diff --git a/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp b/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp index d6d89badbe..2d448dfb51 100644 --- a/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp +++ b/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp @@ -1,1066 +1,1081 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef __itkDiffusionMultiShellQballReconstructionImageFilter_cpp #define __itkDiffusionMultiShellQballReconstructionImageFilter_cpp #include #include #include #include #include #include #include #include #include #include #include "mitkDiffusionFunctionCollection.h" #include "itkPointShell.h" #include #include namespace itk { template< class T, class TG, class TO, int L, int NODF> DiffusionMultiShellQballReconstructionImageFilter ::DiffusionMultiShellQballReconstructionImageFilter() : m_GradientDirectionContainer(NULL), m_NumberOfGradientDirections(0), m_NumberOfBaselineImages(1), m_Threshold(NumericTraits< ReferencePixelType >::NonpositiveMin()), m_BValue(1.0), m_Lambda(0.0), m_IsHemisphericalArrangementOfGradientDirections(false), m_IsArithmeticProgession(false), m_ReconstructionType(Mode_Standard1Shell), m_Interpolation_Flag(false), m_Interpolation_SHT1_inv(0), m_Interpolation_SHT2_inv(0), m_Interpolation_SHT3_inv(0), m_Interpolation_TARGET_SH(0) { // At least 1 inputs is necessary for a vector image. // For images added one at a time we need at least six this->SetNumberOfRequiredInputs( 1 ); } template void DiffusionMultiShellQballReconstructionImageFilter ::Normalize( OdfPixelType & out) { for(int i=0; i void DiffusionMultiShellQballReconstructionImageFilter ::Projection1(vnl_vector & vec, double delta) { if (delta==0){ //Clip attenuation values. If att<0 => att=0, if att>1 => att=1 for (int i=0; i=0 && vec[i]<=1)*vec[i]+(vec[i]>1); } else{ //Use function from Aganj et al, MRM, 2010 for (int i=0; i< vec.size(); i++) vec[i]=CalculateThreashold(vec[i], delta); } } template double DiffusionMultiShellQballReconstructionImageFilter ::CalculateThreashold(const double value, const double delta) { return (value<0)*(0.5*delta) + (value>=0 && value=delta && value<1-delta)*value+(value>=1-delta && value<1)*(1-0.5*delta-0.5*((1-value)*(1-value))/delta) + (value>=1)*(1-0.5*delta); } template void DiffusionMultiShellQballReconstructionImageFilter ::Projection2( vnl_vector & E1,vnl_vector & E2, vnl_vector & E3, double delta ) { const double sF = sqrt(5.0); vnl_vector vOnes(m_MaxDirections); vOnes.fill(1.0); vnl_matrix T0(m_MaxDirections, 3); vnl_matrix C(m_MaxDirections, 7); vnl_matrix A(m_MaxDirections, 7); vnl_matrix B(m_MaxDirections, 7); vnl_vector s0(m_MaxDirections); vnl_vector a0(m_MaxDirections); vnl_vector b0(m_MaxDirections); vnl_vector ta(m_MaxDirections); vnl_vector tb(m_MaxDirections); vnl_vector e(m_MaxDirections); vnl_vector m(m_MaxDirections); vnl_vector a(m_MaxDirections); vnl_vector b(m_MaxDirections); // logarithmierung aller werte in E for(int i = 0 ; i < m_MaxDirections; i++) { T0(i,0) = -log(E1(i)); T0(i,1) = -log(E2(i)); T0(i,2) = -log(E3(i)); } //T0 = -T0.apply(std::log); // Summeiere Zeilenweise über alle Shells sum = E1+E2+E3 for(int i = 0 ; i < m_MaxDirections; i++) { s0[i] = T0(i,0) + T0(i,1) + T0(i,2); } for(int i = 0; i < m_MaxDirections; i ++) { // Alle Signal-Werte auf der Ersten shell E(N,0) normiert auf s0 a0[i] = T0(i,0) / s0[i]; // Alle Signal-Werte auf der Zweiten shell E(N,1) normiert auf s0 b0[i] = T0(i,1) / s0[i]; } ta = a0 * 3.0; tb = b0 * 3.0; e = tb - (ta * 2.0); m = (tb * 2.0 ) + ta; for(int i = 0; i =1-3*(sF+2)*delta); C(i,2) = (m[i] > 3-3*sF*delta) && (-1+3*(2*sF+5)*delta= 3-3*sF*delta && e[i] >= -3 *sF * delta); C(i,4) = (2.5 + 1.5*(5+sF)*delta < m[i] && m[i] < 3-3*sF*delta && e[i] > -3*sF*delta); C(i,5) = (ta[i] <= 0.5+1.5 *(sF+1)*delta && m[i] <= 2.5 + 1.5 *(5+sF) * delta); C(i,6) = !((bool) C(i,0) ||(bool) C(i,1) ||(bool) C(i,2) ||(bool) C(i,3) ||(bool) C(i,4) ||(bool) C(i,5) ); // ~ANY(C(i,[0-5] ),2) A(i,0)=(bool)C(i,0) * a0(i); A(i,1)=(bool)C(i,1) * (1.0/3.0-(sF+2)*delta); A(i,2)=(bool)C(i,2) * (0.2+0.8*a0(i)-0.4*b0(i)-delta/sF); A(i,3)=(bool)C(i,3) * (0.2+delta/sF); A(i,4)=(bool)C(i,4) * (0.2*a0(i)+0.4*b0(i)+2*delta/sF); A(i,5)=(bool)C(i,5) * (1.0/6.0+0.5*(sF+1)*delta); A(i,6)=(bool)C(i,6) * a0(i); B(i,0)=(bool)C(i,0) * (1.0/3.0+delta); B(i,1)=(bool)C(i,1) * (1.0/3.0+delta); B(i,2)=(bool)C(i,2) * (0.4-0.4*a0(i)+0.2*b0(i)-2*delta/sF); B(i,3)=(bool)C(i,3) * (0.4-3*delta/sF); B(i,4)=(bool)C(i,4) * (0.4*a0(i)+0.8*b0(i)-delta/sF); B(i,5)=(bool)C(i,5) * (1.0/3.0+delta); B(i,6)=(bool)C(i,6) * b0(i); } for(int i = 0 ; i < m_MaxDirections; i++) { double sumA = 0; double sumB = 0; for(int j = 0 ; j < 7; j++) { sumA += A(i,j); sumB += B(i,j); } a[i] = sumA; b[i] = sumB; } for(int i = 0; i < m_MaxDirections; i++) { E1(i) = exp(-(a[i]*s0[i])); E2(i) = exp(-(b[i]*s0[i])); E3(i) = exp(-((1-a[i]-b[i])*s0[i])); } } template void DiffusionMultiShellQballReconstructionImageFilter ::Projection3( vnl_vector & A, vnl_vector & a, vnl_vector & b, double delta0) { const double s6 = sqrt(6.0); const double s15 = s6/2.0; vnl_vector delta(a.size()); delta.fill(delta0); vnl_matrix AM(a.size(), 15); vnl_matrix aM(a.size(), 15); vnl_matrix bM(a.size(), 15); vnl_matrix B(a.size(), 15); AM.set_column(0, A); AM.set_column(1, A); AM.set_column(2, A); AM.set_column(3, delta); AM.set_column(4, (A+a-b - (delta*s6))/3.0); AM.set_column(5, delta); AM.set_column(6, delta); AM.set_column(7, delta); AM.set_column(8, A); AM.set_column(9, 0.2*(a*2+A-2*(s6+1)*delta)); AM.set_column(10,0.2*(b*(-2)+A+2-2*(s6+1)*delta)); AM.set_column(11, delta); AM.set_column(12, delta); AM.set_column(13, delta); AM.set_column(14, 0.5-(1+s15)*delta); aM.set_column(0, a); aM.set_column(1, a); aM.set_column(2, -delta + 1); aM.set_column(3, a); aM.set_column(4, (A*2+a*5+b+s6*delta)/6.0); aM.set_column(5, a); aM.set_column(6, -delta + 1); aM.set_column(7, 0.5*(a+b)+(1+s15)*delta); aM.set_column(8, -delta + 1); aM.set_column(9, 0.2*(a*4+A*2+(s6+1)*delta)); aM.set_column(10, -delta + 1); aM.set_column(11, (s6+3)*delta); aM.set_column(12, -delta + 1); aM.set_column(13, -delta + 1); aM.set_column(14, -delta + 1); bM.set_column(0, b); bM.set_column(1, delta); bM.set_column(2, b); bM.set_column(3, b); bM.set_column(4, (A*(-2)+a+b*5-s6*delta)/6.0); bM.set_column(5, delta); bM.set_column(6, b); bM.set_column(7, 0.5*(a+b)-(1+s15)*delta); bM.set_column(8, delta); bM.set_column(9, delta); bM.set_column(10, 0.2*(b*4-A*2+1-(s6+1)*delta)); bM.set_column(11, delta); bM.set_column(12, delta); bM.set_column(13, -delta*(s6+3) + 1); bM.set_column(14, delta); delta0 *= 0.99; vnl_matrix R2(a.size(), 15); std::vector I(a.size()); for (int i=0; idelta0 && aM(i,j)<1-delta0) R2(i,j) = (AM(i,j)-A(i))*(AM(i,j)-A(i))+ (aM(i,j)-a(i))*(aM(i,j)-a(i))+(bM(i,j)-b(i))*(bM(i,j)-b(i)); else R2(i,j) = 1e20; } unsigned int index = 0; double minvalue = 999; for(int j = 0 ; j < 15 ; j++) { if(R2(i,j) < minvalue){ minvalue = R2(i,j); index = j; } } I[i] = index; } for (int i=0; i < A.size(); i++){ A(i) = AM(i,(int)I[i]); a(i) = aM(i,(int)I[i]); b(i) = bM(i,(int)I[i]); } } template void DiffusionMultiShellQballReconstructionImageFilter ::S_S0Normalization( vnl_vector & vec, double S0 ) { for(int i = 0; i < vec.size(); i++) { if (S0==0) S0 = 0.01; vec[i] /= S0; } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::DoubleLogarithm(vnl_vector & vec) { for(int i = 0; i < vec.size(); i++) { vec[i] = log(-log(vec[i])); } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::SetGradientImage( GradientDirectionContainerType *gradientDirection , const GradientImagesType *gradientImage , float bvalue) { m_BValue = bvalue; m_GradientDirectionContainer = gradientDirection; m_NumberOfBaselineImages = 0; if(m_BValueMap.size() == 0){ itkWarningMacro(<< "DiffusionMultiShellQballReconstructionImageFilter.cpp : no GradientIndexMapAvalible"); GradientDirectionContainerType::ConstIterator gdcit; for( gdcit = m_GradientDirectionContainer->Begin(); gdcit != m_GradientDirectionContainer->End(); ++gdcit) { double bValueKey = int(((m_BValue * gdcit.Value().two_norm() * gdcit.Value().two_norm())+7.5)/10)*10; m_BValueMap[bValueKey].push_back(gdcit.Index()); } } if(m_BValueMap.find(0) == m_BValueMap.end()) { itkExceptionMacro(<< "DiffusionMultiShellQballReconstructionImageFilter.cpp : GradientIndxMap with no b-Zero indecies found: check input image"); } m_NumberOfBaselineImages = m_BValueMap[0].size(); m_NumberOfGradientDirections = gradientDirection->Size() - m_NumberOfBaselineImages; // ensure that the gradient image we received has as many components as // the number of gradient directions