diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionView.cpp index f1e7fba451..9e9b5218a0 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionView.cpp @@ -1,1062 +1,1142 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //#define MBILOG_ENABLE_DEBUG #include "QmitkQBallReconstructionView.h" #include "mitkDiffusionImagingConfigure.h" // qt includes #include // itk includes #include "itkTimeProbe.h" // mitk includes #include "mitkProgressBar.h" #include "mitkStatusBar.h" #include "mitkNodePredicateDataType.h" #include "QmitkDataStorageComboBox.h" #include "QmitkStdMultiWidget.h" #include "itkDiffusionQballReconstructionImageFilter.h" #include "itkAnalyticalDiffusionQballReconstructionImageFilter.h" #include "itkDiffusionMultiShellQballReconstructionImageFilter.h" #include "itkVectorContainer.h" +#include "itkB0ImageExtractionImageFilter.h" +#include #include "mitkQBallImage.h" #include "mitkProperties.h" #include "mitkVtkResliceInterpolationProperty.h" #include "mitkLookupTable.h" #include "mitkLookupTableProperty.h" #include "mitkTransferFunction.h" #include "mitkTransferFunctionProperty.h" #include "mitkDataNodeObject.h" #include "mitkOdfNormalizationMethodProperty.h" #include "mitkOdfScaleByProperty.h" #include "berryIStructuredSelection.h" #include "berryIWorkbenchWindow.h" #include "berryISelectionService.h" #include const std::string QmitkQBallReconstructionView::VIEW_ID = "org.mitk.views.qballreconstruction"; typedef float TTensorPixelType; const int QmitkQBallReconstructionView::nrconvkernels = 252; struct QbrShellSelection { QmitkQBallReconstructionView* m_View; mitk::DataNode * m_Node; std::string m_NodeName; std::vector m_CheckBoxes; QLabel * m_Label; mitk::DiffusionImage * m_Image; typedef mitk::DiffusionImage::BValueMap BValueMap; QbrShellSelection(QmitkQBallReconstructionView* view, mitk::DataNode * node) : m_View(view), m_Node(node), m_NodeName(node->GetName()) { m_Image = dynamic_cast * > (node->GetData()); if(!m_Image){MITK_INFO << "QmitkQBallReconstructionView::QbrShellSelection : fail to initialize DiffusionImage "; return;} GenerateCheckboxes(); } void GenerateCheckboxes() { BValueMap origMap = m_Image->GetB_ValueMap(); BValueMap::iterator itStart = origMap.begin(); itStart++; BValueMap::iterator itEnd = origMap.end(); m_Label = new QLabel(m_NodeName.c_str()); m_Label->setVisible(true); m_View->m_Controls->m_QBallSelectionBox->layout()->addWidget(m_Label); for(BValueMap::iterator it = itStart ; it!= itEnd; it++) { QCheckBox * box = new QCheckBox(QString::number(it->first)); m_View->m_Controls->m_QBallSelectionBox->layout()->addWidget(box); box->setChecked(true); box->setCheckable(true); // box->setVisible(true); m_CheckBoxes.push_back(box); } } void SetVisible(bool vis) { foreach(QCheckBox * box, m_CheckBoxes) { box->setVisible(vis); } } BValueMap GetBValueSelctionMap() { BValueMap inputMap = m_Image->GetB_ValueMap(); BValueMap outputMap; unsigned int val = 0; if(inputMap.find(0) == inputMap.end()){ MITK_INFO << "QbrShellSelection: return empty BValueMap from GUI Selection"; return outputMap; }else{ outputMap[val] = inputMap[val]; MITK_INFO << val; } foreach(QCheckBox * box, m_CheckBoxes) { if(box->isChecked()){ val = box->text().toDouble(); outputMap[val] = inputMap[val]; MITK_INFO << val; } } return outputMap; } ~QbrShellSelection() { m_View->m_Controls->m_QBallSelectionBox->layout()->removeWidget(m_Label); delete m_Label; for(std::vector::iterator it = m_CheckBoxes.begin() ; it!= m_CheckBoxes.end(); it++) { m_View->m_Controls->m_QBallSelectionBox->layout()->removeWidget((*it)); delete (*it); } m_CheckBoxes.clear(); } }; using namespace berry; struct QbrSelListener : ISelectionListener { berryObjectMacro(QbrSelListener); QbrSelListener(QmitkQBallReconstructionView* view) { m_View = view; } void DoSelectionChanged(ISelection::ConstPointer selection) { // save current selection in member variable m_View->m_CurrentSelection = selection.Cast(); // do something with the selected items if(m_View->m_CurrentSelection) { bool foundDwiVolume = false; m_View->m_Controls->m_DiffusionImageLabel->setText("mandatory"); m_View->m_Controls->m_InputData->setTitle("Please Select Input Data"); QString selected_images = ""; mitk::DataStorage::SetOfObjects::Pointer set = mitk::DataStorage::SetOfObjects::New(); int at = 0; // iterate selection for (IStructuredSelection::iterator i = m_View->m_CurrentSelection->Begin(); i != m_View->m_CurrentSelection->End(); ++i) { // extract datatree node if (mitk::DataNodeObject::Pointer nodeObj = i->Cast()) { mitk::DataNode::Pointer node = nodeObj->GetDataNode(); mitk::DiffusionImage* diffusionImage; // only look at interesting types if(diffusionImage = dynamic_cast * >(node->GetData())) { foundDwiVolume = true; selected_images += QString(node->GetName().c_str()); if(i + 1 != m_View->m_CurrentSelection->End()) selected_images += "\n"; set->InsertElement(at++, node); } } } m_View->GenerateShellSelectionUI(set); m_View->m_Controls->m_DiffusionImageLabel->setText(selected_images); m_View->m_Controls->m_ButtonStandard->setEnabled(foundDwiVolume); if (foundDwiVolume) m_View->m_Controls->m_InputData->setTitle("Input Data"); else m_View->m_Controls->m_DiffusionImageLabel->setText("mandatory"); } } void SelectionChanged(IWorkbenchPart::Pointer part, ISelection::ConstPointer selection) { // check, if selection comes from datamanager if (part) { QString partname(part->GetPartName().c_str()); if(partname.compare("Datamanager")==0) { // apply selection DoSelectionChanged(selection); } } } QmitkQBallReconstructionView* m_View; }; // --------------- QmitkQBallReconstructionView----------------- // QmitkQBallReconstructionView::QmitkQBallReconstructionView() : QmitkFunctionality(), m_Controls(NULL), m_MultiWidget(NULL) { } QmitkQBallReconstructionView::QmitkQBallReconstructionView(const QmitkQBallReconstructionView& other) { Q_UNUSED(other); throw std::runtime_error("Copy constructor not implemented"); } QmitkQBallReconstructionView::~QmitkQBallReconstructionView() { this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->RemovePostSelectionListener(/*"org.mitk.views.datamanager",*/ m_SelListener); } void QmitkQBallReconstructionView::CreateQtPartControl(QWidget *parent) { if (!m_Controls) { // create GUI widgets m_Controls = new Ui::QmitkQBallReconstructionViewControls; m_Controls->setupUi(parent); this->CreateConnections(); m_Controls->m_DiffusionImageLabel->setText("mandatory"); QStringList items; items << "2" << "4" << "6" << "8" << "10" << "12"; m_Controls->m_QBallReconstructionMaxLLevelComboBox->addItems(items); m_Controls->m_QBallReconstructionMaxLLevelComboBox->setCurrentIndex(1); MethodChoosen(m_Controls->m_QBallReconstructionMethodComboBox->currentIndex()); #ifndef DIFFUSION_IMAGING_EXTENDED m_Controls->m_QBallReconstructionMethodComboBox->removeItem(3); #endif AdvancedCheckboxClicked(); } m_SelListener = berry::ISelectionListener::Pointer(new QbrSelListener(this)); this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->AddPostSelectionListener(/*"org.mitk.views.datamanager",*/ m_SelListener); berry::ISelection::ConstPointer sel( this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); m_CurrentSelection = sel.Cast(); m_SelListener.Cast()->DoSelectionChanged(sel); } void QmitkQBallReconstructionView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkQBallReconstructionView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } void QmitkQBallReconstructionView::CreateConnections() { if ( m_Controls ) { connect( (QObject*)(m_Controls->m_ButtonStandard), SIGNAL(clicked()), this, SLOT(ReconstructStandard()) ); connect( (QObject*)(m_Controls->m_AdvancedCheckbox), SIGNAL(clicked()), this, SLOT(AdvancedCheckboxClicked()) ); connect( (QObject*)(m_Controls->m_QBallReconstructionMethodComboBox), SIGNAL(currentIndexChanged(int)), this, SLOT(MethodChoosen(int)) ); - + connect( (QObject*)(m_Controls->m_QBallReconstructionThreasholdEdit), SIGNAL(valueChanged(int)), this, SLOT(PreviewThreshold(int)) ); } } void