diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkPyramidImageRegistrationMethod.cpp b/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkPyramidImageRegistrationMethod.cpp index d6b00b34ea..ec983dad04 100644 --- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkPyramidImageRegistrationMethod.cpp +++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkPyramidImageRegistrationMethod.cpp @@ -1,139 +1,140 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPyramidImageRegistrationMethod.h" #include "mitkException.h" #include "mitkImageAccessByItk.h" mitk::PyramidImageRegistrationMethod::PyramidImageRegistrationMethod() : m_FixedImage(NULL), m_MovingImage(NULL), m_CrossModalityRegistration(true), m_UseAffineTransform(true), + m_UseWindowedSincInterpolator(false), m_EstimatedParameters(NULL), m_Verbose(false) { } mitk::PyramidImageRegistrationMethod::~PyramidImageRegistrationMethod() { if( m_EstimatedParameters != NULL) { delete [] m_EstimatedParameters; } } void mitk::PyramidImageRegistrationMethod::SetFixedImage(mitk::Image::Pointer fixed) { if( fixed.IsNotNull() ) { m_FixedImage = fixed; } } void mitk::PyramidImageRegistrationMethod::SetMovingImage(mitk::Image::Pointer moving) { if( moving.IsNotNull() ) { m_MovingImage = moving; } } void mitk::PyramidImageRegistrationMethod::Update() { if( m_MovingImage.IsNull() ) { mitkThrow() << " Moving image is null"; } if( m_FixedImage.IsNull() ) { mitkThrow() << " Moving image is null"; } unsigned int allowedDimension = 3; if( m_FixedImage->GetDimension() != allowedDimension || m_MovingImage->GetDimension() != allowedDimension ) { mitkThrow() << " Only 3D Images supported."; } // // One possibility: use the FixedDimesnionByItk, but this instantiates ALL possible // pixel type combinations! // AccessTwoImagesFixedDimensionByItk( m_FixedImage, m_MovingImage, RegisterTwoImages, 3); // in helper: TypeSubset : short, float AccessTwoImagesFixedDimensionTypeSubsetByItk( m_FixedImage, m_MovingImage, RegisterTwoImages, 3); } mitk::PyramidImageRegistrationMethod::TransformMatrixType mitk::PyramidImageRegistrationMethod ::GetLastRotationMatrix() { TransformMatrixType output; if( m_EstimatedParameters == NULL ) { output.set_identity(); return output; } typedef itk::MatrixOffsetTransformBase< double, 3, 3> BaseTransformType; BaseTransformType::Pointer base_transform = BaseTransformType::New(); if( this->m_UseAffineTransform ) { typedef itk::AffineTransform< double > TransformType; TransformType::Pointer transform = TransformType::New(); TransformType::ParametersType affine_params( TransformType::ParametersDimension ); this->GetParameters( &affine_params[0] ); transform->SetParameters( affine_params ); base_transform = transform; } else { typedef itk::Euler3DTransform< double > RigidTransformType; RigidTransformType::Pointer rtransform = RigidTransformType::New(); RigidTransformType::ParametersType rigid_params( RigidTransformType::ParametersDimension ); this->GetParameters( &rigid_params[0] ); rtransform->SetParameters( rigid_params ); base_transform = rtransform; } return base_transform->GetMatrix().GetVnlMatrix(); } mitk::Image::Pointer mitk::PyramidImageRegistrationMethod ::GetResampledMovingImage() { mitk::Image::Pointer output = mitk::Image::New(); //output->Initialize( this->m_FixedImage ); AccessFixedDimensionByItk_1( this->m_MovingImage, ResampleMitkImage, 3, output ); return output; } diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkPyramidImageRegistrationMethod.h b/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkPyramidImageRegistrationMethod.h index ad36bcabe1..df66ef477e 100644 --- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkPyramidImageRegistrationMethod.h +++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkPyramidImageRegistrationMethod.h @@ -1,430 +1,452 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef MITKPYRAMIDIMAGEREGISTRATION_H #define MITKPYRAMIDIMAGEREGISTRATION_H #include #include #include #include "mitkImage.h" #include "mitkBaseProcess.h" #include "mitkPyramidRegistrationMethodHelper.h" +#include #include "mitkImageToItk.h" #include "mitkITKImageImport.h" namespace mitk { /** * @brief The PyramidImageRegistration class implements a multi-scale registration method * * The PyramidImageRegistration class is suitable for aligning (f.e.) brain MR images. The method offers two * transform types * - Rigid: optimizing translation and rotation only and * - Affine ( default ): with scaling in addition ( 12 DOF ) * * The error metric is internally chosen based on the selected task type ( @sa SetCrossModalityOn ) * It uses * - MattesMutualInformation for CrossModality=on ( default ) and * - NormalizedCorrelation for CrossModality=off. */ class DiffusionCore_EXPORT PyramidImageRegistrationMethod : public itk::Object { public: /** Typedefs */ mitkClassMacro(PyramidImageRegistrationMethod, itk::Object) /** Smart pointer support */ itkNewMacro(Self) /** Typedef for the transformation matrix, corresponds to the InternalMatrixType from ITK transforms */ typedef vnl_matrix_fixed< double, 3, 3> TransformMatrixType; /** Registration is between modalities - will take MattesMutualInformation as error metric */ void SetCrossModalityOn() { m_CrossModalityRegistration = true; } /** Registration is between modalities - will take NormalizedCorrelation as error metric */ void SetCrossModalityOff() { m_CrossModalityRegistration = false; } /** Turn the cross-modality on/off */ void SetCrossModality(bool flag) { if( flag ) this->SetCrossModalityOn(); else this->SetCrossModalityOff(); } /** Controll the verbosity of the registration output * * for true, each iteration step of the optimizer is watched and passed to the std::cout */ void SetVerbose(bool flag) { if( flag ) this->SetVerboseOn(); else this->SetVerboseOff(); } /** Turn verbosity on, \sa SetVerbose */ void SetVerboseOn() { m_Verbose = true; } /** Turn verbosity off, \sa SetVerbose */ void SetVerboseOff() { m_Verbose = false; } /** A rigid ( 6dof : translation + rotation ) transform is optimized */ void SetTransformToRigid() { m_UseAffineTransform = false; } /** An affine ( 12dof : Rigid + scale + skew ) transform is optimized */ void SetTransformToAffine() { m_UseAffineTransform = true; } /** Input image, the reference one */ void SetFixedImage( mitk::Image::Pointer ); /** Input image, the one to be transformed */ void SetMovingImage( mitk::Image::Pointer ); void Update(); /** * @brief Get the number of parameters optimized ( 12 or 6 ) * * @return number of paramters */ unsigned int GetNumberOfParameters() { unsigned int retValue = 12; if(!m_UseAffineTransform) retValue = 6; return retValue; } /** * @brief Copies the estimated parameters to the given array * @param paramArray, target array for copy, make sure to allocate enough space */ void GetParameters( double* paramArray) { if( m_EstimatedParameters == NULL ) { mitkThrow() << "No parameters were estimated yet, call Update() first."; } unsigned int dim = 12; if( !m_UseAffineTransform ) dim = 6; for( unsigned int i=0; i * * It returns identity if the internal parameters are not-yet allocated ( i.e. the filter did not run yet ) * * @return \sa TransformMatrixType */ TransformMatrixType GetLastRotationMatrix(); protected: PyramidImageRegistrationMethod(); ~PyramidImageRegistrationMethod(); /** Fixed image, used as reference for registration */ mitk::Image::Pointer m_FixedImage; /** Moving image, will be transformed */ mitk::Image::Pointer m_MovingImage; bool m_CrossModalityRegistration; bool m_UseAffineTransform; + bool m_UseWindowedSincInterpolator; + double* m_EstimatedParameters; /** Control the verbosity of the regsitistration output */ bool m_Verbose; template void RegisterTwoImages(itk::Image* itkImage1, itk::Image* itkImage2) { typedef typename itk::Image< TPixel1, VImageDimension1> FixedImageType; typedef typename itk::Image< TPixel2, VImageDimension2> MovingImageType; typedef typename itk::MultiResolutionImageRegistrationMethod< FixedImageType, MovingImageType > RegistrationType; typedef itk::RegularStepGradientDescentOptimizer OptimizerType; typedef itk::AffineTransform< double > AffineTransformType; typedef itk::Euler3DTransform< double > RigidTransformType; typedef itk::MatrixOffsetTransformBase< double, VImageDimension1, VImageDimension2 > BaseTransformType; typedef typename itk::MattesMutualInformationImageToImageMetric< FixedImageType, MovingImageType > MMIMetricType; typedef typename itk::NormalizedCorrelationImageToImageMetric< FixedImageType, MovingImageType > NCMetricType; typedef typename itk::ImageToImageMetric< FixedImageType, MovingImageType> BaseMetricType; typename itk::LinearInterpolateImageFunction::Pointer interpolator = itk::LinearInterpolateImageFunction::New(); typename BaseMetricType::Pointer metric; if( m_CrossModalityRegistration ) { metric = MMIMetricType::New(); } else { metric = NCMetricType::New(); } // initial parameter dimension ( affine = default ) unsigned int paramDim = 12; typename BaseTransformType::Pointer transform; if( m_UseAffineTransform ) { transform = AffineTransformType::New(); } else { transform = RigidTransformType::New(); paramDim = 6; } typename BaseTransformType::ParametersType initialParams(paramDim); initialParams.Fill(0); if( m_UseAffineTransform ) { initialParams[0] = initialParams[4] = initialParams[8] = 1; } typename FixedImageType::Pointer referenceImage = itkImage1; typename MovingImageType::Pointer movingImage = itkImage2; typename FixedImageType::RegionType maskedRegion = referenceImage->GetLargestPossibleRegion(); typename RegistrationType::Pointer registration = RegistrationType::New(); unsigned int