if( gradientImage->GetVectorLength() != m_NumberOfBaselineImages + m_NumberOfGradientDirections ) { itkExceptionMacro( << m_NumberOfGradientDirections << " gradients + " << m_NumberOfBaselineImages << "baselines = " << m_NumberOfGradientDirections + m_NumberOfBaselineImages << " directions specified but image has " << gradientImage->GetVectorLength() << " components."); } ProcessObject::SetNthInput( 0, const_cast< GradientImagesType* >(gradientImage) ); std::string gradientImageClassName(ProcessObject::GetInput(0)->GetNameOfClass()); if ( strcmp(gradientImageClassName.c_str(),"VectorImage") != 0 ) itkExceptionMacro( << "There is only one Gradient image. I expect that to be a VectorImage. But its of type: " << gradientImageClassName ); m_BZeroImage = BZeroImageType::New(); typename GradientImagesType::Pointer img = static_cast< GradientImagesType * >( ProcessObject::GetInput(0) ); m_BZeroImage->SetSpacing( img->GetSpacing() ); // Set the image spacing m_BZeroImage->SetOrigin( img->GetOrigin() ); // Set the image origin m_BZeroImage->SetDirection( img->GetDirection() ); // Set the image direction m_BZeroImage->SetLargestPossibleRegion( img->GetLargestPossibleRegion()); m_BZeroImage->SetBufferedRegion( img->GetLargestPossibleRegion() ); m_BZeroImage->Allocate(); + m_CoefficientImage = CoefficientImageType::New(); + m_CoefficientImage->SetSpacing( img->GetSpacing() ); // Set the image spacing + m_CoefficientImage->SetOrigin( img->GetOrigin() ); // Set the image origin + m_CoefficientImage->SetDirection( img->GetDirection() ); // Set the image direction + m_CoefficientImage->SetLargestPossibleRegion( img->GetLargestPossibleRegion()); + m_CoefficientImage->SetBufferedRegion( img->GetLargestPossibleRegion() ); + m_CoefficientImage->Allocate(); + } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::BeforeThreadedGenerateData() { m_ReconstructionType = Mode_Standard1Shell; if(m_BValueMap.size() == 4 ){ BValueMapIteraotr it = m_BValueMap.begin(); it++; // skip b0 entry const int b1 = it->first; const int vecSize1 = it->second.size(); IndiciesVector shell1 = it->second; it++; const int b2 = it->first; const int vecSize2 = it->second.size(); IndiciesVector shell2 = it->second; it++; const int b3 = it->first; const int vecSize3 = it->second.size(); IndiciesVector shell3 = it->second; // arithmetic progrssion if(b2 - b1 == b1 && b3 - b2 == b1 ) { // check if Interpolation is needed // if shells with different numbers of directions exist m_Interpolation_Flag = false; if(vecSize1 != vecSize2 || vecSize2 != vecSize3 || vecSize1 != vecSize3) { m_Interpolation_Flag = true; MITK_INFO << "Shell interpolation: shells with different numbers of directions"; }else // if each shell holds same numbers of directions, but the gradient direction differ more than one 1 degree { m_Interpolation_Flag = CheckForDifferingShellDirections(); if(m_Interpolation_Flag) MITK_INFO << "Shell interpolation: gradient direction differ more than one 1 degree"; } m_ReconstructionType = Mode_Analytical3Shells; if(m_Interpolation_Flag) { IndiciesVector min_shell; IndiciesVector max_shell; int Interpolation_SHOrder = 10; //fewer directions if (vecSize1 <= vecSize2 ) { min_shell = shell1;} else { min_shell = shell2;} if (min_shell.size() > vecSize3){ min_shell = shell3;} //most directions if (vecSize1 >= vecSize2 ) { max_shell = shell1;} else { max_shell = shell2;} if (max_shell.size() < vecSize3){ max_shell = shell3;} m_MaxDirections = max_shell.size(); //SH-order determination while( ((Interpolation_SHOrder+1)*(Interpolation_SHOrder+2)/2) > min_shell.size() && Interpolation_SHOrder > L ) Interpolation_SHOrder -= 2 ; MITK_INFO << "Interpolation enabeled, using SH of order : " << Interpolation_SHOrder; // create target SH-Basis vnl_matrix * Q = new vnl_matrix(3, max_shell.size()); ComputeSphericalFromCartesian(Q, max_shell); int NumberOfCoeffs = (int)(Interpolation_SHOrder*Interpolation_SHOrder + Interpolation_SHOrder + 2.0)/2.0 + Interpolation_SHOrder; m_Interpolation_TARGET_SH = new vnl_matrix(max_shell.size(), NumberOfCoeffs); ComputeSphericalHarmonicsBasis(Q, m_Interpolation_TARGET_SH, Interpolation_SHOrder); delete Q; // end creat target SH-Basis // create measured-SHBasis // Shell 1 vnl_matrix * tempSHBasis; vnl_matrix_inverse * temp; Q = new vnl_matrix(3, shell1.size()); ComputeSphericalFromCartesian(Q, shell1); tempSHBasis = new vnl_matrix(shell1.size(), NumberOfCoeffs); ComputeSphericalHarmonicsBasis(Q, tempSHBasis, Interpolation_SHOrder); temp = new vnl_matrix_inverse((*tempSHBasis)); m_Interpolation_SHT1_inv = new vnl_matrix(temp->inverse()); delete Q; delete temp; delete tempSHBasis; // Shell 2 Q = new vnl_matrix(3, shell2.size()); ComputeSphericalFromCartesian(Q, shell2); tempSHBasis = new vnl_matrix(shell2.size(), NumberOfCoeffs); ComputeSphericalHarmonicsBasis(Q, tempSHBasis, Interpolation_SHOrder); temp = new vnl_matrix_inverse((*tempSHBasis)); m_Interpolation_SHT2_inv = new vnl_matrix(temp->inverse()); delete Q; delete temp; delete tempSHBasis; // Shell 3 Q = new vnl_matrix(3, shell3.size()); ComputeSphericalFromCartesian(Q, shell3); tempSHBasis = new vnl_matrix(shell3.size(), NumberOfCoeffs); ComputeSphericalHarmonicsBasis(Q, tempSHBasis, Interpolation_SHOrder); temp = new vnl_matrix_inverse((*tempSHBasis)); m_Interpolation_SHT3_inv = new vnl_matrix(temp->inverse()); delete Q; delete temp; delete tempSHBasis; ComputeReconstructionMatrix(max_shell); return; }else { ComputeReconstructionMatrix(shell1); } } } if(m_BValueMap.size() > 2 && m_ReconstructionType != Mode_Analytical3Shells) { m_ReconstructionType = Mode_NumericalNShells; } if(m_BValueMap.size() == 2){ BValueMapIteraotr it = m_BValueMap.begin(); it++; // skip b0 entry IndiciesVector shell = it->second; ComputeReconstructionMatrix(shell); } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, int NumberOfThreads) { itk::TimeProbe clock; clock.Start(); switch(m_ReconstructionType) { case Mode_Standard1Shell: StandardOneShellReconstruction(outputRegionForThread); break; case Mode_Analytical3Shells: AnalyticalThreeShellReconstruction(outputRegionForThread); break; case Mode_NumericalNShells: break; } clock.Stop(); MITK_INFO << "Reconstruction in : " << clock.GetTotal() << " s"; } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::StandardOneShellReconstruction(const OutputImageRegionType& outputRegionForThread) { // Get output image pointer typename OutputImageType::Pointer outputImage = static_cast< OutputImageType * >(ProcessObject::GetOutput(0)); // Get input gradient image pointer typename GradientImagesType::Pointer gradientImagePointer = static_cast< GradientImagesType * >( ProcessObject::GetInput(0) ); // ImageRegionIterator for the output image ImageRegionIterator< OutputImageType > oit(outputImage, outputRegionForThread); oit.GoToBegin(); // ImageRegionIterator for the BZero (output) image ImageRegionIterator< BZeroImageType > bzeroIterator(m_BZeroImage, outputRegionForThread); bzeroIterator.GoToBegin(); // Const ImageRegionIterator for input gradient image typedef ImageRegionConstIterator< GradientImagesType > GradientIteratorType; GradientIteratorType git(gradientImagePointer, outputRegionForThread ); git.GoToBegin(); BValueMapIteraotr it = m_BValueMap.begin(); it++; // skip b0 entry IndiciesVector SignalIndicies = it->second; IndiciesVector BZeroIndicies = m_BValueMap[0]; int NumbersOfGradientIndicies = SignalIndicies.size(); typedef typename GradientImagesType::PixelType GradientVectorType; // iterate overall voxels of the gradient image region while( ! git.IsAtEnd() ) { GradientVectorType b = git.Get(); // ODF Vector OdfPixelType odf(0.0); double b0average = 0; const int b0size = BZeroIndicies.size(); for(unsigned int i = 0; i SignalVector(NumbersOfGradientIndicies); if( (b0average != 0) && (b0average >= m_Threshold) ) { for( unsigned int i = 0; i< SignalIndicies.size(); i++ ) { SignalVector[i] = static_cast(b[SignalIndicies[i]]); } // apply threashold an generate ln(-ln(E)) signal // Replace SignalVector with PreNormalized SignalVector S_S0Normalization(SignalVector, b0average); Projection1(SignalVector); DoubleLogarithm(SignalVector); // approximate ODF coeffs vnl_vector coeffs = ( (*m_CoeffReconstructionMatrix) * SignalVector ); coeffs[0] = 1.0/(2.0*sqrt(QBALL_ANAL_RECON_PI)); odf = element_cast(( (*m_ODFSphericalHarmonicBasisMatrix) * coeffs )).data_block(); odf *= (QBALL_ANAL_RECON_PI*4/NODF); } // set ODF to ODF-Image oit.Set( odf ); ++oit; ++git; } MITK_INFO << "One Thread finished reconstruction"; } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::NumericalNShellReconstruction(const OutputImageRegionType& outputRegionForThread) { // vnl_levenberg_marquardt