardtransformation test compare to original input with interpixeldistance compareToInput = true; - for (unsigned int i=0; iGetNumberOfPoints(); i++) + for ( int i=0; iGetNumberOfPoints(); i++) { double* res = result->GetPoint(i); ToFPoint3D resultPoint; resultPoint[0] = res[0]; resultPoint[1] = res[1]; resultPoint[2] = res[2]; ToFPoint3D resultPointBackward = mitk::ToFProcessingCommon::CartesianToIndexCoordinatesWithInterpixdist(resultPoint,focalLength,interPixelDistance,principalPoint); itk::Index<2> pixelIndex = {{ (int) (resultPointBackward[0]+0.5), (int) (resultPointBackward[1]+0.5) }}; float distanceBackward = 0.0; try { mitk::ImagePixelReadAccessor readAccess(image, image->GetSliceData()); distanceBackward = readAccess.GetPixelByIndex(pixelIndex); } catch(mitk::Exception& e) { MITK_ERROR << "Image read exception!" << e.what(); } if (!mitk::Equal(distanceBackward, (float) resultPointBackward[2])) { compareToInput = false; } } MITK_TEST_CONDITION_REQUIRED(compareToInput,"Testing backward transformation compared to original image with interpixeldistance"); //clean up delete point; // expectedResult->Delete(); MITK_TEST_END(); }