diff --git a/Modules/Core/include/mitkUIDGenerator.h b/Modules/Core/include/mitkUIDGenerator.h index 12ee711313..0b7931f039 100644 --- a/Modules/Core/include/mitkUIDGenerator.h +++ b/Modules/Core/include/mitkUIDGenerator.h @@ -1,44 +1,44 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef MITK_UID_GENERATOR_INDCLUDED_FASAWE #define MITK_UID_GENERATOR_INDCLUDED_FASAWE #include #include namespace mitk { /*! \brief Generated unique IDs Creates unique IDs. The current implementation uses the UUID specification (https://www.ietf.org/rfc/rfc4122.txt) and random generator. - One may define a prefix for the UID string. But it is not needed do guarantee uniquness. It is - just a human readable addition to see for which e.g. purpose the UID was generated. + One may define a prefix for the UID string. But it is not needed to guarantee uniquness. It is + just a human readable addition, e.g. to see for which purpose the UID was generated. */ class MITKCORE_EXPORT UIDGenerator { public: - UIDGenerator(const char * prefix = ""); + explicit UIDGenerator(const char * prefix = ""); /** @return Returns a unique ID as string. You will get another unique ID each time you call GetUID. */ std::string GetUID(); private: std::string m_Prefix; }; } // namespace mitk #endif diff --git a/Modules/Core/src/Algorithms/mitkUIDGenerator.cpp b/Modules/Core/src/Algorithms/mitkUIDGenerator.cpp index d80e10b9db..8cf27eacd2 100644 --- a/Modules/Core/src/Algorithms/mitkUIDGenerator.cpp +++ b/Modules/Core/src/Algorithms/mitkUIDGenerator.cpp @@ -1,36 +1,42 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include #include +#include + #include #include #include +boost::uuids::random_generator uuidGen; +std::mutex uuidGen_mutex; mitk::UIDGenerator::UIDGenerator(const char *prefix) : m_Prefix(prefix) { } std::string mitk::UIDGenerator::GetUID() { std::ostringstream s; - auto gen = boost::uuids::random_generator(); - auto uuid = gen(); - s << m_Prefix << uuid; + { + std::lock_guard guard(uuidGen_mutex); + auto uuid = uuidGen(); + s << m_Prefix << uuid; + } return s.str(); } diff --git a/Modules/PhotoacousticsLib/MitkPAPhantomGenerator/PAPhantomGenerator.cpp b/Modules/PhotoacousticsLib/MitkPAPhantomGenerator/PAPhantomGenerator.cpp index bfe738fb41..1f81720dbb 100644 --- a/Modules/PhotoacousticsLib/MitkPAPhantomGenerator/PAPhantomGenerator.cpp +++ b/Modules/PhotoacousticsLib/MitkPAPhantomGenerator/PAPhantomGenerator.cpp @@ -1,226 +1,225 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include #include #include #include #include #include #include #include #include #include using namespace mitk::pa; TissueGeneratorParameters::Pointer CreatePhantom_04_04_18_Parameters() { auto returnParameters = TissueGeneratorParameters::New(); returnParameters->SetAirThicknessInMillimeters(12); returnParameters->SetMinBackgroundAbsorption(0.1); returnParameters->SetMaxBackgroundAbsorption(0.1); returnParameters->SetBackgroundAnisotropy(0.9); returnParameters->SetBackgroundScattering(15); returnParameters->SetCalculateNewVesselPositionCallback(&VesselMeanderStrategy::CalculateNewDirectionVectorInStraightLine); returnParameters->SetDoPartialVolume(true); returnParameters->SetMinNumberOfVessels(1); returnParameters->SetMaxNumberOfVessels(8); returnParameters->SetMinVesselAbsorption(1); returnParameters->SetMaxVesselAbsorption(10); returnParameters->SetMinVesselAnisotropy(0.9); returnParameters->SetMaxVesselAnisotropy(0.9); returnParameters->SetMinVesselBending(0.1); returnParameters->SetMaxVesselBending(0.3); returnParameters->SetMinVesselRadiusInMillimeters(0.25); returnParameters->SetMaxVesselRadiusInMillimeters(4); returnParameters->SetMinVesselScattering(15); returnParameters->SetMaxVesselScattering(15); returnParameters->SetMinVesselZOrigin(1.6); returnParameters->SetMaxVesselZOrigin(4); returnParameters->SetVesselBifurcationFrequency(5000); returnParameters->SetRandomizePhysicalProperties(false); returnParameters->SetSkinThicknessInMillimeters(0); returnParameters->SetUseRngSeed(false); returnParameters->SetVoxelSpacingInCentimeters(0.03); returnParameters->SetXDim(140); returnParameters->SetYDim(100); returnParameters->SetZDim(180); //returnParameters->SetVoxelSpacingInCentimeters(0.015); //returnParameters->SetXDim(280); //returnParameters->SetYDim(200); //returnParameters->SetZDim(360); returnParameters->SetForceVesselsMoveAlongYDirection(true); //returnParameters->SetVoxelSpacingInCentimeters(0.0075); //returnParameters->SetXDim(560); //returnParameters->SetYDim(400); //returnParameters->SetZDim(720); return returnParameters; } struct InputParameters { std::string saveFolderPath; std::string identifyer; std::string exePath; std::string probePath; bool empty; bool verbose; }; InputParameters parseInput(int argc, char* argv[]) { MITK_INFO << "Parsing arguments..."; mitkCommandLineParser parser; parser.setCategory("MITK-Photoacoustics"); parser.setTitle("Mitk Tissue Batch Generator"); parser.setDescription("Creates in silico tissue in batch processing and automatically calculates fluence values for the central slice of the volume."); parser.setContributor("Computer Assisted Medical Interventions, DKFZ"); parser.setArgumentPrefix("--", "-"); parser.beginGroup("Required parameters"); parser.addArgument( "savePath", "s", mitkCommandLineParser::Directory, "Input save folder (directory)", "input save folder", us::Any(), false, false, false, mitkCommandLineParser::Input); parser.addArgument( "mitkMcxyz", "m", mitkCommandLineParser::File, "MitkMcxyz binary (file)", "path to the MitkMcxyz binary", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.endGroup(); parser.beginGroup("Optional parameters"); parser.addArgument( "probe", "p", mitkCommandLineParser::File, "xml probe file (file)", "file to the definition of the used probe (*.xml)", us::Any(), true, false, false, mitkCommandLineParser::Output); parser.addArgument( "verbose", "v", mitkCommandLineParser::Bool, "Verbose Output", "Whether to produce verbose, or rather debug output"); parser.addArgument( "identifyer", "i", mitkCommandLineParser::String, "Generator identifyer (string)", "A unique identifyer for the calculation instance"); parser.addArgument( "empty-volume", "e", mitkCommandLineParser::Bool, "omit vessel structures (boolean flag)", "Whether to create an empty volume with no structures inside."); parser.endGroup(); InputParameters input; std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size() == 0) exit(-1); if (parsedArgs.count("empty-volume")) { input.empty = us::any_cast(parsedArgs["empty-volume"]); } else { input.empty = false; } if (parsedArgs.count("verbose")) { input.verbose = us::any_cast(parsedArgs["verbose"]); } else { input.verbose = false; } if (parsedArgs.count("savePath")) { input.saveFolderPath = us::any_cast(parsedArgs["savePath"]); } if (parsedArgs.count("mitkMcxyz")) { input.exePath = us::any_cast(parsedArgs["mitkMcxyz"]); } if (parsedArgs.count("probe")) { input.probePath = us::any_cast(parsedArgs["probe"]); } if (parsedArgs.count("identifyer")) { input.identifyer = us::any_cast(parsedArgs["identifyer"]); } else { - auto uid = mitk::UIDGenerator(""); - input.identifyer = uid.GetUID(); + input.identifyer = mitk::UIDGenerator().GetUID(); } MITK_INFO << "Parsing arguments...[Done]"; return input; } int main(int argc, char * argv[]) { auto input = parseInput(argc, argv); auto parameters = CreatePhantom_04_04_18_Parameters(); if (input.empty) { parameters->SetMaxNumberOfVessels(0); parameters->SetMinNumberOfVessels(0); } MITK_INFO(input.verbose) << "Generating tissue.."; auto resultTissue = InSilicoTissueGenerator::GenerateInSilicoData(parameters); MITK_INFO(input.verbose) << "Generating tissue..[Done]"; auto inputfolder = std::string(input.saveFolderPath + "input/"); auto outputfolder = std::string(input.saveFolderPath + "output/"); if (!itksys::SystemTools::FileIsDirectory(inputfolder)) { itksys::SystemTools::MakeDirectory(inputfolder); } if (!itksys::SystemTools::FileIsDirectory(outputfolder)) { itksys::SystemTools::MakeDirectory(outputfolder); } std::string savePath = input.saveFolderPath + "input/Phantom_" + input.identifyer + ".nrrd"; mitk::IOUtil::Save(resultTissue->ConvertToMitkImage(), savePath); std::string outputPath = input.saveFolderPath + "output/Phantom_" + input.identifyer + "/"; resultTissue = nullptr; if (!itksys::SystemTools::FileIsDirectory(outputPath)) { itksys::SystemTools::MakeDirectory(outputPath); } outputPath = outputPath + "Fluence_Phantom_" + input.identifyer; MITK_INFO(input.verbose) << "Simulating fluence.."; int result = -4; std::string cmdString = std::string(input.exePath + " -i " + savePath + " -o " + (outputPath + ".nrrd") + " -yo " + "0" + " -p " + input.probePath + " -n 10000000"); MITK_INFO << "Executing: " << cmdString; result = std::system(cmdString.c_str()); MITK_INFO << result; MITK_INFO(input.verbose) << "Simulating fluence..[Done]"; } diff --git a/Modules/PhotoacousticsLib/MitkTissueBatchGenerator/TissueBatchGenerator.cpp b/Modules/PhotoacousticsLib/MitkTissueBatchGenerator/TissueBatchGenerator.cpp index 943441e1f0..7f2237754d 100644 --- a/Modules/PhotoacousticsLib/MitkTissueBatchGenerator/TissueBatchGenerator.cpp +++ b/Modules/PhotoacousticsLib/MitkTissueBatchGenerator/TissueBatchGenerator.cpp @@ -1,390 +1,389 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include #include #include #include #include #include #include #include #include using namespace mitk::pa; TissueGeneratorParameters::Pointer CreateMultiHB_13_02_18_Parameters() { auto returnParameters = TissueGeneratorParameters::New(); returnParameters->SetAirThicknessInMillimeters(1.8); returnParameters->SetMinBackgroundAbsorption(0.001); returnParameters->SetMaxBackgroundAbsorption(0.2); returnParameters->SetBackgroundAnisotropy(0.9); returnParameters->SetBackgroundScattering(15); returnParameters->SetCalculateNewVesselPositionCallback(&VesselMeanderStrategy::CalculateNewRandomlyDivergingDirectionVector); returnParameters->SetDoPartialVolume(true); returnParameters->SetMinNumberOfVessels(1); returnParameters->SetMaxNumberOfVessels(7); returnParameters->SetMinVesselAbsorption(1); returnParameters->SetMaxVesselAbsorption(12); returnParameters->SetMinVesselAnisotropy(0.9); returnParameters->SetMaxVesselAnisotropy(0.9); returnParameters->SetMinVesselBending(0); returnParameters->SetMaxVesselBending(0.2); returnParameters->SetMinVesselRadiusInMillimeters(0.5); returnParameters->SetMaxVesselRadiusInMillimeters(6); returnParameters->SetMinVesselScattering(15); returnParameters->SetMaxVesselScattering(15); returnParameters->SetMinVesselZOrigin(1); returnParameters->SetMaxVesselZOrigin(3); returnParameters->SetVesselBifurcationFrequency(5000); returnParameters->SetRandomizePhysicalProperties(false); returnParameters->SetSkinThicknessInMillimeters(0); returnParameters->SetUseRngSeed(false); returnParameters->SetVoxelSpacingInCentimeters(0.06); returnParameters->SetXDim(70); returnParameters->SetYDim(100); returnParameters->SetZDim(100); returnParameters->SetMCflag(4); return returnParameters; } TissueGeneratorParameters::Pointer CreateBaselineHB_13_02_18_Parameters() { auto returnParameters = TissueGeneratorParameters::New(); returnParameters->SetAirThicknessInMillimeters(1.8); returnParameters->SetMinBackgroundAbsorption(0.001); returnParameters->SetMaxBackgroundAbsorption(0.2); returnParameters->SetBackgroundAnisotropy(0.9); returnParameters->SetBackgroundScattering(15); returnParameters->SetCalculateNewVesselPositionCallback(&VesselMeanderStrategy::CalculateNewRandomlyDivergingDirectionVector); returnParameters->SetDoPartialVolume(true); returnParameters->SetMinNumberOfVessels(1); returnParameters->SetMaxNumberOfVessels(1); returnParameters->SetMinVesselAbsorption(4.73); returnParameters->SetMaxVesselAbsorption(4.73); returnParameters->SetMinVesselAnisotropy(0.9); returnParameters->SetMaxVesselAnisotropy(0.9); returnParameters->SetMinVesselBending(0); returnParameters->SetMaxVesselBending(0.2); returnParameters->SetMinVesselRadiusInMillimeters(3); returnParameters->SetMaxVesselRadiusInMillimeters(3); returnParameters->SetMinVesselScattering(15); returnParameters->SetMaxVesselScattering(15); returnParameters->SetMinVesselZOrigin(1); returnParameters->SetMaxVesselZOrigin(3); returnParameters->SetVesselBifurcationFrequency(5000); returnParameters->SetRandomizePhysicalProperties(false); returnParameters->SetSkinThicknessInMillimeters(0); returnParameters->SetUseRngSeed(false); returnParameters->SetVoxelSpacingInCentimeters(0.06); returnParameters->SetXDim(70); returnParameters->SetYDim(100); returnParameters->SetZDim(100); returnParameters->SetMCflag(4); return returnParameters; } TissueGeneratorParameters::Pointer CreateSingleVesselHeterogeneousBackground_08_02_18_Parameters() { auto returnParameters = TissueGeneratorParameters::New(); returnParameters->SetAirThicknessInMillimeters(1.8); returnParameters->SetMinBackgroundAbsorption(0.001); returnParameters->SetMaxBackgroundAbsorption(0.2); returnParameters->SetBackgroundAnisotropy(0.9); returnParameters->SetBackgroundScattering(15); returnParameters->SetCalculateNewVesselPositionCallback(&VesselMeanderStrategy::CalculateNewRandomlyDivergingDirectionVector); returnParameters->SetDoPartialVolume(true); returnParameters->SetMinNumberOfVessels(1); returnParameters->SetMaxNumberOfVessels(1); returnParameters->SetMinVesselAbsorption(1); returnParameters->SetMaxVesselAbsorption(12); returnParameters->SetMinVesselAnisotropy(0.9); returnParameters->SetMaxVesselAnisotropy(0.9); returnParameters->SetMinVesselBending(0); returnParameters->SetMaxVesselBending(0.2); returnParameters->SetMinVesselRadiusInMillimeters(0.5); returnParameters->SetMaxVesselRadiusInMillimeters(6); returnParameters->SetMinVesselScattering(15); returnParameters->SetMaxVesselScattering(15); returnParameters->SetMinVesselZOrigin(1); returnParameters->SetMaxVesselZOrigin(3); returnParameters->SetVesselBifurcationFrequency(5000); returnParameters->SetRandomizePhysicalProperties(false); returnParameters->SetSkinThicknessInMillimeters(0); returnParameters->SetUseRngSeed(false); returnParameters->SetVoxelSpacingInCentimeters(0.06); returnParameters->SetXDim(70); returnParameters->SetYDim(100); returnParameters->SetZDim(100); returnParameters->SetMCflag(4); return returnParameters; } TissueGeneratorParameters::Pointer CreateMultivessel_19_12_17_Parameters() { auto returnParameters = TissueGeneratorParameters::New(); returnParameters->SetAirThicknessInMillimeters(12); returnParameters->SetMinBackgroundAbsorption(0.1); returnParameters->SetMaxBackgroundAbsorption(0.1); returnParameters->SetBackgroundAnisotropy(0.9); returnParameters->SetBackgroundScattering(15); returnParameters->SetCalculateNewVesselPositionCallback(&VesselMeanderStrategy::CalculateNewRandomlyDivergingDirectionVector); returnParameters->SetDoPartialVolume(true); returnParameters->SetMinNumberOfVessels(1); returnParameters->SetMaxNumberOfVessels(7); returnParameters->SetMinVesselAbsorption(2); returnParameters->SetMaxVesselAbsorption(8); returnParameters->SetMinVesselAnisotropy(0.9); returnParameters->SetMaxVesselAnisotropy(0.9); returnParameters->SetMinVesselBending(0.1); returnParameters->SetMaxVesselBending(0.3); returnParameters->SetMinVesselRadiusInMillimeters(0.5); returnParameters->SetMaxVesselRadiusInMillimeters(4); returnParameters->SetMinVesselScattering(15); returnParameters->SetMaxVesselScattering(15); returnParameters->SetMinVesselZOrigin(2.2); returnParameters->SetMaxVesselZOrigin(4); returnParameters->SetVesselBifurcationFrequency(5000); returnParameters->SetRandomizePhysicalProperties(false); returnParameters->SetSkinThicknessInMillimeters(0); returnParameters->SetUseRngSeed(false); returnParameters->SetVoxelSpacingInCentimeters(0.06); returnParameters->SetXDim(70); returnParameters->SetYDim(100); returnParameters->SetZDim(100); return returnParameters; } TissueGeneratorParameters::Pointer CreateMultivessel_19_10_17_Parameters() { auto returnParameters = TissueGeneratorParameters::New(); returnParameters->SetAirThicknessInMillimeters(12); returnParameters->SetMinBackgroundAbsorption(0.1); returnParameters->SetMaxBackgroundAbsorption(0.1); returnParameters->SetBackgroundAnisotropy(0.9); returnParameters->SetBackgroundScattering(15); returnParameters->SetCalculateNewVesselPositionCallback(&VesselMeanderStrategy::CalculateNewRandomlyDivergingDirectionVector); returnParameters->SetDoPartialVolume(true); returnParameters->SetMinNumberOfVessels(1); returnParameters->SetMaxNumberOfVessels(7); returnParameters->SetMinVesselAbsorption(2); returnParameters->SetMaxVesselAbsorption(8); returnParameters->SetMinVesselAnisotropy(0.9); returnParameters->SetMaxVesselAnisotropy(0.9); returnParameters->SetMinVesselBending(0.1); returnParameters->SetMaxVesselBending(0.3); returnParameters->SetMinVesselRadiusInMillimeters(0.5); returnParameters->SetMaxVesselRadiusInMillimeters(4); returnParameters->SetMinVesselScattering(15); returnParameters->SetMaxVesselScattering(15); returnParameters->SetMinVesselZOrigin(2.2); returnParameters->SetMaxVesselZOrigin(4); returnParameters->SetVesselBifurcationFrequency(5000); returnParameters->SetRandomizePhysicalProperties(false); returnParameters->SetSkinThicknessInMillimeters(0); returnParameters->SetUseRngSeed(false); returnParameters->SetVoxelSpacingInCentimeters(0.03); returnParameters->SetXDim(140); returnParameters->SetYDim(200); returnParameters->SetZDim(180); return returnParameters; } TissueGeneratorParameters::Pointer CreateSinglevessel_19_10_17_Parameters() { auto returnParameters = TissueGeneratorParameters::New(); returnParameters->SetAirThicknessInMillimeters(12); returnParameters->SetMinBackgroundAbsorption(0.1); returnParameters->SetMaxBackgroundAbsorption(0.1); returnParameters->SetBackgroundAnisotropy(0.9); returnParameters->SetBackgroundScattering(15); returnParameters->SetCalculateNewVesselPositionCallback(&VesselMeanderStrategy::CalculateNewRandomlyDivergingDirectionVector); returnParameters->SetDoPartialVolume(true); returnParameters->SetMinNumberOfVessels(1); returnParameters->SetMaxNumberOfVessels(1); returnParameters->SetMinVesselAbsorption(2); returnParameters->SetMaxVesselAbsorption(8); returnParameters->SetMinVesselAnisotropy(0.9); returnParameters->SetMaxVesselAnisotropy(0.9); returnParameters->SetMinVesselBending(0.1); returnParameters->SetMaxVesselBending(0.3); returnParameters->SetMinVesselRadiusInMillimeters(0.5); returnParameters->SetMaxVesselRadiusInMillimeters(4); returnParameters->SetMinVesselScattering(15); returnParameters->SetMaxVesselScattering(15); returnParameters->SetMinVesselZOrigin(2.2); returnParameters->SetMaxVesselZOrigin(4); returnParameters->SetVesselBifurcationFrequency(5000); returnParameters->SetRandomizePhysicalProperties(false); returnParameters->SetSkinThicknessInMillimeters(0); returnParameters->SetUseRngSeed(false); returnParameters->SetVoxelSpacingInCentimeters(0.03); returnParameters->SetXDim(140); returnParameters->SetYDim(200); returnParameters->SetZDim(180); return returnParameters; } struct InputParameters { std::string saveFolderPath; std::string identifyer; std::string exePath; std::string probePath; bool verbose; }; InputParameters parseInput(int argc, char* argv[]) { MITK_INFO << "Paring arguments..."; mitkCommandLineParser parser; // set general information parser.setCategory("MITK-Photoacoustics"); parser.setTitle("Mitk Tissue Batch Generator"); parser.setDescription("Creates in silico tissue in batch processing and automatically calculates fluence values for the central slice of the volume."); parser.setContributor("Computer Assisted Medical Interventions, DKFZ"); // how should arguments be prefixed parser.setArgumentPrefix("--", "-"); // add each argument, unless specified otherwise each argument is optional // see