LMOptimizer = new vnl_levenberg_marquardt(); } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::AnalyticalThreeShellReconstruction(const OutputImageRegionType& outputRegionForThread) { // Input Gradient Image and Output ODF Image typedef typename GradientImagesType::PixelType GradientVectorType; typename OutputImageType::Pointer outputImage = static_cast< OutputImageType * >(ProcessObject::GetOutput(0)); typename GradientImagesType::Pointer gradientImagePointer = static_cast< GradientImagesType * >( ProcessObject::GetInput(0) ); // Define Image iterators ImageRegionIterator< OutputImageType > odfOutputImageIterator(outputImage, outputRegionForThread); ImageRegionConstIterator< GradientImagesType > gradientInputImageIterator(gradientImagePointer, outputRegionForThread ); ImageRegionIterator< BZeroImageType > bzeroIterator(m_BZeroImage, outputRegionForThread); + ImageRegionIterator< CoefficientImageType > coefficientImageIterator(m_CoefficientImage, outputRegionForThread); // All iterators seht to Begin of the specific OutputRegion + coefficientImageIterator.GoToBegin(); bzeroIterator.GoToBegin(); odfOutputImageIterator.GoToBegin(); gradientInputImageIterator.GoToBegin(); // Get Shell Indicies for all non-BZero Gradients // it MUST be a arithmetic progression eg.: 1000, 2000, 3000 BValueMapIteraotr it = m_BValueMap.begin(); it++; // it = b-value = 1000 IndiciesVector Shell1Indiecies = it->second; it++; // it = b-value = 2000 IndiciesVector Shell2Indiecies = it->second; it++; // it = b-value = 3000 IndiciesVector Shell3Indiecies = it->second; IndiciesVector BZeroIndicies = m_BValueMap[0]; if(!m_Interpolation_Flag) { m_MaxDirections = Shell1Indiecies.size(); }// else: m_MaxDirection is set in BeforeThreadedGenerateData // Nx3 Signal Matrix with E(0) = Shell 1, E(1) = Shell 2, E(2) = Shell 3 vnl_vector< double > E1(m_MaxDirections); vnl_vector< double > E2(m_MaxDirections); vnl_vector< double > E3(m_MaxDirections); vnl_vector AlphaValues(m_MaxDirections); vnl_vector BetaValues(m_MaxDirections); vnl_vector LAValues(m_MaxDirections); vnl_vector PValues(m_MaxDirections); vnl_vector DataShell1(Shell1Indiecies.size()); vnl_vector DataShell2(Shell2Indiecies.size()); vnl_vector DataShell3(Shell3Indiecies.size()); OdfPixelType odf(0.0); + typename CoefficientImageType::PixelType coeffPixel(0.0); double P2,A,B2,B,P,alpha,beta,lambda, ER1, ER2; // iterate overall voxels of the gradient image region while( ! gradientInputImageIterator.IsAtEnd() ) { GradientVectorType b = gradientInputImageIterator.Get(); // calculate for each shell the corresponding b0-averages double shell1b0Norm =0; double shell2b0Norm =0; double shell3b0Norm =0; double b0average = 0; const int b0size = BZeroIndicies.size(); for(unsigned int i = 0; i = b0size / 3 && i < (b0size / 3)*2) shell2b0Norm += b[BZeroIndicies[i]]; if(i >= (b0size / 3) * 2) shell3b0Norm += b[BZeroIndicies[i]]; } shell1b0Norm /= (BZeroIndicies.size()/3); shell2b0Norm /= (BZeroIndicies.size()/3); shell3b0Norm /= (BZeroIndicies.size()/3); b0average = (shell1b0Norm + shell2b0Norm+ shell3b0Norm)/3; bzeroIterator.Set(b0average); ++bzeroIterator; if( (b0average != 0) && ( b0average >= m_Threshold) ) { // Get the Signal-Value for each Shell at each direction (specified in the ShellIndicies Vector .. this direction corresponse to this shell...) ///fsl fix --------------------------------------------------- for(int i = 0 ; i < Shell1Indiecies.size(); i++) DataShell1[i] = static_cast(b[Shell1Indiecies[i]]); for(int i = 0 ; i < Shell2Indiecies.size(); i++) DataShell2[i] = static_cast(b[Shell2Indiecies[i]]); for(int i = 0 ; i < Shell3Indiecies.size(); i++) DataShell3[i] = static_cast(b[Shell2Indiecies[i]]); // Normalize the Signal: Si/S0 S_S0Normalization(DataShell1, shell1b0Norm); S_S0Normalization(DataShell2, shell2b0Norm); S_S0Normalization(DataShell3, shell2b0Norm); //fsl fix -------------------------------------------ende-- /* correct version for(int i = 0 ; i < Shell1Indiecies.size(); i++) DataShell1[i] = static_cast(b[Shell1Indiecies[i]]); for(int i = 0 ; i < Shell2Indiecies.size(); i++) DataShell2[i] = static_cast(b[Shell2Indiecies[i]]); for(int i = 0 ; i < Shell3Indiecies.size(); i++) DataShell3[i] = static_cast(b[Shell3Indiecies[i]]); // Normalize the Signal: Si/S0 S_S0Normalization(DataShell1, shell1b0Norm); S_S0Normalization(DataShell2, shell2b0Norm); S_S0Normalization(DataShell3, shell3b0Norm); */ if(m_Interpolation_Flag) { E1 = ((*m_Interpolation_TARGET_SH) * (*m_Interpolation_SHT1_inv) * (DataShell1)); E2 = ((*m_Interpolation_TARGET_SH) * (*m_Interpolation_SHT2_inv) * (DataShell2)); E3 = ((*m_Interpolation_TARGET_SH) * (*m_Interpolation_SHT3_inv) * (DataShell3)); }else{ E1 = (DataShell1); E2 = (DataShell2); E3 = (DataShell3); } //Implements Eq. [19] and Fig. 4. Projection1(E1); Projection1(E2); Projection1(E3); //inqualities [31]. Taking the lograithm of th first tree inqualities //convert the quadratic inqualities to linear ones. Projection2(E1,E2,E3); for( unsigned int i = 0; i< m_MaxDirections; i++ ) { double e1 = E1.get(i); double e2 = E2.get(i); double e3 = E3.get(i); P2 = e2-e1*e1; A = (e3 -e1*e2) / ( 2* P2); B2 = A * A -(e1 * e3 - e2 * e2) /P2; B = 0; if(B2 > 0) B = sqrt(B2); P = 0; if(P2 > 0) P = sqrt(P2); alpha = A + B; beta = A - B; PValues.put(i, P); AlphaValues.put(i, alpha); BetaValues.put(i, beta); } Projection3(PValues, AlphaValues, BetaValues); for(int i = 0 ; i < m_MaxDirections; i++) { const double fac = (PValues[i] * 2 ) / (AlphaValues[i] - BetaValues[i]); lambda = 0.5 + 0.5 * std::sqrt(1 - fac * fac);; ER1 = std::fabs(lambda * (AlphaValues[i] - BetaValues[i]) + (BetaValues[i] - E1.get(i) )) + std::fabs(lambda * (AlphaValues[i] * AlphaValues[i] - BetaValues[i] * BetaValues[i]) + (BetaValues[i] * BetaValues[i] - E2.get(i) )) + std::fabs(lambda * (AlphaValues[i] * AlphaValues[i] * AlphaValues[i] - BetaValues[i] * BetaValues[i] * BetaValues[i]) + (BetaValues[i] * BetaValues[i] * BetaValues[i] - E3.get(i) )); ER2 = std::fabs((1-lambda) * (AlphaValues[i] - BetaValues[i]) + (BetaValues[i] - E1.get(i) )) + std::fabs((1-lambda) * (AlphaValues[i] * AlphaValues[i] - BetaValues[i] * BetaValues[i]) + (BetaValues[i] * BetaValues[i] - E2.get(i) )) + std::fabs((1-lambda) * (AlphaValues[i] * AlphaValues[i] * AlphaValues[i] - BetaValues[i] * BetaValues[i] * BetaValues[i]) + (BetaValues[i] * BetaValues[i] * BetaValues[i] - E3.get(i))); if(ER1 < ER2) LAValues.put(i, lambda); else LAValues.put(i, 1-lambda); } DoubleLogarithm(AlphaValues); DoubleLogarithm(BetaValues); vnl_vector SignalVector(element_product((LAValues) , (AlphaValues)-(BetaValues)) + (BetaValues)); vnl_vector coeffs((*m_CoeffReconstructionMatrix) *SignalVector ); // the first coeff is a fix value coeffs[0] = 1.0/(2.0*sqrt(QBALL_ANAL_RECON_PI)); + coeffPixel = element_cast(coeffs).data_block(); + // Cast the Signal-Type from double to float for the ODF-Image odf = element_cast( (*m_ODFSphericalHarmonicBasisMatrix) * coeffs ).data_block(); odf *= ((QBALL_ANAL_RECON_PI*4)/NODF); } // set ODF to ODF-Image + coefficientImageIterator.Set(coeffPixel); odfOutputImageIterator.Set( odf ); ++odfOutputImageIterator; + ++coefficientImageIterator; ++gradientInputImageIterator; } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter:: ComputeSphericalHarmonicsBasis(vnl_matrix * QBallReference, vnl_matrix *SHBasisOutput, int LOrder , vnl_matrix* LaplaciaBaltramiOutput, vnl_vector* SHOrderAssociation, vnl_matrix* SHEigenvalues) { // MITK_INFO << *QBallReference; for(unsigned int i=0; i< (*SHBasisOutput).rows(); i++) { for(int k = 0; k <= LOrder; k += 2) { for(int m =- k; m <= k; m++) { int j = ( k * k + k + 2 ) / 2 + m - 1; // Compute SHBasisFunctions if(QBallReference){ double phi = (*QBallReference)(0,i); double th = (*QBallReference)(1,i); (*SHBasisOutput)(i,j) = mitk::sh::Yj(m,k,th,phi); } // Laplacian Baltrami Order Association if(LaplaciaBaltramiOutput) (*LaplaciaBaltramiOutput)(j,j) = k*k*(k + 1)*(k+1); // SHEigenvalues with order Accosiation kj if(SHEigenvalues) (*SHEigenvalues)(j,j) = -k* (k+1); // Order Association if(SHOrderAssociation) (*SHOrderAssociation)[j] = k; } } } } template< class T, class TG, class TO, int L, int NOdfDirections> void DiffusionMultiShellQballReconstructionImageFilter ::ComputeReconstructionMatrix(IndiciesVector const & refVector) { typedef std::auto_ptr< vnl_matrix< double> > MatrixDoublePtr; typedef std::auto_ptr< vnl_vector< int > > VectorIntPtr; typedef std::auto_ptr< vnl_matrix_inverse< double > > InverseMatrixDoublePtr; int numberOfGradientDirections = refVector.size(); if( numberOfGradientDirections < (((L+1)*(L+2))/2) || numberOfGradientDirections < 6 ) { itkExceptionMacro( << "At least (L+1)(L+2)/2 gradient directions for each shell are required; current : " << numberOfGradientDirections ); } CheckDuplicateDiffusionGradients(); const int LOrder = L; int NumberOfCoeffs = (int)(LOrder*LOrder + LOrder + 2.0)/2.0 + LOrder; MITK_INFO << NumberOfCoeffs; MatrixDoublePtr SHBasisMatrix(new vnl_matrix(numberOfGradientDirections,NumberOfCoeffs)); SHBasisMatrix->fill(0.0); VectorIntPtr SHOrderAssociation(new vnl_vector(NumberOfCoeffs)); SHOrderAssociation->fill(0.0); MatrixDoublePtr LaplacianBaltrami(new vnl_matrix(NumberOfCoeffs,NumberOfCoeffs)); LaplacianBaltrami->fill(0.0); MatrixDoublePtr FRTMatrix(new vnl_matrix(NumberOfCoeffs,NumberOfCoeffs)); FRTMatrix->fill(0.0); MatrixDoublePtr SHEigenvalues(new vnl_matrix(NumberOfCoeffs,NumberOfCoeffs)); SHEigenvalues->fill(0.0); MatrixDoublePtr Q(new vnl_matrix(3, numberOfGradientDirections)); // Convert Cartesian to Spherical Coordinates refVector -> Q ComputeSphericalFromCartesian(Q.get(), refVector); // SHBasis-Matrix + LaplacianBaltrami-Matrix + SHOrderAssociationVector ComputeSphericalHarmonicsBasis(Q.get() ,SHBasisMatrix.get() , LOrder , LaplacianBaltrami.get(), SHOrderAssociation.get(), SHEigenvalues.get()); // Compute FunkRadon Transformation Matrix Associated to SHBasis Order lj for(int i=0; i(((SHBasisMatrix->transpose()) * (*SHBasisMatrix)) + (m_Lambda * (*LaplacianBaltrami)))); InverseMatrixDoublePtr pseudo_inv(new vnl_matrix_inverse((*temp))); MatrixDoublePtr inverse(new vnl_matrix(NumberOfCoeffs,NumberOfCoeffs)); (*inverse) = pseudo_inv->inverse(); const double factor = (1.0/(16.0*QBALL_ANAL_RECON_PI*QBALL_ANAL_RECON_PI)); MatrixDoublePtr SignalReonstructionMatrix (new vnl_matrix((*inverse) * (SHBasisMatrix->transpose()))); m_CoeffReconstructionMatrix = new vnl_matrix(( factor * ((*FRTMatrix) * ((*SHEigenvalues) * (*SignalReonstructionMatrix))) )); // SH Basis for ODF-reconstruction vnl_matrix_fixed* U = itk::PointShell >::DistributePointShell(); for(int i=0; i( U->as_matrix() )); m_ODFSphericalHarmonicBasisMatrix = new vnl_matrix(NOdfDirections,NumberOfCoeffs); ComputeSphericalHarmonicsBasis(tempPtr.get(), m_ODFSphericalHarmonicBasisMatrix, LOrder); } template< class T, class TG, class TO, int L, int NOdfDirections> void DiffusionMultiShellQballReconstructionImageFilter ::ComputeSphericalFromCartesian(vnl_matrix * Q, IndiciesVector const & refShell) { for(int i = 0; i < refShell.size(); i++) { double x = m_GradientDirectionContainer->ElementAt(refShell[i]).normalize().get(0); double y = m_GradientDirectionContainer->ElementAt(refShell[i]).normalize().get(1); double z = m_GradientDirectionContainer->ElementAt(refShell[i]).normalize().get(2); double cart[3]; mitk::sh::Cart2Sph(x,y,z,cart); (*Q)(0,i) = cart[0]; (*Q)(1,i) = cart[1]; (*Q)(2,i) = cart[2]; } } template< class T, class TG, class TO, int L, int NODF> bool DiffusionMultiShellQballReconstructionImageFilter ::CheckDuplicateDiffusionGradients() { bool value = false; BValueMapIteraotr mapIterator = m_BValueMap.begin(); mapIterator++; while(mapIterator != m_BValueMap.end()) { std::vector::const_iterator it1 = mapIterator->second.begin(); std::vector::const_iterator it2 = mapIterator->second.begin(); for(; it1 != mapIterator->second.end(); ++it1) { for(; it2 != mapIterator->second.end(); ++it2) { if(m_GradientDirectionContainer->ElementAt(*it1) == m_GradientDirectionContainer->ElementAt(*it2) && it1 != it2) { itkWarningMacro( << "Some of the Diffusion Gradients equal each other. Corresponding image data should be averaged before calling this filter." ); value = true; } } } ++mapIterator; } return value; } // corresponding directions between shells (e.g. dir1_shell1 vs dir1_shell2) differ more than 1 degree. template< class T, class TG, class TO, int L, int NODF> bool DiffusionMultiShellQballReconstructionImageFilter ::CheckForDifferingShellDirections() { bool interp_flag = false; BValueMapIteraotr mapIterator = m_BValueMap.begin(); mapIterator++; std::vector shell1 = mapIterator->second; mapIterator++; std::vector shell2 = mapIterator->second; mapIterator++; std::vector shell3 = mapIterator->second; for (int i=0; i< shell1.size(); i++) if (fabs(dot(m_GradientDirectionContainer->ElementAt(shell1[i]), m_GradientDirectionContainer->ElementAt(shell2[i]))) <= 0.9998) {interp_flag=true; break;} for (int i=0; i< shell1.size(); i++) if (fabs(dot(m_GradientDirectionContainer->ElementAt(shell1[i]), m_GradientDirectionContainer->ElementAt(shell3[i]))) <= 0.9998) {interp_flag=true; break;} for (int i=0; i< shell1.size(); i++) if (fabs(dot(m_GradientDirectionContainer->ElementAt(shell2[i]), m_GradientDirectionContainer->ElementAt(shell3[i]))) <= 0.9998) {interp_flag=true; break;} return interp_flag; } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::PrintSelf(std::ostream& os, Indent indent) const { std::locale C("C"); std::locale originalLocale = os.getloc(); os.imbue(C); Superclass::PrintSelf(os,indent); //os << indent << "OdfReconstructionMatrix: " << m_ReconstructionMatrix << std::endl; if ( m_GradientDirectionContainer ) { os << indent << "GradientDirectionContainer: " << m_GradientDirectionContainer << std::endl; } else { os << indent << "GradientDirectionContainer: (Gradient directions not set)" << std::endl; } os << indent << "NumberOfGradientDirections: " << m_NumberOfGradientDirections << std::endl; os << indent << "NumberOfBaselineImages: " << m_NumberOfBaselineImages << std::endl; os << indent << "Threshold for reference B0 image: " << m_Threshold << std::endl; os << indent << "BValue: " << m_BValue << std::endl; os.imbue( originalLocale ); } } #endif // __itkDiffusionMultiShellQballReconstructionImageFilter_cpp diff --git a/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.h b/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.h index a54d102e7e..2ef8479564 100644 --- a/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.h +++ b/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.h @@ -1,240 +1,246 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef __itkDiffusionMultiShellQballReconstructionImageFilter_h_ #define __itkDiffusionMultiShellQballReconstructionImageFilter_h_ #include "itkImageToImageFilter.h" #include "vnl/vnl_vector_fixed.h" #include "vnl/vnl_matrix.h" #include "vnl/algo/vnl_svd.h" #include "itkVectorContainer.h" #include "itkVectorImage.h" #include namespace itk{ /** \class DiffusionMultiShellQballReconstructionImageFilter Aganj_2010 */ template< class TReferenceImagePixelType, class TGradientImagePixelType, class TOdfPixelType, int NOrderL, int NrOdfDirections> class DiffusionMultiShellQballReconstructionImageFilter : public ImageToImageFilter< Image< TReferenceImagePixelType, 3 >, Image< Vector< TOdfPixelType, NrOdfDirections >, 3 > > { public: typedef DiffusionMultiShellQballReconstructionImageFilter Self; typedef SmartPointer Pointer; typedef SmartPointer ConstPointer; typedef ImageToImageFilter< Image< TReferenceImagePixelType, 3>, Image< Vector< TOdfPixelType, NrOdfDirections >, 3 > > Superclass; typedef TReferenceImagePixelType ReferencePixelType; typedef TGradientImagePixelType GradientPixelType; typedef Vector< TOdfPixelType, NrOdfDirections > OdfPixelType; typedef typename Superclass::InputImageType ReferenceImageType; typedef Image< OdfPixelType, 3 > OdfImageType; typedef OdfImageType OutputImageType; typedef TOdfPixelType BZeroPixelType; typedef Image< BZeroPixelType, 3 > BZeroImageType; typedef typename Superclass::OutputImageRegionType OutputImageRegionType; /** Typedef defining one (of the many) gradient images. */ typedef Image< GradientPixelType, 3 > GradientImageType; /** An alternative typedef defining one (of the many) gradient images. * It will be assumed that the vectorImage has the same dimension as the * Reference image and a vector length parameter of \c n (number of * gradient directions)*/ typedef VectorImage< GradientPixelType, 3 > GradientImagesType; /** Holds the ODF reconstruction matrix */ typedef vnl_matrix< TOdfPixelType >* OdfReconstructionMatrixType; typedef vnl_matrix< double > * CoefficientMatrixType; /** Holds each magnetic field gradient used to acquire one DWImage */ typedef vnl_vector_fixed< double, 3 > GradientDirectionType; /** Container to hold gradient directions of the 'n' DW measurements */ typedef VectorContainer< unsigned int, GradientDirectionType > GradientDirectionContainerType; + typedef Image< Vector< TOdfPixelType, (NOrderL*NOrderL + NOrderL + 2)/2 + NOrderL >, 3 > CoefficientImageType; + typedef std::map > BValueMap; typedef std::map >::iterator BValueMapIteraotr; typedef std::vector IndiciesVector; // --------------------------------------------------------------------------------------------// /** Method for creation through the object factory. */ itkNewMacro(Self); /** Runtime information support. */ itkTypeMacro(DiffusionMultiShellQballReconstructionImageFilter, ImageToImageFilter); /** set method to add gradient directions and its corresponding * image. The image here is a VectorImage. The user is expected to pass the * gradient directions in a container. The ith element of the container * corresponds to the gradient direction of the ith component image the * VectorImage. For the baseline image, a vector of all zeros * should be set.