diff --git a/Modules/DiffusionImaging/DiffusionCore/include/Algorithms/itkShCoefficientImageImporter.cpp b/Modules/DiffusionImaging/DiffusionCore/include/Algorithms/itkShCoefficientImageImporter.cpp index 84599b9167..6d2f924976 100644 --- a/Modules/DiffusionImaging/DiffusionCore/include/Algorithms/itkShCoefficientImageImporter.cpp +++ b/Modules/DiffusionImaging/DiffusionCore/include/Algorithms/itkShCoefficientImageImporter.cpp @@ -1,193 +1,192 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef __itkShCoefficientImageImporter_cpp #define __itkShCoefficientImageImporter_cpp #include #include #include #include "itkShCoefficientImageImporter.h" #include #include using namespace boost::math; namespace itk { template< class PixelType, int ShOrder > ShCoefficientImageImporter< PixelType, ShOrder >::ShCoefficientImageImporter() : m_Toolkit(FSL) { m_ShBasis.set_size(QBALL_ODFSIZE, (ShOrder+1)*(ShOrder+2)/2); } template< class PixelType, int ShOrder > void ShCoefficientImageImporter< PixelType, ShOrder > ::GenerateData() { CalcShBasis(); if (m_InputImage.IsNull()) return; Vector spacing4 = m_InputImage->GetSpacing(); Point origin4 = m_InputImage->GetOrigin(); Matrix direction4 = m_InputImage->GetDirection(); ImageRegion<4> imageRegion4 = m_InputImage->GetLargestPossibleRegion(); Vector spacing3; Point origin3; Matrix direction3; ImageRegion<3> imageRegion3; spacing3[0] = spacing4[0]; spacing3[1] = spacing4[1]; spacing3[2] = spacing4[2]; origin3[0] = origin4[0]; origin3[1] = origin4[1]; origin3[2] = origin4[2]; for (int r=0; r<3; r++) for (int c=0; c<3; c++) direction3[r][c] = direction4[r][c]; imageRegion3.SetSize(0, imageRegion4.GetSize()[0]); imageRegion3.SetSize(1, imageRegion4.GetSize()[1]); imageRegion3.SetSize(2, imageRegion4.GetSize()[2]); m_QballImage = QballImageType::New(); m_QballImage->SetSpacing( spacing3 ); m_QballImage->SetOrigin( origin3 ); m_QballImage->SetDirection( direction3 ); m_QballImage->SetRegions( imageRegion3 ); m_QballImage->Allocate(); Vector< PixelType, QBALL_ODFSIZE > nullVec1; nullVec1.Fill(0.0); m_QballImage->FillBuffer(nullVec1); m_CoefficientImage = CoefficientImageType::New(); m_CoefficientImage->SetSpacing( spacing3 ); m_CoefficientImage->SetOrigin( origin3 ); m_CoefficientImage->SetDirection( direction3 ); m_CoefficientImage->SetRegions( imageRegion3 ); m_CoefficientImage->Allocate(); Vector< PixelType, (ShOrder*ShOrder + ShOrder + 2)/2 + ShOrder > nullVec2; nullVec2.Fill(0.0); m_CoefficientImage->FillBuffer(nullVec2); - typedef ImageRegionConstIterator< InputImageType > InputIteratorType; int x = imageRegion4.GetSize(0); int y = imageRegion4.GetSize(1); int z = imageRegion4.GetSize(2); int numCoeffs = imageRegion4.GetSize(3); for (int a=0; a coeffs((ShOrder*ShOrder + ShOrder + 2)/2 + ShOrder,1); typename InputImageType::IndexType index; index.SetElement(0,a); index.SetElement(1,b); index.SetElement(2,c); typename CoefficientImageType::PixelType pix; for (int d=0; dGetPixel(index); coeffs[d][0] = pix[d]; } typename CoefficientImageType::IndexType index2; index2.SetElement(0,a); index2.SetElement(1,b); index2.SetElement(2,c); m_CoefficientImage->SetPixel(index2, pix); typename QballImageType::PixelType pix2; vnl_matrix odf = m_ShBasis*coeffs; for (int d=0; dSetPixel(index2,pix2); } } // generate spherical harmonic values of the desired order for each input direction template< class PixelType, int ShOrder > void ShCoefficientImageImporter< PixelType, ShOrder > ::CalcShBasis() { vnl_matrix_fixed sphCoords = GetSphericalOdfDirections(); int j, m; double mag, plm; for (int p=0; p(l,abs(m),cos(sphCoords(0,p))); mag = sqrt((double)(2*l+1)/(4.0*M_PI)*factorial(l-abs(m))/factorial(l+abs(m)))*plm; if (m<0) m_ShBasis(p,j) = sqrt(2.0)*mag*cos(-m*sphCoords(1,p)); else if (m==0) m_ShBasis(p,j) = mag; else m_ShBasis(p,j) = pow(-1.0, m)*sqrt(2.0)*mag*sin(m*sphCoords(1,p)); break; case MRTRIX: plm = legendre_p(l,abs(m),-cos(sphCoords(0,p))); mag = sqrt((double)(2*l+1)/(4.0*M_PI)*factorial(l-abs(m))/factorial(l+abs(m)))*plm; if (m>0) m_ShBasis(p,j) = mag*cos(m*sphCoords(1,p)); else if (m==0) m_ShBasis(p,j) = mag; else m_ShBasis(p,j) = mag*sin(-m*sphCoords(1,p)); break; } j++; } } } // convert cartesian to spherical coordinates template< class PixelType, int ShOrder > vnl_matrix_fixed ShCoefficientImageImporter< PixelType, ShOrder > ::GetSphericalOdfDirections() { itk::OrientationDistributionFunction< PixelType, QBALL_ODFSIZE > odf; vnl_matrix_fixed* dir = odf.GetDirections(); vnl_matrix_fixed sphCoords; for (int i=0; iget_column(i).magnitude(); if( magget(2,i)/mag); // theta sphCoords(1,i) = atan2(dir->get(1,i), dir->get(0,i)); // phi } } return sphCoords; } } #endif // __itkShCoefficientImageImporter_cpp diff --git a/Modules/DiffusionImaging/DiffusionCore/include/Algorithms/itkTensorReconstructionWithEigenvalueCorrectionFilter.txx b/Modules/DiffusionImaging/DiffusionCore/include/Algorithms/itkTensorReconstructionWithEigenvalueCorrectionFilter.txx index 4058b84022..6d2fde3f0e 100644 --- a/Modules/DiffusionImaging/DiffusionCore/include/Algorithms/itkTensorReconstructionWithEigenvalueCorrectionFilter.txx +++ b/Modules/DiffusionImaging/DiffusionCore/include/Algorithms/itkTensorReconstructionWithEigenvalueCorrectionFilter.txx @@ -1,867 +1,864 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _itk_TensorReconstructionWithEigenvalueCorrectionFilter_txx_ #define _itk_TensorReconstructionWithEigenvalueCorrectionFilter_txx_ #endif #include "itkImageRegionConstIterator.h" #include #include "itkImageFileWriter.h" #include "itkImage.h" #include "itkImageRegionIterator.h" #include namespace itk { template TensorReconstructionWithEigenvalueCorrectionFilter ::TensorReconstructionWithEigenvalueCorrectionFilter() { m_B0Threshold = 50.0; } template void TensorReconstructionWithEigenvalueCorrectionFilter ::GenerateData () { typename GradientImagesType::Pointer input_image = static_cast< GradientImagesType * >( this->ProcessObject::GetInput(0) ); typename itk::ImageDuplicator::Pointer duplicator = itk::ImageDuplicator::New(); duplicator->SetInputImage(input_image); duplicator->Update(); m_GradientImagePointer = duplicator->GetOutput(); typename GradientImagesType::SizeType size = m_GradientImagePointer->GetLargestPossibleRegion().GetSize(); // number of volumes int nof = m_GradientDirectionContainer->Size(); // determine the number of b-zero values int numberb0=0; for(int i=0; i vec = m_GradientDirectionContainer->ElementAt(i); float bval = vec.magnitude(); bval = bval*bval*m_BValue; if(bval<100) numberb0++; } // Matrix to store all diffusion encoding gradients vnl_matrix directions(nof-numberb0,3); m_B0Mask.set_size(nof); int cnt=0; for(int i=0; i vec = m_GradientDirectionContainer->ElementAt(i); float bval = vec.magnitude(); bval = bval*bval*m_BValue; if(bval<100) { // the diffusion encoding gradient is approximately zero, wo we are dealing with a non-diffusion weighted volume m_B0Mask[i]=1; } else { // dealing with a diffusion weighted volume m_B0Mask[i]=0; // set the diffusion encoding gradient to the directions matrix directions[cnt][0] = vec[0]; directions[cnt][1] = vec[1]; directions[cnt][2] = vec[2]; cnt++; } } // looking for maximal norm among gradients. // The norm is calculated with use of spectral radius theorem- based on determination of eigenvalue. vnl_matrix dirsTimesDirsTrans = directions*directions.transpose(); vnl_vector< double> diagonal(nof-numberb0); vnl_vector< double> b_vec(nof-numberb0); vnl_vector< double> temporary(3); for (int i=0;i H(nof-numberb0, 6); vnl_matrix H_org(nof-numberb0, 6); vnl_vector pre_tensor(9); //H is matrix that contains covariances for directions. It is stored twice because its original value is needed later // while H is changed int etbt[6] = { 0, 4, 8, 1, 5, 2 };// tensor order for (int i = 0; i < nof-numberb0; i++) { for (int j = 0; j < 3; j++) { temporary[j] = -directions[i][j]; } for (int j = 0; j < 3; j++) { for (int k = 0; k < 3; k++) { pre_tensor[k + 3 * j] = temporary[k] * directions[i][j]; } } for (int j = 0; j < 6; j++) { H[i][j] = pre_tensor[etbt[j]]; } for (int j = 0; j < 3; j++) { H[i][3 + j] *= 2.0; } } H_org=H; // calculation of inverse matrix by means of pseudoinverse vnl_matrix inputtopseudoinverse=H.transpose()*H; vnl_symmetric_eigensystem eig( inputtopseudoinverse); vnl_matrix pseudoInverse = eig.pinverse()*H.transpose(); typedef itk::Image MaskImageType; MaskImageType::Pointer mask = MaskImageType::New(); mask->SetRegions(m_GradientImagePointer->GetLargestPossibleRegion().GetSize()); mask->SetSpacing(m_GradientImagePointer->GetSpacing()); mask->SetOrigin(m_GradientImagePointer->GetOrigin()); mask->SetDirection( m_GradientImagePointer->GetDirection() ); // Set the image direction mask->SetLargestPossibleRegion( m_GradientImagePointer->GetLargestPossibleRegion() ); mask->SetBufferedRegion( m_GradientImagePointer->GetLargestPossibleRegion() ); mask->SetRequestedRegion( m_GradientImagePointer->GetLargestPossibleRegion() ); mask->Allocate(); // Image thresholding: For every voxel mean B0 image is calculated and then voxels of mean B0 less than the // treshold on the B0 image proviced by the userare excluded from the dataset with use of defined mask image. // 1 in mask voxel means that B0 > assumed treshold. int mask_cnt=0; #ifdef WIN32 #pragma omp parallel for #else #pragma omp parallel for collapse(3) #endif for(int x=0;x ix = {{x,y,z}}; GradientVectorType pixel = m_GradientImagePointer->GetPixel(ix); for (int i=0;i m_B0Threshold) { #pragma omp critical { mask->SetPixel(ix, 1); mask_cnt++; } } else { #pragma omp critical mask->SetPixel(ix, 0); } } #ifdef WIN32 #pragma omp parallel for #else #pragma omp parallel for collapse(3) #endif for (int x=0;x org_vec(nof); itk::Index<3> ix = {{x,y,z}}; double mask_val = mask->GetPixel(ix); GradientVectorType pixel2 = m_GradientImagePointer->GetPixel(ix); for (int i=0;i0) { for( int f=0;fSetPixel(ix, pixel2); } } typename TensorImageType::Pointer tensorImg; tensorImg = TensorImageType::New(); tensorImg->SetSpacing( m_GradientImagePointer->GetSpacing() ); // Set the image spacing tensorImg->SetOrigin( m_GradientImagePointer->GetOrigin() ); // Set the image origin tensorImg->SetDirection( m_GradientImagePointer->GetDirection() ); // Set the image direction tensorImg->SetLargestPossibleRegion( m_GradientImagePointer->GetLargestPossibleRegion() ); tensorImg->SetBufferedRegion( m_GradientImagePointer->GetLargestPossibleRegion() ); tensorImg->SetRequestedRegion( m_GradientImagePointer->GetLargestPossibleRegion() ); tensorImg->Allocate(); //Declaration of vectors that contains too high or too low atenuation for each gradient. Attenuation is only calculated for //non B0 images so nof-numberb0. vnl_vector< double> pixel_max(nof-numberb0); vnl_vector< double> pixel_min(nof-numberb0); // to high and to low attenuation is calculated with use of highest allowed =5 and lowest allowed =0.01 diffusion coefficient for (int i=0;i outputIterator(tensorImg, tensorImg->GetLargestPossibleRegion()); outputIterator.GoToBegin(); while(!outputIterator.IsAtEnd()) { TensorPixelType tens = outputIterator.Get(); tens/= 1000.0; outputIterator.Set(tens); ++outputIterator; } this->SetNthOutput(0, tensorImg); } template void TensorReconstructionWithEigenvalueCorrectionFilter ::SetGradientImage( GradientDirectionContainerType *gradientDirection, const GradientImagesType *gradientImage ) { if( m_GradientImageTypeEnumeration == GradientIsInManyImages ) { itkExceptionMacro( << "Cannot call both methods:" << "AddGradientImage and SetGradientImage. Please call only one of them."); } this->m_GradientDirectionContainer = gradientDirection; unsigned int numImages = gradientDirection->Size(); this->m_NumberOfBaselineImages = 0; this->m_NumberOfGradientDirections = numImages - this->m_NumberOfBaselineImages; // ensure that the gradient image we received has as many components as // the number of gradient directions if( gradientImage->GetVectorLength() != this->m_NumberOfBaselineImages + this->m_NumberOfGradientDirections ) { itkExceptionMacro( << this->m_NumberOfGradientDirections << " gradients + " << this->m_NumberOfBaselineImages << "baselines = " << this->m_NumberOfGradientDirections + this->m_NumberOfBaselineImages << " directions specified but image has " << gradientImage->GetVectorLength() << " components."); } this->ProcessObject::SetNthInput( 0, const_cast< GradientImagesType* >(gradientImage) ); m_GradientImageTypeEnumeration = GradientIsInASingleImage; } template double TensorReconstructionWithEigenvalueCorrectionFilter ::CheckNeighbours(int x, int y, int z,int f, itk::Size<3> size, itk::Image::Pointer mask, typename GradientImagesType::Pointer corrected_diffusion_temp) { // method is used for finding a new value for the voxel with use of its 27 neighborhood. To perform such a smoothing correct voxels are // counted an arithmetical mean is calculated and stored as a new value for the voxel. If there is no proper neigborhood voxel is turned // to the value of 0. // Definition of neighbourhood avoiding crossing the image boundaries int x_max=size[0]-1; int y_max=size[1]-1; int z_max=size[2]-1; double back_x=std::max(0,x-1); double back_y=std::max(0,y-1); double back_z=std::max(0,z-1); double forth_x=std::min((x+1),x_max); double forth_y=std::min((y+1),y_max); double forth_z=std::min((z+1),z_max); double tempsum=0; double temp_number=0; for(int i=back_x; i<=forth_x; i++) { for (int j=back_y; j<=forth_y; j++) { for (int k=back_z; k<=forth_z; k++) { itk::Index<3> ix = {{i,j,k}}; GradientVectorType p = corrected_diffusion_temp->GetPixel(ix); if (p[f] > 0.0 )// taking only positive values and counting them { if(!(i==x && j==y && k== z)) { tempsum=tempsum+p[f]; temp_number++; } } } } } //getting back to the original position of the voxel itk::Index<3> ix = {{x,y,z}}; if (temp_number <= 0.0) { tempsum=0; #pragma omp critical mask->SetPixel(ix,0); } else { tempsum=tempsum/temp_number; } return tempsum;// smoothed value of voxel } template void TensorReconstructionWithEigenvalueCorrectionFilter ::CalculateAttenuation(vnl_vector org_data,vnl_vector &atten,int nof, int numberb0) { double mean_b=0.0; for (int i=0;i0) mean_b=mean_b+org_data[i]; mean_b=mean_b/numberb0; int cnt=0; for (int i=0;i double TensorReconstructionWithEigenvalueCorrectionFilter ::CheckNegatives ( itk::Size<3> size, itk::Image::Pointer mask, typename itk::Image< itk::DiffusionTensor3D, 3 >::Pointer tensorImg ) { // The method was created to simplif the flow of negative eigenvalue correction process. The method itself just return the number // of voxels (tensors) with negative eigenvalues. Then if the voxel was previously bad ( mask=2 ) but it is not bad anymore mask is //changed to 1. // declaration of important structures and variables double badvoxels=0; #ifdef WIN32 #pragma omp parallel for #else #pragma omp parallel for collapse(3) #endif for (int x=0;x ix = {{x,y,z}}; pixel = mask->GetPixel(ix); // but only if previously marked as bad one-negative eigen value if(pixel > 1) { - itk::DiffusionTensor3D::EigenValuesArrayType eigenvalues; - itk::DiffusionTensor3D::EigenVectorsMatrixType eigenvectors; - itk::DiffusionTensor3D ten = tensorImg->GetPixel(ix); - ten.ComputeEigenAnalysis(eigenvalues, eigenvectors); - - //comparison to 0.01 instead of 0 was proposed by O.Pasternak - if( eigenvalues[0]>0.01 && eigenvalues[1]>0.01 && eigenvalues[2]>0.01) - { #pragma omp critical - mask->SetPixel(ix,1); - } - else { -#pragma omp critical - badvoxels++; + itk::DiffusionTensor3D::EigenValuesArrayType eigenvalues; + itk::DiffusionTensor3D::EigenVectorsMatrixType eigenvectors; + itk::DiffusionTensor3D ten = tensorImg->GetPixel(ix); + ten.ComputeEigenAnalysis(eigenvalues, eigenvectors); + + //comparison to 0.01 instead of 0 was proposed by O.Pasternak + if( eigenvalues[0]>0.01 && eigenvalues[1]>0.01 && eigenvalues[2]>0.01) + mask->SetPixel(ix,1); + else + badvoxels++; } } } return badvoxels; } template void TensorReconstructionWithEigenvalueCorrectionFilter ::CorrectDiffusionImage(int nof, int numberb0, itk::Size<3> size, typename GradientImagesType::Pointer corrected_diffusion,itk::Image::Pointer mask,vnl_vector< double> pixel_max,vnl_vector< double> pixel_min) { // in this method the voxels that has tensor negative eigenvalues are smoothed. Smoothing is done on DWI image.For the voxel //detected as bad one, B0 image is smoothed obligatory. All other gradient images are smoothed only when value of attenuation //is out of declared bounds for too high or too low attenuation. // declaration of important variables #ifdef WIN32 #pragma omp parallel for #else #pragma omp parallel for collapse(3) #endif for (int z=0;z org_data(nof); vnl_vector atten(nof-numberb0); double cnt_atten=0; itk::Index<3> ix = {{x, y, z}}; if(mask->GetPixel(ix) > 1.0) { GradientVectorType pt = corrected_diffusion->GetPixel(ix); for (int i=0;i0) { mean_b=mean_b+org_data[i]; } mean_b=mean_b/numberb0; int cnt=0; for (int i=0;i pixel_max[cnt_atten]) { int x_max=size[0]-1; int y_max=size[1]-1; int z_max=size[2]-1; double back_x=std::max(0,(int)x-1); double back_y=std::max(0,(int)y-1); double back_z=std::max(0,(int)z-1); double forth_x=std::min(((int)x+1),x_max); double forth_y=std::min(((int)y+1),y_max); double forth_z=std::min(((int)z+1),z_max); double tempsum=0; double temp_number=0; for(unsigned int i=back_x; i<=forth_x; i++) for (unsigned int j=back_y; j<=forth_y; j++) for (unsigned int k=back_z; k<=forth_z; k++) { itk::Index<3> ix = {{i,j,k}}; GradientVectorType p = corrected_diffusion->GetPixel(ix); if(p[f] > 0.0 && !(i==x && j==y && k== z)) { tempsum=tempsum+p[f]; temp_number++; } } //getting back to the original position of the voxel itk::Index<3> ix = {{x,y,z}}; if (temp_number <= 0.0) { tempsum=0; #pragma omp critical mask->SetPixel(ix,0); } else tempsum=tempsum/temp_number; org_data[f] = tempsum; } cnt_atten++; } //smoothing B0 if(m_B0Mask[f]==1) { int x_max=size[0] - 1; int y_max=size[1] - 1; int z_max=size[2] - 1; double back_x=std::max(0,(int)x-1); double back_y=std::max(0,(int)y-1); double back_z=std::max(0,(int)z-1); double forth_x=std::min(((int)x+1),x_max); double forth_y=std::min(((int)y+1),y_max); double forth_z=std::min(((int)z+1),z_max); double tempsum=0; double temp_number=0; for(unsigned int i=back_x; i<=forth_x; i++) for (unsigned int j=back_y; j<=forth_y; j++) for (unsigned int k=back_z; k<=forth_z; k++) { itk::Index<3> ix = {{i,j,k}}; GradientVectorType p = corrected_diffusion->GetPixel(ix); //double test= p[f]; if (p[f] > 0.0 )// taking only positive values and counting them { if(!(i==x && j==y && k== z)) { tempsum=tempsum+p[f]; temp_number++; } } } //getting back to the original position of the voxel itk::Index<3> ix = {{x,y,z}}; if (temp_number <= 0.0) { tempsum=0; #pragma omp critical mask->SetPixel(ix,0); } else { tempsum=tempsum/temp_number; } org_data[f] = tempsum; } } for (int i=0;iSetPixel(ix, pt); } else { GradientVectorType pt = corrected_diffusion->GetPixel(ix); #pragma omp critical corrected_diffusion->SetPixel(ix, pt); } } } template void TensorReconstructionWithEigenvalueCorrectionFilter ::GenerateTensorImage(int nof,int numberb0,itk::Size<3> size,itk::VectorImage::Pointer corrected_diffusion,itk::Image::Pointer mask,double what_mask, typename itk::Image< itk::DiffusionTensor3D, 3 >::Pointer tensorImg) { // in this method the whole tensor image is updated with a tensors for defined voxels ( defined by a value of mask); #ifdef WIN32 #pragma omp parallel for #else #pragma omp parallel for collapse(3) #endif for (int x=0;x ix; vnl_vector org_data(nof); vnl_vector atten(nof-numberb0); vnl_vector tensor(6); itk::DiffusionTensor3D ten; double mask_val=0; ix[0] = x; ix[1] = y; ix[2] = z; mask_val= mask->GetPixel(ix); //Tensors are calculated only for voxels above theshold for B0 image. if( mask_val > 0.0 ) { // calculation of attenuation with use of gradient image and and mean B0 image GradientVectorType pt = corrected_diffusion->GetPixel(ix); for (int i=0;i0) { mean_b=mean_b+org_data[i]; } } mean_b=mean_b/numberb0; int cnt=0; for (int i=0;iSetPixel(ix, ten); } // for voxels with mask value 0 - tensor is simply 0 ( outside brain value) else if (mask_val < 1.0) { ten(0,0) = 0; ten(0,1) = 0; ten(0,2) = 0; ten(1,1) = 0; ten(1,2) = 0; ten(2,2) = 0; #pragma omp critical tensorImg->SetPixel(ix, ten); } } }// end of Generate Tensor template void TensorReconstructionWithEigenvalueCorrectionFilter ::TurnMask( itk::Size<3> size, itk::Image::Pointer mask, double previous_mask, double set_mask) { // The method changes voxels in the mask that poses a certain value with other value. itk::Index<3> ix; double temp_mask_value=0; #ifdef WIN32 #pragma omp parallel for #else #pragma omp parallel for collapse(3) #endif for(int x=0;xGetPixel(ix); if(temp_mask_value>previous_mask) { #pragma omp critical mask->SetPixel(ix,set_mask); } } } } // end of namespace diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingHandlerPeaks.cpp b/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingHandlerPeaks.cpp index 2cf04a46c3..8ae378a920 100644 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingHandlerPeaks.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingHandlerPeaks.cpp @@ -1,279 +1,279 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkTrackingHandlerPeaks.h" namespace mitk { TrackingHandlerPeaks::TrackingHandlerPeaks() : m_PeakThreshold(0.1) , m_ApplyDirectionMatrix(false) { - + std::srand(0); } TrackingHandlerPeaks::~TrackingHandlerPeaks() { } void TrackingHandlerPeaks::InitForTracking() { MITK_INFO << "Initializing peak tracker."; if (m_NeedsDataInit) { itk::Vector spacing4 = m_PeakImage->GetSpacing(); itk::Point origin4 = m_PeakImage->GetOrigin(); itk::Matrix direction4 = m_PeakImage->GetDirection(); itk::ImageRegion<4> imageRegion4 = m_PeakImage->GetLargestPossibleRegion(); spacing3[0] = spacing4[0]; spacing3[1] = spacing4[1]; spacing3[2] = spacing4[2]; origin3[0] = origin4[0]; origin3[1] = origin4[1]; origin3[2] = origin4[2]; for (int r=0; r<3; r++) for (int c=0; c<3; c++) { direction3[r][c] = direction4[r][c]; m_FloatImageRotation[r][c] = direction4[r][c]; } imageRegion3.SetSize(0, imageRegion4.GetSize()[0]); imageRegion3.SetSize(1, imageRegion4.GetSize()[1]); imageRegion3.SetSize(2, imageRegion4.GetSize()[2]); m_DummyImage = ItkUcharImgType::New(); m_DummyImage->SetSpacing( spacing3 ); m_DummyImage->SetOrigin( origin3 ); m_DummyImage->SetDirection( direction3 ); m_DummyImage->SetRegions( imageRegion3 ); m_DummyImage->Allocate(); m_DummyImage->FillBuffer(0.0); m_NumDirs = imageRegion4.GetSize(3)/3; m_NeedsDataInit = false; } } vnl_vector_fixed TrackingHandlerPeaks::GetMatchingDirection(itk::Index<3> idx3, vnl_vector_fixed& oldDir) { vnl_vector_fixed out_dir; out_dir.fill(0); float angle = 0; float mag = oldDir.magnitude(); if (magmitk::eps) { oldDir[0] = out_dir[0]; oldDir[1] = out_dir[1]; oldDir[2] = out_dir[2]; found = true; break; } } if (!found) { // if you didn't find a non-zero random direction, take first non-zero direction you find for (int i=0; imitk::eps) { oldDir[0] = out_dir[0]; oldDir[1] = out_dir[1]; oldDir[2] = out_dir[2]; break; } } } } else { for (int i=0; i dir = GetDirection(idx3, i); mag = dir.magnitude(); if (mag>mitk::eps) dir.normalize(); float a = dot_product(dir, oldDir); if (fabs(a)>angle) { angle = fabs(a); if (a<0) out_dir = -dir; else out_dir = dir; out_dir *= mag; out_dir *= angle; // shrink contribution of direction if is less parallel to previous direction } } } return out_dir; } vnl_vector_fixed TrackingHandlerPeaks::GetDirection(itk::Index<3> idx3, int dirIdx) { vnl_vector_fixed dir; dir.fill(0.0); if ( !m_DummyImage->GetLargestPossibleRegion().IsInside(idx3) ) return dir; PeakImgType::IndexType idx4; idx4.SetElement(0,idx3[0]); idx4.SetElement(1,idx3[1]); idx4.SetElement(2,idx3[2]); for (int k=0; k<3; k++) { idx4.SetElement(3, dirIdx*3 + k); dir[k] = m_PeakImage->GetPixel(idx4); } if (m_FlipX) dir[0] *= -1; if (m_FlipY) dir[1] *= -1; if (m_FlipZ) dir[2] *= -1; if (m_ApplyDirectionMatrix) dir = m_FloatImageRotation*dir; return dir; } vnl_vector_fixed TrackingHandlerPeaks::GetDirection(itk::Point itkP, bool interpolate, vnl_vector_fixed oldDir){ // transform physical point to index coordinates itk::Index<3> idx3; itk::ContinuousIndex< float, 3> cIdx; m_DummyImage->TransformPhysicalPointToIndex(itkP, idx3); m_DummyImage->TransformPhysicalPointToContinuousIndex(itkP, cIdx); vnl_vector_fixed dir; dir.fill(0.0); if ( !m_DummyImage->GetLargestPossibleRegion().IsInside(idx3) ) return dir; if (interpolate) { float frac_x = cIdx[0] - idx3[0]; float frac_y = cIdx[1] - idx3[1]; float frac_z = cIdx[2] - idx3[2]; if (frac_x<0) { idx3[0] -= 1; frac_x += 1; } if (frac_y<0) { idx3[1] -= 1; frac_y += 1; } if (frac_z<0) { idx3[2] -= 1; frac_z += 1; } frac_x = 1-frac_x; frac_y = 1-frac_y; frac_z = 1-frac_z; // int coordinates inside image? if (idx3[0] >= 0 && idx3[0] < static_cast(m_DummyImage->GetLargestPossibleRegion().GetSize(0) - 1) && idx3[1] >= 0 && idx3[1] < static_cast(m_DummyImage->GetLargestPossibleRegion().GetSize(1) - 1) && idx3[2] >= 0 && idx3[2] < static_cast(m_DummyImage->GetLargestPossibleRegion().GetSize(2) - 1)) { // trilinear interpolation vnl_vector_fixed interpWeights; interpWeights[0] = ( frac_x)*( frac_y)*( frac_z); interpWeights[1] = (1-frac_x)*( frac_y)*( frac_z); interpWeights[2] = ( frac_x)*(1-frac_y)*( frac_z); interpWeights[3] = ( frac_x)*( frac_y)*(1-frac_z); interpWeights[4] = (1-frac_x)*(1-frac_y)*( frac_z); interpWeights[5] = ( frac_x)*(1-frac_y)*(1-frac_z); interpWeights[6] = (1-frac_x)*( frac_y)*(1-frac_z); interpWeights[7] = (1-frac_x)*(1-frac_y)*(1-frac_z); dir = GetMatchingDirection(idx3, oldDir) * interpWeights[0]; itk::Index<3> tmpIdx = idx3; tmpIdx[0]++; dir += GetMatchingDirection(tmpIdx, oldDir) * interpWeights[1]; tmpIdx = idx3; tmpIdx[1]++; dir += GetMatchingDirection(tmpIdx, oldDir) * interpWeights[2]; tmpIdx = idx3; tmpIdx[2]++; dir += GetMatchingDirection(tmpIdx, oldDir) * interpWeights[3]; tmpIdx = idx3; tmpIdx[0]++; tmpIdx[1]++; dir += GetMatchingDirection(tmpIdx, oldDir) * interpWeights[4]; tmpIdx = idx3; tmpIdx[1]++; tmpIdx[2]++; dir += GetMatchingDirection(tmpIdx, oldDir) * interpWeights[5]; tmpIdx = idx3; tmpIdx[2]++; tmpIdx[0]++; dir += GetMatchingDirection(tmpIdx, oldDir) * interpWeights[6]; tmpIdx = idx3; tmpIdx[0]++; tmpIdx[1]++; tmpIdx[2]++; dir += GetMatchingDirection(tmpIdx, oldDir) * interpWeights[7]; } } else dir = GetMatchingDirection(idx3, oldDir); return dir; } vnl_vector_fixed TrackingHandlerPeaks::ProposeDirection(const itk::Point& pos, std::deque >& olddirs, itk::Index<3>& oldIndex) { // CHECK: wann wird wo normalisiert vnl_vector_fixed output_direction; output_direction.fill(0); itk::Index<3> index; m_DummyImage->TransformPhysicalPointToIndex(pos, index); vnl_vector_fixed oldDir = olddirs.back(); float old_mag = oldDir.magnitude(); if (!m_Interpolate && oldIndex==index) return oldDir; output_direction = GetDirection(pos, m_Interpolate, oldDir); float mag = output_direction.magnitude(); if (mag>=m_PeakThreshold) { output_direction.normalize(); float a = 1; if (old_mag>0.5) a = dot_product(output_direction, oldDir); if (a>=m_AngularThreshold) output_direction *= mag; else output_direction.fill(0); } else output_direction.fill(0); return output_direction; } } diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingHandlerPeaks.h b/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingHandlerPeaks.h index 3fffbb4a3f..3f00a26c13 100644 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingHandlerPeaks.h +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingHandlerPeaks.h @@ -1,83 +1,83 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _TrackingHandlerPeaks #define _TrackingHandlerPeaks #include "mitkTrackingDataHandler.h" #include #include namespace mitk { /** * \brief Enables deterministic streamline tracking on MRtrix style peak images (4D float images) */ class MITKFIBERTRACKING_EXPORT TrackingHandlerPeaks : public TrackingDataHandler { public: TrackingHandlerPeaks(); ~TrackingHandlerPeaks(); typedef itk::Image< float, 4 > PeakImgType; ///< MRtrix peak image type void InitForTracking(); ///< calls InputDataValidForTracking() and creates feature images vnl_vector_fixed ProposeDirection(const itk::Point& pos, std::deque< vnl_vector_fixed >& olddirs, itk::Index<3>& oldIndex); ///< predicts next progression direction at the given position void SetPeakThreshold(float thr){ m_PeakThreshold = thr; } void SetPeakImage( PeakImgType::Pointer image ){ m_PeakImage = image; DataModified(); } void SetApplyDirectionMatrix( bool applyDirectionMatrix ){ m_ApplyDirectionMatrix = applyDirectionMatrix; } itk::Vector GetSpacing(){ return spacing3; } itk::Point GetOrigin(){ return origin3; } itk::Matrix GetDirection(){ return direction3; } itk::ImageRegion<3> GetLargestPossibleRegion(){ return imageRegion3; } void SetMode( MODE m ) { if (m==MODE::DETERMINISTIC) m_Mode = m; else mitkThrow() << "Peak tracker is only implemented for deterministic mode."; } protected: vnl_vector_fixed GetDirection(itk::Point itkP, bool interpolate, vnl_vector_fixed oldDir); vnl_vector_fixed GetMatchingDirection(itk::Index<3> idx3, vnl_vector_fixed& oldDir); vnl_vector_fixed GetDirection(itk::Index<3> idx3, int dirIdx); - PeakImgType::Pointer m_PeakImage; + PeakImgType::ConstPointer m_PeakImage; float m_PeakThreshold; int m_NumDirs; itk::Vector spacing3; itk::Point origin3; itk::Matrix direction3; itk::ImageRegion<3> imageRegion3; vnl_matrix_fixed m_FloatImageRotation; ItkUcharImgType::Pointer m_DummyImage; bool m_ApplyDirectionMatrix; }; } #endif diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingHandlerRandomForest.cpp b/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingHandlerRandomForest.cpp index ca82a13f6b..eb35cf83ee 100644 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingHandlerRandomForest.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingHandlerRandomForest.cpp @@ -1,950 +1,948 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _TrackingForestHandler_cpp #define _TrackingForestHandler_cpp #include "mitkTrackingHandlerRandomForest.h" #include #include namespace mitk { template< int ShOrder, int NumberOfSignalFeatures > TrackingHandlerRandomForest< ShOrder, NumberOfSignalFeatures >::TrackingHandlerRandomForest() : m_WmSampleDistance(-1) , m_NumTrees(30) , m_MaxTreeDepth(25) , m_SampleFraction(1.0) , m_NumberOfSamples(0) , m_GmSamplesPerVoxel(-1) , m_NumPreviousDirections(1) , m_ZeroDirWmFeatures(true) , m_BidirectionalFiberSampling(false) , m_MaxNumWmSamples(-1) { vnl_vector_fixed ref; ref.fill(0); ref[0]=1; itk::OrientationDistributionFunction< float, 200 > odf; m_DirectionContainer.clear(); for (unsigned int i = 0; i odf_dir; odf_dir[0] = odf.GetDirection(i)[0]; odf_dir[1] = odf.GetDirection(i)[1]; odf_dir[2] = odf.GetDirection(i)[2]; if (dot_product(ref, odf_dir)>0) // only used directions on one hemisphere m_DirectionContainer.push_back(odf_dir); // store indices for later mapping the classifier output to the actual direction } m_OdfFloatDirs.set_size(m_DirectionContainer.size(), 3); for (unsigned int i=0; i TrackingHandlerRandomForest< ShOrder, NumberOfSignalFeatures >::~TrackingHandlerRandomForest() { } template< int ShOrder, int NumberOfSignalFeatures > typename TrackingHandlerRandomForest< ShOrder, NumberOfSignalFeatures >::DwiFeatureImageType::PixelType TrackingHandlerRandomForest< ShOrder, NumberOfSignalFeatures >::GetDwiFeaturesAtPosition(itk::Point itkP, typename DwiFeatureImageType::Pointer image, bool interpolate) { // transform physical point to index coordinates itk::Index<3> idx; itk::ContinuousIndex< float, 3> cIdx; image->TransformPhysicalPointToIndex(itkP, idx); image->TransformPhysicalPointToContinuousIndex(itkP, cIdx); typename DwiFeatureImageType::PixelType pix; pix.Fill(0.0); if ( image->GetLargestPossibleRegion().IsInside(idx) ) { pix = image->GetPixel(idx); if (!interpolate) return pix; } else return pix; float frac_x = cIdx[0] - idx[0]; float frac_y = cIdx[1] - idx[1]; float frac_z = cIdx[2] - idx[2]; if (frac_x<0) { idx[0] -= 1; frac_x += 1; } if (frac_y<0) { idx[1] -= 1; frac_y += 1; } if (frac_z<0) { idx[2] -= 1; frac_z += 1; } frac_x = 1-frac_x; frac_y = 1-frac_y; frac_z = 1-frac_z; // int coordinates inside image? if (idx[0] >= 0 && idx[0] < static_cast(image->GetLargestPossibleRegion().GetSize(0) - 1) && idx[1] >= 0 && idx[1] < static_cast(image->GetLargestPossibleRegion().GetSize(1) - 1) && idx[2] >= 0 && idx[2] < static_cast(image->GetLargestPossibleRegion().GetSize(2) - 1)) { // trilinear interpolation vnl_vector_fixed interpWeights; interpWeights[0] = ( frac_x)*( frac_y)*( frac_z); interpWeights[1] = (1-frac_x)*( frac_y)*( frac_z); interpWeights[2] = ( frac_x)*(1-frac_y)*( frac_z); interpWeights[3] = ( frac_x)*( frac_y)*(1-frac_z); interpWeights[4] = (1-frac_x)*(1-frac_y)*( frac_z); interpWeights[5] = ( frac_x)*(1-frac_y)*(1-frac_z); interpWeights[6] = (1-frac_x)*( frac_y)*(1-frac_z); interpWeights[7] = (1-frac_x)*(1-frac_y)*(1-frac_z); pix = image->GetPixel(idx) * interpWeights[0]; typename DwiFeatureImageType::IndexType tmpIdx = idx; tmpIdx[0]++; pix += image->GetPixel(tmpIdx) * interpWeights[1]; tmpIdx = idx; tmpIdx[1]++; pix += image->GetPixel(tmpIdx) * interpWeights[2]; tmpIdx = idx; tmpIdx[2]++; pix += image->GetPixel(tmpIdx) * interpWeights[3]; tmpIdx = idx; tmpIdx[0]++; tmpIdx[1]++; pix += image->GetPixel(tmpIdx) * interpWeights[4]; tmpIdx = idx; tmpIdx[1]++; tmpIdx[2]++; pix += image->GetPixel(tmpIdx) * interpWeights[5]; tmpIdx = idx; tmpIdx[2]++; tmpIdx[0]++; pix += image->GetPixel(tmpIdx) * interpWeights[6]; tmpIdx = idx; tmpIdx[0]++; tmpIdx[1]++; tmpIdx[2]++; pix += image->GetPixel(tmpIdx) * interpWeights[7]; } return pix; } template< int ShOrder, int NumberOfSignalFeatures > void TrackingHandlerRandomForest< ShOrder, NumberOfSignalFeatures >::InputDataValidForTracking() { if (m_InputDwis.empty()) mitkThrow() << "No diffusion-weighted images set!"; if (!IsForestValid()) mitkThrow() << "No or invalid random forest detected!"; } template< int ShOrder, int NumberOfSignalFeatures> template typename std::enable_if< NumberOfSignalFeatures <=99, T >::type TrackingHandlerRandomForest< ShOrder, NumberOfSignalFeatures >::InitDwiImageFeatures(mitk::Image::Pointer mitk_dwi) { MITK_INFO << "Calculating spherical harmonics features"; typedef itk::AnalyticalDiffusionQballReconstructionImageFilter InterpolationFilterType; typename InterpolationFilterType::Pointer filter = InterpolationFilterType::New(); filter->SetBValue(mitk::DiffusionPropertyHelper::GetReferenceBValue(mitk_dwi)); filter->SetGradientImage( mitk::DiffusionPropertyHelper::GetOriginalGradientContainer(mitk_dwi), mitk::DiffusionPropertyHelper::GetItkVectorImage(mitk_dwi) ); filter->SetLambda(0.006); filter->SetNormalizationMethod(InterpolationFilterType::QBAR_RAW_SIGNAL); filter->Update(); m_DwiFeatureImages.push_back(filter->GetCoefficientImage()); return true; } template< int ShOrder, int NumberOfSignalFeatures> template typename std::enable_if< NumberOfSignalFeatures >=100, T >::type TrackingHandlerRandomForest< ShOrder, NumberOfSignalFeatures >::InitDwiImageFeatures(mitk::Image::Pointer mitk_dwi) { MITK_INFO << "Interpolating raw dwi signal features"; typedef itk::AnalyticalDiffusionQballReconstructionImageFilter InterpolationFilterType; typename InterpolationFilterType::Pointer filter = InterpolationFilterType::New(); filter->SetBValue(mitk::DiffusionPropertyHelper::GetReferenceBValue(mitk_dwi)); filter->SetGradientImage( mitk::DiffusionPropertyHelper::GetOriginalGradientContainer(mitk_dwi), mitk::DiffusionPropertyHelper::GetItkVectorImage(mitk_dwi) ); filter->SetLambda(0.006); filter->SetNormalizationMethod(InterpolationFilterType::QBAR_RAW_SIGNAL); filter->Update(); typename DwiFeatureImageType::Pointer dwiFeatureImage = DwiFeatureImageType::New(); dwiFeatureImage->SetSpacing(filter->GetOutput()->GetSpacing()); dwiFeatureImage->SetOrigin(filter->GetOutput()->GetOrigin()); dwiFeatureImage->SetDirection(filter->GetOutput()->GetDirection()); dwiFeatureImage->SetLargestPossibleRegion(filter->GetOutput()->GetLargestPossibleRegion()); dwiFeatureImage->SetBufferedRegion(filter->GetOutput()->GetLargestPossibleRegion()); dwiFeatureImage->SetRequestedRegion(filter->GetOutput()->GetLargestPossibleRegion()); dwiFeatureImage->Allocate(); // get signal values and store them in the feature image vnl_vector_fixed ref; ref.fill(0); ref[0]=1; itk::OrientationDistributionFunction< float, 2*NumberOfSignalFeatures > odf; itk::ImageRegionIterator< typename InterpolationFilterType::OutputImageType > it(filter->GetOutput(), filter->GetOutput()->GetLargestPossibleRegion()); while(!it.IsAtEnd()) { typename DwiFeatureImageType::PixelType pix; int f = 0; for (unsigned int i = 0; i0) // only used directions on one hemisphere { pix[f] = it.Get()[i]; f++; } } dwiFeatureImage->SetPixel(it.GetIndex(), pix); ++it; } m_DwiFeatureImages.push_back(dwiFeatureImage); return true; } template< int ShOrder, int NumberOfSignalFeatures > void TrackingHandlerRandomForest< ShOrder, NumberOfSignalFeatures >::InitForTracking() { MITK_INFO << "Initializing random forest tracker."; if (m_NeedsDataInit) { InputDataValidForTracking(); m_DwiFeatureImages.clear(); InitDwiImageFeatures<>(m_InputDwis.at(0)); m_NeedsDataInit = false; } } template< int ShOrder, int NumberOfSignalFeatures > vnl_vector_fixed TrackingHandlerRandomForest< ShOrder, NumberOfSignalFeatures >::ProposeDirection(const itk::Point& pos, std::deque >& olddirs, itk::Index<3>& oldIndex) { vnl_vector_fixed output_direction; output_direction.fill(0); itk::Index<3> idx; m_DwiFeatureImages.at(0)->TransformPhysicalPointToIndex(pos, idx); bool check_last_dir = false; vnl_vector_fixed last_dir; if (!olddirs.empty()) { last_dir = olddirs.back(); if (last_dir.magnitude()>0.5) check_last_dir = true; } if (!m_Interpolate && oldIndex==idx) return last_dir; // store feature pixel values in a vigra data type vigra::MultiArray<2, float> featureData = vigra::MultiArray<2, float>( vigra::Shape2(1,m_Forest->feature_count()) ); typename DwiFeatureImageType::PixelType dwiFeaturePixel = GetDwiFeaturesAtPosition(pos, m_DwiFeatureImages.at(0), m_Interpolate); for (unsigned int f=0; f direction_matrix = m_DwiFeatureImages.at(0)->GetDirection().GetVnlMatrix(); vnl_matrix_fixed inverse_direction_matrix = m_DwiFeatureImages.at(0)->GetInverseDirection().GetVnlMatrix(); // append normalized previous direction(s) to feature vector int i = 0; vnl_vector_fixed ref; ref.fill(0); ref[0]=1; for (auto d : olddirs) { vnl_vector_fixed tempD; tempD[0] = d[0]; tempD[1] = d[1]; tempD[2] = d[2]; if (m_FlipX) tempD[0] *= -1; if (m_FlipY) tempD[1] *= -1; if (m_FlipZ) tempD[2] *= -1; tempD = inverse_direction_matrix * tempD; last_dir[0] = tempD[0]; last_dir[1] = tempD[1]; last_dir[2] = tempD[2]; int c = 0; for (int f=NumberOfSignalFeatures+3*i; f0) { int c = 0; for (auto img : m_AdditionalFeatureImages.at(0)) { float v = GetImageValue(pos, img, false); featureData(0,NumberOfSignalFeatures+m_NumPreviousDirections*3+c) = v; c++; } } // perform classification vigra::MultiArray<2, float> probs(vigra::Shape2(1, m_Forest->class_count())); m_Forest->predictProbabilities(featureData, probs); vnl_vector< float > angles = m_OdfFloatDirs*last_dir; vnl_vector< float > probs2; probs2.set_size(m_DirectionContainer.size()); probs2.fill(0.0); // used for probabilistic direction sampling float probs_sum = 0; float pNonFib = 0; // probability that we left the white matter float w = 0; // weight of the predicted direction for (int i=0; iclass_count(); i++) // for each class (number of possible directions + out-of-wm class) { if (probs(0,i)>0) // if probability of respective class is 0, do nothing { // get label of class (does not correspond to the loop variable i) unsigned int classLabel = 0; m_Forest->ext_param_.to_classlabel(i, classLabel); if (classLabel=m_AngularThreshold) probs2[classLabel] = probs(0,i); probs_sum += probs2[classLabel]; } else if (m_Mode==MODE::DETERMINISTIC) { vnl_vector_fixed d = m_DirectionContainer.at(classLabel); // get direction vector assiciated with the respective direction index if (check_last_dir) // do we have a previous streamline direction or did we just start? { // TODO: check if hard curvature threshold is necessary. // alternatively try square of dot product as weight. // TODO: check if additional weighting with dot product as directional prior is necessary. are there alternatives on the classification level? float dot = angles[classLabel]; // claculate angle between the candidate direction vector and the previous streamline direction if (fabs(dot)>=m_AngularThreshold) // is angle between the directions smaller than our hard threshold? { if (dot<0) // make sure we don't walk backwards d *= -1; float w_i = probs(0,i)*fabs(dot); output_direction += w_i*d; // weight contribution to output direction with its probability and the angular deviation from the previous direction w += w_i; // increase output weight of the final direction } } else { output_direction += probs(0,i)*d; w += probs(0,i); } } } else pNonFib += probs(0,i); // probability that we are not in the white matter anymore } } if (m_Mode==MODE::PROBABILISTIC && pNonFib<0.5) { probs2 /= probs_sum; boost::random::discrete_distribution dist(probs2.begin(), probs2.end()); int sampled_idx = 0; #pragma omp critical { boost::random::variate_generator> sampler(m_Rng, dist); sampled_idx = sampler(); } output_direction = m_DirectionContainer.at(sampled_idx); w = probs2[sampled_idx]; if (check_last_dir && angles[sampled_idx]<0) // make sure we don't walk backwards output_direction *= -1; } // if we did not find a suitable direction, make sure that we return (0,0,0) if (pNonFib>w && w>0) output_direction.fill(0.0); else { vnl_vector_fixed tempD; tempD[0] = output_direction[0]; tempD[1] = output_direction[1]; tempD[2] = output_direction[2]; tempD = direction_matrix * tempD; output_direction[0] = tempD[0]; output_direction[1] = tempD[1]; output_direction[2] = tempD[2]; if (m_FlipX) output_direction[0] *= -1; if (m_FlipY) output_direction[1] *= -1; if (m_FlipZ) output_direction[2] *= -1; } return output_direction * w; } template< int ShOrder, int NumberOfSignalFeatures > void TrackingHandlerRandomForest< ShOrder, NumberOfSignalFeatures >::StartTraining() { m_StartTime = std::chrono::system_clock::now(); InputDataValidForTraining(); InitForTraining(); CalculateTrainingSamples(); MITK_INFO << "Maximum tree depths: " << m_MaxTreeDepth; MITK_INFO << "Sample fraction per tree: " << m_SampleFraction; MITK_INFO << "Number of trees: " << m_NumTrees; DefaultSplitType splitter; splitter.UsePointBasedWeights(true); splitter.SetWeights(m_Weights); splitter.UseRandomSplit(false); splitter.SetPrecision(mitk::eps); splitter.SetMaximumTreeDepth(m_MaxTreeDepth); std::vector< std::shared_ptr< vigra::RandomForest > > trees; int count = 0; #pragma omp parallel for for (int i = 0; i < m_NumTrees; ++i) { std::shared_ptr< vigra::RandomForest > lrf = std::make_shared< vigra::RandomForest >(); lrf->set_options().use_stratification(vigra::RF_NONE); // How the data should be made equal lrf->set_options().sample_with_replacement(true); // if sampled with replacement or not lrf->set_options().samples_per_tree(m_SampleFraction); // Fraction of samples that are used to train a tree lrf->set_options().tree_count(1); // Number of trees that are calculated; lrf->set_options().min_split_node_size(5); // Minimum number of datapoints that must be in a node lrf->ext_param_.max_tree_depth = m_MaxTreeDepth; lrf->learn(m_FeatureData, m_LabelData,vigra::rf::visitors::VisitorBase(),splitter); #pragma omp critical { count++; MITK_INFO << "Tree " << count << " finished training."; trees.push_back(lrf); } } for (int i = 1; i < m_NumTrees; ++i) trees.at(0)->trees_.push_back(trees.at(i)->trees_[0]); m_Forest = trees.at(0); m_Forest->options_.tree_count_ = m_NumTrees; MITK_INFO << "Training finsihed"; m_EndTime = std::chrono::system_clock::now(); std::chrono::hours hh = std::chrono::duration_cast(m_EndTime - m_StartTime); std::chrono::minutes mm = std::chrono::duration_cast(m_EndTime - m_StartTime); mm %= 60; MITK_INFO << "Training took " << hh.count() << "h and " << mm.count() << "m"; } template< int ShOrder, int NumberOfSignalFeatures > void TrackingHandlerRandomForest< ShOrder, NumberOfSignalFeatures >::InputDataValidForTraining() { if (m_InputDwis.empty()) mitkThrow() << "No diffusion-weighted images set!"; if (m_Tractograms.empty()) mitkThrow() << "No tractograms set!"; if (m_InputDwis.size()!=m_Tractograms.size()) mitkThrow() << "Unequal number of diffusion-weighted images and tractograms detected!"; } template< int ShOrder, int NumberOfSignalFeatures > bool TrackingHandlerRandomForest< ShOrder, NumberOfSignalFeatures >::IsForestValid() { int additional_features = 0; if (m_AdditionalFeatureImages.size()>0) additional_features = m_AdditionalFeatureImages.at(0).size(); if (!m_Forest) MITK_ERROR << "Forest could not be read!"; else { if (m_Forest->tree_count()<=0) MITK_ERROR << "Forest contains no trees!"; if ( m_Forest->feature_count()!