QmitkQBallReconstructionView::OnSelectionChanged( std::vector nodes ) { } void QmitkQBallReconstructionView::Activated() { QmitkFunctionality::Activated(); berry::ISelection::ConstPointer sel( this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); m_CurrentSelection = sel.Cast(); m_SelListener.Cast()->DoSelectionChanged(sel); } void QmitkQBallReconstructionView::Deactivated() { + + mitk::DataStorage::SetOfObjects::ConstPointer objects = this->GetDefaultDataStorage()->GetAll(); + mitk::DataStorage::SetOfObjects::const_iterator itemiter( objects->begin() ); + mitk::DataStorage::SetOfObjects::const_iterator itemiterend( objects->end() ); + while ( itemiter != itemiterend ) // for all items + { + mitk::DataNode::Pointer node = *itemiter; + if (node.IsNull()) + continue; + + // only look at interesting types + if(dynamic_cast*>(node->GetData())) + { + if (this->GetDefaultDataStorage()->GetNamedDerivedNode("ThresholdOverlay", *itemiter)) + { + node = this->GetDefaultDataStorage()->GetNamedDerivedNode("ThresholdOverlay", *itemiter); + this->GetDefaultDataStorage()->Remove(node); + } + } + itemiter++; + } + + mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QmitkFunctionality::Deactivated(); } void QmitkQBallReconstructionView::ReconstructStandard() { int index = m_Controls->m_QBallReconstructionMethodComboBox->currentIndex(); #ifndef DIFFUSION_IMAGING_EXTENDED if(index>=3) { index = index + 1; } #endif switch(index) { case 0: { // Numerical Reconstruct(0,0); break; } case 1: { // Standard Reconstruct(1,0); break; } case 2: { // Solid Angle Reconstruct(1,6); break; } case 3: { // Constrained Solid Angle Reconstruct(1,7); break; } case 4: { // ADC Reconstruct(1,4); break; } case 5: { // Raw Signal Reconstruct(1,5); break; } case 6: { // Q-Ball reconstruction Reconstruct(2,0); break; } } } void QmitkQBallReconstructionView::MethodChoosen(int method) { #ifndef DIFFUSION_IMAGING_EXTENDED if(method>=3) { method = method + 1; } #endif m_Controls->m_QBallSelectionBox->setHidden(true); m_Controls->m_OutputCoeffsImage->setHidden(true); if (method==0) m_Controls->m_ShFrame->setVisible(false); else m_Controls->m_ShFrame->setVisible(true); switch(method) { case 0: m_Controls->m_Description->setText("Numerical recon. (Tuch 2004)"); break; case 1: m_Controls->m_Description->setText("Spherical harmonics recon. (Descoteaux 2007)"); m_Controls->m_OutputCoeffsImage->setHidden(false); break; case 2: m_Controls->m_Description->setText("SH recon. with solid angle consideration (Aganj 2009)"); m_Controls->m_OutputCoeffsImage->setHidden(false); break; case 3: m_Controls->m_Description->setText("SH solid angle with non-neg. constraint (Goh 2009)"); break; case 4: m_Controls->m_Description->setText("SH recon. of the plain ADC-profiles"); break; case 5: m_Controls->m_Description->setText("SH recon. of the raw diffusion signal"); break; case 6: m_Controls->m_Description->setText("SH recon. of the multi shell diffusion signal (Aganj 2010)"); m_Controls->m_QBallSelectionBox->setHidden(false); m_Controls->m_OutputCoeffsImage->setHidden(false); break; } } void QmitkQBallReconstructionView::AdvancedCheckboxClicked() { bool check = m_Controls->m_AdvancedCheckbox->isChecked(); m_Controls->m_QBallReconstructionMaxLLevelTextLabel_2->setVisible(check); m_Controls->m_QBallReconstructionMaxLLevelComboBox->setVisible(check); m_Controls->m_QBallReconstructionLambdaTextLabel_2->setVisible(check); m_Controls->m_QBallReconstructionLambdaLineEdit->setVisible(check); m_Controls->m_QBallReconstructionThresholdLabel_2->setVisible(check); m_Controls->m_QBallReconstructionThreasholdEdit->setVisible(check); m_Controls->label_2->setVisible(check); m_Controls->frame_2->setVisible(check); } void QmitkQBallReconstructionView::Reconstruct(int method, int normalization) { if (m_CurrentSelection) { mitk::DataStorage::SetOfObjects::Pointer set = mitk::DataStorage::SetOfObjects::New(); int at = 0; for (IStructuredSelection::iterator i = m_CurrentSelection->Begin(); i != m_CurrentSelection->End(); ++i) { if (mitk::DataNodeObject::Pointer nodeObj = i->Cast()) { mitk::DataNode::Pointer node = nodeObj->GetDataNode(); if(QString("DiffusionImage").compare(node->GetData()->GetNameOfClass())==0) { set->InsertElement(at++, node); } } } if(method == 0) { NumericalQBallReconstruction(set, normalization); } else { #if BOOST_VERSION / 100000 > 0 #if BOOST_VERSION / 100 % 1000 > 34 if(method == 1) { AnalyticalQBallReconstruction(set, normalization); } if(method == 2) { MultiQBallReconstruction(set); } #else std::cout << "ERROR: Boost 1.35 minimum required" << std::endl; QMessageBox::warning(NULL,"ERROR","Boost 1.35 minimum required"); #endif #else std::cout << "ERROR: Boost 1.35 minimum required" << std::endl; QMessageBox::warning(NULL,"ERROR","Boost 1.35 minimum required"); #endif } } } void QmitkQBallReconstructionView::NumericalQBallReconstruction (mitk::DataStorage::SetOfObjects::Pointer inImages, int normalization) { try { itk::TimeProbe clock; int nrFiles = inImages->size(); if (!nrFiles) return; QString status; mitk::ProgressBar::GetInstance()->AddStepsToDo(nrFiles); mitk::DataStorage::SetOfObjects::const_iterator itemiter( inImages->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); std::vector nodes; while ( itemiter != itemiterend ) // for all items { mitk::DiffusionImage* vols = static_cast*>( (*itemiter)->GetData()); std::string nodename; (*itemiter)->GetStringProperty("name", nodename); ++itemiter; // QBALL RECONSTRUCTION clock.Start(); MITK_INFO << "QBall reconstruction "; mitk::StatusBar::GetInstance()->DisplayText(status.sprintf( "QBall reconstruction for %s", nodename.c_str()).toAscii()); typedef itk::DiffusionQballReconstructionImageFilter QballReconstructionImageFilterType; QballReconstructionImageFilterType::Pointer filter = QballReconstructionImageFilterType::New(); filter->SetGradientImage( vols->GetDirections(), vols->GetVectorImage() ); filter->SetBValue(vols->GetB_Value()); filter->SetThreshold( m_Controls->m_QBallReconstructionThreasholdEdit->value() ); switch(normalization) { case 0: { filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_STANDARD); break; } case 1: { filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_B_ZERO_B_VALUE); break; } case 2: { filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_B_ZERO); break; } case 3: { filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_NONE); break; } default: { filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_STANDARD); } } filter->Update(); clock.Stop(); MITK_DEBUG << "took " << clock.GetMeanTime() << "s." ; // ODFs TO DATATREE mitk::QBallImage::Pointer image = mitk::QBallImage::New(); image->InitializeByItk( filter->GetOutput() ); //image->SetImportVolume( filter->GetOutput()->GetBufferPointer(), 0, 0, mitk::Image::ImportMemoryManagementType::ManageMemory ); image->SetVolume( filter->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( image ); QString newname; newname = newname.append(nodename.c_str()); newname = newname.append("_QN%1").arg(normalization); SetDefaultNodeProperties(node, newname.toStdString()); nodes.push_back(node); mitk::ProgressBar::GetInstance()->Progress(); } std::vector::iterator nodeIt; for(nodeIt = nodes.begin(); nodeIt != nodes.end(); ++nodeIt) GetDefaultDataStorage()->Add(*nodeIt); mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Finished Processing %d Files", nrFiles).toAscii()); m_MultiWidget->RequestUpdate(); } catch (itk::ExceptionObject &ex) { MITK_INFO << ex ; QMessageBox::information(0, "Reconstruction not possible:", ex.GetDescription()); return ; } } void QmitkQBallReconstructionView::AnalyticalQBallReconstruction( mitk::DataStorage::SetOfObjects::Pointer inImages, int normalization) { try { itk::TimeProbe clock; int nrFiles = inImages->size(); if (!nrFiles) return; std::vector