diff --git a/Core/Code/DataManagement/mitkBaseData.cpp b/Core/Code/DataManagement/mitkBaseData.cpp index 80856c8679..2d5fa8c367 100644 --- a/Core/Code/DataManagement/mitkBaseData.cpp +++ b/Core/Code/DataManagement/mitkBaseData.cpp @@ -1,299 +1,296 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkBaseData.h" #include #include #include mitk::BaseData::BaseData() : m_RequestedRegionInitialized(false), m_SourceOutputIndexDuplicate(0), m_Initialized(true) { m_TimeGeometry = mitk::ProportionalTimeGeometry::New(); m_PropertyList = PropertyList::New(); } mitk::BaseData::BaseData( const BaseData &other ): itk::DataObject(), mitk::OperationActor(), m_RequestedRegionInitialized(other.m_RequestedRegionInitialized), m_SourceOutputIndexDuplicate(other.m_SourceOutputIndexDuplicate), m_Initialized(other.m_Initialized) { m_TimeGeometry = dynamic_cast(other.m_TimeGeometry->Clone().GetPointer()); m_PropertyList = other.m_PropertyList->Clone(); } mitk::BaseData::~BaseData() { - } void mitk::BaseData::InitializeTimeGeometry(unsigned int timeSteps) { mitk::Geometry3D::Pointer g3d = mitk::Geometry3D::New(); g3d->Initialize(); if ( timeSteps > 1 ) { mitk::ScalarType timeBounds[] = {0.0, 1.0}; g3d->SetTimeBounds( timeBounds ); } // The geometry is propagated automatically to the other items, // if EvenlyTimed is true... //Old timeGeometry->InitializeEvenlyTimed( g3d.GetPointer(), timeSteps ); TimeGeometry::Pointer timeGeometry = this->GetTimeGeometry(); timeGeometry->Expand(timeSteps); for (TimeStepType step = 0; step < timeSteps; ++step) { timeGeometry->SetTimeStepGeometry(g3d.GetPointer(),step); } } void mitk::BaseData::UpdateOutputInformation() { if ( this->GetSource() ) { this->GetSource()->UpdateOutputInformation(); } if (m_TimeGeometry.IsNotNull()) { m_TimeGeometry->UpdateBoundingBox(); } } const mitk::TimeGeometry* mitk::BaseData::GetUpdatedTimeGeometry() { SetRequestedRegionToLargestPossibleRegion(); UpdateOutputInformation(); return GetTimeGeometry(); } void mitk::BaseData::Expand( unsigned int timeSteps ) { if (m_TimeGeometry.IsNotNull() ) { ProportionalTimeGeometry * propTimeGeometry = dynamic_cast (m_TimeGeometry.GetPointer()); if (propTimeGeometry) { propTimeGeometry->Expand(timeSteps); return; } mitkThrow() << "TimeGeometry is of an unkown Type. Could not expand it. "; } else { this->InitializeTimeGeometry(timeSteps); } } const mitk::Geometry3D* mitk::BaseData::GetUpdatedGeometry(int t) { SetRequestedRegionToLargestPossibleRegion(); UpdateOutputInformation(); return GetGeometry(t); } void mitk::BaseData::SetGeometry(Geometry3D* geometry) { ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); if(geometry!=NULL) { timeGeometry->Initialize(geometry, 1); } SetTimeGeometry(timeGeometry); return; } void mitk::BaseData::SetTimeGeometry(TimeGeometry* geometry) { m_TimeGeometry = geometry; this->Modified(); } void mitk::BaseData::SetClonedGeometry(const Geometry3D* aGeometry3D) { SetGeometry(static_cast(aGeometry3D->Clone().GetPointer())); } void mitk::BaseData::SetClonedTimeGeometry(const TimeGeometry* geometry) { itk::LightObject::Pointer clonedGeometry = geometry->Clone(); SetTimeGeometry(dynamic_cast(clonedGeometry.GetPointer())); } void mitk::BaseData::SetClonedGeometry(const Geometry3D* aGeometry3D, unsigned int time) { if (m_TimeGeometry) { m_TimeGeometry->SetTimeStepGeometry(static_cast(aGeometry3D->Clone().GetPointer()),time); } } bool mitk::BaseData::IsEmptyTimeStep(unsigned int) const { return IsInitialized() == false; } bool mitk::BaseData::IsEmpty() const { if(IsInitialized() == false) return true; const TimeGeometry* timeGeometry = const_cast(this)->GetUpdatedTimeGeometry(); if(timeGeometry == NULL) return true; unsigned int timeSteps = timeGeometry->GetNumberOfTimeSteps(); for ( unsigned int t = 0 ; t < timeSteps ; ++t ) { if(IsEmptyTimeStep(t) == false) return false; } return true; } itk::SmartPointer mitk::BaseData::GetSource() const { return static_cast(Superclass::GetSource().GetPointer()); } mitk::PropertyList::Pointer mitk::BaseData::GetPropertyList() const { return m_PropertyList; } mitk::BaseProperty::Pointer mitk::BaseData::GetProperty(const char *propertyKey) const { return m_PropertyList->GetProperty(propertyKey); } void mitk::BaseData::SetProperty(const char *propertyKey, BaseProperty* propertyValue) { m_PropertyList->SetProperty(propertyKey, propertyValue); } void mitk::BaseData::SetPropertyList(PropertyList *pList) { m_PropertyList = pList; } void mitk::BaseData::SetOrigin(const mitk::Point3D& origin) { TimeGeometry* timeGeom = GetTimeGeometry(); assert (timeGeom != NULL); Geometry3D* geometry; TimeStepType steps = timeGeom->GetNumberOfTimeSteps(); for (TimeStepType timestep = 0; timestep < steps; ++timestep) { geometry = GetGeometry(timestep); if (geometry != NULL) { geometry->SetOrigin(origin); } } } unsigned long mitk::BaseData::GetMTime() const { unsigned long time = Superclass::GetMTime(); if(m_TimeGeometry.IsNotNull()) { if((time < m_TimeGeometry->GetMTime())) { Modified(); return Superclass::GetMTime(); } } return time; } void mitk::BaseData::Graft(const itk::DataObject*) { itkExceptionMacro(<< "Graft not implemented for mitk::BaseData subclass " << this->GetNameOfClass()) } void mitk::BaseData::CopyInformation( const itk::DataObject* data ) { const Self* bd = dynamic_cast(data); if (bd != NULL) { m_PropertyList = bd->GetPropertyList()->Clone(); if (bd->GetTimeGeometry()!=NULL) { itk::LightObject::Pointer clon = bd->GetTimeGeometry()->Clone(); m_TimeGeometry = dynamic_cast (clon.GetPointer()); } - } else { // pointer could not be cast back down; this can be the case if your filters input // and output objects differ in type; then you have to write your own GenerateOutputInformation method itkExceptionMacro(<< "mitk::BaseData::CopyInformation() cannot cast " << typeid(data).name() << " to " << typeid(Self*).name() ); } - } bool mitk::BaseData::IsInitialized() const { return m_Initialized; } void mitk::BaseData::Clear() { this->ClearData(); this->InitializeEmpty(); } void mitk::BaseData::ClearData() { if(m_Initialized) { ReleaseData(); m_Initialized = false; } } void mitk::BaseData::ExecuteOperation(mitk::Operation* /*operation*/) { //empty by default. override if needed! } void mitk::BaseData::PrintSelf(std::ostream& os, itk::Indent indent) const { os << std::endl; os << indent << " TimeGeometry: "; if(GetTimeGeometry() == NULL) os << "NULL" << std::endl; else GetTimeGeometry()->Print(os, indent); -} +} \ No newline at end of file diff --git a/Examples/Overlays/OverlayExample.cpp b/Examples/Overlays/OverlayExample.cpp index 8e12ff5e83..67e20122bf 100644 --- a/Examples/Overlays/OverlayExample.cpp +++ b/Examples/Overlays/OverlayExample.cpp @@ -1,208 +1,208 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //! [includes] #include "QmitkRegisterClasses.h" #include "QmitkRenderWindow.h" #include #include #include #include #include #include #include #include #include //! [includes] //##Documentation //## @brief Load image (nrrd format) and display it in a 2D view int main(int argc, char* argv[]) { QApplication qtapplication( argc, argv ); if (argc < 2) { fprintf( stderr, "Usage: %s [filename] \n\n", itksys::SystemTools::GetFilenameName(argv[0]).c_str() ); return 1; } // Register Qmitk-dependent global instances QmitkRegisterClasses(); //************************************************************************* // Part I: Basic initialization //************************************************************************* // Create a DataStorage // The DataStorage manages all data objects. It is used by the // rendering mechanism to render all data objects // We use the standard implementation mitk::StandaloneDataStorage. mitk::StandaloneDataStorage::Pointer dataStorage = mitk::StandaloneDataStorage::New(); //************************************************************************* // Part II: Create some data by reading a file //************************************************************************* // Create a DataNodeFactory to read a data format supported // by the DataNodeFactory (many image formats, surface formats, etc.) mitk::DataNodeFactory::Pointer reader=mitk::DataNodeFactory::New(); const char * filename = argv[1]; try { reader->SetFileName(filename); reader->Update(); //************************************************************************* // Part III: Put the data into the datastorage //************************************************************************* // Add the node to the DataStorage dataStorage->Add(reader->GetOutput()); } catch(...) { fprintf( stderr, "Could not open file %s \n\n", filename ); exit(2); } //************************************************************************* // Part IV: Create window and pass the datastorage to it //************************************************************************* // Create a RenderWindow QmitkRenderWindow renderWindow; // Tell the RenderWindow which (part of) the datastorage to render renderWindow.GetRenderer()->SetDataStorage(dataStorage); // Initialize the RenderWindow - mitk::TimeSlicedGeometry::Pointer geo = dataStorage->ComputeBoundingGeometry3D(dataStorage->GetAll()); + mitk::TimeGeometry::Pointer geo = dataStorage->ComputeBoundingGeometry(dataStorage->GetAll()); mitk::RenderingManager::GetInstance()->InitializeViews( geo ); //mitk::RenderingManager::GetInstance()->InitializeViews(); // Select a slice mitk::SliceNavigationController::Pointer sliceNaviController = renderWindow.GetSliceNavigationController(); if (sliceNaviController) sliceNaviController->GetSlice()->SetPos( 0 ); //************************************************************************* // Part V: Qt-specific initialization //************************************************************************* //! [CreateOverlayManager] mitk::OverlayManager::Pointer OverlayManagerInstance = mitk::OverlayManager::New(); mitk::BaseRenderer* renderer = mitk::BaseRenderer::GetInstance(renderWindow.GetVtkRenderWindow()); renderer->SetOverlayManager(OverlayManagerInstance); //! [CreateOverlayManager] //! [GetOverlayManagerInstance] //The id that is passed identifies the correct mitk::OverlayManager and is '0' by default. mitk::BaseRenderer* renderer2D = mitk::BaseRenderer::GetInstance(renderWindow.GetVtkRenderWindow()); mitk::OverlayManager::Pointer overlayManager = renderer2D->GetOverlayManager(); //! [GetOverlayManagerInstance] //! [AddLayouter] //This creates a 2DLayouter that is only active for the recently fetched axialRenderer and positione mitk::Overlay2DLayouter::Pointer topleftLayouter = mitk::Overlay2DLayouter::CreateLayouter(mitk::Overlay2DLayouter::STANDARD_2D_TOPLEFT(), renderer2D); //Now, the created Layouter is added to the OverlayManager and can be referred to by its identification string. overlayManager->AddLayouter(topleftLayouter.GetPointer()); //Several other Layouters can be added to the overlayManager mitk::Overlay2DLayouter::Pointer bottomLayouter = mitk::Overlay2DLayouter::CreateLayouter(mitk::Overlay2DLayouter::STANDARD_2D_BOTTOM(), renderer2D); overlayManager->AddLayouter(bottomLayouter.GetPointer()); //! [AddLayouter] //! [TextOverlay2D] //Create a textOverlay2D mitk::TextOverlay2D::Pointer textOverlay = mitk::TextOverlay2D::New(); textOverlay->SetText("Test!"); //set UTF-8 encoded text to render textOverlay->SetFontSize(40); textOverlay->SetColor(1,0,0); //Set text color to red textOverlay->SetOpacity(1); //The position of the Overlay can be set to a fixed coordinate on the display. mitk::Point2D pos; pos[0] = 10,pos[1] = 20; textOverlay->SetPosition2D(pos); //Add the overlay to the overlayManager. It is added to all registered renderers automaticly overlayManager->AddOverlay(textOverlay.GetPointer()); //Alternatively, a layouter can be used to manage the position of the overlay. If a layouter is set, the absolute position of the overlay is not used anymore //The Standard TopLeft Layouter has to be registered to the OverlayManager first overlayManager->AddLayouter(mitk::Overlay2DLayouter::CreateLayouter(mitk::Overlay2DLayouter::STANDARD_2D_TOPLEFT(), renderer2D).GetPointer()); //! [TextOverlay2D] //! [SetLayouterToOverlay] //Because a Layouter is specified by the identification string AND the Renderer, both have to be passed to the call. overlayManager->SetLayouter(textOverlay.GetPointer(),mitk::Overlay2DLayouter::STANDARD_2D_TOPLEFT(),renderer2D); //! [SetLayouterToOverlay] //! [TextOverlay3D] mitk::PointSet::Pointer pointset = mitk::PointSet::New(); // This vector is used to define an offset for the annotations, in order to show them with a margin to the actual coordinate. mitk::Point3D offset; offset[0] = .5; offset[1] = .5; offset[2] = .5; //Just a loop to create some points for(int i=0 ; i < 10 ; i++){ //To each point, a TextOverlay3D is created mitk::TextOverlay3D::Pointer textOverlay3D = mitk::TextOverlay3D::New(); mitk::Point3D point; point[0] = i*20; point[1] = i*30; point[2] = -i*50; pointset->InsertPoint(i, point); textOverlay3D->SetText("A Point"); // The Position is set to the point coordinate to create an annotation to the point in the PointSet. textOverlay3D->SetPosition3D(point); // move the annotation away from the actual point textOverlay3D->SetOffsetVector(offset); overlayManager->AddOverlay(textOverlay3D.GetPointer()); } // also show the created pointset mitk::DataNode::Pointer datanode = mitk::DataNode::New(); datanode->SetData(pointset); datanode->SetName("pointSet"); dataStorage->Add(datanode); //! [TextOverlay3D] renderWindow.show(); renderWindow.resize( 256, 256 ); return qtapplication.exec(); // cleanup: Remove References to DataStorage. This will delete the object dataStorage = NULL; } /** \example Step1.cpp */ diff --git a/Modules/DiffusionImaging/DiffusionCore/IODataStructures/mitkRegistrationObject.cpp b/Modules/DiffusionImaging/DiffusionCore/IODataStructures/mitkRegistrationObject.cpp index 8276d95253..f349fa6cba 100644 --- a/Modules/DiffusionImaging/DiffusionCore/IODataStructures/mitkRegistrationObject.cpp +++ b/Modules/DiffusionImaging/DiffusionCore/IODataStructures/mitkRegistrationObject.cpp @@ -1,45 +1,45 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkRegistrationObject.h" mitk::RegistrationObject::RegistrationObject() : m_ReferenceGeometry(0), m_Transformation(0) { } void mitk::RegistrationObject::SetReferenceGeometry(mitk::Geometry3D::Pointer geom) { if( m_ReferenceGeometry.IsNull() ) m_ReferenceGeometry = mitk::Geometry3D::New(); m_ReferenceGeometry = geom->Clone(); } void mitk::RegistrationObject::SetReferenceImage(mitk::Image::Pointer image) { - this->SetReferenceGeometry( image->GetTimeSlicedGeometry()->GetGeometry() ); + this->SetReferenceGeometry( image->GetTimeGeometry()->GetGeometryForTimeStep() ); } void mitk::RegistrationObject::SetTransformation(itk::AffineGeometryFrame::Pointer transform) { if( m_Transformation.IsNull() ) m_Transformation = mitk::AffineGeometryFrame3D::New(); m_Transformation = transform; } diff --git a/Modules/Segmentation/Algorithms/mitkDiffSliceOperation.h b/Modules/Segmentation/Algorithms/mitkDiffSliceOperation.h index 35a02a166c..55cfa8f4fa 100644 --- a/Modules/Segmentation/Algorithms/mitkDiffSliceOperation.h +++ b/Modules/Segmentation/Algorithms/mitkDiffSliceOperation.h @@ -1,139 +1,139 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkDiffSliceOperation_h_Included #define mitkDiffSliceOperation_h_Included #include "SegmentationExports.h" #include "mitkCommon.h" #include //#include "mitkCompressedImageContainer.h" #include #include #include //DEPRECATED -#include +#include namespace mitk { /** \brief An Operation for applying an edited slice to the volume. \sa DiffSliceOperationApplier The information for the operation is specified by properties: imageVolume the volume where the slice was extracted from. slice the slice to be applied. timestep the timestep in an 4D image. currentWorldGeometry specifies the axis where the slice has to be applied in the volume. This Operation can be used to realize undo-redo functionality for e.g. segmentation purposes. */ class Segmentation_EXPORT DiffSliceOperation : public Operation { public: mitkClassMacro(DiffSliceOperation, OperationActor); //itkNewMacro(DiffSliceOperation); //mitkNewMacro4Param(DiffSliceOperation,mitk::Image,mitk::Image,unsigned int, mitk::Geometry2D); /** \brief Creates an empty instance. Note that it is not valid yet. The properties of the object have to be set. */ DiffSliceOperation(); /** \brief */ DiffSliceOperation( mitk::Image* imageVolume, vtkImageData* slice, Geometry3D* sliceGeometry, unsigned int timestep, Geometry3D* currentWorldGeometry); /** \brief * * \deprecatedSince{2013_06} Please use TimeGeometry instead of TimeSlicedGeometry. For more information see @TimeGeometryGuide@ */ DEPRECATED(DiffSliceOperation( mitk::Image* imageVolume, vtkImageData* slice, TimeSlicedGeometry* sliceGeometry, unsigned int timestep, Geometry3D* currentWorldGeometry)); /** \brief Check if it is a valid operation.*/ bool IsValid(); /** \brief Set the image volume.*/ void SetImage(mitk::Image* image){ this->m_Image = image;} /** \brief Get th image volume.