*/ void SetGradientImage( GradientDirectionContainerType *, const GradientImagesType *image , float bvalue);//, std::vector listOfUserSelctedBValues ); /** Get reference image */ virtual ReferenceImageType * GetReferenceImage() { return ( static_cast< ReferenceImageType *>(this->ProcessObject::GetInput(0)) ); } /** Return the gradient direction. idx is 0 based */ virtual GradientDirectionType GetGradientDirection( unsigned int idx) const { if( idx >= m_GradientDirectionContainer->Size() ) { itkExceptionMacro( << "Gradient direction " << idx << "does not exist" ); } return m_GradientDirectionContainer->ElementAt( idx+1 ); } void Normalize(OdfPixelType & odf ); void S_S0Normalization( vnl_vector & vec, double b0 = 0 ); void DoubleLogarithm(vnl_vector & vec); void Projection1(vnl_vector & vec, double delta = 0.01); double CalculateThreashold(const double value, const double delta); void Projection2( vnl_vector & E1, vnl_vector & E2, vnl_vector & E3, double delta = 0.01); void Projection3( vnl_vector & A, vnl_vector & alpha, vnl_vector & beta, double delta = 0.01); /** Threshold on the reference image data. The output ODF will be a null * pdf for pixels in the reference image that have a value less than this * threshold. */ itkSetMacro( Threshold, ReferencePixelType ); itkGetMacro( Threshold, ReferencePixelType ); itkGetMacro( BZeroImage, typename BZeroImageType::Pointer); //itkGetMacro( ODFSumImage, typename BlaImage::Pointer); + itkGetMacro( CoefficientImage, typename CoefficientImageType::Pointer ); + itkSetMacro( Lambda, double ); itkGetMacro( Lambda, double ); itkGetConstReferenceMacro( BValue, TOdfPixelType); void SetBValueMap(BValueMap map){this->m_BValueMap = map;} protected: DiffusionMultiShellQballReconstructionImageFilter(); ~DiffusionMultiShellQballReconstructionImageFilter() { }; void PrintSelf(std::ostream& os, Indent indent) const; void ComputeReconstructionMatrix(IndiciesVector const & refVector); void ComputeODFSHBasis(); bool CheckDuplicateDiffusionGradients(); bool CheckForDifferingShellDirections(); void ComputeSphericalHarmonicsBasis(vnl_matrix* QBallReference, vnl_matrix* SHBasisOutput, int Lorder , vnl_matrix* LaplaciaBaltramiOutput =0 , vnl_vector* SHOrderAssociation =0 , vnl_matrix * SHEigenvalues =0); //void ComputeFunkRadonTransformationMatrix(vnl_vector* SHOrderAssociationReference, vnl_matrix* FRTMatrixOutput ); //bool CheckHemisphericalArrangementOfGradientDirections(); void BeforeThreadedGenerateData(); void ThreadedGenerateData( const OutputImageRegionType &outputRegionForThread, int NumberOfThreads ); void StandardOneShellReconstruction(const OutputImageRegionType& outputRegionForThread); void AnalyticalThreeShellReconstruction(const OutputImageRegionType& outputRegionForThread); void NumericalNShellReconstruction(const OutputImageRegionType& outputRegionForThread); void GenerateAveragedBZeroImage(const OutputImageRegionType& outputRegionForThread); private: enum ReconstructionType { Mode_Analytical3Shells, Mode_NumericalNShells, Mode_Standard1Shell }; // Interpolation bool m_Interpolation_Flag; CoefficientMatrixType m_Interpolation_SHT1_inv; CoefficientMatrixType m_Interpolation_SHT2_inv; CoefficientMatrixType m_Interpolation_SHT3_inv; CoefficientMatrixType m_Interpolation_TARGET_SH; int m_MaxDirections; //CoefficientMatrixType m_ReconstructionMatrix; CoefficientMatrixType m_CoeffReconstructionMatrix; CoefficientMatrixType m_ODFSphericalHarmonicBasisMatrix; //CoefficientMatrixType m_SignalReonstructionMatrix; //CoefficientMatrixType m_SHBasisMatrix; /** container to hold gradient directions */ GradientDirectionContainerType::Pointer m_GradientDirectionContainer; /** Number of gradient measurements */ unsigned int m_NumberOfGradientDirections; /** Number of baseline images */ unsigned int m_NumberOfBaselineImages; /** Threshold on the reference image data */ ReferencePixelType m_Threshold; /** LeBihan's b-value for normalizing tensors */ float m_BValue; typename BZeroImageType::Pointer m_BZeroImage; + typename CoefficientImageType::Pointer m_CoefficientImage; + BValueMap m_BValueMap; double m_Lambda; bool m_IsHemisphericalArrangementOfGradientDirections; bool m_IsArithmeticProgession; //int m_NumberCoefficients; ReconstructionType m_ReconstructionType; //------------------------- VNL-function ------------------------------------ template vnl_vector< WntValue> element_cast (vnl_vector< CurrentValue> const& v1) { vnl_vector result(v1.size()); for(int i = 0 ; i < v1.size(); i++) result[i] = static_cast< WntValue>(v1[i]); return result; } template double dot (vnl_vector_fixed< type ,3> const& v1, vnl_vector_fixed< type ,3 > const& v2 ) { double result = (v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2]) / (v1.two_norm() * v2.two_norm()); return result ; } void ComputeSphericalFromCartesian(vnl_matrix * Q, const IndiciesVector & refShell); }; } #ifndef ITK_MANUAL_INSTANTIATION #include "itkDiffusionMultiShellQballReconstructionImageFilter.cpp" #endif #endif //__itkDiffusionMultiShellQballReconstructionImageFilter_h_ diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionView.cpp index 24b1b5255b..b12aa0309c 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionView.cpp @@ -1,1076 +1,1090 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) -Copyright (c) German Cancer Research Center, +Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. -This software is distributed WITHOUT ANY WARRANTY; without -even the implied warranty of MERCHANTABILITY or FITNESS FOR +This software is distributed WITHOUT ANY WARRANTY; without +even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //#define MBILOG_ENABLE_DEBUG #include "QmitkQBallReconstructionView.h" #include "mitkDiffusionImagingConfigure.h" // qt includes #include // itk includes #include "itkTimeProbe.h" // mitk includes #include "mitkProgressBar.h" #include "mitkStatusBar.h" #include "mitkNodePredicateDataType.h" #include "QmitkDataStorageComboBox.h" #include "QmitkStdMultiWidget.h" #include "itkDiffusionQballReconstructionImageFilter.h" #include "itkAnalyticalDiffusionQballReconstructionImageFilter.h" #include "itkDiffusionMultiShellQballReconstructionImageFilter.h" #include "itkVectorContainer.h" #include "mitkQBallImage.h" #include "mitkProperties.h" #include "mitkVtkResliceInterpolationProperty.h" #include "mitkLookupTable.h" #include "mitkLookupTableProperty.h" #include "mitkTransferFunction.h" #include "mitkTransferFunctionProperty.h" #include "mitkDataNodeObject.h" #include "mitkOdfNormalizationMethodProperty.h" #include "mitkOdfScaleByProperty.h" #include "berryIStructuredSelection.h" #include "berryIWorkbenchWindow.h" #include "berryISelectionService.h" #include const std::string QmitkQBallReconstructionView::VIEW_ID = "org.mitk.views.qballreconstruction"; #define DI_INFO MITK_INFO("DiffusionImaging") typedef float TTensorPixelType; const int QmitkQBallReconstructionView::nrconvkernels = 252; struct QbrShellSelection { QmitkQBallReconstructionView* m_View; mitk::DataNode * m_Node; std::string m_NodeName; std::vector m_CheckBoxes; QLabel * m_Label; mitk::DiffusionImage * m_Image; typedef mitk::DiffusionImage::BValueMap BValueMap; QbrShellSelection(QmitkQBallReconstructionView* view, mitk::DataNode * node) : m_View(view), m_Node(node), m_NodeName(node->GetName()) { m_Image = dynamic_cast * > (node->GetData()); if(!m_Image){MITK_INFO << "QmitkQBallReconstructionView::QbrShellSelection : fail to initialize DiffusionImage "; return;} GenerateCheckboxes(); } void GenerateCheckboxes() { BValueMap origMap = m_Image->GetB_ValueMap(); BValueMap::iterator itStart = origMap.begin(); itStart++; BValueMap::iterator itEnd = origMap.end(); m_Label = new QLabel(m_NodeName.c_str()); m_Label->setVisible(true); m_View->m_Controls->m_QBallSelectionBox->layout()->addWidget(m_Label); for(BValueMap::iterator it = itStart ; it!