diff --git a/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp b/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp index 72e04fb4d7..d42672af2d 100644 --- a/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp +++ b/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp @@ -1,1111 +1,1114 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef __itkDiffusionMultiShellQballReconstructionImageFilter_cpp #define __itkDiffusionMultiShellQballReconstructionImageFilter_cpp #include #include #include #include #include #include #include #include #include #include #include "mitkDiffusionFunctionCollection.h" #include "itkPointShell.h" #include #include namespace itk { template< class T, class TG, class TO, int L, int NODF> DiffusionMultiShellQballReconstructionImageFilter ::DiffusionMultiShellQballReconstructionImageFilter() : m_GradientDirectionContainer(NULL), m_NumberOfGradientDirections(0), m_NumberOfBaselineImages(1), m_Threshold(NumericTraits< ReferencePixelType >::NonpositiveMin()), m_BValue(1.0), m_Lambda(0.0), m_IsHemisphericalArrangementOfGradientDirections(false), m_IsArithmeticProgession(false), m_ReconstructionType(Mode_Standard1Shell), m_Interpolation_Flag(false), m_Interpolation_SHT1_inv(0), m_Interpolation_SHT2_inv(0), m_Interpolation_SHT3_inv(0), m_Interpolation_TARGET_SH(0) { // At least 1 inputs is necessary for a vector image. // For images added one at a time we need at least six this->SetNumberOfRequiredInputs( 1 ); } template void DiffusionMultiShellQballReconstructionImageFilter ::Normalize( OdfPixelType & out) { for(int i=0; i void DiffusionMultiShellQballReconstructionImageFilter ::Projection1(vnl_vector & vec, double delta) { if (delta==0){ //Clip attenuation values. If att<0 => att=0, if att>1 => att=1 for (int i=0; i=0 && vec[i]<=1)*vec[i]+(vec[i]>1); } else{ //Use function from Aganj et al, MRM, 2010 for (int i=0; i< vec.size(); i++) vec[i]=CalculateThreashold(vec[i], delta); } } template double DiffusionMultiShellQballReconstructionImageFilter ::CalculateThreashold(const double value, const double delta) { return (value<0)*(0.5*delta) + (value>=0 && value=delta && value<1-delta)*value+(value>=1-delta && value<1)*(1-0.5*delta-0.5*((1-value)*(1-value))/delta) + (value>=1)*(1-0.5*delta); } template void DiffusionMultiShellQballReconstructionImageFilter ::Projection2( vnl_vector & E1,vnl_vector & E2, vnl_vector & E3, double delta ) { const double sF = sqrt(5.0); vnl_vector vOnes(m_MaxDirections); vOnes.fill(1.0); vnl_matrix T0(m_MaxDirections, 3); vnl_matrix C(m_MaxDirections, 7); vnl_matrix A(m_MaxDirections, 7); vnl_matrix B(m_MaxDirections, 7); vnl_vector s0(m_MaxDirections); vnl_vector a0(m_MaxDirections); vnl_vector b0(m_MaxDirections); vnl_vector ta(m_MaxDirections); vnl_vector tb(m_MaxDirections); vnl_vector e(m_MaxDirections); vnl_vector m(m_MaxDirections); vnl_vector a(m_MaxDirections); vnl_vector b(m_MaxDirections); // logarithmierung aller werte in E for(int i = 0 ; i < m_MaxDirections; i++) { T0(i,0) = -log(E1(i)); T0(i,1) = -log(E2(i)); T0(i,2) = -log(E3(i)); } //T0 = -T0.apply(std::log); // Summeiere Zeilenweise über alle Shells sum = E1+E2+E3 for(int i = 0 ; i < m_MaxDirections; i++) { s0[i] = T0(i,0) + T0(i,1) + T0(i,2); } for(int i = 0; i < m_MaxDirections; i ++) { // Alle Signal-Werte auf der Ersten shell E(N,0) normiert auf s0 a0[i] = T0(i,0) / s0[i]; // Alle Signal-Werte auf der Zweiten shell E(N,1) normiert auf s0 b0[i] = T0(i,1) / s0[i]; } ta = a0 * 3.0; tb = b0 * 3.0; e = tb - (ta * 2.0); m = (tb * 2.0 ) + ta; for(int i = 0; i =1-3*(sF+2)*delta); C(i,2) = (m[i] > 3-3*sF*delta) && (-1+3*(2*sF+5)*delta= 3-3*sF*delta && e[i] >= -3 *sF * delta); C(i,4) = (2.5 + 1.5*(5+sF)*delta < m[i] && m[i] < 3-3*sF*delta && e[i] > -3*sF*delta); C(i,5) = (ta[i] <= 0.5+1.5 *(sF+1)*delta && m[i] <= 2.5 + 1.5 *(5+sF) * delta); C(i,6) = !