diff --git a/Core/Code/Rendering/mitkGeometry2DDataMapper2D.cpp b/Core/Code/Rendering/mitkGeometry2DDataMapper2D.cpp index 039d8395e6..e6de21c3fc 100644 --- a/Core/Code/Rendering/mitkGeometry2DDataMapper2D.cpp +++ b/Core/Code/Rendering/mitkGeometry2DDataMapper2D.cpp @@ -1,449 +1,452 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date$ Version: $Revision$ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #include "mitkGL.h" #include "mitkGeometry2DDataMapper2D.h" #include "mitkBaseRenderer.h" #include "mitkPlaneGeometry.h" #include "mitkColorProperty.h" #include "mitkProperties.h" #include "mitkSmartPointerProperty.h" #include "mitkPlaneOrientationProperty.h" #include "mitkGeometry2DDataToSurfaceFilter.h" #include "mitkSurfaceGLMapper2D.h" #include "mitkLine.h" #include "mitkNodePredicateDataType.h" mitk::Geometry2DDataMapper2D::Geometry2DDataMapper2D() : m_SurfaceMapper( NULL ), m_DataStorage(NULL), m_ParentNode(NULL), m_OtherGeometry2Ds(), m_RenderOrientationArrows( false ), m_ArrowOrientationPositive( true ) { } mitk::Geometry2DDataMapper2D::~Geometry2DDataMapper2D() { } const mitk::Geometry2DData* mitk::Geometry2DDataMapper2D::GetInput(void) { return static_cast ( GetData() ); } void mitk::Geometry2DDataMapper2D::GenerateData() { // collect all Geometry2DDatas accessible from the DataStorage m_OtherGeometry2Ds.clear(); if (m_DataStorage.IsNull()) return; mitk::NodePredicateDataType::Pointer p = mitk::NodePredicateDataType::New("Geometry2DData"); mitk::DataStorage::SetOfObjects::ConstPointer all = m_DataStorage->GetDerivations(m_ParentNode, p, false); for (mitk::DataStorage::SetOfObjects::ConstIterator it = all->Begin(); it != all->End(); ++it) { if(it->Value().IsNull()) continue; BaseData* data = it->Value()->GetData(); if (data == NULL) continue; Geometry2DData* geometry2dData = dynamic_cast(data); if(geometry2dData == NULL) continue; PlaneGeometry* planegeometry = dynamic_cast(geometry2dData->GetGeometry2D()); if (planegeometry != NULL) m_OtherGeometry2Ds.push_back(it->Value()); } } void mitk::Geometry2DDataMapper2D::Paint(BaseRenderer *renderer) { if ( !this->IsVisible(renderer) ) { return; } Geometry2DData::Pointer input = const_cast< Geometry2DData * >(this->GetInput()); // intersecting with ourself? if ( input.IsNull() || (this->GetInput()->GetGeometry2D() == renderer->GetCurrentWorldGeometry2D()) ) { return; // do nothing! } const PlaneGeometry *inputPlaneGeometry = dynamic_cast< const PlaneGeometry * >( input->GetGeometry2D() ); const PlaneGeometry *worldPlaneGeometry = dynamic_cast< const PlaneGeometry* >( renderer->GetCurrentWorldGeometry2D() ); if ( worldPlaneGeometry && inputPlaneGeometry && inputPlaneGeometry->GetReferenceGeometry() ) { DisplayGeometry *displayGeometry = renderer->GetDisplayGeometry(); assert( displayGeometry ); const Geometry3D *referenceGeometry = inputPlaneGeometry->GetReferenceGeometry(); // calculate intersection of the plane data with the border of the // world geometry rectangle Point2D lineFrom, lineTo; typedef Geometry3D::TransformType TransformType; const TransformType *transform = dynamic_cast< const TransformType * >( referenceGeometry->GetIndexToWorldTransform() ); TransformType::Pointer inverseTransform = TransformType::New(); transform->GetInverse( inverseTransform ); Line3D crossLine, otherCrossLine; // Calculate the intersection line of the input plane with the world plane if ( worldPlaneGeometry->IntersectionLine( inputPlaneGeometry, crossLine ) ) { BoundingBox::PointType boundingBoxMin, boundingBoxMax; boundingBoxMin = referenceGeometry->GetBoundingBox()->GetMinimum(); boundingBoxMax = referenceGeometry->GetBoundingBox()->GetMaximum(); if(referenceGeometry->GetImageGeometry()) { for(unsigned int i = 0; i < 3; ++i) { boundingBoxMin[i]-=0.5; boundingBoxMax[i]-=0.5; } } crossLine.Transform( *inverseTransform ); Point3D point1, point2; // Then, clip this line with the (transformed) bounding box of the // reference geometry. if ( crossLine.BoxLineIntersection( boundingBoxMin[0], boundingBoxMin[1], boundingBoxMin[2], boundingBoxMax[0], boundingBoxMax[1], boundingBoxMax[2], crossLine.GetPoint(), crossLine.GetDirection(), point1, point2 ) == 2 ) { // Transform the resulting line start and