*/ mitk::Image* GetImage(){return this->m_Image;} /** \brief Set thee slice to be applied.*/ void SetImage(vtkImageData* slice){ this->m_Slice = slice;} /** \brief Get the slice that is applied in the operation.*/ vtkImageData* GetSlice(); /** \brief Get timeStep.*/ void SetTimeStep(unsigned int timestep){this->m_TimeStep = timestep;} /** \brief Set timeStep*/ unsigned int GetTimeStep(){return this->m_TimeStep;} /** \brief Set the axis where the slice has to be applied in the volume.*/ void SetSliceGeometry(Geometry3D* sliceGeometry){this->m_SliceGeometry = sliceGeometry;} /** \brief Get the axis where the slice has to be applied in the volume.*/ Geometry3D* GetSliceGeometry(){return this->m_SliceGeometry;} /** \brief Set the axis where the slice has to be applied in the volume. * \deprecatedSince{2013_06} Please use TimeGeometry instead of TimeSlicedGeometry. For more information see @TimeGeometryGuide@ */ void SetSliceGeometry(TimeSlicedGeometry* sliceGeometry); /** \brief Set the axis where the slice has to be applied in the volume.*/ void SetCurrentWorldGeometry(Geometry3D* worldGeometry){this->m_WorldGeometry = worldGeometry;} /** \brief Get the axis where the slice has to be applied in the volume.*/ Geometry3D* GetWorldGeometry(){return this->m_WorldGeometry;} /** \brief Set the axis where the slice has to be applied in the volume. * \deprecatedSince{2013_06} Please use TimeGeometry instead of TimeSlicedGeometry. For more information see @TimeGeometryGuide@ */ void SetCurrentWorldGeometry(TimeSlicedGeometry* worldGeometry); protected: virtual ~DiffSliceOperation(); /** \brief Callback for image observer.*/ void OnImageDeleted(); //CompressedImageContainer::Pointer m_zlibSliceContainer; mitk::Image* m_Image; vtkSmartPointer m_Slice; Geometry3D::Pointer m_SliceGeometry; unsigned int m_TimeStep; Geometry3D::Pointer m_WorldGeometry; bool m_ImageIsValid; unsigned long m_DeleteObserverTag; mitk::Geometry3D::Pointer m_GuardReferenceGeometry; }; } #endif \ No newline at end of file diff --git a/Modules/Segmentation/DataManagement/mitkContourModel.cpp b/Modules/Segmentation/DataManagement/mitkContourModel.cpp index 5529937913..4ff74c9f1c 100644 --- a/Modules/Segmentation/DataManagement/mitkContourModel.cpp +++ b/Modules/Segmentation/DataManagement/mitkContourModel.cpp @@ -1,638 +1,638 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include mitk::ContourModel::ContourModel() : m_UpdateBoundingBox(true) { //set to initial state this->InitializeEmpty(); } mitk::ContourModel::ContourModel(const mitk::ContourModel &other) : m_ContourSeries(other.m_ContourSeries), m_lineInterpolation(other.m_lineInterpolation) { m_SelectedVertex = NULL; } mitk::ContourModel::~ContourModel() { m_SelectedVertex = NULL; this->m_ContourSeries.clear();//TODO check destruction } void mitk::ContourModel::AddVertex(mitk::Point3D &vertex, int timestep) { if(!this->IsEmptyTimeStep(timestep) ) { this->AddVertex(vertex, false, timestep); } } void mitk::ContourModel::AddVertex(mitk::Point3D &vertex, bool isControlPoint, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { this->m_ContourSeries[timestep]->AddVertex(vertex, isControlPoint); this->InvokeEvent( ContourModelSizeChangeEvent() ); this->Modified();this->m_UpdateBoundingBox = true; } } void mitk::ContourModel::AddVertex(VertexType &vertex, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { this->m_ContourSeries[timestep]->AddVertex(vertex); this->InvokeEvent( ContourModelSizeChangeEvent() ); this->Modified();this->m_UpdateBoundingBox = true; } } void mitk::ContourModel::AddVertexAtFront(mitk::Point3D &vertex, int timestep) { if(!this->IsEmptyTimeStep(timestep) ) { this->AddVertexAtFront(vertex, false, timestep); } } void mitk::ContourModel::AddVertexAtFront(mitk::Point3D &vertex, bool isControlPoint, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { this->m_ContourSeries[timestep]->AddVertexAtFront(vertex, isControlPoint); this->InvokeEvent( ContourModelSizeChangeEvent() ); this->Modified();this->m_UpdateBoundingBox = true; } } void mitk::ContourModel::AddVertexAtFront(VertexType &vertex, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { this->m_ContourSeries[timestep]->AddVertexAtFront(vertex); this->InvokeEvent( ContourModelSizeChangeEvent() ); this->Modified();this->m_UpdateBoundingBox = true; } } void mitk::ContourModel::InsertVertexAtIndex(mitk::Point3D &vertex, int index, bool isControlPoint, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { if(index > 0 && this->m_ContourSeries[timestep]->GetSize() > index) { this->m_ContourSeries[timestep]->InsertVertexAtIndex(vertex, isControlPoint, index); this->InvokeEvent( ContourModelSizeChangeEvent() ); this->Modified();this->m_UpdateBoundingBox = true; } } } bool mitk::ContourModel::IsEmpty( int timestep) { if(!this->IsEmptyTimeStep(timestep)) { return this->m_ContourSeries[timestep]->IsEmpty(); } return true; } int mitk::ContourModel::GetNumberOfVertices( int timestep) const { if(!this->IsEmptyTimeStep(timestep)) { return this->m_ContourSeries[timestep]->GetSize(); } return -1; } const mitk::ContourModel::VertexType* mitk::ContourModel::GetVertexAt(int index, int timestep) const { if(!this->IsEmptyTimeStep(timestep)) { return this->m_ContourSeries[timestep]->GetVertexAt(index); } return NULL; } void mitk::ContourModel::Close( int timestep) { if(!this->IsEmptyTimeStep(timestep)) { this->m_ContourSeries[timestep]->Close(); this->InvokeEvent( ContourModelClosedEvent() ); this->Modified();this->m_UpdateBoundingBox = true; } } void mitk::ContourModel::Open( int timestep) { if(!this->IsEmptyTimeStep(timestep)) { this->m_ContourSeries[timestep]->Open(); this->InvokeEvent( ContourModelClosedEvent() ); this->Modified();this->m_UpdateBoundingBox = true; } } void mitk::ContourModel::SetIsClosed(bool isClosed, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { this->m_ContourSeries[timestep]->SetIsClosed(isClosed); this->InvokeEvent( ContourModelClosedEvent() ); this->Modified();this->m_UpdateBoundingBox = true; } } bool mitk::ContourModel::IsEmptyTimeStep( int t) const { return (t < 0) || (this->m_ContourSeries.size() <= t); } bool mitk::ContourModel::IsNearContour(mitk::Point3D &point, float eps, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { return this->m_ContourSeries[timestep]->IsNearContour(point, eps); } return false; } void mitk::ContourModel::Concatenate(mitk::ContourModel* other, int timestep, bool check) { if(!this->IsEmptyTimeStep(timestep)) { if( !this->m_ContourSeries[timestep]->IsClosed() ) { this->m_ContourSeries[timestep]->Concatenate(other->m_ContourSeries[timestep], check); this->InvokeEvent( ContourModelSizeChangeEvent() ); this->Modified();this->m_UpdateBoundingBox = true; } } } mitk::ContourModel::VertexIterator mitk::ContourModel::Begin( int timestep) { return this->IteratorBegin(timestep); } mitk::ContourModel::VertexIterator mitk::ContourModel::IteratorBegin( int timestep) { if(!this->IsEmptyTimeStep(timestep)) { return this->m_ContourSeries[timestep]->IteratorBegin(); } else { mitkThrow() << "No iterator at invalid timestep " << timestep << ". There are only " << this->GetTimeSteps() << " timesteps available."; } } mitk::ContourModel::VertexIterator mitk::ContourModel::End( int timestep) { return this->IteratorEnd(timestep); } mitk::ContourModel::VertexIterator mitk::ContourModel::IteratorEnd( int timestep) { if(!this->IsEmptyTimeStep(timestep)) { return this->m_ContourSeries[timestep]->IteratorEnd(); } else { mitkThrow() << "No iterator at invalid timestep " << timestep << ". There are only " << this->GetTimeSteps() << " timesteps available."; } } bool mitk::ContourModel::IsClosed( int timestep) { if(!this->IsEmptyTimeStep(timestep)) { return this->m_ContourSeries[timestep]->IsClosed(); } return false; } bool mitk::ContourModel::SelectVertexAt(mitk::Point3D &point, float eps, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { this->m_SelectedVertex = this->m_ContourSeries[timestep]->GetVertexAt(point, eps); } return this->m_SelectedVertex != NULL; } bool mitk::ContourModel::SelectVertexAt(int index, int timestep) { if(!this->IsEmptyTimeStep(timestep) && index >= 0) { return (this->m_SelectedVertex = this->m_ContourSeries[timestep]->GetVertexAt(index)); } return false; } bool mitk::ContourModel::SetControlVertexAt(mitk::Point3D &point, float eps, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { VertexType* vertex = this->m_ContourSeries[timestep]->GetVertexAt(point, eps); if (vertex != NULL) { vertex->IsControlPoint = true; return true; } } return false; } bool mitk::ContourModel::SetControlVertexAt(int index, int timestep) { if(!this->IsEmptyTimeStep(timestep) && index >= 0) { VertexType* vertex = this->m_ContourSeries[timestep]->GetVertexAt(index); if (vertex != NULL) { vertex->IsControlPoint = true; return true; } } return false; } bool mitk::ContourModel::RemoveVertex(VertexType* vertex, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { if(this->m_ContourSeries[timestep]->RemoveVertex(vertex)) { this->Modified();this->m_UpdateBoundingBox = true; this->InvokeEvent( ContourModelSizeChangeEvent() ); return true; } } return false; } bool mitk::ContourModel::RemoveVertexAt(int index, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { if(this->m_ContourSeries[timestep]->RemoveVertexAt(index)) { this->Modified();this->m_UpdateBoundingBox = true; this->InvokeEvent( ContourModelSizeChangeEvent() ); return true; } } return false; } bool mitk::ContourModel::RemoveVertexAt(mitk::Point3D &point, float eps, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { if(this->m_ContourSeries[timestep]->RemoveVertexAt(point, eps)) { this->Modified();this->m_UpdateBoundingBox = true; this->InvokeEvent( ContourModelSizeChangeEvent() ); return true; } } return false; } void mitk::ContourModel::ShiftSelectedVertex(mitk::Vector3D &translate) { if(this->m_SelectedVertex) { this->ShiftVertex(this->m_SelectedVertex,translate); this->Modified();this->m_UpdateBoundingBox = true; } } void mitk::ContourModel::ShiftContour(mitk::Vector3D &translate, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { VertexListType* vList = this->m_ContourSeries[timestep]->GetVertexList(); VertexIterator it = vList->begin(); VertexIterator end = vList->end(); //shift all vertices while(it != end) { this->ShiftVertex((*it),translate); it++; } this->Modified();this->m_UpdateBoundingBox = true; this->InvokeEvent( ContourModelShiftEvent() ); } } void mitk::ContourModel::ShiftVertex(VertexType* vertex, mitk::Vector3D &vector) { vertex->Coordinates[0] += vector[0]; vertex->Coordinates[1] += vector[1]; vertex->Coordinates[2] += vector[2]; } void mitk::ContourModel::Clear(int timestep) { if(!this->IsEmptyTimeStep(timestep)) { //clear data at timestep this->m_ContourSeries[timestep]->Clear(); this->InitializeEmpty(); this->Modified();this->m_UpdateBoundingBox = true; } } void mitk::ContourModel::Expand( int timeSteps ) { int oldSize = this->m_ContourSeries.size(); if( timeSteps > 0 && timeSteps > oldSize ) { Superclass::Expand(timeSteps); //insert contours for each new timestep for( int i = oldSize; i < timeSteps; i++) { m_ContourSeries.push_back(mitk::ContourElement::New()); } this->InvokeEvent( ContourModelExpandTimeBoundsEvent() ); } } void mitk::ContourModel::SetRequestedRegionToLargestPossibleRegion () { //no support for regions } bool mitk::ContourModel::RequestedRegionIsOutsideOfTheBufferedRegion () { //no support for regions return false; } bool mitk::ContourModel::VerifyRequestedRegion () { //no support for regions return true; } const mitk::Geometry3D * mitk::ContourModel::GetUpdatedGeometry (int t) { return Superclass::GetUpdatedGeometry(t); } mitk::Geometry3D* mitk::ContourModel::GetGeometry (int t)const { return Superclass::GetGeometry(t); } void mitk::ContourModel::SetRequestedRegion( const itk::DataObject *data) { //no support for regions } void mitk::ContourModel::Clear() { //clear data and set to initial state again this->ClearData(); this->InitializeEmpty(); this->Modified();this->m_UpdateBoundingBox = true; } void mitk::ContourModel::RedistributeControlVertices(int period, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { this->m_ContourSeries[timestep]->RedistributeControlVertices(this->GetSelectedVertex(), period); this->InvokeEvent( ContourModelClosedEvent() ); this->Modified();this->m_UpdateBoundingBox = true; } } void mitk::ContourModel::ClearData() { //call the superclass, this releases the data of BaseData Superclass::ClearData(); //clear out the time resolved contours this->m_ContourSeries.clear(); } void mitk::ContourModel::Initialize() { this->InitializeEmpty(); this->Modified();this->m_UpdateBoundingBox = true; } void mitk::ContourModel::Initialize(mitk::ContourModel &other) { unsigned int numberOfTimesteps = other.GetTimeGeometry()->GetNumberOfTimeSteps(); - this->InitializeTimeSlicedGeometry(numberOfTimesteps); + this->InitializeTimeGeometry(numberOfTimesteps); for(int currentTimestep = 0; currentTimestep < numberOfTimesteps; currentTimestep++) { this->m_ContourSeries.push_back(mitk::ContourElement::New()); this->SetIsClosed(other.IsClosed(currentTimestep),currentTimestep); } m_SelectedVertex = NULL; this->m_lineInterpolation = other.m_lineInterpolation; this->Modified();this->m_UpdateBoundingBox = true; } void mitk::ContourModel::InitializeEmpty() { //clear data at timesteps this->m_ContourSeries.resize(0); this->m_ContourSeries.push_back(mitk::ContourElement::New()); //set number of timesteps to one this->InitializeTimeGeometry(1); m_SelectedVertex = NULL; this->m_lineInterpolation = ContourModel::LINEAR; } void mitk::ContourModel::UpdateOutputInformation() { if ( this->GetSource() ) { this->GetSource()->UpdateOutputInformation(); } if(this->m_UpdateBoundingBox) { //update the bounds of the geometry according to the stored vertices float mitkBounds[6]; //calculate the boundingbox at each timestep typedef itk::BoundingBox BoundingBoxType; typedef BoundingBoxType::PointsContainer PointsContainer; int timesteps = this->GetTimeSteps(); //iterate over the timesteps for(int currenTimeStep = 0; currenTimeStep < timesteps; currenTimeStep++) { if( dynamic_cast< mitk::PlaneGeometry* >(this->GetGeometry(currenTimeStep)) ) { //do not update bounds for 2D geometries, as they are unfortunately defined with min bounds 0! return; } else {//we have a 3D geometry -> let's update bounds //only update bounds if the contour was modified if (this->GetMTime() > this->GetGeometry(currenTimeStep)->GetBoundingBox()->GetMTime()) { mitkBounds[0] = 0.0; mitkBounds[1] = 0.0; mitkBounds[2] = 0.0; mitkBounds[3] = 0.0; mitkBounds[4] = 0.0; mitkBounds[5] = 0.0; BoundingBoxType::Pointer boundingBox = BoundingBoxType::New(); PointsContainer::Pointer points = PointsContainer::New(); VertexIterator it = this->IteratorBegin(currenTimeStep); VertexIterator end = this->IteratorEnd(currenTimeStep); //fill the boundingbox with the points while(it != end) { Point3D currentP = (*it)->Coordinates; BoundingBoxType::PointType p; p.CastFrom(currentP); points->InsertElement(points->Size(), p); it++; } //construct the new boundingBox boundingBox->SetPoints(points); boundingBox->ComputeBoundingBox(); BoundingBoxType::BoundsArrayType tmp = boundingBox->GetBounds(); mitkBounds[0] = tmp[0]; mitkBounds[1] = tmp[1]; mitkBounds[2] = tmp[2]; mitkBounds[3] = tmp[3]; mitkBounds[4] = tmp[4]; mitkBounds[5] = tmp[5]; //set boundingBox at current timestep Geometry3D* geometry3d = this->GetGeometry(currenTimeStep); geometry3d->SetBounds(mitkBounds); } } } this->m_UpdateBoundingBox = false; } GetTimeGeometry()->Update(); } void mitk::ContourModel::ExecuteOperation(mitk::Operation* operation) { //not supported yet } \ No newline at end of file diff --git a/Modules/Segmentation/IO/mitkContourModelWriter.h b/Modules/Segmentation/IO/mitkContourModelWriter.h index d9d745dff5..c3792f7659 100644 --- a/Modules/Segmentation/IO/mitkContourModelWriter.h +++ b/Modules/Segmentation/IO/mitkContourModelWriter.h @@ -1,298 +1,298 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _MITK_CONTOURMODEL_WRITER__H_ #define _MITK_CONTOURMODEL_WRITER__H_ #include "SegmentationExports.h" #include #include #include //DEPRECATED -#include +#include namespace mitk { /** * @brief XML-based writer for mitk::ContourModels * * XML-based writer for mitk::ContourModels. Multiple ContourModels can be written in * a single XML file by simply setting multiple inputs to the filter. * * @ingroup PSIO * @ingroup Process */ class Segmentation_EXPORT ContourModelWriter : public mitk::FileWriterWithInformation { public: mitkClassMacro( ContourModelWriter, mitk::FileWriter ); mitkWriterMacro; itkNewMacro( Self ); typedef mitk::ContourModel InputType; typedef InputType::Pointer InputTypePointer; /** * Sets the filename of the file to write. * @param FileName the name of the file to write. */ itkSetStringMacro( FileName ); /** * @returns the name of the file to be written to disk. */ itkGetStringMacro( FileName ); /** * @warning multiple write not (yet) supported */ itkSetStringMacro( FilePrefix ); /** * @warning multiple write not (yet) supported */ itkGetStringMacro( FilePrefix ); /** * @warning multiple write not (yet) supported */ itkSetStringMacro( FilePattern ); /** * @warning multiple write not (yet) supported */ itkGetStringMacro( FilePattern ); /** * Sets the 0'th input object for the filter. * @param input the first input for the filter. */ void SetInput( InputType* input ); /** * Sets the n'th input object for the filter. If num is * larger than GetNumberOfInputs() the number of inputs is * resized appropriately. * @param input the n'th input for the filter. */ void SetInput( const unsigned int& num, InputType* input); /** * @returns the 0'th input object of the filter. */ ContourModel* GetInput(); /** * @param num the index of the desired output object. * @returns the n'th input object of the filter. */ ContourModel* GetInput( const unsigned int& num ); /** * @brief Return the possible file extensions for the data type associated with the writer */ virtual std::vector GetPossibleFileExtensions(); /** * @brief Return the extension to be added to the filename. */ virtual std::string GetFileExtension(); /** * @brief Check if the Writer can write the Content of the */ virtual bool CanWriteDataType( DataNode* ); /** * @brief Return the MimeType of the saved File. */ virtual std::string GetWritenMIMEType(); /** * @brief Set the DataTreenode as Input. Important: The Writer always have a SetInput-Function. */ virtual void SetInput( DataNode* ); /** * @returns whether the last write attempt was successful or not. */ bool GetSuccess() const; /*++++++ FileWriterWithInformation methods +++++++*/ virtual const char *GetDefaultFilename() { return "ContourModel.cnt"; } virtual const char *GetFileDialogPattern() { return "MITK ContourModel (*.cnt)"; } virtual const char *GetDefaultExtension() { return ".cnt"; } virtual bool CanWriteBaseDataType(BaseData::Pointer data) { return (dynamic_cast(data.GetPointer()) != NULL); }; virtual void DoWrite(BaseData::Pointer data) { if (this->CanWriteBaseDataType(data)) { this->SetInput(dynamic_cast(data.GetPointer())); this->Update(); } } protected: /** * Constructor. */ ContourModelWriter(); /** * Virtual destructor. */ virtual ~ContourModelWriter(); /** * Writes the XML file */ virtual void GenerateData(); /** * Resizes the number of inputs of the writer. * The inputs are initialized by empty ContourModels * @param num the new number of inputs */ virtual void ResizeInputs( const unsigned int& num ); /** * Converts an arbitrary type to a string. The type has to * support the << operator. This works fine at least for integral * data types as float, int, long etc. * @param value the value to convert * @returns the string representation of value */ template < typename T> std::string ConvertToString( T value ); /** * Writes an XML representation of the given point set to * an outstream. The XML-Header an root node is not included! * @param contourModel the point set to be converted to xml * @param out the stream to write to. */ void WriteXML( mitk::ContourModel* contourModel, std::ofstream& out ); /** * Writes the geometry information of the TimeGeometry to an outstream. * The root tag is not included. * @param geometry the TimeGeometry of the contour. * @param the stream to write to. */ void WriteGeometryInformation( mitk::TimeGeometry* geometry, std::ofstream& out ); /** * Writes the geometry information of the TimeGeometry to an outstream. * The root tag is not included. * @param geometry the TimeGeometry of the contour. * @param the stream to write to. * * \deprecatedSince{2013_06} Please use TimeGeometry instead of TimeSlicedGeometry. For more information see @TimeGeometryGuide@ */ DEPRECATED(void WriteGeometryInformation( mitk::TimeSlicedGeometry* geometry, std::ofstream& out )); /** * Writes an standard xml header to the given stream. * @param file the stream in which the header is written. */ void WriteXMLHeader( std::ofstream &file ); /** Write a start element tag */ void WriteStartElement( const char *const tag, std::ofstream &file ); void WriteStartElementWithAttribut( const char *const tag, std::vector attributes, std::vector values, std::ofstream &file ); /** * Write an end element tag * End-Elements following character data should pass indent = false. */ void WriteEndElement( const char *const tag, std::ofstream &file, const bool& indent = true ); /** Write character data inside a tag. */ void WriteCharacterData( const char *const data, std::ofstream &file ); /** Write a start element tag */ void WriteStartElement( std::string &tag, std::ofstream &file ); /** Write an end element tag */ void WriteEndElement( std::string &tag, std::ofstream &file, const bool& indent = true ); /** Write character data inside a tag. */ void WriteCharacterData( std::string &data, std::ofstream &file ); /** Writes empty spaces to the stream according to m_IndentDepth and m_Indent */ void WriteIndent( std::ofstream& file ); std::string m_FileName; std::string m_FilePrefix; std::string m_FilePattern; std::string m_Extension; std::string m_MimeType; unsigned int m_IndentDepth; unsigned int m_Indent; bool m_Success; public: static const char* XML_CONTOURMODEL; static const char* XML_HEAD; static const char* XML_GEOMETRY_INFO; static const char* XML_DATA; static const char* XML_TIME_STEP; static const char* XML_CONTROL_POINTS; static const char* XML_POINT; static const char* XML_X; static const char* XML_Y; static const char* XML_Z; }; } #endif diff --git a/Modules/Segmentation/Interactions/mitkTool.cpp b/Modules/Segmentation/Interactions/mitkTool.cpp index 1a009699e3..25ee460745 100644 --- a/Modules/Segmentation/Interactions/mitkTool.cpp +++ b/Modules/Segmentation/Interactions/mitkTool.cpp @@ -1,217 +1,217 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkTool.h" #include "mitkDataNodeFactory.h" #include "mitkProperties.h" #include "mitkImageWriteAccessor.h" #include "mitkLevelWindowProperty.h" #include "mitkVtkResliceInterpolationProperty.h" #include "mitkImageReadAccessor.h" // us #include #include mitk::Tool::Tool(const char* type) : StateMachine(type), m_SupportRoi(false), // for reference images m_PredicateImages(NodePredicateDataType::New("Image")), m_PredicateDim3(NodePredicateDimension::New(3, 1)), m_PredicateDim4(NodePredicateDimension::New(4, 1)), m_PredicateDimension( mitk::NodePredicateOr::New(m_PredicateDim3, m_PredicateDim4) ), m_PredicateImage3D( NodePredicateAnd::New(m_PredicateImages, m_PredicateDimension) ), m_PredicateBinary(NodePredicateProperty::New("binary", BoolProperty::New(true))), m_PredicateNotBinary( NodePredicateNot::New(m_PredicateBinary) ), m_PredicateSegmentation(NodePredicateProperty::New("segmentation", BoolProperty::New(true))), m_PredicateNotSegmentation( NodePredicateNot::New(m_PredicateSegmentation) ), m_PredicateHelper(NodePredicateProperty::New("helper object", BoolProperty::New(true))), m_PredicateNotHelper( NodePredicateNot::New(m_PredicateHelper) ), m_PredicateImageColorful( NodePredicateAnd::New(m_PredicateNotBinary, m_PredicateNotSegmentation) ), m_PredicateImageColorfulNotHelper( NodePredicateAnd::New(m_PredicateImageColorful, m_PredicateNotHelper) ), m_PredicateReference( NodePredicateAnd::New(m_PredicateImage3D, m_PredicateImageColorfulNotHelper) ), // for working image m_IsSegmentationPredicate(NodePredicateAnd::New(NodePredicateOr::New(m_PredicateBinary, m_PredicateSegmentation), m_PredicateNotHelper)) { } mitk::Tool::~Tool() { } const char* mitk::Tool::GetGroup() const { return "default"; } void mitk::Tool::SetToolManager(ToolManager* manager) { m_ToolManager = manager; } void mitk::Tool::Activated() { } void mitk::Tool::Deactivated() { StateMachine::ResetStatemachineToStartState(); // forget about the past } itk::Object::Pointer mitk::Tool::GetGUI(const std::string& toolkitPrefix, const std::string& toolkitPostfix) { itk::Object::Pointer object; std::string classname = this->GetNameOfClass(); std::string guiClassname = toolkitPrefix + classname + toolkitPostfix; std::list allGUIs = itk::ObjectFactoryBase::CreateAllInstance(guiClassname.c_str()); for( std::list::iterator iter = allGUIs.begin(); iter != allGUIs.end(); ++iter ) { if (object.IsNull()) { object = dynamic_cast( iter->GetPointer() ); } else { MITK_ERROR << "There is more than one GUI for " << classname << " (several factories claim ability to produce a " << guiClassname << " ) " << std::endl; return NULL; // people should see and fix this error } } return object; } mitk::NodePredicateBase::ConstPointer mitk::Tool::GetReferenceDataPreference() const { return m_PredicateReference.GetPointer(); } mitk::NodePredicateBase::ConstPointer mitk::Tool::GetWorkingDataPreference() const { return m_IsSegmentationPredicate.GetPointer(); } mitk::DataNode::Pointer mitk::Tool::CreateEmptySegmentationNode( Image* original, const std::string& organName, const mitk::Color& color ) { // we NEED a reference image for size etc. if (!original) return NULL; // actually create a new empty segmentation PixelType pixelType(mitk::MakeScalarPixelType() ); Image::Pointer segmentation = Image::New(); if (original->GetDimension() == 2) { const unsigned int dimensions[] = { original->GetDimension(0), original->GetDimension(1), 1 }; segmentation->Initialize(pixelType, 3, dimensions); } else { segmentation->Initialize(pixelType, original->GetDimension(), original->GetDimensions()); } unsigned int byteSize = sizeof(DefaultSegmentationDataType); if(segmentation->GetDimension() < 4) { for (unsigned int dim = 0; dim < segmentation->GetDimension(); ++dim) { byteSize *= segmentation->GetDimension(dim); } mitk::ImageWriteAccessor writeAccess(segmentation, segmentation->GetVolumeData(0)); memset( writeAccess.GetData(), 0, byteSize ); } else {//if we have a time-resolved image we need to set memory to 0 for each time step for (unsigned int dim = 0; dim < 3; ++dim) { byteSize *= segmentation->GetDimension(dim); } for( unsigned int volumeNumber = 0; volumeNumber < segmentation->GetDimension(3); volumeNumber++) { mitk::ImageWriteAccessor writeAccess(segmentation, segmentation->GetVolumeData(volumeNumber)); memset( writeAccess.GetData(), 0, byteSize ); } } - if (original->GetTimeSlicedGeometry() ) + if (original->GetTimeGeometry() ) { TimeGeometry::Pointer originalGeometry = original->GetTimeGeometry()->Clone(); segmentation->SetTimeGeometry( originalGeometry ); } else { Tool::ErrorMessage("Original image does not have a 'Time sliced geometry'! Cannot create a segmentation."); return NULL; } return CreateSegmentationNode( segmentation, organName, color ); } mitk::DataNode::Pointer mitk::Tool::CreateSegmentationNode( Image* image, const std::string& organName, const mitk::Color& color ) { if (!image) return NULL; // decorate the datatreenode with some properties DataNode::Pointer segmentationNode = DataNode::New(); segmentationNode->SetData( image ); // name segmentationNode->SetProperty( "name", StringProperty::New( organName ) ); // visualization properties segmentationNode->SetProperty( "binary", BoolProperty::New(true) ); segmentationNode->SetProperty( "color", ColorProperty::New(color) ); segmentationNode->SetProperty( "texture interpolation", BoolProperty::New(false) ); segmentationNode->SetProperty( "layer", IntProperty::New(10) ); segmentationNode->SetProperty( "levelwindow", LevelWindowProperty::New( LevelWindow(0.5, 1) ) ); segmentationNode->SetProperty( "opacity", FloatProperty::New(0.3) ); segmentationNode->SetProperty( "segmentation", BoolProperty::New(true) ); segmentationNode->SetProperty( "reslice interpolation", VtkResliceInterpolationProperty::New() ); // otherwise -> segmentation appears in 2 slices sometimes (only visual effect, not different data) // For MITK-3M3 release, the volume of all segmentations should be shown segmentationNode->SetProperty( "showVolume", BoolProperty::New( true ) ); return segmentationNode; } us::ModuleResource mitk::Tool::GetIconResource() const { // Each specific tool should load its own resource. This one will be invalid return us::ModuleResource(); } us::ModuleResource mitk::Tool::GetCursorIconResource() const { // Each specific tool should load its own resource. This one will be invalid return us::ModuleResource(); } \ No newline at end of file diff --git a/Modules/SegmentationUI/Qmitk/QmitkSlicesInterpolator.cpp b/Modules/SegmentationUI/Qmitk/QmitkSlicesInterpolator.cpp index 572a816c49..9f144b6d1e 100644 --- a/Modules/SegmentationUI/Qmitk/QmitkSlicesInterpolator.cpp +++ b/Modules/SegmentationUI/Qmitk/QmitkSlicesInterpolator.cpp @@ -1,1030 +1,1030 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkSlicesInterpolator.h" #include "QmitkStdMultiWidget.h" #include "QmitkSelectableGLWidget.h" #include "mitkToolManager.h" #include "mitkDataNodeFactory.h" #include "mitkLevelWindowProperty.h" #include "mitkColorProperty.h" #include "mitkProperties.h" #include "mitkRenderingManager.h" #include "mitkOverwriteSliceImageFilter.h" #include "mitkProgressBar.h" #include "mitkGlobalInteraction.h" #include "mitkOperationEvent.h" #include "mitkUndoController.h" #include "mitkInteractionConst.h" #include "mitkApplyDiffImageOperation.h" #include "mitkDiffImageApplier.h" #include "mitkSegTool2D.h" #include "mitkCoreObjectFactory.h" #include "mitkSurfaceToImageFilter.h" #include "mitkSliceNavigationController.h" #include #include #include #include #include #include #include #include #include #include //#define ROUND(a) ((a)>0 ? (int)((a)+0.5) : -(int)(0.5-(a))) const std::map QmitkSlicesInterpolator::createActionToSliceDimension() { std::map actionToSliceDimension; foreach(mitk::SliceNavigationController* slicer, m_ControllerToDeleteObserverTag.keys()) { actionToSliceDimension[new QAction(QString::fromStdString(slicer->GetRenderer()->GetName()),0)] = slicer; } return actionToSliceDimension; } QmitkSlicesInterpolator::QmitkSlicesInterpolator(QWidget* parent, const char* /*name*/) :QWidget(parent), // ACTION_TO_SLICEDIMENSION( createActionToSliceDimension() ), m_Interpolator( mitk::SegmentationInterpolationController::New() ), m_SurfaceInterpolator(mitk::SurfaceInterpolationController::GetInstance()), m_ToolManager(NULL), m_Initialized(false), m_LastSNC(0), m_LastSliceIndex(0), m_2DInterpolationEnabled(false), m_3DInterpolationEnabled(false) { m_GroupBoxEnableExclusiveInterpolationMode = new QGroupBox("Interpolation", this); QVBoxLayout* vboxLayout = new QVBoxLayout(m_GroupBoxEnableExclusiveInterpolationMode); m_CmbInterpolation = new QComboBox(m_GroupBoxEnableExclusiveInterpolationMode); m_CmbInterpolation->addItem("Disabled"); m_CmbInterpolation->addItem("2-Dimensional"); m_CmbInterpolation->addItem("3-Dimensional"); vboxLayout->addWidget(m_CmbInterpolation); m_BtnApply2D = new QPushButton("Apply", m_GroupBoxEnableExclusiveInterpolationMode); vboxLayout->addWidget(m_BtnApply2D); m_BtnApplyForAllSlices2D = new QPushButton("Apply for all slices", m_GroupBoxEnableExclusiveInterpolationMode); vboxLayout->addWidget(m_BtnApplyForAllSlices2D); m_BtnApply3D = new QPushButton("Apply", m_GroupBoxEnableExclusiveInterpolationMode); vboxLayout->addWidget(m_BtnApply3D); m_ChkShowPositionNodes = new QCheckBox("Show Position Nodes", m_GroupBoxEnableExclusiveInterpolationMode); vboxLayout->addWidget(m_ChkShowPositionNodes); this->HideAllInterpolationControls(); connect(m_CmbInterpolation, SIGNAL(currentIndexChanged(int)), this, SLOT(OnInterpolationMethodChanged(int))); connect(m_BtnApply2D, SIGNAL(clicked()), this, SLOT(OnAcceptInterpolationClicked())); connect(m_BtnApplyForAllSlices2D, SIGNAL(clicked()), this, SLOT(OnAcceptAllInterpolationsClicked())); connect(m_BtnApply3D, SIGNAL(clicked()), this, SLOT(OnAccept3DInterpolationClicked())); connect(m_ChkShowPositionNodes, SIGNAL(toggled(bool)), this, SLOT(OnShowMarkers(bool))); connect(m_ChkShowPositionNodes, SIGNAL(toggled(bool)), this, SIGNAL(SignalShowMarkerNodes(bool))); QHBoxLayout* layout = new QHBoxLayout(this); layout->addWidget(m_GroupBoxEnableExclusiveInterpolationMode); this->setLayout(layout); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkSlicesInterpolator::OnInterpolationInfoChanged ); InterpolationInfoChangedObserverTag = m_Interpolator->AddObserver( itk::ModifiedEvent(), command ); itk::ReceptorMemberCommand::Pointer command2 = itk::ReceptorMemberCommand::New(); command2->SetCallbackFunction( this, &QmitkSlicesInterpolator::OnSurfaceInterpolationInfoChanged ); SurfaceInterpolationInfoChangedObserverTag = m_SurfaceInterpolator->AddObserver( itk::ModifiedEvent(), command2 ); // feedback node and its visualization properties m_FeedbackNode = mitk::DataNode::New(); mitk::CoreObjectFactory::GetInstance()->SetDefaultProperties( m_FeedbackNode ); m_FeedbackNode->SetProperty( "binary", mitk::BoolProperty::New(true) ); m_FeedbackNode->SetProperty( "outline binary", mitk::BoolProperty::New(true) ); m_FeedbackNode->SetProperty( "color", mitk::ColorProperty::New(255.0, 255.0, 0.0) ); m_FeedbackNode->SetProperty( "texture interpolation", mitk::BoolProperty::New(false) ); m_FeedbackNode->SetProperty( "layer", mitk::IntProperty::New( 20 ) ); m_FeedbackNode->SetProperty( "levelwindow", mitk::LevelWindowProperty::New( mitk::LevelWindow(0, 1) ) ); m_FeedbackNode->SetProperty( "name", mitk::StringProperty::New("Interpolation feedback") ); m_FeedbackNode->SetProperty( "opacity", mitk::FloatProperty::New(0.8) ); m_FeedbackNode->SetProperty( "helper object", mitk::BoolProperty::New(true) ); m_InterpolatedSurfaceNode = mitk::DataNode::New(); m_InterpolatedSurfaceNode->SetProperty( "color", mitk::ColorProperty::New(255.0,255.0,0.0) ); m_InterpolatedSurfaceNode->SetProperty( "name", mitk::StringProperty::New("Surface Interpolation feedback") ); m_InterpolatedSurfaceNode->SetProperty( "opacity", mitk::FloatProperty::New(0.5) ); m_InterpolatedSurfaceNode->SetProperty( "includeInBoundingBox", mitk::BoolProperty::New(false)); m_InterpolatedSurfaceNode->SetProperty( "helper object", mitk::BoolProperty::New(true) ); m_InterpolatedSurfaceNode->SetVisibility(false); m_3DContourNode = mitk::DataNode::New(); m_3DContourNode->SetProperty( "color", mitk::ColorProperty::New(0.0, 0.0, 0.0) ); m_3DContourNode->SetProperty("helper object", mitk::BoolProperty::New(true)); m_3DContourNode->SetProperty( "name", mitk::StringProperty::New("Drawn Contours") ); m_3DContourNode->SetProperty("material.representation", mitk::VtkRepresentationProperty::New(VTK_WIREFRAME)); m_3DContourNode->SetProperty("material.wireframeLineWidth", mitk::FloatProperty::New(2.0f)); m_3DContourNode->SetProperty("3DContourContainer", mitk::BoolProperty::New(true)); m_3DContourNode->SetProperty( "includeInBoundingBox", mitk::BoolProperty::New(false)); m_3DContourNode->SetVisibility(false, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget1"))); m_3DContourNode->SetVisibility(false, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget2"))); m_3DContourNode->SetVisibility(false, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget3"))); m_3DContourNode->SetVisibility(false, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget4"))); QWidget::setContentsMargins(0, 0, 0, 0); if ( QWidget::layout() != NULL ) { QWidget::layout()->setContentsMargins(0, 0, 0, 0); } //For running 3D Interpolation in background // create a QFuture and a QFutureWatcher connect(&m_Watcher, SIGNAL(started()), this, SLOT(StartUpdateInterpolationTimer())); connect(&m_Watcher, SIGNAL(finished()), this, SLOT(OnSurfaceInterpolationFinished())); connect(&m_Watcher, SIGNAL(finished()), this, SLOT(StopUpdateInterpolationTimer())); m_Timer = new QTimer(this); connect(m_Timer, SIGNAL(timeout()), this, SLOT(ChangeSurfaceColor())); } void QmitkSlicesInterpolator::SetDataStorage( mitk::DataStorage::Pointer storage ) { m_DataStorage = storage; m_SurfaceInterpolator->SetDataStorage(storage); } mitk::DataStorage* QmitkSlicesInterpolator::GetDataStorage() { if ( m_DataStorage.IsNotNull() ) { return m_DataStorage; } else { return NULL; } } void QmitkSlicesInterpolator::Initialize(mitk::ToolManager* toolManager, const QList &controllers) { Q_ASSERT(!controllers.empty()); if (m_Initialized) { // remove old observers Uninitialize(); } m_ToolManager = toolManager; if (m_ToolManager) { // set enabled only if a segmentation is selected mitk::DataNode* node = m_ToolManager->GetWorkingData(0); QWidget::setEnabled( node != NULL ); // react whenever the set of selected segmentation changes m_ToolManager->WorkingDataChanged += mitk::MessageDelegate( this, &QmitkSlicesInterpolator::OnToolManagerWorkingDataModified ); m_ToolManager->ReferenceDataChanged += mitk::MessageDelegate( this, &QmitkSlicesInterpolator::OnToolManagerReferenceDataModified ); // connect to the slice navigation controller. after each change, call the interpolator foreach(mitk::SliceNavigationController* slicer, controllers) { //Has to be initialized m_LastSNC = slicer; m_TimeStep.insert(slicer, slicer->GetTime()->GetPos()); itk::MemberCommand::Pointer deleteCommand = itk::MemberCommand::New(); deleteCommand->SetCallbackFunction( this, &QmitkSlicesInterpolator::OnSliceNavigationControllerDeleted); m_ControllerToDeleteObserverTag.insert(slicer, slicer->AddObserver(itk::DeleteEvent(), deleteCommand)); itk::MemberCommand::Pointer timeChangedCommand = itk::MemberCommand::New(); timeChangedCommand->SetCallbackFunction( this, &QmitkSlicesInterpolator::OnTimeChanged); - m_ControllerToTimeObserverTag.insert(slicer, slicer->AddObserver(mitk::SliceNavigationController::TimeSlicedGeometryEvent(NULL,0), timeChangedCommand)); + m_ControllerToTimeObserverTag.insert(slicer, slicer->AddObserver(mitk::SliceNavigationController::TimeGeometryEvent(NULL,0), timeChangedCommand)); itk::MemberCommand::Pointer sliceChangedCommand = itk::MemberCommand::New(); sliceChangedCommand->SetCallbackFunction( this, &QmitkSlicesInterpolator::OnSliceChanged); m_ControllerToSliceObserverTag.insert(slicer, slicer->AddObserver(mitk::SliceNavigationController::GeometrySliceEvent(NULL,0), sliceChangedCommand)); } ACTION_TO_SLICEDIMENSION = createActionToSliceDimension(); } m_Initialized = true; } void QmitkSlicesInterpolator::Uninitialize() { if (m_ToolManager.IsNotNull()) { m_ToolManager->WorkingDataChanged -= mitk::MessageDelegate(this, &QmitkSlicesInterpolator::OnToolManagerWorkingDataModified); m_ToolManager->ReferenceDataChanged -= mitk::MessageDelegate(this, &QmitkSlicesInterpolator::OnToolManagerReferenceDataModified); } foreach(mitk::SliceNavigationController* slicer, m_ControllerToSliceObserverTag.keys()) { slicer->RemoveObserver(m_ControllerToDeleteObserverTag.take(slicer)); slicer->RemoveObserver(m_ControllerToTimeObserverTag.take(slicer)); slicer->RemoveObserver(m_ControllerToSliceObserverTag.take(slicer)); } ACTION_TO_SLICEDIMENSION.clear(); m_ToolManager = NULL; m_Initialized = false; } QmitkSlicesInterpolator::~QmitkSlicesInterpolator() { if (m_Initialized) { // remove old observers Uninitialize(); } if(m_DataStorage->Exists(m_3DContourNode)) m_DataStorage->Remove(m_3DContourNode); if(m_DataStorage->Exists(m_InterpolatedSurfaceNode)) m_DataStorage->Remove(m_InterpolatedSurfaceNode); // remove observer m_Interpolator->RemoveObserver( InterpolationInfoChangedObserverTag ); m_SurfaceInterpolator->RemoveObserver( SurfaceInterpolationInfoChangedObserverTag ); delete m_Timer; } void QmitkSlicesInterpolator::On2DInterpolationEnabled(bool status) { OnInterpolationActivated(status); m_Interpolator->Activate2DInterpolation(status); } void QmitkSlicesInterpolator::On3DInterpolationEnabled(bool status) { On3DInterpolationActivated(status); } void QmitkSlicesInterpolator::OnInterpolationDisabled(bool status) { if (status) { OnInterpolationActivated(!status); On3DInterpolationActivated(!status); this->Show3DInterpolationResult(false); } } void QmitkSlicesInterpolator::HideAllInterpolationControls() { this->Show2DInterpolationControls(false); this->Show3DInterpolationControls(false); } void QmitkSlicesInterpolator::Show2DInterpolationControls(bool show) { m_BtnApply2D->setVisible(show); m_BtnApplyForAllSlices2D->setVisible(show); } void QmitkSlicesInterpolator::Show3DInterpolationControls(bool show) { m_BtnApply3D->setVisible(show); m_ChkShowPositionNodes->setVisible(show); } void QmitkSlicesInterpolator::OnInterpolationMethodChanged(int index) { switch(index) { case 0: // Disabled m_GroupBoxEnableExclusiveInterpolationMode->setTitle("Interpolation"); this->HideAllInterpolationControls(); this->OnInterpolationActivated(false); this->On3DInterpolationActivated(false); this->Show3DInterpolationResult(false); break; case 1: // 2D m_GroupBoxEnableExclusiveInterpolationMode->setTitle("Interpolation (Enabled)"); this->HideAllInterpolationControls(); this->Show2DInterpolationControls(true); this->OnInterpolationActivated(true); this->On3DInterpolationActivated(false); m_Interpolator->Activate2DInterpolation(true); break; case 2: // 3D m_GroupBoxEnableExclusiveInterpolationMode->setTitle("Interpolation (Enabled)"); this->HideAllInterpolationControls(); this->Show3DInterpolationControls(true); this->OnInterpolationActivated(false); this->On3DInterpolationActivated(true); break; default: MITK_ERROR << "Unknown interpolation method!"; m_CmbInterpolation->setCurrentIndex(0); break; } } void QmitkSlicesInterpolator::OnShowMarkers(bool state) { mitk::DataStorage::SetOfObjects::ConstPointer allContourMarkers = m_DataStorage->GetSubset(mitk::NodePredicateProperty::New("isContourMarker" , mitk::BoolProperty::New(true))); for (mitk::DataStorage::SetOfObjects::ConstIterator it = allContourMarkers->Begin(); it != allContourMarkers->End(); ++it) { it->Value()->SetProperty("helper object", mitk::BoolProperty::New(!state)); } } void QmitkSlicesInterpolator::OnToolManagerWorkingDataModified() { if (m_ToolManager->GetWorkingData(0) != 0) { m_Segmentation = dynamic_cast(m_ToolManager->GetWorkingData(0)->GetData()); } //Updating the current selected segmentation for the 3D interpolation SetCurrentContourListID(); if (m_2DInterpolationEnabled) { OnInterpolationActivated( true ); // re-initialize if needed } } void QmitkSlicesInterpolator::OnToolManagerReferenceDataModified() { if (m_2DInterpolationEnabled) { OnInterpolationActivated( true ); // re-initialize if needed } if (m_3DInterpolationEnabled) { this->Show3DInterpolationResult(false); } } void QmitkSlicesInterpolator::OnTimeChanged(itk::Object* sender, const itk::EventObject& e) { //Check if we really have a GeometryTimeEvent if (!dynamic_cast(&e)) return; mitk::SliceNavigationController* slicer = dynamic_cast(sender); Q_ASSERT(slicer); m_TimeStep[slicer]/* = event.GetPos()*/; //TODO Macht das hier wirklich Sinn???? if (m_LastSNC == slicer) { slicer->SendSlice();//will trigger a new interpolation } } void QmitkSlicesInterpolator::OnSliceChanged(itk::Object *sender, const itk::EventObject &e) { //Check whether we really have a GeometrySliceEvent if (!dynamic_cast(&e)) return; mitk::SliceNavigationController* slicer = dynamic_cast(sender); if (TranslateAndInterpolateChangedSlice(e, slicer)) { slicer->GetRenderer()->RequestUpdate(); } } bool QmitkSlicesInterpolator::TranslateAndInterpolateChangedSlice(const itk::EventObject& e, mitk::SliceNavigationController* slicer) { if (!m_2DInterpolationEnabled) return false; try { const mitk::SliceNavigationController::GeometrySliceEvent& event = dynamic_cast(e); mitk::TimeGeometry* tsg = event.GetTimeGeometry(); if (tsg && m_TimeStep.contains(slicer)) { mitk::SlicedGeometry3D* slicedGeometry = dynamic_cast(tsg->GetGeometryForTimeStep(m_TimeStep[slicer]).GetPointer()); if (slicedGeometry) { m_LastSNC = slicer; mitk::PlaneGeometry* plane = dynamic_cast(slicedGeometry->GetGeometry2D( event.GetPos() )); if (plane) Interpolate( plane, m_TimeStep[slicer], slicer ); return true; } } } catch(std::bad_cast) { return false; // so what } return false; } void QmitkSlicesInterpolator::Interpolate( mitk::PlaneGeometry* plane, unsigned int timeStep, mitk::SliceNavigationController* slicer ) { if (m_ToolManager) { mitk::DataNode* node = m_ToolManager->GetWorkingData(0); if (node) { m_Segmentation = dynamic_cast(node->GetData()); if (m_Segmentation) { int clickedSliceDimension(-1); int clickedSliceIndex(-1); // calculate real slice position, i.e. slice of the image and not slice of the TimeSlicedGeometry mitk::SegTool2D::DetermineAffectedImageSlice( m_Segmentation, plane, clickedSliceDimension, clickedSliceIndex ); mitk::Image::Pointer interpolation = m_Interpolator->Interpolate( clickedSliceDimension, clickedSliceIndex, plane, timeStep ); m_FeedbackNode->SetData( interpolation ); m_LastSNC = slicer; m_LastSliceIndex = clickedSliceIndex; } } } } void QmitkSlicesInterpolator::OnSurfaceInterpolationFinished() { mitk::Surface::Pointer interpolatedSurface = m_SurfaceInterpolator->GetInterpolationResult(); mitk::DataNode* workingNode = m_ToolManager->GetWorkingData(0); if(interpolatedSurface.IsNotNull() && workingNode && workingNode->IsVisible(mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget3")))) { m_BtnApply3D->setEnabled(true); m_InterpolatedSurfaceNode->SetData(interpolatedSurface); m_3DContourNode->SetData(m_SurfaceInterpolator->GetContoursAsSurface()); this->Show3DInterpolationResult(true); if( !m_DataStorage->Exists(m_InterpolatedSurfaceNode) && !m_DataStorage->Exists(m_3DContourNode)) { m_DataStorage->Add(m_3DContourNode); m_DataStorage->Add(m_InterpolatedSurfaceNode); } } else if (interpolatedSurface.IsNull()) { m_BtnApply3D->setEnabled(false); if (m_DataStorage->Exists(m_InterpolatedSurfaceNode)) { this->Show3DInterpolationResult(false); } } foreach (mitk::SliceNavigationController* slicer, m_ControllerToTimeObserverTag.keys()) { slicer->GetRenderer()->RequestUpdate(); } } void QmitkSlicesInterpolator::OnAcceptInterpolationClicked() { if (m_Segmentation && m_FeedbackNode->GetData()) { //making interpolation separately undoable mitk::UndoStackItem::IncCurrObjectEventId(); mitk::UndoStackItem::IncCurrGroupEventId(); mitk::UndoStackItem::ExecuteIncrement(); //Make sure that for reslicing and overwriting the same alogrithm is used. We can specify the mode of the vtk reslicer vtkSmartPointer reslice = vtkSmartPointer::New(); // Set slice as input mitk::Image::Pointer slice = dynamic_cast(m_FeedbackNode->GetData()); reslice->SetInputSlice(slice->GetSliceData()->GetVtkImageData(slice)); //set overwrite mode to true to write back to the image volume reslice->SetOverwriteMode(true); reslice->Modified(); mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(reslice); extractor->SetInput( m_Segmentation ); unsigned int timestep = m_LastSNC->GetTime()->GetPos(); extractor->SetTimeStep( timestep ); extractor->SetWorldGeometry( m_LastSNC->GetCurrentPlaneGeometry() ); extractor->SetVtkOutputRequest(true); extractor->SetResliceTransformByGeometry( m_Segmentation->GetTimeGeometry()->GetGeometryForTimeStep( timestep ) ); extractor->Modified(); extractor->Update(); //the image was modified within the pipeline, but not marked so m_Segmentation->Modified(); m_Segmentation->GetVtkImageData()->Modified(); m_FeedbackNode->SetData(NULL); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkSlicesInterpolator::AcceptAllInterpolations(mitk::SliceNavigationController* slicer) { /* * What exactly is done here: * 1. We create an empty diff image for the current segmentation * 2. All interpolated slices are written into the diff image * 3. Then the diffimage is applied to the original segmentation */ if (m_Segmentation) { //making interpolation separately undoable mitk::UndoStackItem::IncCurrObjectEventId(); mitk::UndoStackItem::IncCurrGroupEventId(); mitk::UndoStackItem::ExecuteIncrement(); mitk::Image::Pointer image3D = m_Segmentation; unsigned int timeStep( slicer->GetTime()->GetPos() ); if (m_Segmentation->GetDimension() == 4) { mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); timeSelector->SetInput( m_Segmentation ); timeSelector->SetTimeNr( timeStep ); timeSelector->Update(); image3D = timeSelector->GetOutput(); } // create a empty diff image for the undo operation mitk::Image::Pointer diffImage = mitk::Image::New(); diffImage->Initialize( image3D ); // Set all pixels to zero mitk::PixelType pixelType( mitk::MakeScalarPixelType() ); memset( diffImage->GetData(), 0, (pixelType.GetBpe() >> 3) * diffImage->GetDimension(0) * diffImage->GetDimension(1) * diffImage->GetDimension(2) ); // Since we need to shift the plane it must be clone so that the original plane isn't altered mitk::PlaneGeometry::Pointer reslicePlane = slicer->GetCurrentPlaneGeometry()->Clone(); int sliceDimension(-1); int sliceIndex(-1); mitk::SegTool2D::DetermineAffectedImageSlice( m_Segmentation, reslicePlane, sliceDimension, sliceIndex ); unsigned int zslices = m_Segmentation->GetDimension( sliceDimension ); mitk::ProgressBar::GetInstance()->AddStepsToDo(zslices); mitk::Point3D origin = reslicePlane->GetOrigin(); unsigned int totalChangedSlices(0); for (unsigned int sliceIndex = 0; sliceIndex < zslices; ++sliceIndex) { // Transforming the current origin of the reslice plane // so that it matches the one of the next slice m_Segmentation->GetSlicedGeometry()->WorldToIndex(origin, origin); origin[sliceDimension] = sliceIndex; m_Segmentation->GetSlicedGeometry()->IndexToWorld(origin, origin); reslicePlane->SetOrigin(origin); //Set the slice as 'input' mitk::Image::Pointer interpolation = m_Interpolator->Interpolate( sliceDimension, sliceIndex, reslicePlane, timeStep ); if (interpolation.IsNotNull()) // we don't check if interpolation is necessary/sensible - but m_Interpolator does { //Setting up the reslicing pipeline which allows us to write the interpolation results back into //the image volume vtkSmartPointer reslice = vtkSmartPointer::New(); //set overwrite mode to true to write back to the image volume reslice->SetInputSlice(interpolation->GetSliceData()->GetVtkImageData(interpolation)); reslice->SetOverwriteMode(true); reslice->Modified(); mitk::ExtractSliceFilter::Pointer diffslicewriter = mitk::ExtractSliceFilter::New(reslice); diffslicewriter->SetInput( diffImage ); diffslicewriter->SetTimeStep( timeStep ); diffslicewriter->SetWorldGeometry(reslicePlane); diffslicewriter->SetVtkOutputRequest(true); diffslicewriter->SetResliceTransformByGeometry( diffImage->GetTimeGeometry()->GetGeometryForTimeStep( timeStep ) ); diffslicewriter->Modified(); diffslicewriter->Update(); ++totalChangedSlices; } mitk::ProgressBar::GetInstance()->Progress(); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); if (totalChangedSlices > 0) { // store undo stack items if ( true ) { // create do/undo operations mitk::ApplyDiffImageOperation* doOp = new mitk::ApplyDiffImageOperation( mitk::OpTEST, m_Segmentation, diffImage, timeStep ); mitk::ApplyDiffImageOperation* undoOp = new mitk::ApplyDiffImageOperation( mitk::OpTEST, m_Segmentation, diffImage, timeStep ); undoOp->SetFactor( -1.0 ); std::stringstream comment; comment << "Accept all interpolations (" << totalChangedSlices << ")"; mitk::OperationEvent* undoStackItem = new mitk::OperationEvent( mitk::DiffImageApplier::GetInstanceForUndo(), doOp, undoOp, comment.str() ); mitk::UndoController::GetCurrentUndoModel()->SetOperationEvent( undoStackItem ); // acutally apply the changes here to the original image mitk::DiffImageApplier::GetInstanceForUndo()->ExecuteOperation( doOp ); } } m_FeedbackNode->SetData(NULL); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkSlicesInterpolator::FinishInterpolation(mitk::SliceNavigationController* slicer) { //this redirect is for calling from outside if (slicer == NULL) OnAcceptAllInterpolationsClicked(); else AcceptAllInterpolations( slicer ); } void QmitkSlicesInterpolator::OnAcceptAllInterpolationsClicked() { QMenu orientationPopup(this); std::map::const_iterator it; for(it = ACTION_TO_SLICEDIMENSION.begin(); it != ACTION_TO_SLICEDIMENSION.end(); it++) orientationPopup.addAction(it->first); connect( &orientationPopup, SIGNAL(triggered(QAction*)), this, SLOT(OnAcceptAllPopupActivated(QAction*)) ); orientationPopup.exec( QCursor::pos() ); } void QmitkSlicesInterpolator::OnAccept3DInterpolationClicked() { if (m_InterpolatedSurfaceNode.IsNotNull() && m_InterpolatedSurfaceNode->GetData()) { mitk::SurfaceToImageFilter::Pointer s2iFilter = mitk::SurfaceToImageFilter::New(); s2iFilter->MakeOutputBinaryOn(); s2iFilter->SetInput(dynamic_cast(m_InterpolatedSurfaceNode->GetData())); // check if ToolManager holds valid ReferenceData if (m_ToolManager->GetReferenceData(0) == NULL || m_ToolManager->GetWorkingData(0) == NULL) { return; } s2iFilter->SetImage(dynamic_cast(m_ToolManager->GetReferenceData(0)->GetData())); s2iFilter->Update(); mitk::DataNode* segmentationNode = m_ToolManager->GetWorkingData(0); segmentationNode->SetData(s2iFilter->GetOutput()); m_CmbInterpolation->setCurrentIndex(0); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->Show3DInterpolationResult(false); } } void QmitkSlicesInterpolator::OnAcceptAllPopupActivated(QAction* action) { try { std::map::const_iterator iter = ACTION_TO_SLICEDIMENSION.find( action ); if (iter != ACTION_TO_SLICEDIMENSION.end()) { mitk::SliceNavigationController* slicer = iter->second; AcceptAllInterpolations( slicer ); } } catch(...) { /* Showing message box with possible memory error */ QMessageBox errorInfo; errorInfo.setWindowTitle("Interpolation Process"); errorInfo.setIcon(QMessageBox::Critical); errorInfo.setText("An error occurred during interpolation. Possible cause: Not enough memory!"); errorInfo.exec(); //additional error message on std::cerr std::cerr << "Ill construction in " __FILE__ " l. " << __LINE__ << std::endl; } } void QmitkSlicesInterpolator::OnInterpolationActivated(bool on) { m_2DInterpolationEnabled = on; try { if ( m_DataStorage.IsNotNull() ) { if (on && !m_DataStorage->Exists(m_FeedbackNode)) { m_DataStorage->Add( m_FeedbackNode ); } } } catch(...) { // don't care (double add/remove) } if (m_ToolManager) { mitk::DataNode* workingNode = m_ToolManager->GetWorkingData(0); mitk::DataNode* referenceNode = m_ToolManager->GetReferenceData(0); QWidget::setEnabled( workingNode != NULL ); m_BtnApply2D->setEnabled( on ); m_FeedbackNode->SetVisibility( on ); if (!on) { mitk::RenderingManager::GetInstance()->RequestUpdateAll(); return; } if (workingNode) { mitk::Image* segmentation = dynamic_cast(workingNode->GetData()); if (segmentation) { m_Interpolator->SetSegmentationVolume( segmentation ); if (referenceNode) { mitk::Image* referenceImage = dynamic_cast(referenceNode->GetData()); m_Interpolator->SetReferenceVolume( referenceImage ); // may be NULL } } } } UpdateVisibleSuggestion(); } void QmitkSlicesInterpolator::Run3DInterpolation() { m_SurfaceInterpolator->Interpolate(); } void QmitkSlicesInterpolator::StartUpdateInterpolationTimer() { m_Timer->start(500); } void QmitkSlicesInterpolator::StopUpdateInterpolationTimer() { m_Timer->stop(); m_InterpolatedSurfaceNode->SetProperty("color", mitk::ColorProperty::New(255.0,255.0,0.0)); mitk::RenderingManager::GetInstance()->RequestUpdate(mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget4"))->GetRenderWindow()); } void QmitkSlicesInterpolator::ChangeSurfaceColor() { float currentColor[3]; m_InterpolatedSurfaceNode->GetColor(currentColor); float yellow[3] = {255.0,255.0,0.0}; if( currentColor[2] == yellow[2]) { m_InterpolatedSurfaceNode->SetProperty("color", mitk::ColorProperty::New(255.0,255.0,255.0)); } else { m_InterpolatedSurfaceNode->SetProperty("color", mitk::ColorProperty::New(yellow)); } m_InterpolatedSurfaceNode->Update(); mitk::RenderingManager::GetInstance()->RequestUpdate(mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget4"))->GetRenderWindow()); } void QmitkSlicesInterpolator::On3DInterpolationActivated(bool on) { m_3DInterpolationEnabled = on; try { if ( m_DataStorage.IsNotNull() && m_ToolManager && m_3DInterpolationEnabled) { mitk::DataNode* workingNode = m_ToolManager->GetWorkingData(0); if (workingNode) { bool isInterpolationResult(false); workingNode->GetBoolProperty("3DInterpolationResult",isInterpolationResult); if ((workingNode->IsSelected() && workingNode->IsVisible(mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget3")))) && !isInterpolationResult && m_3DInterpolationEnabled) { int ret = QMessageBox::Yes; if (m_SurfaceInterpolator->EstimatePortionOfNeededMemory() > 0.5) { QMessageBox msgBox; msgBox.setText("Due to short handed system memory the 3D interpolation may be very slow!"); msgBox.setInformativeText("Are you sure you want to activate the 3D interpolation?"); msgBox.setStandardButtons(QMessageBox::No | QMessageBox::Yes); ret = msgBox.exec(); } if (m_Watcher.isRunning()) m_Watcher.waitForFinished(); if (ret == QMessageBox::Yes) { m_Future = QtConcurrent::run(this, &QmitkSlicesInterpolator::Run3DInterpolation); m_Watcher.setFuture(m_Future); } else { m_CmbInterpolation->setCurrentIndex(0); } } else if (!m_3DInterpolationEnabled) { this->Show3DInterpolationResult(false); m_BtnApply3D->setEnabled(m_3DInterpolationEnabled); } } else { QWidget::setEnabled( false ); m_ChkShowPositionNodes->setEnabled(m_3DInterpolationEnabled); } } if (!m_3DInterpolationEnabled) { this->Show3DInterpolationResult(false); m_BtnApply3D->setEnabled(m_3DInterpolationEnabled); } } catch(...) { MITK_ERROR<<"Error with 3D surface interpolation!"; } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkSlicesInterpolator::EnableInterpolation(bool on) { // only to be called from the outside world // just a redirection to OnInterpolationActivated OnInterpolationActivated(on); } void QmitkSlicesInterpolator::Enable3DInterpolation(bool on) { // only to be called from the outside world // just a redirection to OnInterpolationActivated On3DInterpolationActivated(on); } void QmitkSlicesInterpolator::UpdateVisibleSuggestion() { if (m_2DInterpolationEnabled && m_LastSNC) { // determine which one is the current view, try to do an initial interpolation mitk::BaseRenderer* renderer = m_LastSNC->GetRenderer(); if (renderer && renderer->GetMapperID() == mitk::BaseRenderer::Standard2D) { const mitk::TimeGeometry* timeGeometry = dynamic_cast( renderer->GetWorldGeometry() ); if (timeGeometry) { mitk::SliceNavigationController::GeometrySliceEvent event( const_cast(timeGeometry), renderer->GetSlice() ); TranslateAndInterpolateChangedSlice(event, m_LastSNC); } } } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkSlicesInterpolator::OnInterpolationInfoChanged(const itk::EventObject& /*e*/) { // something (e.g. undo) changed the interpolation info, we should refresh our display UpdateVisibleSuggestion(); } void QmitkSlicesInterpolator::OnSurfaceInterpolationInfoChanged(const itk::EventObject& /*e*/) { if(m_3DInterpolationEnabled) { if (m_Watcher.isRunning()) m_Watcher.waitForFinished(); m_Future = QtConcurrent::run(this, &QmitkSlicesInterpolator::Run3DInterpolation); m_Watcher.setFuture(m_Future); } } void QmitkSlicesInterpolator:: SetCurrentContourListID() { // New ContourList = hide current interpolation Show3DInterpolationResult(false); if ( m_DataStorage.IsNotNull() && m_ToolManager && m_LastSNC ) { mitk::DataNode* workingNode = m_ToolManager->GetWorkingData(0); if (workingNode) { bool isInterpolationResult(false); workingNode->GetBoolProperty("3DInterpolationResult",isInterpolationResult); bool isVisible (workingNode->IsVisible(m_LastSNC->GetRenderer())); if (isVisible && !isInterpolationResult) { QWidget::setEnabled( true ); //TODO Aufruf hier pruefen! mitk::Vector3D spacing = workingNode->GetData()->GetGeometry( m_LastSNC->GetTime()->GetPos() )->GetSpacing(); double minSpacing (100); double maxSpacing (0); for (int i =0; i < 3; i++) { if (spacing[i] < minSpacing) { minSpacing = spacing[i]; } else if (spacing[i] > maxSpacing) { maxSpacing = spacing[i]; } } m_SurfaceInterpolator->SetSegmentationImage(dynamic_cast(workingNode->GetData())); m_SurfaceInterpolator->SetMaxSpacing(maxSpacing); m_SurfaceInterpolator->SetMinSpacing(minSpacing); m_SurfaceInterpolator->SetDistanceImageVolume(50000); m_SurfaceInterpolator->SetCurrentSegmentationInterpolationList(dynamic_cast(workingNode->GetData())); if (m_3DInterpolationEnabled) { if (m_Watcher.isRunning()) m_Watcher.waitForFinished(); m_Future = QtConcurrent::run(this, &QmitkSlicesInterpolator::Run3DInterpolation); m_Watcher.setFuture(m_Future); } } } else { QWidget::setEnabled(false); } } } void QmitkSlicesInterpolator::Show3DInterpolationResult(bool status) { if (m_InterpolatedSurfaceNode.IsNotNull()) m_InterpolatedSurfaceNode->SetVisibility(status); if (m_3DContourNode.IsNotNull()) m_3DContourNode->SetVisibility(status, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget4"))); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkSlicesInterpolator::OnSliceNavigationControllerDeleted(const itk::Object *sender, const itk::EventObject& /*e*/) { //Don't know how to avoid const_cast here?! mitk::SliceNavigationController* slicer = dynamic_cast(const_cast(sender)); if (slicer) { m_ControllerToTimeObserverTag.remove(slicer); m_ControllerToSliceObserverTag.remove(slicer); m_ControllerToDeleteObserverTag.remove(slicer); } } \ No newline at end of file diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/Connectomics/QmitkConnectomicsDataView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/Connectomics/QmitkConnectomicsDataView.cpp index b0afebfecb..fdd2f313c0 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/Connectomics/QmitkConnectomicsDataView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/Connectomics/QmitkConnectomicsDataView.cpp @@ -1,407 +1,405 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // ####### Blueberry includes ####### #include #include // ####### Qmitk includes ####### #include "QmitkConnectomicsDataView.h" #include "QmitkStdMultiWidget.h" // ####### Qt includes ####### #include // ####### ITK includes ####### #include // ####### MITK includes ####### #include #include "mitkConnectomicsSyntheticNetworkGenerator.h" #include "mitkConnectomicsSimulatedAnnealingManager.h" #include "mitkConnectomicsSimulatedAnnealingPermutationModularity.h" #include "mitkConnectomicsSimulatedAnnealingCostFunctionModularity.h" //#include // Includes for image casting between ITK and MITK #include "mitkImageCast.h" #include "mitkITKImageImport.h" #include "mitkImageAccessByItk.h" const std::string QmitkConnectomicsDataView::VIEW_ID = "org.mitk.views.connectomicsdata"; QmitkConnectomicsDataView::QmitkConnectomicsDataView() : QmitkFunctionality() , m_Controls( 0 ) , m_MultiWidget( NULL ) , m_ConnectomicsNetworkCreator( mitk::ConnectomicsNetworkCreator::New() ) , m_demomode( false ) , m_currentIndex( 0 ) { } QmitkConnectomicsDataView::~QmitkConnectomicsDataView() { } void QmitkConnectomicsDataView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkConnectomicsDataViewControls; m_Controls->setupUi( parent ); QObject::connect( m_Controls->networkifyPushButton, SIGNAL(clicked()), this, SLOT(OnNetworkifyPushButtonClicked()) ); QObject::connect( m_Controls->syntheticNetworkCreationPushButton, SIGNAL(clicked()), this, SLOT(OnSyntheticNetworkCreationPushButtonClicked()) ); QObject::connect( (QObject*)( m_Controls->syntheticNetworkComboBox ), SIGNAL(currentIndexChanged (int)), this, SLOT(OnSyntheticNetworkComboBoxCurrentIndexChanged(int)) ); } // GUI is different for developer and demo mode m_demomode = true; if( m_demomode ) { this->m_Controls->networkifyPushButton->show(); this->m_Controls->networkifyPushButton->setText( "Create Network" ); this->m_Controls->syntheticNetworkOptionsGroupBox->show(); //--------------------------- fill comboBox--------------------------- this->m_Controls->syntheticNetworkComboBox->insertItem(0,"Regular lattice"); this->m_Controls->syntheticNetworkComboBox->insertItem(1,"Heterogenic sphere"); this->m_Controls->syntheticNetworkComboBox->insertItem(2,"Random network"); this->m_Controls->mappingStrategyComboBox->insertItem(m_ConnectomicsNetworkCreator->EndElementPosition, "Use label of end position of fibers"); this->m_Controls->mappingStrategyComboBox->insertItem(m_ConnectomicsNetworkCreator->EndElementPositionAvoidingWhiteMatter, "Extrapolate label"); } else { this->m_Controls->networkifyPushButton->show(); this->m_Controls->networkifyPushButton->setText( "Networkify" ); this->m_Controls->syntheticNetworkOptionsGroupBox->show(); //--------------------------- fill comboBox--------------------------- this->m_Controls->syntheticNetworkComboBox->insertItem(0,"Regular lattice"); this->m_Controls->syntheticNetworkComboBox->insertItem(1,"Heterogenic sphere"); this->m_Controls->syntheticNetworkComboBox->insertItem(2,"Random network"); this->m_Controls->syntheticNetworkComboBox->insertItem(3,"Scale free network"); this->m_Controls->syntheticNetworkComboBox->insertItem(4,"Small world network"); this->m_Controls->mappingStrategyComboBox->insertItem(m_ConnectomicsNetworkCreator->EndElementPosition, "Use label of end position of fibers"); this->m_Controls->mappingStrategyComboBox->insertItem(m_ConnectomicsNetworkCreator->EndElementPositionAvoidingWhiteMatter, "Extrapolate label"); this->m_Controls->mappingStrategyComboBox->insertItem(m_ConnectomicsNetworkCreator->JustEndPointVerticesNoLabel, "Use end position of fibers, no label"); } this->WipeDisplay(); } void QmitkConnectomicsDataView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkConnectomicsDataView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } void QmitkConnectomicsDataView::WipeDisplay() { m_Controls->lblWarning->setVisible( true ); m_Controls->inputImageOneNameLabel->setText( mitk::ConnectomicsConstantsManager::CONNECTOMICS_GUI_DASH ); m_Controls->inputImageOneNameLabel->setVisible( false ); m_Controls->inputImageOneLabel->setVisible( false ); m_Controls->inputImageTwoNameLabel->setText( mitk::ConnectomicsConstantsManager::CONNECTOMICS_GUI_DASH ); m_Controls->inputImageTwoNameLabel->setVisible( false ); m_Controls->inputImageTwoLabel->setVisible( false ); } void QmitkConnectomicsDataView::OnSelectionChanged( std::vector nodes ) { this->WipeDisplay(); // Valid options are either // 1 image (parcellation) // // 1 image (parcellation) // 1 fiber bundle // // 1 network if( nodes.size() > 2 ) { return; } bool alreadyFiberBundleSelected( false ), alreadyImageSelected( false ), currentFormatUnknown( true ); // iterate all selected objects, adjust warning visibility for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; currentFormatUnknown = true; if( node.IsNotNull() && dynamic_cast(node->GetData()) ) { currentFormatUnknown = false; if( alreadyImageSelected ) { this->WipeDisplay(); return; } alreadyImageSelected = true; m_Controls->lblWarning->setVisible( false ); m_Controls->inputImageOneNameLabel->setText(node->GetName().c_str()); m_Controls->inputImageOneNameLabel->setVisible( true ); m_Controls->inputImageOneLabel->setVisible( true ); } if( node.IsNotNull() && dynamic_cast(node->GetData()) ) { currentFormatUnknown = false; // a fiber bundle has to be in conjunction with a parcellation if( nodes.size() != 2 || alreadyFiberBundleSelected ) { this->WipeDisplay(); return; } alreadyFiberBundleSelected = true; m_Controls->lblWarning->setVisible( false ); m_Controls->inputImageTwoNameLabel->setText(node->GetName().c_str()); m_Controls->inputImageTwoNameLabel->setVisible( true ); m_Controls->inputImageTwoLabel->setVisible( true ); } { // network section