((bool) C(i,0) ||(bool) C(i,1) ||(bool) C(i,2) ||(bool) C(i,3) ||(bool) C(i,4) ||(bool) C(i,5) ); // ~ANY(C(i,[0-5] ),2) A(i,0)=(bool)C(i,0) * a0(i); A(i,1)=(bool)C(i,1) * (1.0/3.0-(sF+2)*delta); A(i,2)=(bool)C(i,2) * (0.2+0.8*a0(i)-0.4*b0(i)-delta/sF); A(i,3)=(bool)C(i,3) * (0.2+delta/sF); A(i,4)=(bool)C(i,4) * (0.2*a0(i)+0.4*b0(i)+2*delta/sF); A(i,5)=(bool)C(i,5) * (1.0/6.0+0.5*(sF+1)*delta); A(i,6)=(bool)C(i,6) * a0(i); B(i,0)=(bool)C(i,0) * (1.0/3.0+delta); B(i,1)=(bool)C(i,1) * (1.0/3.0+delta); B(i,2)=(bool)C(i,2) * (0.4-0.4*a0(i)+0.2*b0(i)-2*delta/sF); B(i,3)=(bool)C(i,3) * (0.4-3*delta/sF); B(i,4)=(bool)C(i,4) * (0.4*a0(i)+0.8*b0(i)-delta/sF); B(i,5)=(bool)C(i,5) * (1.0/3.0+delta); B(i,6)=(bool)C(i,6) * b0(i); } for(int i = 0 ; i < m_MaxDirections; i++) { double sumA = 0; double sumB = 0; for(int j = 0 ; j < 7; j++) { sumA += A(i,j); sumB += B(i,j); } a[i] = sumA; b[i] = sumB; } for(int i = 0; i < m_MaxDirections; i++) { E1(i) = exp(-(a[i]*s0[i])); E2(i) = exp(-(b[i]*s0[i])); E3(i) = exp(-((1-a[i]-b[i])*s0[i])); } } template void DiffusionMultiShellQballReconstructionImageFilter ::Projection3( vnl_vector & A, vnl_vector & a, vnl_vector & b, double delta0) { const double s6 = sqrt(6.0); const double s15 = s6/2.0; vnl_vector delta(a.size()); delta.fill(delta0); vnl_matrix AM(a.size(), 15); vnl_matrix aM(a.size(), 15); vnl_matrix bM(a.size(), 15); vnl_matrix B(a.size(), 15); AM.set_column(0, A); AM.set_column(1, A); AM.set_column(2, A); AM.set_column(3, delta); AM.set_column(4, (A+a-b - (delta*s6))/3.0); AM.set_column(5, delta); AM.set_column(6, delta); AM.set_column(7, delta); AM.set_column(8, A); AM.set_column(9, 0.2*(a*2+A-2*(s6+1)*delta)); AM.set_column(10,0.2*(b*(-2)+A+2-2*(s6+1)*delta)); AM.set_column(11, delta); AM.set_column(12, delta); AM.set_column(13, delta); AM.set_column(14, 0.5-(1+s15)*delta); aM.set_column(0, a); aM.set_column(1, a); aM.set_column(2, -delta + 1); aM.set_column(3, a); aM.set_column(4, (A*2+a*5+b+s6*delta)/6.0); aM.set_column(5, a); aM.set_column(6, -delta + 1); aM.set_column(7, 0.5*(a+b)+(1+s15)*delta); aM.set_column(8, -delta + 1); aM.set_column(9, 0.2*(a*4+A*2+(s6+1)*delta)); aM.set_column(10, -delta + 1); aM.set_column(11, (s6+3)*delta); aM.set_column(12, -delta + 1); aM.set_column(13, -delta + 1); aM.set_column(14, -delta + 1); bM.set_column(0, b); bM.set_column(1, delta); bM.set_column(2, b); bM.set_column(3, b); bM.set_column(4, (A*(-2)+a+b*5-s6*delta)/6.0); bM.set_column(5, delta); bM.set_column(6, b); bM.set_column(7, 0.5*(a+b)-(1+s15)*delta); bM.set_column(8, delta); bM.set_column(9, delta); bM.set_column(10, 0.2*(b*4-A*2+1-(s6+1)*delta)); bM.set_column(11, delta); bM.set_column(12, delta); bM.set_column(13, -delta*(s6+3) + 1); bM.set_column(14, delta); delta0 *= 0.99; vnl_matrix R2(a.size(), 15); std::vector I(a.size()); for (int i=0; idelta0 && aM(i,j)<1-delta0) R2(i,j) = (AM(i,j)-A(i))*(AM(i,j)-A(i))+ (aM(i,j)-a(i))*(aM(i,j)-a(i))+(bM(i,j)-b(i))*(bM(i,j)-b(i)); else R2(i,j) = 1e20; } unsigned int index = 0; double minvalue = 999; for(int j = 0 ; j < 15 ; j++) { if(R2(i,j) < minvalue){ minvalue = R2(i,j); index = j; } } I[i] = index; } for (int i=0; i < A.size(); i++){ A(i) = AM(i,(int)I[i]); a(i) = aM(i,(int)I[i]); b(i) = bM(i,(int)I[i]); } } template void DiffusionMultiShellQballReconstructionImageFilter ::S_S0Normalization( vnl_vector & vec, double S0 ) { for(int i = 0; i < vec.size(); i++) { if (S0==0) S0 = 0.01; vec[i] /= S0; } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::DoubleLogarithm(vnl_vector & vec) { for(int i = 0; i < vec.size(); i++) { vec[i] = log(-log(vec[i])); } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::SetGradientImage( GradientDirectionContainerType *gradientDirection , const GradientImagesType *gradientImage , float bvalue) { m_BValue = bvalue; m_GradientDirectionContainer = gradientDirection; m_NumberOfBaselineImages = 0; if(m_BValueMap.size() == 0){ itkWarningMacro(<< "DiffusionMultiShellQballReconstructionImageFilter.cpp : no GradientIndexMapAvalible"); GradientDirectionContainerType::ConstIterator gdcit; for( gdcit = m_GradientDirectionContainer->Begin(); gdcit != m_GradientDirectionContainer->End(); ++gdcit) { double