lambdas; float minLambda = m_Controls->m_QBallReconstructionLambdaLineEdit->value(); lambdas.push_back(minLambda); int nLambdas = lambdas.size(); QString status; mitk::ProgressBar::GetInstance()->AddStepsToDo(nrFiles*nLambdas); mitk::DataStorage::SetOfObjects::const_iterator itemiter( inImages->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); std::vector* nodes = new std::vector(); while ( itemiter != itemiterend ) // for all items { mitk::DiffusionImage* vols = static_cast*>( (*itemiter)->GetData()); std::string nodename; (*itemiter)->GetStringProperty("name",nodename); itemiter++; // QBALL RECONSTRUCTION clock.Start(); MITK_INFO << "QBall reconstruction "; mitk::StatusBar::GetInstance()->DisplayText(status.sprintf( "QBall reconstruction for %s", nodename.c_str()).toAscii()); for(int i=0; im_QBallReconstructionMaxLLevelComboBox->currentIndex()) { case 0: { TemplatedAnalyticalQBallReconstruction<2>(vols, currentLambda, nodename, nodes, normalization); break; } case 1: { TemplatedAnalyticalQBallReconstruction<4>(vols, currentLambda, nodename, nodes, normalization); break; } case 2: { TemplatedAnalyticalQBallReconstruction<6>(vols, currentLambda, nodename, nodes, normalization); break; } case 3: { TemplatedAnalyticalQBallReconstruction<8>(vols, currentLambda, nodename, nodes, normalization); break; } case 4: { TemplatedAnalyticalQBallReconstruction<10>(vols, currentLambda, nodename, nodes, normalization); break; } case 5: { TemplatedAnalyticalQBallReconstruction<12>(vols, currentLambda, nodename, nodes, normalization); break; } } clock.Stop(); MITK_DEBUG << "took " << clock.GetMeanTime() << "s." ; mitk::ProgressBar::GetInstance()->Progress(); } } std::vector::iterator nodeIt; for(nodeIt = nodes->begin(); nodeIt != nodes->end(); ++nodeIt) GetDefaultDataStorage()->Add(*nodeIt); m_MultiWidget->RequestUpdate(); mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Finished Processing %d Files", nrFiles).toAscii()); } catch (itk::ExceptionObject &ex) { MITK_INFO << ex; QMessageBox::information(0, "Reconstruction not possible:", ex.GetDescription()); return; } } template void QmitkQBallReconstructionView::TemplatedAnalyticalQBallReconstruction( mitk::DiffusionImage* vols, float lambda, std::string nodename, std::vector* nodes, int normalization) { typedef itk::AnalyticalDiffusionQballReconstructionImageFilter FilterType; typename FilterType::Pointer filter = FilterType::New(); filter->SetGradientImage( vols->GetDirections(), vols->GetVectorImage() ); filter->SetBValue(vols->GetB_Value()); filter->SetThreshold( m_Controls->m_QBallReconstructionThreasholdEdit->value() ); filter->SetLambda(lambda); switch(normalization) { case 0: { filter->SetNormalizationMethod(FilterType::QBAR_STANDARD); break; } case 1: { filter->SetNormalizationMethod(FilterType::QBAR_B_ZERO_B_VALUE); break; } case 2: { filter->SetNormalizationMethod(FilterType::QBAR_B_ZERO); break; } case 3: { filter->SetNormalizationMethod(FilterType::QBAR_NONE); break; } case 4: { filter->SetNormalizationMethod(FilterType::QBAR_ADC_ONLY); break; } case 5: { filter->SetNormalizationMethod(FilterType::QBAR_RAW_SIGNAL); break; } case 6: { filter->SetNormalizationMethod(FilterType::QBAR_SOLID_ANGLE); break; } case 7: { filter->SetNormalizationMethod(FilterType::QBAR_NONNEG_SOLID_ANGLE); break; } default: { filter->SetNormalizationMethod(FilterType::QBAR_STANDARD); } } filter->Update(); // ODFs TO DATATREE mitk::QBallImage::Pointer image = mitk::QBallImage::New(); image->InitializeByItk( filter->GetOutput() ); image->SetVolume( filter->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( image ); QString newname; newname = newname.append(nodename.c_str()); newname = newname.append("_QA%1").arg(normalization); SetDefaultNodeProperties(node, newname.toStdString()); nodes->push_back(node); if(m_Controls->m_OutputCoeffsImage->isChecked()) { mitk::Image::Pointer coeffsImage = mitk::Image::New(); coeffsImage->InitializeByItk( filter->GetCoefficientImage().GetPointer() ); coeffsImage->SetVolume( filter->GetCoefficientImage()->GetBufferPointer() ); mitk::DataNode::Pointer coeffsNode=mitk::DataNode::New(); coeffsNode->SetData( coeffsImage ); coeffsNode->SetProperty( "name", mitk::StringProperty::New( QString(nodename.c_str()).append("_coeffs").toStdString()) ); coeffsNode->SetVisibility(false); nodes->push_back(coeffsNode); } } void QmitkQBallReconstructionView::MultiQBallReconstruction( mitk::DataStorage::SetOfObjects::Pointer inImages) { try { itk::TimeProbe clock; int nrFiles = inImages->size(); if (!nrFiles) return; std::vector lambdas; float minLambda = m_Controls->m_QBallReconstructionLambdaLineEdit->value(); lambdas.push_back(minLambda); int nLambdas = lambdas.size(); QString status; mitk::ProgressBar::GetInstance()->AddStepsToDo(nrFiles*nLambdas); mitk::DataStorage::SetOfObjects::const_iterator itemiter( inImages->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); std::vector* nodes = new std::vector(); while ( itemiter != itemiterend ) // for all items { mitk::DiffusionImage* vols = static_cast*>( (*itemiter)->GetData()); const mitk::DataNode * nodePointer = (*itemiter).GetPointer(); std::string nodename; (*itemiter)->GetStringProperty("name",nodename); itemiter++; // QBALL RECONSTRUCTION clock.Start(); MITK_INFO << "QBall reconstruction "; mitk::StatusBar::GetInstance()->DisplayText(status.sprintf( "QBall reconstruction for %s", nodename.c_str()).toAscii()); for(int i=0; im_QBallReconstructionMaxLLevelComboBox->currentIndex()) { case 0: { TemplatedMultiQBallReconstruction<2>(vols, currentLambda, nodePointer, nodes); break; } case 1: { TemplatedMultiQBallReconstruction<4>(vols, currentLambda, nodePointer, nodes); break; } case 2: { TemplatedMultiQBallReconstruction<6>(vols, currentLambda, nodePointer, nodes); break; } case 3: { TemplatedMultiQBallReconstruction<8>(vols, currentLambda, nodePointer, nodes); break; } case 4: { TemplatedMultiQBallReconstruction<10>(vols, currentLambda, nodePointer, nodes); break; } case 5: { TemplatedMultiQBallReconstruction<12>(vols, currentLambda, nodePointer, nodes); break; } } clock.Stop(); MITK_DEBUG << "took " << clock.GetMeanTime() << "s." ; mitk::ProgressBar::GetInstance()->Progress(); } } std::vector::iterator nodeIt; for(nodeIt = nodes->begin(); nodeIt != nodes->end(); ++nodeIt) GetDefaultDataStorage()->Add(*nodeIt); m_MultiWidget->RequestUpdate(); mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Finished Processing %d Files", nrFiles).toAscii()); } catch (itk::ExceptionObject &ex) { MITK_INFO << ex ; QMessageBox::information(0, "Reconstruction not possible:", ex.GetDescription()); return ; } } template void QmitkQBallReconstructionView::TemplatedMultiQBallReconstruction( mitk::DiffusionImage* vols, float lambda, const mitk::DataNode * dataNodePointer, std::vector* nodes) { typedef itk::DiffusionMultiShellQballReconstructionImageFilter FilterType; typename FilterType::Pointer filter = FilterType::New(); std::string nodename; dataNodePointer->GetStringProperty("name",nodename); filter->SetBValueMap(m_ShellSelectorMap[dataNodePointer]->GetBValueSelctionMap()); filter->SetGradientImage( vols->GetDirections(), vols->GetVectorImage(), vols->GetB_Value() ); filter->SetThreshold( m_Controls->m_QBallReconstructionThreasholdEdit->value() ); filter->SetLambda(lambda); filter->Update(); // ODFs TO DATATREE mitk::QBallImage::Pointer image = mitk::QBallImage::New(); image->InitializeByItk( filter->GetOutput() ); image->SetVolume( filter->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( image ); QString newname; newname = newname.append(nodename.c_str()); newname = newname.append("_QAMultiShell"); SetDefaultNodeProperties(node, newname.toStdString()); nodes->push_back(node); if(m_Controls->m_OutputCoeffsImage->isChecked()) { mitk::Image::Pointer coeffsImage = mitk::Image::New(); coeffsImage->InitializeByItk( filter->GetCoefficientImage().GetPointer() ); coeffsImage->SetVolume( filter->GetCoefficientImage()->GetBufferPointer() ); mitk::DataNode::Pointer