end points into display // coordinates. worldPlaneGeometry->Map( transform->TransformPoint( point1 ), lineFrom ); worldPlaneGeometry->Map( transform->TransformPoint( point2 ), lineTo ); Line< ScalarType, 2 > line, otherLine; line.SetPoints( lineFrom, lineTo ); displayGeometry->WorldToDisplay( lineFrom, lineFrom ); displayGeometry->WorldToDisplay( lineTo, lineTo ); ScalarType lengthInDisplayUnits = (lineTo - lineFrom).GetNorm(); // lineParams stores the individual segments of the line, which are // separated by a gap each (to mark the intersection with another // displayed line) std::vector< ScalarType > lineParams; lineParams.reserve( m_OtherGeometry2Ds.size() + 2 ); lineParams.push_back( 0.0 ); lineParams.push_back( 1.0 ); Vector2D d, dOrth; // Now iterate through all other lines displayed in this window and // calculate the positions of intersection with the line to be // rendered; these positions will be stored in lineParams to form a // gap afterwards. NodesVectorType::iterator otherPlanesIt = m_OtherGeometry2Ds.begin(); NodesVectorType::iterator otherPlanesEnd = m_OtherGeometry2Ds.end(); while ( otherPlanesIt != otherPlanesEnd ) { PlaneGeometry *otherPlane = static_cast< PlaneGeometry * >( static_cast< Geometry2DData * >( (*otherPlanesIt)->GetData() )->GetGeometry2D() ); // Just as with the original line, calculate the intersaction with // the world geometry... if ( (otherPlane != inputPlaneGeometry) && worldPlaneGeometry->IntersectionLine( otherPlane, otherCrossLine ) ) { // ... and clip the resulting line segment with the reference // geometry bounding box. otherCrossLine.Transform( *inverseTransform ); if ( otherCrossLine.BoxLineIntersection( boundingBoxMin[0], boundingBoxMin[1], boundingBoxMin[2], boundingBoxMax[0], boundingBoxMax[1], boundingBoxMax[2], otherCrossLine.GetPoint(), otherCrossLine.GetDirection(), point1, point2 ) == 2 ) { worldPlaneGeometry->Map( transform->TransformPoint( point1 ), lineFrom ); worldPlaneGeometry->Map( transform->TransformPoint( point2 ), lineTo ); // By means of the dot product, calculate the gap position as // parametric value in the range [0, 1] otherLine.SetPoints( lineFrom, lineTo ); d = otherLine.GetDirection(); dOrth[0] = -d[1]; dOrth[1] = d[0]; ScalarType t, norm; t = ( otherLine.GetPoint1() - line.GetPoint1() ) * dOrth; norm = line.GetDirection() * dOrth; if ( fabs( norm ) > eps ) { t /= norm; if ( (t > 0.0) && (t < 1.0) ) { lineParams.push_back(t); } } } } ++otherPlanesIt; } // Apply color and opacity read from the PropertyList. this->ApplyProperties( renderer ); ScalarType gapSizeInPixel = 10.0; ScalarType gapSizeInParamUnits = 1.0 / lengthInDisplayUnits * gapSizeInPixel; std::sort( lineParams.begin(), lineParams.end() ); Point2D p1, p2; ScalarType p1Param, p2Param; p1Param = lineParams[0]; p1 = line.GetPoint( p1Param ); displayGeometry->WorldToDisplay( p1, p1 ); + //Work arround to show the crosshair always on top of a 2D render window + //The image is usually located at depth = 0 or negative depth values, and thus, + //the crosshair with depth = 1 is always on top. float depthPosition = 1.0f; // Iterate over all line segments and display each, with a gap // inbetween. unsigned int i, preLastLineParam = lineParams.size() - 1; for ( i = 1; i < preLastLineParam; ++i ) { p2Param = lineParams[i] - gapSizeInParamUnits * 0.5; p2 = line.GetPoint( p2Param ); if ( p2Param > p1Param ) { // Convert intersection points (until now mm) to display // coordinates (units). displayGeometry->WorldToDisplay( p2, p2 ); // draw glEnable(GL_DEPTH_TEST); glBegin (GL_LINES); glVertex3f(p1[0],p1[1], depthPosition); glVertex3f(p2[0],p2[1], depthPosition); glEnd (); if ( (i == 1) && (m_RenderOrientationArrows) ) { // Draw orientation arrow for first line segment this->DrawOrientationArrow( p1, p2, inputPlaneGeometry, worldPlaneGeometry, displayGeometry, m_ArrowOrientationPositive ); } } p1Param = p2Param + gapSizeInParamUnits; p1 = line.GetPoint( p1Param ); displayGeometry->WorldToDisplay( p1, p1 ); } // Draw last line segment p2Param = lineParams[i]; p2 = line.GetPoint( p2Param ); displayGeometry->WorldToDisplay( p2, p2 ); glBegin( GL_LINES ); glVertex3f( p1[0], p1[1], depthPosition); glVertex3f( p2[0], p2[1], depthPosition); glEnd(); // Draw