diff --git a/Modules/DiffusionImaging/DiffusionCore/autoload/IO/mitkDiffusionCoreIOMimeTypes.cpp b/Modules/DiffusionImaging/DiffusionCore/autoload/IO/mitkDiffusionCoreIOMimeTypes.cpp index b05a53cc8d..2f8fd6eeb3 100644 --- a/Modules/DiffusionImaging/DiffusionCore/autoload/IO/mitkDiffusionCoreIOMimeTypes.cpp +++ b/Modules/DiffusionImaging/DiffusionCore/autoload/IO/mitkDiffusionCoreIOMimeTypes.cpp @@ -1,515 +1,517 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkDiffusionCoreIOMimeTypes.h" #include "mitkIOMimeTypes.h" #include #include #include #include #include #include #include #include #include namespace mitk { std::vector DiffusionCoreIOMimeTypes::Get() { std::vector mimeTypes; // order matters here (descending rank for mime types) mimeTypes.push_back(DWI_NRRD_MIMETYPE().Clone()); mimeTypes.push_back(DWI_NIFTI_MIMETYPE().Clone()); mimeTypes.push_back(DWI_FSL_MIMETYPE().Clone()); mimeTypes.push_back(DWI_DICOM_MIMETYPE().Clone()); mimeTypes.push_back(DTI_MIMETYPE().Clone()); mimeTypes.push_back(ODF_MIMETYPE().Clone()); mimeTypes.push_back(PEAK_MIMETYPE().Clone()); return mimeTypes; } // Mime Types DiffusionCoreIOMimeTypes::DiffusionImageNrrdMimeType::DiffusionImageNrrdMimeType() : CustomMimeType(DWI_NRRD_MIMETYPE_NAME()) { std::string category = "Diffusion Weighted Images"; this->SetCategory(category); this->SetComment("Diffusion Weighted Images"); this->AddExtension("dwi"); //this->AddExtension("hdwi"); // saving with detached header does not work out of the box this->AddExtension("nrrd"); } bool DiffusionCoreIOMimeTypes::DiffusionImageNrrdMimeType::AppliesTo(const std::string &path) const { bool canRead( CustomMimeType::AppliesTo(path) ); // fix for bug 18572 // Currently this function is called for writing as well as reading, in that case // the image information can of course not be read // This is a bug, this function should only be called for reading. if( ! itksys::SystemTools::FileExists( path.c_str() ) ) { return canRead; } //end fix for bug 18572 std::string ext = this->GetExtension( path ); ext = itksys::SystemTools::LowerCase( ext ); // Simple NRRD files should only be considered for this mime type if they contain // corresponding tags if( ext == ".nrrd" ) { itk::NrrdImageIO::Pointer io = itk::NrrdImageIO::New(); io->SetFileName(path); try { io->ReadImageInformation(); itk::MetaDataDictionary imgMetaDictionary = io->GetMetaDataDictionary(); std::vector imgMetaKeys = imgMetaDictionary.GetKeys(); std::vector::const_iterator itKey = imgMetaKeys.begin(); std::string metaString; for (; itKey != imgMetaKeys.end(); itKey ++) { itk::ExposeMetaData (imgMetaDictionary, *itKey, metaString); if (itKey->find("modality") != std::string::npos) { if (metaString.find("DWMRI") != std::string::npos) { return canRead; } } } } catch( const itk::ExceptionObject &e ) { MITK_ERROR << "ITK Exception: " << e.what(); } canRead = false; } return canRead; } DiffusionCoreIOMimeTypes::DiffusionImageNrrdMimeType* DiffusionCoreIOMimeTypes::DiffusionImageNrrdMimeType::Clone() const { return new DiffusionImageNrrdMimeType(*this); } DiffusionCoreIOMimeTypes::DiffusionImageNrrdMimeType DiffusionCoreIOMimeTypes::DWI_NRRD_MIMETYPE() { return DiffusionImageNrrdMimeType(); } DiffusionCoreIOMimeTypes::DiffusionImageNiftiMimeType::DiffusionImageNiftiMimeType() : CustomMimeType(DWI_NIFTI_MIMETYPE_NAME()) { std::string category = "Diffusion Weighted Images"; this->SetCategory(category); this->SetComment("Diffusion Weighted Images"); this->AddExtension("nii.gz"); this->AddExtension("nii"); } bool DiffusionCoreIOMimeTypes::DiffusionImageNiftiMimeType::AppliesTo(const std::string &path) const { bool canRead(CustomMimeType::AppliesTo(path)); // fix for bug 18572 // Currently this function is called for writing as well as reading, in that case // the image information can of course not be read // This is a bug, this function should only be called for reading. if (!itksys::SystemTools::FileExists(path.c_str())) { return canRead; } //end fix for bug 18572 std::string ext = this->GetExtension(path); ext = itksys::SystemTools::LowerCase(ext); // Nifti files should only be considered for this mime type if they are // accompanied by bvecs and bvals files defining the diffusion information if (ext == ".nii" || ext == ".nii.gz") { std::string base_path = itksys::SystemTools::GetFilenamePath(path); std::string base = this->GetFilenameWithoutExtension(path); std::string filename = base; if (!base_path.empty()) { base = base_path + "/" + base; base_path += "/"; } if (itksys::SystemTools::FileExists(std::string(base + ".bvec").c_str()) && itksys::SystemTools::FileExists(std::string(base + ".bval").c_str()) ) { return canRead; } if (itksys::SystemTools::FileExists(std::string(base + ".bvecs").c_str()) && itksys::SystemTools::FileExists(std::string(base + ".bvals").c_str()) ) { return canRead; } // hack for HCP data if ( filename=="data" && itksys::SystemTools::FileExists(std::string(base_path + "bvec").c_str()) && itksys::SystemTools::FileExists(std::string(base_path + "bval").c_str()) ) { return canRead; } if ( filename=="data" && itksys::SystemTools::FileExists(std::string(base_path + "bvecs").c_str()) && itksys::SystemTools::FileExists(std::string(base_path + "bvals").c_str()) ) { return canRead; } canRead = false; } return canRead; } DiffusionCoreIOMimeTypes::DiffusionImageNiftiMimeType* DiffusionCoreIOMimeTypes::DiffusionImageNiftiMimeType::Clone() const { return new DiffusionImageNiftiMimeType(*this); } DiffusionCoreIOMimeTypes::DiffusionImageNiftiMimeType DiffusionCoreIOMimeTypes::DWI_NIFTI_MIMETYPE() { return DiffusionImageNiftiMimeType(); } DiffusionCoreIOMimeTypes::DiffusionImageFslMimeType::DiffusionImageFslMimeType() : CustomMimeType(DWI_FSL_MIMETYPE_NAME()) { std::string category = "Diffusion Weighted Image"; this->SetCategory(category); this->SetComment("Diffusion Weighted Images"); this->AddExtension("fslgz"); this->AddExtension("fsl"); } bool DiffusionCoreIOMimeTypes::DiffusionImageFslMimeType::AppliesTo(const std::string &path) const { bool canRead(CustomMimeType::AppliesTo(path)); // fix for bug 18572 // Currently this function is called for writing as well as reading, in that case // the image information can of course not be read // This is a bug, this function should only be called for reading. if (!itksys::SystemTools::FileExists(path.c_str())) { return canRead; } //end fix for bug 18572 std::string ext = this->GetExtension(path); ext = itksys::SystemTools::LowerCase(ext); // Nifti files should only be considered for this mime type if they are // accompanied by bvecs and bvals files defining the diffusion information if (ext == ".fsl" || ext == ".fslgz") { std::string base_path = itksys::SystemTools::GetFilenamePath(path); std::string