diff --git a/Modules/PlanarFigure/Interactions/mitkPlanarFigureInteractor.cpp b/Modules/PlanarFigure/Interactions/mitkPlanarFigureInteractor.cpp index 5bf6b3cf8e..97f8cbd795 100644 --- a/Modules/PlanarFigure/Interactions/mitkPlanarFigureInteractor.cpp +++ b/Modules/PlanarFigure/Interactions/mitkPlanarFigureInteractor.cpp @@ -1,950 +1,981 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #define PLANARFIGUREINTERACTOR_DBG MITK_DEBUG("PlanarFigureInteractor") << __LINE__ << ": " #include "mitkPlanarFigureInteractor.h" #include "mitkPlanarFigure.h" #include "mitkPlanarPolygon.h" #include "mitkPlanarCircle.h" #include "mitkInteractionPositionEvent.h" #include "mitkInternalEvent.h" #include "mitkBaseRenderer.h" #include "mitkRenderingManager.h" #include "mitkPlaneGeometry.h" +#include "mitkAbstractTransformGeometry.h" //how precise must the user pick the point //default value mitk::PlanarFigureInteractor::PlanarFigureInteractor() : DataInteractor() , m_Precision( 6.5 ) , m_MinimumPointDistance( 25.0 ) , m_IsHovering( false ) , m_LastPointWasValid( false ) { } mitk::PlanarFigureInteractor::~PlanarFigureInteractor() { } void mitk::PlanarFigureInteractor::ConnectActionsAndFunctions() { CONNECT_CONDITION("figure_is_on_current_slice", CheckFigureOnRenderingGeometry); CONNECT_CONDITION("figure_is_placed", CheckFigurePlaced); CONNECT_CONDITION("minimal_figure_is_finished", CheckMinimalFigureFinished); CONNECT_CONDITION("hovering_above_figure", CheckFigureHovering); CONNECT_CONDITION("hovering_above_point", CheckControlPointHovering); CONNECT_CONDITION("figure_is_selected", CheckSelection); CONNECT_CONDITION("point_is_valid", CheckPointValidity); CONNECT_CONDITION("figure_is_finished", CheckFigureFinished); CONNECT_CONDITION("reset_on_point_select_needed", CheckResetOnPointSelect); CONNECT_CONDITION("points_can_be_added_or_removed", CheckFigureIsExtendable); CONNECT_FUNCTION( "finalize_figure", FinalizeFigure); CONNECT_FUNCTION( "hide_preview_point", HidePreviewPoint ) CONNECT_FUNCTION( "hide_control_points", HideControlPoints ) CONNECT_FUNCTION( "set_preview_point_position", SetPreviewPointPosition ) CONNECT_FUNCTION( "move_current_point", MoveCurrentPoint); CONNECT_FUNCTION( "deselect_point", DeselectPoint); CONNECT_FUNCTION( "add_new_point", AddPoint); CONNECT_FUNCTION( "add_initial_point", AddInitialPoint); CONNECT_FUNCTION( "remove_selected_point", RemoveSelectedPoint); CONNECT_FUNCTION( "request_context_menu", RequestContextMenu); CONNECT_FUNCTION( "select_figure", SelectFigure ); CONNECT_FUNCTION( "select_point", SelectPoint ); CONNECT_FUNCTION( "end_interaction", EndInteraction ); CONNECT_FUNCTION( "start_hovering", StartHovering ) CONNECT_FUNCTION( "end_hovering", EndHovering ); } bool mitk::PlanarFigureInteractor::CheckFigurePlaced( const InteractionEvent* /*interactionEvent*/ ) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); bool isFigureFinished = false; planarFigure->GetPropertyList()->GetBoolProperty( "initiallyplaced", isFigureFinished ); return planarFigure->IsPlaced() && isFigureFinished; } bool mitk::PlanarFigureInteractor::MoveCurrentPoint(StateMachineAction*, InteractionEvent* interactionEvent) { mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); if ( positionEvent == NULL ) return false; bool isEditable = true; GetDataNode()->GetBoolProperty( "planarfigure.iseditable", isEditable ); mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::PlaneGeometry *planarFigureGeometry = dynamic_cast< PlaneGeometry * >( planarFigure->GetGeometry( 0 ) ); + mitk::AbstractTransformGeometry *abstractTransformGeometry = + dynamic_cast< AbstractTransformGeometry * >( planarFigure->GetGeometry( 0 ) ); + + if ( abstractTransformGeometry != NULL ) + return false; // Extract point in 2D world coordinates (relative to PlaneGeometry of // PlanarFigure) Point2D point2D; if ( !this->TransformPositionEventToPoint2D( positionEvent, planarFigureGeometry, point2D ) || !isEditable ) { return false; } planarFigure->InvokeEvent( StartInteractionPlanarFigureEvent() ); // check if the control points shall be hidden during interaction bool hidecontrolpointsduringinteraction = false; GetDataNode()->GetBoolProperty( "planarfigure.hidecontrolpointsduringinteraction", hidecontrolpointsduringinteraction ); // hide the control points if necessary //interactionEvent->GetSender()->GetDataStorage()->BlockNodeModifiedEvents( true ); GetDataNode()->SetBoolProperty( "planarfigure.drawcontrolpoints", !hidecontrolpointsduringinteraction ); //interactionEvent->GetSender()->GetDataStorage()->BlockNodeModifiedEvents( false ); // Move current control point to this point planarFigure->SetCurrentControlPoint( point2D ); // Re-evaluate features planarFigure->EvaluateFeatures(); // Update rendered scene interactionEvent->GetSender()->GetRenderingManager()->RequestUpdateAll(); return true; } bool mitk::PlanarFigureInteractor::FinalizeFigure( StateMachineAction*, InteractionEvent* interactionEvent ) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); planarFigure->Modified(); planarFigure->DeselectControlPoint(); planarFigure->RemoveLastControlPoint(); planarFigure->SetProperty( "initiallyplaced", mitk::BoolProperty::New( true ) ); GetDataNode()->SetBoolProperty( "planarfigure.drawcontrolpoints", true ); GetDataNode()->Modified(); planarFigure->InvokeEvent( EndPlacementPlanarFigureEvent() ); planarFigure->InvokeEvent( EndInteractionPlanarFigureEvent() ); interactionEvent->GetSender()->GetRenderingManager()->RequestUpdateAll(); return false; } bool mitk::PlanarFigureInteractor::EndInteraction( StateMachineAction*, InteractionEvent* interactionEvent ) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); GetDataNode()->SetBoolProperty( "planarfigure.drawcontrolpoints", true ); planarFigure->Modified(); planarFigure->InvokeEvent( EndInteractionPlanarFigureEvent() ); interactionEvent->GetSender()->GetRenderingManager()->RequestUpdateAll(); return false; } bool mitk::PlanarFigureInteractor::EndHovering( StateMachineAction*, InteractionEvent* interactionEvent ) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); planarFigure->ResetPreviewContolPoint(); // Invoke end-hover event once the mouse is exiting the figure area m_IsHovering = false; planarFigure->InvokeEvent( EndHoverPlanarFigureEvent() ); // Set bool property to indicate that planar figure is no longer in "hovering" mode GetDataNode()->SetBoolProperty( "planarfigure.ishovering", false ); interactionEvent->GetSender()->GetRenderingManager()->RequestUpdateAll(); return false; } bool mitk::PlanarFigureInteractor::CheckMinimalFigureFinished( const InteractionEvent* /*interactionEvent*/ ) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); return ( planarFigure->GetNumberOfControlPoints() >= planarFigure->GetMinimumNumberOfControlPoints() ); } bool mitk::PlanarFigureInteractor::CheckFigureFinished( const InteractionEvent* /*interactionEvent*/ ) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); return ( planarFigure->GetNumberOfControlPoints() >= planarFigure->GetMaximumNumberOfControlPoints() ); } bool mitk::PlanarFigureInteractor::CheckFigureIsExtendable( const InteractionEvent* /*interactionEvent*/ ) { bool isExtendable = false; GetDataNode()->GetBoolProperty("planarfigure.isextendable", isExtendable); return isExtendable; } bool mitk::PlanarFigureInteractor::DeselectPoint(StateMachineAction*, InteractionEvent* /*interactionEvent*/) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); bool wasSelected = planarFigure->DeselectControlPoint(); if ( wasSelected ) { // Issue event so that listeners may update themselves planarFigure->Modified(); planarFigure->InvokeEvent( EndInteractionPlanarFigureEvent() ); GetDataNode()->SetBoolProperty( "planarfigure.drawcontrolpoints", true ); // GetDataNode()->SetBoolProperty( "planarfigure.ishovering", false ); GetDataNode()->Modified(); } return true; } bool mitk::PlanarFigureInteractor::AddPoint(StateMachineAction*, InteractionEvent* interactionEvent) { mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); if ( positionEvent == NULL ) return false; bool selected = false; bool isEditable = true; GetDataNode()->GetBoolProperty("selected", selected); GetDataNode()->GetBoolProperty( "planarfigure.iseditable", isEditable ); if ( !selected || !isEditable ) { return false; } mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::PlaneGeometry *planarFigureGeometry = dynamic_cast< PlaneGeometry * >( planarFigure->GetGeometry( 0 ) ); + mitk::AbstractTransformGeometry *abstractTransformGeometry = + dynamic_cast< AbstractTransformGeometry * >( planarFigure->GetGeometry( 0 ) ); + + if ( abstractTransformGeometry != NULL) + return false; // If the planarFigure already has reached the maximum number if ( planarFigure->GetNumberOfControlPoints() >= planarFigure->GetMaximumNumberOfControlPoints() ) { return false; } // Extract point in 2D world coordinates (relative to PlaneGeometry of // PlanarFigure) Point2D point2D, projectedPoint; if ( !this->TransformPositionEventToPoint2D( positionEvent, planarFigureGeometry, point2D ) ) { return false; } // TODO: check segment of polyline we clicked in int nextIndex = -1; // We only need to check which position to insert the control point // when interacting with a PlanarPolygon. For all other types // new control points will always be appended /* * Added check for "initiallyplaced" due to bug 13097: * * There are two possible cases in which a point can be inserted into a PlanarPolygon: * * 1. The figure is currently drawn -> the point will be appended at the end of the figure * 2. A point is inserted at a userdefined position after the initial placement of the figure is finished * * In the second case we need to determine the proper insertion index. In the first case the index always has * to be -1 so that the point is appended to the end. * * These changes are necessary because of a mac os x specific issue: If a users draws a PlanarPolygon then the * next point to be added moves according to the mouse position. If then the user left clicks in order to add * a point one would assume the last move position is identical to the left click position. This is actually the * case for windows and linux but somehow NOT for mac. Because of the insertion logic of a new point in the * PlanarFigure then for mac the wrong current selected point is determined. * * With this check here this problem can be avoided. However a redesign of the insertion logic should be considered */ bool isFigureFinished = false; planarFigure->GetPropertyList()->GetBoolProperty( "initiallyplaced", isFigureFinished ); mitk::BaseRenderer *renderer = interactionEvent->GetSender(); const PlaneGeometry *projectionPlane = renderer->GetCurrentWorldPlaneGeometry(); if ( dynamic_cast( planarFigure ) && isFigureFinished) { nextIndex = this->IsPositionOverFigure( positionEvent, planarFigure, planarFigureGeometry, projectionPlane, renderer->GetDisplayGeometry(), projectedPoint ); } // Add point as new control point renderer->GetDisplayGeometry()->DisplayToWorld( projectedPoint, projectedPoint ); if ( planarFigure->IsPreviewControlPointVisible() ) { point2D = planarFigure->GetPreviewControlPoint(); } planarFigure->AddControlPoint( point2D, nextIndex ); if ( planarFigure->IsPreviewControlPointVisible() ) { planarFigure->SelectControlPoint( nextIndex ); planarFigure->ResetPreviewContolPoint(); } // Re-evaluate features planarFigure->EvaluateFeatures(); //this->LogPrintPlanarFigureQuantities( planarFigure ); // Update rendered scene renderer->GetRenderingManager()->RequestUpdateAll(); return true; } bool mitk::PlanarFigureInteractor::AddInitialPoint(StateMachineAction*, InteractionEvent* interactionEvent) { mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); if ( positionEvent == NULL ) return false; mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::BaseRenderer *renderer = interactionEvent->GetSender(); mitk::PlaneGeometry *planarFigureGeometry = dynamic_cast< PlaneGeometry * >( planarFigure->GetGeometry( 0 ) ); + mitk::AbstractTransformGeometry *abstractTransformGeometry = dynamic_cast< AbstractTransformGeometry * >( planarFigure->GetGeometry( 0 ) ); // Invoke event to notify listeners that placement of this PF starts now planarFigure->InvokeEvent( StartPlacementPlanarFigureEvent() ); // Use PlaneGeometry of the renderer clicked on for this PlanarFigure mitk::PlaneGeometry *planeGeometry = const_cast< mitk::PlaneGeometry * >( dynamic_cast< const mitk::PlaneGeometry * >( renderer->GetSliceNavigationController()->GetCurrentPlaneGeometry() ) ); - if ( planeGeometry != NULL ) + if ( planeGeometry != NULL && abstractTransformGeometry == NULL) { planarFigureGeometry = planeGeometry; planarFigure->SetPlaneGeometry( planeGeometry ); } else { return false; } // Extract point in 2D world coordinates (relative to PlaneGeometry of // PlanarFigure) Point2D point2D; if ( !this->TransformPositionEventToPoint2D( positionEvent, planarFigureGeometry, point2D ) ) { return false; } // Place PlanarFigure at this point planarFigure->PlaceFigure( point2D ); // Re-evaluate features planarFigure->EvaluateFeatures(); //this->LogPrintPlanarFigureQuantities( planarFigure ); // Set a bool property indicating that the figure has been placed in // the current RenderWindow. This is required so that the same render // window can be re-aligned to the PlaneGeometry of the PlanarFigure later // on in an application. GetDataNode()->SetBoolProperty( "PlanarFigureInitializedWindow", true, renderer ); // Update rendered scene renderer->GetRenderingManager()->RequestUpdateAll(); return true; } bool mitk::PlanarFigureInteractor::StartHovering( StateMachineAction*, InteractionEvent* interactionEvent ) { mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); if ( positionEvent == NULL ) return false; mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::BaseRenderer *renderer = interactionEvent->GetSender(); if ( !m_IsHovering ) { // Invoke hover event once when the mouse is entering the figure area m_IsHovering = true; planarFigure->InvokeEvent( StartHoverPlanarFigureEvent() ); // Set bool property to indicate that planar figure is currently in "hovering" mode GetDataNode()->SetBoolProperty( "planarfigure.ishovering", true ); renderer->GetRenderingManager()->RequestUpdateAll(); } return true; } bool mitk::PlanarFigureInteractor::SetPreviewPointPosition( StateMachineAction*, InteractionEvent* interactionEvent ) { mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); if ( positionEvent == NULL ) return false; mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::BaseRenderer *renderer = interactionEvent->GetSender(); planarFigure->DeselectControlPoint(); mitk::Point2D pointProjectedOntoLine = positionEvent->GetPointerPositionOnScreen(); bool selected(false); bool isExtendable(false); bool isEditable(true); GetDataNode()->GetBoolProperty("selected", selected); GetDataNode()->GetBoolProperty("planarfigure.isextendable", isExtendable); GetDataNode()->GetBoolProperty("planarfigure.iseditable", isEditable ); if ( selected && isExtendable && isEditable ) { renderer->GetDisplayGeometry()->DisplayToWorld( pointProjectedOntoLine, pointProjectedOntoLine ); planarFigure->SetPreviewControlPoint( pointProjectedOntoLine ); } renderer->GetRenderingManager()->RequestUpdateAll(); return true; } bool mitk::PlanarFigureInteractor::HideControlPoints( StateMachineAction*, InteractionEvent* /*interactionEvent*/ ) { GetDataNode()->SetBoolProperty( "planarfigure.drawcontrolpoints", false ); return true; } bool mitk::PlanarFigureInteractor::HidePreviewPoint( StateMachineAction*, InteractionEvent* interactionEvent ) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); planarFigure->ResetPreviewContolPoint(); mitk::BaseRenderer *renderer = interactionEvent->GetSender(); renderer->GetRenderingManager()->RequestUpdateAll(); return true; } bool mitk::PlanarFigureInteractor::CheckFigureHovering( const InteractionEvent* interactionEvent ) { const mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); if ( positionEvent == NULL ) return false; mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::BaseRenderer *renderer = interactionEvent->GetSender(); mitk::PlaneGeometry *planarFigureGeometry = dynamic_cast< PlaneGeometry * >( planarFigure->GetGeometry( 0 ) ); + mitk::AbstractTransformGeometry *abstractTransformGeometry = dynamic_cast< AbstractTransformGeometry * >( planarFigure->GetGeometry( 0 ) ); const PlaneGeometry *projectionPlane = renderer->GetCurrentWorldPlaneGeometry(); + if ( abstractTransformGeometry != NULL ) + return false; + mitk::Point2D pointProjectedOntoLine; int previousControlPoint = this->IsPositionOverFigure( positionEvent, planarFigure, planarFigureGeometry, projectionPlane, renderer->GetDisplayGeometry(), pointProjectedOntoLine ); bool isHovering = (previousControlPoint != -1); if ( isHovering ) { return true; } else { return false; } return false; } bool mitk::PlanarFigureInteractor::CheckControlPointHovering( const InteractionEvent* interactionEvent ) { const mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); if ( positionEvent == NULL ) return false; mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::BaseRenderer *renderer = interactionEvent->GetSender(); mitk::PlaneGeometry *planarFigureGeometry = dynamic_cast< PlaneGeometry * >( planarFigure->GetGeometry( 0 ) ); + mitk::AbstractTransformGeometry *abstractTransformGeometry = dynamic_cast< AbstractTransformGeometry * >( planarFigure->GetGeometry( 0 ) ); const PlaneGeometry *projectionPlane = renderer->GetCurrentWorldPlaneGeometry(); + if (abstractTransformGeometry != NULL) + return false; int pointIndex = -1; pointIndex = mitk::PlanarFigureInteractor::IsPositionInsideMarker( positionEvent, planarFigure, planarFigureGeometry, projectionPlane, renderer->GetDisplayGeometry() ); if ( pointIndex >= 0 ) { return true; } else { return false; } } bool mitk::PlanarFigureInteractor::CheckSelection( const InteractionEvent* /*interactionEvent*/ ) { bool selected = false; GetDataNode()->GetBoolProperty("selected", selected); return selected; } bool mitk::PlanarFigureInteractor::SelectFigure( StateMachineAction*, InteractionEvent* /*interactionEvent*/ ) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); planarFigure->InvokeEvent( SelectPlanarFigureEvent() ); return false; } bool mitk::PlanarFigureInteractor::SelectPoint( StateMachineAction*, InteractionEvent* interactionEvent ) { mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); if ( positionEvent == NULL ) return false; mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::BaseRenderer *renderer = interactionEvent->GetSender(); mitk::PlaneGeometry *planarFigureGeometry = dynamic_cast< PlaneGeometry * >( planarFigure->GetGeometry( 0 ) ); + mitk::AbstractTransformGeometry *abstractTransformGeometry = dynamic_cast< AbstractTransformGeometry * >( planarFigure->GetGeometry( 0 ) ); const PlaneGeometry *projectionPlane = renderer->GetCurrentWorldPlaneGeometry(); + if (abstractTransformGeometry != NULL) + return false; int pointIndex = -1; pointIndex = mitk::PlanarFigureInteractor::IsPositionInsideMarker( positionEvent, planarFigure, planarFigureGeometry, projectionPlane, renderer->GetDisplayGeometry() ); if ( pointIndex >= 0 ) { // If mouse is above control point, mark it as selected planarFigure->SelectControlPoint( pointIndex ); } else { planarFigure->DeselectControlPoint(); } return false; } bool mitk::PlanarFigureInteractor::CheckPointValidity( const InteractionEvent* interactionEvent ) { // Check if the distance of the current point to the previously set point in display coordinates // is sufficient (if a previous point exists) // Extract display position const mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); if ( positionEvent == NULL ) return false; mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); m_LastPointWasValid = IsMousePositionAcceptableAsNewControlPoint( positionEvent, planarFigure ); return m_LastPointWasValid; } bool mitk::PlanarFigureInteractor::RemoveSelectedPoint(StateMachineAction*, InteractionEvent* interactionEvent) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::BaseRenderer *renderer = interactionEvent->GetSender(); int selectedControlPoint = planarFigure->GetSelectedControlPoint(); planarFigure->RemoveControlPoint( selectedControlPoint ); // Re-evaluate features planarFigure->EvaluateFeatures(); planarFigure->Modified(); GetDataNode()->SetBoolProperty( "planarfigure.drawcontrolpoints", true ); planarFigure->InvokeEvent( EndInteractionPlanarFigureEvent() ); renderer->GetRenderingManager()->RequestUpdateAll(); HandleEvent( mitk::InternalEvent::New( renderer, this, "Dummy-Event" ), GetDataNode() ); return true; } bool mitk::PlanarFigureInteractor::RequestContextMenu(StateMachineAction*, InteractionEvent* /*interactionEvent*/) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); bool selected = false; GetDataNode()->GetBoolProperty("selected", selected); // no need to invoke this if the figure is already selected if ( !selected ) { planarFigure->InvokeEvent( SelectPlanarFigureEvent() ); } planarFigure->InvokeEvent( ContextMenuPlanarFigureEvent() ); return true; } bool mitk::PlanarFigureInteractor::CheckResetOnPointSelect( const InteractionEvent* /*interactionEvent*/ ) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); // Reset the PlanarFigure if required return planarFigure->ResetOnPointSelect(); } bool mitk::PlanarFigureInteractor::CheckFigureOnRenderingGeometry( const InteractionEvent* interactionEvent ) { const mitk::InteractionPositionEvent* posEvent = dynamic_cast(interactionEvent); if ( posEvent == NULL ) return false; mitk::Point3D worldPoint3D = posEvent->GetPositionInWorld(); mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::PlaneGeometry *planarFigurePlaneGeometry = dynamic_cast< PlaneGeometry * >( planarFigure->GetGeometry( 0 ) ); + mitk::AbstractTransformGeometry *abstractTransformGeometry = dynamic_cast< AbstractTransformGeometry * >( planarFigure->GetGeometry( 0 ) ); + + if ( abstractTransformGeometry != NULL) + return false; double planeThickness = planarFigurePlaneGeometry->GetExtentInMM( 2 ); if ( planarFigurePlaneGeometry->Distance( worldPoint3D ) > planeThickness ) { // don't react, when interaction is too far away return false; } return true; } void mitk::PlanarFigureInteractor::SetPrecision( mitk::ScalarType precision ) { m_Precision = precision; } void mitk::PlanarFigureInteractor::SetMinimumPointDistance( ScalarType minimumDistance ) { m_MinimumPointDistance = minimumDistance; } bool mitk::PlanarFigureInteractor::TransformPositionEventToPoint2D( const