= itEnd; it++) { QCheckBox * box = new QCheckBox(QString::number(it->first)); m_View->m_Controls->m_QBallSelectionBox->layout()->addWidget(box); box->setChecked(true); box->setCheckable(true); // box->setVisible(true); m_CheckBoxes.push_back(box); } } void SetVisible(bool vis) { foreach(QCheckBox * box, m_CheckBoxes) { box->setVisible(vis); } } BValueMap GetBValueSelctionMap() { BValueMap inputMap = m_Image->GetB_ValueMap(); BValueMap outputMap; double val = 0; if(inputMap.find(0) == inputMap.end()){ MITK_INFO << "QbrShellSelection: return empty BValueMap from GUI Selection"; return outputMap; }else{ outputMap[val] = inputMap[val]; MITK_INFO << val; } foreach(QCheckBox * box, m_CheckBoxes) { if(box->isChecked()){ val = box->text().toDouble(); outputMap[val] = inputMap[val]; MITK_INFO << val; } } return outputMap; } ~QbrShellSelection() { m_View->m_Controls->m_QBallSelectionBox->layout()->removeWidget(m_Label); delete m_Label; for(std::vector::iterator it = m_CheckBoxes.begin() ; it!= m_CheckBoxes.end(); it++) { m_View->m_Controls->m_QBallSelectionBox->layout()->removeWidget((*it)); delete (*it); } m_CheckBoxes.clear(); } }; using namespace berry; struct QbrSelListener : ISelectionListener { berryObjectMacro(QbrSelListener); QbrSelListener(QmitkQBallReconstructionView* view) { m_View = view; } void DoSelectionChanged(ISelection::ConstPointer selection) { // save current selection in member variable m_View->m_CurrentSelection = selection.Cast(); // do something with the selected items if(m_View->m_CurrentSelection) { bool foundDwiVolume = false; m_View->m_Controls->m_DiffusionImageLabel->setText("-"); QString selected_images = ""; mitk::DataStorage::SetOfObjects::Pointer set = mitk::DataStorage::SetOfObjects::New(); int at = 0; // iterate selection for (IStructuredSelection::iterator i = m_View->m_CurrentSelection->Begin(); i != m_View->m_CurrentSelection->End(); ++i) { // extract datatree node if (mitk::DataNodeObject::Pointer nodeObj = i->Cast()) { mitk::DataNode::Pointer node = nodeObj->GetDataNode(); mitk::DiffusionImage* diffusionImage; // only look at interesting types if(diffusionImage = dynamic_cast * >(node->GetData())) { foundDwiVolume = true; selected_images += QString(node->GetName().c_str()); if(i + 1 != m_View->m_CurrentSelection->End()) selected_images += "\n"; set->InsertElement(at++, node); } } } m_View->GenerateShellSelectionUI(set); m_View->m_Controls->m_DiffusionImageLabel->setText(selected_images); m_View->m_Controls->m_ButtonStandard->setEnabled(foundDwiVolume); } } void SelectionChanged(IWorkbenchPart::Pointer part, ISelection::ConstPointer selection) { // check, if selection comes from datamanager if (part) { QString partname(part->GetPartName().c_str()); if(partname.compare("Datamanager")==0) { // apply selection DoSelectionChanged(selection); } } } QmitkQBallReconstructionView* m_View; }; // --------------- QmitkQBallReconstructionView----------------- // QmitkQBallReconstructionView::QmitkQBallReconstructionView() : QmitkFunctionality(), m_Controls(NULL), m_MultiWidget(NULL) { } QmitkQBallReconstructionView::QmitkQBallReconstructionView(const QmitkQBallReconstructionView& other) { Q_UNUSED(other); throw std::runtime_error("Copy constructor not implemented"); } QmitkQBallReconstructionView::~QmitkQBallReconstructionView() { this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->RemovePostSelectionListener(/*"org.mitk.views.datamanager",*/ m_SelListener); } void QmitkQBallReconstructionView::CreateQtPartControl(QWidget *parent) { if (!m_Controls) { // create GUI widgets m_Controls = new Ui::QmitkQBallReconstructionViewControls; m_Controls->setupUi(parent); this->CreateConnections(); QStringList items; items << "2" << "4" << "6" << "8" << "10" << "12"; m_Controls->m_QBallReconstructionMaxLLevelComboBox->addItems(items); m_Controls->m_QBallReconstructionMaxLLevelComboBox->setCurrentIndex(1); MethodChoosen(m_Controls->m_QBallReconstructionMethodComboBox->currentIndex()); #ifndef DIFFUSION_IMAGING_EXTENDED m_Controls->m_QBallReconstructionMethodComboBox->removeItem(3); #endif AdvancedCheckboxClicked(); } m_SelListener = berry::ISelectionListener::Pointer(new QbrSelListener(this)); this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->AddPostSelectionListener(/*"org.mitk.views.datamanager",*/ m_SelListener); berry::ISelection::ConstPointer sel( this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); m_CurrentSelection = sel.Cast(); m_SelListener.Cast()->DoSelectionChanged(sel); } void QmitkQBallReconstructionView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkQBallReconstructionView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } void QmitkQBallReconstructionView::CreateConnections() { if ( m_Controls ) { connect( (QObject*)(m_Controls->m_ButtonStandard), SIGNAL(clicked()), this, SLOT(ReconstructStandard()) ); connect( (QObject*)(m_Controls->m_AdvancedCheckbox), SIGNAL(clicked()), this, SLOT(AdvancedCheckboxClicked()) ); connect( (QObject*)(m_Controls->m_QBallReconstructionMethodComboBox), SIGNAL(currentIndexChanged(int)), this, SLOT(MethodChoosen(int)) ); } } void QmitkQBallReconstructionView::OnSelectionChanged( std::vector nodes ) { } void QmitkQBallReconstructionView::Activated() { QmitkFunctionality::Activated(); berry::ISelection::ConstPointer sel( this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); m_CurrentSelection = sel.Cast(); m_SelListener.Cast()->DoSelectionChanged(sel); } void QmitkQBallReconstructionView::Deactivated() { QmitkFunctionality::Deactivated(); } void QmitkQBallReconstructionView::ReconstructStandard() { int index = m_Controls->m_QBallReconstructionMethodComboBox->currentIndex(); #ifndef DIFFUSION_IMAGING_EXTENDED if(index>=3) { index = index + 1; } #endif switch(index) { case 0: { // Numerical Reconstruct(0,0); break; } case 1: { // Standard Reconstruct(1,0); break; } case 2: { // Solid Angle Reconstruct(1,6); break; } case 3: { // Constrained Solid Angle Reconstruct(1,7); break; } case 4: { // ADC Reconstruct(1,4); break; } case 5: { // Raw Signal Reconstruct(1,5); break; } case 6: { // Q-Ball reconstruction Reconstruct(2,0); break; } } } void QmitkQBallReconstructionView::MethodChoosen(int method) { #ifndef DIFFUSION_IMAGING_EXTENDED if(method>=3) { method = method + 1; } #endif m_Controls->m_QBallSelectionBox->setHidden(true); + m_Controls->m_OutputCoeffsImage->setHidden(true); switch(method) { case 0: m_Controls->m_Description->setText("Numerical recon. (Tuch2004)"); break; case 1: m_Controls->m_Description->setText("Spherical harmonics recon. (Descoteaux2007)"); break; case 2: m_Controls->m_Description->setText("SH recon. with solid angle consideration (Aganj2009)"); break; case 3: m_Controls->m_Description->setText("SH solid angle with non-neg. constraint (Goh2009)"); break; case 4: m_Controls->m_Description->setText("SH recon. of the plain ADC-profiles"); break; case 5: m_Controls->m_Description->setText("SH recon. of the raw diffusion signal"); break; case 6: m_Controls->m_Description->setText("SH Multi q-Ball recon. of the multi q-Ball diffusion signal"); m_Controls->m_QBallSelectionBox->setHidden(false); + m_Controls->m_OutputCoeffsImage->setHidden(false); break; } } void QmitkQBallReconstructionView::AdvancedCheckboxClicked() { bool check = m_Controls-> m_AdvancedCheckbox->isChecked(); m_Controls->m_QBallReconstructionMaxLLevelTextLabel_2->setVisible(check); m_Controls->m_QBallReconstructionMaxLLevelComboBox->setVisible(check); m_Controls->m_QBallReconstructionLambdaTextLabel_2->setVisible(check); m_Controls->m_QBallReconstructionLambdaLineEdit->setVisible(check); m_Controls->m_QBallReconstructionThresholdLabel_2->setVisible(check); m_Controls->m_QBallReconstructionThreasholdEdit->setVisible(check); m_Controls->m_OutputB0Image->setVisible(check); m_Controls->label_2->setVisible(check); //m_Controls->textLabel1_2->setVisible(check); //m_Controls->m_QBallReconstructionLambdaStepLineEdit->setVisible(check); //m_Controls->textLabel1_3->setVisible(check); m_Controls->frame_2->setVisible(check); } void QmitkQBallReconstructionView::Reconstruct(int method, int normalization) { if (m_CurrentSelection) { mitk::DataStorage::SetOfObjects::Pointer set = mitk::DataStorage::SetOfObjects::New(); int at = 0; for (IStructuredSelection::iterator i = m_CurrentSelection->Begin(); i != m_CurrentSelection->End(); ++i) { if (mitk::DataNodeObject::Pointer nodeObj = i->Cast()) { mitk::DataNode::Pointer node = nodeObj->GetDataNode(); if(QString("DiffusionImage").compare(node->GetData()->GetNameOfClass())==0) { set->InsertElement(at++, node); } } } if(method == 0) { NumericalQBallReconstruction(set, normalization); } else { #if BOOST_VERSION / 100000 > 0 #if BOOST_VERSION / 100 % 1000 > 34 if(method == 1) { AnalyticalQBallReconstruction(set, normalization); } if(method == 2) { MultiQBallReconstruction(set); } #else std::cout << "ERROR: Boost 1.35 minimum required" << std::endl; QMessageBox::warning(NULL,"ERROR","Boost 1.35 minimum required"); #endif #else std::cout << "ERROR: Boost 1.35 minimum required" << std::endl; QMessageBox::warning(NULL,"ERROR","Boost 1.35 minimum required"); #endif } } } void QmitkQBallReconstructionView::NumericalQBallReconstruction (mitk::DataStorage::SetOfObjects::Pointer inImages, int normalization) { try { itk::TimeProbe clock; int nrFiles = inImages->size(); if (!nrFiles) return; QString status; mitk::ProgressBar::GetInstance()->AddStepsToDo(nrFiles); mitk::DataStorage::SetOfObjects::const_iterator itemiter( inImages->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); std::vector nodes; while ( itemiter != itemiterend ) // for all items { mitk::DiffusionImage* vols = static_cast*>( (*itemiter)->GetData()); std::string nodename; (*itemiter)->GetStringProperty("name", nodename); ++itemiter; // QBALL RECONSTRUCTION clock.Start(); MBI_INFO << "QBall reconstruction "; mitk::StatusBar::GetInstance()->DisplayText(status.sprintf( "QBall reconstruction for %s", nodename.c_str()).toAscii()); typedef itk::DiffusionQballReconstructionImageFilter QballReconstructionImageFilterType; QballReconstructionImageFilterType::Pointer filter = QballReconstructionImageFilterType::New(); filter->SetGradientImage( vols->GetDirections(), vols->GetVectorImage() ); filter->SetBValue(vols->GetB_Value()); filter->SetThreshold( m_Controls->m_QBallReconstructionThreasholdEdit->text().toFloat() ); switch(normalization) { case 0: { filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_STANDARD); break; } case 1: { filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_B_ZERO_B_VALUE); break; } case 2: { filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_B_ZERO); break; } case 3: { filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_NONE); break; } default: { filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_STANDARD); } } filter->Update(); clock.Stop(); MBI_DEBUG << "took " << clock.GetMeanTime() << "s." ; // ODFs TO DATATREE mitk::QBallImage::Pointer image = mitk::QBallImage::New(); image->InitializeByItk( filter->GetOutput() ); //image->SetImportVolume( filter->GetOutput()->GetBufferPointer(), 0, 0, mitk::Image::ImportMemoryManagementType::ManageMemory ); image->SetVolume( filter->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( image ); QString newname; newname = newname.append(nodename.c_str()); newname = newname.append("_QN%1").arg(normalization); SetDefaultNodeProperties(node, newname.toStdString()); nodes.push_back(node); // B-Zero TO DATATREE if(m_Controls->m_OutputB0Image->isChecked()) { mitk::Image::Pointer image4 = mitk::Image::New(); image4->InitializeByItk( filter->GetBZeroImage().GetPointer() ); image4->SetVolume( filter->GetBZeroImage()->GetBufferPointer() ); mitk::DataNode::Pointer node4=mitk::DataNode::New(); node4->SetData( image4 ); node4->SetProperty( "name", mitk::StringProperty::New( QString(nodename.c_str()).append("_b0").toStdString()) ); nodes.push_back(node4); } mitk::ProgressBar::GetInstance()->Progress(); } std::vector::iterator nodeIt; for(nodeIt = nodes.begin(); nodeIt != nodes.end(); ++nodeIt) GetDefaultDataStorage()->Add(*nodeIt); mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Finished Processing %d Files", nrFiles).toAscii()); m_MultiWidget->RequestUpdate(); } catch (itk::ExceptionObject &ex) { MBI_INFO << ex ; return ; } } void QmitkQBallReconstructionView::AnalyticalQBallReconstruction( mitk::DataStorage::SetOfObjects::Pointer inImages, int normalization) { try { itk::TimeProbe clock; int nrFiles = inImages->size(); if (!nrFiles) return; std::vector lambdas; float minLambda = m_Controls->m_QBallReconstructionLambdaLineEdit->text().toFloat(); lambdas.push_back(minLambda); int nLambdas = lambdas.size(); QString status; mitk::ProgressBar::GetInstance()->AddStepsToDo(nrFiles*nLambdas); mitk::DataStorage::SetOfObjects::const_iterator itemiter( inImages->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); std::vector* nodes = new std::vector(); while ( itemiter != itemiterend ) // for all items { mitk::DiffusionImage* vols = static_cast*>( (*itemiter)->GetData()); std::string nodename; (*itemiter)->GetStringProperty("name",nodename); itemiter++; // QBALL RECONSTRUCTION clock.Start(); MBI_INFO << "QBall reconstruction "; mitk::StatusBar::GetInstance()->DisplayText(status.sprintf( "QBall reconstruction for %s", nodename.c_str()).toAscii()); for(int i=0; im_QBallReconstructionMaxLLevelComboBox->currentIndex()) { case 0: { TemplatedAnalyticalQBallReconstruction<2>(vols, currentLambda, nodename, nodes, normalization); break; } case 1: { TemplatedAnalyticalQBallReconstruction<4>(vols, currentLambda, nodename, nodes, normalization); break; } case 2: { TemplatedAnalyticalQBallReconstruction<6>(vols, currentLambda, nodename, nodes, normalization); break; } case 3: { TemplatedAnalyticalQBallReconstruction<8>(vols, currentLambda, nodename, nodes, normalization); break; } case 4: { TemplatedAnalyticalQBallReconstruction<10>(vols, currentLambda, nodename, nodes, normalization); break; } case 5: { TemplatedAnalyticalQBallReconstruction<12>(vols, currentLambda, nodename, nodes, normalization); break; } } clock.Stop(); MBI_DEBUG << "took " << clock.GetMeanTime() << "s." ; mitk::ProgressBar::GetInstance()->Progress(); } } std::vector::iterator nodeIt; for(nodeIt = nodes->begin(); nodeIt != nodes->end(); ++nodeIt) GetDefaultDataStorage()->Add(*nodeIt); m_MultiWidget->RequestUpdate(); mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Finished Processing %d Files", nrFiles).toAscii()); } catch (itk::ExceptionObject &ex) { MBI_INFO << ex ; return ; } } template void QmitkQBallReconstructionView::TemplatedAnalyticalQBallReconstruction( mitk::DiffusionImage* vols, float lambda, std::string nodename, std::vector* nodes, int normalization) { typedef itk::AnalyticalDiffusionQballReconstructionImageFilter FilterType; typename FilterType::Pointer filter = FilterType::New(); filter->SetGradientImage( vols->GetDirections(), vols->GetVectorImage() ); filter->SetBValue(vols->GetB_Value()); filter->SetThreshold( m_Controls->m_QBallReconstructionThreasholdEdit->text().toFloat() ); filter->SetLambda(lambda); switch(normalization) { case 0: { filter->SetNormalizationMethod(FilterType::QBAR_STANDARD); break; } case 1: { filter->SetNormalizationMethod(FilterType::QBAR_B_ZERO_B_VALUE); break; } case 2: { filter->SetNormalizationMethod(FilterType::QBAR_B_ZERO); break; } case 3: { filter->SetNormalizationMethod(FilterType::QBAR_NONE); break; } case 4: { filter->SetNormalizationMethod(FilterType::QBAR_ADC_ONLY); break; } case 5: { filter->SetNormalizationMethod(FilterType::QBAR_RAW_SIGNAL); break; } case 6: { filter->SetNormalizationMethod(FilterType::QBAR_SOLID_ANGLE); break; } case 7: { filter->SetNormalizationMethod(FilterType::QBAR_NONNEG_SOLID_ANGLE); break; } default: { filter->SetNormalizationMethod(FilterType::QBAR_STANDARD); } } filter->Update(); // ODFs TO DATATREE mitk::QBallImage::Pointer image = mitk::QBallImage::New(); image->InitializeByItk( filter->GetOutput() ); image->SetVolume( filter->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( image ); QString newname; newname = newname.append(nodename.c_str()); newname = newname.append("_QA%1").arg(normalization); SetDefaultNodeProperties(node, newname.toStdString()); nodes->push_back(node); // mitk::Image::Pointer image5 = mitk::Image::New(); // image5->InitializeByItk( filter->GetODFSumImage().GetPointer() ); // image5->SetVolume( filter->GetODFSumImage()->GetBufferPointer() ); // mitk::DataNode::Pointer node5=mitk::DataNode::New(); // node5->SetData( image5 ); // node5->SetProperty( "name", mitk::StringProperty::New( // QString(nodename.c_str()).append("_ODF").toStdString()) ); // nodes->push_back(node5); // B-Zero TO DATATREE if(m_Controls->m_OutputB0Image->isChecked()) { mitk::Image::Pointer image4 = mitk::Image::New(); image4->InitializeByItk( filter->GetBZeroImage().GetPointer() ); image4->SetVolume( filter->GetBZeroImage()->GetBufferPointer() ); mitk::DataNode::Pointer node4=mitk::DataNode::New(); node4->SetData( image4 ); node4->SetProperty( "name", mitk::StringProperty::New( QString(nodename.c_str()).append("_b0").toStdString()) ); nodes->push_back(node4); } } void QmitkQBallReconstructionView::MultiQBallReconstruction( mitk::DataStorage::SetOfObjects::Pointer inImages) { try { itk::TimeProbe clock; int nrFiles = inImages->size(); if (!nrFiles) return; std::vector lambdas; float minLambda = m_Controls->m_QBallReconstructionLambdaLineEdit->text().toFloat(); lambdas.push_back(minLambda); int nLambdas = lambdas.size(); QString status; mitk::ProgressBar::GetInstance()->AddStepsToDo(nrFiles*nLambdas); mitk::DataStorage::SetOfObjects::const_iterator itemiter( inImages->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); std::vector* nodes = new std::vector(); while ( itemiter != itemiterend ) // for all items { mitk::DiffusionImage* vols = static_cast*>( (*itemiter)->GetData()); std::string nodename; (*itemiter)->GetStringProperty("name",nodename); itemiter++; // QBALL RECONSTRUCTION clock.Start(); MBI_INFO << "QBall reconstruction "; mitk::StatusBar::GetInstance()->DisplayText(status.sprintf( "QBall reconstruction for %s", nodename.c_str()).toAscii()); for(int i=0; im_QBallReconstructionMaxLLevelComboBox->currentIndex()) { case 0: { TemplatedMultiQBallReconstruction<2>(vols, currentLambda, nodename, nodes); break; } case 1: { TemplatedMultiQBallReconstruction<4>(vols, currentLambda, nodename, nodes); break; } case 2: { TemplatedMultiQBallReconstruction<6>(vols, currentLambda, nodename, nodes); break; } case 3: { TemplatedMultiQBallReconstruction<8>(vols, currentLambda, nodename, nodes); break; } case 4: { TemplatedMultiQBallReconstruction<10>(vols, currentLambda, nodename, nodes); break; } case 5: { TemplatedMultiQBallReconstruction<12>(vols, currentLambda, nodename, nodes); break; } } clock.Stop(); MBI_DEBUG << "took " << clock.GetMeanTime() << "s." ; mitk::ProgressBar::GetInstance()->Progress(); } } std::vector::iterator nodeIt; for(nodeIt = nodes->begin(); nodeIt != nodes->end(); ++nodeIt) GetDefaultDataStorage()->Add(*nodeIt); m_MultiWidget->RequestUpdate(); mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Finished Processing %d Files", nrFiles).toAscii()); } catch (itk::ExceptionObject &ex) { MBI_INFO << ex ; return ; } } template void QmitkQBallReconstructionView::TemplatedMultiQBallReconstruction( mitk::DiffusionImage* vols, float lambda, std::string nodename, std::vector* nodes) { typedef itk::DiffusionMultiShellQballReconstructionImageFilter FilterType; typename FilterType::Pointer filter = FilterType::New(); filter->SetBValueMap(m_ShellSelectorMap[nodename]->GetBValueSelctionMap()); filter->SetGradientImage( vols->GetDirections(), vols->GetVectorImage(), vols->GetB_Value() ); - //filter->SetBValue(vols->GetB_Value()); + //filter->SetBValue(vols->GetB_Value()); filter->SetThreshold( m_Controls->m_QBallReconstructionThreasholdEdit->text().toFloat() ); filter->SetLambda(lambda); filter->Update(); // ODFs TO DATATREE mitk::QBallImage::Pointer image = mitk::QBallImage::New(); image->InitializeByItk( filter->GetOutput() ); image->SetVolume( filter->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( image ); QString newname; newname = newname.append(nodename.c_str()); newname = newname.append("_QAMultiShell"); SetDefaultNodeProperties(node, newname.toStdString()); nodes->push_back(node); // B-Zero TO DATATREE if(m_Controls->m_OutputB0Image->isChecked()) { mitk::Image::Pointer image4 = mitk::Image::New(); image4->InitializeByItk( filter->GetBZeroImage().GetPointer() ); image4->SetVolume( filter->GetBZeroImage()->GetBufferPointer() ); mitk::DataNode::Pointer node4=mitk::DataNode::New(); node4->SetData( image4 ); node4->SetProperty( "name", mitk::StringProperty::New( QString(nodename.c_str()).append("_b0").toStdString()) ); nodes->push_back(node4); } + if(m_Controls->m_OutputCoeffsImage->isChecked()) + { + mitk::Image::Pointer coeffsImage = mitk::Image::New(); + coeffsImage->InitializeByItk( filter->GetCoefficientImage().GetPointer() ); + coeffsImage->SetVolume( filter->GetCoefficientImage()->GetBufferPointer() ); + mitk::DataNode::Pointer coeffsNode=mitk::DataNode::New(); + coeffsNode->SetData( coeffsImage ); + coeffsNode->SetProperty( "name", mitk::StringProperty::New( + QString(nodename.c_str()).append("_coeffs").toStdString()) ); + nodes->push_back(coeffsNode); + } + } void QmitkQBallReconstructionView::SetDefaultNodeProperties(mitk::DataNode::Pointer node, std::string name) { node->SetProperty( "ShowMaxNumber", mitk::IntProperty::New( 500 ) ); node->SetProperty( "Scaling", mitk::FloatProperty::New( 1.0 ) ); node->SetProperty( "Normalization", mitk::OdfNormalizationMethodProperty::New()); node->SetProperty( "ScaleBy", mitk::OdfScaleByProperty::New()); node->SetProperty( "IndexParam1", mitk::FloatProperty::New(2)); node->SetProperty( "IndexParam2", mitk::FloatProperty::New(1)); node->SetProperty( "visible", mitk::BoolProperty::New( true ) ); node->SetProperty( "VisibleOdfs", mitk::BoolProperty::New( false ) ); node->SetProperty ("layer", mitk::IntProperty::New(100)); node->SetProperty( "DoRefresh", mitk::BoolProperty::New( true ) ); //node->SetProperty( "opacity", mitk::FloatProperty::New(1.0f) ); node->SetProperty( "name", mitk::StringProperty::New(name) ); } //node->SetProperty( "volumerendering", mitk::BoolProperty::New( false ) ); //node->SetProperty( "use color", mitk::BoolProperty::New( true ) ); //node->SetProperty( "texture interpolation", mitk::BoolProperty::New( true ) ); //node->SetProperty( "reslice interpolation", mitk::VtkResliceInterpolationProperty::New() ); //node->SetProperty( "layer", mitk::IntProperty::New(0)); //node->SetProperty( "in plane resample extent by geometry", mitk::BoolProperty::New( false ) ); //node->SetOpacity(1.0f); //node->SetColor(1.0,1.0,1.0); //node->SetVisibility(true); //node->SetProperty( "IsQBallVolume", mitk::BoolProperty::New( true ) ); //mitk::LevelWindowProperty::Pointer levWinProp = mitk::LevelWindowProperty::New(); //mitk::LevelWindow levelwindow; //// levelwindow.SetAuto( image ); //levWinProp->SetLevelWindow( levelwindow ); //node->GetPropertyList()->SetPropertx( "levelwindow", levWinProp ); //// add a default rainbow lookup table for color mapping //if(!node->GetProperty("LookupTable")) //{ // mitk::LookupTable::Pointer mitkLut = mitk::LookupTable::New(); // vtkLookupTable* vtkLut = mitkLut->GetVtkLookupTable(); // vtkLut->SetHueRange(0.6667, 0.0); // vtkLut->SetTableRange(0.0, 20.0); // vtkLut->Build(); // mitk::LookupTableProperty::Pointer mitkLutProp = mitk::LookupTableProperty::New(); // mitkLutProp->SetLookupTable(mitkLut); // node->SetProperty( "LookupTable", mitkLutProp ); //} //if(!node->GetProperty("binary")) // node->SetProperty( "binary", mitk::BoolProperty::New( false ) ); //// add a default transfer function //mitk::TransferFunction::Pointer tf = mitk::TransferFunction::New(); //node->SetProperty ( "TransferFunction", mitk::TransferFunctionProperty::New ( tf.GetPointer() ) ); //// set foldername as string property //mitk::StringProperty::Pointer nameProp = mitk::StringProperty::New( name ); //node->SetProperty( "name", nameProp ); void QmitkQBallReconstructionView::GenerateShellSelectionUI(mitk::DataStorage::SetOfObjects::Pointer set) { std::map tempMap; const mitk::DataStorage::SetOfObjects::iterator setEnd( set->end() ); mitk::DataStorage::SetOfObjects::iterator NodeIt( set->begin() ); while(NodeIt != setEnd) { //mitk::DiffusionImage* vols = static_cast*>((*NodeIt)->GetData()); std::string nodename; (*NodeIt)->GetStringProperty("name",nodename); if(m_ShellSelectorMap.find(nodename) != m_ShellSelectorMap.end()) { tempMap[nodename] = m_ShellSelectorMap[nodename]; m_ShellSelectorMap.erase(nodename); }else { tempMap[nodename] = new QbrShellSelection(this, (*NodeIt) ); tempMap[nodename]->SetVisible(true); } NodeIt++; } for(std::map::iterator it = m_ShellSelectorMap.begin(); it != m_ShellSelectorMap.end();it ++) { delete it->second; } m_ShellSelectorMap.clear(); m_ShellSelectorMap = tempMap; } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionViewControls.ui b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionViewControls.ui index a85417add3..4b2ea27ef5 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionViewControls.ui +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionViewControls.ui @@ -1,275 +1,282 @@ QmitkQBallReconstructionViewControls 0 0 350 844 0 0 true QmitkQBallReconstructionViewControls Data Diffusion Image: - Reconstruction Advanced Settings QFrame::StyledPanel QFrame::Raised QFormLayout::AllNonFixedFieldsGrow true B0 Threshold false true 0 true Output B0-Image - + true Spherical Harmonics: - + true Maximum l-Level false - + true -1 - + true Regularization Parameter Lambda false - + true 0.006 + + + + Output SH-Coeffs-Image + + + 0 Numerical Standard (SH) Solid Angle (SH) Constraint Solid Angle (SH) ADC-Profile only (SH) Raw Signal only (SH) Mulit q-Ball (SH) TextLabel false Start Reconstruction true Qt::LeftToRight false Multi q-Ball reconstruction Qt::Vertical 20 0