mitkCommandLineParser::addArgument for more information parser.beginGroup("Required parameters"); parser.addArgument( "savePath", "s", mitkCommandLineParser::Directory, "Input save folder (directory)", "input save folder", us::Any(), false, false, false, mitkCommandLineParser::Input); parser.addArgument( "mitkMcxyz", "m", mitkCommandLineParser::File, "MitkMcxyz binary (file)", "path to the MitkMcxyz binary", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.endGroup(); parser.beginGroup("Optional parameters"); parser.addArgument( "probe", "p", mitkCommandLineParser::File, "xml probe file (file)", "file to the definition of the used probe (*.xml)", us::Any(), true, false, false, mitkCommandLineParser::Output); parser.addArgument( "verbose", "v", mitkCommandLineParser::Bool, "Verbose Output", "Whether to produce verbose, or rather debug output"); parser.addArgument( "identifyer", "i", mitkCommandLineParser::String, "Generator identifyer (string)", "A unique identifyer for the calculation instance"); InputParameters input; std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size() == 0) exit(-1); if (parsedArgs.count("verbose")) { MITK_INFO << "verbose"; input.verbose = us::any_cast(parsedArgs["verbose"]); } else { input.verbose = false; } if (parsedArgs.count("savePath")) { MITK_INFO << "savePath"; input.saveFolderPath = us::any_cast(parsedArgs["savePath"]); } if (parsedArgs.count("mitkMcxyz")) { MITK_INFO << "mitkMcxyz"; input.exePath = us::any_cast(parsedArgs["mitkMcxyz"]); } if (parsedArgs.count("probe")) { MITK_INFO << "probe"; input.probePath = us::any_cast(parsedArgs["probe"]); } if (parsedArgs.count("identifyer")) { MITK_INFO << "identifyer"; input.identifyer = us::any_cast(parsedArgs["identifyer"]); } else { MITK_INFO << "generating identifyer"; - auto uid = mitk::UIDGenerator(""); - input.identifyer = uid.GetUID(); + input.identifyer = mitk::UIDGenerator().GetUID(); } MITK_INFO << "Paring arguments...[Done]"; return input; } int main(int argc, char * argv[]) { auto input = parseInput(argc, argv); unsigned int iterationNumber = 0; while (true) { auto parameters = CreateBaselineHB_13_02_18_Parameters(); MITK_INFO(input.verbose) << "Generating tissue.."; auto resultTissue = InSilicoTissueGenerator::GenerateInSilicoData(parameters); MITK_INFO(input.verbose) << "Generating tissue..[Done]"; auto inputfolder = std::string(input.saveFolderPath + "input/"); auto outputfolder = std::string(input.saveFolderPath + "output/"); if (!itksys::SystemTools::FileIsDirectory(inputfolder)) { itksys::SystemTools::MakeDirectory(inputfolder); } if (!itksys::SystemTools::FileIsDirectory(outputfolder)) { itksys::SystemTools::MakeDirectory(outputfolder); } std::string savePath = input.saveFolderPath + "input/BaselineHB_" + input.identifyer + "_" + std::to_string(iterationNumber) + ".nrrd"; mitk::IOUtil::Save(resultTissue->ConvertToMitkImage(), savePath); std::string outputPath = input.saveFolderPath + "output/BaselineHB_" + input.identifyer + "_" + std::to_string(iterationNumber) + "/"; if (!itksys::SystemTools::FileIsDirectory(outputPath)) { itksys::SystemTools::MakeDirectory(outputPath); } outputPath = outputPath + "Fluence_BaselineHB_" + input.identifyer + "_" + std::to_string(iterationNumber); MITK_INFO(input.verbose) << "Simulating fluence.."; for(double yo = -1.8; yo <= 1.81; yo=yo+0.12) { std::string yo_string = std::to_string(round(yo*100)/100.0); int result = -4; if(!input.probePath.empty()) result = std::system(std::string(input.exePath + " -i " + savePath + " -o " + (outputPath + "_yo" + yo_string + ".nrrd") + " -yo " + yo_string + " -p " + input.probePath + " -n 100000000").c_str()); else result = std::system(std::string(input.exePath + " -i " + savePath + " -o " + (outputPath + "_yo" + yo_string + ".nrrd") + " -yo " + yo_string + " -n 100000000").c_str()); MITK_INFO << "yo: " << yo_string << ": " << result; } MITK_INFO(input.verbose) << "Simulating fluence..[Done]"; iterationNumber++; } }