bValueKey = int(((m_BValue * gdcit.Value().two_norm() * gdcit.Value().two_norm())+7.5)/10)*10; m_BValueMap[bValueKey].push_back(gdcit.Index()); } } if(m_BValueMap.find(0) == m_BValueMap.end()) { itkExceptionMacro(<< "DiffusionMultiShellQballReconstructionImageFilter.cpp : GradientIndxMap with no b-Zero indecies found: check input image"); } m_NumberOfBaselineImages = m_BValueMap[0].size(); m_NumberOfGradientDirections = gradientDirection->Size() - m_NumberOfBaselineImages; // ensure that the gradient image we received has as many components as // the number of gradient directions if( gradientImage->GetVectorLength() != m_NumberOfBaselineImages + m_NumberOfGradientDirections ) { itkExceptionMacro( << m_NumberOfGradientDirections << " gradients + " << m_NumberOfBaselineImages << "baselines = " << m_NumberOfGradientDirections + m_NumberOfBaselineImages << " directions specified but image has " << gradientImage->GetVectorLength() << " components."); } ProcessObject::SetNthInput( 0, const_cast< GradientImagesType* >(gradientImage) ); std::string gradientImageClassName(ProcessObject::GetInput(0)->GetNameOfClass()); if ( strcmp(gradientImageClassName.c_str(),"VectorImage") != 0 ) itkExceptionMacro( << "There is only one Gradient image. I expect that to be a VectorImage. But its of type: " << gradientImageClassName ); m_BZeroImage = BZeroImageType::New(); typename GradientImagesType::Pointer img = static_cast< GradientImagesType * >( ProcessObject::GetInput(0) ); m_BZeroImage->SetSpacing( img->GetSpacing() ); // Set the image spacing m_BZeroImage->SetOrigin( img->GetOrigin() ); // Set the image origin m_BZeroImage->SetDirection( img->GetDirection() ); // Set the image direction m_BZeroImage->SetLargestPossibleRegion( img->GetLargestPossibleRegion()); m_BZeroImage->SetBufferedRegion( img->GetLargestPossibleRegion() ); m_BZeroImage->Allocate(); m_CoefficientImage = CoefficientImageType::New(); m_CoefficientImage->SetSpacing( img->GetSpacing() ); // Set the image spacing m_CoefficientImage->SetOrigin( img->GetOrigin() ); // Set the image origin m_CoefficientImage->SetDirection( img->GetDirection() ); // Set the image direction m_CoefficientImage->SetLargestPossibleRegion( img->GetLargestPossibleRegion()); m_CoefficientImage->SetBufferedRegion( img->GetLargestPossibleRegion() ); m_CoefficientImage->Allocate(); } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::BeforeThreadedGenerateData() { m_ReconstructionType = Mode_Standard1Shell; if(m_BValueMap.size() == 4 ){ BValueMapIteraotr it = m_BValueMap.begin(); it++; // skip b0 entry const int b1 = it->first; const int vecSize1 = it->second.size(); IndiciesVector shell1 = it->second; it++; const int b2 = it->first; const int vecSize2 = it->second.size(); IndiciesVector shell2 = it->second; it++; const int b3 = it->first; const int vecSize3 = it->second.size(); IndiciesVector shell3 = it->second; // arithmetic progrssion if(b2 - b1 == b1 && b3 - b2 == b1 ) { // check if Interpolation is needed // if shells with different numbers of directions exist m_Interpolation_Flag = false; if(vecSize1 != vecSize2 || vecSize2 != vecSize3 || vecSize1 != vecSize3) { m_Interpolation_Flag = true; MITK_INFO << "Shell interpolation: shells with different numbers of directions"; }else // if each shell holds same numbers of directions, but the gradient direction differ more than one 1 degree { m_Interpolation_Flag = CheckForDifferingShellDirections(); if(m_Interpolation_Flag) MITK_INFO << "Shell interpolation: gradient direction differ more than one 1 degree"; } m_ReconstructionType = Mode_Analytical3Shells; if(m_Interpolation_Flag) { IndiciesVector min_shell; IndiciesVector max_shell; int Interpolation_SHOrder = 10; //fewer directions if (vecSize1 <= vecSize2 ) { min_shell = shell1;} else { min_shell = shell2;} if (min_shell.size() > vecSize3){ min_shell = shell3;} //most directions if (vecSize1 >= vecSize2 ) { max_shell = shell1;} else { max_shell = shell2;} if (max_shell.size() < vecSize3){ max_shell = shell3;} m_MaxDirections = max_shell.size(); //SH-order determination while( ((Interpolation_SHOrder+1)*(Interpolation_SHOrder+2)/2) > min_shell.size() && Interpolation_SHOrder > L ) Interpolation_SHOrder -= 2 ; MITK_INFO << "Interpolation enabeled, using SH of order : " << Interpolation_SHOrder; // create target SH-Basis vnl_matrix * Q = new vnl_matrix(3, max_shell.size()); ComputeSphericalFromCartesian(Q, max_shell); int NumberOfCoeffs = (int)(Interpolation_SHOrder*Interpolation_SHOrder + Interpolation_SHOrder + 2.0)/2.0 + Interpolation_SHOrder; m_Interpolation_TARGET_SH = new vnl_matrix(max_shell.size(), NumberOfCoeffs); ComputeSphericalHarmonicsBasis(Q, m_Interpolation_TARGET_SH, Interpolation_SHOrder); delete Q; // end creat target SH-Basis // create measured-SHBasis // Shell 1 vnl_matrix * tempSHBasis; vnl_matrix_inverse * temp; Q = new vnl_matrix(3, shell1.size()); ComputeSphericalFromCartesian(Q, shell1); tempSHBasis = new vnl_matrix(shell1.size(), NumberOfCoeffs); ComputeSphericalHarmonicsBasis(Q, tempSHBasis, Interpolation_SHOrder); temp = new vnl_matrix_inverse((*tempSHBasis)); m_Interpolation_SHT1_inv = new vnl_matrix(temp->inverse()); delete Q; delete temp; delete tempSHBasis; // Shell 2 Q = new vnl_matrix(3, shell2.size()); ComputeSphericalFromCartesian(Q, shell2); tempSHBasis = new vnl_matrix(shell2.size(), NumberOfCoeffs); ComputeSphericalHarmonicsBasis(Q, tempSHBasis, Interpolation_SHOrder); temp = new vnl_matrix_inverse((*tempSHBasis)); m_Interpolation_SHT2_inv = new vnl_matrix(temp->inverse()); delete Q; delete temp; delete tempSHBasis; // Shell 3 Q = new vnl_matrix(3, shell3.size()); ComputeSphericalFromCartesian(Q, shell3); tempSHBasis = new vnl_matrix(shell3.size(), NumberOfCoeffs); ComputeSphericalHarmonicsBasis(Q, tempSHBasis, Interpolation_SHOrder); temp = new vnl_matrix_inverse((*tempSHBasis)); m_Interpolation_SHT3_inv = new vnl_matrix(temp->inverse()); delete Q; delete temp; delete tempSHBasis; ComputeReconstructionMatrix(max_shell); return; }else { ComputeReconstructionMatrix(shell1); } } } if(m_BValueMap.size() > 2 && m_ReconstructionType != Mode_Analytical3Shells) { m_ReconstructionType = Mode_NumericalNShells; } if(m_BValueMap.size() == 2){ BValueMapIteraotr it = m_BValueMap.begin(); it++; // skip b0 entry IndiciesVector shell = it->second; ComputeReconstructionMatrix(shell); } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, int NumberOfThreads) { itk::TimeProbe clock; clock.Start(); switch(m_ReconstructionType) { case Mode_Standard1Shell: StandardOneShellReconstruction(outputRegionForThread); break; case Mode_Analytical3Shells: AnalyticalThreeShellReconstruction(outputRegionForThread); break; case Mode_NumericalNShells: break; } clock.Stop(); MITK_INFO << "Reconstruction in : " << clock.GetTotal() << " s"; } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::StandardOneShellReconstruction(const OutputImageRegionType& outputRegionForThread) { // Get output image pointer typename OutputImageType::Pointer outputImage = static_cast< OutputImageType * >(ProcessObject::GetOutput(0)); // Get input gradient image pointer typename GradientImagesType::Pointer gradientImagePointer = static_cast< GradientImagesType * >( ProcessObject::GetInput(0) ); // ImageRegionIterator for the output image ImageRegionIterator< OutputImageType > oit(outputImage, outputRegionForThread); oit.GoToBegin(); // ImageRegionIterator for the BZero (output) image ImageRegionIterator< BZeroImageType > bzeroIterator(m_BZeroImage, outputRegionForThread); bzeroIterator.GoToBegin(); // Const ImageRegionIterator for input gradient image typedef ImageRegionConstIterator< GradientImagesType > GradientIteratorType; GradientIteratorType git(gradientImagePointer, outputRegionForThread ); git.GoToBegin(); BValueMapIteraotr it = m_BValueMap.begin(); it++; // skip b0 entry IndiciesVector SignalIndicies = it->second; IndiciesVector BZeroIndicies = m_BValueMap[0]; int NumbersOfGradientIndicies = SignalIndicies.size(); typedef