=(NumberOfSignalFeatures+3*m_NumPreviousDirections+additional_features) ) MITK_ERROR << "Wrong number of features in forest: got " << m_Forest->feature_count() << ", expected " << (NumberOfSignalFeatures+3*m_NumPreviousDirections+additional_features); } if(m_Forest && m_Forest->tree_count()>0 && m_Forest->feature_count()==(NumberOfSignalFeatures+3*m_NumPreviousDirections+additional_features)) return true; return false; } template< int ShOrder, int NumberOfSignalFeatures > void TrackingHandlerRandomForest< ShOrder, NumberOfSignalFeatures >::InitForTraining() { - typedef itk::AnalyticalDiffusionQballReconstructionImageFilter InterpolationFilterType; - MITK_INFO << "Spherical signal interpolation and sampling ..."; for (unsigned int i=0; i(m_InputDwis.at(i)); if (i>=m_AdditionalFeatureImages.size()) { m_AdditionalFeatureImages.push_back(std::vector< ItkFloatImgType::Pointer >()); } if (i>=m_FiberVolumeModImages.size()) { ItkFloatImgType::Pointer img = ItkFloatImgType::New(); img->SetSpacing( m_DwiFeatureImages.at(i)->GetSpacing() ); img->SetOrigin( m_DwiFeatureImages.at(i)->GetOrigin() ); img->SetDirection( m_DwiFeatureImages.at(i)->GetDirection() ); img->SetLargestPossibleRegion( m_DwiFeatureImages.at(i)->GetLargestPossibleRegion() ); img->SetBufferedRegion( m_DwiFeatureImages.at(i)->GetLargestPossibleRegion() ); img->SetRequestedRegion( m_DwiFeatureImages.at(i)->GetLargestPossibleRegion() ); img->Allocate(); img->FillBuffer(1); m_FiberVolumeModImages.push_back(img); } if (m_FiberVolumeModImages.at(i)==nullptr) { m_FiberVolumeModImages.at(i) = ItkFloatImgType::New(); m_FiberVolumeModImages.at(i)->SetSpacing( m_DwiFeatureImages.at(i)->GetSpacing() ); m_FiberVolumeModImages.at(i)->SetOrigin( m_DwiFeatureImages.at(i)->GetOrigin() ); m_FiberVolumeModImages.at(i)->SetDirection( m_DwiFeatureImages.at(i)->GetDirection() ); m_FiberVolumeModImages.at(i)->SetLargestPossibleRegion( m_DwiFeatureImages.at(i)->GetLargestPossibleRegion() ); m_FiberVolumeModImages.at(i)->SetBufferedRegion( m_DwiFeatureImages.at(i)->GetLargestPossibleRegion() ); m_FiberVolumeModImages.at(i)->SetRequestedRegion( m_DwiFeatureImages.at(i)->GetLargestPossibleRegion() ); m_FiberVolumeModImages.at(i)->Allocate(); m_FiberVolumeModImages.at(i)->FillBuffer(1); } if (i>=m_MaskImages.size()) { ItkUcharImgType::Pointer newMask = ItkUcharImgType::New(); newMask->SetSpacing( m_DwiFeatureImages.at(i)->GetSpacing() ); newMask->SetOrigin( m_DwiFeatureImages.at(i)->GetOrigin() ); newMask->SetDirection( m_DwiFeatureImages.at(i)->GetDirection() ); newMask->SetLargestPossibleRegion( m_DwiFeatureImages.at(i)->GetLargestPossibleRegion() ); newMask->SetBufferedRegion( m_DwiFeatureImages.at(i)->GetLargestPossibleRegion() ); newMask->SetRequestedRegion( m_DwiFeatureImages.at(i)->GetLargestPossibleRegion() ); newMask->Allocate(); newMask->FillBuffer(1); m_MaskImages.push_back(newMask); } if (m_MaskImages.at(i)==nullptr) { m_MaskImages.at(i) = ItkUcharImgType::New(); m_MaskImages.at(i)->SetSpacing( m_DwiFeatureImages.at(i)->GetSpacing() ); m_MaskImages.at(i)->SetOrigin( m_DwiFeatureImages.at(i)->GetOrigin() ); m_MaskImages.at(i)->SetDirection( m_DwiFeatureImages.at(i)->GetDirection() ); m_MaskImages.at(i)->SetLargestPossibleRegion( m_DwiFeatureImages.at(i)->GetLargestPossibleRegion() ); m_MaskImages.at(i)->SetBufferedRegion( m_DwiFeatureImages.at(i)->GetLargestPossibleRegion() ); m_MaskImages.at(i)->SetRequestedRegion( m_DwiFeatureImages.at(i)->GetLargestPossibleRegion() ); m_MaskImages.at(i)->Allocate(); m_MaskImages.at(i)->FillBuffer(1); } } MITK_INFO << "Resampling fibers and calculating number of samples ..."; m_NumberOfSamples = 0; m_SampleUsage.clear(); for (unsigned int t=0; t::Pointer env = itk::TractDensityImageFilter< ItkUcharImgType >::New(); env->SetFiberBundle(m_Tractograms.at(t)); env->SetInputImage(mask); env->SetBinaryOutput(true); env->SetUseImageGeometry(true); env->Update(); wmmask = env->GetOutput(); if (t>=m_WhiteMatterImages.size()) m_WhiteMatterImages.push_back(wmmask); else m_WhiteMatterImages.at(t) = wmmask; } // Calculate white-matter samples if (m_WmSampleDistance<0) { typename DwiFeatureImageType::Pointer image = m_DwiFeatureImages.at(t); float minSpacing = 1; if(image->GetSpacing()[0]GetSpacing()[1] && image->GetSpacing()[0]GetSpacing()[2]) minSpacing = image->GetSpacing()[0]; else if (image->GetSpacing()[1] < image->GetSpacing()[2]) minSpacing = image->GetSpacing()[1]; else minSpacing = image->GetSpacing()[2]; m_WmSampleDistance = minSpacing*0.5; } m_Tractograms.at(t)->ResampleLinear(m_WmSampleDistance); int wmSamples = m_Tractograms.at(t)->GetNumberOfPoints()-2*m_Tractograms.at(t)->GetNumFibers(); if (m_BidirectionalFiberSampling) wmSamples *= 2; if (m_ZeroDirWmFeatures) wmSamples *= (m_NumPreviousDirections+1); MITK_INFO << "White matter samples available: " << wmSamples; // upper limit for samples if (m_MaxNumWmSamples>0 && wmSamples>m_MaxNumWmSamples) { if ((float)m_MaxNumWmSamples/wmSamples > 0.8) { m_SampleUsage.push_back(std::vector(wmSamples, true)); m_NumberOfSamples += wmSamples; } else { m_SampleUsage.push_back(std::vector(wmSamples, false)); m_NumberOfSamples += m_MaxNumWmSamples; wmSamples = m_MaxNumWmSamples; MITK_INFO << "Limiting white matter samples to: " << m_MaxNumWmSamples; itk::Statistics::MersenneTwisterRandomVariateGenerator::Pointer randgen = itk::Statistics::MersenneTwisterRandomVariateGenerator::New(); randgen->SetSeed(); int c = 0; while (cGetIntegerVariate(m_MaxNumWmSamples-1); if (m_SampleUsage[t][idx]==false) { m_SampleUsage[t][idx]=true; ++c; } } } } else { m_SampleUsage.push_back(std::vector(wmSamples, true)); m_NumberOfSamples += wmSamples; } // calculate gray-matter samples itk::ImageRegionConstIterator it(wmmask, wmmask->GetLargestPossibleRegion()); int OUTOFWM = 0; while(!it.IsAtEnd()) { if (it.Get()==0 && mask->GetPixel(it.GetIndex())>0) OUTOFWM++; ++it; } MITK_INFO << "Non-white matter voxels: " << OUTOFWM; if (m_GmSamplesPerVoxel>0) { m_GmSamples.push_back(m_GmSamplesPerVoxel); m_NumberOfSamples += m_GmSamplesPerVoxel*OUTOFWM; } else if (OUTOFWM>0) { int gm_per_voxel = 0.5+(float)wmSamples/(float)OUTOFWM; if (gm_per_voxel<=0) gm_per_voxel = 1; m_GmSamples.push_back(gm_per_voxel); m_NumberOfSamples += m_GmSamples.back()*OUTOFWM; MITK_INFO << "Non-white matter samples per voxel: " << m_GmSamples.back(); } else { m_GmSamples.push_back(0); } MITK_INFO << "Non-white matter samples: " << m_GmSamples.back()*OUTOFWM; } MITK_INFO << "Number of samples: " << m_NumberOfSamples; } template< int ShOrder, int NumberOfSignalFeatures > void TrackingHandlerRandomForest< ShOrder, NumberOfSignalFeatures >::CalculateTrainingSamples() { vnl_vector_fixed ref; ref.fill(0); ref[0]=1; m_FeatureData.reshape( vigra::Shape2(m_NumberOfSamples, NumberOfSignalFeatures+m_NumPreviousDirections*3+m_AdditionalFeatureImages.at(0).size()) ); m_LabelData.reshape( vigra::Shape2(m_NumberOfSamples,1) ); m_Weights.reshape( vigra::Shape2(m_NumberOfSamples,1) ); MITK_INFO << "Number of features: " << m_FeatureData.shape(1); itk::Statistics::MersenneTwisterRandomVariateGenerator::Pointer m_RandGen = itk::Statistics::MersenneTwisterRandomVariateGenerator::New(); m_RandGen->SetSeed(); MITK_INFO << "Creating training data ..."; unsigned int sampleCounter = 0; for (unsigned int t=0; t it(wmMask, wmMask->GetLargestPossibleRegion()); while(!it.IsAtEnd()) { if (it.Get()==0 && (mask.IsNull() || (mask.IsNotNull() && mask->GetPixel(it.GetIndex())>0))) { typename DwiFeatureImageType::PixelType pix = image->GetPixel(it.GetIndex()); // random directions for (unsigned int i=0; iGetIntegerVariate(m_NumPreviousDirections); // how many directions should be zero? for (unsigned int i=0; i probe; if (static_cast(i)GetVariate()*2-1; probe[1] = m_RandGen->GetVariate()*2-1; probe[2] = m_RandGen->GetVariate()*2-1; probe.normalize(); if (dot_product(ref, probe)<0) probe *= -1; } for (unsigned int f=NumberOfSignalFeatures+3*i; f itkP; image->TransformIndexToPhysicalPoint(it.GetIndex(), itkP); float v = GetImageValue(itkP, img, false); m_FeatureData(sampleCounter,NumberOfSignalFeatures+m_NumPreviousDirections*3+add_feat_c) = v; add_feat_c++; } // label and sample weight m_LabelData(sampleCounter,0) = m_DirectionContainer.size(); m_Weights(sampleCounter,0) = 1.0; sampleCounter++; } } ++it; } unsigned int num_gm_samples = sampleCounter; // white matter samples mitk::FiberBundle::Pointer fib = m_Tractograms.at(t); vtkSmartPointer< vtkPolyData > polyData = fib->GetFiberPolyData(); vnl_vector_fixed zero_dir; zero_dir.fill(0.0); for (int i=0; iGetNumFibers(); i++) { vtkCell* cell = polyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); float fiber_weight = fib->GetFiberWeight(i); for (int n = 0; n <= static_cast(m_NumPreviousDirections); ++n) { if (!m_ZeroDirWmFeatures) n = m_NumPreviousDirections; for (bool reverse : {false, true}) { for (int j=1; j itkP1, itkP2; int num_nonzero_dirs = m_NumPreviousDirections; if (!reverse) num_nonzero_dirs = std::min(n, j); else num_nonzero_dirs = std::min(n, numPoints-j-1); vnl_vector_fixed dir; // zero directions for (unsigned int k=0; kGetPoint(j-n_idx); itkP1[0] = p[0]; itkP1[1] = p[1]; itkP1[2] = p[2]; p = points->GetPoint(j-n_idx+1); itkP2[0] = p[0]; itkP2[1] = p[1]; itkP2[2] = p[2]; } else { p = points->GetPoint(j+n_idx); itkP1[0] = p[0]; itkP1[1] = p[1]; itkP1[2] = p[2]; p = points->GetPoint(j+n_idx-1); itkP2[0] = p[0]; itkP2[1] = p[1]; itkP2[2] = p[2]; } dir[0]=itkP1[0]-itkP2[0]; dir[1]=itkP1[1]-itkP2[1]; dir[2]=itkP1[2]-itkP2[2]; if (dir.magnitude()<0.0001) mitkThrow() << "streamline error!"; dir.normalize(); if (dir[0]!=dir[0] || dir[1]!=dir[1] || dir[2]!=dir[2]) mitkThrow() << "ERROR: NaN direction!"; if (dot_product(ref, dir)<0) dir *= -1; int c = 0; for (unsigned int f=NumberOfSignalFeatures+3*(k+m_NumPreviousDirections-num_nonzero_dirs); fGetPoint(j); itkP1[0] = p[0]; itkP1[1] = p[1]; itkP1[2] = p[2]; if (reverse) { p = points->GetPoint(j-1); itkP2[0] = p[0]; itkP2[1] = p[1]; itkP2[2] = p[2]; } else { p = points->GetPoint(j+1); itkP2[0] = p[0]; itkP2[1] = p[1]; itkP2[2] = p[2]; } dir[0]=itkP2[0]-itkP1[0]; dir[1]=itkP2[1]-itkP1[1]; dir[2]=itkP2[2]-itkP1[2]; if (dir.magnitude()<0.0001) mitkThrow() << "streamline error!"; dir.normalize(); if (dir[0]!=dir[0] || dir[1]!=dir[1] || dir[2]!=dir[2]) mitkThrow() << "ERROR: NaN direction!"; if (dot_product(ref, dir)<0) dir *= -1; // image features float volume_mod = GetImageValue(itkP1, fiber_folume, false); // diffusion signal features typename DwiFeatureImageType::PixelType pix = GetDwiFeaturesAtPosition(itkP1, image, m_Interpolate); for (unsigned int f=0; f(itkP1, img, false); add_feat_c++; m_FeatureData(sampleCounter,NumberOfSignalFeatures+2+add_feat_c) = v; } // set label values float angle = 0; float m = dir.magnitude(); if (m>0.0001) { int l = 0; for (auto d : m_DirectionContainer) { float a = fabs(dot_product(dir, d)); if (a>angle) { m_LabelData(sampleCounter,0) = l; m_Weights(sampleCounter,0) = fiber_weight*volume_mod; angle = a; } l++; } } sampleCounter++; } if (!m_BidirectionalFiberSampling) // don't sample fibers backward break; } } } } m_Tractograms.clear(); MITK_INFO << "done"; } template< int ShOrder, int NumberOfSignalFeatures > void TrackingHandlerRandomForest< ShOrder, NumberOfSignalFeatures >::SaveForest(std::string forestFile) { MITK_INFO << "Saving forest to " << forestFile; if (IsForestValid()) { vigra::rf_export_HDF5( *m_Forest, forestFile, "" ); MITK_INFO << "Forest saved successfully."; } else MITK_INFO << "Forest invalid! Could not be saved."; } template< int ShOrder, int NumberOfSignalFeatures > void TrackingHandlerRandomForest< ShOrder, NumberOfSignalFeatures >::LoadForest(std::string forestFile) { MITK_INFO << "Loading forest from " << forestFile; m_Forest = std::make_shared< vigra::RandomForest >(); vigra::rf_import_HDF5( *m_Forest, forestFile); } } #endif diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingHandlerTensor.cpp b/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingHandlerTensor.cpp index b989877725..7960673741 100644 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingHandlerTensor.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingHandlerTensor.cpp @@ -1,362 +1,368 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkTrackingHandlerTensor.h" namespace mitk { TrackingHandlerTensor::TrackingHandlerTensor() : m_InterpolateTensors(true) , m_FaThreshold(0.1) { } TrackingHandlerTensor::~TrackingHandlerTensor() { } void TrackingHandlerTensor::InitForTracking() { MITK_INFO << "Initializing tensor tracker."; if (m_NeedsDataInit) { m_NumberOfInputs = m_TensorImages.size(); for (int i=0; iSetSpacing( m_TensorImages.at(0)->GetSpacing() ); pdImage->SetOrigin( m_TensorImages.at(0)->GetOrigin() ); pdImage->SetDirection( m_TensorImages.at(0)->GetDirection() ); pdImage->SetRegions( m_TensorImages.at(0)->GetLargestPossibleRegion() ); pdImage->Allocate(); m_PdImage.push_back(pdImage); ItkDoubleImgType::Pointer emaxImage = ItkDoubleImgType::New(); emaxImage->SetSpacing( m_TensorImages.at(0)->GetSpacing() ); emaxImage->SetOrigin( m_TensorImages.at(0)->GetOrigin() ); emaxImage->SetDirection( m_TensorImages.at(0)->GetDirection() ); emaxImage->SetRegions( m_TensorImages.at(0)->GetLargestPossibleRegion() ); emaxImage->Allocate(); emaxImage->FillBuffer(1.0); m_EmaxImage.push_back(emaxImage); } bool useUserFaImage = true; if (m_FaImage.IsNull()) { m_FaImage = ItkFloatImgType::New(); m_FaImage->SetSpacing( m_TensorImages.at(0)->GetSpacing() ); m_FaImage->SetOrigin( m_TensorImages.at(0)->GetOrigin() ); m_FaImage->SetDirection( m_TensorImages.at(0)->GetDirection() ); m_FaImage->SetRegions( m_TensorImages.at(0)->GetLargestPossibleRegion() ); m_FaImage->Allocate(); m_FaImage->FillBuffer(0.0); useUserFaImage = false; } typedef itk::DiffusionTensor3D TensorType; TensorType::EigenValuesArrayType eigenvalues; TensorType::EigenVectorsMatrixType eigenvectors; #ifdef WIN32 #pragma omp parallel for #else #pragma omp parallel for collapse(3) #endif for (int x=0; xGetLargestPossibleRegion().GetSize()[0]; x++) for (int y=0; yGetLargestPossibleRegion().GetSize()[1]; y++) for (int z=0; zGetLargestPossibleRegion().GetSize()[2]; z++) { ItkTensorImageType::IndexType index; index[0] = x; index[1] = y; index[2] = z; for (int i=0; iGetPixel(index); + + ItkTensorImageType::PixelType tensor; +#pragma omp critical + { + tensor = m_TensorImages.at(i)->GetPixel(index); + tensor.ComputeEigenAnalysis(eigenvalues, eigenvectors); + } + vnl_vector_fixed dir; - tensor.ComputeEigenAnalysis(eigenvalues, eigenvectors); dir[0] = eigenvectors(2, 0); dir[1] = eigenvectors(2, 1); dir[2] = eigenvectors(2, 2); if (dir.magnitude()>mitk::eps) dir.normalize(); else dir.fill(0.0); #pragma omp critical { m_PdImage.at(i)->SetPixel(index, dir); if (!useUserFaImage) m_FaImage->SetPixel(index, m_FaImage->GetPixel(index)+tensor.GetFractionalAnisotropy()); m_EmaxImage.at(i)->SetPixel(index, 2/eigenvalues[2]); } } if (!useUserFaImage) { #pragma omp critical m_FaImage->SetPixel(index, m_FaImage->GetPixel(index)/m_NumberOfInputs); } } m_NeedsDataInit = false; } if (m_F+m_G>1.0) { float temp = m_F+m_G; m_F /= temp; m_G /= temp; } } vnl_vector_fixed TrackingHandlerTensor::GetMatchingDirection(itk::Index<3> idx, vnl_vector_fixed& oldDir, int& image_num) { vnl_vector_fixed out_dir; out_dir.fill(0); float angle = 0; float mag = oldDir.magnitude(); if (magGetPixel(idx); if (out_dir.magnitude()>0.5) { image_num = i; oldDir[0] = out_dir[0]; oldDir[1] = out_dir[1]; oldDir[2] = out_dir[2]; break; } } } else { for (unsigned int i=0; i dir = m_PdImage.at(i)->GetPixel(idx); float a = dot_product(dir, oldDir); if (fabs(a)>angle) { image_num = i; angle = fabs(a); if (a<0) out_dir = -dir; else out_dir = dir; out_dir *= angle; // shrink contribution of direction if is less parallel to previous direction } } } return out_dir; } vnl_vector_fixed TrackingHandlerTensor::GetDirection(itk::Point itkP, vnl_vector_fixed oldDir, TensorType& tensor) { // transform physical point to index coordinates itk::Index<3> idx; itk::ContinuousIndex< float, 3> cIdx; m_FaImage->TransformPhysicalPointToIndex(itkP, idx); m_FaImage->TransformPhysicalPointToContinuousIndex(itkP, cIdx); vnl_vector_fixed dir; dir.fill(0.0); if ( !m_FaImage->GetLargestPossibleRegion().IsInside(idx) ) return dir; int image_num = -1; if (!m_Interpolate) { dir = GetMatchingDirection(idx, oldDir, image_num); if (image_num>=0) tensor = m_TensorImages[image_num]->GetPixel(idx) * m_EmaxImage[image_num]->GetPixel(idx); } else { float frac_x = cIdx[0] - idx[0]; float frac_y = cIdx[1] - idx[1]; float frac_z = cIdx[2] - idx[2]; if (frac_x<0) { idx[0] -= 1; frac_x += 1; } if (frac_y<0) { idx[1] -= 1; frac_y += 1; } if (frac_z<0) { idx[2] -= 1; frac_z += 1; } frac_x = 1-frac_x; frac_y = 1-frac_y; frac_z = 1-frac_z; // int coordinates inside image? if (idx[0] >= 0 && idx[0] < static_cast(m_FaImage->GetLargestPossibleRegion().GetSize(0) - 1) && idx[1] >= 0 && idx[1] < static_cast(m_FaImage->GetLargestPossibleRegion().GetSize(1) - 1) && idx[2] >= 0 && idx[2] < static_cast(m_FaImage->GetLargestPossibleRegion().GetSize(2) - 1)) { // trilinear interpolation vnl_vector_fixed interpWeights; interpWeights[0] = ( frac_x)*( frac_y)*( frac_z); interpWeights[1] = (1-frac_x)*( frac_y)*( frac_z); interpWeights[2] = ( frac_x)*(1-frac_y)*( frac_z); interpWeights[3] = ( frac_x)*( frac_y)*(1-frac_z); interpWeights[4] = (1-frac_x)*(1-frac_y)*( frac_z); interpWeights[5] = ( frac_x)*(1-frac_y)*(1-frac_z); interpWeights[6] = (1-frac_x)*( frac_y)*(1-frac_z); interpWeights[7] = (1-frac_x)*(1-frac_y)*(1-frac_z); dir = GetMatchingDirection(idx, oldDir, image_num) * interpWeights[0]; if (image_num>=0) tensor += m_TensorImages[image_num]->GetPixel(idx) * m_EmaxImage[image_num]->GetPixel(idx) * interpWeights[0]; itk::Index<3> tmpIdx = idx; tmpIdx[0]++; dir += GetMatchingDirection(tmpIdx, oldDir, image_num) * interpWeights[1]; if (image_num>=0) tensor += m_TensorImages[image_num]->GetPixel(tmpIdx) * m_EmaxImage[image_num]->GetPixel(tmpIdx) * interpWeights[1]; tmpIdx = idx; tmpIdx[1]++; dir += GetMatchingDirection(tmpIdx, oldDir, image_num) * interpWeights[2]; if (image_num>=0) tensor += m_TensorImages[image_num]->GetPixel(tmpIdx) * m_EmaxImage[image_num]->GetPixel(tmpIdx) * interpWeights[2]; tmpIdx = idx; tmpIdx[2]++; dir += GetMatchingDirection(tmpIdx, oldDir, image_num) * interpWeights[3]; if (image_num>=0) tensor += m_TensorImages[image_num]->GetPixel(tmpIdx) * m_EmaxImage[image_num]->GetPixel(tmpIdx) * interpWeights[3]; tmpIdx = idx; tmpIdx[0]++; tmpIdx[1]++; dir += GetMatchingDirection(tmpIdx, oldDir, image_num) * interpWeights[4]; if (image_num>=0) tensor += m_TensorImages[image_num]->GetPixel(tmpIdx) * m_EmaxImage[image_num]->GetPixel(tmpIdx) * interpWeights[4]; tmpIdx = idx; tmpIdx[1]++; tmpIdx[2]++; dir += GetMatchingDirection(tmpIdx, oldDir, image_num) * interpWeights[5]; if (image_num>=0) tensor += m_TensorImages[image_num]->GetPixel(tmpIdx) * m_EmaxImage[image_num]->GetPixel(tmpIdx) * interpWeights[5]; tmpIdx = idx; tmpIdx[2]++; tmpIdx[0]++; dir += GetMatchingDirection(tmpIdx, oldDir, image_num) * interpWeights[6]; if (image_num>=0) tensor += m_TensorImages[image_num]->GetPixel(tmpIdx) * m_EmaxImage[image_num]->GetPixel(tmpIdx) * interpWeights[6]; tmpIdx = idx; tmpIdx[0]++; tmpIdx[1]++; tmpIdx[2]++; dir += GetMatchingDirection(tmpIdx, oldDir, image_num) * interpWeights[7]; if (image_num>=0) tensor += m_TensorImages[image_num]->GetPixel(tmpIdx) * m_EmaxImage[image_num]->GetPixel(tmpIdx) * interpWeights[7]; } } return dir; } vnl_vector_fixed TrackingHandlerTensor::GetLargestEigenvector(TensorType& tensor) { vnl_vector_fixed dir; TensorType::EigenValuesArrayType eigenvalues; TensorType::EigenVectorsMatrixType eigenvectors; tensor.ComputeEigenAnalysis(eigenvalues, eigenvectors); dir[0] = eigenvectors(2, 0); dir[1] = eigenvectors(2, 1); dir[2] = eigenvectors(2, 2); if (dir.magnitude() TrackingHandlerTensor::ProposeDirection(const itk::Point& pos, std::deque >& olddirs, itk::Index<3>& oldIndex) { vnl_vector_fixed output_direction; output_direction.fill(0); TensorType tensor; tensor.Fill(0); try { itk::Index<3> index; m_TensorImages.at(0)->TransformPhysicalPointToIndex(pos, index); float fa = GetImageValue(pos, m_FaImage, m_Interpolate); if (fa oldDir = olddirs.back(); if (m_FlipX) oldDir[0] *= -1; if (m_FlipY) oldDir[1] *= -1; if (m_FlipZ) oldDir[2] *= -1; float old_mag = oldDir.magnitude(); if (!m_Interpolate && oldIndex==index) return oldDir; output_direction = GetDirection(pos, oldDir, tensor); float mag = output_direction.magnitude(); if (mag>=mitk::eps) { output_direction.normalize(); if (old_mag>0.5 && m_G>mitk::eps) // TEND tracking { output_direction[0] = m_F*output_direction[0] + (1-m_F)*( (1-m_G)*oldDir[0] + m_G*(tensor[0]*oldDir[0] + tensor[1]*oldDir[1] + tensor[2]*oldDir[2])); output_direction[1] = m_F*output_direction[1] + (1-m_F)*( (1-m_G)*oldDir[1] + m_G*(tensor[1]*oldDir[0] + tensor[3]*oldDir[1] + tensor[4]*oldDir[2])); output_direction[2] = m_F*output_direction[2] + (1-m_F)*( (1-m_G)*oldDir[2] + m_G*(tensor[2]*oldDir[0] + tensor[4]*oldDir[1] + tensor[5]*oldDir[2])); output_direction.normalize(); } float a = 1; if (old_mag>0.5) a = dot_product(output_direction, oldDir); if (a>=m_AngularThreshold) output_direction *= mag; else output_direction.fill(0); } else output_direction.fill(0); } catch(...) { } if (m_FlipX) output_direction[0] *= -1; if (m_FlipY) output_direction[1] *= -1; if (m_FlipZ) output_direction[2] *= -1; return output_direction; } } diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkStreamlineTrackingFilter.cpp b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkStreamlineTrackingFilter.cpp index d820a67e5f..944683e738 100644 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkStreamlineTrackingFilter.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkStreamlineTrackingFilter.cpp @@ -1,1002 +1,1010 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include "itkStreamlineTrackingFilter.h" #include #include #include #include #include "itkPointShell.h" #include #define _USE_MATH_DEFINES #include namespace itk { StreamlineTrackingFilter ::StreamlineTrackingFilter() : m_PauseTracking(false) , m_AbortTracking(false) , m_FiberPolyData(nullptr) , m_Points(nullptr) , m_Cells(nullptr) , m_AngularThreshold(-1) , m_StepSize(0) , m_MaxLength(10000) , m_MinTractLength(20.0) , m_MaxTractLength(400.0) , m_SeedsPerVoxel(1) , m_RandomSampling(false) , m_SamplingDistance(-1) , m_DeflectionMod(1.0) , m_OnlyForwardSamples(true) , m_UseStopVotes(true) , m_NumberOfSamples(30) , m_NumPreviousDirections(1) , m_StoppingRegions(nullptr) , m_SeedImage(nullptr) , m_MaskImage(nullptr) , m_AposterioriCurvCheck(false) , m_AvoidStop(true) , m_DemoMode(false) , m_SeedOnlyGm(false) , m_ControlGmEndings(false) , m_WmLabel(3) // mrtrix 5ttseg labels , m_GmLabel(1) // mrtrix 5ttseg labels , m_StepSizeVox(-1) , m_SamplingDistanceVox(-1) , m_AngularThresholdDeg(-1) , m_MaxNumTracts(-1) , m_Random(true) , m_Verbose(true) , m_UseOutputProbabilityMap(false) { this->SetNumberOfRequiredInputs(0); } void StreamlineTrackingFilter::BeforeTracking() { m_TrackingHandler->InitForTracking(); m_FiberPolyData = PolyDataType::New(); m_Points = vtkSmartPointer< vtkPoints >::New(); m_Cells = vtkSmartPointer< vtkCellArray >::New(); itk::Vector< double, 3 > imageSpacing = m_TrackingHandler->GetSpacing(); float minSpacing; if(imageSpacing[0]SetAngularThreshold(m_AngularThreshold); if (m_SamplingDistanceVoxGetNumberOfThreads(); i++) { PolyDataType poly = PolyDataType::New(); m_PolyDataContainer.push_back(poly); } if (m_UseOutputProbabilityMap) { m_OutputProbabilityMap = ItkDoubleImgType::New(); m_OutputProbabilityMap->SetSpacing(imageSpacing); m_OutputProbabilityMap->SetOrigin(m_TrackingHandler->GetOrigin()); m_OutputProbabilityMap->SetDirection(m_TrackingHandler->GetDirection()); m_OutputProbabilityMap->SetRegions(m_TrackingHandler->GetLargestPossibleRegion()); m_OutputProbabilityMap->Allocate(); m_OutputProbabilityMap->FillBuffer(0); } if (m_StoppingRegions.IsNull()) { m_StoppingRegions = ItkUcharImgType::New(); m_StoppingRegions->SetSpacing( imageSpacing ); m_StoppingRegions->SetOrigin( m_TrackingHandler->GetOrigin() ); m_StoppingRegions->SetDirection( m_TrackingHandler->GetDirection() ); m_StoppingRegions->SetRegions( m_TrackingHandler->GetLargestPossibleRegion() ); m_StoppingRegions->Allocate(); m_StoppingRegions->FillBuffer(0); } else std::cout << "StreamlineTracking - Using stopping region image" << std::endl; if (m_SeedImage.IsNull()) { m_SeedImage = ItkUcharImgType::New(); m_SeedImage->SetSpacing( imageSpacing ); m_SeedImage->SetOrigin( m_TrackingHandler->GetOrigin() ); m_SeedImage->SetDirection( m_TrackingHandler->GetDirection() ); m_SeedImage->SetRegions( m_TrackingHandler->GetLargestPossibleRegion() ); m_SeedImage->Allocate(); m_SeedImage->FillBuffer(1); } else std::cout << "StreamlineTracking - Using seed image" << std::endl; if (m_MaskImage.IsNull()) { // initialize mask image m_MaskImage = ItkUcharImgType::New(); m_MaskImage->SetSpacing( imageSpacing ); m_MaskImage->SetOrigin( m_TrackingHandler->GetOrigin() ); m_MaskImage->SetDirection( m_TrackingHandler->GetDirection() ); m_MaskImage->SetRegions( m_TrackingHandler->GetLargestPossibleRegion() ); m_MaskImage->Allocate(); m_MaskImage->FillBuffer(1); } else std::cout << "StreamlineTracking - Using mask image" << std::endl; if (m_SeedPoints.empty()) GetSeedPointsFromSeedImage(); else m_SeedOnlyGm = false; if (m_TissueImage.IsNull()) { if (m_SeedOnlyGm) { MITK_WARN << "StreamlineTracking - Cannot seed in gray matter. No tissue type image set."; m_SeedOnlyGm = false; } if (m_ControlGmEndings) { MITK_WARN << "StreamlineTracking - Cannot control gray matter endings. No tissue type image set."; m_ControlGmEndings = false; } } else { if (m_ControlGmEndings) m_SeedOnlyGm = true; if (m_ControlGmEndings || m_SeedOnlyGm) std::cout << "StreamlineTracking - Using tissue image" << std::endl; else MITK_WARN << "StreamlineTracking - Tissue image set but no gray matter seeding or fiber endpoint-control enabled" << std::endl; } m_BuildFibersReady = 0; m_BuildFibersFinished = false; m_Tractogram.clear(); m_SamplingPointset = mitk::PointSet::New(); m_AlternativePointset = mitk::PointSet::New(); m_StopVotePointset = mitk::PointSet::New(); m_StartTime = std::chrono::system_clock::now(); if (m_SeedOnlyGm && m_ControlGmEndings) InitGrayMatterEndings(); if (m_DemoMode) omp_set_num_threads(1); if (m_TrackingHandler->GetMode()==mitk::TrackingDataHandler::MODE::DETERMINISTIC) std::cout << "StreamlineTracking - Mode: deterministic" << std::endl; else if(m_TrackingHandler->GetMode()==mitk::TrackingDataHandler::MODE::PROBABILISTIC) std::cout << "StreamlineTracking - Mode: probabilistic" << std::endl; else std::cout << "StreamlineTracking - Mode: ???" << std::endl; std::cout << "StreamlineTracking - Angular threshold: " << m_AngularThreshold << " (" << 180*std::acos( m_AngularThreshold )/M_PI << "°)" << std::endl; std::cout << "StreamlineTracking - Stepsize: " << m_StepSize << "mm (" << m_StepSize/minSpacing << "*vox)" << std::endl; std::cout << "StreamlineTracking - Seeds per voxel: " << m_SeedsPerVoxel << std::endl; std::cout << "StreamlineTracking - Max. tract length: " << m_MaxTractLength << "mm" << std::endl; std::cout << "StreamlineTracking - Min. tract length: " << m_MinTractLength << "mm" << std::endl; std::cout << "StreamlineTracking - Max. num. tracts: " << m_MaxNumTracts << std::endl; std::cout << "StreamlineTracking - Num. neighborhood samples: " << m_NumberOfSamples << std::endl; std::cout << "StreamlineTracking - Max. sampling distance: " << m_SamplingDistance << "mm (" << m_SamplingDistance/minSpacing << "*vox)" << std::endl; std::cout << "StreamlineTracking - Deflection modifier: " << m_DeflectionMod << std::endl; std::cout << "StreamlineTracking - Use stop votes: " << m_UseStopVotes << std::endl; std::cout << "StreamlineTracking - Only frontal samples: " << m_OnlyForwardSamples << std::endl; if (m_DemoMode) { std::cout << "StreamlineTracking - Running in demo mode"; std::cout << "StreamlineTracking - Starting streamline tracking using 1 thread" << std::endl; } else std::cout << "StreamlineTracking - Starting streamline tracking using " << omp_get_max_threads() << " threads" << std::endl; } void StreamlineTrackingFilter::InitGrayMatterEndings() { m_TrackingHandler->SetAngularThreshold(0); m_GmStubs.clear(); if (m_TissueImage.IsNotNull()) { std::cout << "StreamlineTracking - initializing GM endings" << std::endl; ImageRegionConstIterator< ItkUcharImgType > it(m_TissueImage, m_TissueImage->GetLargestPossibleRegion() ); it.GoToBegin(); vnl_vector_fixed d1; d1.fill(0.0); std::deque< vnl_vector_fixed > olddirs; while (olddirs.size() start; m_TissueImage->TransformIndexToPhysicalPoint(s_idx, start); itk::Point wm_p; float max = -1; FiberType fib; for (int x : {-1,0,1}) for (int y : {-1,0,1}) for (int z : {-1,0,1}) { if (x==y && y==z) continue; ItkUcharImgType::IndexType e_idx; e_idx[0] = s_idx[0] + x; e_idx[1] = s_idx[1] + y; e_idx[2] = s_idx[2] + z; if ( !m_TissueImage->GetLargestPossibleRegion().IsInside(e_idx) || m_TissueImage->GetPixel(e_idx)!=m_WmLabel ) continue; itk::ContinuousIndex end; m_TissueImage->TransformIndexToPhysicalPoint(e_idx, end); d1 = m_TrackingHandler->ProposeDirection(end, olddirs, s_idx); if (d1.magnitude()<0.0001) continue; d1.normalize(); vnl_vector_fixed< float, 3 > d2; d2[0] = end[0] - start[0]; d2[1] = end[1] - start[1]; d2[2] = end[2] - start[2]; d2.normalize(); float a = fabs(dot_product(d1,d2)); if (a>max) { max = a; wm_p = end; } } if (max>=0) { fib.push_back(start); fib.push_back(wm_p); m_GmStubs.push_back(fib); } } ++it; } } m_TrackingHandler->SetAngularThreshold(m_AngularThreshold); } void StreamlineTrackingFilter::CalculateNewPosition(itk::Point& pos, vnl_vector_fixed& dir) { pos[0] += dir[0]*m_StepSize; pos[1] += dir[1]*m_StepSize; pos[2] += dir[2]*m_StepSize; } bool StreamlineTrackingFilter ::IsValidPosition(const itk::Point &pos) { ItkUcharImgType::IndexType idx; m_MaskImage->TransformPhysicalPointToIndex(pos, idx); if (!m_MaskImage->GetLargestPossibleRegion().IsInside(idx) || m_MaskImage->GetPixel(idx)==0) return false; return true; } bool StreamlineTrackingFilter ::IsInGm(const itk::Point &pos) { if (m_TissueImage.IsNull()) return true; ItkUcharImgType::IndexType idx; m_TissueImage->TransformPhysicalPointToIndex(pos, idx); if (m_TissueImage->GetLargestPossibleRegion().IsInside(idx) && m_TissueImage->GetPixel(idx) == m_GmLabel) return true; return false; } float StreamlineTrackingFilter::GetRandDouble(float min, float max) { return (float)(rand()%((int)(10000*(max-min))) + 10000*min)/10000; } std::vector< vnl_vector_fixed > StreamlineTrackingFilter::CreateDirections(int NPoints) { std::vector< vnl_vector_fixed > pointshell; if (NPoints<2) return pointshell; std::vector< float > theta; theta.resize(NPoints); std::vector< float > phi; phi.resize(NPoints); float C = sqrt(4*M_PI); phi[0] = 0.0; phi[NPoints-1] = 0.0; for(int i=0; i0 && i d; d[0] = cos(theta[i]) * cos(phi[i]); d[1] = cos(theta[i]) * sin(phi[i]); d[2] = sin(theta[i]); pointshell.push_back(d); } return pointshell; } vnl_vector_fixed StreamlineTrackingFilter::GetNewDirection(itk::Point &pos, std::deque >& olddirs, itk::Index<3> &oldIndex) { if (m_DemoMode) { m_SamplingPointset->Clear(); m_AlternativePointset->Clear(); m_StopVotePointset->Clear(); } vnl_vector_fixed direction; direction.fill(0); ItkUcharImgType::IndexType idx; m_MaskImage->TransformPhysicalPointToIndex(pos, idx); if (IsValidPosition(pos)) { if (m_StoppingRegions->GetPixel(idx)>0) return direction; direction = m_TrackingHandler->ProposeDirection(pos, olddirs, oldIndex); // get direction proposal at current streamline position } else return direction; vnl_vector_fixed olddir = olddirs.back(); std::vector< vnl_vector_fixed > probeVecs = CreateDirections(m_NumberOfSamples); itk::Point sample_pos; int alternatives = 1; int stop_votes = 0; int possible_stop_votes = 0; for (int i=0; i d; bool is_stop_voter = false; if (m_RandomSampling) { d[0] = GetRandDouble(); d[1] = GetRandDouble(); d[2] = GetRandDouble(); d.normalize(); d *= GetRandDouble(0,m_SamplingDistance); } else { d = probeVecs.at(i); float dot = dot_product(d, olddir); if (m_UseStopVotes && dot>0.7) { is_stop_voter = true; possible_stop_votes++; } else if (m_OnlyForwardSamples && dot<0) continue; d *= m_SamplingDistance; } sample_pos[0] = pos[0] + d[0]; sample_pos[1] = pos[1] + d[1]; sample_pos[2] = pos[2] + d[2]; vnl_vector_fixed tempDir; tempDir.fill(0.0); if (IsValidPosition(sample_pos)) tempDir = m_TrackingHandler->ProposeDirection(sample_pos, olddirs, oldIndex); // sample neighborhood if (tempDir.magnitude()>mitk::eps) { direction += tempDir; if(m_DemoMode) m_SamplingPointset->InsertPoint(i, sample_pos); } else if (m_AvoidStop && olddir.magnitude()>0.5) // out of white matter { if (is_stop_voter) stop_votes++; if (m_DemoMode) m_StopVotePointset->InsertPoint(i, sample_pos); float dot = dot_product(d, olddir); if (dot >= 0.0) // in front of plane defined by pos and olddir d = -d + 2*dot*olddir; // reflect else d = -d; // invert // look a bit further into the other direction sample_pos[0] = pos[0] + d[0]; sample_pos[1] = pos[1] + d[1]; sample_pos[2] = pos[2] + d[2]; alternatives++; vnl_vector_fixed tempDir; tempDir.fill(0.0); if (IsValidPosition(sample_pos)) tempDir = m_TrackingHandler->ProposeDirection(sample_pos, olddirs, oldIndex); // sample neighborhood if (tempDir.magnitude()>mitk::eps) // are we back in the white matter? { direction += d * m_DeflectionMod; // go into the direction of the white matter direction += tempDir; // go into the direction of the white matter direction at this location if(m_DemoMode) m_AlternativePointset->InsertPoint(alternatives, sample_pos); } else { if (m_DemoMode) m_StopVotePointset->InsertPoint(i, sample_pos); } } else { if (m_DemoMode) m_StopVotePointset->InsertPoint(i, sample_pos); if (is_stop_voter) stop_votes++; } } if (direction.magnitude()>0.001 && (possible_stop_votes==0 || (float)stop_votes/possible_stop_votes<0.5) ) direction.normalize(); else direction.fill(0); return direction; } float StreamlineTrackingFilter::FollowStreamline(itk::Point pos, vnl_vector_fixed dir, FiberType* fib, float tractLength, bool front) { vnl_vector_fixed zero_dir; zero_dir.fill(0.0); std::deque< vnl_vector_fixed > last_dirs; for (unsigned int i=0; iTransformPhysicalPointToIndex(pos, oldIndex); // get new position CalculateNewPosition(pos, dir); // is new position inside of image and mask if (m_AbortTracking) // if not end streamline { return tractLength; } else // if yes, add new point to streamline { tractLength += m_StepSize; if (front) fib->push_front(pos); else fib->push_back(pos); if (m_AposterioriCurvCheck) { int curv = CheckCurvature(fib, front); if (curv>0) { tractLength -= m_StepSize*curv; while (curv>0) { if (front) fib->pop_front(); else fib->pop_back(); curv--; } return tractLength; } } if (tractLength>m_MaxTractLength) return tractLength; } -#pragma omp critical if (m_DemoMode && !m_UseOutputProbabilityMap) // CHECK: warum sind die samplingpunkte der streamline in der visualisierung immer einen schritt voras? { - m_BuildFibersReady++; - m_Tractogram.push_back(*fib); - BuildFibers(true); - m_Stop = true; +#pragma omp critical + { + m_BuildFibersReady++; + m_Tractogram.push_back(*fib); + BuildFibers(true); + m_Stop = true; - while (m_Stop){ + while (m_Stop){ + } } } dir.normalize(); last_dirs.push_back(dir); if (last_dirs.size()>m_NumPreviousDirections) last_dirs.pop_front(); dir = GetNewDirection(pos, last_dirs, oldIndex); while (m_PauseTracking){} if (dir.magnitude()<0.0001) return tractLength; } return tractLength; } int StreamlineTrackingFilter::CheckCurvature(FiberType* fib, bool front) { float m_Distance = 5; if (fib->size()<3) return 0; float dist = 0; std::vector< vnl_vector_fixed< float, 3 > > vectors; vnl_vector_fixed< float, 3 > meanV; meanV.fill(0); float dev = 0; if (front) { int c=0; while(distsize()-1) { itk::Point p1 = fib->at(c); itk::Point p2 = fib->at(c+1); vnl_vector_fixed< float, 3 > v; v[0] = p2[0]-p1[0]; v[1] = p2[1]-p1[1]; v[2] = p2[2]-p1[2]; dist += v.magnitude(); v.normalize(); vectors.push_back(v); if (c==0) meanV += v; c++; } } else { int c=fib->size()-1; while(dist0) { itk::Point p1 = fib->at(c); itk::Point p2 = fib->at(c-1); vnl_vector_fixed< float, 3 > v; v[0] = p2[0]-p1[0]; v[1] = p2[1]-p1[1]; v[2] = p2[2]-p1[2]; dist += v.magnitude(); v.normalize(); vectors.push_back(v); if (c==fib->size()-1) meanV += v; c--; } } meanV.normalize(); for (int c=0; c1.0) angle = 1.0; if (angle<-1.0) angle = -1.0; dev += acos(angle)*180/M_PI; } if (vectors.size()>0) dev /= vectors.size(); if (dev<30) return 0; else return vectors.size(); } void StreamlineTrackingFilter::GetSeedPointsFromSeedImage() { MITK_INFO << "Calculating seed points."; m_SeedPoints.clear(); if (!m_ControlGmEndings) { typedef ImageRegionConstIterator< ItkUcharImgType > MaskIteratorType; MaskIteratorType sit(m_SeedImage, m_SeedImage->GetLargestPossibleRegion()); sit.GoToBegin(); while (!sit.IsAtEnd()) { if (sit.Value()>0) { ItkUcharImgType::IndexType index = sit.GetIndex(); itk::ContinuousIndex start; start[0] = index[0]; start[1] = index[1]; start[2] = index[2]; itk::Point worldPos; m_SeedImage->TransformContinuousIndexToPhysicalPoint(start, worldPos); if (IsValidPosition(worldPos) && (!m_SeedOnlyGm || IsInGm(worldPos))) { m_SeedPoints.push_back(worldPos); for (int s = 1; s < m_SeedsPerVoxel; s++) { start[0] = index[0] + GetRandDouble(-0.5, 0.5); start[1] = index[1] + GetRandDouble(-0.5, 0.5); start[2] = index[2] + GetRandDouble(-0.5, 0.5); itk::Point worldPos; m_SeedImage->TransformContinuousIndexToPhysicalPoint(start, worldPos); m_SeedPoints.push_back(worldPos); } } } ++sit; } } else { for (auto s : m_GmStubs) m_SeedPoints.push_back(s[1]); } } void StreamlineTrackingFilter::GenerateData() { this->BeforeTracking(); if (m_Random) { std::srand(std::time(0)); std::random_shuffle(m_SeedPoints.begin(), m_SeedPoints.end()); } bool stop = false; unsigned int current_tracts = 0; int num_seeds = m_SeedPoints.size(); itk::Index<3> zeroIndex; zeroIndex.Fill(0); int progress = 0; int i = 0; int print_interval = num_seeds/100; if (print_interval<100) m_Verbose=false; #pragma omp parallel while (i=num_seeds || stop) continue; else if (m_Verbose && i%print_interval==0) #pragma omp critical { progress += print_interval; std::cout << " \r"; if (m_MaxNumTracts>0) std::cout << "Tried: " << progress << "/" << num_seeds << " | Accepted: " << current_tracts << "/" << m_MaxNumTracts << '\r'; else std::cout << "Tried: " << progress << "/" << num_seeds << " | Accepted: " << current_tracts << '\r'; cout.flush(); } const itk::Point worldPos = m_SeedPoints.at(temp_i); FiberType fib; float tractLength = 0; unsigned int counter = 0; // get starting direction vnl_vector_fixed dir; dir.fill(0.0); std::deque< vnl_vector_fixed > olddirs; while (olddirs.size() gm_start_dir; if (m_ControlGmEndings) { gm_start_dir[0] = m_GmStubs[temp_i][1][0] - m_GmStubs[temp_i][0][0]; gm_start_dir[1] = m_GmStubs[temp_i][1][1] - m_GmStubs[temp_i][0][1]; gm_start_dir[2] = m_GmStubs[temp_i][1][2] - m_GmStubs[temp_i][0][2]; gm_start_dir.normalize(); olddirs.pop_back(); olddirs.push_back(gm_start_dir); } if (IsValidPosition(worldPos)) dir = m_TrackingHandler->ProposeDirection(worldPos, olddirs, zeroIndex); if (dir.magnitude()>0.0001) { if (m_ControlGmEndings) { float a = dot_product(gm_start_dir, dir); if (a<0) dir = -dir; } // forward tracking tractLength = FollowStreamline(worldPos, dir, &fib, 0, false); fib.push_front(worldPos); if (m_ControlGmEndings) { fib.push_front(m_GmStubs[temp_i][0]); CheckFiberForGmEnding(&fib); } else { // backward tracking (only if we don't explicitely start in the GM) tractLength = FollowStreamline(worldPos, -dir, &fib, tractLength, true); if (m_ControlGmEndings) { CheckFiberForGmEnding(&fib); std::reverse(fib.begin(),fib.end()); CheckFiberForGmEnding(&fib); } } counter = fib.size(); #pragma omp critical if (tractLength>=m_MinTractLength && counter>=2) { if (!stop) { if (!m_UseOutputProbabilityMap) m_Tractogram.push_back(fib); else FiberToProbmap(&fib); current_tracts++; } if (m_MaxNumTracts > 0 && current_tracts>=static_cast(m_MaxNumTracts)) { if (!stop) { std::cout << " \r"; MITK_INFO << "Reconstructed maximum number of tracts (" << current_tracts << "). Stopping tractography."; } stop = true; } } + } } this->AfterTracking(); } void StreamlineTrackingFilter::CheckFiberForGmEnding(FiberType* fib) { if (m_TissueImage.IsNull()) return; // first check if the current fibe rendpoint is located inside of the white matter // if not, remove last fiber point and repeat bool in_wm = false; while (!in_wm && fib->size()>2) { ItkUcharImgType::IndexType idx; m_TissueImage->TransformPhysicalPointToIndex(fib->back(), idx); if (m_TissueImage->GetPixel(idx)==m_WmLabel) in_wm = true; else fib->pop_back(); } if (fib->size()<3 || !in_wm) { fib->clear(); return; } // get fiber direction at end point vnl_vector_fixed< float, 3 > d1; d1[0] = fib->back()[0] - fib->at(fib->size()-2)[0]; d1[1] = fib->back()[1] - fib->at(fib->size()-2)[1]; d1[2] = fib->back()[2] - fib->at(fib->size()-2)[2]; d1.normalize(); // find closest gray matter voxel ItkUcharImgType::IndexType s_idx; m_TissueImage->TransformPhysicalPointToIndex(fib->back(), s_idx); itk::Point gm_endp; float max = -1; for (int x : {-1,0,1}) for (int y : {-1,0,1}) for (int z : {-1,0,1}) { if (x==y && y==z) continue; ItkUcharImgType::IndexType e_idx; e_idx[0] = s_idx[0] + x; e_idx[1] = s_idx[1] + y; e_idx[2] = s_idx[2] + z; if ( !m_TissueImage->GetLargestPossibleRegion().IsInside(e_idx) || m_TissueImage->GetPixel(e_idx)!=m_GmLabel ) continue; itk::ContinuousIndex end; m_TissueImage->TransformIndexToPhysicalPoint(e_idx, end); vnl_vector_fixed< float, 3 > d2; d2[0] = end[0] - fib->back()[0]; d2[1] = end[1] - fib->back()[1]; d2[2] = end[2] - fib->back()[2]; d2.normalize(); float a = dot_product(d1,d2); if (a>max) { max = a; gm_endp = end; } } if (max>=0) fib->push_back(gm_endp); else // no gray matter enpoint found -> delete fiber fib->clear(); } void StreamlineTrackingFilter::FiberToProbmap(FiberType* fib) { ItkDoubleImgType::IndexType last_idx; last_idx.Fill(0); for (auto p : *fib) { ItkDoubleImgType::IndexType idx; m_OutputProbabilityMap->TransformPhysicalPointToIndex(p, idx); if (idx != last_idx) { if (m_OutputProbabilityMap->GetLargestPossibleRegion().IsInside(idx)) m_OutputProbabilityMap->SetPixel(idx, m_OutputProbabilityMap->GetPixel(idx)+1); last_idx = idx; } } } void StreamlineTrackingFilter::BuildFibers(bool check) { if (m_BuildFibersReady::New(); vtkSmartPointer vNewLines = vtkSmartPointer::New(); vtkSmartPointer vNewPoints = vtkSmartPointer::New(); for (int i=0; i container = vtkSmartPointer::New(); FiberType fib = m_Tractogram.at(i); for (FiberType::iterator it = fib.begin(); it!=fib.end(); ++it) { vtkIdType id = vNewPoints->InsertNextPoint((*it).GetDataPointer()); container->GetPointIds()->InsertNextId(id); } vNewLines->InsertNextCell(container); } if (check) for (int i=0; iSetPoints(vNewPoints); m_FiberPolyData->SetLines(vNewLines); m_BuildFibersFinished = true; } void StreamlineTrackingFilter::AfterTracking() { if (m_Verbose) std::cout << " \r"; if (!m_UseOutputProbabilityMap) { MITK_INFO << "Reconstructed " << m_Tractogram.size() << " fibers."; MITK_INFO << "Generating polydata "; BuildFibers(false); } else { itk::RescaleIntensityImageFilter< ItkDoubleImgType, ItkDoubleImgType >::Pointer filter = itk::RescaleIntensityImageFilter< ItkDoubleImgType, ItkDoubleImgType >::New(); filter->SetInput(m_OutputProbabilityMap); filter->SetOutputMaximum(1.0); filter->SetOutputMinimum(0.0); filter->Update(); m_OutputProbabilityMap = filter->GetOutput(); } MITK_INFO << "done"; m_EndTime = std::chrono::system_clock::now(); std::chrono::hours hh = std::chrono::duration_cast(m_EndTime - m_StartTime); std::chrono::minutes mm = std::chrono::duration_cast(m_EndTime - m_StartTime); std::chrono::seconds ss = std::chrono::duration_cast(m_EndTime - m_StartTime); mm %= 60; ss %= 60; MITK_INFO << "Tracking took " << hh.count() << "h, " << mm.count() << "m and " << ss.count() << "s"; m_SeedPoints.clear(); } } diff --git a/Modules/DiffusionImaging/FiberTracking/IODataStructures/FiberBundle/mitkFiberBundle.cpp b/Modules/DiffusionImaging/FiberTracking/IODataStructures/FiberBundle/mitkFiberBundle.cpp index af15024329..c6efb9e27f 100755 --- a/Modules/DiffusionImaging/FiberTracking/IODataStructures/FiberBundle/mitkFiberBundle.cpp +++ b/Modules/DiffusionImaging/FiberTracking/IODataStructures/FiberBundle/mitkFiberBundle.cpp @@ -1,2283 +1,2315 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #define _USE_MATH_DEFINES #include "mitkFiberBundle.h" #include #include #include #include "mitkImagePixelReadAccessor.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const char* mitk::FiberBundle::FIBER_ID_ARRAY = "Fiber_IDs"; using namespace std; mitk::FiberBundle::FiberBundle( vtkPolyData* fiberPolyData ) : m_NumFibers(0) { m_FiberWeights = vtkSmartPointer::New(); m_FiberWeights->SetName("FIBER_WEIGHTS"); m_FiberPolyData = vtkSmartPointer::New(); if (fiberPolyData != nullptr) m_FiberPolyData = fiberPolyData; this->UpdateFiberGeometry(); this->GenerateFiberIds(); this->ColorFibersByOrientation(); } mitk::FiberBundle::~FiberBundle() { } mitk::FiberBundle::Pointer mitk::FiberBundle::GetDeepCopy() { mitk::FiberBundle::Pointer newFib = mitk::FiberBundle::New(m_FiberPolyData); newFib->SetFiberColors(this->m_FiberColors); newFib->SetFiberWeights(this->m_FiberWeights); return newFib; } vtkSmartPointer mitk::FiberBundle::GeneratePolyDataByIds(std::vector fiberIds) { vtkSmartPointer newFiberPolyData = vtkSmartPointer::New(); vtkSmartPointer newLineSet = vtkSmartPointer::New(); vtkSmartPointer newPointSet = vtkSmartPointer::New(); auto finIt = fiberIds.begin(); while ( finIt != fiberIds.end() ) { if (*finIt < 0 || *finIt>GetNumFibers()){ MITK_INFO << "FiberID can not be negative or >NumFibers!!! check id Extraction!" << *finIt; break; } vtkSmartPointer fiber = m_FiberIdDataSet->GetCell(*finIt);//->DeepCopy(fiber); vtkSmartPointer fibPoints = fiber->GetPoints(); vtkSmartPointer newFiber = vtkSmartPointer::New(); newFiber->GetPointIds()->SetNumberOfIds( fibPoints->GetNumberOfPoints() ); for(int i=0; iGetNumberOfPoints(); i++) { newFiber->GetPointIds()->SetId(i, newPointSet->GetNumberOfPoints()); newPointSet->InsertNextPoint(fibPoints->GetPoint(i)[0], fibPoints->GetPoint(i)[1], fibPoints->GetPoint(i)[2]); } newLineSet->InsertNextCell(newFiber); ++finIt; } newFiberPolyData->SetPoints(newPointSet); newFiberPolyData->SetLines(newLineSet); return newFiberPolyData; } // merge two fiber bundles mitk::FiberBundle::Pointer mitk::FiberBundle::AddBundle(mitk::FiberBundle* fib) { if (fib==nullptr) { MITK_WARN << "trying to call AddBundle with nullptr argument"; return nullptr; } MITK_INFO << "Adding fibers"; vtkSmartPointer vNewPolyData = vtkSmartPointer::New(); vtkSmartPointer vNewLines = vtkSmartPointer::New(); vtkSmartPointer vNewPoints = vtkSmartPointer::New(); // add current fiber bundle vtkSmartPointer weights = vtkSmartPointer::New(); weights->SetNumberOfValues(this->GetNumFibers()+fib->GetNumFibers()); unsigned int counter = 0; for (int i=0; iGetNumberOfCells(); i++) { vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j, p); vtkIdType id = vNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } weights->InsertValue(counter, this->GetFiberWeight(i)); vNewLines->InsertNextCell(container); counter++; } // add new fiber bundle for (int i=0; iGetFiberPolyData()->GetNumberOfCells(); i++) { vtkCell* cell = fib->GetFiberPolyData()->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j, p); vtkIdType id = vNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } weights->InsertValue(counter, fib->GetFiberWeight(i)); vNewLines->InsertNextCell(container); counter++; } // initialize PolyData vNewPolyData->SetPoints(vNewPoints); vNewPolyData->SetLines(vNewLines); // initialize fiber bundle mitk::FiberBundle::Pointer newFib = mitk::FiberBundle::New(vNewPolyData); newFib->SetFiberWeights(weights); return newFib; } // subtract two fiber bundles mitk::FiberBundle::Pointer mitk::FiberBundle::SubtractBundle(mitk::FiberBundle* fib) { MITK_INFO << "Subtracting fibers"; vtkSmartPointer vNewPolyData = vtkSmartPointer::New(); vtkSmartPointer vNewLines = vtkSmartPointer::New(); vtkSmartPointer vNewPoints = vtkSmartPointer::New(); std::vector< std::vector< itk::Point > > points1; for( int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (points==nullptr || numPoints<=0) continue; itk::Point start = GetItkPoint(points->GetPoint(0)); itk::Point end = GetItkPoint(points->GetPoint(numPoints-1)); points1.push_back( {start, end} ); } std::vector< std::vector< itk::Point > > points2; for( int i=0; iGetNumFibers(); i++ ) { vtkCell* cell = fib->GetFiberPolyData()->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (points==nullptr || numPoints<=0) continue; itk::Point start = GetItkPoint(points->GetPoint(0)); itk::Point end = GetItkPoint(points->GetPoint(numPoints-1)); points2.push_back( {start, end} ); } int progress = 0; std::vector< int > ids; #pragma omp parallel for for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (points==nullptr || numPoints<=0) continue; vtkSmartPointer container = vtkSmartPointer::New(); for( int j=0; jInsertNextPoint(points->GetPoint(j)); container->GetPointIds()->InsertNextId(id); } vNewLines->InsertNextCell(container); } if(vNewLines->GetNumberOfCells()==0) return nullptr; // initialize PolyData vNewPolyData->SetPoints(vNewPoints); vNewPolyData->SetLines(vNewLines); // initialize fiber bundle return mitk::FiberBundle::New(vNewPolyData); } itk::Point mitk::FiberBundle::GetItkPoint(double point[3]) { itk::Point itkPoint; itkPoint[0] = point[0]; itkPoint[1] = point[1]; itkPoint[2] = point[2]; return itkPoint; } /* * set PolyData (additional flag to recompute fiber geometry, default = true) */ void mitk::FiberBundle::SetFiberPolyData(vtkSmartPointer fiberPD, bool updateGeometry) { if (fiberPD == nullptr) this->m_FiberPolyData = vtkSmartPointer::New(); else m_FiberPolyData->DeepCopy(fiberPD); m_NumFibers = m_FiberPolyData->GetNumberOfLines(); if (updateGeometry) UpdateFiberGeometry(); GenerateFiberIds(); ColorFibersByOrientation(); } /* * return vtkPolyData */ vtkSmartPointer mitk::FiberBundle::GetFiberPolyData() const { return m_FiberPolyData; } void mitk::FiberBundle::ColorFibersByOrientation() { //===== FOR WRITING A TEST ======================== // colorT size == tupelComponents * tupelElements // compare color results // to cover this code 100% also PolyData needed, where colorarray already exists // + one fiber with exactly 1 point // + one fiber with 0 points //================================================= vtkPoints* extrPoints = nullptr; extrPoints = m_FiberPolyData->GetPoints(); int numOfPoints = 0; if (extrPoints!