base = this->GetFilenameWithoutExtension(path); if (!base_path.empty()) base = base_path + "/" + base; if (itksys::SystemTools::FileExists(std::string(base + ".bvec").c_str()) && itksys::SystemTools::FileExists(std::string(base + ".bval").c_str()) ) { return canRead; } if (itksys::SystemTools::FileExists(std::string(base + ".bvecs").c_str()) && itksys::SystemTools::FileExists(std::string(base + ".bvals").c_str()) ) { return canRead; } if (itksys::SystemTools::FileExists(std::string(base + ext + ".bvec").c_str()) && itksys::SystemTools::FileExists(std::string(base + ext + ".bval").c_str()) ) { return canRead; } if (itksys::SystemTools::FileExists(std::string(base + ext + ".bvecs").c_str()) && itksys::SystemTools::FileExists(std::string(base + ext + ".bvals").c_str()) ) { return canRead; } canRead = false; } return canRead; } DiffusionCoreIOMimeTypes::DiffusionImageFslMimeType* DiffusionCoreIOMimeTypes::DiffusionImageFslMimeType::Clone() const { return new DiffusionImageFslMimeType(*this); } DiffusionCoreIOMimeTypes::DiffusionImageFslMimeType DiffusionCoreIOMimeTypes::DWI_FSL_MIMETYPE() { return DiffusionImageFslMimeType(); } DiffusionCoreIOMimeTypes::DiffusionImageDicomMimeType::DiffusionImageDicomMimeType() : CustomMimeType(DWI_DICOM_MIMETYPE_NAME()) { std::string category = "Diffusion Weighted Images"; this->SetCategory(category); this->SetComment("Diffusion Weighted Images"); this->AddExtension("gdcm"); this->AddExtension("dcm"); this->AddExtension("DCM"); this->AddExtension("dc3"); this->AddExtension("DC3"); this->AddExtension("ima"); this->AddExtension("img"); } bool DiffusionCoreIOMimeTypes::DiffusionImageDicomMimeType::AppliesTo(const std::string &path) const { itk::GDCMImageIO::Pointer gdcmIO = itk::GDCMImageIO::New(); bool canRead = gdcmIO->CanReadFile(path.c_str()); if (!canRead) return canRead; mitk::DICOMDCMTKTagScanner::Pointer scanner = mitk::DICOMDCMTKTagScanner::New(); mitk::DICOMTag ImageTypeTag(0x0008, 0x0008); + mitk::DICOMTag SeriesDescriptionTag(0x0008, 0x103E); mitk::StringList relevantFiles; relevantFiles.push_back(path); scanner->AddTag(ImageTypeTag); + scanner->AddTag(SeriesDescriptionTag); scanner->SetInputFiles(relevantFiles); scanner->Scan(); mitk::DICOMTagCache::Pointer tagCache = scanner->GetScanCache(); mitk::DICOMImageFrameList imageFrameList = mitk::ConvertToDICOMImageFrameList(tagCache->GetFrameInfoList()); mitk::DICOMImageFrameInfo *firstFrame = imageFrameList.begin()->GetPointer(); std::string byteString = tagCache->GetTagValue(firstFrame, ImageTypeTag).value; - - if (byteString.empty()) { + if (byteString.empty()) return false; - } - std::size_t found = byteString.find("DIFFUSION"); - if (found==std::string::npos) + std::string byteString2 = tagCache->GetTagValue(firstFrame, SeriesDescriptionTag).value; + if (byteString2.empty()) return false; - found = byteString.find("NONE"); - if (found==std::string::npos) + + if (byteString.find("DIFFUSION")==std::string::npos && byteString2.find("diff")==std::string::npos) return false; +// if (byteString.find("NONE")==std::string::npos) +// return false; return canRead; } DiffusionCoreIOMimeTypes::DiffusionImageDicomMimeType* DiffusionCoreIOMimeTypes::DiffusionImageDicomMimeType::Clone() const { return new DiffusionImageDicomMimeType(*this); } DiffusionCoreIOMimeTypes::DiffusionImageDicomMimeType DiffusionCoreIOMimeTypes::DWI_DICOM_MIMETYPE() { return DiffusionImageDicomMimeType(); } DiffusionCoreIOMimeTypes::PeakImageMimeType::PeakImageMimeType() : CustomMimeType(PEAK_MIMETYPE_NAME()) { std::string category = "Peak Image"; this->SetCategory(category); this->SetComment("Peak Image"); this->AddExtension("nrrd"); this->AddExtension("nii"); this->AddExtension("nii.gz"); } bool DiffusionCoreIOMimeTypes::PeakImageMimeType::AppliesTo(const std::string &path) const { { itk::NrrdImageIO::Pointer io = itk::NrrdImageIO::New(); if ( io->CanReadFile( path.c_str() ) ) { io->SetFileName( path.c_str() ); io->ReadImageInformation(); if ( io->GetPixelType() == itk::ImageIOBase::SCALAR && io->GetNumberOfDimensions()==4 && io->GetDimensions(3)%3==0) return true; } } { itk::NiftiImageIO::Pointer io = itk::NiftiImageIO::New(); if ( io->CanReadFile( path.c_str() ) ) { io->SetFileName( path.c_str() ); io->ReadImageInformation(); if ( io->GetPixelType() == itk::ImageIOBase::SCALAR && io->GetNumberOfDimensions()==4 && io->GetDimensions(3)%3==0) return true; } } return false; } DiffusionCoreIOMimeTypes::PeakImageMimeType* DiffusionCoreIOMimeTypes::PeakImageMimeType::Clone() const { return new PeakImageMimeType(*this); } DiffusionCoreIOMimeTypes::PeakImageMimeType DiffusionCoreIOMimeTypes::PEAK_MIMETYPE() { return PeakImageMimeType(); } CustomMimeType DiffusionCoreIOMimeTypes::DTI_MIMETYPE() { CustomMimeType mimeType(DTI_MIMETYPE_NAME()); std::string category = "Tensor Images"; mimeType.SetComment("Diffusion Tensor Images"); mimeType.SetCategory(category); mimeType.AddExtension("dti"); return mimeType; } CustomMimeType DiffusionCoreIOMimeTypes::ODF_MIMETYPE() { CustomMimeType mimeType(ODF_MIMETYPE_NAME()); std::string category = "ODF Images"; mimeType.SetComment("Diffusion ODF Images"); mimeType.SetCategory(category); mimeType.AddExtension("odf"); mimeType.AddExtension("qbi"); // legacy support return mimeType; } // Names std::string DiffusionCoreIOMimeTypes::PEAK_MIMETYPE_NAME() { static std::string name = IOMimeTypes::DEFAULT_BASE_NAME() + ".nrrd"; return name; } std::string DiffusionCoreIOMimeTypes::DWI_NRRD_MIMETYPE_NAME() { static std::string name = IOMimeTypes::DEFAULT_BASE_NAME() + ".dwi"; return name; } std::string DiffusionCoreIOMimeTypes::DWI_NIFTI_MIMETYPE_NAME() { static std::string name = IOMimeTypes::DEFAULT_BASE_NAME() + ".nii.gz"; return name; } std::string DiffusionCoreIOMimeTypes::DWI_FSL_MIMETYPE_NAME() { static std::string name = IOMimeTypes::DEFAULT_BASE_NAME() + ".fslgz"; return name; } std::string DiffusionCoreIOMimeTypes::DWI_DICOM_MIMETYPE_NAME() { static std::string name = IOMimeTypes::DEFAULT_BASE_NAME() + ".IMA"; return name; } std::string DiffusionCoreIOMimeTypes::DTI_MIMETYPE_NAME() { static std::string name = IOMimeTypes::DEFAULT_BASE_NAME() + ".dti"; return name; } std::string DiffusionCoreIOMimeTypes::ODF_MIMETYPE_NAME() { static std::string name = IOMimeTypes::DEFAULT_BASE_NAME() + ".odf"; return name; } // Descriptions std::string DiffusionCoreIOMimeTypes::PEAK_MIMETYPE_DESCRIPTION() { static std::string description = "Peak Image"; return description; } std::string DiffusionCoreIOMimeTypes::DWI_NRRD_MIMETYPE_DESCRIPTION() { static std::string description = "Diffusion Weighted Images"; return description; } std::string DiffusionCoreIOMimeTypes::DWI_NIFTI_MIMETYPE_DESCRIPTION() { static std::string description = "Diffusion Weighted Images"; return description; } std::string DiffusionCoreIOMimeTypes::DWI_FSL_MIMETYPE_DESCRIPTION() { static std::string description = "Diffusion Weighted Images"; return description; } std::string DiffusionCoreIOMimeTypes::DWI_DICOM_MIMETYPE_DESCRIPTION() { static std::string description = "Diffusion Weighted Images"; return description; } std::string DiffusionCoreIOMimeTypes::DTI_MIMETYPE_DESCRIPTION() { static std::string description = "Diffusion Tensor Images"; return description; } std::string DiffusionCoreIOMimeTypes::ODF_MIMETYPE_DESCRIPTION() { static std::string description = "ODF Images"; return description; } } diff --git a/Modules/DiffusionImaging/DiffusionCore/src/Algorithms/Registration/mitkDWIHeadMotionCorrectionFilter.cpp b/Modules/DiffusionImaging/DiffusionCore/src/Algorithms/Registration/mitkDWIHeadMotionCorrectionFilter.cpp index 19cc8f7ac4..e02338c015 100644 --- a/Modules/DiffusionImaging/DiffusionCore/src/Algorithms/Registration/mitkDWIHeadMotionCorrectionFilter.cpp +++ b/Modules/DiffusionImaging/DiffusionCore/src/Algorithms/Registration/mitkDWIHeadMotionCorrectionFilter.cpp @@ -1,148 +1,148 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef MITKDWIHEADMOTIONCORRECTIONFILTER_CPP #define MITKDWIHEADMOTIONCORRECTIONFILTER_CPP #include "mitkDWIHeadMotionCorrectionFilter.h" #include "itkSplitDWImageFilter.h" #include "itkB0ImageExtractionToSeparateImageFilter.h" #include "mitkImageTimeSelector.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mitkIOUtil.h" #include typedef mitk::DiffusionPropertyHelper DPH; typedef itk::ExtractDwiChannelFilter< short > ExtractorType; mitk::DWIHeadMotionCorrectionFilter::DWIHeadMotionCorrectionFilter() { } mitk::Image::Pointer mitk::DWIHeadMotionCorrectionFilter::GetCorrectedImage() const { return m_CorrectedImage; } void mitk::DWIHeadMotionCorrectionFilter::UpdateOutputInformation() { Superclass::UpdateOutputInformation(); } void mitk::DWIHeadMotionCorrectionFilter::GenerateData() { InputImageType::Pointer input = const_cast(this->GetInput(0)); if (!DPH::IsDiffusionWeightedImage(input)) mitkThrow() << "Input is not a diffusion-weighted image!"; ITKDiffusionImageType::Pointer itkVectorImagePointer = DPH::GetItkVectorImage(input); int num_gradients = itkVectorImagePointer->GetVectorLength(); typedef itk::ComposeImageFilter < ITKDiffusionVolumeType > ComposeFilterType; ComposeFilterType::Pointer composer = ComposeFilterType::New(); // Extract unweighted volumes mitk::BValueMapProperty::BValueMap bval_map = DPH::GetBValueMap(input); int first_unweighted_index = bval_map.at(0).front(); ExtractorType::Pointer filter = ExtractorType::New(); filter->SetInput( itkVectorImagePointer); filter->SetChannelIndex(first_unweighted_index); filter->Update(); mitk::Image::Pointer fixedImage = mitk::Image::New(); fixedImage->InitializeByItk( filter->GetOutput() ); fixedImage->SetImportChannel( filter->GetOutput()->GetBufferPointer() ); composer->SetInput(0, filter->GetOutput()); mitk::MultiModalAffineDefaultRegistrationAlgorithm< ITKDiffusionVolumeType >::Pointer algo = mitk::MultiModalAffineDefaultRegistrationAlgorithm< ITKDiffusionVolumeType >::New(); mitk::MITKAlgorithmHelper helper(algo); typedef vnl_matrix_fixed< double, 3, 3> TransformMatrixType; std::vector< TransformMatrixType > estimated_transforms; std::vector< ITKDiffusionVolumeType::Pointer > registered_itk_images; for (int i=0; iSetInput( itkVectorImagePointer); filter->SetChannelIndex(i); filter->Update(); mitk::Image::Pointer movingImage = mitk::Image::New(); movingImage->InitializeByItk( filter->GetOutput() ); movingImage->SetImportChannel( filter->GetOutput()->GetBufferPointer() ); helper.SetData(movingImage, fixedImage); mitk::MAPRegistrationWrapper::Pointer reg = helper.GetMITKRegistrationWrapper(); mitk::MITKRegistrationHelper::Affine3DTransformType::Pointer affine = mitk::MITKRegistrationHelper::getAffineMatrix(reg, false); estimated_transforms.push_back(affine->GetMatrix().GetVnlMatrix()); - mitk::Image::Pointer registered_mitk_image = mitk::ImageMappingHelper::map(movingImage, reg, false, 0, nullptr, false, 0, mitk::ImageMappingInterpolator::WSinc_Hamming); + mitk::Image::Pointer registered_mitk_image = mitk::ImageMappingHelper::map(movingImage, reg, false, 0, nullptr, false, 0, mitk::ImageMappingInterpolator::BSpline_3); ITKDiffusionVolumeType::Pointer registered_itk_image = ITKDiffusionVolumeType::New(); mitk::CastToItkImage(registered_mitk_image, registered_itk_image); registered_itk_images.push_back(registered_itk_image); } int i=1; for (auto image : registered_itk_images) { composer->SetInput(i, image); ++i; } composer->Update(); m_CorrectedImage = mitk::GrabItkImageMemory( composer->GetOutput() ); DPH::CopyProperties(input, m_CorrectedImage, true); typedef mitk::DiffusionImageCorrectionFilter CorrectionFilterType; CorrectionFilterType::Pointer corrector = CorrectionFilterType::New(); corrector->SetImage( m_CorrectedImage ); corrector->CorrectDirections( estimated_transforms ); DPH propertyHelper( m_CorrectedImage ); propertyHelper.InitializeImage(); } #endif // MITKDWIHEADMOTIONCORRECTIONFILTER_CPP diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkFiberExtractionFilter.cpp b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkFiberExtractionFilter.cpp index e73eff0f05..7fef1f4db9 100644 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkFiberExtractionFilter.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkFiberExtractionFilter.cpp @@ -1,380 +1,391 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef __itkFiberExtractionFilter_cpp #define __itkFiberExtractionFilter_cpp #include "itkFiberExtractionFilter.h" #define _USE_MATH_DEFINES #include #include #include namespace itk{ template< class PixelType > FiberExtractionFilter< PixelType >::FiberExtractionFilter() : m_DontResampleFibers(false) , m_Mode(MODE::OVERLAP) , m_InputType(INPUT::SCALAR_MAP) , m_BothEnds(true) , m_OverlapFraction(0.8) , m_NoNegatives(false) , m_NoPositives(false) , m_Interpolate(false) , m_Threshold(0.5) , m_Labels({1}) , m_SkipSelfConnections(false) + , m_OnlySelfConnections(false) , m_SplitLabels(false) , m_MinFibersPerTract(0) { m_Interpolator = itk::LinearInterpolateImageFunction< itk::Image< PixelType, 3 >, float >::New(); } template< class PixelType > FiberExtractionFilter< PixelType >::~FiberExtractionFilter() { } template< class PixelType > void FiberExtractionFilter< PixelType >::SetRoiImages(const std::vector &rois) { for (auto roi : rois) { if (roi==nullptr) { MITK_INFO << "ROI image is NULL!"; return; } } m_RoiImages = rois; } template< class PixelType > mitk::FiberBundle::Pointer FiberExtractionFilter< PixelType >::CreateFib(std::vector< long >& ids) { vtkSmartPointer