coeffsNode=mitk::DataNode::New(); coeffsNode->SetData( coeffsImage ); coeffsNode->SetProperty( "name", mitk::StringProperty::New( QString(nodename.c_str()).append("_coeffs").toStdString()) ); nodes->push_back(coeffsNode); } } void QmitkQBallReconstructionView::SetDefaultNodeProperties(mitk::DataNode::Pointer node, std::string name) { node->SetProperty( "ShowMaxNumber", mitk::IntProperty::New( 500 ) ); node->SetProperty( "Scaling", mitk::FloatProperty::New( 1.0 ) ); node->SetProperty( "Normalization", mitk::OdfNormalizationMethodProperty::New()); node->SetProperty( "ScaleBy", mitk::OdfScaleByProperty::New()); node->SetProperty( "IndexParam1", mitk::FloatProperty::New(2)); node->SetProperty( "IndexParam2", mitk::FloatProperty::New(1)); node->SetProperty( "visible", mitk::BoolProperty::New( true ) ); node->SetProperty( "VisibleOdfs", mitk::BoolProperty::New( false ) ); node->SetProperty ("layer", mitk::IntProperty::New(100)); node->SetProperty( "DoRefresh", mitk::BoolProperty::New( true ) ); //node->SetProperty( "opacity", mitk::FloatProperty::New(1.0f) ); node->SetProperty( "name", mitk::StringProperty::New(name) ); } //node->SetProperty( "volumerendering", mitk::BoolProperty::New( false ) ); //node->SetProperty( "use color", mitk::BoolProperty::New( true ) ); //node->SetProperty( "texture interpolation", mitk::BoolProperty::New( true ) ); //node->SetProperty( "reslice interpolation", mitk::VtkResliceInterpolationProperty::New() ); //node->SetProperty( "layer", mitk::IntProperty::New(0)); //node->SetProperty( "in plane resample extent by geometry", mitk::BoolProperty::New( false ) ); //node->SetOpacity(1.0f); //node->SetColor(1.0,1.0,1.0); //node->SetVisibility(true); //node->SetProperty( "IsQBallVolume", mitk::BoolProperty::New( true ) ); //mitk::LevelWindowProperty::Pointer levWinProp = mitk::LevelWindowProperty::New(); //mitk::LevelWindow levelwindow; //// levelwindow.SetAuto( image ); //levWinProp->SetLevelWindow( levelwindow ); //node->GetPropertyList()->SetPropertx( "levelwindow", levWinProp ); //// add a default rainbow lookup table for color mapping //if(!node->GetProperty("LookupTable")) //{ // mitk::LookupTable::Pointer mitkLut = mitk::LookupTable::New(); // vtkLookupTable* vtkLut = mitkLut->GetVtkLookupTable(); // vtkLut->SetHueRange(0.6667, 0.0); // vtkLut->SetTableRange(0.0, 20.0); // vtkLut->Build(); // mitk::LookupTableProperty::Pointer mitkLutProp = mitk::LookupTableProperty::New(); // mitkLutProp->SetLookupTable(mitkLut); // node->SetProperty( "LookupTable", mitkLutProp ); //} //if(!node->GetProperty("binary")) // node->SetProperty( "binary", mitk::BoolProperty::New( false ) ); //// add a default transfer function //mitk::TransferFunction::Pointer tf = mitk::TransferFunction::New(); //node->SetProperty ( "TransferFunction", mitk::TransferFunctionProperty::New ( tf.GetPointer() ) ); //// set foldername as string property //mitk::StringProperty::Pointer nameProp = mitk::StringProperty::New( name ); //node->SetProperty( "name", nameProp ); void QmitkQBallReconstructionView::GenerateShellSelectionUI(mitk::DataStorage::SetOfObjects::Pointer set) { + m_DiffusionImages = set; + std::map tempMap; const mitk::DataStorage::SetOfObjects::iterator setEnd( set->end() ); mitk::DataStorage::SetOfObjects::iterator NodeIt( set->begin() ); while(NodeIt != setEnd) { if(m_ShellSelectorMap.find( (*NodeIt).GetPointer() ) != m_ShellSelectorMap.end()) { tempMap[(*NodeIt).GetPointer()] = m_ShellSelectorMap[(*NodeIt).GetPointer()]; m_ShellSelectorMap.erase((*NodeIt).GetPointer()); }else { tempMap[(*NodeIt).GetPointer()] = new QbrShellSelection(this, (*NodeIt) ); tempMap[(*NodeIt).GetPointer()]->SetVisible(true); } NodeIt++; } for(std::map::iterator it = m_ShellSelectorMap.begin(); it != m_ShellSelectorMap.end();it ++) { delete it->second; } m_ShellSelectorMap.clear(); m_ShellSelectorMap = tempMap; } + + + +void QmitkQBallReconstructionView::PreviewThreshold(int threshold) +{ + mitk::DataStorage::SetOfObjects::const_iterator itemiter( m_DiffusionImages->begin() ); + mitk::DataStorage::SetOfObjects::const_iterator itemiterend( m_DiffusionImages->end() ); + while ( itemiter != itemiterend ) // for all items + { + mitk::DiffusionImage* vols = + static_cast*>( + (*itemiter)->GetData()); + + // Extract b0 image + typedef itk::B0ImageExtractionImageFilter FilterType; + FilterType::Pointer filterB0 = FilterType::New(); + filterB0->SetInput(vols->GetVectorImage()); + filterB0->SetDirections(vols->GetDirections()); + filterB0->Update(); + + mitk::Image::Pointer mitkImage = mitk::Image::New(); + + typedef itk::Image ImageType; + typedef itk::Image SegmentationType; + typedef itk::BinaryThresholdImageFilter ThresholdFilterType; + // apply threshold + ThresholdFilterType::Pointer filterThreshold = ThresholdFilterType::New(); + filterThreshold->SetInput(filterB0->GetOutput()); + filterThreshold->SetLowerThreshold(threshold); + filterThreshold->SetInsideValue(0); + filterThreshold->SetOutsideValue(1); // mark cut off values red + filterThreshold->Update(); + + mitkImage->InitializeByItk( filterThreshold->GetOutput() ); + mitkImage->SetVolume( filterThreshold->GetOutput()->GetBufferPointer() ); + mitk::DataNode::Pointer node; + if (this->GetDefaultDataStorage()->GetNamedDerivedNode("ThresholdOverlay", *itemiter)) + { + node = this->GetDefaultDataStorage()->GetNamedDerivedNode("ThresholdOverlay", *itemiter); + } + else + { + // create a new node, to show thresholded values + node = mitk::DataNode::New(); + GetDefaultDataStorage()->Add( node, *itemiter ); + node->SetProperty( "name", mitk::StringProperty::New("ThresholdOverlay")); + node->SetBoolProperty("helper object", true); + } + node->SetData( mitkImage ); + itemiter++; + mitk::RenderingManager::GetInstance()->RequestUpdateAll(); + } +} diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionView.h b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionView.h index 960c24ee92..b50950d4f9 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionView.h +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionView.h @@ -1,126 +1,134 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _QMITKQBALLRECONSTRUCTIONVIEW_H_INCLUDED #define _QMITKQBALLRECONSTRUCTIONVIEW_H_INCLUDED #include #include #include "ui_QmitkQBallReconstructionViewControls.h" #include "mitkDiffusionImage.h" #include #include #include typedef short DiffusionPixelType; struct QbrSelListener; struct QbrShellSelection; /*! * \ingroup org_mitk_gui_qt_qballreconstruction_internal * * \brief QmitkQBallReconstructionView * * Document your class here. * * \sa QmitkFunctionality */ class QmitkQBallReconstructionView : public QmitkFunctionality { friend struct QbrSelListener; friend struct QbrShellSelection; // this is needed for all Qt objects that should have a MOC object (everything that derives from QObject) Q_OBJECT public: static const std::string VIEW_ID; QmitkQBallReconstructionView(); QmitkQBallReconstructionView(const QmitkQBallReconstructionView& other); virtual ~QmitkQBallReconstructionView(); virtual void CreateQtPartControl(QWidget *parent); /// \brief Creation of the connections of main and control widget virtual void CreateConnections(); /// \brief Called when the functionality is activated virtual void Activated(); virtual void Deactivated(); virtual void StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget); virtual void StdMultiWidgetNotAvailable(); static const int nrconvkernels; protected slots: void ReconstructStandard(); void AdvancedCheckboxClicked(); void MethodChoosen(int method); void Reconstruct(int method, int normalization); void NumericalQBallReconstruction(mitk::DataStorage::SetOfObjects::Pointer inImages, int normalization); void AnalyticalQBallReconstruction(mitk::DataStorage::SetOfObjects::Pointer inImages, int normalization); void