orientation arrows if ( m_RenderOrientationArrows ) { this->DrawOrientationArrow( p2, p1, inputPlaneGeometry, worldPlaneGeometry, displayGeometry, m_ArrowOrientationPositive ); if ( preLastLineParam < 2 ) { // If we only have one line segment, draw other arrow, too this->DrawOrientationArrow( p1, p2, inputPlaneGeometry, worldPlaneGeometry, displayGeometry, m_ArrowOrientationPositive ); } } } } } else { Geometry2DDataToSurfaceFilter::Pointer surfaceCreator; SmartPointerProperty::Pointer surfacecreatorprop; surfacecreatorprop = dynamic_cast< SmartPointerProperty * >( GetDataNode()->GetProperty( "surfacegeometry", renderer)); if( (surfacecreatorprop.IsNull()) || (surfacecreatorprop->GetSmartPointer().IsNull()) || ((surfaceCreator = dynamic_cast< Geometry2DDataToSurfaceFilter * >( surfacecreatorprop->GetSmartPointer().GetPointer())).IsNull()) ) { surfaceCreator = Geometry2DDataToSurfaceFilter::New(); surfacecreatorprop = SmartPointerProperty::New(surfaceCreator); surfaceCreator->PlaceByGeometryOn(); GetDataNode()->SetProperty( "surfacegeometry", surfacecreatorprop ); } surfaceCreator->SetInput( input ); // Clip the Geometry2D with the reference geometry bounds (if available) if ( input->GetGeometry2D()->HasReferenceGeometry() ) { surfaceCreator->SetBoundingBox( input->GetGeometry2D()->GetReferenceGeometry()->GetBoundingBox() ); } int res; bool usegeometryparametricbounds = true; if ( GetDataNode()->GetIntProperty("xresolution", res, renderer)) { surfaceCreator->SetXResolution(res); usegeometryparametricbounds=false; } if (GetDataNode()->GetIntProperty("yresolution", res, renderer)) { surfaceCreator->SetYResolution(res); usegeometryparametricbounds=false; } surfaceCreator->SetUseGeometryParametricBounds(usegeometryparametricbounds); // Calculate the surface of the Geometry2D surfaceCreator->Update(); if (m_SurfaceMapper.IsNull()) { m_SurfaceMapper=SurfaceGLMapper2D::New(); } m_SurfaceMapper->SetSurface(surfaceCreator->GetOutput()); m_SurfaceMapper->SetDataNode(GetDataNode()); m_SurfaceMapper->Paint(renderer); } } void mitk::Geometry2DDataMapper2D::DrawOrientationArrow( mitk::Point2D &outerPoint, mitk::Point2D &innerPoint, const mitk::PlaneGeometry *planeGeometry, const mitk::PlaneGeometry *rendererPlaneGeometry, const mitk::DisplayGeometry *displayGeometry, bool positiveOrientation ) { // Draw arrows to indicate plane orientation // Vector along line Vector2D v1 = innerPoint - outerPoint; v1.Normalize(); v1 *= 7.0; // Orthogonal vector Vector2D v2; v2[0] = v1[1]; v2[1] = -v1[0]; // Calculate triangle tip for one side and project it back into world // coordinates to determine whether it is above or below the plane Point2D worldPoint2D; Point3D worldPoint; displayGeometry->DisplayToWorld( outerPoint + v1 + v2, worldPoint2D ); rendererPlaneGeometry->Map( worldPoint2D, worldPoint ); // Initialize remaining triangle coordinates accordingly // (above/below state is XOR'ed with orientation flag) Point2D p1 = outerPoint + v1 * 2.0; Point2D p2 = outerPoint + v1 + ((positiveOrientation ^ planeGeometry->IsAbove( worldPoint )) ? v2 : -v2); // Draw the arrow (triangle) glBegin( GL_TRIANGLES ); glVertex2f( outerPoint[0], outerPoint[1] ); glVertex2f( p1[0], p1[1] ); glVertex2f( p2[0], p2[1] ); glEnd(); } void mitk::Geometry2DDataMapper2D::ApplyProperties( BaseRenderer *renderer ) { Superclass::ApplyProperties(renderer); PlaneOrientationProperty* decorationProperty; this->GetDataNode()->GetProperty( decorationProperty, "decoration", renderer ); if ( decorationProperty != NULL ) { if ( decorationProperty->GetPlaneDecoration() == PlaneOrientationProperty::PLANE_DECORATION_POSITIVE_ORIENTATION ) { m_RenderOrientationArrows = true; m_ArrowOrientationPositive = true; } else if ( decorationProperty->GetPlaneDecoration() == PlaneOrientationProperty::PLANE_DECORATION_NEGATIVE_ORIENTATION ) { m_RenderOrientationArrows = true; m_ArrowOrientationPositive = false; } else { m_RenderOrientationArrows = false; } } } void mitk::Geometry2DDataMapper2D::SetDatastorageAndGeometryBaseNode( mitk::DataStorage::Pointer ds, mitk::DataNode::Pointer parent ) { if (ds.IsNotNull()) { m_DataStorage = ds; } if (parent.IsNotNull()) { m_ParentNode = parent; } }