weights = vtkSmartPointer::New(); vtkSmartPointer pTmp = m_InputFiberBundle->GeneratePolyDataByIds(ids, weights); mitk::FiberBundle::Pointer fib = mitk::FiberBundle::New(pTmp); fib->SetFiberWeights(weights); return fib; } template< class PixelType > bool FiberExtractionFilter< PixelType >::IsPositive(const itk::Point& itkP) { if( m_InputType == INPUT::SCALAR_MAP ) return mitk::imv::IsInsideMask(itkP, m_Interpolate, m_Interpolator, m_Threshold); else if( m_InputType == INPUT::LABEL_MAP ) { auto val = mitk::imv::GetImageValue(itkP, m_Interpolate, m_Interpolator); for (auto l : m_Labels) if (l==val) return true; } else mitkThrow() << "No valid input type selected!"; return false; } template< class PixelType > std::vector< std::pair > FiberExtractionFilter< PixelType >::GetPositiveLabels() const { return m_PositiveLabels; } template< class PixelType > void FiberExtractionFilter< PixelType >::ExtractOverlap(mitk::FiberBundle::Pointer fib) { MITK_INFO << "Extracting fibers (min. overlap " << m_OverlapFraction << ")"; vtkSmartPointer polydata = fib->GetFiberPolyData(); std::vector< std::vector< long > > positive_ids; positive_ids.resize(m_RoiImages.size()); std::vector< long > negative_ids; // fibers not overlapping with ANY mask boost::progress_display disp(m_InputFiberBundle->GetNumFibers()); for (int i=0; iGetNumFibers(); i++) { ++disp; vtkCell* cell = polydata->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); bool positive = false; for (unsigned int m=0; mSetInputImage(roi); int inside = 0; int outside = 0; for (int j=0; jGetPoint(j); itk::Point itkP; itkP[0] = p[0]; itkP[1] = p[1]; itkP[2] = p[2]; if ( IsPositive(itkP) ) inside++; else outside++; if ((float)inside/numPoints > m_OverlapFraction) { positive = true; positive_ids[m].push_back(i); break; } } } if (!positive) negative_ids.push_back(i); } if (!m_NoNegatives) m_Negatives.push_back(CreateFib(negative_ids)); if (!m_NoPositives) for (auto ids : positive_ids) if (ids.size()>=m_MinFibersPerTract) m_Positives.push_back(CreateFib(ids)); } template< class PixelType > void FiberExtractionFilter< PixelType >::ExtractEndpoints(mitk::FiberBundle::Pointer fib) { MITK_INFO << "Extracting fibers (endpoints in mask)"; vtkSmartPointer polydata = fib->GetFiberPolyData(); std::vector< std::vector< long > > positive_ids; positive_ids.resize(m_RoiImages.size()); std::vector< long > negative_ids; // fibers not overlapping with ANY mask boost::progress_display disp(m_InputFiberBundle->GetNumFibers()); for (int i=0; iGetNumFibers(); i++) { ++disp; vtkCell* cell = polydata->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); bool positive = false; if (numPoints>1) for (unsigned int m=0; mSetInputImage(roi); int inside = 0; // check first fiber point { double* p = points->GetPoint(0); itk::Point itkP; itkP[0] = p[0]; itkP[1] = p[1]; itkP[2] = p[2]; if ( IsPositive(itkP) ) inside++; } // check second fiber point { double* p = points->GetPoint(numPoints-1); itk::Point itkP; itkP[0] = p[0]; itkP[1] = p[1]; itkP[2] = p[2]; if ( IsPositive(itkP) ) inside++; } if (inside==2 || (inside==1 && !m_BothEnds)) { positive = true; positive_ids[m].push_back(i); } } if (!positive) negative_ids.push_back(i); } if (!m_NoNegatives) m_Negatives.push_back(CreateFib(negative_ids)); if (!m_NoPositives) for (auto ids : positive_ids) if (ids.size()>=m_MinFibersPerTract) m_Positives.push_back(CreateFib(ids)); } template< class PixelType > void FiberExtractionFilter< PixelType >::ExtractLabels(mitk::FiberBundle::Pointer fib) { MITK_INFO << "Extracting fibers by labels"; vtkSmartPointer polydata = fib->GetFiberPolyData(); - std::vector< std::map< unsigned int, std::vector< long > > > positive_ids; + std::vector< std::map< std::pair< unsigned int, unsigned int >, std::vector< long > > > positive_ids; positive_ids.resize(m_RoiImages.size()); std::vector< long > negative_ids; // fibers not overlapping with ANY label boost::progress_display disp(m_InputFiberBundle->GetNumFibers()); for (int i=0; iGetNumFibers(); i++) { ++disp; vtkCell* cell = polydata->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); bool positive = false; if (numPoints>1) for (unsigned int m=0; mSetInputImage(roi); int inside = 0; // check first fiber point short label1 = -1; { double* p = points->GetPoint(0); itk::Point itkP; itkP[0] = p[0]; itkP[1] = p[1]; itkP[2] = p[2]; label1 = mitk::imv::GetImageValue(itkP, m_Interpolate, m_Interpolator); for (auto l : m_Labels) { if (l==label1) { inside++; break; } } } // check second fiber point short label2 = -1; { double* p = points->GetPoint(numPoints-1); itk::Point itkP; itkP[0] = p[0]; itkP[1] = p[1]; itkP[2] = p[2]; label2 = mitk::imv::GetImageValue(itkP, m_Interpolate, m_Interpolator); for (auto l : m_Labels) { if (l==label2) { inside++; break; } } } - if ( inside==2 && (!m_SkipSelfConnections || label1!=label2) ) + if ( (inside==2 && (!m_SkipSelfConnections || label1!=label2)) || (inside==2 && m_OnlySelfConnections && label1==label2) ) { - unsigned int key; + std::pair< unsigned int, unsigned int > key; if (label1(label1, label2); else - key = m_Labels.size()*label2 + label1; + key = std::pair< unsigned int, unsigned int >(label2, label1); positive = true; if ( positive_ids[m].count(key)==0 ) - positive_ids[m].insert( std::pair< unsigned int, std::vector< long > >( key, {i}) ); + positive_ids[m].insert( std::pair< std::pair< unsigned int, unsigned int >, std::vector< long > >( key, {i}) ); else positive_ids[m][key].push_back(i); } } if (!positive) negative_ids.push_back(i); } if (!m_NoNegatives) m_Negatives.push_back(CreateFib(negative_ids)); if (!m_NoPositives) + { for (auto labels : positive_ids) for (auto tuple : labels) { if (tuple.second.size()>=m_MinFibersPerTract) { m_Positives.push_back(CreateFib(tuple.second)); - m_PositiveLabels.push_back(std::pair< unsigned int, unsigned int >( tuple.first/m_Labels.size(), tuple.first%m_Labels.size() )); + m_PositiveLabels.push_back(tuple.first); } } + if (!m_SplitLabels) + { + mitk::FiberBundle::Pointer output = mitk::FiberBundle::New(nullptr); + output = output->AddBundles(m_Positives); + m_Positives.clear(); + m_Positives.push_back(output); + m_PositiveLabels.clear(); + } + } } template< class PixelType > void FiberExtractionFilter< PixelType >::SetLabels(const std::vector &Labels) { m_Labels = Labels; } template< class PixelType > std::vector FiberExtractionFilter< PixelType >::GetNegatives() const { return m_Negatives; } template< class PixelType > std::vector FiberExtractionFilter< PixelType >::GetPositives() const { return m_Positives; } template< class PixelType > void FiberExtractionFilter< PixelType >::GenerateData() { mitk::FiberBundle::Pointer fib = m_InputFiberBundle; if (fib->GetNumFibers()<=0) { MITK_INFO << "No fibers in tractogram!"; return; } if (m_Mode==MODE::OVERLAP && !m_DontResampleFibers) { float minSpacing = 1; for (auto mask : m_RoiImages) { for (int i=0; i<3; ++i) if(mask->GetSpacing()[i]GetSpacing()[i]; } fib = m_InputFiberBundle->GetDeepCopy(); fib->ResampleLinear(minSpacing/5); } if (m_Mode == MODE::OVERLAP) ExtractOverlap(fib); else if (m_Mode == MODE::ENDPOINTS) { - if (m_InputType==INPUT::LABEL_MAP && m_BothEnds && m_SplitLabels) + if (m_InputType==INPUT::LABEL_MAP && m_BothEnds) ExtractLabels(fib); else ExtractEndpoints(fib); } } } #endif // __itkFiberExtractionFilter_cpp diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkFiberExtractionFilter.h b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkFiberExtractionFilter.h index 243c359e63..53723023bd 100644 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkFiberExtractionFilter.h +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkFiberExtractionFilter.h @@ -1,121 +1,123 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef itkFiberExtractionFilter_h #define itkFiberExtractionFilter_h // MITK #include // ITK #include #include namespace itk{ /** * \brief Extract streamlines from tractograms using ROI images */ template< class PixelType > class FiberExtractionFilter : public ProcessObject { public: enum MODE { OVERLAP, ENDPOINTS }; enum INPUT { SCALAR_MAP, ///< In this case, positive means roi image vlaue > threshold LABEL_MAP ///< In this case, positive means roi image value in labels vector }; typedef FiberExtractionFilter Self; typedef ProcessObject Superclass; typedef SmartPointer< Self > Pointer; typedef SmartPointer< const Self > ConstPointer; typedef itk::Image< PixelType , 3> ItkInputImgType; itkFactorylessNewMacro(Self) itkCloneMacro(Self) itkTypeMacro( FiberExtractionFilter, ProcessObject ) virtual void Update() override{ this->GenerateData(); } itkSetMacro( InputFiberBundle, mitk::FiberBundle::Pointer ) itkSetMacro( Mode, MODE ) ///< Overlap or endpoints itkSetMacro( InputType, INPUT ) ///< Scalar map or label image itkSetMacro( BothEnds, bool ) ///< Both streamline ends need to be inside of the ROI for the streamline to be considered positive itkSetMacro( OverlapFraction, float ) ///< Necessary fraction of streamline points inside the ROI for the streamline to be considered positive itkSetMacro( DontResampleFibers, bool ) ///< Don't resample input fibers to ensure coverage itkSetMacro( NoNegatives, bool ) ///< Don't create output tractograms from negative streamlines (save the computation) itkSetMacro( NoPositives, bool ) ///< Don't create output tractograms from positive streamlines (save the computation) itkSetMacro( Interpolate, bool ) ///< Interpolate input ROI image itkSetMacro( Threshold, float ) ///< Threshold on input ROI image value to determine positives/negatives itkSetMacro( SkipSelfConnections, bool ) ///< Ignore streamlines between two identical labels + itkSetMacro( OnlySelfConnections, bool ) ///< Only keep streamlines between two identical labels itkSetMacro( SplitLabels, bool ) ///< Output a separate tractogram for each label-->label tract itkSetMacro( MinFibersPerTract, unsigned int ) ///< Discard positives with less fibers void SetRoiImages(const std::vector< ItkInputImgType* > &rois); void SetLabels(const std::vector &Labels); std::vector GetPositives() const; ///< Get positive tracts (filtered by the input ROIs) std::vector GetNegatives() const; ///< Get negative tracts (not filtered by the ROIs) std::vector > GetPositiveLabels() const; ///< In case of label extraction, this vector contains the labels corresponding to the positive tracts protected: void GenerateData() override; FiberExtractionFilter(); virtual ~FiberExtractionFilter(); mitk::FiberBundle::Pointer CreateFib(std::vector< long >& ids); void ExtractOverlap(mitk::FiberBundle::Pointer fib); void ExtractEndpoints(mitk::FiberBundle::Pointer fib); void ExtractLabels(mitk::FiberBundle::Pointer fib); bool IsPositive(const itk::Point& itkP); mitk::FiberBundle::Pointer m_InputFiberBundle; std::vector< mitk::FiberBundle::Pointer > m_Positives; std::vector< mitk::FiberBundle::Pointer > m_Negatives; std::vector< ItkInputImgType* > m_RoiImages; bool m_DontResampleFibers; MODE m_Mode; INPUT m_InputType; bool m_BothEnds; float m_OverlapFraction; bool m_NoNegatives; bool m_NoPositives; bool m_Interpolate; float m_Threshold; std::vector< unsigned short > m_Labels; bool m_SkipSelfConnections; + bool m_OnlySelfConnections; bool m_SplitLabels; unsigned int m_MinFibersPerTract; std::vector< std::pair< unsigned int, unsigned int > > m_PositiveLabels; typename itk::LinearInterpolateImageFunction< itk::Image< PixelType, 3 >, float >::Pointer m_Interpolator; }; } #ifndef ITK_MANUAL_INSTANTIATION #include "itkFiberExtractionFilter.cpp" #endif #endif diff --git a/Modules/DiffusionImaging/FiberTracking/cmdapps/TractographyEvaluation/AnchorBasedScoring.cpp b/Modules/DiffusionImaging/FiberTracking/cmdapps/TractographyEvaluation/AnchorBasedScoring.cpp index 325afde7dd..7aa4b410ca 100755 --- a/Modules/DiffusionImaging/FiberTracking/cmdapps/TractographyEvaluation/AnchorBasedScoring.cpp +++ b/Modules/DiffusionImaging/FiberTracking/cmdapps/TractographyEvaluation/AnchorBasedScoring.cpp @@ -1,437 +1,437 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef itksys::SystemTools ist; typedef itk::Point PointType4; typedef itk::Image< float, 4 > PeakImgType; typedef itk::Image< unsigned char, 3 > ItkUcharImageType; std::vector< mitk::FiberBundle::Pointer > CombineTractograms(std::vector< mitk::FiberBundle::Pointer > reference, std::vector< mitk::FiberBundle::Pointer > candidates, int skip=-1) { std::vector< mitk::FiberBundle::Pointer > fib; for (auto f : reference) fib.push_back(f); int c = 0; for (auto f : candidates) { if (c!=skip) fib.push_back(f); ++c; } return fib; } /*! \brief Fits the tractogram to the input peak image by assigning a weight to each fiber (similar to https://doi.org/10.1016/j.neuroimage.2015.06.092). */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Anchor Based Scoring"); parser.setCategory("Fiber Tracking Evaluation"); parser.setDescription(""); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); parser.addArgument("", "a", mitkCommandLineParser::InputFile, "Anchor tractogram:", "anchor tracts in one tractogram file", us::Any(), false); parser.addArgument("", "p", mitkCommandLineParser::InputFile, "Input peaks:", "input peak image", us::Any(), false); parser.addArgument("", "c", mitkCommandLineParser::StringList, "Candidates:", "candidate tracts (separate files)", us::Any(), false); parser.addArgument("", "o", mitkCommandLineParser::OutputDirectory, "Output folder:", "output folder", us::Any(), false); parser.addArgument("anchor_masks", "", mitkCommandLineParser::StringList, "Reference Masks:", "reference tract masks for accuracy evaluation"); parser.addArgument("mask", "", mitkCommandLineParser::InputFile, "Mask image:", "scoring is only performed inside the mask image"); parser.addArgument("greedy_add", "", mitkCommandLineParser::Bool, "Greedy:", "if enabled, the candidate tracts are not jointly fitted to the residual image but one after the other employing a greedy scheme", false); parser.addArgument("lambda", "", mitkCommandLineParser::Float, "Lambda:", "modifier for regularization", 0.1); parser.addArgument("dont_filter_outliers", "", mitkCommandLineParser::Bool, "Don't filter outliers:", "don't perform second optimization run with an upper weight bound based on the first weight estimation (95% quantile)", false); parser.addArgument("regu", "", mitkCommandLineParser::String, "Regularization:", "MSM, MSE, LocalMSE (default), NONE"); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; std::string anchors_file = us::any_cast(parsedArgs["a"]); std::string peak_file_name = us::any_cast(parsedArgs["p"]); mitkCommandLineParser::StringContainerType candidate_tract_files = us::any_cast(parsedArgs["c"]); std::string out_folder = us::any_cast(parsedArgs["o"]); bool greedy_add = false; if (parsedArgs.count("greedy_add")) greedy_add = us::any_cast(parsedArgs["greedy_add"]); float lambda = 0.1; if (parsedArgs.count("lambda")) lambda = us::any_cast(parsedArgs["lambda"]); bool filter_outliers = true; if (parsedArgs.count("dont_filter_outliers")) filter_outliers = !us::any_cast(parsedArgs["dont_filter_outliers"]); std::string mask_file = ""; if (parsedArgs.count("mask")) mask_file = us::any_cast(parsedArgs["mask"]); mitkCommandLineParser::StringContainerType anchor_mask_files; if (parsedArgs.count("anchor_masks")) anchor_mask_files = us::any_cast(parsedArgs["anchor_masks"]); std::string regu = "NONE"; if (parsedArgs.count("regu")) regu = us::any_cast(parsedArgs["regu"]); try { itk::TimeProbe clock; clock.Start(); MITK_INFO << "Creating output directory"; if (ist::PathExists(out_folder)) ist::RemoveADirectory(out_folder); ist::MakeDirectory(out_folder); MITK_INFO << "Loading data"; std::streambuf *old = cout.rdbuf(); // <-- save std::stringstream ss; std::cout.rdbuf (ss.rdbuf()); // <-- redirect ofstream logfile; logfile.open (out_folder + "log.txt"); itk::ImageFileWriter< PeakImgType >::Pointer peak_image_writer = itk::ImageFileWriter< PeakImgType >::New(); mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Peak Image", "Fiberbundles"}, {}); mitk::Image::Pointer inputImage = dynamic_cast(mitk::IOUtil::Load(peak_file_name, &functor)[0].GetPointer()); float minSpacing = 1; if(inputImage->GetGeometry()->GetSpacing()[0]GetGeometry()->GetSpacing()[1] && inputImage->GetGeometry()->GetSpacing()[0]GetGeometry()->GetSpacing()[2]) minSpacing = inputImage->GetGeometry()->GetSpacing()[0]; else if (inputImage->GetGeometry()->GetSpacing()[1] < inputImage->GetGeometry()->GetSpacing()[2]) minSpacing = inputImage->GetGeometry()->GetSpacing()[1]; else minSpacing = inputImage->GetGeometry()->GetSpacing()[2]; // Load mask file. Fit is only performed inside the mask itk::FitFibersToImageFilter::UcharImgType::Pointer mask = nullptr; if (mask_file.compare("")!=0) { mitk::Image::Pointer mitk_mask = dynamic_cast(mitk::IOUtil::Load(mask_file)[0].GetPointer()); mitk::CastToItkImage(mitk_mask, mask); } // Load masks covering the true positives for evaluation purposes std::vector< itk::FitFibersToImageFilter::UcharImgType::Pointer > reference_masks; for (auto filename : anchor_mask_files) { itk::FitFibersToImageFilter::UcharImgType::Pointer ref_mask = nullptr; mitk::Image::Pointer ref_mitk_mask = dynamic_cast(mitk::IOUtil::Load(filename)[0].GetPointer()); mitk::CastToItkImage(ref_mitk_mask, ref_mask); reference_masks.push_back(ref_mask); } // Load peak image typedef mitk::ImageToItk< PeakImgType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(inputImage); caster->Update(); PeakImgType::Pointer peak_image = caster->GetOutput(); // Load all candidate tracts std::vector< mitk::FiberBundle::Pointer > input_candidates; for (std::string f : candidate_tract_files) { mitk::FiberBundle::Pointer fib = dynamic_cast(mitk::IOUtil::Load(f)[0].GetPointer()); if (fib.IsNull()) continue; if (fib->GetNumFibers()<=0) continue; fib->ResampleLinear(minSpacing/10.0); input_candidates.push_back(fib); } std::cout.rdbuf (old); // <-- restore double rmse = 0.0; int iteration = 0; std::string name = "NOANCHOR"; // Load reference tractogram consisting of all known tracts std::vector< mitk::FiberBundle::Pointer > input_reference; mitk::FiberBundle::Pointer anchor_tractogram = dynamic_cast(mitk::IOUtil::Load(anchors_file)[0].GetPointer()); if ( !(anchor_tractogram.IsNull() || anchor_tractogram->GetNumFibers()==0) ) { std::streambuf *old = cout.rdbuf(); // <-- save std::stringstream ss; std::cout.rdbuf (ss.rdbuf()); // <-- redirect anchor_tractogram->ResampleLinear(minSpacing/10.0); std::cout.rdbuf (old); // <-- restore input_reference.push_back(anchor_tractogram); // Fit known tracts to peak image to obtain underexplained image MITK_INFO << "Fit anchor tracts"; itk::FitFibersToImageFilter::Pointer fitter = itk::FitFibersToImageFilter::New(); fitter->SetTractograms(input_reference); fitter->SetLambda(lambda); fitter->SetFilterOutliers(filter_outliers); fitter->SetPeakImage(peak_image); fitter->SetVerbose(true); fitter->SetResampleFibers(false); fitter->SetMaskImage(mask); if (regu=="MSM") fitter->SetRegularization(VnlCostFunction::REGU::MSM); else if (regu=="MSE") fitter->SetRegularization(VnlCostFunction::REGU::MSE); else if (regu=="Local_MSE") fitter->SetRegularization(VnlCostFunction::REGU::Local_MSE); else if (regu=="NONE") fitter->SetRegularization(VnlCostFunction::REGU::NONE); fitter->Update(); rmse = fitter->GetRMSE(); name = ist::GetFilenameWithoutExtension(anchors_file); mitk::FiberBundle::Pointer anchor_tracts = fitter->GetTractograms().at(0); anchor_tracts->SetFiberColors(255,255,255); mitk::IOUtil::Save(anchor_tracts, out_folder + "0_" + name + ".fib"); peak_image = fitter->GetUnderexplainedImage(); peak_image_writer->SetInput(peak_image); peak_image_writer->SetFileName(out_folder + boost::lexical_cast(iteration) + "_" + name + ".nrrd"); peak_image_writer->Update(); } if (!greedy_add) { MITK_INFO << "Fit candidate tracts"; itk::FitFibersToImageFilter::Pointer fitter = itk::FitFibersToImageFilter::New(); fitter->SetLambda(lambda); fitter->SetFilterOutliers(filter_outliers); fitter->SetVerbose(true); fitter->SetPeakImage(peak_image); fitter->SetResampleFibers(false); fitter->SetMaskImage(mask); fitter->SetTractograms(input_candidates); fitter->SetFitIndividualFibers(true); if (regu=="MSM") fitter->SetRegularization(VnlCostFunction::REGU::MSM); else if (regu=="MSE") fitter->SetRegularization(VnlCostFunction::REGU::MSE); else if (regu=="Local_MSE") fitter->SetRegularization(VnlCostFunction::REGU::Local_MSE); else if (regu=="NONE") fitter->SetRegularization(VnlCostFunction::REGU::NONE); fitter->Update(); vnl_vector rms_diff = fitter->GetRmsDiffPerBundle(); vnl_vector log_rms_diff = rms_diff-rms_diff.min_value() + 1; log_rms_diff = log_rms_diff.apply(std::log); log_rms_diff /= log_rms_diff.max_value(); int c = 0; for (auto fib : input_candidates) { fib->SetFiberWeights( log_rms_diff[c] ); - fib->ColorFibersByFiberWeights(false, true); +// fib->ColorFibersByFiberWeights(false, true); std::string bundle_name = ist::GetFilenameWithoutExtension(candidate_tract_files.at(c)); std::streambuf *old = cout.rdbuf(); // <-- save std::stringstream ss; std::cout.rdbuf (ss.rdbuf()); // <-- redirect mitk::IOUtil::Save(fib, out_folder + boost::lexical_cast((int)(100000*rms_diff[c])) + "_" + bundle_name + ".fib"); float best_overlap = 0; int best_overlap_index = -1; int m_idx = 0; for (auto ref_mask : reference_masks) { float overlap = fib->GetOverlap(ref_mask, false); if (overlap>best_overlap) { best_overlap = overlap; best_overlap_index = m_idx; } ++m_idx; } unsigned int num_voxels = 0; { itk::TractDensityImageFilter< ItkUcharImageType >::Pointer masks_filter = itk::TractDensityImageFilter< ItkUcharImageType >::New(); masks_filter->SetInputImage(mask); masks_filter->SetBinaryOutput(true); masks_filter->SetFiberBundle(fib); masks_filter->SetUseImageGeometry(true); masks_filter->Update(); num_voxels = masks_filter->GetNumCoveredVoxels(); } std::cout.rdbuf (old); // <-- restore logfile << "RMS_DIFF: " << setprecision(5) << rms_diff[c] << " " << bundle_name << " " << num_voxels << "\n"; if (best_overlap_index>=0) logfile << "Best_overlap: " << setprecision(5) << best_overlap << " " << ist::GetFilenameWithoutExtension(anchor_mask_files.at(best_overlap_index)) << "\n"; else logfile << "No_overlap\n"; ++c; } mitk::FiberBundle::Pointer out_fib = mitk::FiberBundle::New(); out_fib = out_fib->AddBundles(input_candidates); - out_fib->ColorFibersByFiberWeights(false, true); +// out_fib->ColorFibersByFiberWeights(false, true); mitk::IOUtil::Save(out_fib, out_folder + "AllCandidates.fib"); } else { MITK_INFO << "RMSE: " << setprecision(5) << rmse; // fitter->SetPeakImage(peak_image); // Iteratively add candidate bundles in a greedy manner while (!input_candidates.empty()) { double next_rmse = rmse; double num_peaks = 0; mitk::FiberBundle::Pointer best_candidate = nullptr; PeakImgType::Pointer best_candidate_peak_image = nullptr; for (int i=0; i<(int)input_candidates.size(); ++i) { // WHY NECESSARY AGAIN?? itk::FitFibersToImageFilter::Pointer fitter = itk::FitFibersToImageFilter::New(); fitter->SetLambda(lambda); fitter->SetFilterOutliers(filter_outliers); fitter->SetVerbose(false); fitter->SetPeakImage(peak_image); fitter->SetResampleFibers(false); fitter->SetMaskImage(mask); // ****************************** fitter->SetTractograms({input_candidates.at(i)}); std::streambuf *old = cout.rdbuf(); // <-- save std::stringstream ss; std::cout.rdbuf (ss.rdbuf()); // <-- redirect fitter->Update(); std::cout.rdbuf (old); // <-- restore double candidate_rmse = fitter->GetRMSE(); if (candidate_rmseGetNumCoveredDirections(); best_candidate = fitter->GetTractograms().at(0); best_candidate_peak_image = fitter->GetUnderexplainedImage(); } } if (best_candidate.IsNull()) break; // fitter->SetPeakImage(peak_image); peak_image = best_candidate_peak_image; int i=0; std::vector< mitk::FiberBundle::Pointer > remaining_candidates; std::vector< std::string > remaining_candidate_files; for (auto fib : input_candidates) { if (fib!=best_candidate) { remaining_candidates.push_back(fib); remaining_candidate_files.push_back(candidate_tract_files.at(i)); } else name = ist::GetFilenameWithoutExtension(candidate_tract_files.at(i)); ++i; } input_candidates = remaining_candidates; candidate_tract_files = remaining_candidate_files; iteration++; std::streambuf *old = cout.rdbuf(); // <-- save std::stringstream ss; std::cout.rdbuf (ss.rdbuf()); // <-- redirect // Save winning candidate mitk::IOUtil::Save(best_candidate, out_folder + boost::lexical_cast(iteration) + "_" + name + ".fib"); peak_image_writer->SetInput(peak_image); peak_image_writer->SetFileName(out_folder + boost::lexical_cast(iteration) + "_" + name + ".nrrd"); peak_image_writer->Update(); // Calculate best overlap with reference masks for evaluation purposes float best_overlap = 0; int best_overlap_index = -1; i = 0; for (auto ref_mask : reference_masks) { float overlap = best_candidate->GetOverlap(ref_mask, false); if (overlap>best_overlap) { best_overlap = overlap; best_overlap_index = i; } ++i; } std::cout.rdbuf (old); // <-- restore logfile << "RMSE: " << setprecision(5) << rmse << " " << name << " " << num_peaks << "\n"; if (best_overlap_index>=0) logfile << "Best_overlap: " << setprecision(5) << best_overlap << " " << ist::GetFilenameWithoutExtension(anchor_mask_files.at(best_overlap_index)) << "\n"; else logfile << "No_overlap\n"; } } clock.Stop(); int h = clock.GetTotal()/3600; int m = ((int)clock.GetTotal()%3600)/60; int s = (int)clock.GetTotal()%60; MITK_INFO << "Plausibility estimation took " << h << "h, " << m << "m and " << s << "s"; logfile.close(); } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/FiberTracking/cmdapps/TractographyEvaluation/ExtractAnchorTracts.cpp b/Modules/DiffusionImaging/FiberTracking/cmdapps/TractographyEvaluation/ExtractAnchorTracts.cpp index 81440ae729..c67164b7d1 100755 --- a/Modules/DiffusionImaging/FiberTracking/cmdapps/TractographyEvaluation/ExtractAnchorTracts.cpp +++ b/Modules/DiffusionImaging/FiberTracking/cmdapps/TractographyEvaluation/ExtractAnchorTracts.cpp @@ -1,284 +1,277 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef itksys::SystemTools ist; typedef itk::Image ItkFloatImgType; typedef std::tuple< ItkFloatImgType::Pointer, std::string > MaskType; void CreateFolderStructure(const std::string& path) { if (ist::PathExists(path)) ist::RemoveADirectory(path); ist::MakeDirectory(path); ist::MakeDirectory(path + "/anchor_tracts/"); ist::MakeDirectory(path + "/candidate_tracts/"); - ist::MakeDirectory(path + "/implausible_tracts/"); ist::MakeDirectory(path + "/skipped_masks/"); } ItkFloatImgType::Pointer LoadItkImage(const std::string& filename) { mitk::Image::Pointer img = dynamic_cast(mitk::IOUtil::Load(filename)[0].GetPointer()); ItkFloatImgType::Pointer itkMask = ItkFloatImgType::New(); mitk::CastToItkImage(img, itkMask); return itkMask; } std::vector< MaskType > get_file_list(const std::string& path, float anchor_fraction, const std::string& skipped_path, int random_seed) { if (anchor_fraction<0) anchor_fraction = 0; else if (anchor_fraction>1.0) anchor_fraction = 1.0; std::chrono::milliseconds ms = std::chrono::duration_cast< std::chrono::milliseconds >(std::chrono::system_clock::now().time_since_epoch()); if (random_seed<0) std::srand(ms.count()); else std::srand(random_seed); MITK_INFO << "random_seed: " << random_seed; std::vector< MaskType > mask_list; itk::Directory::Pointer dir = itk::Directory::New(); int skipped = 0; if (dir->Load(path.c_str())) { int n = dir->GetNumberOfFiles(); int num_images = 0; std::vector< int > im_indices; for (int r = 0; r < n; r++) { const char *filename = dir->GetFile(r); std::string ext = ist::GetFilenameExtension(filename); if (ext==".nii" || ext==".nii.gz" || ext==".nrrd") { ++num_images; im_indices.push_back(r); } } int skipping_num = num_images * (1.0 - anchor_fraction); std::random_shuffle(im_indices.begin(), im_indices.end()); MITK_INFO << "Skipping " << skipping_num << " images"; MITK_INFO << "Number of anchors: " << num_images-skipping_num; int c = -1; for (int r : im_indices) { c++; const char *filename = dir->GetFile(r); if (c matrix = vtkSmartPointer< vtkMatrix4x4 >::New(); matrix->Identity(); matrix->SetElement(0,0,-matrix->GetElement(0,0)); matrix->SetElement(1,1,-matrix->GetElement(1,1)); geometry->SetIndexToWorldTransformByVtkMatrix(matrix); vtkSmartPointer transformFilter = vtkSmartPointer::New(); transformFilter->SetInputData(fib->GetFiberPolyData()); transformFilter->SetTransform(geometry->GetVtkTransform()); transformFilter->Update(); mitk::FiberBundle::Pointer transformed_fib = mitk::FiberBundle::New(transformFilter->GetOutput()); return transformed_fib; } /*! \brief */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Extract Overlapping Tracts"); parser.setCategory("Fiber Tracking Evaluation"); parser.setDescription(""); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); parser.addArgument("input", "i", mitkCommandLineParser::InputFile, "Input:", "input tractogram (.fib, vtk ascii file format)", us::Any(), false); parser.addArgument("out", "o", mitkCommandLineParser::OutputDirectory, "Output:", "output folder", us::Any(), false); parser.addArgument("reference_mask_folder", "m", mitkCommandLineParser::String, "Reference Mask Folder:", "reference masks of known bundles", us::Any(), false); parser.addArgument("gray_matter_mask", "gm", mitkCommandLineParser::String, "GM mask:", "remove fibers not ending in the gray matter"); parser.addArgument("anchor_fraction", "", mitkCommandLineParser::Float, "Anchor fraction:", "Fraction of tracts used as anchors", 0.5); parser.addArgument("overlap", "", mitkCommandLineParser::Float, "Overlap threshold:", "Overlap threshold used to identify the anchor tracts", 0.8); parser.addArgument("subsample", "", mitkCommandLineParser::Float, "Subsampling factor:", "Only use specified fraction of input fibers for the analysis", 1.0); parser.addArgument("random_seed", "", mitkCommandLineParser::Int, ":", "", -1); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; std::string fibFile = us::any_cast(parsedArgs["input"]); std::string reference_mask_folder = us::any_cast(parsedArgs["reference_mask_folder"]); std::string out_folder = us::any_cast(parsedArgs["out"]); std::string gray_matter_mask = ""; if (parsedArgs.count("gray_matter_mask")) gray_matter_mask = us::any_cast(parsedArgs["gray_matter_mask"]); float anchor_fraction = 0.5; if (parsedArgs.count("anchor_fraction")) anchor_fraction = us::any_cast(parsedArgs["anchor_fraction"]); int random_seed = -1; if (parsedArgs.count("random_seed")) random_seed = us::any_cast(parsedArgs["random_seed"]); float overlap = 0.8; if (parsedArgs.count("overlap")) overlap = us::any_cast(parsedArgs["overlap"]); float subsample = 1.0; if (parsedArgs.count("subsample")) subsample = us::any_cast(parsedArgs["subsample"]); try { CreateFolderStructure(out_folder); std::vector< MaskType > known_tract_masks = get_file_list(reference_mask_folder, anchor_fraction, out_folder + "/skipped_masks/", random_seed); mitk::FiberBundle::Pointer inputTractogram = dynamic_cast(mitk::IOUtil::Load(fibFile)[0].GetPointer()); if (gray_matter_mask.compare("")!=0) { MITK_INFO << "Removing fibers not ending inside of GM"; std::streambuf *old = cout.rdbuf(); // <-- save std::stringstream ss; std::cout.rdbuf (ss.rdbuf()); // <-- redirect ItkFloatImgType::Pointer gm_image = LoadItkImage(gray_matter_mask); std::cout.rdbuf (old); // <-- restore itk::FiberExtractionFilter::Pointer extractor = itk::FiberExtractionFilter::New(); extractor->SetInputFiberBundle(inputTractogram); extractor->SetRoiImages({gm_image}); extractor->SetBothEnds(true); + extractor->SetNoNegatives(true); extractor->SetMode(itk::FiberExtractionFilter::MODE::ENDPOINTS); extractor->Update(); - - mitk::FiberBundle::Pointer not_gm_fibers = extractor->GetNegatives().at(0); - - old = cout.rdbuf(); // <-- save - std::cout.rdbuf (ss.rdbuf()); // <-- redirect - mitk::IOUtil::Save(not_gm_fibers, out_folder + "/implausible_tracts/no_gm_endings.trk"); inputTractogram = extractor->GetPositives().at(0); - std::cout.rdbuf (old); // <-- restore } std::srand(0); if (subsample<1.0) inputTractogram = inputTractogram->SubsampleFibers(subsample); mitk::FiberBundle::Pointer anchor_tractogram = mitk::FiberBundle::New(nullptr); mitk::FiberBundle::Pointer candidate_tractogram = mitk::FiberBundle::New(nullptr); if (!known_tract_masks.empty()) { MITK_INFO << "Find known tracts via overlap match"; std::vector< ItkFloatImgType::Pointer > mask_images; for (auto mask : known_tract_masks) mask_images.push_back(std::get<0>(mask)); std::vector< ItkFloatImgType* > roi_images2; for (auto roi : mask_images) roi_images2.push_back(roi); itk::FiberExtractionFilter::Pointer extractor = itk::FiberExtractionFilter::New(); extractor->SetInputFiberBundle(inputTractogram); extractor->SetRoiImages(roi_images2); extractor->SetOverlapFraction(overlap); extractor->SetMode(itk::FiberExtractionFilter::MODE::OVERLAP); extractor->Update(); std::vector< mitk::FiberBundle::Pointer > positives = extractor->GetPositives(); candidate_tractogram = extractor->GetNegatives().at(0); for ( unsigned int i=0; i(known_tract_masks.at(i)); mitk::IOUtil::Save(positives.at(i), out_folder + "/anchor_tracts/" + mask_name + ".trk"); std::cout.rdbuf (old); // <-- restore } anchor_tractogram = anchor_tractogram->AddBundles(positives); } mitk::IOUtil::Save(anchor_tractogram, out_folder + "/anchor_tracts/anchor_tractogram.trk"); mitk::IOUtil::Save(candidate_tractogram, out_folder + "/candidate_tracts/candidate_tractogram.trk"); mitk::IOUtil::Save(inputTractogram, out_folder + "/filtered_tractogram.trk"); } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; }