=nullptr) numOfPoints = extrPoints->GetNumberOfPoints(); //colors and alpha value for each single point, RGBA = 4 components unsigned char rgba[4] = {0,0,0,0}; int componentSize = 4; m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(numOfPoints * componentSize); m_FiberColors->SetNumberOfComponents(componentSize); m_FiberColors->SetName("FIBER_COLORS"); int numOfFibers = m_FiberPolyData->GetNumberOfLines(); if (numOfFibers < 1) return; /* extract single fibers of fiberBundle */ vtkCellArray* fiberList = m_FiberPolyData->GetLines(); fiberList->InitTraversal(); for (int fi=0; fiGetNextCell(pointsPerFiber, idList); /* single fiber checkpoints: is number of points valid */ if (pointsPerFiber > 1) { /* operate on points of single fiber */ for (int i=0; i 0) { /* The color value of the current point is influenced by the previous point and next point. */ vnl_vector_fixed< double, 3 > currentPntvtk(extrPoints->GetPoint(idList[i])[0], extrPoints->GetPoint(idList[i])[1],extrPoints->GetPoint(idList[i])[2]); vnl_vector_fixed< double, 3 > nextPntvtk(extrPoints->GetPoint(idList[i+1])[0], extrPoints->GetPoint(idList[i+1])[1], extrPoints->GetPoint(idList[i+1])[2]); vnl_vector_fixed< double, 3 > prevPntvtk(extrPoints->GetPoint(idList[i-1])[0], extrPoints->GetPoint(idList[i-1])[1], extrPoints->GetPoint(idList[i-1])[2]); vnl_vector_fixed< double, 3 > diff1; diff1 = currentPntvtk - nextPntvtk; vnl_vector_fixed< double, 3 > diff2; diff2 = currentPntvtk - prevPntvtk; vnl_vector_fixed< double, 3 > diff; diff = (diff1 - diff2) / 2.0; diff.normalize(); rgba[0] = (unsigned char) (255.0 * std::fabs(diff[0])); rgba[1] = (unsigned char) (255.0 * std::fabs(diff[1])); rgba[2] = (unsigned char) (255.0 * std::fabs(diff[2])); rgba[3] = (unsigned char) (255.0); } else if (i==0) { /* First point has no previous point, therefore only diff1 is taken */ vnl_vector_fixed< double, 3 > currentPntvtk(extrPoints->GetPoint(idList[i])[0], extrPoints->GetPoint(idList[i])[1],extrPoints->GetPoint(idList[i])[2]); vnl_vector_fixed< double, 3 > nextPntvtk(extrPoints->GetPoint(idList[i+1])[0], extrPoints->GetPoint(idList[i+1])[1], extrPoints->GetPoint(idList[i+1])[2]); vnl_vector_fixed< double, 3 > diff1; diff1 = currentPntvtk - nextPntvtk; diff1.normalize(); rgba[0] = (unsigned char) (255.0 * std::fabs(diff1[0])); rgba[1] = (unsigned char) (255.0 * std::fabs(diff1[1])); rgba[2] = (unsigned char) (255.0 * std::fabs(diff1[2])); rgba[3] = (unsigned char) (255.0); } else if (i==pointsPerFiber-1) { /* Last point has no next point, therefore only diff2 is taken */ vnl_vector_fixed< double, 3 > currentPntvtk(extrPoints->GetPoint(idList[i])[0], extrPoints->GetPoint(idList[i])[1],extrPoints->GetPoint(idList[i])[2]); vnl_vector_fixed< double, 3 > prevPntvtk(extrPoints->GetPoint(idList[i-1])[0], extrPoints->GetPoint(idList[i-1])[1], extrPoints->GetPoint(idList[i-1])[2]); vnl_vector_fixed< double, 3 > diff2; diff2 = currentPntvtk - prevPntvtk; diff2.normalize(); rgba[0] = (unsigned char) (255.0 * std::fabs(diff2[0])); rgba[1] = (unsigned char) (255.0 * std::fabs(diff2[1])); rgba[2] = (unsigned char) (255.0 * std::fabs(diff2[2])); rgba[3] = (unsigned char) (255.0); } m_FiberColors->InsertTupleValue(idList[i], rgba); } } else if (pointsPerFiber == 1) { /* a single point does not define a fiber (use vertex mechanisms instead */ continue; } else { MITK_DEBUG << "Fiber with 0 points detected... please check your tractography algorithm!" ; continue; } } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } -void mitk::FiberBundle::ColorFibersByCurvature(bool minMaxNorm) +void mitk::FiberBundle::ColorFibersByCurvature(bool opacity, bool normalize) { double window = 5; //colors and alpha value for each single point, RGBA = 4 components unsigned char rgba[4] = {0,0,0,0}; int componentSize = 4; m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(m_FiberPolyData->GetNumberOfPoints() * componentSize); m_FiberColors->SetNumberOfComponents(componentSize); m_FiberColors->SetName("FIBER_COLORS"); mitk::LookupTable::Pointer mitkLookup = mitk::LookupTable::New(); vtkSmartPointer lookupTable = vtkSmartPointer::New(); lookupTable->SetTableRange(0.0, 0.8); lookupTable->Build(); mitkLookup->SetVtkLookupTable(lookupTable); mitkLookup->SetType(mitk::LookupTable::JET); vector< double > values; double min = 1; double max = 0; MITK_INFO << "Coloring fibers by curvature"; boost::progress_display disp(m_FiberPolyData->GetNumberOfCells()); for (int i=0; iGetNumberOfCells(); i++) { ++disp; vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); // calculate curvatures for (int j=0; j > vectors; vnl_vector_fixed< float, 3 > meanV; meanV.fill(0.0); while(dist1) { double p1[3]; points->GetPoint(c-1, p1); double p2[3]; points->GetPoint(c, p2); vnl_vector_fixed< float, 3 > v; v[0] = p2[0]-p1[0]; v[1] = p2[1]-p1[1]; v[2] = p2[2]-p1[2]; dist += v.magnitude(); v.normalize(); vectors.push_back(v); if (c==j) meanV += v; c--; } c = j; dist = 0; while(distGetPoint(c, p1); double p2[3]; points->GetPoint(c+1, p2); vnl_vector_fixed< float, 3 > v; v[0] = p2[0]-p1[0]; v[1] = p2[1]-p1[1]; v[2] = p2[2]-p1[2]; dist += v.magnitude(); v.normalize(); vectors.push_back(v); if (c==j) meanV += v; c++; } meanV.normalize(); double dev = 0; for (unsigned int c=0; c1.0) angle = 1.0; if (angle<-1.0) angle = -1.0; dev += acos(angle)*180/M_PI; } if (vectors.size()>0) dev /= vectors.size(); dev = 1.0-dev/180.0; values.push_back(dev); if (devmax) max = dev; } } unsigned int count = 0; for (int i=0; iGetNumberOfCells(); i++) { vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); for (int j=0; j1) + dev = 1; lookupTable->GetColor(dev, color); rgba[0] = (unsigned char) (255.0 * color[0]); rgba[1] = (unsigned char) (255.0 * color[1]); rgba[2] = (unsigned char) (255.0 * color[2]); - rgba[3] = (unsigned char) (255.0); + if (opacity) + rgba[3] = (unsigned char) (255.0 * dev); + else + rgba[3] = (unsigned char) (255.0); m_FiberColors->InsertTupleValue(cell->GetPointId(j), rgba); count++; } } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::SetFiberOpacity(vtkDoubleArray* FAValArray) { for(long i=0; iGetNumberOfTuples(); i++) { double faValue = FAValArray->GetValue(i); faValue = faValue * 255.0; m_FiberColors->SetComponent(i,3, (unsigned char) faValue ); } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::ResetFiberOpacity() { for(long i=0; iGetNumberOfTuples(); i++) m_FiberColors->SetComponent(i,3, 255.0 ); m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } -void mitk::FiberBundle::ColorFibersByScalarMap(mitk::Image::Pointer FAimage, bool opacity) +void mitk::FiberBundle::ColorFibersByScalarMap(mitk::Image::Pointer FAimage, bool opacity, bool normalize) { - mitkPixelTypeMultiplex2( ColorFibersByScalarMap, FAimage->GetPixelType(), FAimage, opacity ); + mitkPixelTypeMultiplex3( ColorFibersByScalarMap, FAimage->GetPixelType(), FAimage, opacity, normalize ); m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } template -void mitk::FiberBundle::ColorFibersByScalarMap(const mitk::PixelType, mitk::Image::Pointer image, bool opacity) +void mitk::FiberBundle::ColorFibersByScalarMap(const mitk::PixelType, mitk::Image::Pointer image, bool opacity, bool normalize) { m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(m_FiberPolyData->GetNumberOfPoints() * 4); m_FiberColors->SetNumberOfComponents(4); m_FiberColors->SetName("FIBER_COLORS"); mitk::ImagePixelReadAccessor readimage(image, image->GetVolumeData(0)); unsigned char rgba[4] = {0,0,0,0}; vtkPoints* pointSet = m_FiberPolyData->GetPoints(); mitk::LookupTable::Pointer mitkLookup = mitk::LookupTable::New(); vtkSmartPointer lookupTable = vtkSmartPointer::New(); lookupTable->SetTableRange(0.0, 0.8); lookupTable->Build(); mitkLookup->SetVtkLookupTable(lookupTable); mitkLookup->SetType(mitk::LookupTable::JET); + double min = 9999999; + double max = -9999999; + for(long i=0; iGetNumberOfPoints(); ++i) + { + Point3D px; + px[0] = pointSet->GetPoint(i)[0]; + px[1] = pointSet->GetPoint(i)[1]; + px[2] = pointSet->GetPoint(i)[2]; + double pixelValue = readimage.GetPixelByWorldCoordinates(px); + if (pixelValue>max) + max = pixelValue; + if (pixelValueGetNumberOfPoints(); ++i) { Point3D px; px[0] = pointSet->GetPoint(i)[0]; px[1] = pointSet->GetPoint(i)[1]; px[2] = pointSet->GetPoint(i)[2]; double pixelValue = readimage.GetPixelByWorldCoordinates(px); + if (normalize) + pixelValue = (pixelValue-min)/(max-min); + else if (pixelValue>1) + pixelValue = 1; + double color[3]; lookupTable->GetColor(1-pixelValue, color); rgba[0] = (unsigned char) (255.0 * color[0]); rgba[1] = (unsigned char) (255.0 * color[1]); rgba[2] = (unsigned char) (255.0 * color[2]); if (opacity) rgba[3] = (unsigned char) (255.0 * pixelValue); else rgba[3] = (unsigned char) (255.0); m_FiberColors->InsertTupleValue(i, rgba); } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } -void mitk::FiberBundle::ColorFibersByFiberWeights() +void mitk::FiberBundle::ColorFibersByFiberWeights(bool opacity, bool normalize) { m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(m_FiberPolyData->GetNumberOfPoints() * 4); m_FiberColors->SetNumberOfComponents(4); m_FiberColors->SetName("FIBER_COLORS"); mitk::LookupTable::Pointer mitkLookup = mitk::LookupTable::New(); vtkSmartPointer lookupTable = vtkSmartPointer::New(); lookupTable->SetTableRange(0.0, 0.8); lookupTable->Build(); mitkLookup->SetVtkLookupTable(lookupTable); mitkLookup->SetType(mitk::LookupTable::JET); unsigned char rgba[4] = {0,0,0,0}; unsigned int counter = 0; float max = -999999; float min = 999999; for (int i=0; iGetFiberWeight(i); if (weight>max) max = weight; if (weightGetCell(i); int numPoints = cell->GetNumberOfPoints(); double weight = this->GetFiberWeight(i); for (int j=0; j1) + v = 1; double color[3]; - lookupTable->GetColor(1-(weight-min)/(max-min), color); + lookupTable->GetColor(1-v, color); rgba[0] = (unsigned char) (255.0 * color[0]); rgba[1] = (unsigned char) (255.0 * color[1]); rgba[2] = (unsigned char) (255.0 * color[2]); - rgba[3] = (unsigned char) (255.0); + if (opacity) + rgba[3] = (unsigned char) (255.0 * v); + else + rgba[3] = (unsigned char) (255.0); m_FiberColors->InsertTupleValue(counter, rgba); counter++; } } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::SetFiberColors(float r, float g, float b, float alpha) { m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(m_FiberPolyData->GetNumberOfPoints() * 4); m_FiberColors->SetNumberOfComponents(4); m_FiberColors->SetName("FIBER_COLORS"); unsigned char rgba[4] = {0,0,0,0}; for(long i=0; iGetNumberOfPoints(); ++i) { rgba[0] = (unsigned char) r; rgba[1] = (unsigned char) g; rgba[2] = (unsigned char) b; rgba[3] = (unsigned char) alpha; m_FiberColors->InsertTupleValue(i, rgba); } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::GenerateFiberIds() { if (m_FiberPolyData == nullptr) return; vtkSmartPointer idFiberFilter = vtkSmartPointer::New(); idFiberFilter->SetInputData(m_FiberPolyData); idFiberFilter->CellIdsOn(); // idFiberFilter->PointIdsOn(); // point id's are not needed idFiberFilter->SetIdsArrayName(FIBER_ID_ARRAY); idFiberFilter->FieldDataOn(); idFiberFilter->Update(); m_FiberIdDataSet = idFiberFilter->GetOutput(); } mitk::FiberBundle::Pointer mitk::FiberBundle::ExtractFiberSubset(ItkUcharImgType* mask, bool anyPoint, bool invert, bool bothEnds, float fraction) { vtkSmartPointer PolyData = m_FiberPolyData; if (anyPoint) { float minSpacing = 1; if(mask->GetSpacing()[0]GetSpacing()[1] && mask->GetSpacing()[0]GetSpacing()[2]) minSpacing = mask->GetSpacing()[0]; else if (mask->GetSpacing()[1] < mask->GetSpacing()[2]) minSpacing = mask->GetSpacing()[1]; else minSpacing = mask->GetSpacing()[2]; mitk::FiberBundle::Pointer fibCopy = this->GetDeepCopy(); fibCopy->ResampleLinear(minSpacing/5); PolyData = fibCopy->GetFiberPolyData(); } vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Extracting fibers"; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkCell* cellOriginal = m_FiberPolyData->GetCell(i); int numPointsOriginal = cellOriginal->GetNumberOfPoints(); vtkPoints* pointsOriginal = cellOriginal->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); if (numPoints>1 && numPointsOriginal) { if (anyPoint) { int inside = 0; int outside = 0; if (!invert) { for (int j=0; jGetPoint(j); itk::Point itkP; itkP[0] = p[0]; itkP[1] = p[1]; itkP[2] = p[2]; itk::Index<3> idx; mask->TransformPhysicalPointToIndex(itkP, idx); if ( mask->GetLargestPossibleRegion().IsInside(idx) && mask->GetPixel(idx) != 0 ) { inside++; if (fraction==0) break; } else outside++; } float current_fraction = 0.0; if (inside+outside>0) current_fraction = (float)inside/(inside+outside); if (current_fraction>fraction) { for (int k=0; kGetPoint(k); vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } } } else { bool includeFiber = true; for (int j=0; jGetPoint(j); itk::Point itkP; itkP[0] = p[0]; itkP[1] = p[1]; itkP[2] = p[2]; itk::Index<3> idx; mask->TransformPhysicalPointToIndex(itkP, idx); if ( mask->GetPixel(idx) != 0 && mask->GetLargestPossibleRegion().IsInside(idx) ) { inside++; includeFiber = false; break; } else outside++; } if (includeFiber) { for (int k=0; kGetPoint(k); vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } } } } else { double* start = pointsOriginal->GetPoint(0); itk::Point itkStart; itkStart[0] = start[0]; itkStart[1] = start[1]; itkStart[2] = start[2]; itk::Index<3> idxStart; mask->TransformPhysicalPointToIndex(itkStart, idxStart); double* end = pointsOriginal->GetPoint(numPointsOriginal-1); itk::Point itkEnd; itkEnd[0] = end[0]; itkEnd[1] = end[1]; itkEnd[2] = end[2]; itk::Index<3> idxEnd; mask->TransformPhysicalPointToIndex(itkEnd, idxEnd); if (invert) { if (bothEnds) { if ( mask->GetPixel(idxStart) == 0 && mask->GetPixel(idxEnd) == 0 ) { for (int j=0; jGetPoint(j); vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } } } else if ( mask->GetPixel(idxStart) == 0 || mask->GetPixel(idxEnd) == 0 ) { for (int j=0; jGetPoint(j); vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } } } else { if (bothEnds) { if ( mask->GetPixel(idxStart) != 0 && mask->GetPixel(idxEnd) != 0 && mask->GetLargestPossibleRegion().IsInside(idxStart) && mask->GetLargestPossibleRegion().IsInside(idxEnd) ) { for (int j=0; jGetPoint(j); vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } } } else if ( (mask->GetPixel(idxStart) != 0 && mask->GetLargestPossibleRegion().IsInside(idxStart)) || (mask->GetPixel(idxEnd) != 0 && mask->GetLargestPossibleRegion().IsInside(idxEnd)) ) { for (int j=0; jGetPoint(j); vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } } } } } vtkNewCells->InsertNextCell(container); } if (vtkNewCells->GetNumberOfCells()<=0) return nullptr; vtkSmartPointer newPolyData = vtkSmartPointer::New(); newPolyData->SetPoints(vtkNewPoints); newPolyData->SetLines(vtkNewCells); return mitk::FiberBundle::New(newPolyData); } mitk::FiberBundle::Pointer mitk::FiberBundle::RemoveFibersOutside(ItkUcharImgType* mask, bool invert) { float minSpacing = 1; if(mask->GetSpacing()[0]GetSpacing()[1] && mask->GetSpacing()[0]GetSpacing()[2]) minSpacing = mask->GetSpacing()[0]; else if (mask->GetSpacing()[1] < mask->GetSpacing()[2]) minSpacing = mask->GetSpacing()[1]; else minSpacing = mask->GetSpacing()[2]; mitk::FiberBundle::Pointer fibCopy = this->GetDeepCopy(); fibCopy->ResampleLinear(minSpacing/10); vtkSmartPointer PolyData =fibCopy->GetFiberPolyData(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Cutting fibers"; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); if (numPoints>1) { int newNumPoints = 0; for (int j=0; jGetPoint(j); itk::Point itkP; itkP[0] = p[0]; itkP[1] = p[1]; itkP[2] = p[2]; itk::Index<3> idx; mask->TransformPhysicalPointToIndex(itkP, idx); if ( mask->GetPixel(idx) != 0 && mask->GetLargestPossibleRegion().IsInside(idx) && !invert ) { vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); newNumPoints++; } else if ( (mask->GetPixel(idx) == 0 || !mask->GetLargestPossibleRegion().IsInside(idx)) && invert ) { vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); newNumPoints++; } else if (newNumPoints>0) { vtkNewCells->InsertNextCell(container); newNumPoints = 0; container = vtkSmartPointer::New(); } } if (newNumPoints>0) vtkNewCells->InsertNextCell(container); } } if (vtkNewCells->GetNumberOfCells()<=0) return nullptr; vtkSmartPointer newPolyData = vtkSmartPointer::New(); newPolyData->SetPoints(vtkNewPoints); newPolyData->SetLines(vtkNewCells); mitk::FiberBundle::Pointer newFib = mitk::FiberBundle::New(newPolyData); newFib->Compress(0.1); return newFib; } mitk::FiberBundle::Pointer mitk::FiberBundle::ExtractFiberSubset(DataNode* roi, DataStorage* storage) { if (roi==nullptr || !(dynamic_cast(roi->GetData()) || dynamic_cast(roi->GetData())) ) return nullptr; std::vector tmp = ExtractFiberIdSubset(roi, storage); if (tmp.size()<=0) return mitk::FiberBundle::New(); vtkSmartPointer pTmp = GeneratePolyDataByIds(tmp); return mitk::FiberBundle::New(pTmp); } std::vector mitk::FiberBundle::ExtractFiberIdSubset(DataNode *roi, DataStorage* storage) { std::vector result; if (roi==nullptr || roi->GetData()==nullptr) return result; mitk::PlanarFigureComposite::Pointer pfc = dynamic_cast(roi->GetData()); if (!pfc.IsNull()) // handle composite { DataStorage::SetOfObjects::ConstPointer children = storage->GetDerivations(roi); if (children->size()==0) return result; switch (pfc->getOperationType()) { case 0: // AND { MITK_INFO << "AND"; result = this->ExtractFiberIdSubset(children->ElementAt(0), storage); std::vector::iterator it; for (unsigned int i=1; iSize(); ++i) { std::vector inRoi = this->ExtractFiberIdSubset(children->ElementAt(i), storage); std::vector rest(std::min(result.size(),inRoi.size())); it = std::set_intersection(result.begin(), result.end(), inRoi.begin(), inRoi.end(), rest.begin() ); rest.resize( it - rest.begin() ); result = rest; } break; } case 1: // OR { MITK_INFO << "OR"; result = ExtractFiberIdSubset(children->ElementAt(0), storage); std::vector::iterator it; for (unsigned int i=1; iSize(); ++i) { it = result.end(); std::vector inRoi = ExtractFiberIdSubset(children->ElementAt(i), storage); result.insert(it, inRoi.begin(), inRoi.end()); } // remove duplicates sort(result.begin(), result.end()); it = unique(result.begin(), result.end()); result.resize( it - result.begin() ); break; } case 2: // NOT { MITK_INFO << "NOT"; for(long i=0; iGetNumFibers(); i++) result.push_back(i); std::vector::iterator it; for (unsigned int i=0; iSize(); ++i) { std::vector inRoi = ExtractFiberIdSubset(children->ElementAt(i), storage); std::vector rest(result.size()-inRoi.size()); it = std::set_difference(result.begin(), result.end(), inRoi.begin(), inRoi.end(), rest.begin() ); rest.resize( it - rest.begin() ); result = rest; } break; } } } else if ( dynamic_cast(roi->GetData()) ) // actual extraction { if ( dynamic_cast(roi->GetData()) ) { mitk::PlanarFigure::Pointer planarPoly = dynamic_cast(roi->GetData()); //create vtkPolygon using controlpoints from planarFigure polygon vtkSmartPointer polygonVtk = vtkSmartPointer::New(); for (unsigned int i=0; iGetNumberOfControlPoints(); ++i) { itk::Point p = planarPoly->GetWorldControlPoint(i); vtkIdType id = polygonVtk->GetPoints()->InsertNextPoint(p[0], p[1], p[2] ); polygonVtk->GetPointIds()->InsertNextId(id); } MITK_INFO << "Extracting with polygon"; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; jGetPoint(j, p1); double p2[3] = {0,0,0}; points->GetPoint(j+1, p2); double tolerance = 0.001; // Outputs double t = 0; // Parametric coordinate of intersection (0 (corresponding to p1) to 1 (corresponding to p2)) double x[3] = {0,0,0}; // The coordinate of the intersection double pcoords[3] = {0,0,0}; int subId = 0; int iD = polygonVtk->IntersectWithLine(p1, p2, tolerance, t, x, pcoords, subId); if (iD!=0) { result.push_back(i); break; } } } } else if ( dynamic_cast(roi->GetData()) ) { mitk::PlanarFigure::Pointer planarFigure = dynamic_cast(roi->GetData()); Vector3D planeNormal = planarFigure->GetPlaneGeometry()->GetNormal(); planeNormal.Normalize(); //calculate circle radius mitk::Point3D V1w = planarFigure->GetWorldControlPoint(0); //centerPoint mitk::Point3D V2w = planarFigure->GetWorldControlPoint(1); //radiusPoint double radius = V1w.EuclideanDistanceTo(V2w); radius *= radius; MITK_INFO << "Extracting with circle"; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; jGetPoint(j, p1); double p2[3] = {0,0,0}; points->GetPoint(j+1, p2); // Outputs double t = 0; // Parametric coordinate of intersection (0 (corresponding to p1) to 1 (corresponding to p2)) double x[3] = {0,0,0}; // The coordinate of the intersection int iD = vtkPlane::IntersectWithLine(p1,p2,planeNormal.GetDataPointer(),V1w.GetDataPointer(),t,x); if (iD!=0) { double dist = (x[0]-V1w[0])*(x[0]-V1w[0])+(x[1]-V1w[1])*(x[1]-V1w[1])+(x[2]-V1w[2])*(x[2]-V1w[2]); if( dist <= radius) { result.push_back(i); break; } } } } } return result; } return result; } void mitk::FiberBundle::UpdateFiberGeometry() { vtkSmartPointer cleaner = vtkSmartPointer::New(); cleaner->SetInputData(m_FiberPolyData); cleaner->PointMergingOff(); cleaner->Update(); m_FiberPolyData = cleaner->GetOutput(); m_FiberLengths.clear(); m_MeanFiberLength = 0; m_MedianFiberLength = 0; m_LengthStDev = 0; m_NumFibers = m_FiberPolyData->GetNumberOfCells(); if (m_FiberColors==nullptr || m_FiberColors->GetNumberOfTuples()!=m_FiberPolyData->GetNumberOfPoints()) this->ColorFibersByOrientation(); if (m_FiberWeights->GetSize()!=m_NumFibers) { m_FiberWeights = vtkSmartPointer::New(); m_FiberWeights->SetName("FIBER_WEIGHTS"); m_FiberWeights->SetNumberOfValues(m_NumFibers); this->SetFiberWeights(1); } if (m_NumFibers<=0) // no fibers present; apply default geometry { m_MinFiberLength = 0; m_MaxFiberLength = 0; mitk::Geometry3D::Pointer geometry = mitk::Geometry3D::New(); geometry->SetImageGeometry(false); float b[] = {0, 1, 0, 1, 0, 1}; geometry->SetFloatBounds(b); SetGeometry(geometry); return; } double b[6]; m_FiberPolyData->GetBounds(b); // calculate statistics for (int i=0; iGetNumberOfCells(); i++) { vtkCell* cell = m_FiberPolyData->GetCell(i); int p = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); float length = 0; for (int j=0; jGetPoint(j, p1); double p2[3]; points->GetPoint(j+1, p2); float dist = std::sqrt((p1[0]-p2[0])*(p1[0]-p2[0])+(p1[1]-p2[1])*(p1[1]-p2[1])+(p1[2]-p2[2])*(p1[2]-p2[2])); length += dist; } m_FiberLengths.push_back(length); m_MeanFiberLength += length; if (i==0) { m_MinFiberLength = length; m_MaxFiberLength = length; } else { if (lengthm_MaxFiberLength) m_MaxFiberLength = length; } } m_MeanFiberLength /= m_NumFibers; std::vector< float > sortedLengths = m_FiberLengths; std::sort(sortedLengths.begin(), sortedLengths.end()); for (int i=0; i1) m_LengthStDev /= (m_NumFibers-1); else m_LengthStDev = 0; m_LengthStDev = std::sqrt(m_LengthStDev); m_MedianFiberLength = sortedLengths.at(m_NumFibers/2); mitk::Geometry3D::Pointer geometry = mitk::Geometry3D::New(); geometry->SetFloatBounds(b); this->SetGeometry(geometry); m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } float mitk::FiberBundle::GetFiberWeight(unsigned int fiber) const { return m_FiberWeights->GetValue(fiber); } void mitk::FiberBundle::SetFiberWeights(float newWeight) { for (int i=0; iGetSize(); i++) m_FiberWeights->SetValue(i, newWeight); } void mitk::FiberBundle::SetFiberWeights(vtkSmartPointer weights) { if (m_NumFibers!=weights->GetSize()) { MITK_INFO << "Weights array not equal to number of fibers!"; return; } for (int i=0; iGetSize(); i++) m_FiberWeights->SetValue(i, weights->GetValue(i)); m_FiberWeights->SetName("FIBER_WEIGHTS"); } void mitk::FiberBundle::SetFiberWeight(unsigned int fiber, float weight) { m_FiberWeights->SetValue(fiber, weight); } void mitk::FiberBundle::SetFiberColors(vtkSmartPointer fiberColors) { for(long i=0; iGetNumberOfPoints(); ++i) { unsigned char source[4] = {0,0,0,0}; fiberColors->GetTupleValue(i, source); unsigned char target[4] = {0,0,0,0}; target[0] = source[0]; target[1] = source[1]; target[2] = source[2]; target[3] = source[3]; m_FiberColors->InsertTupleValue(i, target); } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } itk::Matrix< double, 3, 3 > mitk::FiberBundle::TransformMatrix(itk::Matrix< double, 3, 3 > m, double rx, double ry, double rz) { rx = rx*M_PI/180; ry = ry*M_PI/180; rz = rz*M_PI/180; itk::Matrix< double, 3, 3 > rotX; rotX.SetIdentity(); rotX[1][1] = cos(rx); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(rx); rotX[2][1] = -rotX[1][2]; itk::Matrix< double, 3, 3 > rotY; rotY.SetIdentity(); rotY[0][0] = cos(ry); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(ry); rotY[2][0] = -rotY[0][2]; itk::Matrix< double, 3, 3 > rotZ; rotZ.SetIdentity(); rotZ[0][0] = cos(rz); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(rz); rotZ[1][0] = -rotZ[0][1]; itk::Matrix< double, 3, 3 > rot = rotZ*rotY*rotX; m = rot*m; return m; } itk::Point mitk::FiberBundle::TransformPoint(vnl_vector_fixed< double, 3 > point, double rx, double ry, double rz, double tx, double ty, double tz) { rx = rx*M_PI/180; ry = ry*M_PI/180; rz = rz*M_PI/180; vnl_matrix_fixed< double, 3, 3 > rotX; rotX.set_identity(); rotX[1][1] = cos(rx); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(rx); rotX[2][1] = -rotX[1][2]; vnl_matrix_fixed< double, 3, 3 > rotY; rotY.set_identity(); rotY[0][0] = cos(ry); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(ry); rotY[2][0] = -rotY[0][2]; vnl_matrix_fixed< double, 3, 3 > rotZ; rotZ.set_identity(); rotZ[0][0] = cos(rz); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(rz); rotZ[1][0] = -rotZ[0][1]; vnl_matrix_fixed< double, 3, 3 > rot = rotZ*rotY*rotX; mitk::BaseGeometry::Pointer geom = this->GetGeometry(); mitk::Point3D center = geom->GetCenter(); point[0] -= center[0]; point[1] -= center[1]; point[2] -= center[2]; point = rot*point; point[0] += center[0]+tx; point[1] += center[1]+ty; point[2] += center[2]+tz; itk::Point out; out[0] = point[0]; out[1] = point[1]; out[2] = point[2]; return out; } void mitk::FiberBundle::TransformFibers(double rx, double ry, double rz, double tx, double ty, double tz) { rx = rx*M_PI/180; ry = ry*M_PI/180; rz = rz*M_PI/180; vnl_matrix_fixed< double, 3, 3 > rotX; rotX.set_identity(); rotX[1][1] = cos(rx); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(rx); rotX[2][1] = -rotX[1][2]; vnl_matrix_fixed< double, 3, 3 > rotY; rotY.set_identity(); rotY[0][0] = cos(ry); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(ry); rotY[2][0] = -rotY[0][2]; vnl_matrix_fixed< double, 3, 3 > rotZ; rotZ.set_identity(); rotZ[0][0] = cos(rz); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(rz); rotZ[1][0] = -rotZ[0][1]; vnl_matrix_fixed< double, 3, 3 > rot = rotZ*rotY*rotX; mitk::BaseGeometry::Pointer geom = this->GetGeometry(); mitk::Point3D center = geom->GetCenter(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vnl_vector_fixed< double, 3 > dir; dir[0] = p[0]-center[0]; dir[1] = p[1]-center[1]; dir[2] = p[2]-center[2]; dir = rot*dir; dir[0] += center[0]+tx; dir[1] += center[1]+ty; dir[2] += center[2]+tz; vtkIdType id = vtkNewPoints->InsertNextPoint(dir.data_block()); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::RotateAroundAxis(double x, double y, double z) { x = x*M_PI/180; y = y*M_PI/180; z = z*M_PI/180; vnl_matrix_fixed< double, 3, 3 > rotX; rotX.set_identity(); rotX[1][1] = cos(x); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(x); rotX[2][1] = -rotX[1][2]; vnl_matrix_fixed< double, 3, 3 > rotY; rotY.set_identity(); rotY[0][0] = cos(y); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(y); rotY[2][0] = -rotY[0][2]; vnl_matrix_fixed< double, 3, 3 > rotZ; rotZ.set_identity(); rotZ[0][0] = cos(z); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(z); rotZ[1][0] = -rotZ[0][1]; mitk::BaseGeometry::Pointer geom = this->GetGeometry(); mitk::Point3D center = geom->GetCenter(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vnl_vector_fixed< double, 3 > dir; dir[0] = p[0]-center[0]; dir[1] = p[1]-center[1]; dir[2] = p[2]-center[2]; dir = rotZ*rotY*rotX*dir; dir[0] += center[0]; dir[1] += center[1]; dir[2] += center[2]; vtkIdType id = vtkNewPoints->InsertNextPoint(dir.data_block()); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::ScaleFibers(double x, double y, double z, bool subtractCenter) { MITK_INFO << "Scaling fibers"; boost::progress_display disp(m_NumFibers); mitk::BaseGeometry* geom = this->GetGeometry(); mitk::Point3D c = geom->GetCenter(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); if (subtractCenter) { p[0] -= c[0]; p[1] -= c[1]; p[2] -= c[2]; } p[0] *= x; p[1] *= y; p[2] *= z; if (subtractCenter) { p[0] += c[0]; p[1] += c[1]; p[2] += c[2]; } vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::TranslateFibers(double x, double y, double z) { vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); p[0] += x; p[1] += y; p[2] += z; vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::MirrorFibers(unsigned int axis) { if (axis>2) return; MITK_INFO << "Mirroring fibers"; boost::progress_display disp(m_NumFibers); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); p[axis] = -p[axis]; vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::RemoveDir(vnl_vector_fixed dir, double threshold) { dir.normalize(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); boost::progress_display disp(m_FiberPolyData->GetNumberOfCells()); for (int i=0; iGetNumberOfCells(); i++) { ++disp ; vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); // calculate curvatures vtkSmartPointer container = vtkSmartPointer::New(); bool discard = false; for (int j=0; jGetPoint(j, p1); double p2[3]; points->GetPoint(j+1, p2); vnl_vector_fixed< double, 3 > v1; v1[0] = p2[0]-p1[0]; v1[1] = p2[1]-p1[1]; v1[2] = p2[2]-p1[2]; if (v1.magnitude()>0.001) { v1.normalize(); if (fabs(dot_product(v1,dir))>threshold) { discard = true; break; } } } if (!discard) { for (int j=0; jGetPoint(j, p1); vtkIdType id = vtkNewPoints->InsertNextPoint(p1); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); // UpdateColorCoding(); // UpdateFiberGeometry(); } bool mitk::FiberBundle::ApplyCurvatureThreshold(float minRadius, bool deleteFibers) { if (minRadius<0) return true; vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Applying curvature threshold"; boost::progress_display disp(m_FiberPolyData->GetNumberOfCells()); for (int i=0; iGetNumberOfCells(); i++) { ++disp ; vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); // calculate curvatures vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j, p1); double p2[3]; points->GetPoint(j+1, p2); double p3[3]; points->GetPoint(j+2, p3); vnl_vector_fixed< float, 3 > v1, v2, v3; v1[0] = p2[0]-p1[0]; v1[1] = p2[1]-p1[1]; v1[2] = p2[2]-p1[2]; v2[0] = p3[0]-p2[0]; v2[1] = p3[1]-p2[1]; v2[2] = p3[2]-p2[2]; v3[0] = p1[0]-p3[0]; v3[1] = p1[1]-p3[1]; v3[2] = p1[2]-p3[2]; float a = v1.magnitude(); float b = v2.magnitude(); float c = v3.magnitude(); float r = a*b*c/std::sqrt((a+b+c)*(a+b-c)*(b+c-a)*(a-b+c)); // radius of triangle via Heron's formula (area of triangle) vtkIdType id = vtkNewPoints->InsertNextPoint(p1); container->GetPointIds()->InsertNextId(id); if (deleteFibers && rInsertNextCell(container); container = vtkSmartPointer::New(); } else if (j==numPoints-3) { id = vtkNewPoints->InsertNextPoint(p2); container->GetPointIds()->InsertNextId(id); id = vtkNewPoints->InsertNextPoint(p3); container->GetPointIds()->InsertNextId(id); vtkNewCells->InsertNextCell(container); } } } if (vtkNewCells->GetNumberOfCells()<=0) return false; m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); return true; } bool mitk::FiberBundle::RemoveShortFibers(float lengthInMM) { MITK_INFO << "Removing short fibers"; if (lengthInMM<=0 || lengthInMMm_MaxFiberLength) // can't remove all fibers { MITK_WARN << "Process aborted. No fibers would be left!"; return false; } vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); float min = m_MaxFiberLength; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (m_FiberLengths.at(i)>=lengthInMM) { vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); if (m_FiberLengths.at(i)GetNumberOfCells()<=0) return false; m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); return true; } bool mitk::FiberBundle::RemoveLongFibers(float lengthInMM) { if (lengthInMM<=0 || lengthInMM>m_MaxFiberLength) return true; if (lengthInMM vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Removing long fibers"; boost::progress_display disp(m_NumFibers); for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (m_FiberLengths.at(i)<=lengthInMM) { vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } } if (vtkNewCells->GetNumberOfCells()<=0) return false; m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); return true; } void mitk::FiberBundle::ResampleSpline(float pointDistance, double tension, double continuity, double bias ) { if (pointDistance<=0) return; vtkSmartPointer vtkSmoothPoints = vtkSmartPointer::New(); //in smoothpoints the interpolated points representing a fiber are stored. //in vtkcells all polylines are stored, actually all id's of them are stored vtkSmartPointer vtkSmoothCells = vtkSmartPointer::New(); //cellcontainer for smoothed lines vtkIdType pointHelperCnt = 0; MITK_INFO << "Smoothing fibers"; vtkSmartPointer newFiberWeights = vtkSmartPointer::New(); newFiberWeights->SetName("FIBER_WEIGHTS"); newFiberWeights->SetNumberOfValues(m_NumFibers); boost::progress_display disp(m_NumFibers); #pragma omp parallel for for (int i=0; i newPoints = vtkSmartPointer::New(); float length = 0; float weight = 1; #pragma omp critical { length = m_FiberLengths.at(i); weight = m_FiberWeights->GetValue(i); ++disp; vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; jInsertNextPoint(points->GetPoint(j)); } int sampling = std::ceil(length/pointDistance); vtkSmartPointer xSpline = vtkSmartPointer::New(); vtkSmartPointer ySpline = vtkSmartPointer::New(); vtkSmartPointer zSpline = vtkSmartPointer::New(); xSpline->SetDefaultBias(bias); xSpline->SetDefaultTension(tension); xSpline->SetDefaultContinuity(continuity); ySpline->SetDefaultBias(bias); ySpline->SetDefaultTension(tension); ySpline->SetDefaultContinuity(continuity); zSpline->SetDefaultBias(bias); zSpline->SetDefaultTension(tension); zSpline->SetDefaultContinuity(continuity); vtkSmartPointer spline = vtkSmartPointer::New(); spline->SetXSpline(xSpline); spline->SetYSpline(ySpline); spline->SetZSpline(zSpline); spline->SetPoints(newPoints); vtkSmartPointer functionSource = vtkSmartPointer::New(); functionSource->SetParametricFunction(spline); functionSource->SetUResolution(sampling); functionSource->SetVResolution(sampling); functionSource->SetWResolution(sampling); functionSource->Update(); vtkPolyData* outputFunction = functionSource->GetOutput(); vtkPoints* tmpSmoothPnts = outputFunction->GetPoints(); //smoothPoints of current fiber vtkSmartPointer smoothLine = vtkSmartPointer::New(); smoothLine->GetPointIds()->SetNumberOfIds(tmpSmoothPnts->GetNumberOfPoints()); #pragma omp critical { for (int j=0; jGetNumberOfPoints(); j++) { smoothLine->GetPointIds()->SetId(j, j+pointHelperCnt); vtkSmoothPoints->InsertNextPoint(tmpSmoothPnts->GetPoint(j)); } newFiberWeights->SetValue(vtkSmoothCells->GetNumberOfCells(), weight); vtkSmoothCells->InsertNextCell(smoothLine); pointHelperCnt += tmpSmoothPnts->GetNumberOfPoints(); } } SetFiberWeights(newFiberWeights); m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkSmoothPoints); m_FiberPolyData->SetLines(vtkSmoothCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::ResampleSpline(float pointDistance) { ResampleSpline(pointDistance, 0, 0, 0 ); } unsigned long mitk::FiberBundle::GetNumberOfPoints() const { unsigned long points = 0; for (int i=0; iGetNumberOfCells(); i++) { vtkCell* cell = m_FiberPolyData->GetCell(i); points += cell->GetNumberOfPoints(); } return points; } void mitk::FiberBundle::Compress(float error) { vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Compressing fibers"; unsigned long numRemovedPoints = 0; boost::progress_display disp(m_FiberPolyData->GetNumberOfCells()); vtkSmartPointer newFiberWeights = vtkSmartPointer::New(); newFiberWeights->SetName("FIBER_WEIGHTS"); newFiberWeights->SetNumberOfValues(m_NumFibers); #pragma omp parallel for for (int i=0; iGetNumberOfCells(); i++) { std::vector< vnl_vector_fixed< double, 3 > > vertices; float weight = 1; #pragma omp critical { ++disp; weight = m_FiberWeights->GetValue(i); vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; jGetPoint(j, cand); vnl_vector_fixed< double, 3 > candV; candV[0]=cand[0]; candV[1]=cand[1]; candV[2]=cand[2]; vertices.push_back(candV); } } // calculate curvatures int numPoints = vertices.size(); std::vector< int > removedPoints; removedPoints.resize(numPoints, 0); removedPoints[0]=-1; removedPoints[numPoints-1]=-1; vtkSmartPointer container = vtkSmartPointer::New(); int remCounter = 0; bool pointFound = true; while (pointFound) { pointFound = false; double minError = error; int removeIndex = -1; for (int j=0; j candV = vertices.at(j); int validP = -1; vnl_vector_fixed< double, 3 > pred; for (int k=j-1; k>=0; k--) if (removedPoints[k]<=0) { pred = vertices.at(k); validP = k; break; } int validS = -1; vnl_vector_fixed< double, 3 > succ; for (int k=j+1; k=0 && validS>=0) { double a = (candV-pred).magnitude(); double b = (candV-succ).magnitude(); double c = (pred-succ).magnitude(); double s=0.5*(a+b+c); double hc=(2.0/c)*sqrt(fabs(s*(s-a)*(s-b)*(s-c))); if (hcInsertNextPoint(vertices.at(j).data_block()); container->GetPointIds()->InsertNextId(id); } } } #pragma omp critical { newFiberWeights->SetValue(vtkNewCells->GetNumberOfCells(), weight); numRemovedPoints += remCounter; vtkNewCells->InsertNextCell(container); } } if (vtkNewCells->GetNumberOfCells()>0) { MITK_INFO << "Removed points: " << numRemovedPoints; SetFiberWeights(newFiberWeights); m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } } void mitk::FiberBundle::ResampleLinear(double pointDistance) { vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Resampling fibers (linear)"; boost::progress_display disp(m_FiberPolyData->GetNumberOfCells()); vtkSmartPointer newFiberWeights = vtkSmartPointer::New(); newFiberWeights->SetName("FIBER_WEIGHTS"); newFiberWeights->SetNumberOfValues(m_NumFibers); #pragma omp parallel for for (int i=0; iGetNumberOfCells(); i++) { std::vector< vnl_vector_fixed< double, 3 > > vertices; float weight = 1; #pragma omp critical { ++disp; weight = m_FiberWeights->GetValue(i); vtkCell* cell = m_FiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; jGetPoint(j, cand); vnl_vector_fixed< double, 3 > candV; candV[0]=cand[0]; candV[1]=cand[1]; candV[2]=cand[2]; vertices.push_back(candV); } } vtkSmartPointer container = vtkSmartPointer::New(); vnl_vector_fixed< double, 3 > lastV = vertices.at(0); #pragma omp critical { vtkIdType id = vtkNewPoints->InsertNextPoint(lastV.data_block()); container->GetPointIds()->InsertNextId(id); } for (unsigned int j=1; j vec = vertices.at(j) - lastV; double new_dist = vec.magnitude(); if (new_dist >= pointDistance) { vnl_vector_fixed< double, 3 > newV = lastV; if ( new_dist-pointDistance <= mitk::eps ) { vec.normalize(); newV += vec * pointDistance; } else { // intersection between sphere (radius 'pointDistance', center 'lastV') and line (direction 'd' and point 'p') vnl_vector_fixed< double, 3 > p = vertices.at(j-1); vnl_vector_fixed< double, 3 > d = vertices.at(j) - p; double a = d[0]*d[0] + d[1]*d[1] + d[2]*d[2]; double b = 2 * (d[0] * (p[0] - lastV[0]) + d[1] * (p[1] - lastV[1]) + d[2] * (p[2] - lastV[2])); double c = (p[0] - lastV[0])*(p[0] - lastV[0]) + (p[1] - lastV[1])*(p[1] - lastV[1]) + (p[2] - lastV[2])*(p[2] - lastV[2]) - pointDistance*pointDistance; double v1 =(-b + std::sqrt(b*b-4*a*c))/(2*a); double v2 =(-b - std::sqrt(b*b-4*a*c))/(2*a); if (v1>0) newV = p + d * v1; else if (v2>0) newV = p + d * v2; else MITK_INFO << "ERROR1 - linear resampling"; j--; } #pragma omp critical { vtkIdType id = vtkNewPoints->InsertNextPoint(newV.data_block()); container->GetPointIds()->InsertNextId(id); } lastV = newV; } else if (j==vertices.size()-1 && new_dist>0.0001) { #pragma omp critical { vtkIdType id = vtkNewPoints->InsertNextPoint(vertices.at(j).data_block()); container->GetPointIds()->InsertNextId(id); } } } #pragma omp critical { newFiberWeights->SetValue(vtkNewCells->GetNumberOfCells(), weight); vtkNewCells->InsertNextCell(container); } } if (vtkNewCells->GetNumberOfCells()>0) { SetFiberWeights(newFiberWeights); m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } } // reapply selected colorcoding in case PolyData structure has changed bool mitk::FiberBundle::Equals(mitk::FiberBundle* fib, double eps) { if (fib==nullptr) { MITK_INFO << "Reference bundle is nullptr!"; return false; } if (m_NumFibers!=fib->GetNumFibers()) { MITK_INFO << "Unequal number of fibers!"; MITK_INFO << m_NumFibers << " vs. " << fib->GetNumFibers(); return false; } for (int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkCell* cell2 = fib->GetFiberPolyData()->GetCell(i); int numPoints2 = cell2->GetNumberOfPoints(); vtkPoints* points2 = cell2->GetPoints(); if (numPoints2!