MultiQBallReconstruction(mitk::DataStorage::SetOfObjects::Pointer inImages); + + /** + * @brief PreviewThreshold Generates a preview of the values that are cut off by the thresholds + * @param threshold + */ + void PreviewThreshold(int threshold); + protected: /// \brief called by QmitkFunctionality when DataManager's selection has changed virtual void OnSelectionChanged( std::vector nodes ); Ui::QmitkQBallReconstructionViewControls* m_Controls; QmitkStdMultiWidget* m_MultiWidget; template void TemplatedAnalyticalQBallReconstruction(mitk::DiffusionImage* vols, float lambda, std::string nodename, std::vector* nodes, int normalization); template void TemplatedMultiQBallReconstruction(mitk::DiffusionImage* vols, float lambda, const mitk::DataNode * , std::vector* nodes); void SetDefaultNodeProperties(mitk::DataNode::Pointer node, std::string name); //void Create berry::ISelectionListener::Pointer m_SelListener; berry::IStructuredSelection::ConstPointer m_CurrentSelection; + mitk::DataStorage::SetOfObjects::Pointer m_DiffusionImages; private: std::map< const mitk::DataNode *, QbrShellSelection * > m_ShellSelectorMap; void GenerateShellSelectionUI(mitk::DataStorage::SetOfObjects::Pointer set); }; #endif // _QMITKQBALLRECONSTRUCTIONVIEW_H_INCLUDED diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkTensorReconstructionView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkTensorReconstructionView.cpp index 85a78b59ed..c3d02cbc67 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkTensorReconstructionView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkTensorReconstructionView.cpp @@ -1,1130 +1,1130 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkTensorReconstructionView.h" #include "mitkDiffusionImagingConfigure.h" // qt includes #include #include #include #include #include // itk includes #include "itkTimeProbe.h" //#include "itkTensor.h" // mitk includes #include "mitkProgressBar.h" #include "mitkStatusBar.h" #include "mitkNodePredicateDataType.h" #include "QmitkDataStorageComboBox.h" #include "QmitkStdMultiWidget.h" #include "mitkTeemDiffusionTensor3DReconstructionImageFilter.h" #include "itkDiffusionTensor3DReconstructionImageFilter.h" #include "itkTensorImageToDiffusionImageFilter.h" #include "itkPointShell.h" #include "itkVector.h" #include "itkB0ImageExtractionImageFilter.h" #include "itkTensorReconstructionWithEigenvalueCorrectionFilter.h" #include "mitkImageCast.h" #include "mitkImageAccessByItk.h" #include #include "mitkProperties.h" #include "mitkDataNodeObject.h" #include "mitkOdfNormalizationMethodProperty.h" #include "mitkOdfScaleByProperty.h" #include "mitkDiffusionImageMapper.h" #include "mitkLookupTableProperty.h" #include "mitkLookupTable.h" #include "mitkImageStatisticsHolder.h" #include #include #include #include const std::string QmitkTensorReconstructionView::VIEW_ID = "org.mitk.views.tensorreconstruction"; typedef float TTensorPixelType; typedef itk::DiffusionTensor3D< TTensorPixelType > TensorPixelType; typedef itk::Image< TensorPixelType, 3 > TensorImageType; using namespace berry; QmitkTensorReconstructionView::QmitkTensorReconstructionView() : QmitkFunctionality(), m_Controls(NULL), m_MultiWidget(NULL) { m_DiffusionImages = mitk::DataStorage::SetOfObjects::New(); m_TensorImages = mitk::DataStorage::SetOfObjects::New(); } QmitkTensorReconstructionView::QmitkTensorReconstructionView(const QmitkTensorReconstructionView& other) { Q_UNUSED(other) throw std::runtime_error("Copy constructor not implemented"); } QmitkTensorReconstructionView::~QmitkTensorReconstructionView() { } void QmitkTensorReconstructionView::CreateQtPartControl(QWidget *parent) { if (!m_Controls) { // create GUI widgets m_Controls = new Ui::QmitkTensorReconstructionViewControls; m_Controls->setupUi(parent); this->CreateConnections(); Advanced1CheckboxClicked(); } } void QmitkTensorReconstructionView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkTensorReconstructionView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } void QmitkTensorReconstructionView::CreateConnections() { if ( m_Controls ) { connect( (QObject*)(m_Controls->m_StartReconstruction), SIGNAL(clicked()), this, SLOT(Reconstruct()) ); connect( (QObject*)(m_Controls->m_Advanced1), SIGNAL(clicked()), this, SLOT(Advanced1CheckboxClicked()) ); connect( (QObject*)(m_Controls->m_TensorsToDWIButton), SIGNAL(clicked()), this, SLOT(TensorsToDWI()) ); connect( (QObject*)(m_Controls->m_TensorsToQbiButton), SIGNAL(clicked()), this, SLOT(TensorsToQbi()) ); connect( (QObject*)(m_Controls->m_ResidualButton), SIGNAL(clicked()), this, SLOT(ResidualCalculation()) ); connect( (QObject*)(m_Controls->m_PerSliceView), SIGNAL(pointSelected(int, int)), this, SLOT(ResidualClicked(int, int)) ); connect( (QObject*)(m_Controls->m_TensorReconstructionThreshold), SIGNAL(valueChanged(int)), this, SLOT(PreviewThreshold(int)) ); } } void QmitkTensorReconstructionView::ResidualClicked(int slice, int volume) { // Use image coord to reset crosshair // Find currently selected diffusion image // Update Label // to do: This position should be modified in order to skip B0 volumes that are not taken into account // when calculating residuals // Find the diffusion image mitk::DiffusionImage* diffImage; mitk::DataNode::Pointer correctNode; mitk::Geometry3D* geometry; if (m_DiffusionImage.IsNotNull()) { diffImage = static_cast*>(m_DiffusionImage->GetData()); geometry = diffImage->GetGeometry(); // Remember the node whose display index must be updated correctNode = mitk::DataNode::New(); correctNode = m_DiffusionImage; } if(diffImage != NULL) { typedef vnl_vector_fixed< double, 3 > GradientDirectionType; typedef itk::VectorContainer< unsigned int, GradientDirectionType > GradientDirectionContainerType; GradientDirectionContainerType::Pointer dirs = diffImage->GetDirections(); for(int i=0; iSize() && i<=volume; i++) { GradientDirectionType grad = dirs->ElementAt(i); // check if image is b0 weighted if(fabs(grad[0]) < 0.001 && fabs(grad[1]) < 0.001 && fabs(grad[2]) < 0.001) { volume++; } } QString pos = "Volume: "; pos.append(QString::number(volume)); pos.append(", Slice: "); pos.append(QString::number(slice)); m_Controls->m_PositionLabel->setText(pos); if(correctNode) { int oldDisplayVal; correctNode->GetIntProperty("DisplayChannel", oldDisplayVal); std::string oldVal = QString::number(oldDisplayVal).toStdString(); std::string newVal = QString::number(volume).toStdString(); correctNode->SetIntProperty("DisplayChannel",volume); correctNode->SetSelected(true); this->FirePropertyChanged("DisplayChannel", oldVal, newVal); correctNode->UpdateOutputInformation(); mitk::Point3D p3 = m_MultiWidget->GetCrossPosition(); itk::Index<3> ix; geometry->WorldToIndex(p3, ix); // ix[2] = slice; mitk::Vector3D vec; vec[0] = ix[0]; vec[1] = ix[1]; vec[2] = slice; mitk::Vector3D v3New; geometry->IndexToWorld(vec, v3New); mitk::Point3D origin = geometry->GetOrigin(); mitk::Point3D p3New; p3New[0] = v3New[0] + origin[0]; p3New[1] = v3New[1] + origin[1]; p3New[2] = v3New[2] + origin[2]; m_MultiWidget->MoveCrossToPosition(p3New); m_MultiWidget->RequestUpdate(); } } } void QmitkTensorReconstructionView::Advanced1CheckboxClicked() { bool check = m_Controls-> m_Advanced1->isChecked(); m_Controls->frame->setVisible(check); } void QmitkTensorReconstructionView::Activated() { QmitkFunctionality::Activated(); } void QmitkTensorReconstructionView::Deactivated() { // Get all current nodes mitk::DataStorage::SetOfObjects::ConstPointer objects = this->GetDefaultDataStorage()->GetAll(); mitk::DataStorage::SetOfObjects::const_iterator itemiter( objects->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( objects->end() ); while ( itemiter != itemiterend ) // for all items { mitk::DataNode::Pointer node = *itemiter; if (node.IsNull()) continue; // only look at interesting types if(dynamic_cast*>(node->GetData())) { if (this->GetDefaultDataStorage()->GetNamedDerivedNode("ThresholdOverlay", *itemiter)) { node = this->GetDefaultDataStorage()->GetNamedDerivedNode("ThresholdOverlay", *itemiter); this->GetDefaultDataStorage()->Remove(node); } } itemiter++; } - + mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QmitkFunctionality::Deactivated(); } void QmitkTensorReconstructionView::ResidualCalculation() { // Extract dwi and dti from current selection // In case of multiple selections, take the first one, since taking all combinations is not meaningful mitk::DataStorage::SetOfObjects::Pointer set = mitk::DataStorage::SetOfObjects::New(); mitk::DiffusionImage::Pointer diffImage = mitk::DiffusionImage::New(); TensorImageType::Pointer tensorImage; std::string nodename; if(m_DiffusionImage.IsNotNull()) { diffImage = static_cast*>(m_DiffusionImage->GetData()); } else return; if(m_TensorImage.IsNotNull()) { mitk::TensorImage* mitkVol; mitkVol = static_cast(m_TensorImage->GetData()); mitk::CastToItkImage(mitkVol, tensorImage); m_TensorImage->GetStringProperty("name", nodename); } else return; typedef itk::TensorImageToDiffusionImageFilter< TTensorPixelType, DiffusionPixelType > FilterType; FilterType::GradientListType gradientList; mitk::DiffusionImage::GradientDirectionContainerType* gradients = diffImage->GetDirections(); // Copy gradients vectors from gradients to gradientList for(int i=0; iSize(); i++) { mitk::DiffusionImage::GradientDirectionType vec = gradients->at(i); itk::Vector grad; grad[0] = vec[0]; grad[1] = vec[1]; grad[2] = vec[2]; gradientList.push_back(grad); } // Find the min and the max values from a baseline image mitk::ImageStatisticsHolder *stats = diffImage->GetStatistics(); //Initialize filter that calculates the modeled diffusion weighted signals FilterType::Pointer filter = FilterType::New(); filter->SetInput( tensorImage ); filter->SetBValue(diffImage->GetB_Value()); filter->SetGradientList(gradientList); filter->SetMin(stats->GetScalarValueMin()); filter->SetMax(stats->GetScalarValueMax()); filter->Update(); // TENSORS TO DATATREE mitk::DiffusionImage::Pointer image = mitk::DiffusionImage::New(); image->SetVectorImage( filter->GetOutput() ); image->SetB_Value(diffImage->GetB_Value()); image->SetDirections(gradientList); image->InitializeFromVectorImage(); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); mitk::DiffusionImageMapper::SetDefaultProperties(node); QString newname; newname = newname.append(nodename.c_str()); newname = newname.append("_dwi"); node->SetName(newname.toAscii()); GetDefaultDataStorage()->Add(node); std::vector b0Indices = image->GetB0Indices(); typedef itk::ResidualImageFilter ResidualImageFilterType; ResidualImageFilterType::Pointer residualFilter = ResidualImageFilterType::New(); residualFilter->SetInput(diffImage->GetVectorImage()); residualFilter->SetSecondDiffusionImage(image->GetVectorImage()); residualFilter->SetGradients(gradients); residualFilter->SetB0Index(b0Indices[0]); residualFilter->SetB0Threshold(30); residualFilter->Update(); itk::Image::Pointer residualImage = itk::Image::New(); residualImage = residualFilter->GetOutput(); mitk::Image::Pointer mitkResImg = mitk::Image::New(); mitk::CastToMitkImage(residualImage, mitkResImg); stats = mitkResImg->GetStatistics(); float min = stats->GetScalarValueMin(); float max = stats->GetScalarValueMax(); mitk::LookupTableProperty::Pointer lutProp = mitk::LookupTableProperty::New(); mitk::LookupTable::Pointer lut = mitk::LookupTable::New(); vtkSmartPointer lookupTable = vtkSmartPointer::New(); lookupTable->SetTableRange(min, max); // If you don't want to use the whole color range, you can use // SetValueRange, SetHueRange, and SetSaturationRange lookupTable->Build(); int size = lookupTable->GetTable()->GetSize(); vtkSmartPointer reversedlookupTable = vtkSmartPointer::New(); reversedlookupTable->SetTableRange(min+1, max); reversedlookupTable->Build(); for(int i=0; i<256; i++) { double* rgba = reversedlookupTable->GetTableValue(255-i); lookupTable->SetTableValue(i, rgba[0], rgba[1], rgba[2], rgba[3]); } lut->SetVtkLookupTable(lookupTable); lutProp->SetLookupTable(lut); // Create lookuptable mitk::DataNode::Pointer resNode=mitk::DataNode::New(); resNode->SetData( mitkResImg ); resNode->SetName("Residual Image"); resNode->SetProperty("LookupTable", lutProp); bool b; resNode->GetBoolProperty("use color", b); resNode->SetBoolProperty("use color", false); GetDefaultDataStorage()->Add(resNode); m_MultiWidget->RequestUpdate(); // Draw Graph std::vector means = residualFilter->GetMeans(); std::vector q1s = residualFilter->GetQ1(); std::vector q3s = residualFilter->GetQ3(); std::vector percentagesOfOUtliers = residualFilter->GetPercentagesOfOutliers(); m_Controls->m_ResidualAnalysis->SetMeans(means); m_Controls->m_ResidualAnalysis->SetQ1(q1s); m_Controls->m_ResidualAnalysis->SetQ3(q3s); m_Controls->m_ResidualAnalysis->SetPercentagesOfOutliers(percentagesOfOUtliers); if(m_Controls->m_PercentagesOfOutliers->isChecked()) { m_Controls->m_ResidualAnalysis->DrawPercentagesOfOutliers(); } else { m_Controls->m_ResidualAnalysis->DrawMeans(); } // Draw Graph for volumes per slice in the QGraphicsView std::vector< std::vector > outliersPerSlice = residualFilter->GetOutliersPerSlice(); int xSize = outliersPerSlice.size(); if(xSize == 0) { return; } int ySize = outliersPerSlice[0].size(); // Find maximum in outliersPerSlice double maxOutlier= 0.0; for(int i=0; imaxOutlier) { maxOutlier = outliersPerSlice[i][j]; } } } // Create some QImage QImage qImage(xSize, ySize, QImage::Format_RGB32); QImage legend(1, 256, QImage::Format_RGB32); QRgb value; vtkSmartPointer lookup = vtkSmartPointer::New(); lookup->SetTableRange(0.0, maxOutlier); lookup->Build(); reversedlookupTable->SetTableRange(0, maxOutlier); reversedlookupTable->Build(); for(int i=0; i<256; i++) { double* rgba = reversedlookupTable->GetTableValue(255-i); lookup->SetTableValue(i, rgba[0], rgba[1], rgba[2], rgba[3]); } // Fill qImage for(int i=0; iMapValue(out); int r, g, b; r = _rgba[0]; g = _rgba[1]; b = _rgba[2]; value = qRgb(r, g, b); qImage.setPixel(i,j,value); } } for(int i=0; i<256; i++) { double* rgba = lookup->GetTableValue(i); int r, g, b; r = rgba[0]*255; g = rgba[1]*255; b = rgba[2]*255; value = qRgb(r, g, b); legend.setPixel(0,255-i,value); } QString upper = QString::number(maxOutlier, 'g', 3); upper.append(" %"); QString lower = QString::number(0.0); lower.append(" %"); m_Controls->m_UpperLabel->setText(upper); m_Controls->m_LowerLabel->setText(lower); QGraphicsScene* scene = new QGraphicsScene; QGraphicsScene* scene2 = new QGraphicsScene; QPixmap pixmap(QPixmap::fromImage(qImage)); QGraphicsPixmapItem *item = new QGraphicsPixmapItem( pixmap, 0, scene); item->scale(10.0, 3.0); QPixmap pixmap2(QPixmap::fromImage(legend)); QGraphicsPixmapItem *item2 = new QGraphicsPixmapItem( pixmap2, 0, scene2); item2->scale(20.0, 1.0); m_Controls->m_PerSliceView->SetResidualPixmapItem(item); m_Controls->m_PerSliceView->setScene(scene); m_Controls->m_LegendView->setScene(scene2); m_Controls->m_PerSliceView->show(); m_Controls->m_PerSliceView->repaint(); m_Controls->m_LegendView->setHorizontalScrollBarPolicy ( Qt::ScrollBarAlwaysOff ); m_Controls->m_LegendView->setVerticalScrollBarPolicy ( Qt::ScrollBarAlwaysOff ); m_Controls->m_LegendView->show(); m_Controls->m_LegendView->repaint(); } void QmitkTensorReconstructionView::Reconstruct() { int method = m_Controls->m_ReconctructionMethodBox->currentIndex(); switch (method) { case 0: ItkTensorReconstruction(m_DiffusionImages); break; case 1: TensorReconstructionWithCorr(m_DiffusionImages); break; default: ItkTensorReconstruction(m_DiffusionImages); } } void QmitkTensorReconstructionView::TensorReconstructionWithCorr (mitk::DataStorage::SetOfObjects::Pointer inImages) { try { itk::TimeProbe clock; int nrFiles = inImages->size(); if (!nrFiles) return; QString status; mitk::ProgressBar::GetInstance()->AddStepsToDo(nrFiles); mitk::DataStorage::SetOfObjects::const_iterator