mitk::ConnectomicsNetwork* network = dynamic_cast( node->GetData() ); if( node.IsNotNull() && network ) { currentFormatUnknown = false; if( nodes.size() != 1 ) { // only valid option is a single network this->WipeDisplay(); return; } m_Controls->lblWarning->setVisible( false ); m_Controls->inputImageOneNameLabel->setText(node->GetName().c_str()); m_Controls->inputImageOneNameLabel->setVisible( true ); m_Controls->inputImageOneLabel->setVisible( true ); - } } // end network section if ( currentFormatUnknown ) { this->WipeDisplay(); return; } } // end for loop } void QmitkConnectomicsDataView::OnSyntheticNetworkComboBoxCurrentIndexChanged(int currentIndex) { m_currentIndex = currentIndex; switch (m_currentIndex) { case 0: this->m_Controls->parameterOneLabel->setText( "Nodes per side" ); this->m_Controls->parameterTwoLabel->setText( "Internode distance" ); this->m_Controls->parameterOneSpinBox->setEnabled( true ); this->m_Controls->parameterOneSpinBox->setValue( 5 ); this->m_Controls->parameterTwoDoubleSpinBox->setEnabled( true ); this->m_Controls->parameterTwoDoubleSpinBox->setMaximum( 999.999 ); this->m_Controls->parameterTwoDoubleSpinBox->setValue( 10.0 ); break; case 1: this->m_Controls->parameterOneLabel->setText( "Number of nodes" ); this->m_Controls->parameterTwoLabel->setText( "Radius" ); this->m_Controls->parameterOneSpinBox->setEnabled( true ); this->m_Controls->parameterOneSpinBox->setValue( 1000 ); this->m_Controls->parameterTwoDoubleSpinBox->setEnabled( true ); this->m_Controls->parameterTwoDoubleSpinBox->setMaximum( 999.999 ); this->m_Controls->parameterTwoDoubleSpinBox->setValue( 50.0 ); break; case 2: this->m_Controls->parameterOneLabel->setText( "Number of nodes" ); this->m_Controls->parameterTwoLabel->setText( "Edge percentage" ); this->m_Controls->parameterOneSpinBox->setEnabled( true ); this->m_Controls->parameterOneSpinBox->setValue( 100 ); this->m_Controls->parameterTwoDoubleSpinBox->setEnabled( true ); this->m_Controls->parameterTwoDoubleSpinBox->setMaximum( 1.0 ); this->m_Controls->parameterTwoDoubleSpinBox->setValue( 0.5 ); break; case 3: //GenerateSyntheticScaleFreeNetwork( network, 1000 ); break; case 4: //GenerateSyntheticSmallWorldNetwork( network, 1000 ); break; default: this->m_Controls->parameterOneLabel->setText( "Parameter 1" ); this->m_Controls->parameterTwoLabel->setText( "Paramater 2" ); this->m_Controls->parameterOneSpinBox->setEnabled( false ); this->m_Controls->parameterOneSpinBox->setValue( 0 ); this->m_Controls->parameterTwoDoubleSpinBox->setEnabled( false ); this->m_Controls->parameterTwoDoubleSpinBox->setValue( 0.0 ); } } void QmitkConnectomicsDataView::OnSyntheticNetworkCreationPushButtonClicked() { // warn if trying to create a very big network // big network is a network with > 5000 nodes (estimate) // this might fill up the memory to the point it freezes int numberOfNodes( 0 ); switch (m_currentIndex) { case 0: numberOfNodes = this->m_Controls->parameterOneSpinBox->value() * this->m_Controls->parameterOneSpinBox->value() * this->m_Controls->parameterOneSpinBox->value(); break; case 1: numberOfNodes = this->m_Controls->parameterOneSpinBox->value(); break; case 2: numberOfNodes = this->m_Controls->parameterOneSpinBox->value(); break; case 3: // not implemented yet break; case 4: // not implemented yet break; default: break; - } if( numberOfNodes > 5000 ) { QMessageBox msgBox; msgBox.setText("Trying to generate very large network."); msgBox.setIcon( QMessageBox::Warning ); msgBox.setInformativeText("You are trying to generate a network with more than 5000 nodes, this is very resource intensive and might lead to program instability. Proceed with network generation?"); msgBox.setStandardButtons(QMessageBox::Yes | QMessageBox::No); msgBox.setDefaultButton(QMessageBox::No); int ret = msgBox.exec(); switch (ret) { case QMessageBox::Yes: // continue break; case QMessageBox::No: // stop return; break; default: // should never be reached break; } } // proceed mitk::ConnectomicsSyntheticNetworkGenerator::Pointer generator = mitk::ConnectomicsSyntheticNetworkGenerator::New(); mitk::DataNode::Pointer networkNode = mitk::DataNode::New(); int parameterOne = this->m_Controls->parameterOneSpinBox->value(); double parameterTwo = this->m_Controls->parameterTwoDoubleSpinBox->value(); //add network to datastorage networkNode->SetData( generator->CreateSyntheticNetwork( m_currentIndex, parameterOne, parameterTwo ) ); networkNode->SetName( mitk::ConnectomicsConstantsManager::CONNECTOMICS_PROPERTY_DEFAULT_CNF_NAME ); if( generator->WasGenerationSuccessfull() ) { this->GetDefaultDataStorage()->Add( networkNode ); } else { MITK_WARN << "Problem occured during synthetic network generation."; } mitk::RenderingManager::GetInstance()->InitializeViews( - networkNode->GetData()->GetTimeSlicedGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); + networkNode->GetData()->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); return; } void QmitkConnectomicsDataView::OnNetworkifyPushButtonClicked() { std::vector nodes = this->GetDataManagerSelection(); if ( nodes.empty() ) { QMessageBox::information( NULL, mitk::ConnectomicsConstantsManager::CONNECTOMICS_GUI_CONNECTOMICS_CREATION, mitk::ConnectomicsConstantsManager::CONNECTOMICS_GUI_SELECTION_WARNING); return; } if (! ( nodes.size() == 2 ) ) { QMessageBox::information( NULL, mitk::ConnectomicsConstantsManager::CONNECTOMICS_GUI_CONNECTOMICS_CREATION, mitk::ConnectomicsConstantsManager::CONNECTOMICS_GUI_SELECTION_WARNING); return; } mitk::DataNode* firstNode = nodes.front(); mitk::DataNode* secondNode = nodes.at(1); if (!firstNode) { // Nothing selected. Inform the user and return QMessageBox::information( NULL, mitk::ConnectomicsConstantsManager::CONNECTOMICS_GUI_CONNECTOMICS_CREATION, mitk::ConnectomicsConstantsManager::CONNECTOMICS_GUI_SELECTION_WARNING); return; } // here we have a valid mitk::DataNode // a node itself is not very useful, we need its data item (the image) mitk::BaseData* firstData = firstNode->GetData(); mitk::BaseData* secondData = secondNode->GetData(); if (firstData && secondData) { // test if this data item is an image or not (could also be a surface or something totally different) mitk::Image* image = dynamic_cast( firstData ); mitk::FiberBundleX* fiberBundle = dynamic_cast( secondData ); // check whether order was switched if (! (image && fiberBundle) ) { image = dynamic_cast( secondData ); fiberBundle = dynamic_cast( firstData ); } if (image && fiberBundle) { mitk::ConnectomicsNetworkCreator::MappingStrategy mappingStrategy = static_cast(this->m_Controls->mappingStrategyComboBox->currentIndex()); m_ConnectomicsNetworkCreator->SetSegmentation( image ); m_ConnectomicsNetworkCreator->SetFiberBundle( fiberBundle ); m_ConnectomicsNetworkCreator->CalculateCenterOfMass(); m_ConnectomicsNetworkCreator->SetEndPointSearchRadius( 15 ); m_ConnectomicsNetworkCreator->SetMappingStrategy( mappingStrategy ); m_ConnectomicsNetworkCreator->CreateNetworkFromFibersAndSegmentation(); mitk::DataNode::Pointer networkNode = mitk::DataNode::New(); //add network to datastorage networkNode->SetData( m_ConnectomicsNetworkCreator->GetNetwork() ); networkNode->SetName( mitk::ConnectomicsConstantsManager::CONNECTOMICS_PROPERTY_DEFAULT_CNF_NAME ); this->GetDefaultDataStorage()->Add( networkNode ); } } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); -} +} \ No newline at end of file diff --git a/Plugins/org.mitk.gui.qt.segmentation/src/internal/QmitkSegmentationView.cpp b/Plugins/org.mitk.gui.qt.segmentation/src/internal/QmitkSegmentationView.cpp index 932d71eac5..3037b59c73 100644 --- a/Plugins/org.mitk.gui.qt.segmentation/src/internal/QmitkSegmentationView.cpp +++ b/Plugins/org.mitk.gui.qt.segmentation/src/internal/QmitkSegmentationView.cpp @@ -1,1148 +1,1140 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkProperties.h" #include "mitkSegTool2D.h" #include "mitkStatusBar.h" #include "QmitkStdMultiWidget.h" #include "QmitkNewSegmentationDialog.h" #include #include #include "QmitkSegmentationView.h" #include "QmitkSegmentationOrganNamesHandling.cpp" #include #include "mitkVtkResliceInterpolationProperty.h" #include "mitkApplicationCursor.h" #include "mitkSegmentationObjectFactory.h" #include "mitkPluginActivator.h" #include "usModuleResource.h" #include "usModuleResourceStream.h" //micro service to get the ToolManager instance #include "mitkToolManagerProvider.h" const std::string QmitkSegmentationView::VIEW_ID = "org.mitk.views.segmentation"; // public methods QmitkSegmentationView::QmitkSegmentationView() :m_Parent(NULL) ,m_Controls(NULL) ,m_MultiWidget(NULL) ,m_DataSelectionChanged(false) ,m_MouseCursorSet(false) { RegisterSegmentationObjectFactory(); mitk::NodePredicateDataType::Pointer isDwi = mitk::NodePredicateDataType::New("DiffusionImage"); mitk::NodePredicateDataType::Pointer isDti = mitk::NodePredicateDataType::New("TensorImage"); mitk::NodePredicateDataType::Pointer isQbi = mitk::NodePredicateDataType::New("QBallImage"); mitk::NodePredicateOr::Pointer isDiffusionImage = mitk::NodePredicateOr::New(isDwi, isDti); isDiffusionImage = mitk::NodePredicateOr::New(isDiffusionImage, isQbi); m_IsOfTypeImagePredicate = mitk::NodePredicateOr::New(isDiffusionImage, mitk::TNodePredicateDataType::New()); m_IsBinaryPredicate = mitk::NodePredicateProperty::New("binary", mitk::BoolProperty::New(true)); m_IsNotBinaryPredicate = mitk::NodePredicateNot::New( m_IsBinaryPredicate ); m_IsNotABinaryImagePredicate = mitk::NodePredicateAnd::New( m_IsOfTypeImagePredicate, m_IsNotBinaryPredicate ); m_IsABinaryImagePredicate = mitk::NodePredicateAnd::New( m_IsOfTypeImagePredicate, m_IsBinaryPredicate); } QmitkSegmentationView::~QmitkSegmentationView() { delete m_Controls; } void QmitkSegmentationView::NewNodesGenerated() { MITK_WARN<<"Use of deprecated function: NewNodesGenerated!! This function is empty and will be removed in the next time!"; } void QmitkSegmentationView::NewNodeObjectsGenerated(mitk::ToolManager::DataVectorType* nodes) { if (!nodes) return; mitk::ToolManager* toolManager = mitk::ToolManagerProvider::GetInstance()->GetToolManager(); if (!toolManager) return; for (mitk::ToolManager::DataVectorType::iterator iter = nodes->begin(); iter != nodes->end(); ++iter) { this->FireNodeSelected( *iter ); // only last iteration meaningful, multiple generated objects are not taken into account here } } void QmitkSegmentationView::Visible() { if (m_DataSelectionChanged) { this->OnSelectionChanged(this->GetDataManagerSelection()); } } void QmitkSegmentationView::Activated() { // should be moved to ::BecomesVisible() or similar if( m_Controls ) { //m_Controls->m_ManualToolSelectionBox2D->SetAutoShowNamesWidth(m_Controls->m_ManualToolSelectionBox2D->minimumSizeHint().width()+1); m_Controls->m_ManualToolSelectionBox2D->SetAutoShowNamesWidth(250); m_Controls->m_ManualToolSelectionBox2D->setEnabled( true ); //m_Controls->m_ManualToolSelectionBox3D->SetAutoShowNamesWidth(m_Controls->m_ManualToolSelectionBox3D->minimumSizeHint().width()+1); m_Controls->m_ManualToolSelectionBox3D->SetAutoShowNamesWidth(260); m_Controls->m_ManualToolSelectionBox3D->setEnabled( true ); // m_Controls->m_OrganToolSelectionBox->setEnabled( true ); // m_Controls->m_LesionToolSelectionBox->setEnabled( true ); // m_Controls->m_SlicesInterpolator->Enable3DInterpolation( m_Controls->widgetStack->currentWidget() == m_Controls->pageManual ); mitk::DataStorage::SetOfObjects::ConstPointer segmentations = this->GetDefaultDataStorage()->GetSubset( m_IsABinaryImagePredicate ); mitk::DataStorage::SetOfObjects::ConstPointer image = this->GetDefaultDataStorage()->GetSubset( m_IsNotABinaryImagePredicate ); if (!image->empty()) { OnSelectionChanged(*image->begin()); } for ( mitk::DataStorage::SetOfObjects::const_iterator iter = segmentations->begin(); iter != segmentations->end(); ++iter) { mitk::DataNode* node = *iter; itk::SimpleMemberCommand::Pointer command = itk::SimpleMemberCommand::New(); command->SetCallbackFunction(this, &QmitkSegmentationView::OnWorkingNodeVisibilityChanged); m_WorkingDataObserverTags.insert( std::pair( node, node->GetProperty("visible")->AddObserver( itk::ModifiedEvent(), command ) ) ); itk::SimpleMemberCommand::Pointer command2 = itk::SimpleMemberCommand::New(); command2->SetCallbackFunction(this, &QmitkSegmentationView::OnBinaryPropertyChanged); m_BinaryPropertyObserverTags.insert( std::pair( node, node->GetProperty("binary")->AddObserver( itk::ModifiedEvent(), command2 ) ) ); } } this->SetToolManagerSelection(m_Controls->patImageSelector->GetSelectedNode(), m_Controls->segImageSelector->GetSelectedNode()); } void QmitkSegmentationView::Deactivated() { if( m_Controls ) { m_Controls->m_ManualToolSelectionBox2D->setEnabled( false ); m_Controls->m_ManualToolSelectionBox3D->setEnabled( false ); //deactivate all tools mitk::ToolManagerProvider::GetInstance()->GetToolManager()->ActivateTool(-1); // m_Controls->m_OrganToolSelectionBox->setEnabled( false ); // m_Controls->m_LesionToolSelectionBox->setEnabled( false ); m_Controls->m_SlicesInterpolator->EnableInterpolation( false ); //Removing all observers for ( NodeTagMapType::iterator dataIter = m_WorkingDataObserverTags.begin(); dataIter != m_WorkingDataObserverTags.end(); ++dataIter ) { (*dataIter).first->GetProperty("visible")->RemoveObserver( (*dataIter).second ); } m_WorkingDataObserverTags.clear(); for ( NodeTagMapType::iterator dataIter = m_BinaryPropertyObserverTags.begin(); dataIter != m_BinaryPropertyObserverTags.end(); ++dataIter ) { (*dataIter).first->GetProperty("binary")->RemoveObserver( (*dataIter).second ); } m_BinaryPropertyObserverTags.clear(); ctkPluginContext* context = mitk::PluginActivator::getContext(); ctkServiceReference ppmRef = context->getServiceReference(); mitk::PlanePositionManagerService* service = context->getService(ppmRef); service->RemoveAllPlanePositions(); context->ungetService(ppmRef); this->SetToolManagerSelection(0,0); } } void QmitkSegmentationView::StdMultiWidgetAvailable( QmitkStdMultiWidget& stdMultiWidget ) { SetMultiWidget(&stdMultiWidget); } void QmitkSegmentationView::StdMultiWidgetNotAvailable() { SetMultiWidget(NULL); } void QmitkSegmentationView::StdMultiWidgetClosed( QmitkStdMultiWidget& /*stdMultiWidget*/ ) { SetMultiWidget(NULL); } void QmitkSegmentationView::SetMultiWidget(QmitkStdMultiWidget* multiWidget) { // save the current multiwidget as the working widget m_MultiWidget = multiWidget; if (m_Parent) { m_Parent->setEnabled(m_MultiWidget); } // tell the interpolation about toolmanager and multiwidget (and data storage) if (m_Controls && m_MultiWidget) { mitk::ToolManager* toolManager = mitk::ToolManagerProvider::GetInstance()->GetToolManager(); m_Controls->m_SlicesInterpolator->SetDataStorage( this->GetDefaultDataStorage()); QList controllers; controllers.push_back(m_MultiWidget->GetRenderWindow1()->GetSliceNavigationController()); controllers.push_back(m_MultiWidget->GetRenderWindow2()->GetSliceNavigationController()); controllers.push_back(m_MultiWidget->GetRenderWindow3()->GetSliceNavigationController()); m_Controls->m_SlicesInterpolator->Initialize( toolManager, controllers ); } } void QmitkSegmentationView::OnPreferencesChanged(const berry::IBerryPreferences* prefs) { m_AutoSelectionEnabled = prefs->GetBool("auto selection", false); } void QmitkSegmentationView::CreateNewSegmentation() { - mitk::DataNode::Pointer node = mitk::ToolManagerProvider::GetInstance()->GetToolManager()->GetReferenceData(0); if (node.IsNotNull()) { mitk::Image::Pointer image = dynamic_cast( node->GetData() ); if (image.IsNotNull()) { if (image->GetDimension()>1) { // ask about the name and organ type of the new segmentation QmitkNewSegmentationDialog* dialog = new QmitkNewSegmentationDialog( m_Parent ); // needs a QWidget as parent, "this" is not QWidget QString storedList = QString::fromStdString( this->GetPreferences()->GetByteArray("Organ-Color-List","") ); QStringList organColors; if (storedList.isEmpty()) { organColors = GetDefaultOrganColorString(); } else { /* a couple of examples of how organ names are stored: a simple item is built up like 'name#AABBCC' where #AABBCC is the hexadecimal notation of a color as known from HTML items are stored separated by ';' this makes it necessary to escape occurrences of ';' in name. otherwise the string "hugo;ypsilon#AABBCC;eugen#AABBCC" could not be parsed as two organs but we would get "hugo" and "ypsilon#AABBCC" and "eugen#AABBCC" so the organ name "hugo;ypsilon" is stored as "hugo\;ypsilon" and must be unescaped after loading the following lines could be one split with Perl's negative lookbehind */ // recover string list from BlueBerry view's preferences QString storedString = QString::fromStdString( this->GetPreferences()->GetByteArray("Organ-Color-List","") ); MITK_DEBUG << "storedString: " << storedString.toStdString(); // match a string consisting of any number of repetitions of either "anything but ;" or "\;". This matches everything until the next unescaped ';' QRegExp onePart("(?:[^;]|\\\\;)*"); MITK_DEBUG << "matching " << onePart.pattern().toStdString(); int