InteractionPositionEvent *positionEvent, const PlaneGeometry *planarFigureGeometry, Point2D &point2D ) { mitk::Point3D worldPoint3D = positionEvent->GetPositionInWorld(); // TODO: proper handling of distance tolerance if ( planarFigureGeometry->Distance( worldPoint3D ) > 0.1 ) { return false; } // Project point onto plane of this PlanarFigure planarFigureGeometry->Map( worldPoint3D, point2D ); return true; } bool mitk::PlanarFigureInteractor::TransformObjectToDisplay( const mitk::Point2D &point2D, mitk::Point2D &displayPoint, const mitk::PlaneGeometry *objectGeometry, const mitk::PlaneGeometry *rendererGeometry, const mitk::DisplayGeometry *displayGeometry ) const { mitk::Point3D point3D; // Map circle point from local 2D geometry into 3D world space objectGeometry->Map( point2D, point3D ); double planeThickness = objectGeometry->GetExtentInMM( 2 ); // TODO: proper handling of distance tolerance if ( rendererGeometry->Distance( point3D ) < planeThickness / 3.0 ) { // Project 3D world point onto display geometry rendererGeometry->Map( point3D, displayPoint ); displayGeometry->WorldToDisplay( displayPoint, displayPoint ); return true; } return false; } bool mitk::PlanarFigureInteractor::IsPointNearLine( const mitk::Point2D& point, const mitk::Point2D& startPoint, const mitk::Point2D& endPoint, mitk::Point2D& projectedPoint ) const { mitk::Vector2D n1 = endPoint - startPoint; n1.Normalize(); // Determine dot products between line vector and startpoint-point / endpoint-point vectors double l1 = n1 * (point - startPoint); double l2 = -n1 * (point - endPoint); // Determine projection of specified point onto line defined by start / end point mitk::Point2D crossPoint = startPoint + n1 * l1; projectedPoint = crossPoint; // Point is inside encompassing rectangle IF // - its distance to its projected point is small enough // - it is not further outside of the line than the defined tolerance if (((crossPoint.SquaredEuclideanDistanceTo(point) < 20.0) && (l1 > 0.0) && (l2 > 0.0)) || endPoint.SquaredEuclideanDistanceTo(point) < 20.0 || startPoint.SquaredEuclideanDistanceTo(point) < 20.0) { return true; } return false; } int mitk::PlanarFigureInteractor::IsPositionOverFigure( const InteractionPositionEvent *positionEvent, PlanarFigure *planarFigure, const PlaneGeometry *planarFigureGeometry, const PlaneGeometry *rendererGeometry, const DisplayGeometry *displayGeometry, Point2D& pointProjectedOntoLine ) const { mitk::Point2D displayPosition = positionEvent->GetPointerPositionOnScreen(); // Iterate over all polylines of planar figure, and check if // any one is close to the current display position typedef mitk::PlanarFigure::PolyLineType VertexContainerType; Point2D polyLinePoint; Point2D firstPolyLinePoint; Point2D previousPolyLinePoint; for ( unsigned short loop=0; loopGetPolyLinesSize(); ++loop ) { const VertexContainerType polyLine = planarFigure->GetPolyLine( loop ); bool firstPoint( true ); for ( VertexContainerType::const_iterator it = polyLine.begin(); it != polyLine.end(); ++it ) { // Get plane coordinates of this point of polyline (if possible) if ( !this->TransformObjectToDisplay( *it, polyLinePoint, planarFigureGeometry, rendererGeometry, displayGeometry ) ) { break; // Poly line invalid (not on current 2D plane) --> skip it } if ( firstPoint ) { firstPolyLinePoint = polyLinePoint; firstPoint = false; } else if ( this->IsPointNearLine( displayPosition, previousPolyLinePoint, polyLinePoint, pointProjectedOntoLine ) ) { // Point is close enough to line segment --> Return index of the segment return std::distance(polyLine.begin(), it); } previousPolyLinePoint = polyLinePoint; } // For closed figures, also check last line segment if ( planarFigure->IsClosed() && this->IsPointNearLine( displayPosition, polyLinePoint, firstPolyLinePoint, pointProjectedOntoLine ) ) { return 0; // Return index of first control point } } return -1; } int mitk::PlanarFigureInteractor::IsPositionInsideMarker( const InteractionPositionEvent* positionEvent, const PlanarFigure *planarFigure, const PlaneGeometry *planarFigureGeometry, const PlaneGeometry *rendererGeometry, const DisplayGeometry *displayGeometry ) const { mitk::Point2D displayPosition = positionEvent->GetPointerPositionOnScreen(); // Iterate over all control points of planar figure, and check if // any one is close to the current display position mitk::Point2D displayControlPoint; int numberOfControlPoints = planarFigure->GetNumberOfControlPoints(); for ( int i=0; iTransformObjectToDisplay( planarFigure->GetControlPoint(i), displayControlPoint, planarFigureGeometry, rendererGeometry, displayGeometry ) ) { // TODO: variable size of markers if ( displayPosition.SquaredEuclideanDistanceTo( displayControlPoint ) < 20.0 ) { return i; } } } return -1; } void mitk::PlanarFigureInteractor::LogPrintPlanarFigureQuantities( const PlanarFigure *planarFigure ) { MITK_INFO << "PlanarFigure: " << planarFigure->GetNameOfClass(); for ( unsigned int i = 0; i < planarFigure->GetNumberOfFeatures(); ++i ) { MITK_INFO << "* " << planarFigure->GetFeatureName( i ) << ": " << planarFigure->GetQuantity( i ) << " " << planarFigure->GetFeatureUnit( i ); } } bool mitk::PlanarFigureInteractor::IsMousePositionAcceptableAsNewControlPoint( const mitk::InteractionPositionEvent* positionEvent, const PlanarFigure* planarFigure ) { assert(positionEvent && planarFigure); BaseRenderer* renderer = positionEvent->GetSender(); assert(renderer); // Get the timestep to support 3D+t int timeStep( renderer->GetTimeStep( planarFigure ) ); bool tooClose(false); const PlaneGeometry *renderingPlane = renderer->GetCurrentWorldPlaneGeometry(); mitk::PlaneGeometry *planarFigureGeometry = dynamic_cast< mitk::PlaneGeometry * >( planarFigure->GetGeometry( timeStep ) ); + mitk::AbstractTransformGeometry *abstractTransformGeometry = + dynamic_cast< mitk::AbstractTransformGeometry * >( planarFigure->GetGeometry( timeStep ) ); + + if ( abstractTransformGeometry != NULL ) + return false; Point2D point2D, correctedPoint; // Get the point2D from the positionEvent if ( !this->TransformPositionEventToPoint2D( positionEvent, planarFigureGeometry, point2D ) ) { return false; } // apply the controlPoint constraints of the planarFigure to get the // coordinates that would actually be used. correctedPoint = const_cast( planarFigure )->ApplyControlPointConstraints( 0, point2D ); // map the 2D coordinates of the new point to world-coordinates // and transform those to display-coordinates mitk::Point3D newPoint3D; planarFigureGeometry->Map( correctedPoint, newPoint3D ); mitk::Point2D newDisplayPosition; renderingPlane->Map( newPoint3D, newDisplayPosition ); renderer->GetDisplayGeometry()->WorldToDisplay( newDisplayPosition, newDisplayPosition ); for( int i=0; i < (int)planarFigure->GetNumberOfControlPoints(); i++ ) { if ( i != planarFigure->GetSelectedControlPoint() ) { // Try to convert previous point to current display coordinates mitk::Point3D previousPoint3D; // map the 2D coordinates of the control-point to world-coordinates planarFigureGeometry->Map( planarFigure->GetControlPoint( i ), previousPoint3D ); if ( renderer->GetDisplayGeometry()->Distance( previousPoint3D ) < 0.1 ) // ugly, but assert makes this work { mitk::Point2D previousDisplayPosition; // transform the world-coordinates into display-coordinates renderingPlane->Map( previousPoint3D, previousDisplayPosition ); renderer->GetDisplayGeometry()->WorldToDisplay( previousDisplayPosition, previousDisplayPosition ); //Calculate the distance. We use display-coordinates here to make // the check independent of the zoom-level of the rendering scene. double a = newDisplayPosition[0] - previousDisplayPosition[0]; double b = newDisplayPosition[1] - previousDisplayPosition[1]; // If point is to close, do not set a new point tooClose = (a * a + b * b < m_MinimumPointDistance ); } if ( tooClose ) return false; // abort loop early } } return !tooClose; // default } void mitk::PlanarFigureInteractor::ConfigurationChanged() { mitk::PropertyList::Pointer properties = GetAttributes(); std::string precision = ""; if (properties->GetStringProperty("precision", precision)) { m_Precision = atof(precision.c_str()); } else { m_Precision = (ScalarType) 6.5; } std::string minPointDistance = ""; if (properties->GetStringProperty("minPointDistance", minPointDistance)) { m_MinimumPointDistance = atof(minPointDistance.c_str()); } else { m_MinimumPointDistance = (ScalarType) 25.0; } } diff --git a/Modules/PlanarFigure/Rendering/mitkPlanarFigureVtkMapper3D.cpp b/Modules/PlanarFigure/Rendering/mitkPlanarFigureVtkMapper3D.cpp index c8b0b2a76a..35815bbc0f 100644 --- a/Modules/PlanarFigure/Rendering/mitkPlanarFigureVtkMapper3D.cpp +++ b/Modules/PlanarFigure/Rendering/mitkPlanarFigureVtkMapper3D.cpp @@ -1,191 +1,193 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarFigureVtkMapper3D.h" #include "mitkImage.h" #include "mitkPlaneGeometry.h" +#include "mitkAbstractTransformGeometry.h" #include #include #include #include #include #include #include mitk::PlanarFigureVtkMapper3D::LocalStorage::LocalStorage() : m_Actor(vtkSmartPointer::New()), m_LastMTime(0) { } mitk::PlanarFigureVtkMapper3D::LocalStorage::~LocalStorage() { } void mitk::PlanarFigureVtkMapper3D::SetDefaultProperties(DataNode*, BaseRenderer*, bool) { } mitk::PlanarFigureVtkMapper3D::PlanarFigureVtkMapper3D() { } mitk::PlanarFigureVtkMapper3D::~PlanarFigureVtkMapper3D() { } void mitk::PlanarFigureVtkMapper3D::ApplyColorAndOpacityProperties(BaseRenderer* renderer, vtkActor* actor) { if (actor == NULL) return; mitk::DataNode* dataNode = this->GetDataNode(); if (dataNode == NULL) return; bool selected = false; dataNode->GetBoolProperty("selected", selected, renderer); float color[3]; dataNode->GetColor(color, renderer, selected ? "planarfigure.selected.line.color" : "color"); float opacity = 1.0f; dataNode->GetOpacity(opacity, renderer); vtkProperty* property = actor->GetProperty(); property->SetColor(color[0], color[1], color[2]); property->SetOpacity(opacity); } void mitk::PlanarFigureVtkMapper3D::ApplyPlanarFigureProperties(BaseRenderer* renderer, vtkActor* actor) { if (actor == NULL) return; mitk::DataNode* dataNode = this->GetDataNode(); if (dataNode == NULL) return; bool render = false; dataNode->GetBoolProperty("planarfigure.3drendering", render); actor->SetVisibility(render); float lineWidth = 1.0f; dataNode->GetFloatProperty("planarfigure.line.width", lineWidth, renderer); vtkProperty* property = actor->GetProperty(); property->SetLineWidth(lineWidth); } void mitk::PlanarFigureVtkMapper3D::GenerateDataForRenderer(BaseRenderer* renderer) { typedef PlanarFigure::PolyLineType PolyLine; DataNode* node = this->GetDataNode(); if (node == NULL) return; PlanarFigure* planarFigure = dynamic_cast(node->GetData()); if (planarFigure == NULL || !planarFigure->IsPlaced()) return; LocalStorage* localStorage = m_LocalStorageHandler.GetLocalStorage(renderer); unsigned long mTime = planarFigure->GetMTime(); if (mTime > localStorage->m_LastMTime) { localStorage->m_LastMTime = mTime; const PlaneGeometry* planeGeometry = dynamic_cast(planarFigure->GetPlaneGeometry()); + const AbstractTransformGeometry* abstractTransformGeometry = dynamic_cast(planarFigure->GetPlaneGeometry()); - if (planeGeometry == NULL) + if (planeGeometry == NULL && abstractTransformGeometry == NULL) return; size_t numPolyLines = planarFigure->GetPolyLinesSize(); if (numPolyLines == 0) return; vtkSmartPointer points = vtkSmartPointer::New(); vtkSmartPointer cells = vtkSmartPointer::New(); vtkIdType baseIndex = 0; for (size_t i = 0; i < numPolyLines; ++i) { PolyLine polyLine = planarFigure->GetPolyLine(i); vtkIdType numPoints = polyLine.size(); if (numPoints < 2) continue; PolyLine::const_iterator polyLineEnd = polyLine.end(); for (PolyLine::const_iterator polyLineIt = polyLine.begin(); polyLineIt != polyLineEnd; ++polyLineIt) { Point3D point; planeGeometry->Map(*polyLineIt, point); points->InsertNextPoint(point.GetDataPointer()); } vtkSmartPointer line = vtkSmartPointer::New(); vtkIdList* pointIds = line->GetPointIds(); if (planarFigure->IsClosed() && numPoints > 2) { pointIds->SetNumberOfIds(numPoints + 1); pointIds->SetId(numPoints, baseIndex); } else { pointIds->SetNumberOfIds(numPoints); } for (vtkIdType j = 0; j < numPoints; ++j) pointIds->SetId(j, baseIndex + j); cells->InsertNextCell(line); baseIndex += points->GetNumberOfPoints(); } vtkSmartPointer polyData = vtkSmartPointer::New(); polyData->SetPoints(points); polyData->SetLines(cells); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInputData(polyData); localStorage->m_Actor->SetMapper(mapper); } this->ApplyColorAndOpacityProperties(renderer, localStorage->m_Actor); this->ApplyPlanarFigureProperties(renderer, localStorage->m_Actor); } vtkProp* mitk::PlanarFigureVtkMapper3D::GetVtkProp(BaseRenderer* renderer) { return m_LocalStorageHandler.GetLocalStorage(renderer)->m_Actor; } void mitk::PlanarFigureVtkMapper3D::UpdateVtkTransform(BaseRenderer*) { } diff --git a/Modules/Segmentation/Interactions/mitkContourTool.cpp b/Modules/Segmentation/Interactions/mitkContourTool.cpp index ec93d6fec6..3f40829574 100644 --- a/Modules/Segmentation/Interactions/mitkContourTool.cpp +++ b/Modules/Segmentation/Interactions/mitkContourTool.cpp @@ -1,189 +1,193 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkContourTool.h" #include "mitkToolManager.h" #include "mitkOverwriteSliceImageFilter.h" #include "mitkOverwriteDirectedPlaneImageFilter.h" +#include "mitkAbstractTransformGeometry.h" #include "mitkBaseRenderer.h" #include "mitkRenderingManager.h" //#include "mitkProperties.h" //#include "mitkPlanarCircle.h" #include "mitkStateMachineAction.h" #include "mitkInteractionEvent.h" mitk::ContourTool::ContourTool(int paintingPixelValue) :FeedbackContourTool("PressMoveReleaseWithCTRLInversion"), m_PaintingPixelValue(paintingPixelValue) { } mitk::ContourTool::~ContourTool() { } void mitk::ContourTool::ConnectActionsAndFunctions() { CONNECT_FUNCTION( "PrimaryButtonPressed", OnMousePressed); CONNECT_FUNCTION( "Move", OnMouseMoved); CONNECT_FUNCTION( "Release", OnMouseReleased); CONNECT_FUNCTION( "InvertLogic", OnInvertLogic); } void mitk::ContourTool::Activated() { Superclass::Activated(); } void mitk::ContourTool::Deactivated() { Superclass::Deactivated(); } /** Just show the contour, insert the first point. */ bool mitk::ContourTool::OnMousePressed( StateMachineAction*, InteractionEvent* interactionEvent ) { if ( SegTool2D::CanHandleEvent(interactionEvent) < 1.0 ) return false; mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); //const PositionEvent* positionEvent = dynamic_cast(interactionEvent->GetEvent()); if (!positionEvent) return false; m_LastEventSender = positionEvent->GetSender(); m_LastEventSlice = m_LastEventSender->GetSlice(); int timestep = positionEvent->GetSender()->GetTimeStep(); ContourModel* contour = FeedbackContourTool::GetFeedbackContour(); //Clear feedback contour contour->Initialize(); //expand time bounds because our contour was initialized contour->Expand( timestep + 1 ); //draw as a closed contour contour->SetClosed(true,timestep); //add first mouse position mitk::Point3D point = positionEvent->GetPositionInWorld(); contour->AddVertex( point, timestep ); FeedbackContourTool::SetFeedbackContourVisible(true); assert( positionEvent->GetSender()->GetRenderWindow() ); mitk::RenderingManager::GetInstance()->RequestUpdate( positionEvent->GetSender()->GetRenderWindow() ); return true; } /** Insert the point to the feedback contour. */ bool mitk::ContourTool::OnMouseMoved( StateMachineAction*, InteractionEvent* interactionEvent ) { if ( SegTool2D::CanHandleEvent(interactionEvent) < 1.0 ) return false; mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); //const PositionEvent* positionEvent = dynamic_cast(stateEvent->GetEvent()); if (!positionEvent) return false; int timestep = positionEvent->GetSender()->GetTimeStep(); ContourModel* contour = FeedbackContourTool::GetFeedbackContour(); mitk::Point3D point = positionEvent->GetPositionInWorld(); contour->AddVertex( point, timestep ); assert( positionEvent->GetSender()->GetRenderWindow() ); mitk::RenderingManager::GetInstance()->RequestUpdate( positionEvent->GetSender()->GetRenderWindow() ); return true; } /** Close the contour, project it to the image slice and fill it in 2D. */ bool mitk::ContourTool::OnMouseReleased( StateMachineAction*, InteractionEvent* interactionEvent ) { // 1. Hide the feedback contour, find out which slice the user clicked, find out which slice of the toolmanager's working image corresponds to that FeedbackContourTool::SetFeedbackContourVisible(false); mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); //const PositionEvent* positionEvent = dynamic_cast(stateEvent->GetEvent()); if (!positionEvent) return false; assert( positionEvent->GetSender()->GetRenderWindow() ); mitk::RenderingManager::GetInstance()->RequestUpdate( positionEvent->GetSender()->GetRenderWindow() ); //if ( FeedbackContourTool::CanHandleEvent(stateEvent) < 1.0 ) return false; DataNode* workingNode( m_ToolManager->GetWorkingData(0) ); if (!workingNode) return false; Image* image = dynamic_cast(workingNode->GetData()); const PlaneGeometry* planeGeometry( dynamic_cast (positionEvent->GetSender()->GetCurrentWorldPlaneGeometry() ) ); if ( !image || !planeGeometry ) return false; + const AbstractTransformGeometry* abstractTransformGeometry( dynamic_cast (positionEvent->GetSender()->GetCurrentWorldPlaneGeometry() ) ); + if ( !image || abstractTransformGeometry ) return false; + // 2. Slice is known, now we try to get it as a 2D image and project the contour into index coordinates of this slice Image::Pointer slice = SegTool2D::GetAffectedImageSliceAs2DImage( positionEvent, image ); if ( slice.IsNull() ) { MITK_ERROR << "Unable to extract slice." << std::endl; return false; } ContourModel* feedbackContour = FeedbackContourTool::GetFeedbackContour(); ContourModel::Pointer projectedContour = FeedbackContourTool::ProjectContourTo2DSlice( slice, feedbackContour, true, false ); // true: actually no idea why this is neccessary, but it works :-( if (projectedContour.IsNull()) return false; int timestep = positionEvent->GetSender()->GetTimeStep(); FeedbackContourTool::FillContourInSlice( projectedContour, timestep, slice, m_PaintingPixelValue ); this->WriteBackSegmentationResult(positionEvent, slice); // 4. Make sure the result is drawn again --> is visible then. assert( positionEvent->GetSender()->GetRenderWindow() ); return true; } /** Called when the CTRL key is pressed. Will change the painting pixel value from 0 to 1 or from 1 to 0. */ bool mitk::ContourTool::OnInvertLogic( StateMachineAction*, InteractionEvent* interactionEvent ) { // if ( FeedbackContourTool::CanHandleEvent(stateEvent) < 1.0 ) return false; // Inversion only for 0 and 1 as painting values if (m_PaintingPixelValue == 1) { m_PaintingPixelValue = 0; FeedbackContourTool::SetFeedbackContourColor( 1.0, 0.0, 0.0 ); } else if (m_PaintingPixelValue == 0) { m_PaintingPixelValue = 1; FeedbackContourTool::SetFeedbackContourColorDefault(); } return true; } diff --git a/Modules/Segmentation/Interactions/mitkCorrectorTool2D.cpp b/Modules/Segmentation/Interactions/mitkCorrectorTool2D.cpp index 90cb559e3e..40d13cbeff 100644 --- a/Modules/Segmentation/Interactions/mitkCorrectorTool2D.cpp +++ b/Modules/Segmentation/Interactions/mitkCorrectorTool2D.cpp @@ -1,200 +1,204 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkCorrectorTool2D.h" #include "mitkCorrectorAlgorithm.h" #include "mitkToolManager.h" #include "mitkBaseRenderer.h" #include "mitkRenderingManager.h" #include "mitkImageReadAccessor.h" +#include "mitkAbstractTransformGeometry.h" #include "mitkCorrectorTool2D.xpm" // us #include #include #include #include namespace mitk { MITK_TOOL_MACRO(MitkSegmentation_EXPORT, CorrectorTool2D, "Correction tool"); } mitk::CorrectorTool2D::CorrectorTool2D(int paintingPixelValue) :FeedbackContourTool("PressMoveRelease"), m_PaintingPixelValue(paintingPixelValue) { GetFeedbackContour()->SetClosed( false ); // don't close the contour to a polygon } mitk::CorrectorTool2D::~CorrectorTool2D() { } void mitk::CorrectorTool2D::ConnectActionsAndFunctions() { CONNECT_FUNCTION( "PrimaryButtonPressed", OnMousePressed); CONNECT_FUNCTION( "Move", OnMouseMoved); CONNECT_FUNCTION( "Release", OnMouseReleased); } const char** mitk::CorrectorTool2D::GetXPM() const { return mitkCorrectorTool2D_xpm; } us::ModuleResource mitk::CorrectorTool2D::GetIconResource() const { us::Module* module = us::GetModuleContext()->GetModule(); us::ModuleResource resource = module->GetResource("Correction_48x48.png"); return resource; } us::ModuleResource mitk::CorrectorTool2D::GetCursorIconResource() const { us::Module* module = us::GetModuleContext()->GetModule(); us::ModuleResource resource = module->GetResource("Correction_Cursor_32x32.png"); return resource; } const char* mitk::CorrectorTool2D::GetName() const { return "Correction"; } void mitk::CorrectorTool2D::Activated() { Superclass::Activated(); } void mitk::CorrectorTool2D::Deactivated() { Superclass::Deactivated(); } bool mitk::CorrectorTool2D::OnMousePressed ( StateMachineAction*, InteractionEvent* interactionEvent ) { if ( SegTool2D::CanHandleEvent(interactionEvent) < 1.0 ) return false; mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); //const PositionEvent* positionEvent = dynamic_cast(stateEvent->GetEvent()); if (!positionEvent) return false; m_LastEventSender = positionEvent->GetSender(); m_LastEventSlice = m_LastEventSender->GetSlice(); int timestep = positionEvent->GetSender()->GetTimeStep(); ContourModel* contour = FeedbackContourTool::GetFeedbackContour(); contour->Clear(); contour->Expand(timestep + 1); contour->SetClosed(false, timestep); mitk::Point3D point = positionEvent->GetPositionInWorld(); contour->AddVertex( point, timestep ); FeedbackContourTool::SetFeedbackContourVisible(true); return true; } bool mitk::CorrectorTool2D::OnMouseMoved( StateMachineAction*, InteractionEvent* interactionEvent ) { if ( SegTool2D::CanHandleEvent(interactionEvent) < 1.0 ) return false; mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); //const PositionEvent* positionEvent = dynamic_cast(stateEvent->GetEvent()); if (!positionEvent) return false; int timestep = positionEvent->GetSender()->GetTimeStep(); ContourModel* contour = FeedbackContourTool::GetFeedbackContour(); mitk::Point3D point = positionEvent->GetPositionInWorld(); contour->AddVertex( point, timestep ); assert( positionEvent->GetSender()->GetRenderWindow() ); mitk::RenderingManager::GetInstance()->RequestUpdate( positionEvent->GetSender()->GetRenderWindow() ); return true; } bool mitk::CorrectorTool2D::OnMouseReleased( StateMachineAction*, InteractionEvent* interactionEvent ) { if ( SegTool2D::CanHandleEvent(interactionEvent) < 1.0 ) return false; // 1. Hide the feedback contour, find out which slice the user clicked, find out which slice of the toolmanager's working image corresponds to that FeedbackContourTool::SetFeedbackContourVisible(false); mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); //const PositionEvent* positionEvent = dynamic_cast(stateEvent->GetEvent()); if (!positionEvent) return false; assert( positionEvent->GetSender()->GetRenderWindow() ); mitk::RenderingManager::GetInstance()->RequestUpdate( positionEvent->GetSender()->GetRenderWindow() ); //if ( FeedbackContourTool::CanHandleEvent(stateEvent) < 1.0 ) return false; DataNode* workingNode( m_ToolManager->GetWorkingData(0) ); if (!workingNode) return false; Image* image = dynamic_cast(workingNode->GetData()); const PlaneGeometry* planeGeometry( dynamic_cast (positionEvent->GetSender()->GetCurrentWorldPlaneGeometry() ) ); if ( !image || !planeGeometry ) return false; + const AbstractTransformGeometry* abstractTransformGeometry( dynamic_cast (positionEvent->GetSender()->GetCurrentWorldPlaneGeometry() ) ); + if ( !image || abstractTransformGeometry ) return false; + // 2. Slice is known, now we try to get it as a 2D image and project the contour into index coordinates of this slice m_WorkingSlice = FeedbackContourTool::GetAffectedImageSliceAs2DImage( positionEvent, image ); if ( m_WorkingSlice.IsNull() ) { MITK_ERROR << "Unable to extract slice." << std::endl; return false; } int timestep = positionEvent->GetSender()->GetTimeStep(); mitk::ContourModel::Pointer singleTimestepContour = mitk::ContourModel::New(); mitk::ContourModel::VertexIterator it = FeedbackContourTool::GetFeedbackContour()->Begin(timestep); mitk::ContourModel::VertexIterator end = FeedbackContourTool::GetFeedbackContour()->End(timestep); while(it!=end) { singleTimestepContour->AddVertex((*it)->Coordinates); it++; } CorrectorAlgorithm::Pointer algorithm = CorrectorAlgorithm::New(); algorithm->SetInput( m_WorkingSlice ); algorithm->SetContour( singleTimestepContour ); try { algorithm->UpdateLargestPossibleRegion(); } catch ( std::exception& e ) { MITK_ERROR << "Caught exception '" << e.what() << "'" << std::endl; } mitk::Image::Pointer resultSlice = mitk::Image::New(); resultSlice->Initialize(algorithm->GetOutput()); mitk::ImageReadAccessor imAccess(algorithm->GetOutput()); resultSlice->SetVolume(imAccess.GetData()); this->WriteBackSegmentationResult(positionEvent, resultSlice); return true; } diff --git a/Modules/Segmentation/Interactions/mitkPaintbrushTool.cpp b/Modules/Segmentation/Interactions/mitkPaintbrushTool.cpp index f10cf5f431..b8346091b2 100644 --- a/Modules/Segmentation/Interactions/mitkPaintbrushTool.cpp +++ b/Modules/Segmentation/Interactions/mitkPaintbrushTool.cpp @@ -1,526 +1,528 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPaintbrushTool.h" #include "mitkToolManager.h" #include "mitkOverwriteSliceImageFilter.h" #include "mitkBaseRenderer.h" #include "mitkImageDataItem.h" #include "ipSegmentation.h" +#include "mitkAbstractTransformGeometry.h" #include "mitkLevelWindowProperty.h" #define ROUND(a) ((a)>0 ? (int)((a)+0.5) : -(int)(0.5-(a))) int mitk::PaintbrushTool::m_Size = 1; mitk::PaintbrushTool::PaintbrushTool(int paintingPixelValue) :FeedbackContourTool("PressMoveReleaseWithCTRLInversionAllMouseMoves"), m_PaintingPixelValue(paintingPixelValue), m_LastContourSize(0) // other than initial mitk::PaintbrushTool::m_Size (around l. 28) { m_MasterContour = ContourModel::New(); m_MasterContour->Initialize(); m_CurrentPlane = NULL; m_WorkingNode = DataNode::New(); m_WorkingNode->SetProperty( "levelwindow", mitk::LevelWindowProperty::New( mitk::LevelWindow(0, 1) ) ); m_WorkingNode->SetProperty( "binary", mitk::BoolProperty::New(true) ); } mitk::PaintbrushTool::~PaintbrushTool() { } void mitk::PaintbrushTool::ConnectActionsAndFunctions() { CONNECT_FUNCTION( "PrimaryButtonPressed", OnMousePressed); CONNECT_FUNCTION( "Move", OnPrimaryButtonPressedMoved); CONNECT_FUNCTION( "MouseMove", OnMouseMoved); CONNECT_FUNCTION( "Release", OnMouseReleased); CONNECT_FUNCTION( "InvertLogic", OnInvertLogic); } void mitk::PaintbrushTool::Activated() { Superclass::Activated(); FeedbackContourTool::SetFeedbackContourVisible(true); SizeChanged.Send(m_Size); m_ToolManager->WorkingDataChanged += mitk::MessageDelegate( this, &mitk::PaintbrushTool::OnToolManagerWorkingDataModified ); } void mitk::PaintbrushTool::Deactivated() { FeedbackContourTool::SetFeedbackContourVisible(false); if (m_ToolManager->GetDataStorage()->Exists(m_WorkingNode)) m_ToolManager->GetDataStorage()->Remove(m_WorkingNode); Superclass::Deactivated(); m_WorkingSlice = NULL; m_CurrentPlane = NULL; m_ToolManager->WorkingDataChanged -= mitk::MessageDelegate( this, &mitk::PaintbrushTool::OnToolManagerWorkingDataModified ); } void mitk::PaintbrushTool::SetSize(int value) { m_Size = value; } mitk::Point2D mitk::PaintbrushTool::upperLeft(mitk::Point2D p) { p[0] -= 0.5; p[1] += 0.5; return p; } void mitk::PaintbrushTool::UpdateContour(const InteractionPositionEvent* positionEvent) { //MITK_INFO<<"Update..."; // examine stateEvent and create a contour that matches the pixel mask that we are going to draw //mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); //const PositionEvent* positionEvent = dynamic_cast(stateEvent->GetEvent()); if (!positionEvent) return; // Get Spacing of current Slice //mitk::Vector3D vSpacing = m_WorkingSlice->GetSlicedGeometry()->GetPlaneGeometry(0)->GetSpacing(); // // Draw a contour in Square according to selected brush size // int radius = (m_Size)/2; float fradius = static_cast(m_Size) / 2.0f; ContourModel::Pointer contourInImageIndexCoordinates = ContourModel::New(); // estimate center point of the brush ( relative to the pixel the mouse points on ) // -- left upper corner for even sizes, // -- midpoint for uneven sizes mitk::Point2D centerCorrection; centerCorrection.Fill(0); // even --> correction of [+0.5, +0.5] bool evenSize = ((m_Size % 2) == 0); if( evenSize ) { centerCorrection[0] += 0.5; centerCorrection[1] += 0.5; } // we will compute the control points for the upper left quarter part of a circle contour std::vector< mitk::Point2D > quarterCycleUpperRight; std::vector< mitk::Point2D > quarterCycleLowerRight; std::vector< mitk::Point2D > quarterCycleLowerLeft; std::vector< mitk::Point2D > quarterCycleUpperLeft; mitk::Point2D curPoint; bool curPointIsInside = true; curPoint[0] = 0; curPoint[1] = radius; quarterCycleUpperRight.push_back( upperLeft(curPoint) ); // to estimate if a pixel is inside the circle, we need to compare against the 'outer radius' // i.e. the distance from the midpoint [0,0] to the border of the pixel [0,radius] //const float outer_radius = static_cast(radius) + 0.5; while (curPoint[1] > 0) { // Move right until pixel is outside circle float curPointX_squared = 0.0f; float curPointY_squared = (curPoint[1] - centerCorrection[1] ) * (curPoint[1] - centerCorrection[1] ); while( curPointIsInside ) { // increment posX and chec curPoint[0]++; curPointX_squared = (curPoint[0] - centerCorrection[0] ) * (curPoint[0] - centerCorrection[0] ); const float len = sqrt( curPointX_squared + curPointY_squared); if ( len > fradius ) { // found first Pixel in this horizontal line, that is outside the circle curPointIsInside = false; } } quarterCycleUpperRight.push_back( upperLeft(curPoint) ); // Move down until pixel is inside circle while( !curPointIsInside ) { // increment posX and chec curPoint[1]--; curPointY_squared = (curPoint[1] - centerCorrection[1] ) * (curPoint[1] - centerCorrection[1] ); const float len = sqrt( curPointX_squared + curPointY_squared); if ( len <= fradius ) { // found first Pixel in this horizontal line, that is outside the circle curPointIsInside = true; quarterCycleUpperRight.push_back( upperLeft(curPoint) ); } // Quarter cycle is full, when curPoint y position is 0 if (curPoint[1] <= 0) break; } } // QuarterCycle is full! Now copy quarter cycle to other quarters. if( !evenSize ) { std::vector< mitk::Point2D >::const_iterator it = quarterCycleUpperRight.begin(); while( it != quarterCycleUpperRight.end() ) { mitk::Point2D p; p = *it; // the contour points in the lower right corner have same position but with negative y values p[1] *= -1; quarterCycleLowerRight.push_back(p); // the contour points in the lower left corner have same position // but with both x,y negative p[0] *= -1; quarterCycleLowerLeft.push_back(p); // the contour points in the upper left corner have same position // but with x negative p[1] *= -1; quarterCycleUpperLeft.push_back(p); it++; } } else { std::vector< mitk::Point2D >::const_iterator it = quarterCycleUpperRight.begin(); while( it != quarterCycleUpperRight.end() ) { mitk::Point2D p,q; p = *it; q = p; // the contour points in the lower right corner have same position but with negative y values q[1] *= -1; // correct for moved offset if size even = the midpoint is not the midpoint of the current pixel // but its upper rigt corner q[1] += 1; quarterCycleLowerRight.push_back(q); q = p; // the contour points in the lower left corner have same position // but with both x,y negative q[1] = -1.0f * q[1] + 1; q[0] = -1.0f * q[0] + 1; quarterCycleLowerLeft.push_back(q); // the contour points in the upper left corner have same position // but with x negative q = p; q[0] *= -1; q[0] += 1; quarterCycleUpperLeft.push_back(q); it++; } } // fill contour with poins in right ordering, starting with the upperRight block mitk::Point3D tempPoint; for (unsigned int i=0; iAddVertex( tempPoint ); } // the lower right has to be parsed in reverse order for (int i=quarterCycleLowerRight.size()-1; i>=0; i--) { tempPoint[0] = quarterCycleLowerRight[i][0]; tempPoint[1] = quarterCycleLowerRight[i][1]; tempPoint[2] = 0; contourInImageIndexCoordinates->AddVertex( tempPoint ); } for (unsigned int i=0; iAddVertex( tempPoint ); } // the upper left also has to be parsed in reverse order for (int i=quarterCycleUpperLeft.size()-1; i>=0; i--) { tempPoint[0] = quarterCycleUpperLeft[i][0]; tempPoint[1] = quarterCycleUpperLeft[i][1]; tempPoint[2] = 0; contourInImageIndexCoordinates->AddVertex( tempPoint ); } m_MasterContour = contourInImageIndexCoordinates; } /** Just show the contour, get one point as the central point and add surrounding points to the contour. */ bool mitk::PaintbrushTool::OnMousePressed ( StateMachineAction*, InteractionEvent* interactionEvent ) { if ( SegTool2D::CanHandleEvent(interactionEvent) < 1.0 ) return false; mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); //const PositionEvent* positionEvent = dynamic_cast(stateEvent->GetEvent()); if (!positionEvent) return false; m_LastEventSender = positionEvent->GetSender(); m_LastEventSlice = m_LastEventSender->GetSlice(); m_MasterContour->SetClosed(true); return this->MouseMoved(interactionEvent, true); } bool mitk::PaintbrushTool::OnMouseMoved( StateMachineAction*, InteractionEvent* interactionEvent ) { return MouseMoved(interactionEvent, false); } bool mitk::PaintbrushTool::OnPrimaryButtonPressedMoved( StateMachineAction*, InteractionEvent* interactionEvent ) { return MouseMoved(interactionEvent, true); } /** Insert the point to the feedback contour,finish to build the contour and at the same time the painting function */ bool mitk::PaintbrushTool::MouseMoved(mitk::InteractionEvent* interactionEvent, bool leftMouseButtonPressed) { if ( SegTool2D::CanHandleEvent(interactionEvent) < 1.0 ) return false; mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); //const PositionEvent* positionEvent = dynamic_cast(stateEvent->GetEvent()); CheckIfCurrentSliceHasChanged( positionEvent ); if ( m_LastContourSize != m_Size ) { UpdateContour( positionEvent ); m_LastContourSize = m_Size; } // stateEvent->GetId() == 530 // || stateEvent->GetId() == 534 // || stateEvent->GetId() == 1 // || stateEvent->GetId() == 5 // ); Point3D worldCoordinates = positionEvent->GetPositionInWorld(); Point3D indexCoordinates; m_WorkingSlice->GetGeometry()->WorldToIndex( worldCoordinates, indexCoordinates ); MITK_DEBUG << "Mouse at W " << worldCoordinates << std::endl; MITK_DEBUG << "Mouse at I " << indexCoordinates << std::endl; // round to nearest voxel center (abort if this hasn't changed) if ( m_Size % 2 == 0 ) // even { indexCoordinates[0] = ROUND( indexCoordinates[0]);// /*+ 0.5*/) + 0.5; indexCoordinates[1] = ROUND( indexCoordinates[1]);// /*+ 0.5*/ ) + 0.5; } else // odd { indexCoordinates[0] = ROUND( indexCoordinates[0] ) ; indexCoordinates[1] = ROUND( indexCoordinates[1] ) ; } static Point3D lastPos; // uninitialized: if somebody finds out how this can be initialized in a one-liner, tell me if ( fabs(indexCoordinates[0] - lastPos[0]) > mitk::eps || fabs(indexCoordinates[1] - lastPos[1]) > mitk::eps || fabs(indexCoordinates[2] - lastPos[2]) > mitk::eps || leftMouseButtonPressed ) { lastPos = indexCoordinates; } else { MITK_DEBUG << "." << std::flush; return false; } MITK_DEBUG << "Mouse at C " << indexCoordinates; int timestep = positionEvent->GetSender()->GetTimeStep(); ContourModel::Pointer contour = ContourModel::New(); contour->Expand(timestep + 1); contour->SetClosed(true, timestep); ContourModel::VertexIterator it = m_MasterContour->Begin(); ContourModel::VertexIterator end = m_MasterContour->End(); while(it != end) { Point3D point = (*it)->Coordinates; point[0] += indexCoordinates[ 0 ]; point[1] += indexCoordinates[ 1 ]; contour->AddVertex( point, timestep ); it++; } if (leftMouseButtonPressed) { FeedbackContourTool::FillContourInSlice( contour, timestep, m_WorkingSlice, m_PaintingPixelValue ); m_WorkingNode->SetData(m_WorkingSlice); m_WorkingNode->Modified(); } // visualize contour ContourModel::Pointer displayContour = ContourModel::New(); displayContour->Initialize(); //for (unsigned int index = 0; index < contour->GetNumberOfPoints(); ++index) //{ // Point3D point = contour->GetPoints()->ElementAt(index); // if ( m_Size % 2 == 0 ) // even // { // point[0] += 0.5; // point[1] += 0.5; // } // displayContour->AddVertex( point ); //} displayContour = FeedbackContourTool::BackProjectContourFrom2DSlice( m_WorkingSlice->GetGeometry(), /*displayContour*/contour ); SetFeedbackContour( *displayContour ); assert( positionEvent->GetSender()->GetRenderWindow() ); RenderingManager::GetInstance()->RequestUpdate( positionEvent->GetSender()->GetRenderWindow() ); return true; } bool mitk::PaintbrushTool::OnMouseReleased( StateMachineAction*, InteractionEvent* interactionEvent ) { if ( SegTool2D::CanHandleEvent(interactionEvent) < 1.0 ) return false; //When mouse is released write segmentationresult back into image mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); //const PositionEvent* positionEvent = dynamic_cast(stateEvent->GetEvent()); if (!positionEvent) return false; this->WriteBackSegmentationResult(positionEvent, m_WorkingSlice->Clone()); return true; } /** Called when the CTRL key is pressed. Will change the painting pixel value from 0 to 1 or from 1 to 0. */ bool mitk::PaintbrushTool::OnInvertLogic( StateMachineAction*, InteractionEvent* interactionEvent ) { // Inversion only for 0 and 1 as painting values if (m_PaintingPixelValue == 1) { m_PaintingPixelValue = 0; FeedbackContourTool::SetFeedbackContourColor( 1.0, 0.0, 0.0 ); } else if (m_PaintingPixelValue == 0) { m_PaintingPixelValue = 1; FeedbackContourTool::SetFeedbackContourColorDefault(); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); return true; } void mitk::PaintbrushTool::CheckIfCurrentSliceHasChanged(const InteractionPositionEvent *event) { const PlaneGeometry* planeGeometry( dynamic_cast (event->GetSender()->GetCurrentWorldPlaneGeometry() ) ); + const AbstractTransformGeometry* abstractTransformGeometry( dynamic_cast (event->GetSender()->GetCurrentWorldPlaneGeometry() ) ); DataNode* workingNode( m_ToolManager->GetWorkingData(0) ); if (!workingNode) return; Image::Pointer image = dynamic_cast(workingNode->GetData()); - if ( !image || !planeGeometry ) + if ( !image || !planeGeometry || abstractTransformGeometry ) return; if(m_CurrentPlane.IsNull() || m_WorkingSlice.IsNull()) { m_CurrentPlane = const_cast(planeGeometry); m_WorkingSlice = SegTool2D::GetAffectedImageSliceAs2DImage(event, image)->Clone(); m_WorkingNode->ReplaceProperty( "color", workingNode->GetProperty("color") ); m_WorkingNode->SetData(m_WorkingSlice); } else { bool isSameSlice (false); isSameSlice = mitk::MatrixEqualElementWise(planeGeometry->GetIndexToWorldTransform()->GetMatrix(),m_CurrentPlane->GetIndexToWorldTransform()->GetMatrix()); isSameSlice = mitk::Equal(planeGeometry->GetIndexToWorldTransform()->GetOffset(),m_CurrentPlane->GetIndexToWorldTransform()->GetOffset()); if (!isSameSlice) { m_ToolManager->GetDataStorage()->Remove(m_WorkingNode); m_CurrentPlane = NULL; m_WorkingSlice = NULL; m_WorkingNode = NULL; m_CurrentPlane = const_cast(planeGeometry); m_WorkingSlice = SegTool2D::GetAffectedImageSliceAs2DImage(event, image)->Clone(); m_WorkingNode = mitk::DataNode::New(); m_WorkingNode->SetProperty( "levelwindow", mitk::LevelWindowProperty::New( mitk::LevelWindow(0, 1) ) ); m_WorkingNode->SetProperty( "binary", mitk::BoolProperty::New(true) ); m_WorkingNode->SetData(m_WorkingSlice); //So that the paintbrush contour vanished in the previous render window RenderingManager::GetInstance()->RequestUpdateAll(); } } if(!m_ToolManager->GetDataStorage()->Exists(m_WorkingNode)) { m_WorkingNode->SetProperty( "outline binary", mitk::BoolProperty::New(true) ); m_WorkingNode->SetProperty( "color", workingNode->GetProperty("color") ); m_WorkingNode->SetProperty( "name", mitk::StringProperty::New("Paintbrush_Node") ); m_WorkingNode->SetProperty( "helper object", mitk::BoolProperty::New(true) ); m_WorkingNode->SetProperty( "opacity", mitk::FloatProperty::New(0.8) ); m_WorkingNode->SetProperty( "includeInBoundingBox", mitk::BoolProperty::New(false)); m_WorkingNode->SetVisibility(false, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget4"))); m_ToolManager->GetDataStorage()->Add(m_WorkingNode); } } void mitk::PaintbrushTool::OnToolManagerWorkingDataModified() { //Here we simply set the current working slice to null. The next time the mouse is moved //within a renderwindow a new slice will be extracted from the new working data m_WorkingSlice = 0; } diff --git a/Modules/Segmentation/Interactions/mitkSegTool2D.cpp b/Modules/Segmentation/Interactions/mitkSegTool2D.cpp index 4c3b383549..208bed1cc9 100644 --- a/Modules/Segmentation/Interactions/mitkSegTool2D.cpp +++ b/Modules/Segmentation/Interactions/mitkSegTool2D.cpp @@ -1,407 +1,410 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkSegTool2D.h" #include "mitkToolManager.h" #include "mitkDataStorage.h" #include "mitkBaseRenderer.h" #include "mitkPlaneGeometry.h" #include "mitkExtractImageFilter.h" #include "mitkExtractDirectedPlaneImageFilter.h" //Include of the new ImageExtractor #include "mitkExtractDirectedPlaneImageFilterNew.h" #include "mitkPlanarCircle.h" #include "mitkOverwriteSliceImageFilter.h" #include "mitkOverwriteDirectedPlaneImageFilter.h" #include "usGetModuleContext.h" //Includes for 3DSurfaceInterpolation #include "mitkImageToContourFilter.h" #include "mitkSurfaceInterpolationController.h" //includes for resling and overwriting #include #include #include #include #include #include "mitkOperationEvent.h" #include "mitkUndoController.h" +#include "mitkAbstractTransformGeometry.h" + #define ROUND(a) ((a)>0 ? (int)((a)+0.5) : -(int)(0.5-(a))) mitk::SegTool2D::SegTool2D(const char* type) :Tool(type), m_LastEventSender(NULL), m_LastEventSlice(0), m_Contourmarkername ("Position"), m_ShowMarkerNodes (false), m_3DInterpolationEnabled(true) { } mitk::SegTool2D::~SegTool2D() { } float mitk::SegTool2D::CanHandleEvent( InteractionEvent const *stateEvent) const { const InteractionPositionEvent* positionEvent = dynamic_cast( stateEvent ); if (!positionEvent) return 0.0; if ( positionEvent->GetSender()->GetMapperID() != BaseRenderer::Standard2D ) return 0.0; // we don't want anything but 2D return 1.0; // //This are the mouse event that are used by the statemachine patterns for zooming and panning. This must be possible although a tool is activ // if (stateEvent->GetId() == EIDRIGHTMOUSEBTN || stateEvent->GetId() == EIDMIDDLEMOUSEBTN || stateEvent->GetId() == EIDRIGHTMOUSEBTNANDCTRL || // stateEvent->GetId() == EIDMIDDLEMOUSERELEASE || stateEvent->GetId() == EIDRIGHTMOUSERELEASE || stateEvent->GetId() == EIDRIGHTMOUSEBTNANDMOUSEMOVE || // stateEvent->GetId() == EIDMIDDLEMOUSEBTNANDMOUSEMOVE || stateEvent->GetId() == EIDCTRLANDRIGHTMOUSEBTNANDMOUSEMOVE || stateEvent->GetId() == EIDCTRLANDRIGHTMOUSEBTNRELEASE ) // { // //Since the usual segmentation tools currently do not need right click interaction but the mitkDisplayVectorInteractor // return 0.0; // } // else // { // return 1.0; // } } bool mitk::SegTool2D::DetermineAffectedImageSlice( const Image* image, const PlaneGeometry* plane, int& affectedDimension, int& affectedSlice ) { assert(image); assert(plane); // compare normal of plane to the three axis vectors of the image Vector3D normal = plane->GetNormal(); Vector3D imageNormal0 = image->GetSlicedGeometry()->GetAxisVector(0); Vector3D imageNormal1 = image->GetSlicedGeometry()->GetAxisVector(1); Vector3D imageNormal2 = image->GetSlicedGeometry()->GetAxisVector(2); normal.Normalize(); imageNormal0.Normalize(); imageNormal1.Normalize(); imageNormal2.Normalize(); imageNormal0.SetVnlVector( vnl_cross_3d(normal.GetVnlVector(),imageNormal0.GetVnlVector()) ); imageNormal1.SetVnlVector( vnl_cross_3d(normal.GetVnlVector(),imageNormal1.GetVnlVector()) ); imageNormal2.SetVnlVector( vnl_cross_3d(normal.GetVnlVector(),imageNormal2.GetVnlVector()) ); double eps( 0.00001 ); // axial if ( imageNormal2.GetNorm() <= eps ) { affectedDimension = 2; } // sagittal else if ( imageNormal1.GetNorm() <= eps ) { affectedDimension = 1; } // frontal else if ( imageNormal0.GetNorm() <= eps ) { affectedDimension = 0; } else { affectedDimension = -1; // no idea return false; } // determine slice number in image BaseGeometry* imageGeometry = image->GetGeometry(0); Point3D testPoint = imageGeometry->GetCenter(); Point3D projectedPoint; plane->Project( testPoint, projectedPoint ); Point3D indexPoint; imageGeometry->WorldToIndex( projectedPoint, indexPoint ); affectedSlice = ROUND( indexPoint[affectedDimension] ); MITK_DEBUG << "indexPoint " << indexPoint << " affectedDimension " << affectedDimension << " affectedSlice " << affectedSlice; // check if this index is still within the image if ( affectedSlice < 0 || affectedSlice >= static_cast(image->GetDimension(affectedDimension)) ) return false; return true; } mitk::Image::Pointer mitk::SegTool2D::GetAffectedImageSliceAs2DImage(const InteractionPositionEvent* positionEvent, const Image* image) { if (!positionEvent) return NULL; assert( positionEvent->GetSender() ); // sure, right? unsigned int timeStep = positionEvent->GetSender()->GetTimeStep( image ); // get the timestep of the visible part (time-wise) of the image // first, we determine, which slice is affected const PlaneGeometry* planeGeometry( dynamic_cast (positionEvent->GetSender()->GetCurrentWorldPlaneGeometry() ) ); return this->GetAffectedImageSliceAs2DImage(planeGeometry, image, timeStep); } mitk::Image::Pointer mitk::SegTool2D::GetAffectedImageSliceAs2DImage(const PlaneGeometry* planeGeometry, const Image* image, unsigned int timeStep) { if ( !image || !planeGeometry ) return NULL; //Make sure that for reslicing and overwriting the same alogrithm is used. We can specify the mode of the vtk reslicer vtkSmartPointer reslice = vtkSmartPointer::New(); //set to false to extract a slice reslice->SetOverwriteMode(false); reslice->Modified(); //use ExtractSliceFilter with our specific vtkImageReslice for overwriting and extracting mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(reslice); extractor->SetInput( image ); extractor->SetTimeStep( timeStep ); extractor->SetWorldGeometry( planeGeometry ); extractor->SetVtkOutputRequest(false); extractor->SetResliceTransformByGeometry( image->GetTimeGeometry()->GetGeometryForTimeStep( timeStep ) ); extractor->Modified(); extractor->Update(); Image::Pointer slice = extractor->GetOutput(); /*============= BEGIN undo feature block ========================*/ //specify the undo operation with the non edited slice m_undoOperation = new DiffSliceOperation(const_cast(image), extractor->GetVtkOutput(), dynamic_cast(slice->GetGeometry()), timeStep, const_cast(planeGeometry)); /*============= END undo feature block ========================*/ return slice; } mitk::Image::Pointer mitk::SegTool2D::GetAffectedWorkingSlice(const InteractionPositionEvent* positionEvent) { DataNode* workingNode( m_ToolManager->GetWorkingData(0) ); if ( !workingNode ) return NULL; Image* workingImage = dynamic_cast(workingNode->GetData()); if ( !workingImage ) return NULL; return GetAffectedImageSliceAs2DImage( positionEvent, workingImage ); } mitk::Image::Pointer mitk::SegTool2D::GetAffectedReferenceSlice(const InteractionPositionEvent* positionEvent) { DataNode* referenceNode( m_ToolManager->GetReferenceData(0) ); if ( !referenceNode ) return NULL; Image* referenceImage = dynamic_cast(referenceNode->GetData()); if ( !referenceImage ) return NULL; return GetAffectedImageSliceAs2DImage( positionEvent, referenceImage ); } void mitk::SegTool2D::WriteBackSegmentationResult (const InteractionPositionEvent* positionEvent, Image* slice) { if(!positionEvent) return; const PlaneGeometry* planeGeometry( dynamic_cast (positionEvent->GetSender()->GetCurrentWorldPlaneGeometry() ) ); + const AbstractTransformGeometry* abstractTransformGeometry( dynamic_cast (positionEvent->GetSender()->GetCurrentWorldPlaneGeometry() ) ); - if( planeGeometry && slice) + if( planeGeometry && slice && !abstractTransformGeometry) { DataNode* workingNode( m_ToolManager->GetWorkingData(0) ); Image* image = dynamic_cast(workingNode->GetData()); unsigned int timeStep = positionEvent->GetSender()->GetTimeStep( image ); this->WriteBackSegmentationResult(planeGeometry, slice, timeStep); slice->DisconnectPipeline(); ImageToContourFilter::Pointer contourExtractor = ImageToContourFilter::New(); contourExtractor->SetInput(slice); contourExtractor->Update(); mitk::Surface::Pointer contour = contourExtractor->GetOutput(); if (m_3DInterpolationEnabled && contour->GetVtkPolyData()->GetNumberOfPoints() > 0 && image->GetDimension() == 3) { unsigned int pos = this->AddContourmarker(positionEvent); us::ServiceReference serviceRef = us::GetModuleContext()->GetServiceReference(); PlanePositionManagerService* service = us::GetModuleContext()->GetService(serviceRef); mitk::SurfaceInterpolationController::GetInstance()->AddNewContour( contour, service->GetPlanePosition(pos)); contour->DisconnectPipeline(); } } } void mitk::SegTool2D::WriteBackSegmentationResult (const PlaneGeometry* planeGeometry, Image* slice, unsigned int timeStep) { if(!planeGeometry || !slice) return; DataNode* workingNode( m_ToolManager->GetWorkingData(0) ); Image* image = dynamic_cast(workingNode->GetData()); //Make sure that for reslicing and overwriting the same alogrithm is used. We can specify the mode of the vtk reslicer vtkSmartPointer reslice = vtkSmartPointer::New(); //Set the slice as 'input' reslice->SetInputSlice(slice->GetVtkImageData()); //set overwrite mode to true to write back to the image volume reslice->SetOverwriteMode(true); reslice->Modified(); mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(reslice); extractor->SetInput( image ); extractor->SetTimeStep( timeStep ); extractor->SetWorldGeometry( planeGeometry ); extractor->SetVtkOutputRequest(true); extractor->SetResliceTransformByGeometry( image->GetGeometry( timeStep ) ); extractor->Modified(); extractor->Update(); //the image was modified within the pipeline, but not marked so image->Modified(); image->GetVtkImageData()->Modified(); /*============= BEGIN undo feature block ========================*/ //specify the undo operation with the edited slice m_doOperation = new DiffSliceOperation(image, extractor->GetVtkOutput(),dynamic_cast(slice->GetGeometry()), timeStep, const_cast(planeGeometry)); //create an operation event for the undo stack OperationEvent* undoStackItem = new OperationEvent( DiffSliceOperationApplier::GetInstance(), m_doOperation, m_undoOperation, "Segmentation" ); //add it to the undo controller UndoController::GetCurrentUndoModel()->SetOperationEvent( undoStackItem ); //clear the pointers as the operation are stored in the undocontroller and also deleted from there m_undoOperation = NULL; m_doOperation = NULL; /*============= END undo feature block ========================*/ mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void mitk::SegTool2D::SetShowMarkerNodes(bool status) { m_ShowMarkerNodes = status; } void mitk::SegTool2D::SetEnable3DInterpolation(bool enabled) { m_3DInterpolationEnabled = enabled; } unsigned int mitk::SegTool2D::AddContourmarker ( const InteractionPositionEvent* positionEvent ) { const mitk::PlaneGeometry* plane = dynamic_cast (dynamic_cast< const mitk::SlicedGeometry3D*>( positionEvent->GetSender()->GetSliceNavigationController()->GetCurrentGeometry3D())->GetPlaneGeometry(0)); us::ServiceReference serviceRef = us::GetModuleContext()->GetServiceReference(); PlanePositionManagerService* service = us::GetModuleContext()->GetService(serviceRef); unsigned int size = service->GetNumberOfPlanePositions(); unsigned int id = service->AddNewPlanePosition(plane, positionEvent->GetSender()->GetSliceNavigationController()->GetSlice()->GetPos()); mitk::PlanarCircle::Pointer contourMarker = mitk::PlanarCircle::New(); mitk::Point2D p1; plane->Map(plane->GetCenter(), p1); mitk::Point2D p2 = p1; p2[0] -= plane->GetSpacing()[0]; p2[1] -= plane->GetSpacing()[1]; contourMarker->PlaceFigure( p1 ); contourMarker->SetCurrentControlPoint( p1 ); contourMarker->SetPlaneGeometry( const_cast(plane)); std::stringstream markerStream; mitk::DataNode* workingNode (m_ToolManager->GetWorkingData(0)); markerStream << m_Contourmarkername ; markerStream << " "; markerStream << id+1; DataNode::Pointer rotatedContourNode = DataNode::New(); rotatedContourNode->SetData(contourMarker); rotatedContourNode->SetProperty( "name", StringProperty::New(markerStream.str()) ); rotatedContourNode->SetProperty( "isContourMarker", BoolProperty::New(true)); rotatedContourNode->SetBoolProperty( "PlanarFigureInitializedWindow", true, positionEvent->GetSender() ); rotatedContourNode->SetProperty( "includeInBoundingBox", BoolProperty::New(false)); rotatedContourNode->SetProperty( "helper object", mitk::BoolProperty::New(!m_ShowMarkerNodes)); rotatedContourNode->SetProperty( "planarfigure.drawcontrolpoints", BoolProperty::New(false)); rotatedContourNode->SetProperty( "planarfigure.drawname", BoolProperty::New(false)); rotatedContourNode->SetProperty( "planarfigure.drawoutline", BoolProperty::New(false)); rotatedContourNode->SetProperty( "planarfigure.drawshadow", BoolProperty::New(false)); if (plane) { if ( id == size ) { m_ToolManager->GetDataStorage()->Add(rotatedContourNode, workingNode); } else { mitk::NodePredicateProperty::Pointer isMarker = mitk::NodePredicateProperty::New("isContourMarker", mitk::BoolProperty::New(true)); mitk::DataStorage::SetOfObjects::ConstPointer markers = m_ToolManager->GetDataStorage()->GetDerivations(workingNode,isMarker); for ( mitk::DataStorage::SetOfObjects::const_iterator iter = markers->begin(); iter != markers->end(); ++iter) { std::string nodeName = (*iter)->GetName(); unsigned int t = nodeName.find_last_of(" "); unsigned int markerId = atof(nodeName.substr(t+1).c_str())-1; if(id == markerId) { return id; } } m_ToolManager->GetDataStorage()->Add(rotatedContourNode, workingNode); } } return id; } void mitk::SegTool2D::InteractiveSegmentationBugMessage( const std::string& message ) { MITK_ERROR << "********************************************************************************" << std::endl << " " << message << std::endl << "********************************************************************************" << std::endl << " " << std::endl << " If your image is rotated or the 2D views don't really contain the patient image, try to press the button next to the image selection. " << std::endl << " " << std::endl << " Please file a BUG REPORT: " << std::endl << " http://bugs.mitk.org" << std::endl << " Contain the following information:" << std::endl << " - What image were you working on?" << std::endl << " - Which region of the image?" << std::endl << " - Which tool did you use?" << std::endl << " - What did you do?" << std::endl << " - What happened (not)? What did you expect?" << std::endl; } diff --git a/Modules/Segmentation/Interactions/mitkSetRegionTool.cpp b/Modules/Segmentation/Interactions/mitkSetRegionTool.cpp index 1d0e2fb060..cb06c84c52 100644 --- a/Modules/Segmentation/Interactions/mitkSetRegionTool.cpp +++ b/Modules/Segmentation/Interactions/mitkSetRegionTool.cpp @@ -1,336 +1,338 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkSetRegionTool.h" #include "mitkToolManager.h" #include "mitkOverwriteSliceImageFilter.h" +#include "mitkAbstractTransformGeometry.h" #include "ipSegmentation.h" #include "mitkBaseRenderer.h" #include "mitkImageDataItem.h" #include "mitkLegacyAdaptors.h" #include "mitkOverwriteDirectedPlaneImageFilter.h" mitk::SetRegionTool::SetRegionTool(int paintingPixelValue) :FeedbackContourTool("PressMoveReleaseWithCTRLInversion"), m_PaintingPixelValue(paintingPixelValue), m_FillContour(false), m_StatusFillWholeSlice(false) { } mitk::SetRegionTool::~SetRegionTool() { } void