=numPoints) { MITK_INFO << "Unequal number of points in fiber " << i << "!"; MITK_INFO << numPoints2 << " vs. " << numPoints; return false; } for (int j=0; jGetPoint(j); double* p2 = points2->GetPoint(j); if (fabs(p1[0]-p2[0])>eps || fabs(p1[1]-p2[1])>eps || fabs(p1[2]-p2[2])>eps) { MITK_INFO << "Unequal points in fiber " << i << " at position " << j << "!"; MITK_INFO << "p1: " << p1[0] << ", " << p1[1] << ", " << p1[2]; MITK_INFO << "p2: " << p2[0] << ", " << p2[1] << ", " << p2[2]; return false; } } } return true; } /* ESSENTIAL IMPLEMENTATION OF SUPERCLASS METHODS */ void mitk::FiberBundle::UpdateOutputInformation() { } void mitk::FiberBundle::SetRequestedRegionToLargestPossibleRegion() { } bool mitk::FiberBundle::RequestedRegionIsOutsideOfTheBufferedRegion() { return false; } bool mitk::FiberBundle::VerifyRequestedRegion() { return true; } void mitk::FiberBundle::SetRequestedRegion(const itk::DataObject* ) { } diff --git a/Modules/DiffusionImaging/FiberTracking/IODataStructures/FiberBundle/mitkFiberBundle.h b/Modules/DiffusionImaging/FiberTracking/IODataStructures/FiberBundle/mitkFiberBundle.h index bc65bf7c11..ddad2d3335 100644 --- a/Modules/DiffusionImaging/FiberTracking/IODataStructures/FiberBundle/mitkFiberBundle.h +++ b/Modules/DiffusionImaging/FiberTracking/IODataStructures/FiberBundle/mitkFiberBundle.h @@ -1,177 +1,177 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _MITK_FiberBundle_H #define _MITK_FiberBundle_H //includes for MITK datastructure #include #include #include #include #include #include #include //includes storing fiberdata #include #include #include #include #include #include namespace mitk { /** * \brief Base Class for Fiber Bundles; */ class MITKFIBERTRACKING_EXPORT FiberBundle : public BaseData { public: typedef itk::Image ItkUcharImgType; // fiber colorcodings static const char* FIBER_ID_ARRAY; virtual void UpdateOutputInformation() override; virtual void SetRequestedRegionToLargestPossibleRegion() override; virtual bool RequestedRegionIsOutsideOfTheBufferedRegion() override; virtual bool VerifyRequestedRegion() override; virtual void SetRequestedRegion(const itk::DataObject*) override; mitkClassMacro( FiberBundle, BaseData ) itkFactorylessNewMacro(Self) itkCloneMacro(Self) mitkNewMacro1Param(Self, vtkSmartPointer) // custom constructor // colorcoding related methods - void ColorFibersByFiberWeights(); - void ColorFibersByCurvature(bool minMaxNorm=true); - void ColorFibersByScalarMap(mitk::Image::Pointer, bool opacity); + void ColorFibersByFiberWeights(bool opacity, bool normalize); + void ColorFibersByCurvature(bool opacity, bool normalize); + void ColorFibersByScalarMap(mitk::Image::Pointer, bool opacity, bool normalize); template - void ColorFibersByScalarMap(const mitk::PixelType pixelType, mitk::Image::Pointer, bool opacity); + void ColorFibersByScalarMap(const mitk::PixelType pixelType, mitk::Image::Pointer, bool opacity, bool normalize); void ColorFibersByOrientation(); void SetFiberOpacity(vtkDoubleArray *FAValArray); void ResetFiberOpacity(); void SetFiberColors(vtkSmartPointer fiberColors); void SetFiberColors(float r, float g, float b, float alpha=255); vtkSmartPointer GetFiberColors() const { return m_FiberColors; } // fiber compression void Compress(float error = 0.0); // fiber resampling void ResampleSpline(float pointDistance=1); void ResampleSpline(float pointDistance, double tension, double continuity, double bias ); void ResampleLinear(double pointDistance=1); bool RemoveShortFibers(float lengthInMM); bool RemoveLongFibers(float lengthInMM); bool ApplyCurvatureThreshold(float minRadius, bool deleteFibers); void MirrorFibers(unsigned int axis); void RotateAroundAxis(double x, double y, double z); void TranslateFibers(double x, double y, double z); void ScaleFibers(double x, double y, double z, bool subtractCenter=true); void TransformFibers(double rx, double ry, double rz, double tx, double ty, double tz); void RemoveDir(vnl_vector_fixed dir, double threshold); itk::Point TransformPoint(vnl_vector_fixed< double, 3 > point, double rx, double ry, double rz, double tx, double ty, double tz); itk::Matrix< double, 3, 3 > TransformMatrix(itk::Matrix< double, 3, 3 > m, double rx, double ry, double rz); // add/subtract fibers FiberBundle::Pointer AddBundle(FiberBundle* fib); FiberBundle::Pointer SubtractBundle(FiberBundle* fib); // fiber subset extraction FiberBundle::Pointer ExtractFiberSubset(DataNode *roi, DataStorage* storage); std::vector ExtractFiberIdSubset(DataNode* roi, DataStorage* storage); FiberBundle::Pointer ExtractFiberSubset(ItkUcharImgType* mask, bool anyPoint, bool invert=false, bool bothEnds=true, float fraction=0.0); FiberBundle::Pointer RemoveFibersOutside(ItkUcharImgType* mask, bool invert=false); vtkSmartPointer GeneratePolyDataByIds( std::vector ); // TODO: make protected void GenerateFiberIds(); // TODO: make protected // get/set data vtkSmartPointer GetFiberWeights() const { return m_FiberWeights; } float GetFiberWeight(unsigned int fiber) const; void SetFiberWeights(float newWeight); void SetFiberWeight(unsigned int fiber, float weight); void SetFiberWeights(vtkSmartPointer weights); void SetFiberPolyData(vtkSmartPointer, bool updateGeometry = true); vtkSmartPointer GetFiberPolyData() const; itkGetConstMacro( NumFibers, int) //itkGetMacro( FiberSampling, int) itkGetConstMacro( MinFiberLength, float ) itkGetConstMacro( MaxFiberLength, float ) itkGetConstMacro( MeanFiberLength, float ) itkGetConstMacro( MedianFiberLength, float ) itkGetConstMacro( LengthStDev, float ) itkGetConstMacro( UpdateTime2D, itk::TimeStamp ) itkGetConstMacro( UpdateTime3D, itk::TimeStamp ) void RequestUpdate2D(){ m_UpdateTime2D.Modified(); } void RequestUpdate3D(){ m_UpdateTime3D.Modified(); } void RequestUpdate(){ m_UpdateTime2D.Modified(); m_UpdateTime3D.Modified(); } unsigned long GetNumberOfPoints() const; // copy fiber bundle mitk::FiberBundle::Pointer GetDeepCopy(); // compare fiber bundles bool Equals(FiberBundle* fib, double eps=0.01); itkSetMacro( ReferenceGeometry, mitk::BaseGeometry::Pointer ) itkGetConstMacro( ReferenceGeometry, mitk::BaseGeometry::Pointer ) protected: FiberBundle( vtkPolyData* fiberPolyData = nullptr ); virtual ~FiberBundle(); itk::Point GetItkPoint(double point[3]); // calculate geometry from fiber extent void UpdateFiberGeometry(); private: // actual fiber container vtkSmartPointer m_FiberPolyData; // contains fiber ids vtkSmartPointer m_FiberIdDataSet; int m_NumFibers; vtkSmartPointer m_FiberColors; vtkSmartPointer m_FiberWeights; std::vector< float > m_FiberLengths; float m_MinFiberLength; float m_MaxFiberLength; float m_MeanFiberLength; float m_MedianFiberLength; float m_LengthStDev; itk::TimeStamp m_UpdateTime2D; itk::TimeStamp m_UpdateTime3D; mitk::BaseGeometry::Pointer m_ReferenceGeometry; }; } // namespace mitk #endif /* _MITK_FiberBundle_H */ diff --git a/Modules/DiffusionImaging/FiberTracking/cmdapps/Tractography/CMakeLists.txt b/Modules/DiffusionImaging/FiberTracking/cmdapps/Tractography/CMakeLists.txt index e509b3958c..f8ab7cfa92 100755 --- a/Modules/DiffusionImaging/FiberTracking/cmdapps/Tractography/CMakeLists.txt +++ b/Modules/DiffusionImaging/FiberTracking/cmdapps/Tractography/CMakeLists.txt @@ -1,40 +1,40 @@ option(BUILD_DiffusionTractographyCmdApps "Build commandline tools for diffusion fiber tractography" OFF) if(BUILD_DiffusionTractographyCmdApps OR MITK_BUILD_ALL_APPS) # needed include directories include_directories( ${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR} ) # list of diffusion cmdapps # if an app requires additional dependencies # they are added after a "^^" and separated by "_" set( diffusiontractographycmdapps - StreamlineTracking^^MitkFiberTracking - GibbsTracking^^MitkFiberTracking + StreamlineTractography^^MitkFiberTracking + GlobalTractography^^MitkFiberTracking RfTraining^^MitkFiberTracking ) foreach(diffusiontractographycmdapp ${diffusiontractographycmdapps}) # extract cmd app name and dependencies string(REPLACE "^^" "\\;" cmdapp_info ${diffusiontractographycmdapp}) set(cmdapp_info_list ${cmdapp_info}) list(GET cmdapp_info_list 0 appname) list(GET cmdapp_info_list 1 raw_dependencies) string(REPLACE "_" "\\;" dependencies "${raw_dependencies}") set(dependencies_list ${dependencies}) mitkFunctionCreateCommandLineApp( NAME ${appname} DEPENDS MitkCore MitkDiffusionCore ${dependencies_list} PACKAGE_DEPENDS ITK ) endforeach() if(EXECUTABLE_IS_ENABLED) MITK_INSTALL_TARGETS(EXECUTABLES ${EXECUTABLE_TARGET}) endif() endif() diff --git a/Modules/DiffusionImaging/FiberTracking/cmdapps/Tractography/GibbsTracking.cpp b/Modules/DiffusionImaging/FiberTracking/cmdapps/Tractography/GlobalTractography.cpp similarity index 98% rename from Modules/DiffusionImaging/FiberTracking/cmdapps/Tractography/GibbsTracking.cpp rename to Modules/DiffusionImaging/FiberTracking/cmdapps/Tractography/GlobalTractography.cpp index e46669e925..b66cd57eae 100755 --- a/Modules/DiffusionImaging/FiberTracking/cmdapps/Tractography/GibbsTracking.cpp +++ b/Modules/DiffusionImaging/FiberTracking/cmdapps/Tractography/GlobalTractography.cpp @@ -1,240 +1,240 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include "mitkCommandLineParser.h" #include #include #include template typename itk::ShCoefficientImageImporter< float, shOrder >::QballImageType::Pointer TemplatedConvertShCoeffs(mitk::Image* mitkImg, int toolkit, bool noFlip = false) { typedef itk::ShCoefficientImageImporter< float, shOrder > FilterType; typedef mitk::ImageToItk< itk::Image< float, 4 > > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(mitkImg); caster->Update(); itk::Image< float, 4 >::Pointer itkImage = caster->GetOutput(); typename FilterType::Pointer filter = FilterType::New(); if (noFlip) { filter->SetInputImage(itkImage); } else { std::cout << "Flipping image"; itk::FixedArray flipAxes; flipAxes[0] = true; flipAxes[1] = true; flipAxes[2] = false; flipAxes[3] = false; itk::FlipImageFilter< itk::Image< float, 4 > >::Pointer flipper = itk::FlipImageFilter< itk::Image< float, 4 > >::New(); flipper->SetInput(itkImage); flipper->SetFlipAxes(flipAxes); flipper->Update(); itk::Image< float, 4 >::Pointer flipped = flipper->GetOutput(); itk::Matrix< double,4,4 > m = itkImage->GetDirection(); m[0][0] *= -1; m[1][1] *= -1; flipped->SetDirection(m); itk::Point< float, 4 > o = itkImage->GetOrigin(); o[0] -= (flipped->GetLargestPossibleRegion().GetSize(0)-1); o[1] -= (flipped->GetLargestPossibleRegion().GetSize(1)-1); flipped->SetOrigin(o); filter->SetInputImage(flipped); } switch (toolkit) { case 0: filter->SetToolkit(FilterType::FSL); break; case 1: filter->SetToolkit(FilterType::MRTRIX); break; default: filter->SetToolkit(FilterType::FSL); } filter->GenerateData(); return filter->GetQballImage(); } /*! \brief Perform global fiber tractography (Gibbs tractography) */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Gibbs Tracking"); parser.setCategory("Fiber Tracking and Processing Methods"); parser.setDescription("Perform global fiber tractography (Gibbs tractography)"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); parser.addArgument("input", "i", mitkCommandLineParser::InputFile, "Input:", "input image (tensor, Q-ball or FSL/MRTrix SH-coefficient image)", us::Any(), false); parser.addArgument("parameters", "p", mitkCommandLineParser::InputFile, "Parameters:", "parameter file (.gtp)", us::Any(), false); parser.addArgument("mask", "m", mitkCommandLineParser::InputFile, "Mask:", "binary mask image"); parser.addArgument("shConvention", "s", mitkCommandLineParser::String, "SH coefficient:", "sh coefficient convention (FSL, MRtrix)", string("FSL"), true); parser.addArgument("outFile", "o", mitkCommandLineParser::OutputFile, "Output:", "output fiber bundle (.fib)", us::Any(), false); parser.addArgument("noFlip", "f", mitkCommandLineParser::Bool, "No flip:", "do not flip input image to match MITK coordinate convention"); map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; string inFileName = us::any_cast(parsedArgs["input"]); string paramFileName = us::any_cast(parsedArgs["parameters"]); string outFileName = us::any_cast(parsedArgs["outFile"]); bool noFlip = false; if (parsedArgs.count("noFlip")) noFlip = us::any_cast(parsedArgs["noFlip"]); try { // instantiate gibbs tracker typedef itk::Vector OdfVectorType; typedef itk::Image ItkQballImageType; typedef itk::GibbsTrackingFilter GibbsTrackingFilterType; GibbsTrackingFilterType::Pointer gibbsTracker = GibbsTrackingFilterType::New(); // load input image mitk::Image::Pointer mitkImage = mitk::IOUtil::LoadImage(inFileName); // try to cast to qball image if( boost::algorithm::ends_with(inFileName, ".qbi") ) { std::cout << "Loading qball image ..."; mitk::QBallImage::Pointer mitkQballImage = dynamic_cast(mitkImage.GetPointer()); ItkQballImageType::Pointer itk_qbi = ItkQballImageType::New(); mitk::CastToItkImage(mitkQballImage, itk_qbi); gibbsTracker->SetQBallImage(itk_qbi.GetPointer()); } else if( boost::algorithm::ends_with(inFileName, ".dti") ) { std::cout << "Loading tensor image ..."; typedef itk::Image< itk::DiffusionTensor3D, 3 > ItkTensorImage; mitk::TensorImage::Pointer mitkTensorImage = dynamic_cast(mitkImage.GetPointer()); ItkTensorImage::Pointer itk_dti = ItkTensorImage::New(); mitk::CastToItkImage(mitkTensorImage, itk_dti); gibbsTracker->SetTensorImage(itk_dti); } else if ( boost::algorithm::ends_with(inFileName, ".nii") ) { std::cout << "Loading sh-coefficient image ..."; int nrCoeffs = mitkImage->GetLargestPossibleRegion().GetSize()[3]; int c=3, d=2-2*nrCoeffs; double D = c*c-4*d; - int shOrder; + int shOrder = 0; if (D>0) { shOrder = (-c+sqrt(D))/2.0; if (shOrder<0) shOrder = (-c-sqrt(D))/2.0; } else if (D==0) shOrder = -c/2.0; std::cout << "using SH-order " << shOrder; int toolkitConvention = 0; if (parsedArgs.count("shConvention")) { string convention = us::any_cast(parsedArgs["shConvention"]).c_str(); if ( boost::algorithm::equals(convention, "MRtrix") ) { toolkitConvention = 1; std::cout << "Using MRtrix style sh-coefficient convention"; } else std::cout << "Using FSL style sh-coefficient convention"; } else std::cout << "Using FSL style sh-coefficient convention"; switch (shOrder) { case 4: gibbsTracker->SetQBallImage(TemplatedConvertShCoeffs<4>(mitkImage, toolkitConvention, noFlip)); break; case 6: gibbsTracker->SetQBallImage(TemplatedConvertShCoeffs<6>(mitkImage, toolkitConvention, noFlip)); break; case 8: gibbsTracker->SetQBallImage(TemplatedConvertShCoeffs<8>(mitkImage, toolkitConvention, noFlip)); break; case 10: gibbsTracker->SetQBallImage(TemplatedConvertShCoeffs<10>(mitkImage, toolkitConvention, noFlip)); break; case 12: gibbsTracker->SetQBallImage(TemplatedConvertShCoeffs<12>(mitkImage, toolkitConvention, noFlip)); break; default: std::cout << "SH-order " << shOrder << " not supported"; } } else return EXIT_FAILURE; // global tracking if (parsedArgs.count("mask")) { typedef itk::Image MaskImgType; mitk::Image::Pointer mitkMaskImage = mitk::IOUtil::LoadImage(us::any_cast(parsedArgs["mask"])); MaskImgType::Pointer itk_mask = MaskImgType::New(); mitk::CastToItkImage(mitkMaskImage, itk_mask); gibbsTracker->SetMaskImage(itk_mask); } gibbsTracker->SetDuplicateImage(false); gibbsTracker->SetLoadParameterFile( paramFileName ); // gibbsTracker->SetLutPath( "" ); gibbsTracker->Update(); mitk::FiberBundle::Pointer mitkFiberBundle = mitk::FiberBundle::New(gibbsTracker->GetFiberBundle()); mitkFiberBundle->SetReferenceGeometry(mitkImage->GetGeometry()); - mitk::IOUtil::SaveBaseData(mitkFiberBundle.GetPointer(), outFileName ); + mitk::IOUtil::Save(mitkFiberBundle, outFileName ); } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/FiberTracking/cmdapps/Tractography/StreamlineTracking.cpp b/Modules/DiffusionImaging/FiberTracking/cmdapps/Tractography/StreamlineTractography.cpp similarity index 89% rename from Modules/DiffusionImaging/FiberTracking/cmdapps/Tractography/StreamlineTracking.cpp rename to Modules/DiffusionImaging/FiberTracking/cmdapps/Tractography/StreamlineTractography.cpp index b7c6b752a7..c843d43421 100755 --- a/Modules/DiffusionImaging/FiberTracking/cmdapps/Tractography/StreamlineTracking.cpp +++ b/Modules/DiffusionImaging/FiberTracking/cmdapps/Tractography/StreamlineTractography.cpp @@ -1,431 +1,466 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #define _USE_MATH_DEFINES #include using namespace std; const int numOdfSamples = 200; typedef itk::Image< itk::Vector< float, numOdfSamples > , 3 > SampledShImageType; /*! \brief */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Streamline Tractography"); parser.setCategory("Fiber Tracking and Processing Methods"); parser.setDescription("Perform streamline tractography"); parser.setContributor("MIC"); // parameters fo all methods parser.setArgumentPrefix("--", "-"); - parser.addArgument("input", "i", mitkCommandLineParser::StringList, "Input:", "input image (multiple possible for 'Tensor' algorithm)", us::Any(), false); - parser.addArgument("algorithm", "a", mitkCommandLineParser::String, "Algorithm:", "which algorithm to use (Peaks, Tensor, DetODF, ProbODF, DetRF, ProbRF)", us::Any(), false); + parser.addArgument("input", "i", mitkCommandLineParser::StringList, "Input:", "input image (multiple possible for 'DetTensor' algorithm)", us::Any(), false); + parser.addArgument("algorithm", "a", mitkCommandLineParser::String, "Algorithm:", "which algorithm to use (Peaks, DetTensor, ProbTensor, DetODF, ProbODF, DetRF, ProbRF)", us::Any(), false); parser.addArgument("out", "o", mitkCommandLineParser::OutputDirectory, "Output:", "output fiberbundle/probability map", us::Any(), false); parser.addArgument("stop_mask", "", mitkCommandLineParser::String, "Stop image:", "streamlines entering the binary mask will stop immediately", us::Any()); parser.addArgument("tracking_mask", "", mitkCommandLineParser::String, "Mask image:", "restrict tractography with a binary mask image", us::Any()); parser.addArgument("seed_mask", "", mitkCommandLineParser::String, "Seed image:", "binary mask image defining seed voxels", us::Any()); parser.addArgument("tissue_image", "", mitkCommandLineParser::String, "Tissue type image:", "image with tissue type labels (WM=3, GM=1)", us::Any()); parser.addArgument("cutoff", "", mitkCommandLineParser::Float, "Cutoff:", "set the FA, GFA or Peak amplitude cutoff for terminating tracks", 0.1); parser.addArgument("step_size", "", mitkCommandLineParser::Float, "Step size:", "step size (in voxels)", 0.5); parser.addArgument("angular_threshold", "", mitkCommandLineParser::Float, "Angular threshold:", "angular threshold between two successive steps, (default: 90° * step_size)"); parser.addArgument("seeds", "", mitkCommandLineParser::Int, "Seeds per voxel:", "number of seed points per voxel", 1); parser.addArgument("seed_gm", "", mitkCommandLineParser::Bool, "Seed only GM:", "Seed only in gray matter (requires tissue type image --tissue_image)"); parser.addArgument("control_gm_endings", "", mitkCommandLineParser::Bool, "Control GM endings:", "Seed perpendicular to gray matter and enforce endings inside of the gray matter (requires tissue type image --tissue_image)"); parser.addArgument("max_tracts", "", mitkCommandLineParser::Int, "Max. number of tracts:", "tractography is stopped if the reconstructed number of tracts is exceeded.", -1); parser.addArgument("num_samples", "", mitkCommandLineParser::Int, "Num. neighborhood samples:", "number of neighborhood samples that are use to determine the next progression direction", 0); parser.addArgument("sampling_distance", "", mitkCommandLineParser::Float, "Sampling distance:", "distance of neighborhood sampling points (in voxels)", 0.25); parser.addArgument("use_stop_votes", "", mitkCommandLineParser::Bool, "Use stop votes:", "use stop votes"); parser.addArgument("use_only_forward_samples", "", mitkCommandLineParser::Bool, "Use only forward samples:", "use only forward samples"); parser.addArgument("output_prob_map", "", mitkCommandLineParser::Bool, "Output probability map:", "output probability map instead of tractogram"); + parser.addArgument("prob_samples", "", mitkCommandLineParser::Int, "Num. Samples per Step:", "Only relevant for probabilistic tensor and ODF tractography. At each integration step the ODF/tensor is sampled n times and the most probable direction is used. The higher the number, the closer the behaviour will be to the deterministic ODF tractography.", 10); parser.addArgument("no_interpolation", "", mitkCommandLineParser::Bool, "Don't interpolate:", "don't interpolate image values"); parser.addArgument("flip_x", "", mitkCommandLineParser::Bool, "Flip X:", "multiply x-coordinate of direction proposal by -1"); parser.addArgument("flip_y", "", mitkCommandLineParser::Bool, "Flip Y:", "multiply y-coordinate of direction proposal by -1"); parser.addArgument("flip_z", "", mitkCommandLineParser::Bool, "Flip Z:", "multiply z-coordinate of direction proposal by -1"); //parser.addArgument("apply_image_rotation", "", mitkCommandLineParser::Bool, "Apply image rotation:", "applies image rotation to image peaks (only for 'Peaks' algorithm). This is necessary in some cases, e.g. if the peaks were obtained with MRtrix."); parser.addArgument("compress", "", mitkCommandLineParser::Float, "Compress:", "Compress output fibers using the given error threshold (in mm)"); parser.addArgument("additional_images", "", mitkCommandLineParser::StringList, "Additional images:", "specify a list of float images that hold additional information (FA, GFA, additional Features)", us::Any()); // parameters for ODF based tractography parser.addArgument("no_odf_normalization", "", mitkCommandLineParser::Bool, "Don't min-max normalize ODFs:", "No min-max normalization of ODFs"); // parameters for random forest based tractography parser.addArgument("forest", "", mitkCommandLineParser::String, "Forest:", "input random forest (HDF5 file)", us::Any()); parser.addArgument("use_sh_features", "", mitkCommandLineParser::Bool, "Use SH features:", "use SH features"); // parameters for tensor tractography parser.addArgument("tend_f", "", mitkCommandLineParser::Float, "Weight f", "Weighting factor between first eigenvector (f=1 equals FACT tracking) and input vector dependent direction (f=0).", 1.0); parser.addArgument("tend_g", "", mitkCommandLineParser::Float, "Weight g", "Weighting factor between input vector (g=0) and tensor deflection (g=1 equals TEND tracking)", 0.0); map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; mitkCommandLineParser::StringContainerType input_files = us::any_cast(parsedArgs["input"]); string outFile = us::any_cast(parsedArgs["out"]); string algorithm = us::any_cast(parsedArgs["algorithm"]); - // mitk::LoggingBackend::SetLogFile( (outFile + ".log").c_str() ); - // MITK_INFO << "LOG"; - bool interpolate = true; if (parsedArgs.count("no_interpolation")) interpolate = !us::any_cast(parsedArgs["no_interpolation"]); bool use_sh_features = false; if (parsedArgs.count("use_sh_features")) use_sh_features = us::any_cast(parsedArgs["use_sh_features"]); bool seed_gm = false; if (parsedArgs.count("seed_gm")) seed_gm = us::any_cast(parsedArgs["seed_gm"]); bool control_gm_endings = false; if (parsedArgs.count("control_gm_endings")) control_gm_endings = us::any_cast(parsedArgs["control_gm_endings"]); bool use_stop_votes = false; if (parsedArgs.count("use_stop_votes")) use_stop_votes = us::any_cast(parsedArgs["use_stop_votes"]); bool use_only_forward_samples = false; if (parsedArgs.count("use_only_forward_samples")) use_only_forward_samples = us::any_cast(parsedArgs["use_only_forward_samples"]); bool output_prob_map = false; if (parsedArgs.count("output_prob_map")) output_prob_map = us::any_cast(parsedArgs["output_prob_map"]); bool flip_x = false; if (parsedArgs.count("flip_x")) flip_x = us::any_cast(parsedArgs["flip_x"]); bool flip_y = false; if (parsedArgs.count("flip_y")) flip_y = us::any_cast(parsedArgs["flip_y"]); bool flip_z = false; if (parsedArgs.count("flip_z")) flip_z = us::any_cast(parsedArgs["flip_z"]); bool apply_image_rotation = false; if (parsedArgs.count("apply_image_rotation")) apply_image_rotation = us::any_cast(parsedArgs["apply_image_rotation"]); float compress = -1; if (parsedArgs.count("compress")) compress = us::any_cast(parsedArgs["compress"]); string forestFile; if (parsedArgs.count("forest")) forestFile = us::any_cast(parsedArgs["forest"]); string maskFile = ""; if (parsedArgs.count("tracking_mask")) maskFile = us::any_cast(parsedArgs["tracking_mask"]); string seedFile = ""; if (parsedArgs.count("seed_mask")) seedFile = us::any_cast(parsedArgs["seed_mask"]); string stopFile = ""; if (parsedArgs.count("stop_mask")) stopFile = us::any_cast(parsedArgs["stop_mask"]); string tissueFile = ""; if (parsedArgs.count("tissue_image")) tissueFile = us::any_cast(parsedArgs["tissue_image"]); float cutoff = 0.1; if (parsedArgs.count("cutoff")) cutoff = us::any_cast(parsedArgs["cutoff"]); float stepsize = -1; if (parsedArgs.count("step_size")) stepsize = us::any_cast(parsedArgs["step_size"]); float sampling_distance = -1; if (parsedArgs.count("sampling_distance")) sampling_distance = us::any_cast(parsedArgs["sampling_distance"]); int num_samples = 0; if (parsedArgs.count("num_samples")) num_samples = us::any_cast(parsedArgs["num_samples"]); int seeds = 1; if (parsedArgs.count("seeds")) seeds = us::any_cast(parsedArgs["seeds"]); float tend_f = 1; if (parsedArgs.count("tend_f")) tend_f = us::any_cast(parsedArgs["tend_f"]); float tend_g = 0; if (parsedArgs.count("tend_g")) tend_g = us::any_cast(parsedArgs["tend_g"]); float angular_threshold = -1; if (parsedArgs.count("angular_threshold")) angular_threshold = us::any_cast(parsedArgs["angular_threshold"]); bool normalize_odfs = true; if (parsedArgs.count("no_odf_normalization")) normalize_odfs = !us::any_cast(parsedArgs["no_odf_normalization"]); unsigned int max_tracts = -1; if (parsedArgs.count("max_tracts")) max_tracts = us::any_cast(parsedArgs["max_tracts"]); + unsigned int prob_samples = 10; + if (parsedArgs.count("prob_samples")) + prob_samples = us::any_cast(parsedArgs["prob_samples"]); + if (prob_samples<=0) + prob_samples = 1; // LOAD DATASETS mitkCommandLineParser::StringContainerType addFiles; if (parsedArgs.count("additional_images")) addFiles = us::any_cast(parsedArgs["additional_images"]); typedef itk::Image ItkUcharImgType; MITK_INFO << "loading input"; std::vector< mitk::Image::Pointer > input_images; for (unsigned int i=0; i(mitk::IOUtil::LoadDataNode(input_files.at(i))->GetData()); + mitk::Image::Pointer mitkImage = mitk::IOUtil::LoadImage(input_files.at(i)); input_images.push_back(mitkImage); } ItkUcharImgType::Pointer mask; if (!maskFile.empty()) { MITK_INFO << "loading mask image"; mitk::Image::Pointer img = dynamic_cast(mitk::IOUtil::LoadImage(maskFile).GetPointer()); mask = ItkUcharImgType::New(); mitk::CastToItkImage(img, mask); } ItkUcharImgType::Pointer seed; if (!seedFile.empty()) { MITK_INFO << "loading seed image"; mitk::Image::Pointer img = dynamic_cast(mitk::IOUtil::LoadImage(seedFile).GetPointer()); seed = ItkUcharImgType::New(); mitk::CastToItkImage(img, seed); } ItkUcharImgType::Pointer stop; if (!stopFile.empty()) { MITK_INFO << "loading stop image"; mitk::Image::Pointer img = dynamic_cast(mitk::IOUtil::LoadImage(stopFile).GetPointer()); stop = ItkUcharImgType::New(); mitk::CastToItkImage(img, stop); } ItkUcharImgType::Pointer tissue; if (!tissueFile.empty()) { MITK_INFO << "loading tissue image"; mitk::Image::Pointer img = dynamic_cast(mitk::IOUtil::LoadImage(tissueFile).GetPointer()); tissue = ItkUcharImgType::New(); mitk::CastToItkImage(img, tissue); } MITK_INFO << "loading additional images"; typedef itk::Image ItkFloatImgType; std::vector< std::vector< ItkFloatImgType::Pointer > > addImages; addImages.push_back(std::vector< ItkFloatImgType::Pointer >()); for (auto file : addFiles) { mitk::Image::Pointer img = dynamic_cast(mitk::IOUtil::LoadImage(file).GetPointer()); ItkFloatImgType::Pointer itkimg = ItkFloatImgType::New(); mitk::CastToItkImage(img, itkimg); addImages.at(0).push_back(itkimg); } // ////////////////////////////////////////////////////////////////// - // omp_set_num_threads(1); +// omp_set_num_threads(1); + + if (algorithm == "ProbTensor") + { + typedef mitk::ImageToItk< mitk::TrackingHandlerTensor::ItkTensorImageType > CasterType; + CasterType::Pointer caster = CasterType::New(); + caster->SetInput(input_images.at(0)); + caster->Update(); + mitk::TrackingHandlerTensor::ItkTensorImageType::Pointer itkTensorImg = caster->GetOutput(); + + typedef itk::TensorImageToQBallImageFilter< float, float > FilterType; + FilterType::Pointer filter = FilterType::New(); + filter->SetInput( itkTensorImg ); + filter->Update(); + + mitk::Image::Pointer image = mitk::Image::New(); + FilterType::OutputImageType::Pointer outimg = filter->GetOutput(); + image->InitializeByItk( outimg.GetPointer() ); + image->SetVolume( outimg->GetBufferPointer() ); + + input_images.clear(); + input_images.push_back(image); + algorithm = "ProbODF"; + } typedef itk::StreamlineTrackingFilter TrackerType; TrackerType::Pointer tracker = TrackerType::New(); mitk::TrackingDataHandler* handler; if (algorithm == "DetRF" || algorithm == "ProbRF") { if (use_sh_features) { handler = new mitk::TrackingHandlerRandomForest<6,28>(); dynamic_cast*>(handler)->LoadForest(forestFile); dynamic_cast*>(handler)->AddDwi(input_images.at(0)); dynamic_cast*>(handler)->SetAdditionalFeatureImages(addImages); } else { handler = new mitk::TrackingHandlerRandomForest<6,100>(); dynamic_cast*>(handler)->LoadForest(forestFile); dynamic_cast*>(handler)->AddDwi(input_images.at(0)); dynamic_cast*>(handler)->SetAdditionalFeatureImages(addImages); } if (algorithm == "ProbRF") handler->SetMode(mitk::TrackingDataHandler::MODE::PROBABILISTIC); } else if (algorithm == "Peaks") { handler = new mitk::TrackingHandlerPeaks(); typedef mitk::ImageToItk< mitk::TrackingHandlerPeaks::PeakImgType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(input_images.at(0)); caster->Update(); mitk::TrackingHandlerPeaks::PeakImgType::Pointer itkImg = caster->GetOutput(); dynamic_cast(handler)->SetPeakImage(itkImg); dynamic_cast(handler)->SetApplyDirectionMatrix(apply_image_rotation); dynamic_cast(handler)->SetPeakThreshold(cutoff); } - else if (algorithm == "Tensor") + else if (algorithm == "DetTensor") { handler = new mitk::TrackingHandlerTensor(); for (auto input_image : input_images) { typedef mitk::ImageToItk< mitk::TrackingHandlerTensor::ItkTensorImageType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(input_image); caster->Update(); mitk::TrackingHandlerTensor::ItkTensorImageType::Pointer itkImg = caster->GetOutput(); dynamic_cast(handler)->AddTensorImage(itkImg); } dynamic_cast(handler)->SetFaThreshold(cutoff); dynamic_cast(handler)->SetF(tend_f); dynamic_cast(handler)->SetG(tend_g); - if (addImages.size()>0) + if (addImages.at(0).size()>0) dynamic_cast(handler)->SetFaImage(addImages.at(0).at(0)); } else if (algorithm == "DetODF" || algorithm == "ProbODF") { handler = new mitk::TrackingHandlerOdf(); for (auto input_image : input_images) { typedef mitk::ImageToItk< mitk::TrackingHandlerOdf::ItkOdfImageType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(input_image); caster->Update(); mitk::TrackingHandlerOdf::ItkOdfImageType::Pointer itkImg = caster->GetOutput(); dynamic_cast(handler)->SetOdfImage(itkImg); } dynamic_cast(handler)->SetGfaThreshold(cutoff); if (algorithm == "ProbODF") + { dynamic_cast(handler)->SetMode(mitk::TrackingHandlerOdf::MODE::PROBABILISTIC); + dynamic_cast(handler)->SetNumProbSamples(prob_samples); + } - if (addImages.size()>0) + if (addImages.at(0).size()>0) dynamic_cast(handler)->SetGfaImage(addImages.at(0).at(0)); dynamic_cast(handler)->SetMinMaxNormalize(normalize_odfs); } + else + { + MITK_INFO << "Unknown tractography algorithm (" + algorithm+"). Known types are Peaks, DetTensor, ProbTensor, DetODF, ProbODF, DetRF, ProbRF."; + return EXIT_FAILURE; + } handler->SetInterpolate(interpolate); handler->SetFlipX(flip_x); handler->SetFlipY(flip_y); handler->SetFlipZ(flip_z); MITK_INFO << "Tractography algorithm: " << algorithm; tracker->SetNumberOfSamples(num_samples); tracker->SetAngularThreshold(angular_threshold); tracker->SetMaskImage(mask); tracker->SetSeedImage(seed); tracker->SetStoppingRegions(stop); tracker->SetSeedsPerVoxel(seeds); tracker->SetStepSize(stepsize); tracker->SetSamplingDistance(sampling_distance); tracker->SetUseStopVotes(use_stop_votes); tracker->SetOnlyForwardSamples(use_only_forward_samples); tracker->SetAposterioriCurvCheck(false); tracker->SetTissueImage(tissue); tracker->SetSeedOnlyGm(seed_gm); tracker->SetControlGmEndings(control_gm_endings); tracker->SetMaxNumTracts(max_tracts); tracker->SetTrackingHandler(handler); tracker->SetUseOutputProbabilityMap(output_prob_map); tracker->Update(); std::string ext = itksys::SystemTools::GetFilenameExtension(outFile); if (!output_prob_map) { vtkSmartPointer< vtkPolyData > poly = tracker->GetFiberPolyData(); mitk::FiberBundle::Pointer outFib = mitk::FiberBundle::New(poly); if (compress > 0) outFib->Compress(compress); if (ext != ".fib" && ext != ".trk" && ext != ".tck") outFile += ".fib"; mitk::IOUtil::Save(outFib, outFile); } else { TrackerType::ItkDoubleImgType::Pointer outImg = tracker->GetOutputProbabilityMap(); mitk::Image::Pointer img = mitk::Image::New(); img->InitializeByItk(outImg.GetPointer()); img->SetVolume(outImg->GetBufferPointer()); if (ext != ".nii" && ext != ".nii.gz" && ext != ".nrrd") outFile += ".nii.gz"; - mitk::IOUtil::SaveBaseData(img, outFile); + mitk::IOUtil::Save(img, outFile); } delete handler; return EXIT_SUCCESS; } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.fiberfox/src/internal/QmitkFieldmapGeneratorView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging.fiberfox/src/internal/QmitkFieldmapGeneratorView.cpp index 1a3310168b..fb4d79c51c 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.fiberfox/src/internal/QmitkFieldmapGeneratorView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.fiberfox/src/internal/QmitkFieldmapGeneratorView.cpp @@ -1,298 +1,310 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Blueberry #include #include // MITK #include "QmitkFieldmapGeneratorView.h" #include #include #include #include #include #include const std::string QmitkFieldmapGeneratorView::VIEW_ID = "org.mitk.views.fieldmapgenerator"; QmitkFieldmapGeneratorView::QmitkFieldmapGeneratorView() - : QmitkAbstractView() - , m_Controls( 0 ) + : QmitkAbstractView() + , m_Controls( 0 ) { } QmitkFieldmapGeneratorView::~QmitkFieldmapGeneratorView() { } void QmitkFieldmapGeneratorView::CreateQtPartControl( QWidget *parent ) { - // build up qt view, unless already done - if ( !m_Controls ) - { - // create GUI widgets from the Qt Designer's .ui file - m_Controls = new Ui::QmitkFieldmapGeneratorViewControls; - m_Controls->setupUi( parent ); - - m_Controls->m_SelectedImageBox->SetDataStorage(this->GetDataStorage()); - mitk::TNodePredicateDataType::Pointer isMitkImage = mitk::TNodePredicateDataType::New(); - m_Controls->m_SelectedImageBox->SetPredicate(isMitkImage); - - connect((QObject*) m_Controls->m_GenerateFieldmap, SIGNAL(clicked()), (QObject*) this, SLOT(GenerateFieldmap())); - connect((QObject*) m_Controls->m_PlaceFieldSource, SIGNAL(clicked()), (QObject*) this, SLOT(PlaceFieldSource())); - connect((QObject*) m_Controls->m_SourceVarianceBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnVarianceChanged(double))); - connect((QObject*) m_Controls->m_SourceHeightBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnHeightChanged(double))); - - } + // build up qt view, unless already done + if ( !m_Controls ) + { + // create GUI widgets from the Qt Designer's .ui file + m_Controls = new Ui::QmitkFieldmapGeneratorViewControls; + m_Controls->setupUi( parent ); + + m_Controls->m_SelectedImageBox->SetDataStorage(this->GetDataStorage()); + mitk::TNodePredicateDataType::Pointer isMitkImage = mitk::TNodePredicateDataType::New(); + m_Controls->m_SelectedImageBox->SetPredicate(isMitkImage); + + connect((QObject*) m_Controls->m_GenerateFieldmap, SIGNAL(clicked()), (QObject*) this, SLOT(GenerateFieldmap())); + connect((QObject*) m_Controls->m_PlaceFieldSource, SIGNAL(clicked()), (QObject*) this, SLOT(PlaceFieldSource())); + connect((QObject*) m_Controls->m_SourceVarianceBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnVarianceChanged(double))); + connect((QObject*) m_Controls->m_SourceHeightBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnHeightChanged(double))); + + } } void QmitkFieldmapGeneratorView::SetFocus() { m_Controls->m_SelectedImageBox->setFocus(); } void QmitkFieldmapGeneratorView::OnVarianceChanged(double value) { - if (m_SelectedSource.IsNotNull()) - { - m_SelectedSource->SetProperty("pointsize", mitk::FloatProperty::New(value)); - mitk::RenderingManager::GetInstance()->RequestUpdateAll(); - } + if (m_SelectedSource.IsNotNull()) + { + m_SelectedSource->SetProperty("pointsize", mitk::FloatProperty::New(value)); + mitk::RenderingManager::GetInstance()->RequestUpdateAll(); + } } void QmitkFieldmapGeneratorView::OnHeightChanged(double value) { - if (m_SelectedSource.IsNotNull()) - { - m_SelectedSource->SetProperty("color", mitk::ColorProperty::New(0, 0, value/100.0)); - mitk::RenderingManager::GetInstance()->RequestUpdateAll(); - } + if (m_SelectedSource.IsNotNull()) + { + m_SelectedSource->SetProperty("color", mitk::ColorProperty::New(0, 0, value/100.0)); + mitk::RenderingManager::GetInstance()->RequestUpdateAll(); + } } void QmitkFieldmapGeneratorView::PlaceFieldSource() { - if (m_Controls->m_SelectedImageBox->GetSelectedNode().IsNull() || !this->GetRenderWindowPart()) - { - m_Controls->m_WorldPosLabel->setText("-"); - m_Controls->m_IndexLabel->setText("-"); - return; - } - - mitk::Point3D index; - mitk::Image::Pointer img = dynamic_cast(m_Controls->m_SelectedImageBox->GetSelectedNode()->GetData()); - mitk::BaseGeometry* geom = img->GetGeometry(); + if (m_Controls->m_SelectedImageBox->GetSelectedNode().IsNull() || !this->GetRenderWindowPart()) + { + m_Controls->m_WorldPosLabel->setText("-"); + m_Controls->m_IndexLabel->setText("-"); + return; + } - if ( geom->IsInside(m_WorldPoint) ) - { - img->GetGeometry()->WorldToIndex(m_WorldPoint, index); - mitk::PointSet::Pointer pointSet = mitk::PointSet::New(); - pointSet->InsertPoint(0, m_WorldPoint); + mitk::Point3D index; + mitk::Image::Pointer img = dynamic_cast(m_Controls->m_SelectedImageBox->GetSelectedNode()->GetData()); + mitk::BaseGeometry* geom = img->GetGeometry(); + if ( geom->IsInside(m_WorldPoint) ) + { + img->GetGeometry()->WorldToIndex(m_WorldPoint, index); + mitk::PointSet::Pointer pointSet = mitk::PointSet::New(); + pointSet->InsertPoint(0, m_WorldPoint); - mitk::DataStorage::SetOfObjects::ConstPointer children = GetDataStorage()->GetDerivations(m_Controls->m_SelectedImageBox->GetSelectedNode()); - mitk::DataNode::Pointer node = mitk::DataNode::New(); - node->SetData(pointSet); - QString name = QString("FieldSource_%1").arg(children->size()); - node->SetName(name.toStdString()); - node->SetVisibility(true); - - float minSpacing; - if(geom->GetSpacing()[0]GetSpacing()[1] && geom->GetSpacing()[0]GetSpacing()[2]) - minSpacing = geom->GetSpacing()[0]; - else if (geom->GetSpacing()[1] < geom->GetSpacing()[2]) - minSpacing = geom->GetSpacing()[1]; - else - minSpacing = geom->GetSpacing()[2]; - - node->SetProperty("pointsize", mitk::FloatProperty::New(minSpacing*5)); - node->SetProperty("color", mitk::ColorProperty::New(0, 0, 1)); + mitk::DataStorage::SetOfObjects::ConstPointer children = GetDataStorage()->GetDerivations(m_Controls->m_SelectedImageBox->GetSelectedNode()); - GetDataStorage()->Add(node, m_Controls->m_SelectedImageBox->GetSelectedNode()); - mitk::RenderingManager::GetInstance()->RequestUpdateAll(); - } + mitk::DataNode::Pointer node = mitk::DataNode::New(); + node->SetData(pointSet); + QString name = QString("FieldSource_%1").arg(children->size()); + node->SetName(name.toStdString()); + node->SetVisibility(true); + + float minSpacing; + if(geom->GetSpacing()[0]GetSpacing()[1] && geom->GetSpacing()[0]GetSpacing()[2]) + minSpacing = geom->GetSpacing()[0]; + else if (geom->GetSpacing()[1] < geom->GetSpacing()[2]) + minSpacing = geom->GetSpacing()[1]; + else + minSpacing = geom->GetSpacing()[2]; + + node->SetProperty("pointsize", mitk::FloatProperty::New(minSpacing*5)); + node->SetProperty("color", mitk::ColorProperty::New(0, 0, 1)); + + GetDataStorage()->Add(node, m_Controls->m_SelectedImageBox->GetSelectedNode()); + mitk::RenderingManager::GetInstance()->RequestUpdateAll(); + } } void QmitkFieldmapGeneratorView::GenerateFieldmap() { - if (m_Controls->m_SelectedImageBox->GetSelectedNode().IsNull()) - return; - - mitk::Image::Pointer img = dynamic_cast(m_Controls->m_SelectedImageBox->GetSelectedNode()->GetData()); - mitk::BaseGeometry* geom = img->GetGeometry(); - - typedef itk::Image< double, 3 > FieldMapType; - itk::Vector spacing; ///< output image spacing - mitk::Point3D origin; ///< output image origin - itk::FieldmapGeneratorFilter< FieldMapType >::MatrixType directionMatrix; ///< output image rotation - itk::FieldmapGeneratorFilter< FieldMapType >::OutputImageRegionType imageRegion; ///< output image size - - spacing = geom->GetSpacing(); - origin = geom->GetOrigin(); - imageRegion.SetSize(0, img->GetDimension(0)); - imageRegion.SetSize(1, img->GetDimension(1)); - imageRegion.SetSize(2, img->GetDimension(2)); - for (int r=0; r<3; r++) - for (int c=0; c<3; c++) - directionMatrix[r][c]=geom->GetMatrixColumn(c)[r]/spacing[c]; - - std::vector< double > variances; - std::vector< double > heights; - std::vector< mitk::Point3D > worldPositions; - - mitk::DataStorage::SetOfObjects::ConstPointer children = GetDataStorage()->GetDerivations(m_Controls->m_SelectedImageBox->GetSelectedNode()); - for( mitk::DataStorage::SetOfObjects::const_iterator it = children->begin(); it != children->end(); ++it ) - if(dynamic_cast((*it)->GetData())) - { - float var = 0; (*it)->GetPropertyValue("pointsize", var); variances.push_back(var); - float color[3]; (*it)->GetColor(color); heights.push_back(color[2]*100); - mitk::PointSet* ps = dynamic_cast((*it)->GetData()); - mitk::Point3D point; - ps->GetPointIfExists(0, &point); - worldPositions.push_back(point); - } - - vnl_vector_fixed< double, 3 > gradient, offset; - gradient[0] = m_Controls->m_xGradientBox->value(); - gradient[1] = m_Controls->m_yGradientBox->value(); - gradient[2] = m_Controls->m_zGradientBox->value(); - offset[0] = m_Controls->m_xOffsetBox->value(); - offset[1] = m_Controls->m_yOffsetBox->value(); - offset[2] = m_Controls->m_zOffsetBox->value(); - - itk::FieldmapGeneratorFilter< FieldMapType >::Pointer filter = itk::FieldmapGeneratorFilter< FieldMapType >::New(); - filter->SetHeights(heights); - filter->SetVariances(variances); - filter->SetWorldPositions(worldPositions); - filter->SetSpacing(spacing); - filter->SetOrigin(origin); - filter->SetDirectionMatrix(directionMatrix); - filter->SetImageRegion(imageRegion); - filter->SetGradient(gradient); - filter->SetOffset(offset); - filter->Update(); - - mitk::DataNode::Pointer resultNode = mitk::DataNode::New(); - mitk::Image::Pointer image = mitk::Image::New(); - image->InitializeByItk(filter->GetOutput(0)); - image->SetVolume(filter->GetOutput(0)->GetBufferPointer()); - resultNode->SetData( image ); - resultNode->SetName(m_Controls->m_SelectedImageBox->GetSelectedNode()->GetName()+"_Fieldmap"); - GetDataStorage()->Add(resultNode); -} - -void QmitkFieldmapGeneratorView::RenderWindowPartActivated(mitk::IRenderWindowPart* renderWindowPart) -{ - { - mitk::SliceNavigationController* slicer = renderWindowPart->GetQmitkRenderWindow("axial")->GetSliceNavigationController(); - itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); - command->SetCallbackFunction( this, &QmitkFieldmapGeneratorView::OnSliceChanged ); - m_SliceObserverTag1 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(nullptr, 0), command ); - } - + if (m_Controls->m_SelectedImageBox->GetSelectedNode().IsNull()) + return; + + mitk::Image::Pointer img = dynamic_cast(m_Controls->m_SelectedImageBox->GetSelectedNode()->GetData()); + mitk::BaseGeometry* geom = img->GetGeometry(); + + typedef itk::Image< double, 3 > FieldMapType; + itk::Vector spacing; ///< output image spacing + mitk::Point3D origin; ///< output image origin + itk::FieldmapGeneratorFilter< FieldMapType >::MatrixType directionMatrix; ///< output image rotation + itk::FieldmapGeneratorFilter< FieldMapType >::OutputImageRegionType imageRegion; ///< output image size + + spacing = geom->GetSpacing(); + origin = geom->GetOrigin(); + imageRegion.SetSize(0, img->GetDimension(0)); + imageRegion.SetSize(1, img->GetDimension(1)); + imageRegion.SetSize(2, img->GetDimension(2)); + for (int r=0; r<3; r++) + for (int c=0; c<3; c++) + directionMatrix[r][c]=geom->GetMatrixColumn(c)[r]/spacing[c]; + + std::vector< double > variances; + std::vector< double > heights; + std::vector< mitk::Point3D > worldPositions; + + mitk::DataStorage::SetOfObjects::ConstPointer children = GetDataStorage()->GetDerivations(m_Controls->m_SelectedImageBox->GetSelectedNode()); + for( mitk::DataStorage::SetOfObjects::const_iterator it = children->begin(); it != children->end(); ++it ) + if(dynamic_cast((*it)->GetData())) { - mitk::SliceNavigationController* slicer = renderWindowPart->GetQmitkRenderWindow("sagittal")->GetSliceNavigationController(); - itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); - command->SetCallbackFunction( this, &QmitkFieldmapGeneratorView::OnSliceChanged ); - m_SliceObserverTag2 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(nullptr, 0), command ); + float var = 0; (*it)->GetPropertyValue("pointsize", var); variances.push_back(var); + float color[3]; (*it)->GetColor(color); heights.push_back(color[2]*100); + mitk::PointSet* ps = dynamic_cast((*it)->GetData()); + mitk::Point3D point; + ps->GetPointIfExists(0, &point); + worldPositions.push_back(point); } - { - mitk::SliceNavigationController* slicer = renderWindowPart->GetQmitkRenderWindow("coronal")->GetSliceNavigationController(); - itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); - command->SetCallbackFunction( this, &QmitkFieldmapGeneratorView::OnSliceChanged ); - m_SliceObserverTag3 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(nullptr, 0), command ); - } + vnl_vector_fixed< double, 3 > gradient, offset; + gradient[0] = m_Controls->m_xGradientBox->value(); + gradient[1] = m_Controls->m_yGradientBox->value(); + gradient[2] = m_Controls->m_zGradientBox->value(); + offset[0] = m_Controls->m_xOffsetBox->value(); + offset[1] = m_Controls->m_yOffsetBox->value(); + offset[2] = m_Controls->m_zOffsetBox->value(); + + itk::FieldmapGeneratorFilter< FieldMapType >::Pointer filter = itk::FieldmapGeneratorFilter< FieldMapType >::New(); + filter->SetHeights(heights); + filter->SetVariances(variances); + filter->SetWorldPositions(worldPositions); + filter->SetSpacing(spacing); + filter->SetOrigin(origin); + filter->SetDirectionMatrix(directionMatrix); + filter->SetImageRegion(imageRegion); + filter->SetGradient(gradient); + filter->SetOffset(offset); + filter->Update(); + + mitk::DataNode::Pointer resultNode = mitk::DataNode::New(); + mitk::Image::Pointer image = mitk::Image::New(); + image->InitializeByItk(filter->GetOutput(0)); + image->SetVolume(filter->GetOutput(0)->GetBufferPointer()); + resultNode->SetData( image ); + resultNode->SetName(m_Controls->m_SelectedImageBox->GetSelectedNode()->GetName()+"_Fieldmap"); + GetDataStorage()->Add(resultNode); } -void QmitkFieldmapGeneratorView::RenderWindowPartDeactivated(mitk::IRenderWindowPart* renderWindowPart) +void QmitkFieldmapGeneratorView::Visible() { + MITK_INFO << "BLABLA"; + mitk::IRenderWindowPart* renderWindowPart = this->GetRenderWindowPart(); + + { + mitk::SliceNavigationController* slicer = renderWindowPart->GetQmitkRenderWindow("axial")->GetSliceNavigationController(); + itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); + command->SetCallbackFunction( this, &QmitkFieldmapGeneratorView::OnSliceChanged ); + m_SliceObserverTag1 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(nullptr, 0), command ); + } + + { + mitk::SliceNavigationController* slicer = renderWindowPart->GetQmitkRenderWindow("sagittal")->GetSliceNavigationController(); + itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); + command->SetCallbackFunction( this, &QmitkFieldmapGeneratorView::OnSliceChanged ); + m_SliceObserverTag2 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(nullptr, 0), command ); + } + + { + mitk::SliceNavigationController* slicer = renderWindowPart->GetQmitkRenderWindow("coronal")->GetSliceNavigationController(); + itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); + command->SetCallbackFunction( this, &QmitkFieldmapGeneratorView::OnSliceChanged ); + m_SliceObserverTag3 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(nullptr, 0), command ); + } +} - { - mitk::SliceNavigationController* slicer = renderWindowPart->GetQmitkRenderWindow("axial")->GetSliceNavigationController(); - slicer->RemoveObserver( m_SliceObserverTag1 ); - } +void QmitkFieldmapGeneratorView::Hidden() +{ + mitk::IRenderWindowPart* renderWindowPart = this->GetRenderWindowPart(); + + { + mitk::SliceNavigationController* slicer = renderWindowPart->GetQmitkRenderWindow("axial")->GetSliceNavigationController(); + slicer->RemoveObserver( m_SliceObserverTag1 ); + } + + { + mitk::SliceNavigationController* slicer = renderWindowPart->GetQmitkRenderWindow("sagittal")->GetSliceNavigationController(); + slicer->RemoveObserver( m_SliceObserverTag2 ); + } + + { + mitk::SliceNavigationController* slicer = renderWindowPart->GetQmitkRenderWindow("coronal")->GetSliceNavigationController(); + slicer->RemoveObserver( m_SliceObserverTag3 ); + } +} - { - mitk::SliceNavigationController* slicer = renderWindowPart->GetQmitkRenderWindow("sagittal")->GetSliceNavigationController(); - slicer->RemoveObserver( m_SliceObserverTag2 ); - } +void QmitkFieldmapGeneratorView::Activated() +{ +} - { - mitk::SliceNavigationController* slicer = renderWindowPart->GetQmitkRenderWindow("coronal")->GetSliceNavigationController(); - slicer->RemoveObserver( m_SliceObserverTag3 ); - } +void QmitkFieldmapGeneratorView::Deactivated() +{ } void QmitkFieldmapGeneratorView::OnSelectionChanged(berry::IWorkbenchPart::Pointer /*part*/, const QList& nodes) { - if (m_Controls->m_SelectedImageBox->GetSelectedNode().IsNotNull()) - m_Controls->m_SelectedImageBox->GetSelectedNode()->RemoveObserver( m_PropertyObserverTag ); + if (m_Controls->m_SelectedImageBox->GetSelectedNode().IsNotNull()) + m_Controls->m_SelectedImageBox->GetSelectedNode()->RemoveObserver( m_PropertyObserverTag ); - m_Controls->m_InputData->setTitle("Please Select Reference Image"); - m_SelectedSource = nullptr; + m_Controls->m_InputData->setTitle("Please Select Reference Image"); + m_SelectedSource = nullptr; - // iterate selection - for (mitk::DataNode::Pointer node: nodes) + // iterate selection + for (mitk::DataNode::Pointer node: nodes) + { + if ( node.IsNotNull() && (dynamic_cast(node->GetData())) ) { - if ( node.IsNotNull() && (dynamic_cast(node->GetData())) ) - { - m_Controls->m_SourceNameLabel->setText(node->GetName().c_str()); - m_SelectedSource = node; - float variance = 0; node->GetPropertyValue("pointsize", variance); - m_Controls->m_SourceVarianceBox->setValue(variance); - - float color[3]; node->GetColor(color); - m_Controls->m_SourceHeightBox->setValue(color[2]*100); - } + m_Controls->m_SourceNameLabel->setText(node->GetName().c_str()); + m_SelectedSource = node; + float variance = 0; node->GetPropertyValue("pointsize", variance); + m_Controls->m_SourceVarianceBox->setValue(variance); + + float color[3]; node->GetColor(color); + m_Controls->m_SourceHeightBox->setValue(color[2]*100); } + } - if (m_Controls->m_SelectedImageBox->GetSelectedNode().IsNotNull()) - { - itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); - command->SetCallbackFunction( this, &QmitkFieldmapGeneratorView::OnSliceChanged ); - m_PropertyObserverTag = m_Controls->m_SelectedImageBox->GetSelectedNode()->AddObserver( itk::ModifiedEvent(), command ); + if (m_Controls->m_SelectedImageBox->GetSelectedNode().IsNotNull()) + { + itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); + command->SetCallbackFunction( this, &QmitkFieldmapGeneratorView::OnSliceChanged ); + m_PropertyObserverTag = m_Controls->m_SelectedImageBox->GetSelectedNode()->AddObserver( itk::ModifiedEvent(), command ); - m_Controls->m_InputData->setTitle("Reference Image"); - } + m_Controls->m_InputData->setTitle("Reference Image"); + } } void QmitkFieldmapGeneratorView::OnSliceChanged(const itk::EventObject& /*e*/) { - if (m_Controls->m_SelectedImageBox->GetSelectedNode().IsNull() || !this->GetRenderWindowPart()) - { - m_Controls->m_WorldPosLabel->setText("-"); - m_Controls->m_IndexLabel->setText("-"); - return; - } - - m_WorldPoint = this->GetRenderWindowPart()->GetSelectedPosition(); - QString posSting = QString::number(m_WorldPoint[0]); posSting += ", "; posSting += QString::number(m_WorldPoint[1]); posSting += ", "; posSting += QString::number(m_WorldPoint[2]); - m_Controls->m_WorldPosLabel->setText(posSting.toStdString().c_str()); - - mitk::Point3D index; - mitk::Image::Pointer img = dynamic_cast(m_Controls->m_SelectedImageBox->GetSelectedNode()->GetData()); - - if ( m_Controls->m_SelectedImageBox->GetSelectedNode()->GetData()->GetGeometry()->IsInside(m_WorldPoint) ) - { - img->GetGeometry()->WorldToIndex(m_WorldPoint, index); - posSting = QString::number(index[0]); posSting += ", "; posSting += QString::number(index[1]); posSting += ", "; posSting += QString::number(index[2]); - m_Controls->m_IndexLabel->setText(posSting.toStdString().c_str()); - } + if (m_Controls->m_SelectedImageBox->GetSelectedNode().IsNull() || !this->GetRenderWindowPart()) + { + m_Controls->m_WorldPosLabel->setText("-"); + m_Controls->m_IndexLabel->setText("-"); + return; + } + + m_WorldPoint = this->GetRenderWindowPart()->GetSelectedPosition(); + QString posSting = QString::number(m_WorldPoint[0]); posSting += ", "; posSting += QString::number(m_WorldPoint[1]); posSting += ", "; posSting += QString::number(m_WorldPoint[2]); + m_Controls->m_WorldPosLabel->setText(posSting.toStdString().c_str()); + + mitk::Point3D index; + mitk::Image::Pointer img = dynamic_cast(m_Controls->m_SelectedImageBox->GetSelectedNode()->GetData()); + + if ( m_Controls->m_SelectedImageBox->GetSelectedNode()->GetData()->GetGeometry()->IsInside(m_WorldPoint) ) + { + img->GetGeometry()->WorldToIndex(m_WorldPoint, index); + posSting = QString::number(index[0]); posSting += ", "; posSting += QString::number(index[1]); posSting += ", "; posSting += QString::number(index[2]); + m_Controls->m_IndexLabel->setText(posSting.toStdString().c_str()); + } } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.fiberfox/src/internal/QmitkFieldmapGeneratorView.h b/Plugins/org.mitk.gui.qt.diffusionimaging.fiberfox/src/internal/QmitkFieldmapGeneratorView.h index 2bf1c6f532..05cce38d7f 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.fiberfox/src/internal/QmitkFieldmapGeneratorView.h +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.fiberfox/src/internal/QmitkFieldmapGeneratorView.h @@ -1,84 +1,84 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _QMITKQmitkFieldmapGeneratorView_H_INCLUDED #define _QMITKQmitkFieldmapGeneratorView_H_INCLUDED #include #include #include #include "ui_QmitkFieldmapGeneratorViewControls.h" #include #include +#include "mitkILifecycleAwarePart.h" /*! \brief Generate float image with artificial frequency maps used by Fiberfox. Simulates additional frequencies at (possibly multiple) positions based on 3D gaussians with the specified variance and amplitude and/or as a linear gradient in the image. * See "Fiberfox: Facilitating the creation of realistic white matter software phantoms" (DOI: 10.1002/mrm.25045) for details. */ -class QmitkFieldmapGeneratorView : public QmitkAbstractView, public mitk::IRenderWindowPartListener +class QmitkFieldmapGeneratorView : public QmitkAbstractView, public mitk::ILifecycleAwarePart { - // this is needed for all Qt objects that should have a Qt meta-object - // (everything that derives from QObject and wants to have signal/slots) - Q_OBJECT + // this is needed for all Qt objects that should have a Qt meta-object + // (everything that derives from QObject and wants to have signal/slots) + Q_OBJECT public: - static const std::string VIEW_ID; + static const std::string VIEW_ID; - QmitkFieldmapGeneratorView(); - virtual ~QmitkFieldmapGeneratorView(); + QmitkFieldmapGeneratorView(); + virtual ~QmitkFieldmapGeneratorView(); - virtual void CreateQtPartControl(QWidget *parent) override; + virtual void CreateQtPartControl(QWidget *parent) override; - /// - /// Sets the focus to an internal widget. - /// - virtual void SetFocus() override; + virtual void SetFocus() override; - virtual void RenderWindowPartActivated(mitk::IRenderWindowPart* renderWindowPart) override; - virtual void RenderWindowPartDeactivated(mitk::IRenderWindowPart* renderWindowPart) override; + virtual void Activated() override; + virtual void Deactivated() override; + virtual void Visible() override; + virtual void Hidden() override; - void OnSliceChanged(const itk::EventObject& e); + void OnSliceChanged(const itk::EventObject& e); protected slots: - void GenerateFieldmap(); - void PlaceFieldSource(); - void OnVarianceChanged(double value); - void OnHeightChanged(double value); + void GenerateFieldmap(); + void PlaceFieldSource(); + void OnVarianceChanged(double value); + void OnHeightChanged(double value); protected: - /// \brief called by QmitkAbstractView when DataManager's selection has changed - virtual void OnSelectionChanged(berry::IWorkbenchPart::Pointer part, const QList& nodes) override; + /// \brief called by QmitkAbstractView when DataManager's selection has changed + virtual void OnSelectionChanged(berry::IWorkbenchPart::Pointer part, const QList& nodes) override; - Ui::QmitkFieldmapGeneratorViewControls* m_Controls; + Ui::QmitkFieldmapGeneratorViewControls* m_Controls; - /** observer flags */ - int m_SliceObserverTag1; - int m_SliceObserverTag2; - int m_SliceObserverTag3; - int m_PropertyObserverTag; + /** observer flags */ + int m_SliceObserverTag1; + int m_SliceObserverTag2; + int m_SliceObserverTag3; + int m_PropertyObserverTag; - mitk::Point3D m_WorldPoint; - mitk::DataNode::Pointer m_SelectedSource; + mitk::Point3D m_WorldPoint; + mitk::DataNode::Pointer m_SelectedSource; }; #endif // _QmitkFieldmapGeneratorView_H_INCLUDED diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.fiberprocessing/src/internal/QmitkFiberProcessingView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging.fiberprocessing/src/internal/QmitkFiberProcessingView.cpp index 92a2e09d0b..e21cae4df7 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.fiberprocessing/src/internal/QmitkFiberProcessingView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.fiberprocessing/src/internal/QmitkFiberProcessingView.cpp @@ -1,1447 +1,1456 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Blueberry #include #include #include // Qmitk #include "QmitkFiberProcessingView.h" // Qt #include // MITK #include #include #include #include #include #include #include #include #include #include #include "usModuleRegistry.h" #include #include "mitkNodePredicateDataType.h" #include #include #include #include // ITK #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include const std::string QmitkFiberProcessingView::VIEW_ID = "org.mitk.views.fiberprocessing"; const std::string id_DataManager = "org.mitk.views.datamanager"; using namespace mitk; QmitkFiberProcessingView::QmitkFiberProcessingView() : QmitkAbstractView() , m_Controls( 0 ) , m_CircleCounter(0) , m_PolygonCounter(0) , m_UpsamplingFactor(1) { } // Destructor QmitkFiberProcessingView::~QmitkFiberProcessingView() { } void QmitkFiberProcessingView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkFiberProcessingViewControls; m_Controls->setupUi( parent ); connect( m_Controls->m_CircleButton, SIGNAL( clicked() ), this, SLOT( OnDrawCircle() ) ); connect( m_Controls->m_PolygonButton, SIGNAL( clicked() ), this, SLOT( OnDrawPolygon() ) ); connect(m_Controls->PFCompoANDButton, SIGNAL(clicked()), this, SLOT(GenerateAndComposite()) ); connect(m_Controls->PFCompoORButton, SIGNAL(clicked()), this, SLOT(GenerateOrComposite()) ); connect(m_Controls->PFCompoNOTButton, SIGNAL(clicked()), this, SLOT(GenerateNotComposite()) ); connect(m_Controls->m_GenerateRoiImage, SIGNAL(clicked()), this, SLOT(GenerateRoiImage()) ); connect(m_Controls->m_JoinBundles, SIGNAL(clicked()), this, SLOT(JoinBundles()) ); connect(m_Controls->m_SubstractBundles, SIGNAL(clicked()), this, SLOT(SubstractBundles()) ); connect(m_Controls->m_CopyBundle, SIGNAL(clicked()), this, SLOT(CopyBundles()) ); connect(m_Controls->m_ExtractFibersButton, SIGNAL(clicked()), this, SLOT(Extract())); connect(m_Controls->m_RemoveButton, SIGNAL(clicked()), this, SLOT(Remove())); connect(m_Controls->m_ModifyButton, SIGNAL(clicked()), this, SLOT(Modify())); connect(m_Controls->m_ExtractionMethodBox, SIGNAL(currentIndexChanged(int)), this, SLOT(UpdateGui())); connect(m_Controls->m_RemovalMethodBox, SIGNAL(currentIndexChanged(int)), this, SLOT(UpdateGui())); connect(m_Controls->m_ModificationMethodBox, SIGNAL(currentIndexChanged(int)), this, SLOT(UpdateGui())); connect(m_Controls->m_ExtractionBoxMask, SIGNAL(currentIndexChanged(int)), this, SLOT(OnMaskExtractionChanged())); m_Controls->m_ColorMapBox->SetDataStorage(this->GetDataStorage()); mitk::TNodePredicateDataType::Pointer isMitkImage = mitk::TNodePredicateDataType::New(); mitk::NodePredicateDataType::Pointer isDwi = mitk::NodePredicateDataType::New("DiffusionImage"); mitk::NodePredicateDataType::Pointer isDti = mitk::NodePredicateDataType::New("TensorImage"); mitk::NodePredicateDataType::Pointer isQbi = mitk::NodePredicateDataType::New("QBallImage"); mitk::NodePredicateOr::Pointer isDiffusionImage = mitk::NodePredicateOr::New(isDwi, isDti); isDiffusionImage = mitk::NodePredicateOr::New(isDiffusionImage, isQbi); mitk::NodePredicateNot::Pointer noDiffusionImage = mitk::NodePredicateNot::New(isDiffusionImage); mitk::NodePredicateAnd::Pointer finalPredicate = mitk::NodePredicateAnd::New(isMitkImage, noDiffusionImage); m_Controls->m_ColorMapBox->SetPredicate(finalPredicate); m_Controls->label_17->setVisible(false); m_Controls->m_FiberExtractionFractionBox->setVisible(false); } UpdateGui(); } void QmitkFiberProcessingView::OnMaskExtractionChanged() { if (m_Controls->m_ExtractionBoxMask->currentIndex() == 2) { m_Controls->label_17->setVisible(true); m_Controls->m_FiberExtractionFractionBox->setVisible(true); m_Controls->m_BothEnds->setVisible(false); } else { m_Controls->label_17->setVisible(false); m_Controls->m_FiberExtractionFractionBox->setVisible(false); if (m_Controls->m_ExtractionBoxMask->currentIndex() != 3) m_Controls->m_BothEnds->setVisible(true); } } void QmitkFiberProcessingView::SetFocus() { m_Controls->toolBoxx->setFocus(); } void QmitkFiberProcessingView::Modify() { switch (m_Controls->m_ModificationMethodBox->currentIndex()) { case 0: { ResampleSelectedBundlesSpline(); break; } case 1: { ResampleSelectedBundlesLinear(); break; } case 2: { CompressSelectedBundles(); break; } case 3: { DoImageColorCoding(); break; } case 4: { MirrorFibers(); break; } case 5: { WeightFibers(); break; } case 6: { DoCurvatureColorCoding(); break; } case 7: { DoWeightColorCoding(); break; } } } void QmitkFiberProcessingView::WeightFibers() { float weight = this->m_Controls->m_BundleWeightBox->value(); for (auto node : m_SelectedFB) { mitk::FiberBundle::Pointer fib = dynamic_cast(node->GetData()); fib->SetFiberWeights(weight); } } void QmitkFiberProcessingView::Remove() { switch (m_Controls->m_RemovalMethodBox->currentIndex()) { case 0: { RemoveDir(); break; } case 1: { PruneBundle(); break; } case 2: { ApplyCurvatureThreshold(); break; } case 3: { RemoveWithMask(false); break; } case 4: { RemoveWithMask(true); break; } } } void QmitkFiberProcessingView::Extract() { switch (m_Controls->m_ExtractionMethodBox->currentIndex()) { case 0: { ExtractWithPlanarFigure(); break; } case 1: { switch (m_Controls->m_ExtractionBoxMask->currentIndex()) { { case 0: ExtractWithMask(true, false); break; } { case 1: ExtractWithMask(true, true); break; } { case 2: ExtractWithMask(false, false); break; } { case 3: ExtractWithMask(false, true); break; } } break; } } } void QmitkFiberProcessingView::PruneBundle() { int minLength = this->m_Controls->m_PruneFibersMinBox->value(); int maxLength = this->m_Controls->m_PruneFibersMaxBox->value(); for (auto node : m_SelectedFB) { mitk::FiberBundle::Pointer fib = dynamic_cast(node->GetData()); if (!fib->RemoveShortFibers(minLength)) QMessageBox::information(nullptr, "No output generated:", "The resulting fiber bundle contains no fibers."); else if (!fib->RemoveLongFibers(maxLength)) QMessageBox::information(nullptr, "No output generated:", "The resulting fiber bundle contains no fibers."); } RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberProcessingView::ApplyCurvatureThreshold() { int angle = this->m_Controls->m_CurvSpinBox->value(); int dist = this->m_Controls->m_CurvDistanceSpinBox->value(); std::vector< DataNode::Pointer > nodes = m_SelectedFB; for (auto node : nodes) { mitk::FiberBundle::Pointer fib = dynamic_cast(node->GetData()); itk::FiberCurvatureFilter::Pointer filter = itk::FiberCurvatureFilter::New(); filter->SetInputFiberBundle(fib); filter->SetAngularDeviation(angle); filter->SetDistance(dist); filter->SetRemoveFibers(m_Controls->m_RemoveCurvedFibersBox->isChecked()); filter->Update(); mitk::FiberBundle::Pointer newFib = filter->GetOutputFiberBundle(); if (newFib->GetNumFibers()>0) { newFib->ColorFibersByOrientation(); node->SetData(newFib); } else QMessageBox::information(nullptr, "No output generated:", "The resulting fiber bundle contains no fibers."); } RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberProcessingView::RemoveDir() { for (auto node : m_SelectedFB) { mitk::FiberBundle::Pointer fib = dynamic_cast(node->GetData()); vnl_vector_fixed dir; dir[0] = m_Controls->m_ExtractDirX->value(); dir[1] = m_Controls->m_ExtractDirY->value(); dir[2] = m_Controls->m_ExtractDirZ->value(); fib->RemoveDir(dir,cos((float)m_Controls->m_ExtractAngle->value()*M_PI/180)); } RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberProcessingView::RemoveWithMask(bool removeInside) { if (m_MaskImageNode.IsNull()) return; mitk::Image::Pointer mitkMask = dynamic_cast(m_MaskImageNode->GetData()); for (auto node : m_SelectedFB) { mitk::FiberBundle::Pointer fib = dynamic_cast(node->GetData()); QString name(node->GetName().c_str()); itkUCharImageType::Pointer mask = itkUCharImageType::New(); mitk::CastToItkImage(mitkMask, mask); mitk::FiberBundle::Pointer newFib = fib->RemoveFibersOutside(mask, removeInside); if (newFib->GetNumFibers()<=0) { QMessageBox::information(nullptr, "No output generated:", "The resulting fiber bundle contains no fibers."); continue; } node->SetData(newFib); } RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberProcessingView::ExtractWithMask(bool onlyEnds, bool invert) { if (m_MaskImageNode.IsNull()) return; mitk::Image::Pointer mitkMask = dynamic_cast(m_MaskImageNode->GetData()); for (auto node : m_SelectedFB) { mitk::FiberBundle::Pointer fib = dynamic_cast(node->GetData()); QString name(node->GetName().c_str()); itkUCharImageType::Pointer mask = itkUCharImageType::New(); mitk::CastToItkImage(mitkMask, mask); mitk::FiberBundle::Pointer newFib = fib->ExtractFiberSubset(mask, !onlyEnds, invert, m_Controls->m_BothEnds->isChecked(), m_Controls->m_FiberExtractionFractionBox->value()); if (newFib->GetNumFibers()<=0) { QMessageBox::information(nullptr, "No output generated:", "The resulting fiber bundle contains no fibers."); continue; } DataNode::Pointer newNode = DataNode::New(); newNode->SetData(newFib); if (invert) { name += "_not"; if (onlyEnds) name += "-ending-in-mask"; else name += "-passing-mask"; } else { if (onlyEnds) name += "_ending-in-mask"; else name += "_passing-mask"; } newNode->SetName(name.toStdString()); GetDataStorage()->Add(newNode); node->SetVisibility(false); } } void QmitkFiberProcessingView::GenerateRoiImage() { if (m_SelectedPF.empty()) return; mitk::BaseGeometry::Pointer geometry; if (!m_SelectedFB.empty()) { mitk::FiberBundle::Pointer fib = dynamic_cast(m_SelectedFB.front()->GetData()); geometry = fib->GetGeometry(); } else if (m_SelectedImage) geometry = m_SelectedImage->GetGeometry(); else return; itk::Vector spacing = geometry->GetSpacing(); spacing /= m_UpsamplingFactor; mitk::Point3D newOrigin = geometry->GetOrigin(); mitk::Geometry3D::BoundsArrayType bounds = geometry->GetBounds(); newOrigin[0] += bounds.GetElement(0); newOrigin[1] += bounds.GetElement(2); newOrigin[2] += bounds.GetElement(4); itk::Matrix direction; itk::ImageRegion<3> imageRegion; for (int i=0; i<3; i++) for (int j=0; j<3; j++) direction[j][i] = geometry->GetMatrixColumn(i)[j]/spacing[j]; imageRegion.SetSize(0, geometry->GetExtent(0)*m_UpsamplingFactor); imageRegion.SetSize(1, geometry->GetExtent(1)*m_UpsamplingFactor); imageRegion.SetSize(2, geometry->GetExtent(2)*m_UpsamplingFactor); m_PlanarFigureImage = itkUCharImageType::New(); m_PlanarFigureImage->SetSpacing( spacing ); // Set the image spacing m_PlanarFigureImage->SetOrigin( newOrigin ); // Set the image origin m_PlanarFigureImage->SetDirection( direction ); // Set the image direction m_PlanarFigureImage->SetRegions( imageRegion ); m_PlanarFigureImage->Allocate(); m_PlanarFigureImage->FillBuffer( 0 ); Image::Pointer tmpImage = Image::New(); tmpImage->InitializeByItk(m_PlanarFigureImage.GetPointer()); tmpImage->SetVolume(m_PlanarFigureImage->GetBufferPointer()); std::string name = m_SelectedPF.at(0)->GetName(); WritePfToImage(m_SelectedPF.at(0), tmpImage); for (unsigned int i=1; iGetName(); WritePfToImage(m_SelectedPF.at(i), tmpImage); } DataNode::Pointer node = DataNode::New(); tmpImage = Image::New(); tmpImage->InitializeByItk(m_PlanarFigureImage.GetPointer()); tmpImage->SetVolume(m_PlanarFigureImage->GetBufferPointer()); node->SetData(tmpImage); node->SetName(name); this->GetDataStorage()->Add(node); } void QmitkFiberProcessingView::WritePfToImage(mitk::DataNode::Pointer node, mitk::Image* image) { if (dynamic_cast(node->GetData())) { m_PlanarFigure = dynamic_cast(node->GetData()); AccessFixedDimensionByItk_2( image, InternalReorientImagePlane, 3, m_PlanarFigure->GetGeometry(), -1); AccessFixedDimensionByItk_2( m_InternalImage, InternalCalculateMaskFromPlanarFigure, 3, 2, node->GetName() ); } else if (dynamic_cast(node->GetData())) { DataStorage::SetOfObjects::ConstPointer children = GetDataStorage()->GetDerivations(node); for (unsigned int i=0; iSize(); i++) { WritePfToImage(children->at(i), image); } } } template < typename TPixel, unsigned int VImageDimension > void QmitkFiberProcessingView::InternalReorientImagePlane( const itk::Image< TPixel, VImageDimension > *image, mitk::BaseGeometry* planegeo3D, int additionalIndex ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< float, VImageDimension > FloatImageType; typedef itk::ResampleImageFilter ResamplerType; typename ResamplerType::Pointer resampler = ResamplerType::New(); mitk::PlaneGeometry* planegeo = dynamic_cast(planegeo3D); float upsamp = m_UpsamplingFactor; float gausssigma = 0.5; // Spacing typename ResamplerType::SpacingType spacing = planegeo->GetSpacing(); spacing[0] = image->GetSpacing()[0] / upsamp; spacing[1] = image->GetSpacing()[1] / upsamp; spacing[2] = image->GetSpacing()[2]; resampler->SetOutputSpacing( spacing ); // Size typename ResamplerType::SizeType size; size[0] = planegeo->GetExtentInMM(0) / spacing[0]; size[1] = planegeo->GetExtentInMM(1) / spacing[1]; size[2] = 1; resampler->SetSize( size ); // Origin typename mitk::Point3D orig = planegeo->GetOrigin(); typename mitk::Point3D corrorig; planegeo3D->WorldToIndex(orig,corrorig); corrorig[0] += 0.5/upsamp; corrorig[1] += 0.5/upsamp; corrorig[2] += 0; planegeo3D->IndexToWorld(corrorig,corrorig); resampler->SetOutputOrigin(corrorig ); // Direction typename ResamplerType::DirectionType direction; typename mitk::AffineTransform3D::MatrixType matrix = planegeo->GetIndexToWorldTransform()->GetMatrix(); for(int c=0; cSetOutputDirection( direction ); // Gaussian interpolation if(gausssigma != 0) { double sigma[3]; for( unsigned int d = 0; d < 3; d++ ) sigma[d] = gausssigma * image->GetSpacing()[d]; double alpha = 2.0; typedef itk::GaussianInterpolateImageFunction GaussianInterpolatorType; typename GaussianInterpolatorType::Pointer interpolator = GaussianInterpolatorType::New(); interpolator->SetInputImage( image ); interpolator->SetParameters( sigma, alpha ); resampler->SetInterpolator( interpolator ); } else { typedef typename itk::LinearInterpolateImageFunction InterpolatorType; typename InterpolatorType::Pointer interpolator = InterpolatorType::New(); interpolator->SetInputImage( image ); resampler->SetInterpolator( interpolator ); } resampler->SetInput( image ); resampler->SetDefaultPixelValue(0); resampler->Update(); if(additionalIndex < 0) { this->m_InternalImage = mitk::Image::New(); this->m_InternalImage->InitializeByItk( resampler->GetOutput() ); this->m_InternalImage->SetVolume( resampler->GetOutput()->GetBufferPointer() ); } } template < typename TPixel, unsigned int VImageDimension > void QmitkFiberProcessingView::InternalCalculateMaskFromPlanarFigure( itk::Image< TPixel, VImageDimension > *image, unsigned int axis, std::string ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::CastImageFilter< ImageType, itkUCharImageType > CastFilterType; // Generate mask image as new image with same header as input image and // initialize with "1". itkUCharImageType::Pointer newMaskImage = itkUCharImageType::New(); newMaskImage->SetSpacing( image->GetSpacing() ); // Set the image spacing newMaskImage->SetOrigin( image->GetOrigin() ); // Set the image origin newMaskImage->SetDirection( image->GetDirection() ); // Set the image direction newMaskImage->SetRegions( image->GetLargestPossibleRegion() ); newMaskImage->Allocate(); newMaskImage->FillBuffer( 1 ); // Generate VTK polygon from (closed) PlanarFigure polyline // (The polyline points are shifted by -0.5 in z-direction to make sure // that the extrusion filter, which afterwards elevates all points by +0.5 // in z-direction, creates a 3D object which is cut by the the plane z=0) const PlaneGeometry *planarFigurePlaneGeometry = m_PlanarFigure->GetPlaneGeometry(); const PlanarFigure::PolyLineType planarFigurePolyline = m_PlanarFigure->GetPolyLine( 0 ); const BaseGeometry *imageGeometry3D = m_InternalImage->GetGeometry( 0 ); vtkPolyData *polyline = vtkPolyData::New(); polyline->Allocate( 1, 1 ); // Determine x- and y-dimensions depending on principal axis int i0, i1; switch ( axis ) { case 0: i0 = 1; i1 = 2; break; case 1: i0 = 0; i1 = 2; break; case 2: default: i0 = 0; i1 = 1; break; } // Create VTK polydata object of polyline contour vtkPoints *points = vtkPoints::New(); PlanarFigure::PolyLineType::const_iterator it; unsigned int numberOfPoints = 0; for ( it = planarFigurePolyline.begin(); it != planarFigurePolyline.end(); ++it ) { Point3D point3D; // Convert 2D point back to the local index coordinates of the selected image Point2D point2D = *it; planarFigurePlaneGeometry->WorldToIndex(point2D, point2D); point2D[0] -= 0.5/m_UpsamplingFactor; point2D[1] -= 0.5/m_UpsamplingFactor; planarFigurePlaneGeometry->IndexToWorld(point2D, point2D); planarFigurePlaneGeometry->Map( point2D, point3D ); // Polygons (partially) outside of the image bounds can not be processed further due to a bug in vtkPolyDataToImageStencil if ( !imageGeometry3D->IsInside( point3D ) ) { float bounds[2] = {0,0}; bounds[0] = this->m_InternalImage->GetLargestPossibleRegion().GetSize().GetElement(i0); bounds[1] = this->m_InternalImage->GetLargestPossibleRegion().GetSize().GetElement(i1); imageGeometry3D->WorldToIndex( point3D, point3D ); if (point3D[i0]<0) point3D[i0] = 0.0; else if (point3D[i0]>bounds[0]) point3D[i0] = bounds[0]-0.001; if (point3D[i1]<0) point3D[i1] = 0.0; else if (point3D[i1]>bounds[1]) point3D[i1] = bounds[1]-0.001; points->InsertNextPoint( point3D[i0], point3D[i1], -0.5 ); numberOfPoints++; } else { imageGeometry3D->WorldToIndex( point3D, point3D ); // Add point to polyline array points->InsertNextPoint( point3D[i0], point3D[i1], -0.5 ); numberOfPoints++; } } polyline->SetPoints( points ); points->Delete(); vtkIdType *ptIds = new vtkIdType[numberOfPoints]; for ( vtkIdType i = 0; i < numberOfPoints; ++i ) ptIds[i] = i; polyline->InsertNextCell( VTK_POLY_LINE, numberOfPoints, ptIds ); // Extrude the generated contour polygon vtkLinearExtrusionFilter *extrudeFilter = vtkLinearExtrusionFilter::New(); extrudeFilter->SetInputData( polyline ); extrudeFilter->SetScaleFactor( 1 ); extrudeFilter->SetExtrusionTypeToNormalExtrusion(); extrudeFilter->SetVector( 0.0, 0.0, 1.0 ); // Make a stencil from the extruded polygon vtkPolyDataToImageStencil *polyDataToImageStencil = vtkPolyDataToImageStencil::New(); polyDataToImageStencil->SetInputConnection( extrudeFilter->GetOutputPort() ); // Export from ITK to VTK (to use a VTK filter) typedef itk::VTKImageImport< itkUCharImageType > ImageImportType; typedef itk::VTKImageExport< itkUCharImageType > ImageExportType; typename ImageExportType::Pointer itkExporter = ImageExportType::New(); itkExporter->SetInput( newMaskImage ); vtkImageImport *vtkImporter = vtkImageImport::New(); this->ConnectPipelines( itkExporter, vtkImporter ); vtkImporter->Update(); // Apply the generated image stencil to the input image vtkImageStencil *imageStencilFilter = vtkImageStencil::New(); imageStencilFilter->SetInputConnection( vtkImporter->GetOutputPort() ); imageStencilFilter->SetStencilConnection(polyDataToImageStencil->GetOutputPort() ); imageStencilFilter->ReverseStencilOff(); imageStencilFilter->SetBackgroundValue( 0 ); imageStencilFilter->Update(); // Export from VTK back to ITK vtkImageExport *vtkExporter = vtkImageExport::New(); vtkExporter->SetInputConnection( imageStencilFilter->GetOutputPort() ); vtkExporter->Update(); typename ImageImportType::Pointer itkImporter = ImageImportType::New(); this->ConnectPipelines( vtkExporter, itkImporter ); itkImporter->Update(); // calculate cropping bounding box m_InternalImageMask3D = itkImporter->GetOutput(); m_InternalImageMask3D->SetDirection(image->GetDirection()); itk::ImageRegionConstIterator itmask(m_InternalImageMask3D, m_InternalImageMask3D->GetLargestPossibleRegion()); itk::ImageRegionIterator itimage(image, image->GetLargestPossibleRegion()); itmask.GoToBegin(); itimage.GoToBegin(); typename ImageType::SizeType lowersize = {{itk::NumericTraits::max(),itk::NumericTraits::max(),itk::NumericTraits::max()}}; typename ImageType::SizeType uppersize = {{0,0,0}}; while( !itmask.IsAtEnd() ) { if(itmask.Get() == 0) itimage.Set(0); else { typename ImageType::IndexType index = itimage.GetIndex(); typename ImageType::SizeType signedindex; signedindex[0] = index[0]; signedindex[1] = index[1]; signedindex[2] = index[2]; lowersize[0] = signedindex[0] < lowersize[0] ? signedindex[0] : lowersize[0]; lowersize[1] = signedindex[1] < lowersize[1] ? signedindex[1] : lowersize[1]; lowersize[2] = signedindex[2] < lowersize[2] ? signedindex[2] : lowersize[2]; uppersize[0] = signedindex[0] > uppersize[0] ? signedindex[0] : uppersize[0]; uppersize[1] = signedindex[1] > uppersize[1] ? signedindex[1] : uppersize[1]; uppersize[2] = signedindex[2] > uppersize[2] ? signedindex[2] : uppersize[2]; } ++itmask; ++itimage; } typename ImageType::IndexType index; index[0] = lowersize[0]; index[1] = lowersize[1]; index[2] = lowersize[2]; typename ImageType::SizeType size; size[0] = uppersize[0] - lowersize[0] + 1; size[1] = uppersize[1] - lowersize[1] + 1; size[2] = uppersize[2] - lowersize[2] + 1; itk::ImageRegion<3> cropRegion = itk::ImageRegion<3>(index, size); // crop internal mask typedef itk::RegionOfInterestImageFilter< itkUCharImageType, itkUCharImageType > ROIMaskFilterType; typename ROIMaskFilterType::Pointer roi2 = ROIMaskFilterType::New(); roi2->SetRegionOfInterest(cropRegion); roi2->SetInput(m_InternalImageMask3D); roi2->Update(); m_InternalImageMask3D = roi2->GetOutput(); Image::Pointer tmpImage = Image::New(); tmpImage->InitializeByItk(m_InternalImageMask3D.GetPointer()); tmpImage->SetVolume(m_InternalImageMask3D->GetBufferPointer()); Image::Pointer tmpImage2 = Image::New(); tmpImage2->InitializeByItk(m_PlanarFigureImage.GetPointer()); const BaseGeometry *pfImageGeometry3D = tmpImage2->GetGeometry( 0 ); const BaseGeometry *intImageGeometry3D = tmpImage->GetGeometry( 0 ); typedef itk::ImageRegionIteratorWithIndex IteratorType; IteratorType imageIterator (m_InternalImageMask3D, m_InternalImageMask3D->GetRequestedRegion()); imageIterator.GoToBegin(); while ( !imageIterator.IsAtEnd() ) { unsigned char val = imageIterator.Value(); if (val>0) { itk::Index<3> index = imageIterator.GetIndex(); Point3D point; point[0] = index[0]; point[1] = index[1]; point[2] = index[2]; intImageGeometry3D->IndexToWorld(point, point); pfImageGeometry3D->WorldToIndex(point, point); point[i0] += 0.5; point[i1] += 0.5; index[0] = point[0]; index[1] = point[1]; index[2] = point[2]; if (pfImageGeometry3D->IsIndexInside(index)) m_PlanarFigureImage->SetPixel(index, 1); } ++imageIterator; } // Clean up VTK objects polyline->Delete(); extrudeFilter->Delete(); polyDataToImageStencil->Delete(); vtkImporter->Delete(); imageStencilFilter->Delete(); //vtkExporter->Delete(); // TODO: crashes when outcommented; memory leak?? delete[] ptIds; } void QmitkFiberProcessingView::UpdateGui() { m_Controls->m_FibLabel->setText("mandatory"); m_Controls->m_PfLabel->setText("needed for extraction"); m_Controls->m_InputData->setTitle("Please Select Input Data"); m_Controls->m_RemoveButton->setEnabled(false); m_Controls->m_PlanarFigureButtonsFrame->setEnabled(false); m_Controls->PFCompoANDButton->setEnabled(false); m_Controls->PFCompoORButton->setEnabled(false); m_Controls->PFCompoNOTButton->setEnabled(false); m_Controls->m_GenerateRoiImage->setEnabled(false); m_Controls->m_ExtractFibersButton->setEnabled(false); m_Controls->m_ModifyButton->setEnabled(false); m_Controls->m_CopyBundle->setEnabled(false); m_Controls->m_JoinBundles->setEnabled(false); m_Controls->m_SubstractBundles->setEnabled(false); // disable alle frames m_Controls->m_BundleWeightFrame->setVisible(false); m_Controls->m_ExtactionFramePF->setVisible(false); m_Controls->m_RemoveDirectionFrame->setVisible(false); m_Controls->m_RemoveLengthFrame->setVisible(false); m_Controls->m_RemoveCurvatureFrame->setVisible(false); m_Controls->m_SmoothFibersFrame->setVisible(false); m_Controls->m_CompressFibersFrame->setVisible(false); m_Controls->m_ColorFibersFrame->setVisible(false); m_Controls->m_MirrorFibersFrame->setVisible(false); m_Controls->m_MaskExtractionFrame->setVisible(false); + m_Controls->m_ColorMapBox->setVisible(false); bool pfSelected = !m_SelectedPF.empty(); bool fibSelected = !m_SelectedFB.empty(); bool multipleFibsSelected = (m_SelectedFB.size()>1); bool maskSelected = m_MaskImageNode.IsNotNull(); bool imageSelected = m_SelectedImage.IsNotNull(); // toggle visibility of elements according to selected method switch ( m_Controls->m_ExtractionMethodBox->currentIndex() ) { case 0: m_Controls->m_ExtactionFramePF->setVisible(true); break; case 1: m_Controls->m_MaskExtractionFrame->setVisible(true); break; } switch ( m_Controls->m_RemovalMethodBox->currentIndex() ) { case 0: m_Controls->m_RemoveDirectionFrame->setVisible(true); if ( fibSelected ) m_Controls->m_RemoveButton->setEnabled(true); break; case 1: m_Controls->m_RemoveLengthFrame->setVisible(true); if ( fibSelected ) m_Controls->m_RemoveButton->setEnabled(true); break; case 2: m_Controls->m_RemoveCurvatureFrame->setVisible(true); if ( fibSelected ) m_Controls->m_RemoveButton->setEnabled(true); break; case 3: break; case 4: break; } switch ( m_Controls->m_ModificationMethodBox->currentIndex() ) { case 0: m_Controls->m_SmoothFibersFrame->setVisible(true); break; case 1: m_Controls->m_SmoothFibersFrame->setVisible(true); break; case 2: m_Controls->m_CompressFibersFrame->setVisible(true); break; case 3: m_Controls->m_ColorFibersFrame->setVisible(true); + m_Controls->m_ColorMapBox->setVisible(true); break; case 4: m_Controls->m_MirrorFibersFrame->setVisible(true); if (m_SelectedSurfaces.size()>0) m_Controls->m_ModifyButton->setEnabled(true); break; case 5: m_Controls->m_BundleWeightFrame->setVisible(true); + break; + case 6: + m_Controls->m_ColorFibersFrame->setVisible(true); + break; + case 7: + m_Controls->m_ColorFibersFrame->setVisible(true); + break; } // are fiber bundles selected? if ( fibSelected ) { m_Controls->m_CopyBundle->setEnabled(true); m_Controls->m_ModifyButton->setEnabled(true); m_Controls->m_PlanarFigureButtonsFrame->setEnabled(true); m_Controls->m_FibLabel->setText(QString(m_SelectedFB.at(0)->GetName().c_str())); // one bundle and one planar figure needed to extract fibers if (pfSelected && m_Controls->m_ExtractionMethodBox->currentIndex()==0) { m_Controls->m_InputData->setTitle("Input Data"); m_Controls->m_PfLabel->setText(QString(m_SelectedPF.at(0)->GetName().c_str())); m_Controls->m_ExtractFibersButton->setEnabled(true); } // more than two bundles needed to join/subtract if (multipleFibsSelected) { m_Controls->m_FibLabel->setText("multiple bundles selected"); m_Controls->m_JoinBundles->setEnabled(true); m_Controls->m_SubstractBundles->setEnabled(true); } if (maskSelected && m_Controls->m_ExtractionMethodBox->currentIndex()==1) { m_Controls->m_InputData->setTitle("Input Data"); m_Controls->m_PfLabel->setText(QString(m_MaskImageNode->GetName().c_str())); m_Controls->m_ExtractFibersButton->setEnabled(true); } if (maskSelected && (m_Controls->m_RemovalMethodBox->currentIndex()==3 || m_Controls->m_RemovalMethodBox->currentIndex()==4) ) { m_Controls->m_InputData->setTitle("Input Data"); m_Controls->m_PfLabel->setText(QString(m_MaskImageNode->GetName().c_str())); m_Controls->m_RemoveButton->setEnabled(true); } } // are planar figures selected? if (pfSelected) { if ( fibSelected || m_SelectedImage.IsNotNull()) m_Controls->m_GenerateRoiImage->setEnabled(true); if (m_SelectedPF.size() > 1) { m_Controls->PFCompoANDButton->setEnabled(true); m_Controls->PFCompoORButton->setEnabled(true); } else m_Controls->PFCompoNOTButton->setEnabled(true); } // is image selected if (imageSelected || maskSelected) { m_Controls->m_PlanarFigureButtonsFrame->setEnabled(true); } } void QmitkFiberProcessingView::NodeRemoved(const mitk::DataNode* node) { berry::IWorkbenchPart::Pointer nullPart; QList nodes; OnSelectionChanged(nullPart, nodes); } void QmitkFiberProcessingView::NodeAdded(const mitk::DataNode* node) { berry::IWorkbenchPart::Pointer nullPart; QList nodes; OnSelectionChanged(nullPart, nodes); } void QmitkFiberProcessingView::OnSelectionChanged(berry::IWorkbenchPart::Pointer /*part*/, const QList& nodes) { //reset existing Vectors containing FiberBundles and PlanarFigures from a previous selection m_SelectedFB.clear(); m_SelectedPF.clear(); m_SelectedSurfaces.clear(); m_SelectedImage = nullptr; m_MaskImageNode = nullptr; for (auto node: nodes) { if ( dynamic_cast(node->GetData()) ) m_SelectedFB.push_back(node); else if (dynamic_cast(node->GetData()) || dynamic_cast(node->GetData()) || dynamic_cast(node->GetData())) m_SelectedPF.push_back(node); else if (dynamic_cast(node->GetData())) { m_SelectedImage = dynamic_cast(node->GetData()); bool isBinary = false; node->GetPropertyValue("binary", isBinary); if (isBinary) m_MaskImageNode = node; } else if (dynamic_cast(node->GetData())) m_SelectedSurfaces.push_back(dynamic_cast(node->GetData())); } if (m_SelectedFB.empty() && m_SelectedSurfaces.empty()) { int maxLayer = 0; itk::VectorContainer::ConstPointer nodes = this->GetDataStorage()->GetAll(); for (unsigned int i=0; iSize(); i++) if (dynamic_cast(nodes->at(i)->GetData())) { mitk::DataStorage::SetOfObjects::ConstPointer sources = GetDataStorage()->GetSources(nodes->at(i)); if (sources->Size()>0) continue; int layer = 0; nodes->at(i)->GetPropertyValue("layer", layer); if (layer>=maxLayer) { maxLayer = layer; m_SelectedFB.clear(); m_SelectedFB.push_back(nodes->at(i)); } } } if (m_SelectedPF.empty()) { int maxLayer = 0; itk::VectorContainer::ConstPointer nodes = this->GetDataStorage()->GetAll(); for (unsigned int i=0; iSize(); i++) if (dynamic_cast(nodes->at(i)->GetData()) || dynamic_cast(nodes->at(i)->GetData()) || dynamic_cast(nodes->at(i)->GetData())) { mitk::DataStorage::SetOfObjects::ConstPointer sources = GetDataStorage()->GetSources(nodes->at(i)); if (sources->Size()>0) continue; int layer = 0; nodes->at(i)->GetPropertyValue("layer", layer); if (layer>=maxLayer) { maxLayer = layer; m_SelectedPF.clear(); m_SelectedPF.push_back(nodes->at(i)); } } } UpdateGui(); } void QmitkFiberProcessingView::OnDrawPolygon() { mitk::PlanarPolygon::Pointer figure = mitk::PlanarPolygon::New(); figure->ClosedOn(); this->AddFigureToDataStorage(figure, QString("Polygon%1").arg(++m_PolygonCounter)); } void QmitkFiberProcessingView::OnDrawCircle() { mitk::PlanarCircle::Pointer figure = mitk::PlanarCircle::New(); this->AddFigureToDataStorage(figure, QString("Circle%1").arg(++m_CircleCounter)); } void QmitkFiberProcessingView::AddFigureToDataStorage(mitk::PlanarFigure* figure, const QString& name, const char *, mitk::BaseProperty* ) { // initialize figure's geometry with empty geometry mitk::PlaneGeometry::Pointer emptygeometry = mitk::PlaneGeometry::New(); figure->SetPlaneGeometry( emptygeometry ); //set desired data to DataNode where Planarfigure is stored mitk::DataNode::Pointer newNode = mitk::DataNode::New(); newNode->SetName(name.toStdString()); newNode->SetData(figure); newNode->SetBoolProperty("planarfigure.3drendering", true); newNode->SetBoolProperty("planarfigure.3drendering.fill", true); mitk::PlanarFigureInteractor::Pointer figureInteractor = dynamic_cast(newNode->GetDataInteractor().GetPointer()); if(figureInteractor.IsNull()) { figureInteractor = mitk::PlanarFigureInteractor::New(); us::Module* planarFigureModule = us::ModuleRegistry::GetModule( "MitkPlanarFigure" ); figureInteractor->LoadStateMachine("PlanarFigureInteraction.xml", planarFigureModule ); figureInteractor->SetEventConfig( "PlanarFigureConfig.xml", planarFigureModule ); figureInteractor->SetDataNode(newNode); } // figure drawn on the topmost layer / image GetDataStorage()->Add(newNode ); for(unsigned int i = 0; i < m_SelectedPF.size(); i++) m_SelectedPF[i]->SetSelected(false); newNode->SetSelected(true); m_SelectedPF.clear(); m_SelectedPF.push_back(newNode); UpdateGui(); } void QmitkFiberProcessingView::ExtractWithPlanarFigure() { if ( m_SelectedFB.empty() || m_SelectedPF.empty() ){ QMessageBox::information( nullptr, "Warning", "No fibe bundle selected!"); return; } std::vector fiberBundles = m_SelectedFB; mitk::DataNode::Pointer planarFigure = m_SelectedPF.at(0); for (unsigned int i=0; i(fiberBundles.at(i)->GetData()); mitk::FiberBundle::Pointer extFB = fib->ExtractFiberSubset(planarFigure, GetDataStorage()); if (extFB->GetNumFibers()<=0) { QMessageBox::information(nullptr, "No output generated:", "The resulting fiber bundle contains no fibers."); continue; } mitk::DataNode::Pointer node; node = mitk::DataNode::New(); node->SetData(extFB); QString name(fiberBundles.at(i)->GetName().c_str()); name += "*"; //name += planarFigure->GetName().c_str(); node->SetName(name.toStdString()); fiberBundles.at(i)->SetVisibility(false); GetDataStorage()->Add(node); } } void QmitkFiberProcessingView::GenerateAndComposite() { mitk::PlanarFigureComposite::Pointer PFCAnd = mitk::PlanarFigureComposite::New(); PFCAnd->setOperationType(mitk::PlanarFigureComposite::AND); mitk::DataNode::Pointer newPFCNode; newPFCNode = mitk::DataNode::New(); newPFCNode->SetName("AND"); newPFCNode->SetData(PFCAnd); AddCompositeToDatastorage(newPFCNode, m_SelectedPF); m_SelectedPF.clear(); m_SelectedPF.push_back(newPFCNode); UpdateGui(); } void QmitkFiberProcessingView::GenerateOrComposite() { mitk::PlanarFigureComposite::Pointer PFCOr = mitk::PlanarFigureComposite::New(); PFCOr->setOperationType(mitk::PlanarFigureComposite::OR); mitk::DataNode::Pointer newPFCNode; newPFCNode = mitk::DataNode::New(); newPFCNode->SetName("OR"); newPFCNode->SetData(PFCOr); AddCompositeToDatastorage(newPFCNode, m_SelectedPF); m_SelectedPF.clear(); m_SelectedPF.push_back(newPFCNode); UpdateGui(); } void QmitkFiberProcessingView::GenerateNotComposite() { mitk::PlanarFigureComposite::Pointer PFCNot = mitk::PlanarFigureComposite::New(); PFCNot->setOperationType(mitk::PlanarFigureComposite::NOT); mitk::DataNode::Pointer newPFCNode; newPFCNode = mitk::DataNode::New(); newPFCNode->SetName("NOT"); newPFCNode->SetData(PFCNot); AddCompositeToDatastorage(newPFCNode, m_SelectedPF); m_SelectedPF.clear(); m_SelectedPF.push_back(newPFCNode); UpdateGui(); } void QmitkFiberProcessingView::AddCompositeToDatastorage(mitk::DataNode::Pointer pfc, std::vector children, mitk::DataNode::Pointer parentNode ) { pfc->SetSelected(true); if (parentNode.IsNotNull()) GetDataStorage()->Add(pfc, parentNode); else GetDataStorage()->Add(pfc); for (auto child : children) { if (dynamic_cast(child->GetData())) { mitk::DataNode::Pointer newChild; newChild = mitk::DataNode::New(); newChild->SetData(dynamic_cast(child->GetData())); newChild->SetName( child->GetName() ); newChild->SetBoolProperty("planarfigure.3drendering", true); newChild->SetBoolProperty("planarfigure.3drendering.fill", true); GetDataStorage()->Add(newChild, pfc); GetDataStorage()->Remove(child); } else if (dynamic_cast(child->GetData())) { mitk::DataNode::Pointer newChild; newChild = mitk::DataNode::New(); newChild->SetData(dynamic_cast(child->GetData())); newChild->SetName( child->GetName() ); std::vector< mitk::DataNode::Pointer > grandChildVector; mitk::DataStorage::SetOfObjects::ConstPointer grandchildren = GetDataStorage()->GetDerivations(child); for( mitk::DataStorage::SetOfObjects::const_iterator it = grandchildren->begin(); it != grandchildren->end(); ++it ) grandChildVector.push_back(*it); AddCompositeToDatastorage(newChild, grandChildVector, pfc); GetDataStorage()->Remove(child); } } UpdateGui(); } void QmitkFiberProcessingView::CopyBundles() { if ( m_SelectedFB.empty() ){ QMessageBox::information( nullptr, "Warning", "Select at least one fiber bundle!"); MITK_WARN("QmitkFiberProcessingView") << "Select at least one fiber bundle!"; return; } for (auto node : m_SelectedFB) { mitk::FiberBundle::Pointer fib = dynamic_cast(node->GetData()); mitk::FiberBundle::Pointer newFib = fib->GetDeepCopy(); node->SetVisibility(false); QString name(""); name += QString(m_SelectedFB.at(0)->GetName().c_str()); name += "_copy"; mitk::DataNode::Pointer fbNode = mitk::DataNode::New(); fbNode->SetData(newFib); fbNode->SetName(name.toStdString()); fbNode->SetVisibility(true); GetDataStorage()->Add(fbNode); } UpdateGui(); } void QmitkFiberProcessingView::JoinBundles() { if ( m_SelectedFB.size()<2 ){ QMessageBox::information( nullptr, "Warning", "Select at least two fiber bundles!"); MITK_WARN("QmitkFiberProcessingView") << "Select at least two fiber bundles!"; return; } mitk::FiberBundle::Pointer newBundle = dynamic_cast(m_SelectedFB.at(0)->GetData()); m_SelectedFB.at(0)->SetVisibility(false); QString name(""); name += QString(m_SelectedFB.at(0)->GetName().c_str()); for (unsigned int i=1; iAddBundle(dynamic_cast(m_SelectedFB.at(i)->GetData())); name += "+"+QString(m_SelectedFB.at(i)->GetName().c_str()); m_SelectedFB.at(i)->SetVisibility(false); } mitk::DataNode::Pointer fbNode = mitk::DataNode::New(); fbNode->SetData(newBundle); fbNode->SetName(name.toStdString()); fbNode->SetVisibility(true); GetDataStorage()->Add(fbNode); UpdateGui(); } void QmitkFiberProcessingView::SubstractBundles() { if ( m_SelectedFB.size()<2 ){ QMessageBox::information( nullptr, "Warning", "Select at least two fiber bundles!"); MITK_WARN("QmitkFiberProcessingView") << "Select at least two fiber bundles!"; return; } mitk::FiberBundle::Pointer newBundle = dynamic_cast(m_SelectedFB.at(0)->GetData()); m_SelectedFB.at(0)->SetVisibility(false); QString name(""); name += QString(m_SelectedFB.at(0)->GetName().c_str()); for (unsigned int i=1; iSubtractBundle(dynamic_cast(m_SelectedFB.at(i)->GetData())); if (newBundle.IsNull()) break; name += "-"+QString(m_SelectedFB.at(i)->GetName().c_str()); m_SelectedFB.at(i)->SetVisibility(false); } if (newBundle.IsNull()) { QMessageBox::information(nullptr, "No output generated:", "The resulting fiber bundle contains no fibers. Did you select the fiber bundles in the correct order? X-Y is not equal to Y-X!"); return; } mitk::DataNode::Pointer fbNode = mitk::DataNode::New(); fbNode->SetData(newBundle); fbNode->SetName(name.toStdString()); fbNode->SetVisibility(true); GetDataStorage()->Add(fbNode); UpdateGui(); } void QmitkFiberProcessingView::ResampleSelectedBundlesSpline() { double factor = this->m_Controls->m_SmoothFibersBox->value(); for (auto node : m_SelectedFB) { mitk::FiberBundle::Pointer fib = dynamic_cast(node->GetData()); fib->ResampleSpline(factor); } RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberProcessingView::ResampleSelectedBundlesLinear() { double factor = this->m_Controls->m_SmoothFibersBox->value(); for (auto node : m_SelectedFB) { mitk::FiberBundle::Pointer fib = dynamic_cast(node->GetData()); fib->ResampleLinear(factor); } RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberProcessingView::CompressSelectedBundles() { double factor = this->m_Controls->m_ErrorThresholdBox->value(); for (auto node : m_SelectedFB) { mitk::FiberBundle::Pointer fib = dynamic_cast(node->GetData()); fib->Compress(factor); fib->ColorFibersByOrientation(); } RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberProcessingView::DoImageColorCoding() { if (m_Controls->m_ColorMapBox->GetSelectedNode().IsNull()) { QMessageBox::information(nullptr, "Bundle coloring aborted:", "No image providing the scalar values for coloring the selected bundle available."); return; } for (auto node : m_SelectedFB) { mitk::FiberBundle::Pointer fib = dynamic_cast(node->GetData()); - fib->ColorFibersByScalarMap(dynamic_cast(m_Controls->m_ColorMapBox->GetSelectedNode()->GetData()), m_Controls->m_FiberOpacityBox->isChecked()); + fib->ColorFibersByScalarMap(dynamic_cast(m_Controls->m_ColorMapBox->GetSelectedNode()->GetData()), m_Controls->m_FiberOpacityBox->isChecked(), m_Controls->m_NormalizeColorValues->isChecked()); } if (auto renderWindowPart = this->GetRenderWindowPart()) { renderWindowPart->RequestUpdate(); } } void QmitkFiberProcessingView::DoCurvatureColorCoding() { for (auto node : m_SelectedFB) { mitk::FiberBundle::Pointer fib = dynamic_cast(node->GetData()); - fib->ColorFibersByCurvature(); + fib->ColorFibersByCurvature(m_Controls->m_FiberOpacityBox->isChecked(), m_Controls->m_NormalizeColorValues->isChecked()); } if (auto renderWindowPart = this->GetRenderWindowPart()) { renderWindowPart->RequestUpdate(); } } void QmitkFiberProcessingView::DoWeightColorCoding() { for (auto node : m_SelectedFB) { mitk::FiberBundle::Pointer fib = dynamic_cast(node->GetData()); - fib->ColorFibersByFiberWeights(); + fib->ColorFibersByFiberWeights(m_Controls->m_FiberOpacityBox->isChecked(), m_Controls->m_NormalizeColorValues->isChecked()); } if (auto renderWindowPart = this->GetRenderWindowPart()) { renderWindowPart->RequestUpdate(); } } void QmitkFiberProcessingView::MirrorFibers() { unsigned int axis = this->m_Controls->m_MirrorFibersBox->currentIndex(); for (auto node : m_SelectedFB) { mitk::FiberBundle::Pointer fib = dynamic_cast(node->GetData()); if (m_SelectedImage.IsNotNull()) fib->SetReferenceGeometry(m_SelectedImage->GetGeometry()); fib->MirrorFibers(axis); } for (auto surf : m_SelectedSurfaces) { vtkSmartPointer poly = surf->GetVtkPolyData(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); for (int i=0; iGetNumberOfPoints(); i++) { double* point = poly->GetPoint(i); point[axis] *= -1; vtkNewPoints->InsertNextPoint(point); } poly->SetPoints(vtkNewPoints); surf->CalculateBoundingBox(); } if (auto renderWindowPart = this->GetRenderWindowPart()) { renderWindowPart->RequestUpdate(); } } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.fiberprocessing/src/internal/QmitkFiberProcessingViewControls.ui b/Plugins/org.mitk.gui.qt.diffusionimaging.fiberprocessing/src/internal/QmitkFiberProcessingViewControls.ui index ff22e91380..c343a7217a 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.fiberprocessing/src/internal/QmitkFiberProcessingViewControls.ui +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.fiberprocessing/src/internal/QmitkFiberProcessingViewControls.ui @@ -1,1427 +1,1443 @@ QmitkFiberProcessingViewControls 0 0 386 540 Form 0 + + 5 + 0 0 354 347 Fiber Extraction Extract a fiber subset from the selected fiber bundle using manually placed planar figures as waypoints or binary regions of interest. false 0 0 200 16777215 11 Extract fibers passing through selected ROI or composite ROI. Select ROI and fiber bundle to execute. Extract Qt::Vertical 20 40 QFrame::NoFrame QFrame::Raised 9 9 9 9 0 false 0 0 16777215 16777215 11 Generate a binary image containing all selected ROIs. Select at least one ROI (planar figure) and a reference fiber bundle or image. Generate ROI Image 0 0 200 0 16777215 60 QFrame::NoFrame QFrame::Raised 0 0 0 0 false 60 16777215 Create OR composition with selected ROIs. OR Qt::Horizontal 40 20 false 60 16777215 Create NOT composition from selected ROI. NOT false 60 16777215 Create AND composition with selected ROIs. AND 0 0 200 0 16777215 60 QFrame::NoFrame QFrame::Raised 0 0 0 0 30 30 Draw circular ROI. Select reference fiber bundle to execute. :/QmitkDiffusionImaging/circle.png:/QmitkDiffusionImaging/circle.png 32 32 false true Qt::Horizontal 40 20 30 30 Draw polygonal ROI. Select reference fiber bundle to execute. :/QmitkDiffusionImaging/polygon.png:/QmitkDiffusionImaging/polygon.png 32 32 true true 0 0 Extract using planar figures Extract using binary ROI image QFrame::NoFrame QFrame::Raised 0 0 0 0 - - + + - Extract fibers: + Both ends + + + true - - + + + + 1.000000000000000 + + + 0.100000000000000 + + + + + - Min. overlap: + Extract fibers: 0 0 Ending in mask Not ending in mask Passing mask Not passing mask - + - Both ends - - - true - - - - - - - 1.000000000000000 - - - 0.100000000000000 + Min. overlap: 0 0 354 342 Fiber Removal Remove fibers that satisfy certain criteria from the selected bundle. 0 0 Remove fibers in direction Remove fibers by length Remove fibers by curvature Remove fiber parts outside mask Remove fiber parts inside mask QFrame::NoFrame QFrame::Raised 0 0 0 0 Qt::Horizontal 40 20 Minimum fiber length in mm 0 999999999 20 Max. Length: Min. Length: Maximum fiber length in mm 0 999999999 300 QFrame::NoFrame QFrame::Raised 0 0 0 0 0 X: Y: Z: Angle: Angular deviation threshold in degree 1 90.000000000000000 1.000000000000000 25.000000000000000 QFrame::NoFrame QFrame::Raised 0 0 0 0 If unchecked, the fiber exceeding the threshold will be split in two instead of removed. Remove Fiber false QFrame::NoFrame QFrame::Raised 0 0 0 0 0 Max. Angular Deviation: Qt::Horizontal 40 20 Maximum angular deviation in degree 180.000000000000000 0.100000000000000 30.000000000000000 Distance: Distance in mm 1 999.000000000000000 1.000000000000000 10.000000000000000 false 0 0 200 16777215 11 Remove Qt::Vertical 20 40 0 0 - 368 - 309 + 354 + 329 Bundle Modification Modify the selected bundle with operations such as fiber resampling, FA coloring, etc. QFrame::NoFrame QFrame::Raised 0 0 0 0 0 Error threshold in mm: 999999999.000000000000000 0.100000000000000 0.100000000000000 QFrame::NoFrame QFrame::Raised 0 0 0 0 0 Sagittal Coronal Axial Select direction: QFrame::NoFrame QFrame::Raised 0 0 0 0 0 + + + + If checked, the image values are not only used to color the fibers but are also used as opaxity values. + + + Values as opacity + + + false + + + + + + Scalar map: - - - - + - If checked, the image values are not only used to color the fibers but are also used as opaxity values. + The values used to color the fibers are min-max normalized. If not checked, the values should be between 0 and 1. - Values as opacity + Normalize values true 0 0 Resample fibers (spline) Resample fibers (linear) Compress fibers Color fibers by scalar map (e.g. FA) Mirror fibers Weight bundle Color fibers by curvature Color fibers by fiber weights QFrame::NoFrame QFrame::Raised 0 0 0 0 0 0.010000000000000 999999999.000000000000000 0.100000000000000 1.000000000000000 Point distance in mm: Qt::Vertical 20 40 false 0 0 200 16777215 11 Execute QFrame::NoFrame QFrame::Raised 0 0 0 0 0 Weight: 7 999999999.000000000000000 0.100000000000000 1.000000000000000 0 0 368 152 Bundle Operations Join, subtract or copy bundles. false 0 0 200 16777215 11 Returns all fibers contained in bundle X that are not contained in bundle Y (not commutative!). Select at least two fiber bundles to execute. Substract Qt::Vertical 20 40 false 0 0 200 16777215 11 Merge selected fiber bundles. Select at least two fiber bundles to execute. Join false 0 0 200 16777215 11 Merge selected fiber bundles. Select at least two fiber bundles to execute. Copy Please Select Input Data <html><head/><body><p><span style=" color:#ff0000;">mandatory</span></p></body></html> true <html><head/><body><p><span style=" color:#969696;">needed for extraction</span></p></body></html> true Input DTI Fiber Bundle: Binary seed ROI. If not specified, the whole image area is seeded. ROI: Qt::Vertical 20 40 QmitkDataStorageComboBox QComboBox
QmitkDataStorageComboBox.h
diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.ivim/src/internal/QmitkIVIMViewControls.ui b/Plugins/org.mitk.gui.qt.diffusionimaging.ivim/src/internal/QmitkIVIMViewControls.ui index 455d1cef01..887789baeb 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.ivim/src/internal/QmitkIVIMViewControls.ui +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.ivim/src/internal/QmitkIVIMViewControls.ui @@ -1,1172 +1,1172 @@ QmitkIVIMViewControls 0 0 - 380 + 423 1563 0 0 QmitkTemplate 9 9 9 9 Intra Voxel Incoherent Motion Estimation 0 9 0 0 Please Select Input Data Optional ROI image ROI: DWI to analyze <html><head/><body><p><span style=" color:#ff0000;">mandatory</span></p></body></html> Optional ROI image <html><head/><body><p><span style=" color:#969696;">optional</span></p></body></html> DWI to analyze Raw DWI: QFrame::NoFrame QFrame::Raised 0 0 0 0 0 QFrame::NoFrame QFrame::Raised 0 0 0 0 QFrame::NoFrame QFrame::Raised 0 0 0 0 QFrame::NoFrame QFrame::Raised 0 0 0 0 warning display Qt::RichText true QFrame::StyledPanel QFrame::Raised 0 0 0 0 0 0 0 0 IVIM Parameters 9 QFrame::NoFrame QFrame::Raised 0 0 0 0 0 80 16777215 D* 100 60 Qt::Horizontal 51 16777215 200 Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter QFrame::NoFrame QFrame::Raised 0 0 0 0 0 80 16777215 neglect b< 250 34 Qt::Horizontal 51 16777215 46.5 Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter QFrame::NoFrame QFrame::Raised 0 0 0 0 0 80 16777215 #iterations 100 10 Qt::Horizontal 30 16777215 TextLabel Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter QFrame::NoFrame QFrame::Raised 0 0 0 0 0 80 16777215 lambda 1000 10 Qt::Horizontal 0 0 QFrame::NoFrame QFrame::Raised 0 0 0 0 0 0 0 30 16777215 TextLabel Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter 15 16777215 Calculate threshold from histogram * QFrame::NoFrame QFrame::Plain 0 0 0 0 0 80 16777215 neglect Si< 100 0 Qt::Horizontal 0 0 QFrame::NoFrame QFrame::Raised 0 0 0 0 0 0 0 30 16777215 TextLabel Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter 15 16777215 Calculate threshold from histogram * QFrame::NoFrame QFrame::Raised 0 0 0 0 80 0 Output Images f true D false D* false true 0 0 0 400 0 0 0 0 Choose Method 2 3 Param. Fit Fit D & f with fixed D* value Fit D & f (high b), then fit D* Linearly fit D & f (high b), then fit D* Regularized Kurtosis QFrame::StyledPanel QFrame::Raised 2 2 2 2 2 Smoothing sigma Select Fit Type Omit b=0 Measurement 80 0 Output Images Force the fitting of K to remain within the given boundaries Boundaries for K Select if the data is fitted directly (straight) or the logarithmic equation is used Straight Fit Logarithmic Fit 2 QLayout::SetMaximumSize D false K true Signa for gaussian smoothing applied prior to map computation - 1.000000000000000 + 0.000000000000000 5.000000000000000 0.100000000000000 On 0 0 0 400 Generate Output Images QFrame::NoFrame QFrame::Raised 0 0 0 0 QFrame::NoFrame QFrame::Raised 0 0 0 0 QFrame::NoFrame QFrame::Raised 0 0 0 0 Datapoints to Clipboard Parameters to Clipboard QmitkIVIMWidget QWidget
QmitkIVIMWidget.h
1
QmitkKurtosisWidget QWidget
QmitkKurtosisWidget.h
1
ctkRangeWidget QWidget
ctkRangeWidget.h
1
diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.odfpeaks/documentation/UserManual/QmitkOdfMaximaExtractionViewUserManual.dox b/Plugins/org.mitk.gui.qt.diffusionimaging.odfpeaks/documentation/UserManual/QmitkOdfMaximaExtractionViewUserManual.dox index 9710f1e53d..aad2127b12 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.odfpeaks/documentation/UserManual/QmitkOdfMaximaExtractionViewUserManual.dox +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.odfpeaks/documentation/UserManual/QmitkOdfMaximaExtractionViewUserManual.dox @@ -1,44 +1,44 @@ /** \page org_mitk_views_odfmaximaextraction ODF Peak Extraction -This view provides the user interface to extract the peaks of tensors and the spherical harmonic representation of Q-Balls. +This view provides the user interface to extract the principal diffusion direction of tensors and the peaks of spherical harmonic ODFs. It also allows to import SH-coefficient images from MRtrix and FSL to an MITK-readable format. + +The output peaks and the imported ODF images can for example be used for streamline tractography. Available sections: - \ref OdfMaxUserManualInputData - \ref OdfMaxUserManualOutputData - \ref OdfMaxUserManualMethods - \ref OdfMaxUserManualParameters \section OdfMaxUserManualInputData Input Data Mandatory Input: -\li DTI image or image containing the spherical harmonic coefficients. The SH coefficient images can be obtain from the Q-Ball reconstruction view by enabling the checkbox in the advanced options. +\li Tensor image or image containing spherical harmonic coefficients. The SH coefficient images can be obtain from the Q-Ball reconstruction view. Optional Input: \li Binary mask to define the extraction area. \section OdfMaxUserManualOutputData Output Data \li Vector field: 3D representation of the resulting peaks. Only for visualization purposes (the peaks are scaled additionally to the specified normalization to improve the visualization)! -\li \# Directions per Voxel: Image containing the number of extracted peaks per voxel as image value. -\li Direction Image: 4D image containing the peak information. +\li Peak Image: 4D image containing the peak information. +\li Num. of Peaks per Voxel: Image containing the number of extracted peaks per voxel as image value. \section OdfMaxUserManualMethods Peak Extraction Methods \li If a tensor image is used as input, the output is simply the largest eigenvector of each voxel. -\li If a SH coefficient image is used as input, all local maxima are extracted and resulting directions that point in a similar direction are clustered to obtain the principal directions. - -\imageMacro{crossingmaxima.png,"Peaks of a fiber crossing extracted using finite differences method.",10.12} +\li If a SH coefficient image is used as input, all local maxima of the densely sampled sphere are extracted and resulting directions that point in a similar direction are clustered to obtain the principal directions. \section OdfMaxUserManualParameters Input Parameters \li Vector normalization method (no normalization, maximum normalization of the vecors of one voxel and independent normalization of each vecor). \li Maximum number of peaks to extract. If more peaks are found only the largest are kept. -\li Threshold to discard small peaks. Value relative to the largest peak of the respective voxel. +\li Relative threshold to discard small peaks. Value relative to the largest peak of the respective voxel. \li Absolute threshold on the peak size. To evaluate this threshold the peaks are additionally weighted by their GFA (low GFA voxels are more likely to be discarded). -\li Clustering angle: close peaks are clustered to obtain the principal direction. -\li Angular threshold: peaks that were too far away to be clustered can be discarded by this threshold. +\li Clustering Angle: close peaks are clustered to obtain the principal direction. +\li Angular Threshold: peaks that were too far away to be clustered can be discarded by this threshold. */ diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.odfpeaks/plugin.xml b/Plugins/org.mitk.gui.qt.diffusionimaging.odfpeaks/plugin.xml index 558208674a..ec4296e789 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.odfpeaks/plugin.xml +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.odfpeaks/plugin.xml @@ -1,33 +1,32 @@ - + - - - - + + + diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.preprocessing/src/internal/QmitkPreprocessingView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging.preprocessing/src/internal/QmitkPreprocessingView.cpp index 5c67525bb8..122e300689 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.preprocessing/src/internal/QmitkPreprocessingView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.preprocessing/src/internal/QmitkPreprocessingView.cpp @@ -1,2353 +1,2301 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //#define MBILOG_ENABLE_DEBUG #include "QmitkPreprocessingView.h" #include "mitkDiffusionImagingConfigure.h" // qt includes #include // itk includes #include "itkTimeProbe.h" #include "itkB0ImageExtractionImageFilter.h" #include "itkB0ImageExtractionToSeparateImageFilter.h" #include "itkBrainMaskExtractionImageFilter.h" #include "itkCastImageFilter.h" #include "itkVectorContainer.h" #include #include #include #include #include #include // Multishell includes #include // Multishell Functors #include #include #include #include // mitk includes #include "QmitkDataStorageComboBox.h" #include "mitkProgressBar.h" #include "mitkStatusBar.h" #include "mitkNodePredicateDataType.h" #include "mitkProperties.h" #include "mitkVtkResliceInterpolationProperty.h" #include "mitkLookupTable.h" #include "mitkLookupTableProperty.h" #include "mitkTransferFunction.h" #include "mitkTransferFunctionProperty.h" #include "mitkDataNodeObject.h" #include "mitkOdfNormalizationMethodProperty.h" #include "mitkOdfScaleByProperty.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const std::string QmitkPreprocessingView::VIEW_ID = "org.mitk.views.preprocessing"; #define DI_INFO MITK_INFO("DiffusionImaging") typedef float TTensorPixelType; QmitkPreprocessingView::QmitkPreprocessingView() : QmitkAbstractView(), m_Controls(nullptr) { } QmitkPreprocessingView::~QmitkPreprocessingView() { } void QmitkPreprocessingView::CreateQtPartControl(QWidget *parent) { if (!m_Controls) { // create GUI widgets m_Controls = new Ui::QmitkPreprocessingViewControls; m_Controls->setupUi(parent); this->CreateConnections(); m_Controls->m_MeasurementFrameTable->horizontalHeader()->setSectionResizeMode(QHeaderView::Stretch); m_Controls->m_MeasurementFrameTable->verticalHeader()->setSectionResizeMode(QHeaderView::Stretch); m_Controls->m_DirectionMatrixTable->horizontalHeader()->setSectionResizeMode(QHeaderView::Stretch); m_Controls->m_DirectionMatrixTable->verticalHeader()->setSectionResizeMode(QHeaderView::Stretch); } } void QmitkPreprocessingView::SetFocus() { m_Controls->m_MirrorGradientToHalfSphereButton->setFocus(); } void QmitkPreprocessingView::CreateConnections() { if ( m_Controls ) { m_Controls->m_NormalizationMaskBox->SetDataStorage(this->GetDataStorage()); m_Controls->m_SelctedImageComboBox->SetDataStorage(this->GetDataStorage()); m_Controls->m_MergeDwiBox->SetDataStorage(this->GetDataStorage()); mitk::TNodePredicateDataType::Pointer isMitkImage = mitk::TNodePredicateDataType::New(); mitk::NodePredicateDataType::Pointer isDti = mitk::NodePredicateDataType::New("TensorImage"); mitk::NodePredicateDataType::Pointer isQbi = mitk::NodePredicateDataType::New("QBallImage"); mitk::NodePredicateOr::Pointer isDiffusionImage = mitk::NodePredicateOr::New(isQbi, isDti); mitk::NodePredicateAnd::Pointer noDiffusionImage = mitk::NodePredicateAnd::New(isMitkImage, mitk::NodePredicateNot::New(isDiffusionImage)); mitk::NodePredicateProperty::Pointer isBinaryPredicate = mitk::NodePredicateProperty::New("binary", mitk::BoolProperty::New(true)); mitk::NodePredicateAnd::Pointer binaryNoDiffusionImage = mitk::NodePredicateAnd::New(noDiffusionImage, isBinaryPredicate); m_Controls->m_NormalizationMaskBox->SetPredicate(binaryNoDiffusionImage); m_Controls->m_SelctedImageComboBox->SetPredicate(noDiffusionImage); m_Controls->m_MergeDwiBox->SetPredicate(isMitkImage); m_Controls->m_ExtractBrainMask->setVisible(false); m_Controls->m_BrainMaskIterationsBox->setVisible(false); m_Controls->m_ResampleIntFrame->setVisible(false); connect( (QObject*)(m_Controls->m_ButtonAverageGradients), SIGNAL(clicked()), this, SLOT(AverageGradients()) ); connect( (QObject*)(m_Controls->m_ButtonExtractB0), SIGNAL(clicked()), this, SLOT(ExtractB0()) ); connect( (QObject*)(m_Controls->m_ModifyMeasurementFrame), SIGNAL(clicked()), this, SLOT(DoApplyMesurementFrame()) ); connect( (QObject*)(m_Controls->m_ReduceGradientsButton), SIGNAL(clicked()), this, SLOT(DoReduceGradientDirections()) ); connect( (QObject*)(m_Controls->m_ShowGradientsButton), SIGNAL(clicked()), this, SLOT(DoShowGradientDirections()) ); connect( (QObject*)(m_Controls->m_MirrorGradientToHalfSphereButton), SIGNAL(clicked()), this, SLOT(DoHalfSphereGradientDirections()) ); connect( (QObject*)(m_Controls->m_MergeDwisButton), SIGNAL(clicked()), this, SLOT(MergeDwis()) ); connect( (QObject*)(m_Controls->m_ProjectSignalButton), SIGNAL(clicked()), this, SLOT(DoProjectSignal()) ); connect( (QObject*)(m_Controls->m_B_ValueMap_Rounder_SpinBox), SIGNAL(valueChanged(int)), this, SLOT(UpdateDwiBValueMapRounder(int))); connect( (QObject*)(m_Controls->m_CreateLengthCorrectedDwi), SIGNAL(clicked()), this, SLOT(DoLengthCorrection()) ); - connect( (QObject*)(m_Controls->m_CalcAdcButton), SIGNAL(clicked()), this, SLOT(DoAdcCalculation()) ); connect( (QObject*)(m_Controls->m_NormalizeImageValuesButton), SIGNAL(clicked()), this, SLOT(DoDwiNormalization()) ); connect( (QObject*)(m_Controls->m_ModifyDirection), SIGNAL(clicked()), this, SLOT(DoApplyDirectionMatrix()) ); connect( (QObject*)(m_Controls->m_ModifySpacingButton), SIGNAL(clicked()), this, SLOT(DoApplySpacing()) ); connect( (QObject*)(m_Controls->m_ModifyOriginButton), SIGNAL(clicked()), this, SLOT(DoApplyOrigin()) ); connect( (QObject*)(m_Controls->m_ResampleImageButton), SIGNAL(clicked()), this, SLOT(DoResampleImage()) ); connect( (QObject*)(m_Controls->m_ResampleTypeBox), SIGNAL(currentIndexChanged(int)), this, SLOT(DoUpdateInterpolationGui(int)) ); connect( (QObject*)(m_Controls->m_CropImageButton), SIGNAL(clicked()), this, SLOT(DoCropImage()) ); connect( (QObject*)(m_Controls->m_RemoveGradientButton), SIGNAL(clicked()), this, SLOT(DoRemoveGradient()) ); connect( (QObject*)(m_Controls->m_ExtractGradientButton), SIGNAL(clicked()), this, SLOT(DoExtractGradient()) ); connect( (QObject*)(m_Controls->m_FlipAxis), SIGNAL(clicked()), this, SLOT(DoFlipAxis()) ); connect( (QObject*)(m_Controls->m_FlipGradientsButton), SIGNAL(clicked()), this, SLOT(DoFlipGradientDirections()) ); connect( (QObject*)(m_Controls->m_SelctedImageComboBox), SIGNAL(OnSelectionChanged(const mitk::DataNode*)), this, SLOT(OnImageSelectionChanged()) ); m_Controls->m_NormalizationMaskBox->SetZeroEntryText("--"); } } void QmitkPreprocessingView::DoFlipAxis() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(node) ); if (isDiffusionImage) { ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(image, itkVectorImagePointer); itk::FixedArray flipAxes; flipAxes[0] = m_Controls->m_FlipX->isChecked(); flipAxes[1] = m_Controls->m_FlipY->isChecked(); flipAxes[2] = m_Controls->m_FlipZ->isChecked(); itk::FlipImageFilter< ItkDwiType >::Pointer flipper = itk::FlipImageFilter< ItkDwiType >::New(); flipper->SetInput(itkVectorImagePointer); flipper->SetFlipAxes(flipAxes); flipper->Update(); mitk::GradientDirectionsProperty::GradientDirectionsContainerType::Pointer oldGradients = static_cast ( image->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer(); mitk::GradientDirectionsProperty::GradientDirectionsContainerType::Pointer newGradients = mitk::GradientDirectionsProperty::GradientDirectionsContainerType::New(); for (unsigned int i=0; iSize(); i++) { mitk::GradientDirectionsProperty::GradientDirectionType g = oldGradients->GetElement(i); mitk::GradientDirectionsProperty::GradientDirectionType newG = g; if (flipAxes[0]) { newG[0] *= -1; } if (flipAxes[1]) { newG[1] *= -1; } if (flipAxes[2]) { newG[2] *= -1; } newGradients->InsertElement(i, newG); } mitk::Image::Pointer newImage = mitk::GrabItkImageMemory( flipper->GetOutput() ); newImage->SetProperty( mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str(), mitk::GradientDirectionsProperty::New( newGradients ) ); newImage->SetProperty( mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str(), mitk::FloatProperty::New( static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str()).GetPointer() ) ->GetValue() ) ); newImage->SetProperty( mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str(), mitk::MeasurementFrameProperty::New( static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str()).GetPointer() ) ->GetMeasurementFrame() ) ); mitk::DiffusionPropertyHelper propertyHelper( newImage ); propertyHelper.InitializeImage(); newImage->GetGeometry()->SetOrigin(image->GetGeometry()->GetOrigin()); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( newImage ); QString name = node->GetName().c_str(); imageNode->SetName((name+"_flipped").toStdString().c_str()); GetDataStorage()->Add(imageNode, node); mitk::RenderingManager::GetInstance()->InitializeViews( imageNode->GetData()->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } else if( image->GetPixelType().GetNumberOfComponents() == 1 ) { AccessFixedDimensionByItk(image, TemplatedFlipAxis,3); } else { QMessageBox::warning(nullptr,"Warning", QString("Operation not supported in multi-component images") ); } } template < typename TPixel, unsigned int VImageDimension > void QmitkPreprocessingView::TemplatedFlipAxis(itk::Image* itkImage) { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } itk::FixedArray flipAxes; flipAxes[0] = m_Controls->m_FlipX->isChecked(); flipAxes[1] = m_Controls->m_FlipY->isChecked(); flipAxes[2] = m_Controls->m_FlipZ->isChecked(); typename itk::FlipImageFilter< itk::Image >::Pointer flipper = itk::FlipImageFilter< itk::Image >::New(); flipper->SetInput(itkImage); flipper->SetFlipAxes(flipAxes); flipper->Update(); mitk::Image::Pointer newImage = mitk::GrabItkImageMemory( flipper->GetOutput() ); newImage->GetGeometry()->SetOrigin(image->GetGeometry()->GetOrigin()); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( newImage ); QString name = node->GetName().c_str(); imageNode->SetName((name+"_flipped").toStdString().c_str()); GetDataStorage()->Add(imageNode, node); mitk::RenderingManager::GetInstance()->InitializeViews( imageNode->GetData()->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkPreprocessingView::DoRemoveGradient() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); if ( !isDiffusionImage ) { return; } std::vector< unsigned int > channelsToRemove; channelsToRemove.push_back(m_Controls->m_RemoveGradientBox->value()); ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(image, itkVectorImagePointer); itk::RemoveDwiChannelFilter< short >::Pointer filter = itk::RemoveDwiChannelFilter< short >::New(); filter->SetInput(itkVectorImagePointer); filter->SetChannelIndices(channelsToRemove); filter->SetDirections( static_cast ( image->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer() ); filter->Update(); mitk::Image::Pointer newImage = mitk::GrabItkImageMemory( filter->GetOutput() ); newImage->SetProperty( mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str(), mitk::GradientDirectionsProperty::New( filter->GetNewDirections() ) ); newImage->SetProperty( mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str(), mitk::FloatProperty::New( static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str()).GetPointer() ) ->GetValue() ) ); newImage->SetProperty( mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str(), mitk::MeasurementFrameProperty::New( static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str()).GetPointer() ) ->GetMeasurementFrame() ) ); mitk::DiffusionPropertyHelper propertyHelper( newImage ); propertyHelper.InitializeImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( newImage ); QString name = node->GetName().c_str(); imageNode->SetName((name+"_removedgradients").toStdString().c_str()); GetDataStorage()->Add(imageNode, node); mitk::RenderingManager::GetInstance()->InitializeViews( imageNode->GetData()->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkPreprocessingView::DoExtractGradient() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); if ( !isDiffusionImage ) { return; } ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(image, itkVectorImagePointer); unsigned int channel = m_Controls->m_ExtractGradientBox->value(); itk::ExtractDwiChannelFilter< short >::Pointer filter = itk::ExtractDwiChannelFilter< short >::New(); filter->SetInput( itkVectorImagePointer); filter->SetChannelIndex(channel); filter->Update(); mitk::Image::Pointer newImage = mitk::Image::New(); newImage->InitializeByItk( filter->GetOutput() ); newImage->SetImportChannel( filter->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( newImage ); QString name = node->GetName().c_str(); imageNode->SetName( (name+"_direction-"+QString::number(channel)).toStdString().c_str() ); GetDataStorage()->Add(imageNode, node); mitk::RenderingManager::GetInstance()->InitializeViews( imageNode->GetData()->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true); } void QmitkPreprocessingView::DoCropImage() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); if ( isDiffusionImage ) { ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(image, itkVectorImagePointer); ItkDwiType::SizeType lower; ItkDwiType::SizeType upper; lower[0] = m_Controls->m_XstartBox->value(); lower[1] = m_Controls->m_YstartBox->value(); lower[2] = m_Controls->m_ZstartBox->value(); upper[0] = m_Controls->m_XendBox->value(); upper[1] = m_Controls->m_YendBox->value(); upper[2] = m_Controls->m_ZendBox->value(); itk::CropImageFilter< ItkDwiType, ItkDwiType >::Pointer cropper = itk::CropImageFilter< ItkDwiType, ItkDwiType >::New(); cropper->SetLowerBoundaryCropSize(lower); cropper->SetUpperBoundaryCropSize(upper); cropper->SetInput( itkVectorImagePointer ); cropper->Update(); ItkDwiType::Pointer itkOutImage = cropper->GetOutput(); ItkDwiType::DirectionType dir = itkOutImage->GetDirection(); itk::Point origin = itkOutImage->GetOrigin(); itk::Point t; t[0] = lower[0]*itkOutImage->GetSpacing()[0]; t[1] = lower[1]*itkOutImage->GetSpacing()[1]; t[2] = lower[2]*itkOutImage->GetSpacing()[2]; t= dir*t; origin[0] += t[0]; origin[1] += t[1]; origin[2] += t[2]; itkOutImage->SetOrigin(origin); mitk::Image::Pointer newimage = mitk::GrabItkImageMemory( itkOutImage ); newimage->SetProperty( mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str(), mitk::GradientDirectionsProperty::New( static_cast ( image->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer() ) ); newimage->SetProperty( mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str(), mitk::FloatProperty::New( static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str()).GetPointer() ) ->GetValue() ) ); newimage->SetProperty( mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str(), mitk::MeasurementFrameProperty::New( static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str()).GetPointer() ) ->GetMeasurementFrame() ) ); mitk::DiffusionPropertyHelper propertyHelper( newimage ); propertyHelper.InitializeImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( newimage ); QString name = node->GetName().c_str(); imageNode->SetName((name+"_cropped").toStdString().c_str()); GetDataStorage()->Add(imageNode, node); mitk::RenderingManager::GetInstance()->InitializeViews( imageNode->GetData()->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); mitk::RenderingManager::GetInstance()->InitializeViews( imageNode->GetData()->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } else if( image->GetPixelType().GetNumberOfComponents() ) { AccessFixedDimensionByItk(image, TemplatedCropImage,3); } else { QMessageBox::warning(nullptr,"Warning", QString("Operation not supported in multi-component images") ); } } template < typename TPixel, unsigned int VImageDimension > void QmitkPreprocessingView::TemplatedCropImage( itk::Image* itkImage) { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } ItkDwiType::SizeType lower; ItkDwiType::SizeType upper; lower[0] = m_Controls->m_XstartBox->value(); lower[1] = m_Controls->m_YstartBox->value(); lower[2] = m_Controls->m_ZstartBox->value(); upper[0] = m_Controls->m_XendBox->value(); upper[1] = m_Controls->m_YendBox->value(); upper[2] = m_Controls->m_ZendBox->value(); typedef itk::Image ImageType; typename itk::CropImageFilter< ImageType, ImageType >::Pointer cropper = itk::CropImageFilter< ImageType, ImageType >::New(); cropper->SetLowerBoundaryCropSize(lower); cropper->SetUpperBoundaryCropSize(upper); cropper->SetInput(itkImage); cropper->Update(); typename ImageType::Pointer itkOutImage = cropper->GetOutput(); typename ImageType::DirectionType dir = itkOutImage->GetDirection(); itk::Point origin = itkOutImage->GetOrigin(); itk::Point t; t[0] = lower[0]*itkOutImage->GetSpacing()[0]; t[1] = lower[1]*itkOutImage->GetSpacing()[1]; t[2] = lower[2]*itkOutImage->GetSpacing()[2]; t= dir*t; origin[0] += t[0]; origin[1] += t[1]; origin[2] += t[2]; itkOutImage->SetOrigin(origin); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk( itkOutImage.GetPointer() ); image->SetVolume( itkOutImage->GetBufferPointer() ); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( image ); QString name = node->GetName().c_str(); imageNode->SetName((name+"_cropped").toStdString().c_str()); GetDataStorage()->Add(imageNode, node); mitk::RenderingManager::GetInstance()->InitializeViews( imageNode->GetData()->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkPreprocessingView::DoApplySpacing() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); if ( isDiffusionImage ) { mitk::Vector3D spacing; spacing[0] = m_Controls->m_HeaderSpacingX->value(); spacing[1] = m_Controls->m_HeaderSpacingY->value(); spacing[2] = m_Controls->m_HeaderSpacingZ->value(); mitk::Image::Pointer newImage = image->Clone(); newImage->GetGeometry()->SetSpacing( spacing ); mitk::DiffusionPropertyHelper propertyHelper( newImage ); propertyHelper.InitializeImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( newImage ); QString name = node->GetName().c_str(); imageNode->SetName((name+"_newspacing").toStdString().c_str()); GetDataStorage()->Add(imageNode, node); mitk::RenderingManager::GetInstance()->InitializeViews( imageNode->GetData()->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } else if( image->GetPixelType().GetNumberOfComponents() ) { AccessFixedDimensionByItk(image, TemplatedSetImageSpacing,3); } else { QMessageBox::warning(nullptr,"Warning", QString("Operation not supported in multi-component images") ); } } template < typename TPixel, unsigned int VImageDimension > void QmitkPreprocessingView::TemplatedSetImageSpacing( itk::Image* itkImage) { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) return; mitk::Vector3D spacing; spacing[0] = m_Controls->m_HeaderSpacingX->value(); spacing[1] = m_Controls->m_HeaderSpacingY->value(); spacing[2] = m_Controls->m_HeaderSpacingZ->value(); typedef itk::ImageDuplicator< itk::Image > DuplicateFilterType; typename DuplicateFilterType::Pointer duplicator = DuplicateFilterType::New(); duplicator->SetInputImage( itkImage ); duplicator->Update(); typename itk::Image::Pointer newImage = duplicator->GetOutput(); newImage->SetSpacing(spacing); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk( newImage.GetPointer() ); image->SetVolume( newImage->GetBufferPointer() ); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( image ); QString name = node->GetName().c_str(); imageNode->SetName((name+"_newspacing").toStdString().c_str()); GetDataStorage()->Add(imageNode, node); mitk::RenderingManager::GetInstance()->InitializeViews( imageNode->GetData()->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkPreprocessingView::DoApplyOrigin() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image)); if ( isDiffusionImage ) { mitk::Vector3D origin; origin[0] = m_Controls->m_HeaderOriginX->value(); origin[1] = m_Controls->m_HeaderOriginY->value(); origin[2] = m_Controls->m_HeaderOriginZ->value(); mitk::Image::Pointer newImage = image->Clone(); newImage->GetGeometry()->SetOrigin( origin ); mitk::DiffusionPropertyHelper propertyHelper( newImage ); propertyHelper.InitializeImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( newImage ); QString name = node->GetName().c_str(); imageNode->SetName((name+"_neworigin").toStdString().c_str()); GetDataStorage()->Add(imageNode, node); mitk::RenderingManager::GetInstance()->InitializeViews( imageNode->GetData()->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } else if( image->GetPixelType().GetNumberOfComponents() ) { AccessFixedDimensionByItk(image, TemplatedSetImageOrigin,3); } else { QMessageBox::warning(nullptr,"Warning", QString("Operation not supported in multi-component images") ); } } template < typename TPixel, unsigned int VImageDimension > void QmitkPreprocessingView::TemplatedSetImageOrigin( itk::Image* itkImage) { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Vector3D origin; origin[0] = m_Controls->m_HeaderOriginX->value(); origin[1] = m_Controls->m_HeaderOriginY->value(); origin[2] = m_Controls->m_HeaderOriginZ->value(); typedef itk::ImageDuplicator< itk::Image > DuplicateFilterType; typename DuplicateFilterType::Pointer duplicator = DuplicateFilterType::New(); duplicator->SetInputImage( itkImage ); duplicator->Update(); typename itk::Image::Pointer newImage = duplicator->GetOutput(); newImage->SetOrigin(origin); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk( newImage.GetPointer() ); image->SetVolume( newImage->GetBufferPointer() ); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( image ); QString name = node->GetName().c_str(); imageNode->SetName((name+"_neworigin").toStdString().c_str()); GetDataStorage()->Add(imageNode, node); mitk::RenderingManager::GetInstance()->InitializeViews( imageNode->GetData()->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkPreprocessingView::DoUpdateInterpolationGui(int i) { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } switch (i) { case 0: { m_Controls->m_ResampleIntFrame->setVisible(false); m_Controls->m_ResampleDoubleFrame->setVisible(true); break; } case 1: { m_Controls->m_ResampleIntFrame->setVisible(false); m_Controls->m_ResampleDoubleFrame->setVisible(true); mitk::BaseGeometry* geom = image->GetGeometry(); m_Controls->m_ResampleDoubleX->setValue(geom->GetSpacing()[0]); m_Controls->m_ResampleDoubleY->setValue(geom->GetSpacing()[1]); m_Controls->m_ResampleDoubleZ->setValue(geom->GetSpacing()[2]); break; } case 2: { m_Controls->m_ResampleIntFrame->setVisible(true); m_Controls->m_ResampleDoubleFrame->setVisible(false); mitk::BaseGeometry* geom = image->GetGeometry(); m_Controls->m_ResampleIntX->setValue(geom->GetExtent(0)); m_Controls->m_ResampleIntY->setValue(geom->GetExtent(1)); m_Controls->m_ResampleIntZ->setValue(geom->GetExtent(2)); break; } default: { m_Controls->m_ResampleIntFrame->setVisible(false); m_Controls->m_ResampleDoubleFrame->setVisible(true); } } } void QmitkPreprocessingView::DoExtractBrainMask() { } void QmitkPreprocessingView::DoResampleImage() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); if ( isDiffusionImage ) { ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(image, itkVectorImagePointer); typedef itk::ResampleDwiImageFilter< short > ResampleFilter; ResampleFilter::Pointer resampler = ResampleFilter::New(); resampler->SetInput( itkVectorImagePointer ); switch (m_Controls->m_ResampleTypeBox->currentIndex()) { case 0: { itk::Vector< double, 3 > samplingFactor; samplingFactor[0] = m_Controls->m_ResampleDoubleX->value(); samplingFactor[1] = m_Controls->m_ResampleDoubleY->value(); samplingFactor[2] = m_Controls->m_ResampleDoubleZ->value(); resampler->SetSamplingFactor(samplingFactor); break; } case 1: { itk::Vector< double, 3 > newSpacing; newSpacing[0] = m_Controls->m_ResampleDoubleX->value(); newSpacing[1] = m_Controls->m_ResampleDoubleY->value(); newSpacing[2] = m_Controls->m_ResampleDoubleZ->value(); resampler->SetNewSpacing(newSpacing); break; } case 2: { itk::ImageRegion<3> newRegion; newRegion.SetSize(0, m_Controls->m_ResampleIntX->value()); newRegion.SetSize(1, m_Controls->m_ResampleIntY->value()); newRegion.SetSize(2, m_Controls->m_ResampleIntZ->value()); resampler->SetNewImageSize(newRegion); break; } default: { MITK_WARN << "Unknown resampling parameters!"; return; } } QString outAdd; switch (m_Controls->m_InterpolatorBox->currentIndex()) { case 0: { resampler->SetInterpolation(ResampleFilter::Interpolate_NearestNeighbour); outAdd = "NearestNeighbour"; break; } case 1: { resampler->SetInterpolation(ResampleFilter::Interpolate_Linear); outAdd = "Linear"; break; } case 2: { resampler->SetInterpolation(ResampleFilter::Interpolate_BSpline); outAdd = "BSpline"; break; } case 3: { resampler->SetInterpolation(ResampleFilter::Interpolate_WindowedSinc); outAdd = "WindowedSinc"; break; } default: { resampler->SetInterpolation(ResampleFilter::Interpolate_NearestNeighbour); outAdd = "NearestNeighbour"; } } resampler->Update(); mitk::Image::Pointer newImage = mitk::GrabItkImageMemory( resampler->GetOutput() ); newImage->SetProperty( mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str(), mitk::GradientDirectionsProperty::New( static_cast ( image->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer() ) ); newImage->SetProperty( mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str(), mitk::FloatProperty::New( static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str()).GetPointer() ) ->GetValue() ) ); newImage->SetProperty( mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str(), mitk::MeasurementFrameProperty::New( static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str()).GetPointer() ) ->GetMeasurementFrame() ) ); mitk::DiffusionPropertyHelper propertyHelper( newImage ); propertyHelper.InitializeImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( newImage ); QString name = node->GetName().c_str(); imageNode->SetName((name+"_resampled_"+outAdd).toStdString().c_str()); imageNode->SetVisibility(false); GetDataStorage()->Add(imageNode, node); } else if( image->GetPixelType().GetNumberOfComponents() ) { AccessFixedDimensionByItk(image, TemplatedResampleImage,3); } else { QMessageBox::warning(nullptr,"Warning", QString("Operation not supported in multi-component images") ); } } template < typename TPixel, unsigned int VImageDimension > void QmitkPreprocessingView::TemplatedResampleImage( itk::Image* itkImage) { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } itk::Vector< double, 3 > newSpacing; itk::ImageRegion<3> newRegion; switch (m_Controls->m_ResampleTypeBox->currentIndex()) { case 0: { itk::Vector< double, 3 > sampling; sampling[0] = m_Controls->m_ResampleDoubleX->value(); sampling[1] = m_Controls->m_ResampleDoubleY->value(); sampling[2] = m_Controls->m_ResampleDoubleZ->value(); newSpacing = itkImage->GetSpacing(); newSpacing[0] /= sampling[0]; newSpacing[1] /= sampling[1]; newSpacing[2] /= sampling[2]; newRegion = itkImage->GetLargestPossibleRegion(); newRegion.SetSize(0, newRegion.GetSize(0)*sampling[0]); newRegion.SetSize(1, newRegion.GetSize(1)*sampling[1]); newRegion.SetSize(2, newRegion.GetSize(2)*sampling[2]); break; } case 1: { newSpacing[0] = m_Controls->m_ResampleDoubleX->value(); newSpacing[1] = m_Controls->m_ResampleDoubleY->value(); newSpacing[2] = m_Controls->m_ResampleDoubleZ->value(); itk::Vector< double, 3 > oldSpacing = itkImage->GetSpacing(); itk::Vector< double, 3 > sampling; sampling[0] = oldSpacing[0]/newSpacing[0]; sampling[1] = oldSpacing[1]/newSpacing[1]; sampling[2] = oldSpacing[2]/newSpacing[2]; newRegion = itkImage->GetLargestPossibleRegion(); newRegion.SetSize(0, newRegion.GetSize(0)*sampling[0]); newRegion.SetSize(1, newRegion.GetSize(1)*sampling[1]); newRegion.SetSize(2, newRegion.GetSize(2)*sampling[2]); break; } case 2: { newRegion.SetSize(0, m_Controls->m_ResampleIntX->value()); newRegion.SetSize(1, m_Controls->m_ResampleIntY->value()); newRegion.SetSize(2, m_Controls->m_ResampleIntZ->value()); itk::ImageRegion<3> oldRegion = itkImage->GetLargestPossibleRegion(); itk::Vector< double, 3 > sampling; sampling[0] = (double)newRegion.GetSize(0)/oldRegion.GetSize(0); sampling[1] = (double)newRegion.GetSize(1)/oldRegion.GetSize(1); sampling[2] = (double)newRegion.GetSize(2)/oldRegion.GetSize(2); newSpacing = itkImage->GetSpacing(); newSpacing[0] /= sampling[0]; newSpacing[1] /= sampling[1]; newSpacing[2] /= sampling[2]; break; } default: { MITK_WARN << "Unknown resampling parameters!"; return; } } itk::Point origin = itkImage->GetOrigin(); origin[0] -= itkImage->GetSpacing()[0]/2; origin[1] -= itkImage->GetSpacing()[1]/2; origin[2] -= itkImage->GetSpacing()[2]/2; origin[0] += newSpacing[0]/2; origin[1] += newSpacing[1]/2; origin[2] += newSpacing[2]/2; typedef itk::Image ImageType; typename ImageType::Pointer outImage = ImageType::New(); outImage->SetSpacing( newSpacing ); outImage->SetOrigin( origin ); outImage->SetDirection( itkImage->GetDirection() ); outImage->SetLargestPossibleRegion( newRegion ); outImage->SetBufferedRegion( newRegion ); outImage->SetRequestedRegion( newRegion ); outImage->Allocate(); typedef itk::ResampleImageFilter ResampleFilter; typename ResampleFilter::Pointer resampler = ResampleFilter::New(); resampler->SetInput(itkImage); resampler->SetOutputParametersFromImage(outImage); QString outAdd; switch (m_Controls->m_InterpolatorBox->currentIndex()) { case 0: { typename itk::NearestNeighborInterpolateImageFunction::Pointer interp = itk::NearestNeighborInterpolateImageFunction::New(); resampler->SetInterpolator(interp); outAdd = "NearestNeighbour"; break; } case 1: { typename itk::LinearInterpolateImageFunction::Pointer interp = itk::LinearInterpolateImageFunction::New(); resampler->SetInterpolator(interp); outAdd = "Linear"; break; } case 2: { typename itk::BSplineInterpolateImageFunction::Pointer interp = itk::BSplineInterpolateImageFunction::New(); resampler->SetInterpolator(interp); outAdd = "BSpline"; break; } case 3: { typename itk::WindowedSincInterpolateImageFunction::Pointer interp = itk::WindowedSincInterpolateImageFunction::New(); resampler->SetInterpolator(interp); outAdd = "WindowedSinc"; break; } default: { typename itk::NearestNeighborInterpolateImageFunction::Pointer interp = itk::NearestNeighborInterpolateImageFunction::New(); resampler->SetInterpolator(interp); outAdd = "NearestNeighbour"; } } resampler->Update(); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk( resampler->GetOutput() ); image->SetVolume( resampler->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( image ); QString name = node->GetName().c_str(); imageNode->SetName((name+"_resampled_"+outAdd).toStdString().c_str()); GetDataStorage()->Add(imageNode, node); } void QmitkPreprocessingView::DoApplyDirectionMatrix() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); if ( isDiffusionImage ) { ItkDwiType::DirectionType newDirection; for (int r=0; r<3; r++) { for (int c=0; c<3; c++) { QTableWidgetItem* item = m_Controls->m_DirectionMatrixTable->item(r,c); if (!item) return; newDirection[r][c] = item->text().toDouble(); } } ItkDwiType::Pointer itkDwi = ItkDwiType::New(); mitk::CastToItkImage(image, itkDwi); itk::ImageDuplicator::Pointer duplicator = itk::ImageDuplicator::New(); duplicator->SetInputImage(itkDwi); duplicator->Update(); itkDwi = duplicator->GetOutput(); //vnl_matrix_fixed< double,3,3 > oldInverseDirection = itkDwi->GetDirection().GetInverse(); mitk::GradientDirectionsProperty::GradientDirectionsContainerType::Pointer oldGradients = static_cast ( image->GetProperty(mitk::DiffusionPropertyHelper::ORIGINALGRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer(); mitk::GradientDirectionsProperty::GradientDirectionsContainerType::Pointer newGradients = mitk::GradientDirectionsProperty::GradientDirectionsContainerType::New(); for (unsigned int i=0; iSize(); i++) { mitk::GradientDirectionsProperty::GradientDirectionType g = oldGradients->GetElement(i); // double mag = g.magnitude(); // g.normalize(); // mitk::GradientDirectionsProperty::GradientDirectionType newG = oldInverseDirection*g; // newG = newDirection.GetVnlMatrix()*newG; // newG.normalize(); newGradients->InsertElement(i, g); } itkDwi->SetDirection(newDirection); mitk::Image::Pointer newDwi2 = mitk::GrabItkImageMemory( itkDwi.GetPointer() ); newDwi2->SetProperty( mitk::DiffusionPropertyHelper::ORIGINALGRADIENTCONTAINERPROPERTYNAME.c_str(), mitk::GradientDirectionsProperty::New( newGradients ) ); newDwi2->SetProperty( mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str(), mitk::FloatProperty::New( static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str()).GetPointer() ) ->GetValue() ) ); newDwi2->SetProperty( mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str(), mitk::MeasurementFrameProperty::New( static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str()).GetPointer() ) ->GetMeasurementFrame() ) ); mitk::DiffusionPropertyHelper propertyHelper( newDwi2 ); propertyHelper.InitializeImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( newDwi2 ); QString name = node->GetName().c_str(); imageNode->SetName((name+"_newdirection").toStdString().c_str()); GetDataStorage()->Add(imageNode, node); mitk::RenderingManager::GetInstance() ->InitializeViews( imageNode->GetData()->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } else if( image->GetPixelType().GetNumberOfComponents() ) { AccessFixedDimensionByItk(image, TemplatedApplyRotation,3); } else { QMessageBox::warning(nullptr,"Warning", QString("Operation not supported in multi-component images") ); } } template < typename TPixel, unsigned int VImageDimension > void QmitkPreprocessingView::TemplatedApplyRotation( itk::Image* itkImage) { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } ItkDwiType::DirectionType newDirection; for (int r=0; r<3; r++) { for (int c=0; c<3; c++) { QTableWidgetItem* item = m_Controls->m_DirectionMatrixTable->item(r,c); if (!item) return; newDirection[r][c] = item->text().toDouble(); } } typedef itk::Image ImageType; typename ImageType::Pointer newImage = ImageType::New(); newImage->SetSpacing( itkImage->GetSpacing() ); newImage->SetOrigin( itkImage->GetOrigin() ); newImage->SetDirection( newDirection ); newImage->SetLargestPossibleRegion( itkImage->GetLargestPossibleRegion() ); newImage->SetBufferedRegion( itkImage->GetLargestPossibleRegion() ); newImage->SetRequestedRegion( itkImage->GetLargestPossibleRegion() ); newImage->Allocate(); newImage->FillBuffer(0); itk::ImageRegionIterator< itk::Image > it(itkImage, itkImage->GetLargestPossibleRegion()); while(!it.IsAtEnd()) { newImage->SetPixel(it.GetIndex(), it.Get()); ++it; } mitk::Image::Pointer newMitkImage = mitk::Image::New(); newMitkImage->InitializeByItk(newImage.GetPointer()); newMitkImage->SetVolume(newImage->GetBufferPointer()); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( newMitkImage ); QString name = node->GetName().c_str(); imageNode->SetName((name+"_newdirection").toStdString().c_str()); GetDataStorage()->Add(imageNode, node); mitk::RenderingManager::GetInstance()->InitializeViews( imageNode->GetData()->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkPreprocessingView::DoProjectSignal() { switch(m_Controls->m_ProjectionMethodBox->currentIndex()) { case 0: DoADCAverage(); break; case 1: DoAKCFit(); break; case 2: DoBiExpFit(); break; default: DoADCAverage(); } } void QmitkPreprocessingView::DoDwiNormalization() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); if ( ! isDiffusionImage ) { return; } GradientDirectionContainerType::Pointer gradientContainer = static_cast ( image->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer(); int b0Index = -1; for (unsigned int i=0; isize(); i++) { GradientDirectionType g = gradientContainer->GetElement(i); if (g.magnitude()<0.001) { b0Index = i; break; } } if (b0Index==-1) { return; } typedef itk::DwiNormilzationFilter FilterType; ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(image, itkVectorImagePointer); FilterType::Pointer filter = FilterType::New(); filter->SetInput( itkVectorImagePointer ); filter->SetGradientDirections( static_cast ( image->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer() ); filter->SetNewMean(m_Controls->m_NewMean->value()); filter->SetNewStdev(m_Controls->m_NewStdev->value()); UcharImageType::Pointer itkImage = nullptr; if (m_Controls->m_NormalizationMaskBox->GetSelectedNode().IsNotNull()) { itkImage = UcharImageType::New(); if ( dynamic_cast(m_Controls->m_NormalizationMaskBox->GetSelectedNode()->GetData()) != nullptr ) { mitk::CastToItkImage( dynamic_cast(m_Controls->m_NormalizationMaskBox->GetSelectedNode()->GetData()), itkImage ); } filter->SetMaskImage(itkImage); } filter->Update(); mitk::Image::Pointer newImage = mitk::GrabItkImageMemory( filter->GetOutput() ); newImage->SetProperty( mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str(), mitk::GradientDirectionsProperty::New( static_cast ( image->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer() ) ); newImage->SetProperty( mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str(), mitk::FloatProperty::New( static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str()).GetPointer() ) ->GetValue() ) ); newImage->SetProperty( mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str(), mitk::MeasurementFrameProperty::New( static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str()).GetPointer() ) ->GetMeasurementFrame() ) ); mitk::DiffusionPropertyHelper propertyHelper( newImage ); propertyHelper.InitializeImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( newImage ); QString name = node->GetName().c_str(); imageNode->SetName((name+"_normalized").toStdString().c_str()); GetDataStorage()->Add(imageNode, node); } void QmitkPreprocessingView::DoLengthCorrection() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); if ( ! isDiffusionImage ) { return; } typedef itk::DwiGradientLengthCorrectionFilter FilterType; ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(image, itkVectorImagePointer); FilterType::Pointer filter = FilterType::New(); filter->SetRoundingValue( m_Controls->m_B_ValueMap_Rounder_SpinBox->value()); filter->SetReferenceBValue( static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str()).GetPointer() ) ->GetValue() ); filter->SetReferenceGradientDirectionContainer( static_cast ( image->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer() ); filter->Update(); mitk::Image::Pointer newImage = mitk::Image::New();//mitk::ImportItkImage( itkVectorImagePointer ); newImage->InitializeByItk( itkVectorImagePointer.GetPointer() ); newImage->SetImportVolume( itkVectorImagePointer->GetBufferPointer(), 0, 0, mitk::Image::CopyMemory); itkVectorImagePointer->GetPixelContainer()->ContainerManageMemoryOff(); newImage->SetProperty( mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str(), mitk::GradientDirectionsProperty::New( filter->GetOutputGradientDirectionContainer() ) ); newImage->SetProperty( mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str(), mitk::FloatProperty::New( filter->GetNewBValue() ) ); newImage->SetProperty( mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str(), mitk::MeasurementFrameProperty::New( static_cast(image->GetProperty(mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str()).GetPointer() )->GetMeasurementFrame() ) ); mitk::DiffusionPropertyHelper propertyHelper( newImage ); propertyHelper.InitializeImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( newImage ); QString name = node->GetName().c_str(); imageNode->SetName((name+"_rounded").toStdString().c_str()); GetDataStorage()->Add(imageNode, node); } void QmitkPreprocessingView::UpdateDwiBValueMapRounder(int i) { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(node) ); if ( ! isDiffusionImage ) { return; } UpdateBValueTableWidget(i); } void QmitkPreprocessingView:: CallMultishellToSingleShellFilter( itk::DWIVoxelFunctor * functor, mitk::Image::Pointer image, QString imageName, mitk::DataNode* parent ) { typedef itk::RadialMultishellToSingleshellImageFilter FilterType; // filter input parameter const mitk::BValueMapProperty::BValueMap& originalShellMap = static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::BVALUEMAPPROPERTYNAME.c_str()).GetPointer() ) ->GetBValueMap(); ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(image, itkVectorImagePointer); ItkDwiType* vectorImage = itkVectorImagePointer.GetPointer(); const mitk::GradientDirectionsProperty::GradientDirectionsContainerType::Pointer gradientContainer = static_cast ( image->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer(); const unsigned int& bValue = static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str()).GetPointer() ) ->GetValue(); mitk::DataNode::Pointer imageNode = 0; // filter call FilterType::Pointer filter = FilterType::New(); filter->SetInput(vectorImage); filter->SetOriginalGradientDirections(gradientContainer); filter->SetOriginalBValueMap(originalShellMap); filter->SetOriginalBValue(bValue); filter->SetFunctor(functor); filter->Update(); // create new DWI image mitk::Image::Pointer outImage = mitk::GrabItkImageMemory( filter->GetOutput() ); outImage->SetProperty( mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str(), mitk::GradientDirectionsProperty::New( filter->GetTargetGradientDirections() ) ); outImage->SetProperty( mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str(), mitk::FloatProperty::New( m_Controls->m_targetBValueSpinBox->value() ) ); outImage->SetProperty( mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str(), mitk::MeasurementFrameProperty::New( static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str()).GetPointer() ) ->GetMeasurementFrame() ) ); mitk::DiffusionPropertyHelper propertyHelper( outImage ); propertyHelper.InitializeImage(); imageNode = mitk::DataNode::New(); imageNode->SetData( outImage ); imageNode->SetName(imageName.toStdString().c_str()); GetDataStorage()->Add(imageNode, parent); // if(m_Controls->m_OutputRMSErrorImage->isChecked()){ // // create new Error image // FilterType::ErrorImageType::Pointer errImage = filter->GetErrorImage(); // mitk::Image::Pointer mitkErrImage = mitk::Image::New(); // mitkErrImage->InitializeByItk(errImage); // mitkErrImage->SetVolume(errImage->GetBufferPointer()); // imageNode = mitk::DataNode::New(); // imageNode->SetData( mitkErrImage ); // imageNode->SetName((imageName+"_Error").toStdString().c_str()); // GetDataStorage()->Add(imageNode); // } } void QmitkPreprocessingView::DoBiExpFit() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); if ( ! isDiffusionImage ) { return; } itk::BiExpFitFunctor::Pointer functor = itk::BiExpFitFunctor::New(); QString name(node->GetName().c_str()); const mitk::BValueMapProperty::BValueMap& originalShellMap = static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::BVALUEMAPPROPERTYNAME.c_str()).GetPointer() ) ->GetBValueMap(); mitk::BValueMapProperty::BValueMap::const_iterator it = originalShellMap.begin(); ++it;/* skip b=0*/ unsigned int s = 0; /*shell index */ vnl_vector bValueList(originalShellMap.size()-1); while( it != originalShellMap.end() ) { bValueList.put(s++,(it++)->first); } const double targetBValue = m_Controls->m_targetBValueSpinBox->value(); functor->setListOfBValues(bValueList); functor->setTargetBValue(targetBValue); CallMultishellToSingleShellFilter(functor,image,name + "_BiExp", node); } void QmitkPreprocessingView::DoAKCFit() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); if ( ! isDiffusionImage ) { return; } itk::KurtosisFitFunctor::Pointer functor = itk::KurtosisFitFunctor::New(); QString name(node->GetName().c_str()); const mitk::BValueMapProperty::BValueMap& originalShellMap = static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::BVALUEMAPPROPERTYNAME.c_str()).GetPointer() ) ->GetBValueMap(); mitk::BValueMapProperty::BValueMap::const_iterator it = originalShellMap.begin(); ++it;/* skip b=0*/ unsigned int s = 0; /*shell index */ vnl_vector bValueList(originalShellMap.size()-1); while(it != originalShellMap.end()) bValueList.put(s++,(it++)->first); const double targetBValue = m_Controls->m_targetBValueSpinBox->value(); functor->setListOfBValues(bValueList); functor->setTargetBValue(targetBValue); CallMultishellToSingleShellFilter(functor,image,name + "_AKC", node); } void QmitkPreprocessingView::DoADCFit() { // later } void QmitkPreprocessingView::DoADCAverage() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); if ( ! isDiffusionImage ) return; itk::ADCAverageFunctor::Pointer functor = itk::ADCAverageFunctor::New(); QString name(node->GetName().c_str()); const mitk::BValueMapProperty::BValueMap &originalShellMap = static_cast(image->GetProperty(mitk::DiffusionPropertyHelper::BVALUEMAPPROPERTYNAME.c_str()).GetPointer() )->GetBValueMap(); mitk::BValueMapProperty::BValueMap::const_iterator it = originalShellMap.begin(); ++it;/* skip b=0*/ unsigned int s = 0; /*shell index */ vnl_vector bValueList(originalShellMap.size()-1); while(it != originalShellMap.end()) bValueList.put(s++,(it++)->first); const double targetBValue = m_Controls->m_targetBValueSpinBox->value(); functor->setListOfBValues(bValueList); functor->setTargetBValue(targetBValue); CallMultishellToSingleShellFilter(functor,image,name + "_ADC", node); } -void QmitkPreprocessingView::DoAdcCalculation() -{ - mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); - if (node.IsNull()) { return; } - - mitk::Image::Pointer image = dynamic_cast(node->GetData()); - if ( image == nullptr ) { return; } - - bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); - if ( ! isDiffusionImage ) { return; } - - typedef itk::AdcImageFilter< DiffusionPixelType, double > FilterType; - - ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); - mitk::CastToItkImage(image, itkVectorImagePointer); - FilterType::Pointer filter = FilterType::New(); - filter->SetInput( itkVectorImagePointer ); - - filter->SetGradientDirections( static_cast - ( image->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) - ->GetGradientDirectionsContainer() ); - - filter->SetB_value( static_cast - (image->GetProperty(mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str()).GetPointer() ) - ->GetValue() ); - - filter->SetFitSignal(m_Controls->m_FitAdcBox->isChecked()); - filter->Update(); - - mitk::Image::Pointer newImage = mitk::Image::New(); - newImage->InitializeByItk( filter->GetOutput() ); - newImage->SetVolume( filter->GetOutput()->GetBufferPointer() ); - mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); - imageNode->SetData( newImage ); - QString name = node->GetName().c_str(); - - mitk::LookupTable::Pointer lut = mitk::LookupTable::New(); - lut->SetType( mitk::LookupTable::JET_TRANSPARENT ); - mitk::LookupTableProperty::Pointer lut_prop = mitk::LookupTableProperty::New(); - lut_prop->SetLookupTable( lut ); - - imageNode->SetProperty("LookupTable", lut_prop ); - if (m_Controls->m_FitAdcBox->isChecked()) - imageNode->SetName((name+"_ADC").toStdString().c_str()); - else - imageNode->SetName((name+"_MD").toStdString().c_str()); - - GetDataStorage()->Add(imageNode, node); -} - void QmitkPreprocessingView::CleanBValueTableWidget() { m_Controls->m_B_ValueMap_TableWidget->clear(); m_Controls->m_B_ValueMap_TableWidget->setRowCount(1); QStringList headerList; headerList << "b-Value" << "Number of gradients"; m_Controls->m_B_ValueMap_TableWidget->setHorizontalHeaderLabels(headerList); m_Controls->m_B_ValueMap_TableWidget->setItem(0,0,new QTableWidgetItem("-")); m_Controls->m_B_ValueMap_TableWidget->setItem(0,1,new QTableWidgetItem("-")); } void QmitkPreprocessingView::UpdateBValueTableWidget(int) { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { CleanBValueTableWidget(); return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage(false); isDiffusionImage = mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image); if ( ! isDiffusionImage ) { CleanBValueTableWidget(); } else { typedef mitk::BValueMapProperty::BValueMap BValueMap; typedef mitk::BValueMapProperty::BValueMap::iterator BValueMapIterator; BValueMapIterator it; BValueMap roundedBValueMap = static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::BVALUEMAPPROPERTYNAME.c_str()).GetPointer() ) ->GetBValueMap(); m_Controls->m_B_ValueMap_TableWidget->clear(); m_Controls->m_B_ValueMap_TableWidget->setRowCount(roundedBValueMap.size() ); QStringList headerList; headerList << "b-Value" << "Number of gradients"; m_Controls->m_B_ValueMap_TableWidget->setHorizontalHeaderLabels(headerList); int i = 0 ; for(it = roundedBValueMap.begin() ;it != roundedBValueMap.end(); it++) { m_Controls->m_B_ValueMap_TableWidget->setItem(i,0,new QTableWidgetItem(QString::number(it->first))); QTableWidgetItem* item = m_Controls->m_B_ValueMap_TableWidget->item(i,0); item->setFlags(item->flags() & ~Qt::ItemIsEditable); m_Controls->m_B_ValueMap_TableWidget->setItem(i,1,new QTableWidgetItem(QString::number(it->second.size()))); i++; } } } template < typename TPixel, unsigned int VImageDimension > void QmitkPreprocessingView::TemplatedUpdateGui( itk::Image* itkImage) { for (int r=0; r<3; r++) { for (int c=0; c<3; c++) { QTableWidgetItem* item = m_Controls->m_DirectionMatrixTable->item(r,c); delete item; item = new QTableWidgetItem(); item->setTextAlignment(Qt::AlignCenter | Qt::AlignVCenter); item->setText(QString::number(itkImage->GetDirection()[r][c])); m_Controls->m_DirectionMatrixTable->setItem(r,c,item); } } } template < typename TPixel, unsigned int VImageDimension > void QmitkPreprocessingView::TemplatedUpdateGui( itk::VectorImage* itkImage) { for (int r=0; r<3; r++) { for (int c=0; c<3; c++) { QTableWidgetItem* item = m_Controls->m_DirectionMatrixTable->item(r,c); delete item; item = new QTableWidgetItem(); item->setTextAlignment(Qt::AlignCenter | Qt::AlignVCenter); item->setText(QString::number(itkImage->GetDirection()[r][c])); m_Controls->m_DirectionMatrixTable->setItem(r,c,item); } } } void QmitkPreprocessingView::OnSelectionChanged(berry::IWorkbenchPart::Pointer part, const QList& nodes) { (void) nodes; this->OnImageSelectionChanged(); } void QmitkPreprocessingView::OnImageSelectionChanged() { bool foundImageVolume = true; mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } bool foundDwiVolume( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( node ) ); mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool multiComponentVolume = (image->GetPixelType().GetNumberOfComponents() > 1); bool threeDplusTVolume = (image->GetTimeSteps() > 1); // we do not support multi-component and 3D+t images in the widget, check early to avoid access exception bool foundSingleImageVolume = foundDwiVolume || (foundImageVolume && (!multiComponentVolume) && (!threeDplusTVolume) ); m_Controls->m_ButtonAverageGradients->setEnabled(foundDwiVolume); m_Controls->m_ButtonExtractB0->setEnabled(foundDwiVolume); m_Controls->m_CheckExtractAll->setEnabled(foundDwiVolume); m_Controls->m_ModifyMeasurementFrame->setEnabled(foundDwiVolume); m_Controls->m_MeasurementFrameTable->setEnabled(foundDwiVolume); m_Controls->m_ReduceGradientsButton->setEnabled(foundDwiVolume); m_Controls->m_ShowGradientsButton->setEnabled(foundDwiVolume); m_Controls->m_MirrorGradientToHalfSphereButton->setEnabled(foundDwiVolume); m_Controls->m_MergeDwisButton->setEnabled(foundDwiVolume); m_Controls->m_B_ValueMap_Rounder_SpinBox->setEnabled(foundDwiVolume); m_Controls->m_ProjectSignalButton->setEnabled(foundDwiVolume); m_Controls->m_CreateLengthCorrectedDwi->setEnabled(foundDwiVolume); - m_Controls->m_CalcAdcButton->setEnabled(foundDwiVolume); m_Controls->m_targetBValueSpinBox->setEnabled(foundDwiVolume); m_Controls->m_NormalizeImageValuesButton->setEnabled(foundDwiVolume); m_Controls->m_DirectionMatrixTable->setEnabled(foundSingleImageVolume); m_Controls->m_ModifyDirection->setEnabled(foundSingleImageVolume); m_Controls->m_ExtractBrainMask->setEnabled(foundSingleImageVolume); m_Controls->m_ResampleImageButton->setEnabled(foundSingleImageVolume); m_Controls->m_ModifySpacingButton->setEnabled(foundSingleImageVolume); m_Controls->m_ModifyOriginButton->setEnabled(foundSingleImageVolume); m_Controls->m_CropImageButton->setEnabled(foundSingleImageVolume); m_Controls->m_RemoveGradientButton->setEnabled(foundDwiVolume); m_Controls->m_ExtractGradientButton->setEnabled(foundDwiVolume); m_Controls->m_FlipAxis->setEnabled(foundSingleImageVolume); m_Controls->m_FlipGradientsButton->setEnabled(foundDwiVolume); // reset sampling frame to 1 and update all ealted components m_Controls->m_B_ValueMap_Rounder_SpinBox->setValue(1); UpdateBValueTableWidget(m_Controls->m_B_ValueMap_Rounder_SpinBox->value()); DoUpdateInterpolationGui(m_Controls->m_ResampleTypeBox->currentIndex()); if (foundDwiVolume) { m_Controls->m_InputData->setTitle("Input Data"); vnl_matrix_fixed< double, 3, 3 > mf = static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str()).GetPointer() ) ->GetMeasurementFrame(); for (int r=0; r<3; r++) { for (int c=0; c<3; c++) { // Measurement frame { QTableWidgetItem* item = m_Controls->m_MeasurementFrameTable->item( r, c ); delete item; item = new QTableWidgetItem(); item->setTextAlignment(Qt::AlignCenter | Qt::AlignVCenter); item->setText(QString::number(mf.get(r,c))); m_Controls->m_MeasurementFrameTable->setItem( r, c, item ); } // Direction matrix { ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(image, itkVectorImagePointer); QTableWidgetItem* item = m_Controls->m_DirectionMatrixTable->item( r, c ); delete item; item = new QTableWidgetItem(); item->setTextAlignment(Qt::AlignCenter | Qt::AlignVCenter); item->setText(QString::number(itkVectorImagePointer->GetDirection()[r][c])); m_Controls->m_DirectionMatrixTable->setItem( r, c, item ); } } } //calculate target bValue for MultishellToSingleShellfilter const mitk::BValueMapProperty::BValueMap & bValMap = static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::BVALUEMAPPROPERTYNAME.c_str()).GetPointer() ) ->GetBValueMap(); mitk::BValueMapProperty::BValueMap::const_iterator it = bValMap.begin(); unsigned int targetBVal = 0; while(it != bValMap.end()) { targetBVal += (it++)->first; } targetBVal /= (float)bValMap.size()-1; m_Controls->m_targetBValueSpinBox->setValue(targetBVal); m_Controls->m_HeaderSpacingX->setValue(image->GetGeometry()->GetSpacing()[0]); m_Controls->m_HeaderSpacingY->setValue(image->GetGeometry()->GetSpacing()[1]); m_Controls->m_HeaderSpacingZ->setValue(image->GetGeometry()->GetSpacing()[2]); m_Controls->m_HeaderOriginX->setValue(image->GetGeometry()->GetOrigin()[0]); m_Controls->m_HeaderOriginY->setValue(image->GetGeometry()->GetOrigin()[1]); m_Controls->m_HeaderOriginZ->setValue(image->GetGeometry()->GetOrigin()[2]); m_Controls->m_XstartBox->setMaximum(image->GetGeometry()->GetExtent(0)-1); m_Controls->m_YstartBox->setMaximum(image->GetGeometry()->GetExtent(1)-1); m_Controls->m_ZstartBox->setMaximum(image->GetGeometry()->GetExtent(2)-1); m_Controls->m_XendBox->setMaximum(image->GetGeometry()->GetExtent(0)-1); m_Controls->m_YendBox->setMaximum(image->GetGeometry()->GetExtent(1)-1); m_Controls->m_ZendBox->setMaximum(image->GetGeometry()->GetExtent(2)-1); m_Controls->m_RemoveGradientBox->setMaximum(static_cast ( image->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer()->Size()-1); m_Controls->m_ExtractGradientBox->setMaximum(static_cast ( image->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer()->Size()-1); } else if (foundSingleImageVolume) { for (int r=0; r<3; r++) { for (int c=0; c<3; c++) { QTableWidgetItem* item = m_Controls->m_MeasurementFrameTable->item(r,c); delete item; item = new QTableWidgetItem(); m_Controls->m_MeasurementFrameTable->setItem(r,c,item); } } m_Controls->m_HeaderSpacingX->setValue(image->GetGeometry()->GetSpacing()[0]); m_Controls->m_HeaderSpacingY->setValue(image->GetGeometry()->GetSpacing()[1]); m_Controls->m_HeaderSpacingZ->setValue(image->GetGeometry()->GetSpacing()[2]); m_Controls->m_HeaderOriginX->setValue(image->GetGeometry()->GetOrigin()[0]); m_Controls->m_HeaderOriginY->setValue(image->GetGeometry()->GetOrigin()[1]); m_Controls->m_HeaderOriginZ->setValue(image->GetGeometry()->GetOrigin()[2]); m_Controls->m_XstartBox->setMaximum(image->GetGeometry()->GetExtent(0)-1); m_Controls->m_YstartBox->setMaximum(image->GetGeometry()->GetExtent(1)-1); m_Controls->m_ZstartBox->setMaximum(image->GetGeometry()->GetExtent(2)-1); m_Controls->m_XendBox->setMaximum(image->GetGeometry()->GetExtent(0)-1); m_Controls->m_YendBox->setMaximum(image->GetGeometry()->GetExtent(1)-1); m_Controls->m_ZendBox->setMaximum(image->GetGeometry()->GetExtent(2)-1); AccessFixedDimensionByItk(image, TemplatedUpdateGui,3); } else { for (int r=0; r<3; r++) { for (int c=0; c<3; c++) { { QTableWidgetItem* item = m_Controls->m_MeasurementFrameTable->item( r, c ); delete item; item = new QTableWidgetItem(); m_Controls->m_MeasurementFrameTable->setItem( r, c, item ); } { QTableWidgetItem* item = m_Controls->m_DirectionMatrixTable->item( r, c ); delete item; item = new QTableWidgetItem(); m_Controls->m_DirectionMatrixTable->setItem( r, c, item ); } } } } } void QmitkPreprocessingView::Activated() { } void QmitkPreprocessingView::Deactivated() { OnImageSelectionChanged(); } void QmitkPreprocessingView::Visible() { OnImageSelectionChanged(); } void QmitkPreprocessingView::Hidden() { } void QmitkPreprocessingView::DoFlipGradientDirections() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } mitk::Image::Pointer newDwi = image->Clone(); GradientDirectionContainerType::Pointer gradientContainer = static_cast ( newDwi->GetProperty(mitk::DiffusionPropertyHelper::ORIGINALGRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer(); for (unsigned int j=0; jSize(); j++) { if (m_Controls->m_FlipGradBoxX->isChecked()) { gradientContainer->at(j)[0] *= -1; } if (m_Controls->m_FlipGradBoxY->isChecked()) { gradientContainer->at(j)[1] *= -1; } if (m_Controls->m_FlipGradBoxZ->isChecked()) { gradientContainer->at(j)[2] *= -1; } } newDwi->GetPropertyList()->SetProperty( mitk::DiffusionPropertyHelper::ORIGINALGRADIENTCONTAINERPROPERTYNAME.c_str(), mitk::GradientDirectionsProperty::New( gradientContainer ) ); mitk::DiffusionPropertyHelper propertyHelper( newDwi ); propertyHelper.InitializeImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( newDwi ); QString name = node->GetName().c_str(); imageNode->SetName( (name+"_GradientFlip").toStdString().c_str() ); GetDataStorage()->Add( imageNode, node ); } void QmitkPreprocessingView::DoHalfSphereGradientDirections() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } mitk::Image::Pointer newDwi = image->Clone(); GradientDirectionContainerType::Pointer gradientContainer = static_cast ( newDwi->GetProperty(mitk::DiffusionPropertyHelper::ORIGINALGRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer(); for (unsigned int j=0; jSize(); j++) { if (gradientContainer->at(j)[0]<0) { gradientContainer->at(j) = -gradientContainer->at(j); } } newDwi->SetProperty( mitk::DiffusionPropertyHelper::ORIGINALGRADIENTCONTAINERPROPERTYNAME.c_str(), mitk::GradientDirectionsProperty::New( gradientContainer ) ); mitk::DiffusionPropertyHelper propertyHelper( newDwi ); propertyHelper.InitializeImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( newDwi ); QString name = node->GetName().c_str(); imageNode->SetName( (name+"_halfsphere").toStdString().c_str() ); GetDataStorage()->Add( imageNode, node ); } void QmitkPreprocessingView::DoApplyMesurementFrame() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); if ( !isDiffusionImage ) return; vnl_matrix_fixed< double, 3, 3 > mf; for (int r=0; r<3; r++) { for (int c=0; c<3; c++) { QTableWidgetItem* item = m_Controls->m_MeasurementFrameTable->item(r,c); if (!item) return; mf[r][c] = item->text().toDouble(); } } mitk::Image::Pointer newDwi = image->Clone(); newDwi->SetProperty( mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str(), mitk::MeasurementFrameProperty::New( mf ) ); mitk::DiffusionPropertyHelper propertyHelper( newDwi ); propertyHelper.InitializeImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( newDwi ); QString name = node->GetName().c_str(); imageNode->SetName((name+"_new-MF").toStdString().c_str()); GetDataStorage()->Add( imageNode, node ); } void QmitkPreprocessingView::DoShowGradientDirections() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); if ( !isDiffusionImage ) { return; } int maxIndex = 0; unsigned int maxSize = image->GetDimension(0); if (maxSizeGetDimension(1)) { maxSize = image->GetDimension(1); maxIndex = 1; } if (maxSizeGetDimension(2)) { maxSize = image->GetDimension(2); maxIndex = 2; } mitk::Point3D origin = image->GetGeometry()->GetOrigin(); mitk::PointSet::Pointer originSet = mitk::PointSet::New(); typedef mitk::BValueMapProperty::BValueMap BValueMap; typedef mitk::BValueMapProperty::BValueMap::iterator BValueMapIterator; BValueMap bValMap = static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::BVALUEMAPPROPERTYNAME.c_str()).GetPointer() ) ->GetBValueMap(); GradientDirectionContainerType::Pointer gradientContainer = static_cast ( image->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer(); mitk::BaseGeometry::Pointer geometry = image->GetGeometry(); int shellCount = 1; for(BValueMapIterator it = bValMap.begin(); it!=bValMap.end(); ++it) { mitk::PointSet::Pointer pointset = mitk::PointSet::New(); for (unsigned int j=0; jsecond.size(); j++) { mitk::Point3D ip; vnl_vector_fixed< double, 3 > v = gradientContainer->at(it->second[j]); if (v.magnitude()>mitk::eps) { ip[0] = v[0]*maxSize*geometry->GetSpacing()[maxIndex]/2 + origin[0]-0.5*geometry->GetSpacing()[0] + geometry->GetSpacing()[0]*image->GetDimension(0)/2; ip[1] = v[1]*maxSize*geometry->GetSpacing()[maxIndex]/2 + origin[1]-0.5*geometry->GetSpacing()[1] + geometry->GetSpacing()[1]*image->GetDimension(1)/2; ip[2] = v[2]*maxSize*geometry->GetSpacing()[maxIndex]/2 + origin[2]-0.5*geometry->GetSpacing()[2] + geometry->GetSpacing()[2]*image->GetDimension(2)/2; pointset->InsertPoint(j, ip); } else if (originSet->IsEmpty()) { ip[0] = v[0]*maxSize*geometry->GetSpacing()[maxIndex]/2 + origin[0]-0.5*geometry->GetSpacing()[0] + geometry->GetSpacing()[0]*image->GetDimension(0)/2; ip[1] = v[1]*maxSize*geometry->GetSpacing()[maxIndex]/2 + origin[1]-0.5*geometry->GetSpacing()[1] + geometry->GetSpacing()[1]*image->GetDimension(1)/2; ip[2] = v[2]*maxSize*geometry->GetSpacing()[maxIndex]/2 + origin[2]-0.5*geometry->GetSpacing()[2] + geometry->GetSpacing()[2]*image->GetDimension(2)/2; originSet->InsertPoint(j, ip); } } if ( it->first < mitk::eps ) { continue; } // add shell to datastorage mitk::DataNode::Pointer newNode = mitk::DataNode::New(); newNode->SetData(pointset); QString name = node->GetName().c_str(); name += "_Shell_"; name += QString::number( it->first ); newNode->SetName( name.toStdString().c_str() ); newNode->SetProperty( "pointsize", mitk::FloatProperty::New((float)maxSize / 50) ); int b0 = shellCount % 2; int b1 = 0; int b2 = 0; if (shellCount>4) { b2 = 1; } if (shellCount%4 >= 2) { b1 = 1; } newNode->SetProperty("color", mitk::ColorProperty::New( b2, b1, b0 )); GetDataStorage()->Add( newNode, node ); shellCount++; } // add origin to datastorage mitk::DataNode::Pointer newNode = mitk::DataNode::New(); newNode->SetData(originSet); QString name = node->GetName().c_str(); name += "_Origin"; newNode->SetName(name.toStdString().c_str()); newNode->SetProperty("pointsize", mitk::FloatProperty::New((float)maxSize/50)); newNode->SetProperty("color", mitk::ColorProperty::New(1,1,1)); GetDataStorage()->Add(newNode, node); } void QmitkPreprocessingView::DoReduceGradientDirections() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); if ( !isDiffusionImage ) { return; } typedef itk::ElectrostaticRepulsionDiffusionGradientReductionFilter FilterType; typedef mitk::BValueMapProperty::BValueMap BValueMap; // GetShellSelection from GUI BValueMap shellSlectionMap; BValueMap originalShellMap = static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::BVALUEMAPPROPERTYNAME.c_str()).GetPointer() ) ->GetBValueMap(); std::vector newNumGradientDirections; int shellCounter = 0; QString name = node->GetName().c_str(); for (int i=0; im_B_ValueMap_TableWidget->rowCount(); i++) { double BValue = m_Controls->m_B_ValueMap_TableWidget->item(i,0)->text().toDouble(); shellSlectionMap[BValue] = originalShellMap[BValue]; unsigned int num = m_Controls->m_B_ValueMap_TableWidget->item(i,1)->text().toUInt(); newNumGradientDirections.push_back(num); name += "_"; name += QString::number(num); shellCounter++; } if (newNumGradientDirections.empty()) { return; } GradientDirectionContainerType::Pointer gradientContainer = static_cast ( image->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer(); ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(image, itkVectorImagePointer); FilterType::Pointer filter = FilterType::New(); filter->SetInput( itkVectorImagePointer ); filter->SetOriginalGradientDirections(gradientContainer); filter->SetNumGradientDirections(newNumGradientDirections); filter->SetOriginalBValueMap(originalShellMap); filter->SetShellSelectionBValueMap(shellSlectionMap); filter->Update(); mitk::Image::Pointer newImage = mitk::GrabItkImageMemory( filter->GetOutput() ); newImage->SetProperty( mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str(), mitk::GradientDirectionsProperty::New( filter->GetGradientDirections() ) ); newImage->SetProperty( mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str(), mitk::MeasurementFrameProperty::New( static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str()).GetPointer() ) ->GetMeasurementFrame() ) ); newImage->SetProperty( mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str(), mitk::FloatProperty::New( static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str()).GetPointer() ) ->GetValue() ) ); mitk::DiffusionPropertyHelper propertyHelper( newImage ); propertyHelper.InitializeImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( newImage ); imageNode->SetName(name.toStdString().c_str()); GetDataStorage()->Add(imageNode, node); // update the b-value widget to remove the modified number of gradients used for extraction this->CleanBValueTableWidget(); this->UpdateBValueTableWidget(0); } void QmitkPreprocessingView::MergeDwis() { typedef mitk::GradientDirectionsProperty::GradientDirectionsContainerType GradientContainerType; mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); if ( !isDiffusionImage ) { return; } mitk::DataNode::Pointer node2 = m_Controls->m_MergeDwiBox->GetSelectedNode(); if (node2.IsNull()) { return; } mitk::Image::Pointer image2 = dynamic_cast(node2->GetData()); if ( image2 == nullptr ) { return; } typedef itk::VectorImage DwiImageType; typedef DwiImageType::PixelType DwiPixelType; typedef DwiImageType::RegionType DwiRegionType; typedef std::vector< DwiImageType::Pointer > DwiImageContainerType; typedef std::vector< GradientContainerType::Pointer > GradientListContainerType; DwiImageContainerType imageContainer; GradientListContainerType gradientListContainer; std::vector< double > bValueContainer; QString name = ""; { ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(image, itkVectorImagePointer); imageContainer.push_back( itkVectorImagePointer ); gradientListContainer.push_back( static_cast ( image->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer() ); bValueContainer.push_back( static_cast (image->GetProperty(mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str()).GetPointer() ) ->GetValue() ); name += node->GetName().c_str(); } { ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(image2, itkVectorImagePointer); imageContainer.push_back( itkVectorImagePointer ); gradientListContainer.push_back( static_cast ( image2->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer() ); bValueContainer.push_back( static_cast (image2->GetProperty(mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str()).GetPointer() ) ->GetValue() ); name += "+"; name += node2->GetName().c_str(); } typedef itk::MergeDiffusionImagesFilter FilterType; FilterType::Pointer filter = FilterType::New(); filter->SetImageVolumes(imageContainer); filter->SetGradientLists(gradientListContainer); filter->SetBValues(bValueContainer); filter->Update(); vnl_matrix_fixed< double, 3, 3 > mf; mf.set_identity(); mitk::Image::Pointer newImage = mitk::GrabItkImageMemory( filter->GetOutput() ); newImage->SetProperty( mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str(), mitk::GradientDirectionsProperty::New( filter->GetOutputGradients() ) ); newImage->SetProperty( mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str(), mitk::MeasurementFrameProperty::New( mf ) ); newImage->SetProperty( mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str(), mitk::FloatProperty::New( filter->GetB_Value() ) ); mitk::DiffusionPropertyHelper propertyHelper( newImage ); propertyHelper.InitializeImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( newImage ); imageNode->SetName(name.toStdString().c_str()); GetDataStorage()->Add(imageNode); } void QmitkPreprocessingView::ExtractB0() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); if ( !isDiffusionImage ) { return; } typedef mitk::GradientDirectionsProperty::GradientDirectionsContainerType GradientContainerType; // call the extraction withou averaging if the check-box is checked if( this->m_Controls->m_CheckExtractAll->isChecked() ) { DoExtractBOWithoutAveraging(); return; } ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(image, itkVectorImagePointer); // Extract image using found index typedef itk::B0ImageExtractionImageFilter FilterType; FilterType::Pointer filter = FilterType::New(); filter->SetInput( itkVectorImagePointer ); filter->SetDirections( static_cast ( image->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer() ); filter->Update(); mitk::Image::Pointer mitkImage = mitk::Image::New(); mitkImage->InitializeByItk( filter->GetOutput() ); mitkImage->SetVolume( filter->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer newNode=mitk::DataNode::New(); newNode->SetData( mitkImage ); newNode->SetProperty( "name", mitk::StringProperty::New(node->GetName() + "_B0")); GetDataStorage()->Add(newNode, node); } void QmitkPreprocessingView::DoExtractBOWithoutAveraging() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); if ( !isDiffusionImage ) { return; } // typedefs typedef mitk::GradientDirectionsProperty::GradientDirectionsContainerType GradientContainerType; typedef itk::B0ImageExtractionToSeparateImageFilter< short, short> FilterType; ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(image, itkVectorImagePointer); // Extract image using found index FilterType::Pointer filter = FilterType::New(); filter->SetInput( itkVectorImagePointer ); filter->SetDirections( static_cast ( image->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() ) ->GetGradientDirectionsContainer() ); filter->Update(); mitk::Image::Pointer mitkImage = mitk::Image::New(); mitkImage->InitializeByItk( filter->GetOutput() ); mitkImage->SetImportChannel( filter->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer newNode=mitk::DataNode::New(); newNode->SetData( mitkImage ); newNode->SetProperty( "name", mitk::StringProperty::New(node->GetName() + "_B0_ALL")); GetDataStorage()->Add(newNode, node); /*A reinitialization is needed to access the time channels via the ImageNavigationController The Global-Geometry can not recognize the time channel without a re-init. (for a new selection in datamanger a automatically updated of the Global-Geometry should be done - if it contains the time channel)*/ mitk::RenderingManager::GetInstance()->InitializeViews( newNode->GetData()->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true); } void QmitkPreprocessingView::AverageGradients() { mitk::DataNode::Pointer node = m_Controls->m_SelctedImageComboBox->GetSelectedNode(); if (node.IsNull()) { return; } mitk::Image::Pointer image = dynamic_cast(node->GetData()); if ( image == nullptr ) { return; } bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(image) ); if ( !isDiffusionImage ) return; mitk::Image::Pointer newDwi = image->Clone(); newDwi->SetPropertyList( image->GetPropertyList()->Clone() ); mitk::DiffusionPropertyHelper propertyHelper(newDwi); propertyHelper.AverageRedundantGradients(m_Controls->m_Blur->value()); propertyHelper.InitializeImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( newDwi ); QString name = node->GetName().c_str(); imageNode->SetName((name+"_averaged").toStdString().c_str()); GetDataStorage()->Add(imageNode, node); } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.preprocessing/src/internal/QmitkPreprocessingView.h b/Plugins/org.mitk.gui.qt.diffusionimaging.preprocessing/src/internal/QmitkPreprocessingView.h index 3200646d92..7b6338f261 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.preprocessing/src/internal/QmitkPreprocessingView.h +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.preprocessing/src/internal/QmitkPreprocessingView.h @@ -1,169 +1,168 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _QMITKPREPROCESSINGVIEW_H_INCLUDED #define _QMITKPREPROCESSINGVIEW_H_INCLUDED #include #include #include "ui_QmitkPreprocessingViewControls.h" // st includes #include // itk includes #include #include // mitk includes #include #include "itkDWIVoxelFunctor.h" #include typedef short DiffusionPixelType; struct PrpSelListener; /*! * \ingroup org_mitk_gui_qt_preprocessing_internal * * \brief Viewing and modifying diffusion weighted images (gradient reduction, resampling, b-value projection, ...) * */ class QmitkPreprocessingView : public QmitkAbstractView, public mitk::ILifecycleAwarePart { friend struct PrpSelListener; // this is needed for all Qt objects that should have a MOC object (everything that derives from QObject) Q_OBJECT public: static const std::string VIEW_ID; typedef mitk::DiffusionPropertyHelper::GradientDirectionType GradientDirectionType; typedef mitk::DiffusionPropertyHelper::GradientDirectionsContainerType GradientDirectionContainerType; typedef itk::VectorImage< short, 3 > ItkDwiType; typedef itk::Image< unsigned char, 3 > UcharImageType; typedef itk::Image< double, 3 > ItkDoubleImageType; QmitkPreprocessingView(); virtual ~QmitkPreprocessingView(); virtual void CreateQtPartControl(QWidget *parent) override; /// \brief Creation of the connections of main and control widget virtual void CreateConnections(); virtual void Activated() override; virtual void Deactivated() override; virtual void Visible() override; virtual void Hidden() override; /// /// Sets the focus to an internal widget. /// virtual void SetFocus() override; static const int nrconvkernels; protected slots: void AverageGradients(); void ExtractB0(); void MergeDwis(); void DoApplySpacing(); void DoApplyOrigin(); void DoApplyDirectionMatrix(); void DoApplyMesurementFrame(); void DoReduceGradientDirections(); void DoShowGradientDirections(); void DoHalfSphereGradientDirections(); void UpdateDwiBValueMapRounder(int i); void DoLengthCorrection(); - void DoAdcCalculation(); void DoDwiNormalization(); void DoProjectSignal(); void DoExtractBrainMask(); void DoResampleImage(); void DoCropImage(); void DoUpdateInterpolationGui(int i); void DoRemoveGradient(); void DoExtractGradient(); void DoFlipAxis(); void OnImageSelectionChanged(); void DoFlipGradientDirections(); protected: void DoADCFit(); void DoAKCFit(); void DoBiExpFit(); void DoADCAverage(); template < typename TPixel, unsigned int VImageDimension > void TemplatedFlipAxis( itk::Image* itkImage); template < typename TPixel, unsigned int VImageDimension > void TemplatedCropImage( itk::Image* itkImage); template < typename TPixel, unsigned int VImageDimension > void TemplatedApplyRotation( itk::Image* itkImage); template < typename TPixel, unsigned int VImageDimension > void TemplatedUpdateGui( itk::Image* itkImage); template < typename TPixel, unsigned int VImageDimension > void TemplatedUpdateGui( itk::VectorImage* itkImage); template < typename TPixel, unsigned int VImageDimension > void TemplatedResampleImage( itk::Image* itkImage); template < typename TPixel, unsigned int VImageDimension > void TemplatedSetImageSpacing( itk::Image* itkImage); template < typename TPixel, unsigned int VImageDimension > void TemplatedSetImageOrigin( itk::Image* itkImage); /** Called by ExtractB0 if check-box activated, extracts all b0 images without averaging */ void DoExtractBOWithoutAveraging(); void UpdateBValueTableWidget(int); /// \brief called by QmitkAbstractView when DataManager's selection has changed virtual void OnSelectionChanged(berry::IWorkbenchPart::Pointer part, const QList& nodes) override; Ui::QmitkPreprocessingViewControls* m_Controls; void SetDefaultNodeProperties(mitk::DataNode::Pointer node, std::string name); void CallMultishellToSingleShellFilter( itk::DWIVoxelFunctor * functor, mitk::Image::Pointer ImPtr, QString imageName, mitk::DataNode* parent ); void CleanBValueTableWidget(); }; #endif // _QMITKPREPROCESSINGVIEW_H_INCLUDED diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.preprocessing/src/internal/QmitkPreprocessingViewControls.ui b/Plugins/org.mitk.gui.qt.diffusionimaging.preprocessing/src/internal/QmitkPreprocessingViewControls.ui index e0bfa578f2..c04eaa3fd2 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.preprocessing/src/internal/QmitkPreprocessingViewControls.ui +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.preprocessing/src/internal/QmitkPreprocessingViewControls.ui @@ -1,1743 +1,1710 @@ QmitkPreprocessingViewControls 0 0 523 1158 0 0 false QmitkPreprocessingViewControls true Please Select Input Data Image: QComboBox::AdjustToMinimumContentsLength 0 Gradients 0 0 Qt::ScrollBarAsNeeded Qt::ScrollBarAlwaysOff true 100 true false true b-Value Number of gradients QFrame::NoFrame QFrame::Raised 0 0 0 0 6 false Generate pointset displaying the gradient vectors (applied measurement frame). Show gradients <html><head/><body><p>Define the sampling frame the b-Values are rounded with.</p></body></html> Sampling frame: false <html><head/><body><p>Round b-values to nearest multiple of this value (click &quot;Round b-value&quot; to create new image with these values).</p></body></html> QAbstractSpinBox::CorrectToNearestValue 1 10000 10 false Retain only the specified number of gradient directions and according image volumes. The retained directions are spread equally over the half sphere using an iterative energy repulsion strategy. Reduce number of gradients false Sometimes the gradient directions are not located on one half sphere. Mirror gradients to half sphere false Round b-values false Generate pointset displaying the gradient vectors (applied measurement frame). Flip gradients QFrame::NoFrame QFrame::Plain 0 0 0 0 0 x y z Qt::Vertical 20 40 Image Values Qt::Vertical 20 40 QFrame::NoFrame QFrame::Raised 0 0 0 0 0 QFrame::NoFrame QFrame::Raised 0 0 0 0 Accumulates the information that was acquired with multiple repetitions for one gradient. Vectors do not have to be precisely equal in order to be merged, if a "Merge radius" > 0 is configured. Accumulates the information that was acquired with multiple repetitions for one gradient. Vectors do not have to be precisely equal in order to be merged, if a "Merge radius" > 0 is configured. Accumulates the information that was acquired with multiple repetitions for one gradient. Vectors do not have to be precisely equal in order to be merged, if a "Merge radius" > 0 is configured. 6 2.000000000000000 0.000100000000000 0.001000000000000 Accumulates the information that was acquired with multiple repetitions for one gradient. Vectors do not have to be precisely equal in order to be merged, if a "Merge radius" > 0 is configured. Accumulates the information that was acquired with multiple repetitions for one gradient. Vectors do not have to be precisely equal in order to be merged, if a "Merge radius" > 0 is configured. Accumulates the information that was acquired with multiple repetitions for one gradient. Vectors do not have to be precisely equal in order to be merged, if a "Merge radius" > 0 is configured. Merge radius false Merges selected DWIs of same dimension. If several b-values are present, the resulting image will contain multiple b-shells. Merge selected DWIs false Normalizes the diffusion-weighted image values across all weighted volumes to the given mean and standard deviation. Normalize image values QFrame::NoFrame QFrame::Raised 0 0 0 0 0 false Target b-value 100000 500 Select projection method. QComboBox::AdjustToMinimumContentsLength ADC Average AKC Bi-Exponential false Multiple acquistions of one gradient direction can be averaged. Due to rounding errors, similar gradients often differ in the last decimal positions. The Merge radius allows to average them by taking all directions within a certain radius into account. Average repetitions false Project image values onto one b-shell. Project onto shell QFrame::NoFrame QFrame::Raised 0 0 0 0 0 true New stdev 100000 100 500 Select binary mask image. The mask is used to calculate the old mean and standard deviation. QComboBox::AdjustToMinimumContentsLength true New mean value 100000 100 1000 false Merges selected DWIs of same dimension. If several b-values are present, the resulting image will contain multiple b-shells. Flip axis QFrame::NoFrame QFrame::Raised 0 0 0 0 Y Qt::Horizontal 40 20 X Z Axis: QComboBox::AdjustToMinimumContentsLength Resample image QFrame::NoFrame QFrame::Raised 0 0 0 0 0 0.010000000000000 2.000000000000000 0.010000000000000 2.000000000000000 0.010000000000000 2.000000000000000 Sampling factor New image spacing New image size QFrame::NoFrame QFrame::Raised 0 0 0 0 0 Interpolator: Nearest neighbour Linear B-spline Windowed sinc false Resample image QFrame::NoFrame QFrame::Raised 0 0 0 0 0 1 10000 1 10000 1 10000 Header Image size 0 0 0 y: Number of pixels to remove on lower image bound. 999999999 Number of pixels to remove on upper image bound. 999999999 Number of pixels to remove on upper image bound. 999999999 Number of pixels to remove on lower image bound. 999999999 x: Number of pixels to remove on lower image bound. 999999999 Number of pixels to remove on upper image bound. 999999999 z: false Crop image Remove or extract gradient volumes false Generate pointset displaying the gradient vectors (applied measurement frame). Remove false Generate pointset displaying the gradient vectors (applied measurement frame). Extract Voxel size 0 0 0 4 4 4 0.000000000000000 99.989999999999995 false Set new voxel size Qt::Vertical 20 40 0 0 Measurment frame 0 0 0 Qt::Horizontal 40 20 false 0 0 0 0 IBeamCursor true Qt::ScrollBarAlwaysOff Qt::ScrollBarAlwaysOff true false false true true 0 false true true New Row New Row New Row New Column New Column New Column false Diffusion encoding gradient directions are rotated accordingly. Apply new measurement frame Direction matrix 0 9 0 0 false 0 0 0 0 IBeamCursor true Qt::ScrollBarAlwaysOff Qt::ScrollBarAlwaysOff true false false true true 0 false true true New Row New Row New Row New Column New Column New Column false Diffusion encoding gradient directions are rotated accordingly. Apply new direction Qt::Horizontal 40 20 Origin 0 0 0 4 -999999999.000000000000000 999999999.000000000000000 4 -999999999.000000000000000 999999999.000000000000000 4 -99999999.000000000000000 999999999.000000000000000 false Set new origin Other - - - - Create a 3D+t data set containing all b0 images as timesteps - - - Disable averaging - - - - - + + false If multiple baseline acquisitions are present, the default behaviour is to output an averaged image. - Extract baseline image + Estimate binary brain mask - + + + + Maximum number of iterations. + + + 10000 + + + 10000 + + + + Qt::Vertical 20 40 - - - - false - - - If multiple baseline acquisitions are present, the default behaviour is to output an averaged image. - - - - - - - - - Calculate ADC/MD map - - - - - + + false If multiple baseline acquisitions are present, the default behaviour is to output an averaged image. - Estimate binary brain mask - - - - - - - Maximum number of iterations. - - - 10000 - - - 10000 + Extract baseline image - - + + - If checked, the ADC is determined by a least squares fit. If unchecked, the ADC is determined as the average ADC from the individual measurements per voxel (mean diffusivity). + Create a 3D+t data set containing all b0 images as timesteps - Fit signal - - - true + Disable averaging - QmitkDataStorageComboBox + QmitkDataStorageComboBoxWithSelectNone QComboBox -
QmitkDataStorageComboBox.h
+
QmitkDataStorageComboBoxWithSelectNone.h
- QmitkDataStorageComboBoxWithSelectNone + QmitkDataStorageComboBox QComboBox -
QmitkDataStorageComboBoxWithSelectNone.h
+
QmitkDataStorageComboBox.h
m_B_ValueMap_Rounder_SpinBox m_Blur m_targetBValueSpinBox m_ProjectionMethodBox m_ResampleTypeBox m_ResampleDoubleX m_ResampleDoubleY m_ResampleDoubleZ m_ResampleIntX m_ResampleIntY m_ResampleIntZ m_InterpolatorBox m_HeaderSpacingX m_HeaderSpacingY m_HeaderSpacingZ m_HeaderOriginX m_HeaderOriginY m_HeaderOriginZ m_DirectionMatrixTable m_MeasurementFrameTable m_CheckExtractAll m_BrainMaskIterationsBox tabWidget m_B_ValueMap_TableWidget m_CreateLengthCorrectedDwi m_ShowGradientsButton m_MirrorGradientToHalfSphereButton m_ReduceGradientsButton m_ButtonAverageGradients m_ProjectSignalButton m_NormalizeImageValuesButton m_MergeDwisButton m_ResampleImageButton m_ModifySpacingButton m_ModifyOriginButton m_ModifyDirection m_ModifyMeasurementFrame m_ButtonExtractB0 - m_CalcAdcButton m_ExtractBrainMask
diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.reconstruction/plugin.xml b/Plugins/org.mitk.gui.qt.diffusionimaging.reconstruction/plugin.xml index de0851208f..a9ab50a96b 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.reconstruction/plugin.xml +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.reconstruction/plugin.xml @@ -1,99 +1,105 @@ - + Q-Ball reconstruction view Calculation of tensor and Q-ball derived measures. - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - + + + diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/QmitkGibbsTrackingViewUserManual.dox b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/QmitkGibbsTrackingViewUserManual.dox index 45e9e2ca1c..4180c389b4 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/QmitkGibbsTrackingViewUserManual.dox +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/QmitkGibbsTrackingViewUserManual.dox @@ -1,38 +1,38 @@ /** \page org_mitk_views_gibbstracking Global Gibbs Tractography This view provides the user interface for the global Gibbs tractography algorithm, a global fiber tracking algorithm, originally proposed by Reisert et.al. [1]. +The corresponding comman line application is named "MitkGlobalTractography". + \tableofcontents \section QmitkGibbsTrackingUserManualInputData Input Data Mandatory Input: \li One Q-Ball or tensor image selected in the datamanager Optional Input: \li Mask Image: White matter probability mask. Corresponds to the probability to generate fiber segments in the respective voxel. \section QmitkGibbsTrackingUserManualParameters Q-Ball Reconstruction \li Number of iterations: More iterations causes the algorithm to be more stable but also to take longer to finish the tracking. Recommended: minimum 10^8 iterations for full brain tractography. \li Particle length/width/weight controlling the contribution of each particle to the model M \li Start and end temperature controlling how fast the process reaches a stable state. (usually no change needed) \li Weighting between the internal (affinity of the model to long and straigt fibers) and external energy (affinity of the model towards the data). (usually no change needed). \li Minimum fiber length constraint (in mm). Shorter fibers are discarded after the tracking. The automatic selection of parameters for the particle length/width and weight are determined directly from the input image using information about the image spacing and GFA. -\imageMacro{gibbstrackingviewadvanced.png,"Advanced Tracking Parameters",10.08} - \section QmitkGibbsTrackingUserManualTrackingSurveillance Surveilance of the tracking process Once started, the tracking can be monitored via the textual output that informs about the tracking progress and several stats of the current state of the algorithm. If enabled, the intermediate tracking results are displayed in the renderwindows each second. This live visualization should usually be disabled for performance reasons. It can be turned on and off during the tracking process via the according checkbox. The button next to this checkbox allows the visualization of only the next iteration step. \section QmitkGibbsTrackingUserManualReferences References [1] Reisert, M., Mader, I., Anastasopoulos, C., Weigel, M., Schnell, S., Kiselev, V.: Global fiber reconstruction becomes practical. Neuroimage 54 (2011) 955-962 */ diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/QmitkMLBTViewUserManual.dox b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/QmitkMLBTViewUserManual.dox index 9e45d2e5d3..34f14cb055 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/QmitkMLBTViewUserManual.dox +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/QmitkMLBTViewUserManual.dox @@ -1,50 +1,50 @@ /** \page org_mitk_views_mlbtview Machine Learning Based Streamline Tractography -This view provides the user interface for machine-learning based streamline fiber tractography on diffusion-weighted images. It is dived in two parts: (1) training of the random-forest classifier used for tractography and (2) the actual tractography. +This view provides the user interface for machine-learning based streamline fiber tractography on diffusion-weighted images. It is dived in two parts: (1) training of the random-forest classifier used for tractography and (2) the actual tractography. The corresponding command line applications are named "MitkRfTraining", to train the random forest classifier, and "MitkStreamlineTractography", which provides functionality for all streamline tractography methods including the random forest based tractography. Available sections: - \ref MlbstUserManualTraining - \ref MlbstUserManualTractography - \ref MlbstUserManualReferences \section MlbstUserManualTraining Training Parameters: \li Num. Trees: Number of trees that constitute the random forest. The default of 30 works well for most cases. \li Max. Depth: Maximum tree depth. \li Sample Fraction: Fraction of randomly drawn samples used to train each tree. \li Non-WM Sampling Points: Number of randomly placed sampling points in each non-white-matter voxel. These sampling points are needed to train the classifier for non-fiber tissue. \li Fiber Sampling: The fibers are resampled equidistantly. This influences the number of white-matter sampling ponts. Defaul is 0.5*min. voxel size. \section MlbstUserManualTractography Tractography Parameters and options: \li Input DWI: Input diffusion-weighted image for tractography. Minimum number of gradient directions is 28, since 6th order spherical harmonics are used to spherically interpolate the raw signal. \li Seeds per Voxel: Number of seed points per voxel. If set to 1, the seed is defined as the voxel center. If > 1 the seeds are distributet randomly inside the voxel. \li Step Size: The algorithm proceeds along the streamline with a fixed stepsize (in voxels). Default is 0.5*minSpacing. \li Sampling Distance: Maximum distance of the sampling points from the current streamline position (in voxel). \li Num. Samples: Number of samples used to probe the local neighborhood. \li Min. Length: Shorter fibers are discarded. \li Max. Length: Longer fibers are discarded. \li Enable Gray Matter Seeding: Seeds are onyl placed inside of the gray matter. Needs tissue label image. \li Only Frontal Samples: Only use neighborhood samples in front of the current streamline position. \li Mask Image: Binary mask used to constrain the generated streamlines. Streamlines can not leave the mask area. \li Seed Image: Binary mask used to define the seed voxels. If no seed mask is specified, the whole image volume is seeded. \li Stop Image: Binary mask used to define stopping regions. Streamlines that enter the mask area are stopped immediately. \li Tissue Image: Tissue label image needed for gray matter seeding (WM=3, GM=1). Use e.g. MRtrix 5ttgen to generate such a label image. \li Demo Mode: Directly visualizes the streamline progression and the sampling points. Only use this for demonstration purposes, since it is very slow. \section MlbstUserManualReferences References [1] Neher, P.F., Côte, M-A., Houde, J-C., Descoteaux, M., Maier-Hein, K.H., 2017. Fiber tractography using machine learning, doi: https://doi.org/10.1101/104190. [2] Neher, P.F., Götz, M., Norajitra, T., Weber, C., Maier-Hein, K.H., 2015. A machine learning based approach to fiber tractography, in: Proceedings of International Society of Magnetic Resonance in Medicine. [3] Neher, P.F., Götz, M., Norajitra, T., Weber, C., Maier-Hein, K.H., 2015. A machine learning based approach to fiber tractography using classifier voting, in: Proceedings of Medical Image Computing and Computer-Assisted Intervention. Presented at the Medical Image Computing and Computer-Assisted Intervention. */ diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/QmitkStochasticTrackingViewUserManual.dox b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/QmitkStochasticTrackingViewUserManual.dox index f80cbc949c..ab8b295e4c 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/QmitkStochasticTrackingViewUserManual.dox +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/QmitkStochasticTrackingViewUserManual.dox @@ -1,31 +1,29 @@ /** \page org_mitk_views_stochasticfibertracking Probabilistic Streamline Tractography This view provides the user interface for the Stochastic Fibertracking algorithm, proposed by Ngo [1]. Available sections: - \ref QmitkStochasticTrackingUserManualInputData - \ref QmitkStochasticTrackingUserManualParameters - \ref QmitkStochasticTrackingUserManualReferences -\imageMacro{stochastictrackingview.png,"Stochastic Tracking View",10.12} - \section QmitkStochasticTrackingUserManualInputData Input Data Mandatory Input: \li One DWI Image image selected in the datamanager \li One or more ROIs selected in the datamanager For a successful execution of the stochastic tractography filter, a DWI input and a binary image defining the desired ROI are required. The ROI serves as the origin from where on the fibers are beeing tracked. To generate the seed ROI the segmentation view in the quantification perspective can be used or a binary image can be loaded. \section QmitkStochasticTrackingUserManualParameters Input Parameters \li Parameters such as max. tract length, number of seeds per voxel and likelihood cache size in MB can be controlled individually. \li After successfully setting necessary Input and Parameter, pressing the command button executes the algorithm. \section QmitkStochasticTrackingUserManualReferences References [1] Tri M. Ngo, Polina Golland, and Tri M. Ngo. A stochastic tractography system and applications, 2007 */ diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/QmitkStreamlineTrackingViewUserManual.dox b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/QmitkStreamlineTrackingViewUserManual.dox index 4322bfa9ab..1f9d80a938 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/QmitkStreamlineTrackingViewUserManual.dox +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/QmitkStreamlineTrackingViewUserManual.dox @@ -1,58 +1,58 @@ /** \page org_mitk_views_streamlinetracking Streamline Tractography - +This view enables streamline tractography on various input data. The corresponding command line application is named "MitkStreamlineTractography". Available sections: - \ref StrTrackUserManualInputData - \ref StrTrackUserManualInteractive - \ref StrTrackUserManualParameters - \ref StrTrackUserManualAdvancedParameters - \ref StrTrackUserManualReferences \section StrTrackUserManualInputData Input Data Input: \li One or multiple DTI images selected in the datamanager. \li One ODF image (e.g. obtained using MITK Q-ball reconstruction or MRtrix CSD). \li One peak image in MRtrix format (4D float image). Optional Input: \li Binary mask used to define the seed voxels. If no seed mask is specified, the whole image volume is seeded. \li Binary mask used to constrain the generated streamlines. Streamlines can not leave the mask area. \li Binary mask used to define stopping regions. Streamlines that enter the mask area are stopped immediately. \li Tissue label image needed for gray matter seeding (WM=3, GM=1). Use e.g. MRtrix 5ttgen to generate such a label image. \li FA/GFA image used to determine streamline termination. If no image is specified, the FA/GFA image is automatically calculated from the input image. If multiple tensor images are used as input, it is recommended to provide such an image since the FA maps calculated from the individual input tensor images can not provide a suitable termination criterion. \section StrTrackUserManualInteractive Interactive Tractography Interactive tractography enables the dynamic placement of spherical seed regions simply by clicking into the image. Parameters are the number of seed points and the radius of the spherical seed region. The seed points are randomly distributed inside the sphere around the selected position. By clicking and holding the left mouse button while moving the mouse around the image, the fiber connections originating from the selected region can be explored dynamically. \section StrTrackUserManualParameters Parameters \li Mode: Toggle between deterministic and probabilistic tractography. Peak tracking only supports deterministic mode. The probabilistic method simply samples the output direction from the discrete probability ditribution provided by the discretized ODF. \li Seeds per voxel: If set to 1, the seed is defined as the voxel center. If > 1 the seeds are distributet randomly inside the voxel. \li Max. num. fibers: Tractography is stopped after the desired number of fibers is reached, even before all seed points are processed. \li Cutoff: If the streamline reaches a position with an FA value or peak magnitude lower than the speciefied threshold, tracking is terminated. \section StrTrackUserManualAdvancedParameters Advanced Parameters \li Step Size: The algorithm proceeds along the streamline with a fixed stepsize. Default is 0.5*minSpacing. \li Angular threshold: Maximum angle between two successive steps (in degree). Default is 90° * step_size. For probabilistic tractography, candidate directions exceeding this threshold have probability 0, i.e. the respective ODF value is set to zero. The probabilities of the valid directions are normalized to sum to 1. \li Min. Tract Length: Shorter fibers are discarded. \li Num. Samples per Step: Only relevant for probabilistic tractography. At each streamline position, the ODF is sampled n times and the direction with the highest probability is used. Increasing this number approximates the result to the deterministic tractography. \li f and g values to balance between FACT [1] and TEND [2,3] tracking (only for tensor based tractography). For further information please refer to [2,3] \li Flip directions: Internally flips progression directions. This might be necessary depending on the input data. \li Neighborhood Samples: Number of neighborhood samples that are used to determine the next fiber progression direction [4]. \li Compress Fibers: Whole brain tractograms obtained with a small step size can contain billions of points. The tractograms can be compressed by removing points that do not really contribute to the fiber shape, such as many points on a straight line. An error threshold (in mm) can be defined to specify which points should be removed and which not. \li Enable Trilinear Interpolation: By default the image values are interpolated. Keep in mind that in the noninterpolated case, the TEND term is only applied once per voxel. In the interpolated case the TEND term is applied at each integration step which results in much higher curvatures and has to be compensated by an according choice of f and g. \li Output Probability Map: No streamline are generated. Instead, the tractography outputs a probability map that indicates the probability of a fiber to reach a voxel from the selected seed region. For this measure to be sensible, the number of seeds per voxel needs to be rather large. This option does not work during interactive tractography. \li Enable Gray Matter Seeding: Seeds are onyl placed inside of the gray matter. Needs tissue label image. \section StrTrackUserManualReferences References [1] Mori et al. Annals Neurology 1999\n [2] Weinstein et al. Proceedings of IEEE Visualization 1999\n [3] Lazar et al. Human Brain Mapping 2003\n */ diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/gibbstrackingview.png b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/gibbstrackingview.png deleted file mode 100644 index e30a8b2059..0000000000 Binary files a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/gibbstrackingview.png and /dev/null differ diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/gibbstrackingviewadvanced.png b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/gibbstrackingviewadvanced.png deleted file mode 100644 index fc41fe616d..0000000000 Binary files a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/gibbstrackingviewadvanced.png and /dev/null differ diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/stochastictrackingview.png b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/stochastictrackingview.png deleted file mode 100644 index 9375bcca21..0000000000 Binary files a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/stochastictrackingview.png and /dev/null differ diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/streamlinetrackingview.png b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/streamlinetrackingview.png deleted file mode 100644 index 2fa9335dcf..0000000000 Binary files a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/documentation/UserManual/streamlinetrackingview.png and /dev/null differ diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/plugin.xml b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/plugin.xml index 0e6d7507d5..ad1efe46fa 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/plugin.xml +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/plugin.xml @@ -1,108 +1,107 @@ - diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/src/internal/Perspectives/QmitkStreamlineTractographyPerspective.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/src/internal/Perspectives/QmitkStreamlineTractographyPerspective.cpp index 3cc35a996e..1fad90f86c 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/src/internal/Perspectives/QmitkStreamlineTractographyPerspective.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/src/internal/Perspectives/QmitkStreamlineTractographyPerspective.cpp @@ -1,49 +1,50 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkStreamlineTractographyPerspective.h" #include "berryIViewLayout.h" void QmitkStreamlineTractographyPerspective::CreateInitialLayout(berry::IPageLayout::Pointer layout) { ///////////////////////////////////////////////////// // all di-app perspectives should have the following: ///////////////////////////////////////////////////// QString editorArea = layout->GetEditorArea(); layout->AddStandaloneViewPlaceholder("org.mitk.views.viewnavigatorview", berry::IPageLayout::LEFT, 0.3f, editorArea, false); layout->AddStandaloneView("org.mitk.views.datamanager", false, berry::IPageLayout::LEFT, 0.3f, editorArea); layout->AddStandaloneView("org.mitk.views.controlvisualizationpropertiesview", false, berry::IPageLayout::BOTTOM, .15f, "org.mitk.views.datamanager"); berry::IFolderLayout::Pointer left = layout->CreateFolder("org.mbi.diffusionimaginginternal.leftcontrols", berry::IPageLayout::BOTTOM, 0.1f, "org.mitk.views.controlvisualizationpropertiesview"); layout->AddStandaloneViewPlaceholder("org.mitk.views.imagenavigator", berry::IPageLayout::BOTTOM, .7f, "org.mbi.diffusionimaginginternal.leftcontrols", false); ///////////////////////////////////////////// // here goes the perspective specific stuff ///////////////////////////////////////////// left->AddView("org.mitk.views.streamlinetracking"); left->AddView("org.mitk.views.segmentation"); + left->AddView("org.mitk.views.odfmaximaextraction"); } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/src/internal/QmitkStreamlineTrackingViewControls.ui b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/src/internal/QmitkStreamlineTrackingViewControls.ui index 4863782ae9..e6bbac6688 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/src/internal/QmitkStreamlineTrackingViewControls.ui +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.tractography/src/internal/QmitkStreamlineTrackingViewControls.ui @@ -1,784 +1,787 @@ QmitkStreamlineTrackingViewControls 0 0 406 950 0 0 QmitkTemplate 0 0 3 3 Please Select Input Data - Only track insida mask area. + Mask Image: Fibers that enter a region defined in this image will stop immediately. QComboBox::AdjustToMinimumContentsLength - If an image is selected, the stopping criterion is not calculated from the input image but instead the selected image is used. QComboBox::AdjustToMinimumContentsLength - - Binary seed ROI. If not specified, the whole image area is seeded. + Seed Image: + + Input Image. ODF, tensor and peak images are currently supported. + <html><head/><body><p><span style=" color:#ff0000;">mandatory</span></p></body></html> true - Seed points are only placed inside the mask image. + Seed points are only placed inside the mask image. If no seed mask is selected, the whole image is seeded. QComboBox::AdjustToMinimumContentsLength - - Only track insida mask area. + Stop Image: - Input DTI + Input Image. ODF, tensor and peak images are currently supported. Tensor/Peak/ODF Image: - Only track insida mask area. + FA/GFA Image: Tractography is only performed inside the mask image. Fibers that leave the mask image are stopped. QComboBox::AdjustToMinimumContentsLength - - Only track insida mask area. + Tissue Image: Tissue label image needed for gray matter seeding (WM=3, GM=1). Use e.g. MRtrix 5ttgen to generate such a label image. QComboBox::AdjustToMinimumContentsLength - false Start Tractography 0 0 Parameters Mode: Toggle between deterministic and probabilistic tractography. Some modes might not be available for all types of tractography. Deterministic Probabilistic Seeds per Voxel: Number of seed points placed in each voxel. 1 9999999 Max. num. fibers: Tractography is stopped after the desired number of fibers is reached, even before all seed points are processed. 999999999 Cutoff: Threshold on peak magnitude, FA, GFA, ... 5 1.000000000000000 0.100000000000000 0.100000000000000 Qt::Horizontal QSizePolicy::Fixed 200 0 Advanced Paramaters Step Size: Step size (in voxels) 2 0.010000000000000 10.000000000000000 0.100000000000000 0.500000000000000 Angular Threshold: Default: 90° * step_size -1 90 1 -1 Min. Tract Length: Shorter fibers are discarded. Minimum fiber length (in mm) 1 999.000000000000000 1.000000000000000 20.000000000000000 f parameter of tensor tractography. f=1 + g=0 means FACT (depending on the chosen interpolation). f=0 and g=1 means TEND (disable interpolation for this mode!). f: f=1 + g=0 means FACT (depending on the chosen interpolation). f=0 and g=1 means TEND (disable interpolation for this mode!). 2 1.000000000000000 0.100000000000000 1.000000000000000 g: f=1 + g=0 means FACT (depending on the chosen interpolation). f=0 and g=1 means TEND (disable interpolation for this mode!). 2 1.000000000000000 0.100000000000000 0.000000000000000 Flip directions: QFrame::NoFrame QFrame::Raised 0 0 0 0 Internally flips progression directions. This might be necessary depending on the input data. x Internally flips progression directions. This might be necessary depending on the input data. y Internally flips progression directions. This might be necessary depending on the input data. z Neighborhood Samples: Number of neighborhood samples that are used to determine the next fiber progression direction. 50 Resample fibers using the specified error constraint. Compress Fibers true Qt::StrongFocus Lossy fiber compression. Recommended for large tractograms. Maximum error in mm. 3 10.000000000000000 0.010000000000000 0.100000000000000 If false, nearest neighbor interpolation is used. Enable Trilinear Interpolation true Requires tissue image. Enable Gray Matter Seeding false Output probability map instead of tractogram. Output Probability Map false f parameter of tensor tractography. f=1 + g=0 means FACT (depending on the chosen interpolation). f=0 and g=1 means TEND (disable interpolation for this mode!). Num. Samples per Step: At each integration step the ODF is sampled n times and the most probable direction is used. The higher the number, the closer the behaviour will be to the deterministic ODF tractography. 1 9999999 10 Qt::Vertical QSizePolicy::Expanding 20 220 0 0 Interactive Tractography Radius: false Dynamically pick seed location by click into image. Enable Interactive Tractography Num. Seeds: Number of seed points normally distributed around selected position. 1 9999999 50 Seedpoints are normally distributed within a sphere centered at the selected position with the specified radius (in mm). 2 50.000000000000000 0.100000000000000 2.500000000000000 QmitkDataStorageComboBoxWithSelectNone QComboBox
QmitkDataStorageComboBoxWithSelectNone.h
diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/files.cmake b/Plugins/org.mitk.gui.qt.diffusionimaging/files.cmake index 22ed6835f7..43897cdacb 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/files.cmake +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/files.cmake @@ -1,59 +1,57 @@ set(SRC_CPP_FILES ) set(INTERNAL_CPP_FILES mitkPluginActivator.cpp QmitkDiffusionDicomImportView.cpp QmitkControlVisualizationPropertiesView.cpp - Perspectives/QmitkDiffusionImagingAppPerspective.cpp Perspectives/QmitkDiffusionDefaultPerspective.cpp ) set(UI_FILES src/internal/QmitkDiffusionDicomImportViewControls.ui src/internal/QmitkControlVisualizationPropertiesViewControls.ui ) set(MOC_H_FILES src/internal/mitkPluginActivator.h src/internal/QmitkDiffusionDicomImportView.h src/internal/QmitkControlVisualizationPropertiesView.h - - src/internal/Perspectives/QmitkDiffusionImagingAppPerspective.h + src/internal/Perspectives/QmitkDiffusionDefaultPerspective.h ) set(CACHED_RESOURCE_FILES # list of resource files which can be used by the plug-in # system without loading the plug-ins shared library, # for example the icon used in the menu and tabs for the # plug-in views in the workbench plugin.xml resources/dwiimport.png resources/vizControls.png resources/arrow.png resources/dwi.png resources/qball.png resources/tensor.png resources/tractogram.png resources/refresh.xpm ) set(QRC_FILES # uncomment the following line if you want to use Qt resources resources/QmitkDiffusionImaging.qrc #resources/QmitkTractbasedSpatialStatisticsView.qrc ) set(CPP_FILES ) foreach(file ${SRC_CPP_FILES}) set(CPP_FILES ${CPP_FILES} src/${file}) endforeach(file ${SRC_CPP_FILES}) foreach(file ${INTERNAL_CPP_FILES}) set(CPP_FILES ${CPP_FILES} src/internal/${file}) endforeach(file ${INTERNAL_CPP_FILES}) diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/plugin.xml b/Plugins/org.mitk.gui.qt.diffusionimaging/plugin.xml index ebb399a33b..71e41c480a 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/plugin.xml +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/plugin.xml @@ -1,53 +1,57 @@ - + + + + + Diffusion DICOM data import - + + icon="resources/dwiimport.png"> diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/Perspectives/QmitkDiffusionDefaultPerspective.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/Perspectives/QmitkDiffusionDefaultPerspective.cpp index cdc4e191fd..fae4d34556 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/Perspectives/QmitkDiffusionDefaultPerspective.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/Perspectives/QmitkDiffusionDefaultPerspective.cpp @@ -1,43 +1,45 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkDiffusionDefaultPerspective.h" #include "berryIViewLayout.h" void QmitkDiffusionDefaultPerspective::CreateInitialLayout(berry::IPageLayout::Pointer layout) { ///////////////////////////////////////////////////// // all di-app perspectives should have the following: ///////////////////////////////////////////////////// QString editorArea = layout->GetEditorArea(); - layout->AddStandaloneView("org.mitk.views.viewnavigatorview", false, berry::IPageLayout::LEFT, 0.25f, editorArea); + layout->AddStandaloneViewPlaceholder("org.mitk.views.viewnavigatorview", berry::IPageLayout::LEFT, 0.3f, editorArea, false); layout->AddStandaloneView("org.mitk.views.datamanager", false, berry::IPageLayout::LEFT, 0.3f, editorArea); layout->AddStandaloneView("org.mitk.views.controlvisualizationpropertiesview", false, berry::IPageLayout::BOTTOM, .15f, "org.mitk.views.datamanager"); berry::IFolderLayout::Pointer left = layout->CreateFolder("org.mbi.diffusionimaginginternal.leftcontrols", berry::IPageLayout::BOTTOM, 0.1f, "org.mitk.views.controlvisualizationpropertiesview"); layout->AddStandaloneViewPlaceholder("org.mitk.views.imagenavigator", berry::IPageLayout::BOTTOM, .7f, "org.mbi.diffusionimaginginternal.leftcontrols", false); ///////////////////////////////////////////// // here goes the perspective specific stuff ///////////////////////////////////////////// + left->AddView("org.mitk.views.diffusiondicomimport"); + } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/Perspectives/QmitkDiffusionImagingAppPerspective.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/Perspectives/QmitkDiffusionImagingAppPerspective.cpp deleted file mode 100644 index 012663d445..0000000000 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/Perspectives/QmitkDiffusionImagingAppPerspective.cpp +++ /dev/null @@ -1,46 +0,0 @@ -/*=================================================================== - -The Medical Imaging Interaction Toolkit (MITK) - -Copyright (c) German Cancer Research Center, -Division of Medical and Biological Informatics. -All rights reserved. - -This software is distributed WITHOUT ANY WARRANTY; without -even the implied warranty of MERCHANTABILITY or FITNESS FOR -A PARTICULAR PURPOSE. - -See LICENSE.txt or http://www.mitk.org for details. - -===================================================================*/ - -#include "QmitkDiffusionImagingAppPerspective.h" -#include "berryIViewLayout.h" - -void QmitkDiffusionImagingAppPerspective::CreateInitialLayout(berry::IPageLayout::Pointer layout) -{ - ///////////////////////////////////////////////////// - // all di-app perspectives should have the following: - ///////////////////////////////////////////////////// - - QString editorArea = layout->GetEditorArea(); - - layout->AddStandaloneViewPlaceholder("org.mitk.views.viewnavigatorview", berry::IPageLayout::LEFT, 0.3f, editorArea, false); - - layout->AddStandaloneView("org.mitk.views.datamanager", - false, berry::IPageLayout::LEFT, 0.3f, editorArea); - - layout->AddStandaloneView("org.mitk.views.controlvisualizationpropertiesview", - false, berry::IPageLayout::BOTTOM, .15f, "org.mitk.views.datamanager"); - - berry::IFolderLayout::Pointer left = - layout->CreateFolder("org.mbi.diffusionimaginginternal.leftcontrols", - berry::IPageLayout::BOTTOM, 0.1f, "org.mitk.views.controlvisualizationpropertiesview"); - - layout->AddStandaloneViewPlaceholder("org.mitk.views.imagenavigator", - berry::IPageLayout::BOTTOM, .7f, "org.mbi.diffusionimaginginternal.leftcontrols", false); - - ///////////////////////////////////////////// - // here goes the perspective specific stuff - ///////////////////////////////////////////// -} diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/Perspectives/QmitkDiffusionImagingAppPerspective.h b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/Perspectives/QmitkDiffusionImagingAppPerspective.h deleted file mode 100644 index b275511a82..0000000000 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/Perspectives/QmitkDiffusionImagingAppPerspective.h +++ /dev/null @@ -1,36 +0,0 @@ -/*=================================================================== - -The Medical Imaging Interaction Toolkit (MITK) - -Copyright (c) German Cancer Research Center, -Division of Medical and Biological Informatics. -All rights reserved. - -This software is distributed WITHOUT ANY WARRANTY; without -even the implied warranty of MERCHANTABILITY or FITNESS FOR -A PARTICULAR PURPOSE. - -See LICENSE.txt or http://www.mitk.org for details. - -===================================================================*/ - - -#ifndef QMITKDIFFUSIONIMAGINGAPPPERSPECTIVE_H_ -#define QMITKDIFFUSIONIMAGINGAPPPERSPECTIVE_H_ - -#include - -class QmitkDiffusionImagingAppPerspective : public QObject, public berry::IPerspectiveFactory -{ - Q_OBJECT - Q_INTERFACES(berry::IPerspectiveFactory) - -public: - - QmitkDiffusionImagingAppPerspective() {} - ~QmitkDiffusionImagingAppPerspective() {} - - void CreateInitialLayout(berry::IPageLayout::Pointer layout) override; -}; - -#endif /* QMITKDIFFUSIONIMAGINGAPPPERSPECTIVE_H_ */ diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/mitkPluginActivator.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/mitkPluginActivator.cpp index 8961a22c88..2d17833eed 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/mitkPluginActivator.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/mitkPluginActivator.cpp @@ -1,66 +1,64 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPluginActivator.h" -#include "src/internal/Perspectives/QmitkDiffusionImagingAppPerspective.h" #include "src/internal/Perspectives/QmitkDiffusionDefaultPerspective.h" #include "src/internal/QmitkDiffusionDicomImportView.h" #include "src/internal/QmitkControlVisualizationPropertiesView.h" #include "QmitkNodeDescriptorManager.h" #include "mitkNodePredicateDataType.h" #include "mitkNodePredicateProperty.h" #include "mitkNodePredicateIsDWI.h" #include namespace mitk { void PluginActivator::start(ctkPluginContext* context) { - BERRY_REGISTER_EXTENSION_CLASS(QmitkDiffusionImagingAppPerspective, context) BERRY_REGISTER_EXTENSION_CLASS(QmitkDiffusionDefaultPerspective, context) BERRY_REGISTER_EXTENSION_CLASS(QmitkDiffusionDicomImport, context) BERRY_REGISTER_EXTENSION_CLASS(QmitkControlVisualizationPropertiesView, context) // Q_UNUSED(context) QmitkNodeDescriptorManager* manager = QmitkNodeDescriptorManager::GetInstance(); mitk::NodePredicateIsDWI::Pointer isDiffusionImage = mitk::NodePredicateIsDWI::New(); QmitkNodeDescriptor* desc = new QmitkNodeDescriptor(QObject::tr("DiffusionImage"), QString(":/QmitkDiffusionImaging/QBallData24.png"), isDiffusionImage, manager); manager->AddDescriptor(desc); mitk::NodePredicateDataType::Pointer isTensorImage = mitk::NodePredicateDataType::New("TensorImage"); manager->AddDescriptor(new QmitkNodeDescriptor(QObject::tr("TensorImage"), QString(":/QmitkDiffusionImaging/tensor.png"), isTensorImage, manager)); mitk::NodePredicateDataType::Pointer isQBallImage = mitk::NodePredicateDataType::New("QBallImage"); manager->AddDescriptor(new QmitkNodeDescriptor(QObject::tr("QBallImage"), QString(":/QmitkDiffusionImaging/qball.png"), isQBallImage, manager)); mitk::NodePredicateDataType::Pointer isFiberBundle = mitk::NodePredicateDataType::New("FiberBundle"); manager->AddDescriptor(new QmitkNodeDescriptor(QObject::tr("FiberBundle"), QString(":/QmitkDiffusionImaging/tractogram.png"), isFiberBundle, manager)); mitk::NodePredicateDataType::Pointer isConnectomicsNetwork = mitk::NodePredicateDataType::New("ConnectomicsNetwork"); manager->AddDescriptor(new QmitkNodeDescriptor(QObject::tr("ConnectomicsNetwork"), QString(":/QmitkDiffusionImaging/ConnectomicsNetwork.png"), isConnectomicsNetwork, manager)); } void PluginActivator::stop(ctkPluginContext* context) { Q_UNUSED(context) } } diff --git a/Plugins/org.mitk.gui.qt.diffusionimagingapp/src/QmitkDiffusionImagingAppWorkbenchAdvisor.cpp b/Plugins/org.mitk.gui.qt.diffusionimagingapp/src/QmitkDiffusionImagingAppWorkbenchAdvisor.cpp index c25019ea7a..4365dd9f82 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimagingapp/src/QmitkDiffusionImagingAppWorkbenchAdvisor.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimagingapp/src/QmitkDiffusionImagingAppWorkbenchAdvisor.cpp @@ -1,84 +1,74 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkDiffusionImagingAppWorkbenchAdvisor.h" #include "internal/QmitkDiffusionApplicationPlugin.h" #include #include #include #include #include #include const QString QmitkDiffusionImagingAppWorkbenchAdvisor::WELCOME_PERSPECTIVE_ID = "org.mitk.diffusionimagingapp.perspectives.welcome"; void QmitkDiffusionImagingAppWorkbenchAdvisor::Initialize(berry::IWorkbenchConfigurer::Pointer configurer) { berry::QtWorkbenchAdvisor::Initialize(configurer); configurer->SetSaveAndRestore(true); } berry::WorkbenchWindowAdvisor* QmitkDiffusionImagingAppWorkbenchAdvisor::CreateWorkbenchWindowAdvisor( berry::IWorkbenchWindowConfigurer::Pointer configurer) { QList perspExcludeList; perspExcludeList.push_back( "org.blueberry.uitest.util.EmptyPerspective" ); perspExcludeList.push_back( "org.blueberry.uitest.util.EmptyPerspective2" ); -// perspExcludeList.push_back( std::string("org.mitk.coreapp.defaultperspective") ); - //perspExcludeList.push_back( std::string("org.mitk.extapp.defaultperspective") ); - perspExcludeList.push_back( "org.mitk.perspectives.publicdiffusionimaging" ); - perspExcludeList.push_back("org.mitk.perspectives.diffusionimaginginternal" ); - // Exclude the help perspective from org.blueberry.ui.qt.help from - // the normal perspective list. - // The perspective gets a dedicated menu entry in the help menu perspExcludeList.push_back("org.blueberry.perspectives.help"); QList viewExcludeList; viewExcludeList.push_back( "org.mitk.views.controlvisualizationpropertiesview" ); -// viewExcludeList.push_back( "org.mitk.views.imagenavigator" ); - viewExcludeList.push_back( "org.mitk.views.modules" ); - viewExcludeList.push_back( "org.blueberry.ui.internal.introview" ); configurer->SetInitialSize(QPoint(1000,770)); QmitkExtWorkbenchWindowAdvisor* advisor = new QmitkExtWorkbenchWindowAdvisor(this, configurer); advisor->ShowViewMenuItem(true); advisor->ShowNewWindowMenuItem(true); advisor->ShowClosePerspectiveMenuItem(true); advisor->SetPerspectiveExcludeList(perspExcludeList); advisor->SetViewExcludeList(viewExcludeList); advisor->ShowViewToolbar(false); advisor->ShowPerspectiveToolbar(true); advisor->ShowVersionInfo(true); advisor->ShowMitkVersionInfo(true); advisor->ShowMemoryIndicator(false); advisor->SetProductName("MITK Diffusion"); advisor->SetWindowIcon(":/org.mitk.gui.qt.diffusionimagingapp/app-icon.png"); return advisor; } QString QmitkDiffusionImagingAppWorkbenchAdvisor::GetInitialWindowPerspectiveId() { return WELCOME_PERSPECTIVE_ID; }