typename GradientImagesType::PixelType GradientVectorType; // iterate overall voxels of the gradient image region while( ! git.IsAtEnd() ) { GradientVectorType b = git.Get(); // ODF Vector OdfPixelType odf(0.0); double b0average = 0; const int b0size = BZeroIndicies.size(); for(unsigned int i = 0; i SignalVector(NumbersOfGradientIndicies); if( (b0average != 0) && (b0average >= m_Threshold) ) { for( unsigned int i = 0; i< SignalIndicies.size(); i++ ) { SignalVector[i] = static_cast(b[SignalIndicies[i]]); } // apply threashold an generate ln(-ln(E)) signal // Replace SignalVector with PreNormalized SignalVector S_S0Normalization(SignalVector, b0average); Projection1(SignalVector); DoubleLogarithm(SignalVector); // approximate ODF coeffs vnl_vector coeffs = ( (*m_CoeffReconstructionMatrix) * SignalVector ); coeffs[0] = 1.0/(2.0*sqrt(QBALL_ANAL_RECON_PI)); odf = element_cast(( (*m_ODFSphericalHarmonicBasisMatrix) * coeffs )).data_block(); odf *= (QBALL_ANAL_RECON_PI*4/NODF); } // set ODF to ODF-Image oit.Set( odf ); ++oit; ++git; } MITK_INFO << "One Thread finished reconstruction"; } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::NumericalNShellReconstruction(const OutputImageRegionType& outputRegionForThread) { // vnl_levenberg_marquardt LMOptimizer = new vnl_levenberg_marquardt(); } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::AnalyticalThreeShellReconstruction(const OutputImageRegionType& outputRegionForThread) { // Input Gradient Image and Output ODF Image typedef typename GradientImagesType::PixelType GradientVectorType; typename OutputImageType::Pointer outputImage = static_cast< OutputImageType * >(ProcessObject::GetOutput(0)); typename GradientImagesType::Pointer gradientImagePointer = static_cast< GradientImagesType * >( ProcessObject::GetInput(0) ); // Define Image iterators ImageRegionIterator< OutputImageType > odfOutputImageIterator(outputImage, outputRegionForThread); ImageRegionConstIterator< GradientImagesType > gradientInputImageIterator(gradientImagePointer, outputRegionForThread ); ImageRegionIterator< BZeroImageType > bzeroIterator(m_BZeroImage, outputRegionForThread); ImageRegionIterator< CoefficientImageType > coefficientImageIterator(m_CoefficientImage, outputRegionForThread); // All iterators seht to Begin of the specific OutputRegion coefficientImageIterator.GoToBegin(); bzeroIterator.GoToBegin(); odfOutputImageIterator.GoToBegin(); gradientInputImageIterator.GoToBegin(); // Get Shell Indicies for all non-BZero Gradients // it MUST be a arithmetic progression eg.: 1000, 2000, 3000 BValueMapIteraotr it = m_BValueMap.begin(); it++; // it = b-value = 1000 IndiciesVector Shell1Indiecies = it->second; it++; // it = b-value = 2000 IndiciesVector Shell2Indiecies = it->second; it++; // it = b-value = 3000 IndiciesVector Shell3Indiecies = it->second; IndiciesVector BZeroIndicies = m_BValueMap[0]; if(!m_Interpolation_Flag) { m_MaxDirections = Shell1Indiecies.size(); }// else: m_MaxDirection is set in BeforeThreadedGenerateData // Nx3 Signal Matrix with E(0) = Shell 1, E(1) = Shell 2, E(2) = Shell 3 vnl_vector< double > E1(m_MaxDirections); vnl_vector< double > E2(m_MaxDirections); vnl_vector< double > E3(m_MaxDirections); vnl_vector AlphaValues(m_MaxDirections); vnl_vector BetaValues(m_MaxDirections); vnl_vector LAValues(m_MaxDirections); vnl_vector PValues(m_MaxDirections); vnl_vector DataShell1(Shell1Indiecies.size()); vnl_vector DataShell2(Shell2Indiecies.size()); vnl_vector DataShell3(Shell3Indiecies.size()); vnl_matrix tempInterpolationMatrixShell1,tempInterpolationMatrixShell2,tempInterpolationMatrixShell3; if(m_Interpolation_Flag) { tempInterpolationMatrixShell1 = (*m_Interpolation_TARGET_SH) * (*m_Interpolation_SHT1_inv); tempInterpolationMatrixShell2 = (*m_Interpolation_TARGET_SH) * (*m_Interpolation_SHT2_inv); tempInterpolationMatrixShell3 = (*m_Interpolation_TARGET_SH) * (*m_Interpolation_SHT3_inv); } OdfPixelType odf(0.0); typename CoefficientImageType::PixelType coeffPixel(0.0); double P2,A,B2,B,P,alpha,beta,lambda, ER1, ER2; // iterate overall voxels of the gradient image region while( ! gradientInputImageIterator.IsAtEnd() ) { + odf = 0.0; + coeffPixel = 0.0; + GradientVectorType b = gradientInputImageIterator.Get(); // calculate for each shell the corresponding b0-averages double shell1b0Norm =0; double shell2b0Norm =0; double shell3b0Norm =0; double b0average = 0; const int b0size = BZeroIndicies.size(); if(b0size == 1) { shell1b0Norm = b[BZeroIndicies[0]]; shell2b0Norm = b[BZeroIndicies[0]]; shell3b0Norm = b[BZeroIndicies[0]]; b0average = b[BZeroIndicies[0]]; }else if(b0size % 3 ==0) { for(unsigned int i = 0; i = b0size / 3 && i < (b0size / 3)*2) shell2b0Norm += b[BZeroIndicies[i]]; if(i >= (b0size / 3) * 2) shell3b0Norm += b[BZeroIndicies[i]]; } shell1b0Norm /= (b0size/3); shell2b0Norm /= (b0size/3); shell3b0Norm /= (b0size/3); b0average = (shell1b0Norm + shell2b0Norm+ shell3b0Norm)/3; }else { for(unsigned int i = 0; i = m_Threshold) ) { // Get the Signal-Value for each Shell at each direction (specified in the ShellIndicies Vector .. this direction corresponse to this shell...) /*//fsl fix --------------------------------------------------- for(int i = 0 ; i < Shell1Indiecies.size(); i++) DataShell1[i] = static_cast(b[Shell1Indiecies[i]]); for(int i = 0 ; i < Shell2Indiecies.size(); i++) DataShell2[i] = static_cast(b[Shell2Indiecies[i]]); for(int i = 0 ; i < Shell3Indiecies.size(); i++) DataShell3[i] = static_cast(b[Shell2Indiecies[i]]); // Normalize the Signal: Si/S0 S_S0Normalization(DataShell1, shell1b0Norm); S_S0Normalization(DataShell2, shell2b0Norm); S_S0Normalization(DataShell3, shell2b0Norm); *///fsl fix -------------------------------------------ende-- ///correct version for(int i = 0 ; i < Shell1Indiecies.size(); i++) DataShell1[i] = static_cast(b[Shell1Indiecies[i]]); for(int i = 0 ; i < Shell2Indiecies.size(); i++) DataShell2[i] = static_cast(b[Shell2Indiecies[i]]); for(int i = 0 ; i < Shell3Indiecies.size(); i++) DataShell3[i] = static_cast(b[Shell3Indiecies[i]]); // Normalize the Signal: Si/S0 S_S0Normalization(DataShell1, shell1b0Norm); S_S0Normalization(DataShell2, shell2b0Norm); S_S0Normalization(DataShell3, shell3b0Norm); if(m_Interpolation_Flag) { E1 = tempInterpolationMatrixShell1 * DataShell1; E2 = tempInterpolationMatrixShell2 * DataShell2; E3 = tempInterpolationMatrixShell3 * DataShell3; }else{ E1 = (DataShell1); E2 = (DataShell2); E3 = (DataShell3); } //Implements Eq. [19] and Fig. 4. Projection1(E1); Projection1(E2); Projection1(E3); //inqualities [31]. Taking the lograithm of th first tree inqualities //convert the quadratic inqualities to linear ones. Projection2(E1,E2,E3); for( unsigned int i = 0; i< m_MaxDirections; i++ ) { double e1 = E1.get(i); double e2 = E2.get(i); double e3 = E3.get(i); P2 = e2-e1*e1; A = (e3 -e1*e2) / ( 2* P2); B2 = A * A -(e1 * e3 - e2 * e2) /P2; B = 0; if(B2 > 0) B = sqrt(B2); P = 0; if(P2 > 0) P = sqrt(P2); alpha = A + B; beta = A - B; PValues.put(i, P); AlphaValues.put(i, alpha); BetaValues.put(i, beta); } Projection3(PValues, AlphaValues, BetaValues); for(int i = 0 ; i < m_MaxDirections; i++) { const double fac = (PValues[i] * 2 ) / (AlphaValues[i] - BetaValues[i]); lambda = 0.5 + 0.5 * std::sqrt(1 - fac * fac);; ER1 = std::fabs(lambda * (AlphaValues[i] - BetaValues[i]) + (BetaValues[i] - E1.get(i) )) + std::fabs(lambda * (AlphaValues[i] * AlphaValues[i] - BetaValues[i] * BetaValues[i]) + (BetaValues[i] * BetaValues[i] - E2.get(i) )) + std::fabs(lambda * (AlphaValues[i] * AlphaValues[i] * AlphaValues[i] - BetaValues[i] * BetaValues[i] * BetaValues[i]) + (BetaValues[i] * BetaValues[i] * BetaValues[i] - E3.get(i) )); ER2 = std::fabs((1-lambda) * (AlphaValues[i] - BetaValues[i]) + (BetaValues[i] - E1.get(i) )) + std::fabs((1-lambda) * (AlphaValues[i] * AlphaValues[i] - BetaValues[i] * BetaValues[i]) + (BetaValues[i] * BetaValues[i] - E2.get(i) )) + std::fabs((1-lambda) * (AlphaValues[i] * AlphaValues[i] * AlphaValues[i] - BetaValues[i] * BetaValues[i] * BetaValues[i]) + (BetaValues[i] * BetaValues[i] * BetaValues[i] - E3.get(i))); if(ER1 < ER2) LAValues.put(i, lambda); else LAValues.put(i, 1-lambda); } DoubleLogarithm(AlphaValues); DoubleLogarithm(BetaValues); vnl_vector SignalVector(element_product((LAValues) , (AlphaValues)-(BetaValues)) + (BetaValues)); vnl_vector coeffs((*m_CoeffReconstructionMatrix) *SignalVector ); // the first coeff is a fix value coeffs[0] = 1.0/(2.0*sqrt(QBALL_ANAL_RECON_PI)); coeffPixel = element_cast(coeffs).data_block(); // Cast the Signal-Type from double to float for the ODF-Image odf = element_cast( (*m_ODFSphericalHarmonicBasisMatrix) * coeffs ).data_block(); odf *= ((QBALL_ANAL_RECON_PI*4)/NODF); } // set ODF to ODF-Image coefficientImageIterator.Set(coeffPixel); odfOutputImageIterator.Set( odf ); ++odfOutputImageIterator; ++coefficientImageIterator; ++gradientInputImageIterator; } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter:: ComputeSphericalHarmonicsBasis(vnl_matrix * QBallReference, vnl_matrix *SHBasisOutput, int LOrder , vnl_matrix* LaplaciaBaltramiOutput, vnl_vector* SHOrderAssociation, vnl_matrix* SHEigenvalues) { // MITK_INFO << *QBallReference; for(unsigned int i=0; i< (*SHBasisOutput).rows(); i++) { for(int k = 0; k <= LOrder; k += 2) { for(int m =- k; m <= k; m++) { int j = ( k * k + k + 2 ) / 2 + m - 1; // Compute SHBasisFunctions if(QBallReference){ double phi = (*QBallReference)(0,i); double th = (*QBallReference)(1,i); (*SHBasisOutput)(i,j) = mitk::sh::Yj(m,k,th,phi); } // Laplacian Baltrami Order Association if(LaplaciaBaltramiOutput) (*LaplaciaBaltramiOutput)(j,j) = k*k*(k + 1)*(k+1); // SHEigenvalues with order Accosiation kj if(SHEigenvalues) (*SHEigenvalues)(j,j) = -k* (k+1); // Order Association if(SHOrderAssociation) (*SHOrderAssociation)[j] = k; } } } } template< class T, class TG, class TO, int L, int NOdfDirections> void DiffusionMultiShellQballReconstructionImageFilter ::ComputeReconstructionMatrix(IndiciesVector const & refVector) { typedef std::auto_ptr< vnl_matrix< double> > MatrixDoublePtr; typedef std::auto_ptr< vnl_vector< int > > VectorIntPtr; typedef std::auto_ptr< vnl_matrix_inverse< double > > InverseMatrixDoublePtr; int numberOfGradientDirections = refVector.size(); if( numberOfGradientDirections < (((L+1)*(L+2))/2) || numberOfGradientDirections < 6 ) { itkExceptionMacro( << "At least (L+1)(L+2)/2 gradient directions for each shell are required; current : " << numberOfGradientDirections ); } CheckDuplicateDiffusionGradients(); const int LOrder = L; int NumberOfCoeffs = (int)(LOrder*LOrder + LOrder + 2.0)/2.0 + LOrder; MITK_INFO << NumberOfCoeffs; MatrixDoublePtr SHBasisMatrix(new vnl_matrix(numberOfGradientDirections,NumberOfCoeffs)); SHBasisMatrix->fill(0.0); VectorIntPtr SHOrderAssociation(new vnl_vector(NumberOfCoeffs)); SHOrderAssociation->fill(0.0); MatrixDoublePtr LaplacianBaltrami(new vnl_matrix(NumberOfCoeffs,NumberOfCoeffs)); LaplacianBaltrami->fill(0.0); MatrixDoublePtr FRTMatrix(new vnl_matrix(NumberOfCoeffs,NumberOfCoeffs)); FRTMatrix->fill(0.0); MatrixDoublePtr SHEigenvalues(new vnl_matrix(NumberOfCoeffs,NumberOfCoeffs)); SHEigenvalues->fill(0.0); MatrixDoublePtr Q(new vnl_matrix(3, numberOfGradientDirections)); // Convert Cartesian to Spherical Coordinates refVector -> Q ComputeSphericalFromCartesian(Q.get(), refVector); // SHBasis-Matrix + LaplacianBaltrami-Matrix + SHOrderAssociationVector ComputeSphericalHarmonicsBasis(Q.get() ,SHBasisMatrix.get() , LOrder , LaplacianBaltrami.get(), SHOrderAssociation.get(), SHEigenvalues.get()); // Compute FunkRadon Transformation Matrix Associated to SHBasis Order lj for(int i=0; i(((SHBasisMatrix->transpose()) * (*SHBasisMatrix)) + (m_Lambda * (*LaplacianBaltrami)))); InverseMatrixDoublePtr pseudo_inv(new vnl_matrix_inverse((*temp))); MatrixDoublePtr inverse(new vnl_matrix(NumberOfCoeffs,NumberOfCoeffs)); (*inverse) = pseudo_inv->inverse(); const double factor = (1.0/(16.0*QBALL_ANAL_RECON_PI*QBALL_ANAL_RECON_PI)); MatrixDoublePtr SignalReonstructionMatrix (new vnl_matrix((*inverse) * (SHBasisMatrix->transpose()))); m_CoeffReconstructionMatrix = new vnl_matrix(( factor * ((*FRTMatrix) * ((*SHEigenvalues) * (*SignalReonstructionMatrix))) )); // SH Basis for ODF-reconstruction vnl_matrix_fixed* U = itk::PointShell >::DistributePointShell(); for(int i=0; i( U->as_matrix() )); m_ODFSphericalHarmonicBasisMatrix = new vnl_matrix(NOdfDirections,NumberOfCoeffs); ComputeSphericalHarmonicsBasis(tempPtr.get(), m_ODFSphericalHarmonicBasisMatrix, LOrder); } template< class T, class TG, class TO, int L, int NOdfDirections> void DiffusionMultiShellQballReconstructionImageFilter ::ComputeSphericalFromCartesian(vnl_matrix * Q, IndiciesVector const & refShell) { for(int i = 0; i < refShell.size(); i++) { double x = m_GradientDirectionContainer->ElementAt(refShell[i]).normalize().get(0); double y = m_GradientDirectionContainer->ElementAt(refShell[i]).normalize().get(1); double z = m_GradientDirectionContainer->ElementAt(refShell[i]).normalize().get(2); double cart[3]; mitk::sh::Cart2Sph(x,y,z,cart); (*Q)(0,i) = cart[0]; (*Q)(1,i) = cart[1]; (*Q)(2,i) = cart[2]; } } template< class T, class TG, class TO, int L, int NODF> bool DiffusionMultiShellQballReconstructionImageFilter ::CheckDuplicateDiffusionGradients() { bool value = false; BValueMapIteraotr mapIterator = m_BValueMap.begin(); mapIterator++; while(mapIterator != m_BValueMap.end()) { std::vector::const_iterator it1 = mapIterator->second.begin(); std::vector::const_iterator it2 = mapIterator->second.begin(); for(; it1 != mapIterator->second.end(); ++it1) { for(; it2 != mapIterator->second.end(); ++it2) { if(m_GradientDirectionContainer->ElementAt(*it1) == m_GradientDirectionContainer->ElementAt(*it2) && it1 != it2) { itkWarningMacro( << "Some of the Diffusion Gradients equal each other. Corresponding image data should be averaged before calling this filter." ); value = true; } } } ++mapIterator; } return value; } // corresponding directions between shells (e.g. dir1_shell1 vs dir1_shell2) differ more than 1 degree. template< class T, class TG, class TO, int L, int NODF> bool DiffusionMultiShellQballReconstructionImageFilter ::CheckForDifferingShellDirections() { bool interp_flag = false; BValueMapIteraotr mapIterator = m_BValueMap.begin(); mapIterator++; std::vector shell1 = mapIterator->second; mapIterator++; std::vector shell2 = mapIterator->second; mapIterator++; std::vector shell3 = mapIterator->second; for (int i=0; i< shell1.size(); i++) if (fabs(dot(m_GradientDirectionContainer->ElementAt(shell1[i]), m_GradientDirectionContainer->ElementAt(shell2[i]))) <= 0.9998) {interp_flag=true; break;} for (int i=0; i< shell1.size(); i++) if (fabs(dot(m_GradientDirectionContainer->ElementAt(shell1[i]), m_GradientDirectionContainer->ElementAt(shell3[i]))) <= 0.9998) {interp_flag=true; break;} for (int i=0; i< shell1.size(); i++) if (fabs(dot(m_GradientDirectionContainer->ElementAt(shell2[i]), m_GradientDirectionContainer->ElementAt(shell3[i]))) <= 0.9998) {interp_flag=true; break;} return interp_flag; } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::PrintSelf(std::ostream& os, Indent indent) const { std::locale C("C"); std::locale originalLocale = os.getloc(); os.imbue(C); Superclass::PrintSelf(os,indent); //os << indent << "OdfReconstructionMatrix: " << m_ReconstructionMatrix << std::endl; if ( m_GradientDirectionContainer ) { os << indent << "GradientDirectionContainer: " << m_GradientDirectionContainer << std::endl; } else { os << indent << "GradientDirectionContainer: (Gradient directions not set)" << std::endl; } os << indent << "NumberOfGradientDirections: " << m_NumberOfGradientDirections << std::endl; os << indent << "NumberOfBaselineImages: " << m_NumberOfBaselineImages << std::endl; os << indent << "Threshold for reference B0 image: " << m_Threshold << std::endl; os << indent << "BValue: " << m_BValue << std::endl; os.imbue( originalLocale ); } } #endif // __itkDiffusionMultiShellQballReconstructionImageFilter_cpp