mitk::SetRegionTool::ConnectActionsAndFunctions() { CONNECT_FUNCTION( "PrimaryButtonPressed", OnMousePressed); CONNECT_FUNCTION( "Release", OnMouseReleased); CONNECT_FUNCTION( "InvertLogic", OnInvertLogic); } void mitk::SetRegionTool::Activated() { Superclass::Activated(); } void mitk::SetRegionTool::Deactivated() { Superclass::Deactivated(); } bool mitk::SetRegionTool::OnMousePressed ( StateMachineAction*, InteractionEvent* interactionEvent ) { if ( SegTool2D::CanHandleEvent(interactionEvent) < 1.0 ) return false; mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); //const PositionEvent* positionEvent = dynamic_cast(stateEvent->GetEvent()); if (!positionEvent) return false; m_LastEventSender = positionEvent->GetSender(); m_LastEventSlice = m_LastEventSender->GetSlice(); int timeStep = positionEvent->GetSender()->GetTimeStep(); if ( FeedbackContourTool::CanHandleEvent(interactionEvent) < 1.0 ) return false; // 1. Get the working image Image::Pointer workingSlice = FeedbackContourTool::GetAffectedWorkingSlice( positionEvent ); if ( workingSlice.IsNull() ) return false; // can't do anything without the segmentation // if click was outside the image, don't continue const BaseGeometry* sliceGeometry = workingSlice->GetGeometry(); itk::Index<2> projectedPointIn2D; sliceGeometry->WorldToIndex( positionEvent->GetPositionInWorld(), projectedPointIn2D ); if ( !sliceGeometry->IsIndexInside( projectedPointIn2D ) ) { MITK_ERROR << "point apparently not inside segmentation slice" << std::endl; return false; // can't use that as a seed point } // Convert to ipMITKSegmentationTYPE (because ipMITKSegmentationGetContour8N relys on that data type) itk::Image< ipMITKSegmentationTYPE, 2 >::Pointer correctPixelTypeImage; CastToItkImage( workingSlice, correctPixelTypeImage ); assert (correctPixelTypeImage.IsNotNull() ); // possible bug in CastToItkImage ? // direction maxtrix is wrong/broken/not working after CastToItkImage, leading to a failed assertion in // mitk/Core/DataStructures/mitkSlicedGeometry3D.cpp, 479: // virtual void mitk::SlicedGeometry3D::SetSpacing(const mitk::Vector3D&): Assertion `aSpacing[0]>0 && aSpacing[1]>0 && aSpacing[2]>0' failed // solution here: we overwrite it with an unity matrix itk::Image< ipMITKSegmentationTYPE, 2 >::DirectionType imageDirection; imageDirection.SetIdentity(); correctPixelTypeImage->SetDirection(imageDirection); Image::Pointer temporarySlice = Image::New(); // temporarySlice = ImportItkImage( correctPixelTypeImage ); CastToMitkImage( correctPixelTypeImage, temporarySlice ); // check index positions mitkIpPicDescriptor* originalPicSlice = mitkIpPicNew(); CastToIpPicDescriptor( temporarySlice, originalPicSlice ); int m_SeedPointMemoryOffset = projectedPointIn2D[1] * originalPicSlice->n[0] + projectedPointIn2D[0]; if ( m_SeedPointMemoryOffset >= static_cast( originalPicSlice->n[0] * originalPicSlice->n[1] ) || m_SeedPointMemoryOffset < 0 ) { MITK_ERROR << "Memory offset calculation if mitk::SetRegionTool has some serious flaw! Aborting.." << std::endl; return false; } // 2. Determine the contour that surronds the selected "piece of the image" // find a contour seed point unsigned int oneContourOffset = static_cast( m_SeedPointMemoryOffset ); // safe because of earlier check if m_SeedPointMemoryOffset < 0 /** * The logic of finding a starting point for the contour is the following: * * - If the initial seed point is 0, we are either inside a hole or outside of every segmentation. * We move to the right until we hit a 1, which must be part of a contour. * * - If the initial seed point is 1, then ... * we now do the same (running to the right) until we hit a 1 * * In both cases the found contour point is used to extract a contour and * then a test is applied to find out if the initial seed point is contained * in the contour. If this is the case, filling should be applied, otherwise * nothing is done. */ unsigned int size = originalPicSlice->n[0] * originalPicSlice->n[1]; /* unsigned int rowSize = originalPicSlice->n[0]; */ ipMITKSegmentationTYPE* data = static_cast(originalPicSlice->data); if ( data[oneContourOffset] == 0 ) // initial seed 0 { for ( ; oneContourOffset < size; ++oneContourOffset ) { if ( data[oneContourOffset] > 0 ) break; } } else if ( data[oneContourOffset] == 1 ) // initial seed 1 { unsigned int lastValidPixel = size-1; // initialization, will be changed lateron bool inSeg = true; // inside segmentation? for ( ; oneContourOffset < size; ++oneContourOffset ) { if ( ( data[oneContourOffset] == 0 ) && inSeg ) // pixel 0 and inside-flag set: this happens at the first pixel outside a filled region { inSeg = false; lastValidPixel = oneContourOffset - 1; // store the last pixel position inside a filled region break; } else // pixel 1, inside-flag doesn't matter: this happens while we are inside a filled region { inSeg = true; // first iteration lands here } } oneContourOffset = lastValidPixel; } else { MITK_ERROR << "Fill/Erase was never intended to work with other than binary images." << std::endl; m_FillContour = false; return false; } if (oneContourOffset == size) // nothing found until end of slice { m_FillContour = false; return false; } int numberOfContourPoints( 0 ); int newBufferSize( 0 ); //MITK_INFO << "getting contour from offset " << oneContourOffset << " ("<n[0]<<","<n[0]<<")"< 0); bool cursorInsideContour = ipMITKSegmentationIsInsideContour( contourPoints, numberOfContourPoints, projectedPointIn2D[0], projectedPointIn2D[1]); // decide if contour should be filled or not m_FillContour = cursorInsideContour; if (m_FillContour) { // copy point from float* to mitk::Contour ContourModel::Pointer contourInImageIndexCoordinates = ContourModel::New(); contourInImageIndexCoordinates->Expand(timeStep + 1); contourInImageIndexCoordinates->SetClosed(true, timeStep); Point3D newPoint; for (int index = 0; index < numberOfContourPoints; ++index) { newPoint[0] = contourPoints[ 2 * index + 0 ] - 0.5; newPoint[1] = contourPoints[ 2 * index + 1] - 0.5; newPoint[2] = 0; contourInImageIndexCoordinates->AddVertex(newPoint, timeStep); } m_SegmentationContourInWorldCoordinates = FeedbackContourTool::BackProjectContourFrom2DSlice( workingSlice->GetGeometry(), contourInImageIndexCoordinates, true ); // true, correct the result from ipMITKSegmentationGetContour8N // 3. Show the contour FeedbackContourTool::SetFeedbackContour( *m_SegmentationContourInWorldCoordinates ); FeedbackContourTool::SetFeedbackContourVisible(true); mitk::RenderingManager::GetInstance()->RequestUpdate(positionEvent->GetSender()->GetRenderWindow()); } // always generate a second contour, containing the whole image (used when CTRL is pressed) { // copy point from float* to mitk::Contour ContourModel::Pointer contourInImageIndexCoordinates = ContourModel::New(); contourInImageIndexCoordinates->Expand(timeStep + 1); contourInImageIndexCoordinates->SetClosed(true, timeStep); Point3D newPoint; newPoint[0] = 0; newPoint[1] = 0; newPoint[2] = 0.0; contourInImageIndexCoordinates->AddVertex( newPoint, timeStep ); newPoint[0] = originalPicSlice->n[0]; newPoint[1] = 0; newPoint[2] = 0.0; contourInImageIndexCoordinates->AddVertex( newPoint, timeStep ); newPoint[0] = originalPicSlice->n[0]; newPoint[1] = originalPicSlice->n[1]; newPoint[2] = 0.0; contourInImageIndexCoordinates->AddVertex( newPoint, timeStep ); newPoint[0] = 0; newPoint[1] = originalPicSlice->n[1]; newPoint[2] = 0.0; contourInImageIndexCoordinates->AddVertex( newPoint, timeStep ); m_WholeImageContourInWorldCoordinates = FeedbackContourTool::BackProjectContourFrom2DSlice( workingSlice->GetGeometry(), contourInImageIndexCoordinates, true ); // true, correct the result from ipMITKSegmentationGetContour8N // 3. Show the contour FeedbackContourTool::SetFeedbackContour( *m_SegmentationContourInWorldCoordinates ); FeedbackContourTool::SetFeedbackContourVisible(true); mitk::RenderingManager::GetInstance()->RequestUpdate(positionEvent->GetSender()->GetRenderWindow()); } free(contourPoints); return true; } bool mitk::SetRegionTool::OnMouseReleased( StateMachineAction*, InteractionEvent* interactionEvent ) { if ( SegTool2D::CanHandleEvent(interactionEvent) < 1.0 ) return false; // 1. Hide the feedback contour, find out which slice the user clicked, find out which slice of the toolmanager's working image corresponds to that FeedbackContourTool::SetFeedbackContourVisible(false); mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); //const PositionEvent* positionEvent = dynamic_cast(stateEvent->GetEvent()); if (!positionEvent) return false; assert( positionEvent->GetSender()->GetRenderWindow() ); mitk::RenderingManager::GetInstance()->RequestUpdate(positionEvent->GetSender()->GetRenderWindow()); int timeStep = positionEvent->GetSender()->GetTimeStep(); if (!m_FillContour && !m_StatusFillWholeSlice) return true; if ( FeedbackContourTool::CanHandleEvent(interactionEvent) < 1.0 ) return false; DataNode* workingNode( m_ToolManager->GetWorkingData(0) ); if (!workingNode) return false; Image* image = dynamic_cast(workingNode->GetData()); + const AbstractTransformGeometry* abstractTransformGeometry( dynamic_cast (positionEvent->GetSender()->GetCurrentWorldPlaneGeometry() ) ); const PlaneGeometry* planeGeometry( dynamic_cast (positionEvent->GetSender()->GetCurrentWorldPlaneGeometry() ) ); - if ( !image || !planeGeometry ) return false; + if ( !image || !planeGeometry || abstractTransformGeometry ) return false; Image::Pointer slice = FeedbackContourTool::GetAffectedImageSliceAs2DImage( positionEvent, image ); if ( slice.IsNull() ) { MITK_ERROR << "Unable to extract slice." << std::endl; return false; } ContourModel* feedbackContour( FeedbackContourTool::GetFeedbackContour() ); ContourModel::Pointer projectedContour = FeedbackContourTool::ProjectContourTo2DSlice( slice, feedbackContour, false, false ); // false: don't add 0.5 (done by FillContourInSlice) // false: don't constrain the contour to the image's inside if (projectedContour.IsNull()) return false; FeedbackContourTool::FillContourInSlice( projectedContour, timeStep, slice, m_PaintingPixelValue ); this->WriteBackSegmentationResult(positionEvent, slice); m_WholeImageContourInWorldCoordinates = NULL; m_SegmentationContourInWorldCoordinates = NULL; return true; } /** Called when the CTRL key is pressed. Will change the painting pixel value from 0 to 1 or from 1 to 0. */ bool mitk::SetRegionTool::OnInvertLogic( StateMachineAction*, InteractionEvent* interactionEvent ) { if ( FeedbackContourTool::CanHandleEvent(interactionEvent) < 1.0 ) return false; mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); //const PositionEvent* positionEvent = dynamic_cast(stateEvent->GetEvent()); if (!positionEvent) return false; if (m_StatusFillWholeSlice) { // use contour extracted from image data if (m_SegmentationContourInWorldCoordinates.IsNotNull()) FeedbackContourTool::SetFeedbackContour( *m_SegmentationContourInWorldCoordinates ); mitk::RenderingManager::GetInstance()->RequestUpdate(positionEvent->GetSender()->GetRenderWindow()); } else { // use some artificial contour if (m_WholeImageContourInWorldCoordinates.IsNotNull()) FeedbackContourTool::SetFeedbackContour( *m_WholeImageContourInWorldCoordinates ); mitk::RenderingManager::GetInstance()->RequestUpdate(positionEvent->GetSender()->GetRenderWindow()); } m_StatusFillWholeSlice = !m_StatusFillWholeSlice; return true; }