count = 0; int pos = 0; while( (pos = onePart.indexIn( storedString, pos )) != -1 ) { ++count; int length = onePart.matchedLength(); if (length == 0) break; QString matchedString = storedString.mid(pos, length); MITK_DEBUG << " Captured length " << length << ": " << matchedString.toStdString(); pos += length + 1; // skip separating ';' // unescape possible occurrences of '\;' in the string matchedString.replace("\\;", ";"); // add matched string part to output list organColors << matchedString; } MITK_DEBUG << "Captured " << count << " organ name/colors"; } dialog->SetSuggestionList( organColors ); int dialogReturnValue = dialog->exec(); if ( dialogReturnValue == QDialog::Rejected ) return; // user clicked cancel or pressed Esc or something similar // ask the user about an organ type and name, add this information to the image's (!) propertylist // create a new image of the same dimensions and smallest possible pixel type mitk::ToolManager* toolManager = mitk::ToolManagerProvider::GetInstance()->GetToolManager(); mitk::Tool* firstTool = toolManager->GetToolById(0); if (firstTool) { try { std::string newNodeName = dialog->GetSegmentationName().toStdString(); if(newNodeName.empty()) newNodeName = "no_name"; mitk::DataNode::Pointer emptySegmentation = firstTool->CreateEmptySegmentationNode( image, newNodeName, dialog->GetColor() ); // initialize showVolume to false to prevent recalculating the volume while working on the segmentation emptySegmentation->SetProperty( "showVolume", mitk::BoolProperty::New( false ) ); if (!emptySegmentation) return; // could be aborted by user UpdateOrganList( organColors, dialog->GetSegmentationName(), dialog->GetColor() ); /* escape ';' here (replace by '\;'), see longer comment above */ std::string stringForStorage = organColors.replaceInStrings(";","\\;").join(";").toStdString(); MITK_DEBUG << "Will store: " << stringForStorage; this->GetPreferences()->PutByteArray("Organ-Color-List", stringForStorage ); this->GetPreferences()->Flush(); if(mitk::ToolManagerProvider::GetInstance()->GetToolManager()->GetWorkingData(0)) { mitk::ToolManagerProvider::GetInstance()->GetToolManager()->GetWorkingData(0)->SetSelected(false); } emptySegmentation->SetSelected(true); this->GetDefaultDataStorage()->Add( emptySegmentation, node ); // add as a child, because the segmentation "derives" from the original itk::SimpleMemberCommand::Pointer command = itk::SimpleMemberCommand::New(); command->SetCallbackFunction(this, &QmitkSegmentationView::OnWorkingNodeVisibilityChanged); m_WorkingDataObserverTags.insert( std::pair( emptySegmentation, emptySegmentation->GetProperty("visible")->AddObserver( itk::ModifiedEvent(), command ) ) ); itk::SimpleMemberCommand::Pointer command2 = itk::SimpleMemberCommand::New(); command2->SetCallbackFunction(this, &QmitkSegmentationView::OnBinaryPropertyChanged); m_BinaryPropertyObserverTags.insert( std::pair( emptySegmentation, emptySegmentation->GetProperty("binary")->AddObserver( itk::ModifiedEvent(), command2 ) ) ); this->ApplyDisplayOptions( emptySegmentation ); this->FireNodeSelected( emptySegmentation ); this->OnSelectionChanged( emptySegmentation ); m_Controls->segImageSelector->SetSelectedNode(emptySegmentation); } catch (std::bad_alloc) { QMessageBox::warning(NULL,"Create new segmentation","Could not allocate memory for new segmentation"); } } } else { QMessageBox::information(NULL,"Segmentation","Segmentation is currently not supported for 2D images"); } } } else { MITK_ERROR << "'Create new segmentation' button should never be clickable unless a patient image is selected..."; } } void QmitkSegmentationView::OnWorkingNodeVisibilityChanged() { mitk::DataNode* selectedNode = m_Controls->segImageSelector->GetSelectedNode(); bool selectedNodeIsVisible = selectedNode->IsVisible(mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget1"))); if (m_Controls->tab2DTools->isVisible() && !selectedNodeIsVisible) { m_Controls->m_ManualToolSelectionBox2D->setEnabled(false); this->UpdateWarningLabel("The selected segmentation is currently not visible!"); m_Controls->m_SlicesInterpolator->Show3DInterpolationResult(false); mitk::ToolManagerProvider::GetInstance()->GetToolManager()->ActivateTool(-1); } else { m_Controls->m_ManualToolSelectionBox2D->setEnabled(true); this->UpdateWarningLabel(""); //Trigger 3d interpolation is selected segmentation is visible again mitk::SurfaceInterpolationController::GetInstance()->Modified(); } } void QmitkSegmentationView::OnBinaryPropertyChanged() { mitk::DataStorage::SetOfObjects::ConstPointer patImages = m_Controls->patImageSelector->GetNodes(); bool isBinary(false); for (mitk::DataStorage::SetOfObjects::ConstIterator it = patImages->Begin(); it != patImages->End(); ++it) { const mitk::DataNode* node = it->Value(); node->GetBoolProperty("binary", isBinary); if(isBinary) { m_Controls->patImageSelector->RemoveNode(node); m_Controls->segImageSelector->AddNode(node); this->SetToolManagerSelection(NULL,NULL); return; } } mitk::DataStorage::SetOfObjects::ConstPointer segImages = m_Controls->segImageSelector->GetNodes(); isBinary = true; for (mitk::DataStorage::SetOfObjects::ConstIterator it = segImages->Begin(); it != segImages->End(); ++it) { const mitk::DataNode* node = it->Value(); node->GetBoolProperty("binary", isBinary); if(!isBinary) { m_Controls->segImageSelector->RemoveNode(node); m_Controls->patImageSelector->AddNode(node); if (mitk::ToolManagerProvider::GetInstance()->GetToolManager()->GetWorkingData(0) == node) mitk::ToolManagerProvider::GetInstance()->GetToolManager()->SetWorkingData(NULL); return; } } } void QmitkSegmentationView::NodeAdded(const mitk::DataNode *node) { bool isBinary (false); bool isHelperObject (false); node->GetBoolProperty("binary", isBinary); node->GetBoolProperty("helper object", isHelperObject); if (m_AutoSelectionEnabled) { if (!isBinary && dynamic_cast(node->GetData())) { FireNodeSelected(const_cast(node)); } } if (isBinary && !isHelperObject) { itk::SimpleMemberCommand::Pointer command = itk::SimpleMemberCommand::New(); command->SetCallbackFunction(this, &QmitkSegmentationView::OnWorkingNodeVisibilityChanged); m_WorkingDataObserverTags.insert( std::pair( const_cast(node), node->GetProperty("visible")->AddObserver( itk::ModifiedEvent(), command ) ) ); itk::SimpleMemberCommand::Pointer command2 = itk::SimpleMemberCommand::New(); command2->SetCallbackFunction(this, &QmitkSegmentationView::OnBinaryPropertyChanged); m_BinaryPropertyObserverTags.insert( std::pair( const_cast(node), node->GetProperty("binary")->AddObserver( itk::ModifiedEvent(), command2 ) ) ); this->ApplyDisplayOptions( const_cast(node) ); } } void QmitkSegmentationView::NodeRemoved(const mitk::DataNode* node) { bool isSeg(false); bool isHelperObject(false); node->GetBoolProperty("helper object", isHelperObject); node->GetBoolProperty("binary", isSeg); mitk::Image* image = dynamic_cast(node->GetData()); if(isSeg && !isHelperObject && image) { //First of all remove all possible contour markers of the segmentation mitk::DataStorage::SetOfObjects::ConstPointer allContourMarkers = this->GetDataStorage()->GetDerivations(node, mitk::NodePredicateProperty::New("isContourMarker" , mitk::BoolProperty::New(true))); ctkPluginContext* context = mitk::PluginActivator::getContext(); ctkServiceReference ppmRef = context->getServiceReference(); mitk::PlanePositionManagerService* service = context->getService(ppmRef); for (mitk::DataStorage::SetOfObjects::ConstIterator it = allContourMarkers->Begin(); it != allContourMarkers->End(); ++it) { std::string nodeName = node->GetName(); unsigned int t = nodeName.find_last_of(" "); unsigned int id = atof(nodeName.substr(t+1).c_str())-1; service->RemovePlanePosition(id); this->GetDataStorage()->Remove(it->Value()); } context->ungetService(ppmRef); service = NULL; if ((mitk::ToolManagerProvider::GetInstance()->GetToolManager()->GetWorkingData(0) == node) && m_Controls->patImageSelector->GetSelectedNode().IsNotNull()) { this->SetToolManagerSelection(mitk::ToolManagerProvider::GetInstance()->GetToolManager()->GetReferenceData(0), NULL); this->UpdateWarningLabel("Select or create a segmentation!"); } mitk::SurfaceInterpolationController::GetInstance()->RemoveSegmentationFromContourList(image); } mitk::DataNode* tempNode = const_cast(node); //Since the binary property could be changed during runtime by the user if (image && !isHelperObject) { node->GetProperty("visible")->RemoveObserver( m_WorkingDataObserverTags[tempNode] ); m_WorkingDataObserverTags.erase(tempNode); node->GetProperty("binary")->RemoveObserver( m_BinaryPropertyObserverTags[tempNode] ); m_BinaryPropertyObserverTags.erase(tempNode); } if((mitk::ToolManagerProvider::GetInstance()->GetToolManager()->GetReferenceData(0) == node)) { //as we don't know which node was actually removed e.g. our reference node, disable 'New Segmentation' button. //consider the case that there is no more image in the datastorage this->SetToolManagerSelection(NULL, NULL); } } //void QmitkSegmentationView::CreateSegmentationFromSurface() //{ // mitk::DataNode::Pointer surfaceNode = // m_Controls->MaskSurfaces->GetSelectedNode(); // mitk::Surface::Pointer surface(0); // if(surfaceNode.IsNotNull()) // surface = dynamic_cast ( surfaceNode->GetData() ); // if(surface.IsNull()) // { // this->HandleException( "No surface selected.", m_Parent, true); // return; // } // mitk::DataNode::Pointer imageNode // = mitk::ToolManagerProvider::GetInstance()->GetToolManager()->GetReferenceData(0); // mitk::Image::Pointer image(0); // if (imageNode.IsNotNull()) // image = dynamic_cast( imageNode->GetData() ); // if(image.IsNull()) // { // this->HandleException( "No image selected.", m_Parent, true); // return; // } // mitk::SurfaceToImageFilter::Pointer s2iFilter // = mitk::SurfaceToImageFilter::New(); // s2iFilter->MakeOutputBinaryOn(); // s2iFilter->SetInput(surface); // s2iFilter->SetImage(image); // s2iFilter->Update(); // mitk::DataNode::Pointer resultNode = mitk::DataNode::New(); // std::string nameOfResultImage = imageNode->GetName(); // nameOfResultImage.append(surfaceNode->GetName()); // resultNode->SetProperty("name", mitk::StringProperty::New(nameOfResultImage) ); // resultNode->SetProperty("binary", mitk::BoolProperty::New(true) ); // resultNode->SetData( s2iFilter->GetOutput() ); // this->GetDataStorage()->Add(resultNode, imageNode); //} //void QmitkSegmentationView::ToolboxStackPageChanged(int id) //{ // // interpolation only with manual tools visible // m_Controls->m_SlicesInterpolator->EnableInterpolation( id == 0 ); // if( id == 0 ) // { // mitk::DataNode::Pointer workingData = mitk::ToolManagerProvider::GetInstance()->GetToolManager()->GetWorkingData(0); // if( workingData.IsNotNull() ) // { // m_Controls->segImageSelector->setCurrentIndex( m_Controls->segImageSelector->Find(workingData) ); // } // } // // this is just a workaround, should be removed when all tools support 3D+t // if (id==2) // lesions // { // mitk::DataNode::Pointer node = mitk::ToolManagerProvider::GetInstance()->GetToolManager()->GetReferenceData(0); // if (node.IsNotNull()) // { // mitk::Image::Pointer image = dynamic_cast( node->GetData() ); // if (image.IsNotNull()) // { // if (image->GetDimension()>3) // { // m_Controls->widgetStack->setCurrentIndex(0); // QMessageBox::information(NULL,"Segmentation","Lesion segmentation is currently not supported for 4D images"); // } // } // } // } //} // protected void QmitkSegmentationView::OnPatientComboBoxSelectionChanged( const mitk::DataNode* node ) { //mitk::DataNode* selectedNode = const_cast(node); if( node != NULL ) { this->UpdateWarningLabel(""); mitk::DataNode* segNode = m_Controls->segImageSelector->GetSelectedNode(); if (segNode) { mitk::DataStorage::SetOfObjects::ConstPointer possibleParents = this->GetDefaultDataStorage()->GetSources( segNode, m_IsNotABinaryImagePredicate ); bool isSourceNode(false); for (mitk::DataStorage::SetOfObjects::ConstIterator it = possibleParents->Begin(); it != possibleParents->End(); it++) { if (it.Value() == node) isSourceNode = true; } if ( !isSourceNode && (!this->CheckForSameGeometry(segNode, node) || possibleParents->Size() > 0 )) { this->SetToolManagerSelection(node, NULL); this->UpdateWarningLabel("The selected patient image does not\nmatch with the selected segmentation!"); } else if ((!isSourceNode && this->CheckForSameGeometry(segNode, node)) || isSourceNode ) { this->SetToolManagerSelection(node, segNode); //Doing this we can assure that the segmenation is always visible if the segmentation and the patient image are //loaded separately int layer(10); node->GetIntProperty("layer", layer); layer++; segNode->SetProperty("layer", mitk::IntProperty::New(layer)); this->UpdateWarningLabel(""); } } else { this->SetToolManagerSelection(node, NULL); this->UpdateWarningLabel("Select or create a segmentation"); } } else { this->UpdateWarningLabel("Please load an image!"); } } void QmitkSegmentationView::OnSegmentationComboBoxSelectionChanged(const mitk::DataNode *node) { if ( node == 0) return; mitk::DataNode* refNode = m_Controls->patImageSelector->GetSelectedNode(); if (m_AutoSelectionEnabled) { this->OnSelectionChanged(const_cast(node)); } else { mitk::DataStorage::SetOfObjects::ConstPointer possibleParents = this->GetDefaultDataStorage()->GetSources( node, m_IsNotABinaryImagePredicate ); if ( possibleParents->Size() == 1 ) { mitk::DataNode* parentNode = possibleParents->ElementAt(0); if (parentNode != refNode) { this->UpdateWarningLabel("The selected segmentation does not\nmatch with the selected patient image!"); this->SetToolManagerSelection(NULL, node); } else { this->UpdateWarningLabel(""); this->SetToolManagerSelection(refNode, node); } - } else if (refNode && this->CheckForSameGeometry(node, refNode)) { this->UpdateWarningLabel(""); this->SetToolManagerSelection(refNode, node); } else if (!refNode || !this->CheckForSameGeometry(node, refNode)) { this->UpdateWarningLabel("Please select or load the according patient image!"); } } if (!node->IsVisible(mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget1")))) this->UpdateWarningLabel("The selected segmentation is currently not visible!"); } void QmitkSegmentationView::OnShowMarkerNodes (bool state) { mitk::SegTool2D::Pointer manualSegmentationTool; unsigned int numberOfExistingTools = mitk::ToolManagerProvider::GetInstance()->GetToolManager()->GetTools().size(); for(unsigned int i = 0; i < numberOfExistingTools; i++) { manualSegmentationTool = dynamic_cast(mitk::ToolManagerProvider::GetInstance()->GetToolManager()->GetToolById(i)); if (manualSegmentationTool) { if(state == true) { manualSegmentationTool->SetShowMarkerNodes( true ); } else { manualSegmentationTool->SetShowMarkerNodes( false ); } } } } void QmitkSegmentationView::OnSelectionChanged(mitk::DataNode* node) { std::vector nodes; nodes.push_back( node ); this->OnSelectionChanged( nodes ); } //void QmitkSegmentationView::OnSurfaceSelectionChanged() //{ // // if Image and Surface are selected, enable button // if ( (m_Controls->patImageSelector->GetSelectedNode().IsNull()) || // (m_Controls->MaskSurfaces->GetSelectedNode().IsNull())) // m_Controls->CreateSegmentationFromSurface->setEnabled(false); // else // m_Controls->CreateSegmentationFromSurface->setEnabled(true); //} void QmitkSegmentationView::OnSelectionChanged(std::vector nodes) { if (nodes.size() != 0) { std::string markerName = "Position"; unsigned int numberOfNodes = nodes.size(); std::string nodeName = nodes.at( 0 )->GetName(); if ( ( numberOfNodes == 1 ) && ( nodeName.find( markerName ) == 0) ) { this->OnContourMarkerSelected( nodes.at( 0 ) ); return; } - } if (m_AutoSelectionEnabled && this->IsActivated()) { if (nodes.size() == 0 && m_Controls->patImageSelector->GetSelectedNode().IsNull()) { SetToolManagerSelection(NULL,NULL); } else if (nodes.size() == 1) { mitk::DataNode::Pointer selectedNode = nodes.at(0); if(selectedNode.IsNull()) { return; } mitk::Image::Pointer selectedImage = dynamic_cast(selectedNode->GetData()); if (selectedImage.IsNull()) { SetToolManagerSelection(NULL,NULL); return; } else { bool isASegmentation(false); selectedNode->GetBoolProperty("binary", isASegmentation); if (isASegmentation) { - //If a segmentation is selected find a possible reference image: mitk::DataStorage::SetOfObjects::ConstPointer sources = this->GetDataStorage()->GetSources(selectedNode, m_IsNotABinaryImagePredicate); mitk::DataNode::Pointer refNode; if (sources->Size() != 0) { refNode = sources->ElementAt(0); refNode->SetVisibility(true); selectedNode->SetVisibility(true); SetToolManagerSelection(refNode,selectedNode); mitk::DataStorage::SetOfObjects::ConstPointer otherSegmentations = this->GetDataStorage()->GetSubset(m_IsABinaryImagePredicate); for(mitk::DataStorage::SetOfObjects::const_iterator iter = otherSegmentations->begin(); iter != otherSegmentations->end(); ++iter) { mitk::DataNode* node = *iter; if (dynamic_cast(node->GetData()) != selectedImage.GetPointer()) node->SetVisibility(false); } mitk::DataStorage::SetOfObjects::ConstPointer otherPatientImages = this->GetDataStorage()->GetSubset(m_IsNotABinaryImagePredicate); for(mitk::DataStorage::SetOfObjects::const_iterator iter = otherPatientImages->begin(); iter != otherPatientImages->end(); ++iter) { mitk::DataNode* node = *iter; if (dynamic_cast(node->GetData()) != dynamic_cast(refNode->GetData())) node->SetVisibility(false); } } else { mitk::DataStorage::SetOfObjects::ConstPointer possiblePatientImages = this->GetDataStorage()->GetSubset(m_IsNotABinaryImagePredicate); for (mitk::DataStorage::SetOfObjects::ConstIterator it = possiblePatientImages->Begin(); it != possiblePatientImages->End(); it++) { refNode = it->Value(); if (this->CheckForSameGeometry(selectedNode, it->Value())) { refNode->SetVisibility(true); selectedNode->SetVisibility(true); mitk::DataStorage::SetOfObjects::ConstPointer otherSegmentations = this->GetDataStorage()->GetSubset(m_IsABinaryImagePredicate); for(mitk::DataStorage::SetOfObjects::const_iterator iter = otherSegmentations->begin(); iter != otherSegmentations->end(); ++iter) { mitk::DataNode* node = *iter; if (dynamic_cast(node->GetData()) != selectedImage.GetPointer()) node->SetVisibility(false); } mitk::DataStorage::SetOfObjects::ConstPointer otherPatientImages = this->GetDataStorage()->GetSubset(m_IsNotABinaryImagePredicate); for(mitk::DataStorage::SetOfObjects::const_iterator iter = otherPatientImages->begin(); iter != otherPatientImages->end(); ++iter) { mitk::DataNode* node = *iter; if (dynamic_cast(node->GetData()) != dynamic_cast(refNode->GetData())) node->SetVisibility(false); } this->SetToolManagerSelection(refNode, selectedNode); //Doing this we can assure that the segmenation is always visible if the segmentation and the patient image are at the //same level in the datamanager int layer(10); refNode->GetIntProperty("layer", layer); layer++; selectedNode->SetProperty("layer", mitk::IntProperty::New(layer)); return; } } this->SetToolManagerSelection(NULL, selectedNode); - } } else { if (mitk::ToolManagerProvider::GetInstance()->GetToolManager()->GetReferenceData(0) != selectedNode) { SetToolManagerSelection(selectedNode, NULL); //May be a bug in the selection services. A node which is deselected will be passed as selected node to the OnSelectionChanged function if (!selectedNode->IsVisible(mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget1")))) selectedNode->SetVisibility(true); this->UpdateWarningLabel("The selected patient image does not\nmatchwith the selected segmentation!"); } } } } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); - } } void QmitkSegmentationView::OnContourMarkerSelected(const mitk::DataNode *node) { QmitkRenderWindow* selectedRenderWindow = 0; QmitkRenderWindow* RenderWindow1 = this->GetActiveStdMultiWidget()->GetRenderWindow1(); QmitkRenderWindow* RenderWindow2 = this->GetActiveStdMultiWidget()->GetRenderWindow2(); QmitkRenderWindow* RenderWindow3 = this->GetActiveStdMultiWidget()->GetRenderWindow3(); QmitkRenderWindow* RenderWindow4 = this->GetActiveStdMultiWidget()->GetRenderWindow4(); bool PlanarFigureInitializedWindow = false; // find initialized renderwindow if (node->GetBoolProperty("PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow1->GetRenderer())) { selectedRenderWindow = RenderWindow1; } if (!selectedRenderWindow && node->GetBoolProperty( "PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow2->GetRenderer())) { selectedRenderWindow = RenderWindow2; } if (!selectedRenderWindow && node->GetBoolProperty( "PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow3->GetRenderer())) { selectedRenderWindow = RenderWindow3; } if (!selectedRenderWindow && node->GetBoolProperty( "PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow4->GetRenderer())) { selectedRenderWindow = RenderWindow4; } // make node visible if (selectedRenderWindow) { std::string nodeName = node->GetName(); unsigned int t = nodeName.find_last_of(" "); unsigned int id = atof(nodeName.substr(t+1).c_str())-1; { ctkPluginContext* context = mitk::PluginActivator::getContext(); ctkServiceReference ppmRef = context->getServiceReference(); mitk::PlanePositionManagerService* service = context->getService(ppmRef); selectedRenderWindow->GetSliceNavigationController()->ExecuteOperation(service->GetPlanePosition(id)); context->ungetService(ppmRef); } selectedRenderWindow->GetRenderer()->GetDisplayGeometry()->Fit(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkSegmentationView::OnTabWidgetChanged(int id) { //always disable tools on tab changed mitk::ToolManagerProvider::GetInstance()->GetToolManager()->ActivateTool(-1); //2D Tab ID = 0 //3D Tab ID = 1 if (id == 0) { //Hide 3D selection box, show 2D selection box m_Controls->m_ManualToolSelectionBox3D->hide(); m_Controls->m_ManualToolSelectionBox2D->show(); //Deactivate possible active tool //TODO Remove possible visible interpolations -> Maybe changes in SlicesInterpolator } else { //Hide 3D selection box, show 2D selection box m_Controls->m_ManualToolSelectionBox2D->hide(); m_Controls->m_ManualToolSelectionBox3D->show(); //Deactivate possible active tool } } void QmitkSegmentationView::SetToolManagerSelection(const mitk::DataNode* referenceData, const mitk::DataNode* workingData) { // called as a result of new BlueBerry selections // tells the ToolManager for manual segmentation about new selections // updates GUI information about what the user should select mitk::ToolManager* toolManager = mitk::ToolManagerProvider::GetInstance()->GetToolManager(); toolManager->SetReferenceData(const_cast(referenceData)); toolManager->SetWorkingData( const_cast(workingData)); // check original image m_Controls->btnNewSegmentation->setEnabled(referenceData != NULL); if (referenceData) { this->UpdateWarningLabel(""); disconnect( m_Controls->patImageSelector, SIGNAL( OnSelectionChanged( const mitk::DataNode* ) ), this, SLOT( OnPatientComboBoxSelectionChanged( const mitk::DataNode* ) ) ); m_Controls->patImageSelector->setCurrentIndex( m_Controls->patImageSelector->Find(referenceData) ); connect( m_Controls->patImageSelector, SIGNAL( OnSelectionChanged( const mitk::DataNode* ) ), this, SLOT( OnPatientComboBoxSelectionChanged( const mitk::DataNode* ) ) ); } // check segmentation if (referenceData) { if (workingData) { this->FireNodeSelected(const_cast(workingData)); -// mitk::RenderingManager::GetInstance()->InitializeViews(workingData->GetData()->GetTimeSlicedGeometry(), -// mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); // if( m_Controls->widgetStack->currentIndex() == 0 ) // { disconnect( m_Controls->segImageSelector, SIGNAL( OnSelectionChanged( const mitk::DataNode* ) ), this, SLOT( OnSegmentationComboBoxSelectionChanged( const mitk::DataNode* ) ) ); m_Controls->segImageSelector->setCurrentIndex(m_Controls->segImageSelector->Find(workingData)); connect( m_Controls->segImageSelector, SIGNAL( OnSelectionChanged( const mitk::DataNode* ) ), this, SLOT( OnSegmentationComboBoxSelectionChanged(const mitk::DataNode*)) ); // } } } } void QmitkSegmentationView::ApplyDisplayOptions(mitk::DataNode* node) { if (!node) return; bool isBinary(false); node->GetPropertyValue("binary", isBinary); if (isBinary) { node->SetProperty( "outline binary", mitk::BoolProperty::New( this->GetPreferences()->GetBool("draw outline", true)) ); node->SetProperty( "outline width", mitk::FloatProperty::New( 2.0 ) ); node->SetProperty( "opacity", mitk::FloatProperty::New( this->GetPreferences()->GetBool("draw outline", true) ? 1.0 : 0.3 ) ); node->SetProperty( "volumerendering", mitk::BoolProperty::New( this->GetPreferences()->GetBool("volume rendering", false) ) ); } } bool QmitkSegmentationView::CheckForSameGeometry(const mitk::DataNode *node1, const mitk::DataNode *node2) const { bool isSameGeometry(true); mitk::Image* image1 = dynamic_cast(node1->GetData()); mitk::Image* image2 = dynamic_cast(node2->GetData()); if (image1 && image2) { mitk::Geometry3D* geo1 = image1->GetGeometry(); mitk::Geometry3D* geo2 = image2->GetGeometry(); isSameGeometry = isSameGeometry && mitk::Equal(geo1->GetOrigin(), geo2->GetOrigin()); isSameGeometry = isSameGeometry && mitk::Equal(geo1->GetExtent(0), geo2->GetExtent(0)); isSameGeometry = isSameGeometry && mitk::Equal(geo1->GetExtent(1), geo2->GetExtent(1)); isSameGeometry = isSameGeometry && mitk::Equal(geo1->GetExtent(2), geo2->GetExtent(2)); isSameGeometry = isSameGeometry && mitk::Equal(geo1->GetSpacing(), geo2->GetSpacing()); isSameGeometry = isSameGeometry && mitk::MatrixEqualElementWise(geo1->GetIndexToWorldTransform()->GetMatrix(), geo2->GetIndexToWorldTransform()->GetMatrix()); return isSameGeometry; } else { return false; } } void QmitkSegmentationView::UpdateWarningLabel(QString text) { if (text.size() == 0) m_Controls->lblSegmentationWarnings->hide(); else m_Controls->lblSegmentationWarnings->show(); m_Controls->lblSegmentationWarnings->setText(text); } void QmitkSegmentationView::CreateQtPartControl(QWidget* parent) { // setup the basic GUI of this view m_Parent = parent; m_Controls = new Ui::QmitkSegmentationControls; m_Controls->setupUi(parent); m_Controls->patImageSelector->SetDataStorage(this->GetDefaultDataStorage()); m_Controls->patImageSelector->SetPredicate(m_IsNotABinaryImagePredicate); this->UpdateWarningLabel("Please load an image"); if( m_Controls->patImageSelector->GetSelectedNode().IsNotNull() ) this->UpdateWarningLabel("Select or create a new segmentation"); m_Controls->segImageSelector->SetDataStorage(this->GetDefaultDataStorage()); m_Controls->segImageSelector->SetPredicate(m_IsABinaryImagePredicate); if( m_Controls->segImageSelector->GetSelectedNode().IsNotNull() ) this->UpdateWarningLabel(""); mitk::ToolManager* toolManager = mitk::ToolManagerProvider::GetInstance()->GetToolManager(); assert ( toolManager ); toolManager->SetDataStorage( *(this->GetDefaultDataStorage()) ); toolManager->InitializeTools(); // all part of open source MITK m_Controls->m_ManualToolSelectionBox2D->SetGenerateAccelerators(true); m_Controls->m_ManualToolSelectionBox2D->SetToolGUIArea( m_Controls->m_ManualToolGUIContainer2D ); m_Controls->m_ManualToolSelectionBox2D->SetDisplayedToolGroups("Add Subtract Correction Paint Wipe 'Region Growing' Fill Erase 'Live Wire' 'FastMarching2D'"); m_Controls->m_ManualToolSelectionBox2D->SetLayoutColumns(3); m_Controls->m_ManualToolSelectionBox2D->SetEnabledMode( QmitkToolSelectionBox::EnabledWithReferenceAndWorkingDataVisible ); connect( m_Controls->m_ManualToolSelectionBox2D, SIGNAL(ToolSelected(int)), this, SLOT(OnManualTool2DSelected(int)) ); //setup 3D Tools m_Controls->m_ManualToolSelectionBox3D->SetGenerateAccelerators(true); m_Controls->m_ManualToolSelectionBox3D->SetToolGUIArea( m_Controls->m_ManualToolGUIContainer3D ); //specify tools to be added to 3D Tool area m_Controls->m_ManualToolSelectionBox3D->SetDisplayedToolGroups("Threshold 'Two Thresholds' Otsu FastMarching3D RegionGrowing Watershed"); m_Controls->m_ManualToolSelectionBox3D->SetLayoutColumns(3); m_Controls->m_ManualToolSelectionBox3D->SetEnabledMode( QmitkToolSelectionBox::EnabledWithReferenceAndWorkingDataVisible ); //Hide 3D selection box, show 2D selection box m_Controls->m_ManualToolSelectionBox3D->hide(); m_Controls->m_ManualToolSelectionBox2D->show(); toolManager->NewNodesGenerated += mitk::MessageDelegate( this, &QmitkSegmentationView::NewNodesGenerated ); // update the list of segmentations toolManager->NewNodeObjectsGenerated += mitk::MessageDelegate1( this, &QmitkSegmentationView::NewNodeObjectsGenerated ); // update the list of segmentations // create signal/slot connections connect( m_Controls->patImageSelector, SIGNAL( OnSelectionChanged( const mitk::DataNode* ) ), this, SLOT( OnPatientComboBoxSelectionChanged( const mitk::DataNode* ) ) ); connect( m_Controls->segImageSelector, SIGNAL( OnSelectionChanged( const mitk::DataNode* ) ), this, SLOT( OnSegmentationComboBoxSelectionChanged( const mitk::DataNode* ) ) ); connect( m_Controls->btnNewSegmentation, SIGNAL(clicked()), this, SLOT(CreateNewSegmentation()) ); // connect( m_Controls->CreateSegmentationFromSurface, SIGNAL(clicked()), this, SLOT(CreateSegmentationFromSurface()) ); // connect( m_Controls->widgetStack, SIGNAL(currentChanged(int)), this, SLOT(ToolboxStackPageChanged(int)) ); connect( m_Controls->tabWidgetSegmentationTools, SIGNAL(currentChanged(int)), this, SLOT(OnTabWidgetChanged(int))); // connect(m_Controls->MaskSurfaces, SIGNAL( OnSelectionChanged( const mitk::DataNode* ) ), // this, SLOT( OnSurfaceSelectionChanged( ) ) ); connect(m_Controls->m_SlicesInterpolator, SIGNAL(SignalShowMarkerNodes(bool)), this, SLOT(OnShowMarkerNodes(bool))); connect(m_Controls->m_SlicesInterpolator, SIGNAL(Signal3DInterpolationEnabled(bool)), this, SLOT(On3DInterpolationEnabled(bool))); // m_Controls->MaskSurfaces->SetDataStorage(this->GetDefaultDataStorage()); // m_Controls->MaskSurfaces->SetPredicate(mitk::NodePredicateDataType::New("Surface")); } void QmitkSegmentationView::OnManualTool2DSelected(int id) { if (id >= 0) { std::string text = "Active Tool: \""; mitk::ToolManager* toolManager = mitk::ToolManagerProvider::GetInstance()->GetToolManager(); text += toolManager->GetToolById(id)->GetName(); text += "\""; mitk::StatusBar::GetInstance()->DisplayText(text.c_str()); us::ModuleResource resource = toolManager->GetToolById(id)->GetCursorIconResource(); this->SetMouseCursor(resource, 0, 0); } else { this->ResetMouseCursor(); mitk::StatusBar::GetInstance()->DisplayText(""); } } void QmitkSegmentationView::ResetMouseCursor() { if ( m_MouseCursorSet ) { mitk::ApplicationCursor::GetInstance()->PopCursor(); m_MouseCursorSet = false; } } void QmitkSegmentationView::SetMouseCursor( const us::ModuleResource& resource, int hotspotX, int hotspotY ) { if (!resource) return; // Remove previously set mouse cursor if ( m_MouseCursorSet ) { mitk::ApplicationCursor::GetInstance()->PopCursor(); } us::ModuleResourceStream cursor(resource, std::ios::binary); mitk::ApplicationCursor::GetInstance()->PushCursor( cursor, hotspotX, hotspotY ); m_MouseCursorSet = true; } -// ATTENTION some methods for handling the known list of (organ names, colors) are defined in QmitkSegmentationOrganNamesHandling.cpp +// ATTENTION some methods for handling the known list of (organ names, colors) are defined in QmitkSegmentationOrganNamesHandling.cpp \ No newline at end of file diff --git a/Plugins/org.mitk.gui.qt.simulation/src/internal/QmitkCreateSimulationAction.cpp b/Plugins/org.mitk.gui.qt.simulation/src/internal/QmitkCreateSimulationAction.cpp index 79cbc6d2b6..252185b2de 100644 --- a/Plugins/org.mitk.gui.qt.simulation/src/internal/QmitkCreateSimulationAction.cpp +++ b/Plugins/org.mitk.gui.qt.simulation/src/internal/QmitkCreateSimulationAction.cpp @@ -1,118 +1,118 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkCreateSimulationAction.h" #include #include #include #include #include #include static std::string CreateFileName(mitk::DataNode::Pointer dataNode) { std::string path; dataNode->GetStringProperty("path", path); std::string name; dataNode->GetStringProperty("name", name); if (name.length() < 5) { name += ".scn"; } else { std::string ext = name.substr(name.length() - 4); std::transform(ext.begin(), ext.end(), ext.begin(), tolower); if (ext != ".scn" && ext != ".xml") name += ".scn"; } return path + "/" + name; } static void InitializeViews(mitk::DataStorage::Pointer dataStorage) { mitk::NodePredicateNot::Pointer predicate = mitk::NodePredicateNot::New(mitk::NodePredicateProperty::New("includeInBoundingBox", mitk::BoolProperty::New(false))); mitk::DataStorage::SetOfObjects::ConstPointer subset = dataStorage->GetSubset(predicate); - mitk::TimeSlicedGeometry::Pointer geometry = dataStorage->ComputeBoundingGeometry3D(subset); + mitk::TimeGeometry::Pointer geometry = dataStorage->ComputeBoundingGeometry(subset); mitk::RenderingManager::GetInstance()->InitializeViews(geometry); } QmitkCreateSimulationAction::QmitkCreateSimulationAction() { } QmitkCreateSimulationAction::~QmitkCreateSimulationAction() { } void QmitkCreateSimulationAction::Run(const QList& selectedNodes) { mitk::DataNode::Pointer dataNode; foreach(dataNode, selectedNodes) { if (dynamic_cast(dataNode->GetData()) != NULL) { mitk::SimulationTemplate* simulationTemplate = static_cast(dataNode->GetData()); std::string contents = simulationTemplate->CreateSimulation(); if (contents.empty()) { MITK_ERROR << "Could not create simulation from template '" << dataNode->GetName() << "'!"; continue; } std::string fileName = CreateFileName(dataNode); std::ofstream file(fileName.c_str()); file << contents; file.close(); std::vector fileNames; fileNames.push_back(fileName); mitk::DataNode::Pointer simulationNode = mitk::IOUtil::LoadDataNode(fileName); if (simulationNode.IsNotNull()) { m_DataStorage->Add(simulationNode, dataNode); InitializeViews(m_DataStorage); } } } } void QmitkCreateSimulationAction::SetDataStorage(mitk::DataStorage* dataStorage) { m_DataStorage = dataStorage; } void QmitkCreateSimulationAction::SetFunctionality(berry::QtViewPart*) { } void QmitkCreateSimulationAction::SetDecimated(bool) { } void QmitkCreateSimulationAction::SetSmoothed(bool) { }