max_pyramid_lvl = 3; unsigned int max_schedule_val = 4; typename FixedImageType::RegionType::SizeType image_size = referenceImage->GetLargestPossibleRegion().GetSize(); unsigned int min_value = std::min( image_size[0], std::min( image_size[1], image_size[2])); // condition for the top level pyramid image float optmaxstep = 6; float optminstep = 0.05f; unsigned int iterations = 100; if( min_value / max_schedule_val < 12 ) { max_schedule_val /= 2; optmaxstep *= 0.25f; optminstep *= 0.1f; } typename RegistrationType::ScheduleType fixedSchedule(max_pyramid_lvl,3); fixedSchedule.Fill(1); fixedSchedule[0][0] = max_schedule_val; fixedSchedule[0][1] = max_schedule_val; fixedSchedule[0][2] = max_schedule_val; for( unsigned int i=1; iSetScales( optScales ); optimizer->SetInitialPosition( initialParams ); optimizer->SetNumberOfIterations( iterations ); optimizer->SetGradientMagnitudeTolerance( 1e-4 ); optimizer->SetRelaxationFactor( 0.7 ); optimizer->SetMaximumStepLength( optmaxstep ); optimizer->SetMinimumStepLength( optminstep ); // add observer tag if verbose */ unsigned long vopt_tag = 0; if(m_Verbose) { MITK_INFO << " :: Starting at " << initialParams; MITK_INFO << " :: Scales = " << optScales; OptimizerIterationCommand< OptimizerType >::Pointer iterationObserver = OptimizerIterationCommand::New(); vopt_tag = optimizer->AddObserver( itk::IterationEvent(), iterationObserver ); } // INPUT IMAGES registration->SetFixedImage( referenceImage ); registration->SetFixedImageRegion( maskedRegion ); registration->SetMovingImage( movingImage ); registration->SetSchedules( fixedSchedule, fixedSchedule); // OTHER INPUTS registration->SetMetric( metric ); registration->SetOptimizer( optimizer ); registration->SetTransform( transform.GetPointer() ); registration->SetInterpolator( interpolator ); registration->SetInitialTransformParameters( initialParams ); typename PyramidOptControlCommand::Pointer pyramid_observer = PyramidOptControlCommand::New(); registration->AddObserver( itk::IterationEvent(), pyramid_observer ); try { registration->Update(); } catch (itk::ExceptionObject &e) { MITK_ERROR << "[Registration Update] Caught ITK exception: "; mitkThrow() << "Registration failed with exception: " << e.what(); } if( m_EstimatedParameters != NULL) { delete [] m_EstimatedParameters; } m_EstimatedParameters = new double[paramDim]; typename BaseTransformType::ParametersType finalParameters = registration->GetLastTransformParameters(); for( unsigned int i=0; iRemoveObserver( vopt_tag ); } } template< typename TPixel, unsigned int VDimension> void ResampleMitkImage( itk::Image* itkImage, mitk::Image::Pointer& outputImage ) { typedef typename itk::Image< TPixel, VDimension> ImageType; typedef typename itk::ResampleImageFilter< ImageType, ImageType, double> ResampleImageFilterType; typedef itk::LinearInterpolateImageFunction< ImageType, double > InterpolatorType; - typename InterpolatorType::Pointer interpolator = InterpolatorType::New(); + typename InterpolatorType::Pointer linear_interpolator = InterpolatorType::New(); + + typedef itk::WindowedSincInterpolateImageFunction< ImageType, 7> WindowedSincInterpolatorType; + typename WindowedSincInterpolatorType::Pointer sinc_interpolator = WindowedSincInterpolatorType::New(); typename mitk::ImageToItk< ImageType >::Pointer reference_image = mitk::ImageToItk< ImageType >::New(); reference_image->SetInput( this->m_FixedImage ); reference_image->Update(); typedef itk::MatrixOffsetTransformBase< double, 3, 3> BaseTransformType; BaseTransformType::Pointer base_transform = BaseTransformType::New(); if( this->m_UseAffineTransform ) { typedef itk::AffineTransform< double > TransformType; TransformType::Pointer transform = TransformType::New(); TransformType::ParametersType affine_params( TransformType::ParametersDimension ); this->GetParameters( &affine_params[0] ); transform->SetParameters( affine_params ); base_transform = transform; } // Rigid else { typedef itk::Euler3DTransform< double > RigidTransformType; RigidTransformType::Pointer rtransform = RigidTransformType::New(); RigidTransformType::ParametersType rigid_params( RigidTransformType::ParametersDimension ); this->GetParameters( &rigid_params[0] ); rtransform->SetParameters( rigid_params ); base_transform = rtransform; } typename ResampleImageFilterType::Pointer resampler = ResampleImageFilterType::New(); + resampler->SetInterpolator( linear_interpolator ); + if( m_UseWindowedSincInterpolator ) + resampler->SetInterpolator( sinc_interpolator ); + resampler->SetInput( itkImage ); resampler->SetTransform( base_transform ); resampler->SetReferenceImage( reference_image->GetOutput() ); resampler->UseReferenceImageOn(); resampler->Update(); mitk::GrabItkImageMemory( resampler->GetOutput(), outputImage); } }; } // end namespace #endif // MITKPYRAMIDIMAGEREGISTRATION_H