itemiter( inImages->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); std::vector nodes; while ( itemiter != itemiterend ) // for all items { typedef mitk::DiffusionImage DiffusionImageType; typedef DiffusionImageType::GradientDirectionContainerType GradientDirectionContainerType; DiffusionImageType* vols = static_cast((*itemiter)->GetData()); std::string nodename; (*itemiter)->GetStringProperty("name", nodename); ++itemiter; // TENSOR RECONSTRUCTION clock.Start(); MITK_INFO << "Tensor reconstruction with correction for negative eigenvalues"; mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Tensor reconstruction for %s", nodename.c_str()).toAscii()); typedef itk::TensorReconstructionWithEigenvalueCorrectionFilter< DiffusionPixelType, TTensorPixelType > ReconstructionFilter; float b0Threshold = m_Controls->m_TensorReconstructionThreshold->value(); GradientDirectionContainerType::Pointer gradientContainerCopy = GradientDirectionContainerType::New(); for(GradientDirectionContainerType::ConstIterator it = vols->GetDirections()->Begin(); it != vols->GetDirections()->End(); it++) { gradientContainerCopy->push_back(it.Value()); } ReconstructionFilter::Pointer reconFilter = ReconstructionFilter::New(); reconFilter->SetGradientImage( gradientContainerCopy, vols->GetVectorImage() ); reconFilter->SetBValue(vols->GetB_Value()); reconFilter->SetB0Threshold(b0Threshold); reconFilter->Update(); typedef itk::Image, 3> TensorImageType; TensorImageType::Pointer outputTensorImg = reconFilter->GetOutput(); typedef itk::ImageRegionIterator TensorImageIteratorType; TensorImageIteratorType tensorIt(outputTensorImg, outputTensorImg->GetRequestedRegion()); tensorIt.GoToBegin(); int negatives = 0; while(!tensorIt.IsAtEnd()) { typedef itk::DiffusionTensor3D TensorType; TensorType tensor = tensorIt.Get(); TensorType::EigenValuesArrayType ev; tensor.ComputeEigenValues(ev); for(unsigned int i=0; iInitializeByItk( outputTensorImg.GetPointer() ); image->SetVolume( outputTensorImg->GetBufferPointer() ); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( image ); QString newname; newname = newname.append(nodename.c_str()); newname = newname.append("_dti_corrected"); SetDefaultNodeProperties(node, newname.toStdString()); nodes.push_back(node); // Corrected diffusion image // typedef itk::VectorImage ImageType; // ImageType::Pointer correctedVols = reconFilter->GetVectorImage(); // DiffusionImageType::Pointer correctedDiffusion = DiffusionImageType::New(); // correctedDiffusion->SetVectorImage(correctedVols); // correctedDiffusion->SetDirections(vols->GetDirections()); // correctedDiffusion->SetB_Value(vols->GetB_Value()); // correctedDiffusion->InitializeFromVectorImage(); // mitk::DataNode::Pointer diffNode = mitk::DataNode::New(); // diffNode->SetData( correctedDiffusion ); // QString diffname; // diffname = diffname.append(nodename.c_str()); // diffname = diffname.append("corrDiff"); // SetDefaultNodeProperties(diffNode, diffname.toStdString()); // nodes.push_back(diffNode); mitk::ProgressBar::GetInstance()->Progress(); } std::vector::iterator nodeIt; for(nodeIt = nodes.begin(); nodeIt != nodes.end(); ++nodeIt) GetDefaultDataStorage()->Add(*nodeIt); mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Finished Processing %d Files", nrFiles).toAscii()); m_MultiWidget->RequestUpdate(); } catch (itk::ExceptionObject &ex) { MITK_INFO << ex ; QMessageBox::information(0, "Reconstruction not possible:", ex.GetDescription()); } } void QmitkTensorReconstructionView::ItkTensorReconstruction(mitk::DataStorage::SetOfObjects::Pointer inImages) { try { itk::TimeProbe clock; int nrFiles = inImages->size(); if (!nrFiles) return; QString status; mitk::ProgressBar::GetInstance()->AddStepsToDo(nrFiles); mitk::DataStorage::SetOfObjects::const_iterator itemiter( inImages->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); std::vector nodes; while ( itemiter != itemiterend ) // for all items { mitk::DiffusionImage* vols = static_cast*>( (*itemiter)->GetData()); std::string nodename; (*itemiter)->GetStringProperty("name", nodename); ++itemiter; // TENSOR RECONSTRUCTION clock.Start(); MITK_DEBUG << "Tensor reconstruction "; mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Tensor reconstruction for %s", nodename.c_str()).toAscii()); typedef itk::DiffusionTensor3DReconstructionImageFilter< DiffusionPixelType, DiffusionPixelType, TTensorPixelType > TensorReconstructionImageFilterType; TensorReconstructionImageFilterType::Pointer tensorReconstructionFilter = TensorReconstructionImageFilterType::New(); typedef mitk::DiffusionImage DiffusionImageType; typedef DiffusionImageType::GradientDirectionContainerType GradientDirectionContainerType; GradientDirectionContainerType::Pointer gradientContainerCopy = GradientDirectionContainerType::New(); for(GradientDirectionContainerType::ConstIterator it = vols->GetDirections()->Begin(); it != vols->GetDirections()->End(); it++) { gradientContainerCopy->push_back(it.Value()); } tensorReconstructionFilter->SetGradientImage( gradientContainerCopy, vols->GetVectorImage() ); tensorReconstructionFilter->SetBValue(vols->GetB_Value()); tensorReconstructionFilter->SetThreshold( m_Controls->m_TensorReconstructionThreshold->value() ); tensorReconstructionFilter->Update(); clock.Stop(); MITK_DEBUG << "took " << clock.GetMeanTime() << "s."; // TENSORS TO DATATREE mitk::TensorImage::Pointer image = mitk::TensorImage::New(); typedef itk::Image, 3> TensorImageType; TensorImageType::Pointer tensorImage; tensorImage = tensorReconstructionFilter->GetOutput(); // Check the tensor for negative eigenvalues if(m_Controls->m_CheckNegativeEigenvalues->isChecked()) { typedef itk::ImageRegionIterator TensorImageIteratorType; TensorImageIteratorType tensorIt(tensorImage, tensorImage->GetRequestedRegion()); tensorIt.GoToBegin(); while(!tensorIt.IsAtEnd()) { typedef itk::DiffusionTensor3D TensorType; //typedef itk::Tensor TensorType2; TensorType tensor = tensorIt.Get(); TensorType::EigenValuesArrayType ev; tensor.ComputeEigenValues(ev); for(unsigned int i=0; iSetDirection( vols->GetVectorImage()->GetDirection() ); image->InitializeByItk( tensorImage.GetPointer() ); image->SetVolume( tensorReconstructionFilter->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( image ); QString newname; newname = newname.append(nodename.c_str()); newname = newname.append("_dti"); SetDefaultNodeProperties(node, newname.toStdString()); nodes.push_back(node); mitk::ProgressBar::GetInstance()->Progress(); } std::vector::iterator nodeIt; for(nodeIt = nodes.begin(); nodeIt != nodes.end(); ++nodeIt) GetDefaultDataStorage()->Add(*nodeIt); mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Finished Processing %d Files", nrFiles).toAscii()); m_MultiWidget->RequestUpdate(); } catch (itk::ExceptionObject &ex) { MITK_INFO << ex ; QMessageBox::information(0, "Reconstruction not possible:", ex.GetDescription()); return; } } void QmitkTensorReconstructionView::SetDefaultNodeProperties(mitk::DataNode::Pointer node, std::string name) { node->SetProperty( "ShowMaxNumber", mitk::IntProperty::New( 500 ) ); node->SetProperty( "Scaling", mitk::FloatProperty::New( 1.0 ) ); node->SetProperty( "Normalization", mitk::OdfNormalizationMethodProperty::New()); node->SetProperty( "ScaleBy", mitk::OdfScaleByProperty::New()); node->SetProperty( "IndexParam1", mitk::FloatProperty::New(2)); node->SetProperty( "IndexParam2", mitk::FloatProperty::New(1)); node->SetProperty( "visible", mitk::BoolProperty::New( true ) ); node->SetProperty( "VisibleOdfs", mitk::BoolProperty::New( false ) ); node->SetProperty ("layer", mitk::IntProperty::New(100)); node->SetProperty( "DoRefresh", mitk::BoolProperty::New( true ) ); node->SetProperty( "name", mitk::StringProperty::New(name) ); } void QmitkTensorReconstructionView::TensorsToDWI() { DoTensorsToDWI(m_TensorImages); } void QmitkTensorReconstructionView::TensorsToQbi() { for (int i=0; isize(); i++) { mitk::DataNode::Pointer tensorImageNode = m_TensorImages->at(i); MITK_INFO << "starting Q-Ball estimation"; typedef float TTensorPixelType; typedef itk::DiffusionTensor3D< TTensorPixelType > TensorPixelType; typedef itk::Image< TensorPixelType, 3 > TensorImageType; TensorImageType::Pointer itkvol = TensorImageType::New(); mitk::CastToItkImage(dynamic_cast(tensorImageNode->GetData()), itkvol); typedef itk::TensorImageToQBallImageFilter< TTensorPixelType, TTensorPixelType > FilterType; FilterType::Pointer filter = FilterType::New(); filter->SetInput( itkvol ); filter->Update(); typedef itk::Vector OutputPixelType; typedef itk::Image OutputImageType; mitk::QBallImage::Pointer image = mitk::QBallImage::New(); OutputImageType::Pointer outimg = filter->GetOutput(); image->InitializeByItk( outimg.GetPointer() ); image->SetVolume( outimg->GetBufferPointer() ); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); QString newname; newname = newname.append(tensorImageNode->GetName().c_str()); newname = newname.append("_qbi"); node->SetName(newname.toAscii()); GetDefaultDataStorage()->Add(node); } } void QmitkTensorReconstructionView::OnSelectionChanged( std::vector nodes ) { m_DiffusionImages = mitk::DataStorage::SetOfObjects::New(); m_TensorImages = mitk::DataStorage::SetOfObjects::New(); bool foundDwiVolume = false; bool foundTensorVolume = false; m_Controls->m_DiffusionImageLabel->setText("mandatory"); m_DiffusionImage = NULL; m_TensorImage = NULL; m_Controls->m_InputData->setTitle("Please Select Input Data"); // iterate selection for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if (node.IsNull()) continue; // only look at interesting types if(dynamic_cast*>(node->GetData())) { foundDwiVolume = true; m_Controls->m_DiffusionImageLabel->setText(node->GetName().c_str()); m_DiffusionImages->push_back(node); m_DiffusionImage = node; } else if(dynamic_cast(node->GetData())) { foundTensorVolume = true; m_Controls->m_DiffusionImageLabel->setText(node->GetName().c_str()); m_TensorImages->push_back(node); m_TensorImage = node; } } m_Controls->m_StartReconstruction->setEnabled(foundDwiVolume); m_Controls->m_TensorsToDWIButton->setEnabled(foundTensorVolume); m_Controls->m_TensorsToQbiButton->setEnabled(foundTensorVolume); if (foundDwiVolume || foundTensorVolume) m_Controls->m_InputData->setTitle("Input Data"); m_Controls->m_ResidualButton->setEnabled(foundDwiVolume && foundTensorVolume); m_Controls->m_PercentagesOfOutliers->setEnabled(foundDwiVolume && foundTensorVolume); m_Controls->m_PerSliceView->setEnabled(foundDwiVolume && foundTensorVolume); } template std::vector > QmitkTensorReconstructionView::MakeGradientList() { std::vector > retval; vnl_matrix_fixed* U = itk::PointShell >::DistributePointShell(); for(int i=0; i v; v[0] = U->get(0,i); v[1] = U->get(1,i); v[2] = U->get(2,i); retval.push_back(v); } // Add 0 vector for B0 itk::Vector v; v.Fill(0.0); retval.push_back(v); return retval; } void QmitkTensorReconstructionView::DoTensorsToDWI(mitk::DataStorage::SetOfObjects::Pointer inImages) { try { itk::TimeProbe clock; int nrFiles = inImages->size(); if (!nrFiles) return; QString status; mitk::ProgressBar::GetInstance()->AddStepsToDo(nrFiles); mitk::DataStorage::SetOfObjects::const_iterator itemiter( inImages->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); std::vector nodes; while ( itemiter != itemiterend ) // for all items { std::string nodename; (*itemiter)->GetStringProperty("name", nodename); mitk::TensorImage* vol = static_cast((*itemiter)->GetData()); ++itemiter; typedef float TTensorPixelType; typedef itk::DiffusionTensor3D< TTensorPixelType > TensorPixelType; typedef itk::Image< TensorPixelType, 3 > TensorImageType; TensorImageType::Pointer itkvol = TensorImageType::New(); mitk::CastToItkImage(vol, itkvol); typedef itk::TensorImageToDiffusionImageFilter< TTensorPixelType, DiffusionPixelType > FilterType; FilterType::GradientListType gradientList; switch(m_Controls->m_TensorsToDWINumDirsSelect->currentIndex()) { case 0: gradientList = MakeGradientList<12>(); break; case 1: gradientList = MakeGradientList<42>(); break; case 2: gradientList = MakeGradientList<92>(); break; case 3: gradientList = MakeGradientList<162>(); break; case 4: gradientList = MakeGradientList<252>(); break; case 5: gradientList = MakeGradientList<362>(); break; case 6: gradientList = MakeGradientList<492>(); break; case 7: gradientList = MakeGradientList<642>(); break; case 8: gradientList = MakeGradientList<812>(); break; case 9: gradientList = MakeGradientList<1002>(); break; default: gradientList = MakeGradientList<92>(); } double bVal = m_Controls->m_TensorsToDWIBValueEdit->text().toDouble(); // DWI ESTIMATION clock.Start(); MBI_INFO << "DWI Estimation "; mitk::StatusBar::GetInstance()->DisplayText(status.sprintf( "DWI Estimation for %s", nodename.c_str()).toAscii()); FilterType::Pointer filter = FilterType::New(); filter->SetInput( itkvol ); filter->SetBValue(bVal); filter->SetGradientList(gradientList); //filter->SetNumberOfThreads(1); filter->Update(); clock.Stop(); MBI_DEBUG << "took " << clock.GetMeanTime() << "s."; // TENSORS TO DATATREE mitk::DiffusionImage::Pointer image = mitk::DiffusionImage::New(); image->SetVectorImage( filter->GetOutput() ); image->SetB_Value(bVal); image->SetDirections(gradientList); image->InitializeFromVectorImage(); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( image ); mitk::DiffusionImageMapper::SetDefaultProperties(node); QString newname; newname = newname.append(nodename.c_str()); newname = newname.append("_dwi"); node->SetName(newname.toAscii()); nodes.push_back(node); mitk::ProgressBar::GetInstance()->Progress(); } std::vector::iterator nodeIt; for(nodeIt = nodes.begin(); nodeIt != nodes.end(); ++nodeIt) GetDefaultDataStorage()->Add(*nodeIt); mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Finished Processing %d Files", nrFiles).toAscii()); m_MultiWidget->RequestUpdate(); } catch (itk::ExceptionObject &ex) { MITK_INFO << ex ; QMessageBox::information(0, "DWI estimation failed:", ex.GetDescription()); return ; } } void QmitkTensorReconstructionView::PreviewThreshold(int threshold) { mitk::DataStorage::SetOfObjects::const_iterator itemiter( m_DiffusionImages->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( m_DiffusionImages->end() ); while ( itemiter != itemiterend ) // for all items { mitk::DiffusionImage* vols = static_cast*>( (*itemiter)->GetData()); // Extract b0 image typedef itk::B0ImageExtractionImageFilter FilterType; FilterType::Pointer filterB0 = FilterType::New(); filterB0->SetInput(vols->GetVectorImage()); filterB0->SetDirections(vols->GetDirections()); filterB0->Update(); mitk::Image::Pointer mitkImage = mitk::Image::New(); typedef itk::Image ImageType; typedef itk::Image SegmentationType; typedef itk::BinaryThresholdImageFilter ThresholdFilterType; // apply threshold ThresholdFilterType::Pointer filterThreshold = ThresholdFilterType::New(); filterThreshold->SetInput(filterB0->GetOutput()); filterThreshold->SetLowerThreshold(threshold); filterThreshold->SetInsideValue(0); filterThreshold->SetOutsideValue(1); // mark cut off values red filterThreshold->Update(); mitkImage->InitializeByItk( filterThreshold->GetOutput() ); mitkImage->SetVolume( filterThreshold->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer node; if (this->GetDefaultDataStorage()->GetNamedDerivedNode("ThresholdOverlay", *itemiter)) { node = this->GetDefaultDataStorage()->GetNamedDerivedNode("ThresholdOverlay", *itemiter); } else { // create a new node, to show thresholded values node = mitk::DataNode::New(); GetDefaultDataStorage()->Add( node, *itemiter ); node->SetProperty( "name", mitk::StringProperty::New("ThresholdOverlay")); node->SetBoolProperty("helper object", true); } node->SetData( mitkImage ); itemiter++; mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } }