diff --git a/Modules/Classification/CLUtilities/src/MiniAppUtils/mitkGlobalImageFeaturesParameter.cpp b/Modules/Classification/CLUtilities/src/MiniAppUtils/mitkGlobalImageFeaturesParameter.cpp index c1a7c96d99..15a426e23e 100644 --- a/Modules/Classification/CLUtilities/src/MiniAppUtils/mitkGlobalImageFeaturesParameter.cpp +++ b/Modules/Classification/CLUtilities/src/MiniAppUtils/mitkGlobalImageFeaturesParameter.cpp @@ -1,220 +1,220 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include static bool fileExists(const std::string& filename) { std::ifstream infile(filename.c_str()); bool isGood = infile.good(); infile.close(); return isGood; } void mitk::cl::GlobalImageFeaturesParameter::AddParameter(mitkCommandLineParser &parser) { // Required Parameter - parser.addArgument("image", "i", mitkCommandLineParser::InputImage, "Input Image", "Path to the input image file", us::Any(), false); - parser.addArgument("mask", "m", mitkCommandLineParser::InputImage, "Input Mask", "Path to the mask Image that specifies the area over for the statistic (Values = 1)", us::Any(), false); - parser.addArgument("morph-mask", "morph", mitkCommandLineParser::InputImage, "Morphological Image Mask", "Path to the mask Image that specifies the area over for the statistic (Values = 1)", us::Any()); - parser.addArgument("output", "o", mitkCommandLineParser::OutputFile, "Output text file", "Path to output file. The output statistic is appended to this file.", us::Any(), false); + parser.addArgument("image", "i", mitkCommandLineParser::Image, "Input Image", "Path to the input image file", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("mask", "m", mitkCommandLineParser::Image, "Input Mask", "Path to the mask Image that specifies the area over for the statistic (Values = 1)", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("morph-mask", "morph", mitkCommandLineParser::Image, "Morphological Image Mask", "Path to the mask Image that specifies the area over for the statistic (Values = 1)", us::Any(), true, false, false, mitkCommandLineParser::Input); + parser.addArgument("output", "o", mitkCommandLineParser::File, "Output text file", "Path to output file. The output statistic is appended to this file.", us::Any(), false, false, false, mitkCommandLineParser::Output); // Optional Parameter - parser.addArgument("logfile", "log", mitkCommandLineParser::InputFile, "Text Logfile", "Path to the location of the target log file. ", us::Any()); - parser.addArgument("save-image", "save-image", mitkCommandLineParser::OutputFile, "Output Image", "If spezified, the image that is used for the analysis is saved to this location.", us::Any()); - parser.addArgument("save-mask", "save-mask", mitkCommandLineParser::OutputFile, "Output Image", "If spezified, the mask that is used for the analysis is saved to this location. ", us::Any()); - parser.addArgument("save-image-screenshots", "save-screenshot", mitkCommandLineParser::OutputFile, "Output Image", "If spezified, a screenshot of each slice is saved. Specify an EXISTING folder with prefix (for example ~/demo/ or ~/demo/image-", us::Any()); + parser.addArgument("logfile", "log", mitkCommandLineParser::File, "Text Logfile", "Path to the location of the target log file. ", us::Any(), true, false, false, mitkCommandLineParser::Input); + parser.addArgument("save-image", "save-image", mitkCommandLineParser::File, "Output Image", "If spezified, the image that is used for the analysis is saved to this location.", us::Any(), true, false, false, mitkCommandLineParser::Output); + parser.addArgument("save-mask", "save-mask", mitkCommandLineParser::File, "Output Image", "If spezified, the mask that is used for the analysis is saved to this location. ", us::Any(), true, false, false, mitkCommandLineParser::Output); + parser.addArgument("save-image-screenshots", "save-screenshot", mitkCommandLineParser::File, "Output Image", "If spezified, a screenshot of each slice is saved. Specify an EXISTING folder with prefix (for example ~/demo/ or ~/demo/image-", us::Any(), true, false, false, mitkCommandLineParser::Output); parser.addArgument("header", "head", mitkCommandLineParser::Bool, "Add Header (Labels) to output", "", us::Any()); parser.addArgument("first-line-header", "fl-head", mitkCommandLineParser::Bool, "Add Header (Labels) to first line of output", "", us::Any()); parser.addArgument("decimal-point", "decimal", mitkCommandLineParser::String, "Decima Point that is used in Conversion", "", us::Any()); parser.addArgument("resample-mask", "rm", mitkCommandLineParser::Bool, "Bool", "Resamples the mask to the resolution of the input image ", us::Any()); parser.addArgument("same-space", "sp", mitkCommandLineParser::Bool, "Bool", "Set the spacing of all images to equal. Otherwise an error will be thrown. ", us::Any()); parser.addArgument("fixed-isotropic", "fi", mitkCommandLineParser::Float, "Float", "Input image resampled to fixed isotropic resolution given in mm. Should be used with resample-mask ", us::Any()); parser.addArgument("minimum-intensity", "minimum", mitkCommandLineParser::Float, "Float", "Minimum intensity. If set, it is overwritten by more specific intensity minima", us::Any()); parser.addArgument("maximum-intensity", "maximum", mitkCommandLineParser::Float, "Float", "Maximum intensity. If set, it is overwritten by more specific intensity maxima", us::Any()); parser.addArgument("bins", "bins", mitkCommandLineParser::Int, "Int", "Number of bins if bins are used. If set, it is overwritten by more specific bin count", us::Any()); parser.addArgument("binsize", "binsize", mitkCommandLineParser::Float, "Int", "Size of bins that is used. If set, it is overwritten by more specific bin count", us::Any()); parser.addArgument("ignore-mask-for-histogram", "ignore-mask", mitkCommandLineParser::Bool, "Bool", "If the whole image is used to calculate the histogram. ", us::Any()); parser.addArgument("encode-parameter-in-name", "encode-parameter", mitkCommandLineParser::Bool, "Bool", "If true, the parameters used for each feature is encoded in its name. ", us::Any()); } void mitk::cl::GlobalImageFeaturesParameter::ParseParameter(std::map parsedArgs) { ParseFileLocations(parsedArgs); ParseAdditionalOutputs(parsedArgs); ParseHeaderInformation(parsedArgs); ParseMaskAdaptation(parsedArgs); ParseGlobalFeatureParameter(parsedArgs); } void mitk::cl::GlobalImageFeaturesParameter::ParseFileLocations(std::map &parsedArgs) { // // Read input and output file informations // imagePath = parsedArgs["image"].ToString(); maskPath = parsedArgs["mask"].ToString(); outputPath = parsedArgs["output"].ToString(); imageFolder = itksys::SystemTools::GetFilenamePath(imagePath); imageName = itksys::SystemTools::GetFilenameName(imagePath); maskFolder = itksys::SystemTools::GetFilenamePath(maskPath); maskName = itksys::SystemTools::GetFilenameName(maskPath); useMorphMask = false; if (parsedArgs.count("morph-mask")) { useMorphMask = true; morphPath = parsedArgs["morph-mask"].ToString(); morphName = itksys::SystemTools::GetFilenameName(morphPath); } } void mitk::cl::GlobalImageFeaturesParameter::ParseAdditionalOutputs(std::map &parsedArgs) { // // Read input and output file informations // useLogfile = false; if (parsedArgs.count("logfile")) { useLogfile = true; logfilePath = us::any_cast(parsedArgs["logfile"]); } writeAnalysisImage = false; if (parsedArgs.count("save-image")) { writeAnalysisImage = true; anaylsisImagePath = us::any_cast(parsedArgs["save-image"]); } writeAnalysisMask = false; if (parsedArgs.count("save-mask")) { writeAnalysisMask = true; analysisMaskPath = us::any_cast(parsedArgs["save-mask"]); } writePNGScreenshots = false; if (parsedArgs.count("save-image-screenshots")) { writePNGScreenshots = true; pngScreenshotsPath = us::any_cast(parsedArgs["save-image-screenshots"]); std::string pngScrenshotFolderPath = itksys::SystemTools::GetFilenamePath(pngScreenshotsPath); if (pngScreenshotsPath.back() == '/' || pngScreenshotsPath.back() == '\\') { pngScrenshotFolderPath = pngScreenshotsPath; } itk::FileTools::CreateDirectory(pngScrenshotFolderPath.c_str()); } useDecimalPoint = false; if (parsedArgs.count("decimal-point")) { auto tmpDecimalPoint = us::any_cast(parsedArgs["decimal-point"]); if (tmpDecimalPoint.length() > 0) { useDecimalPoint = true; decimalPoint = tmpDecimalPoint.at(0); } } } void mitk::cl::GlobalImageFeaturesParameter::ParseHeaderInformation(std::map &parsedArgs) { // // Check if an header is required or not. Consider also first line header option. // useHeader = false; useHeaderForFirstLineOnly = false; if (parsedArgs.count("header")) { useHeader = us::any_cast(parsedArgs["header"]); } if (parsedArgs.count("first-line-header")) { useHeaderForFirstLineOnly = us::any_cast(parsedArgs["first-line-header"]); } if (useHeaderForFirstLineOnly) { useHeader = !fileExists(outputPath); } } void mitk::cl::GlobalImageFeaturesParameter::ParseMaskAdaptation(std::map &parsedArgs) { // // Parse parameters that control how the input mask is adapted to the input image // resampleMask = false; ensureSameSpace = false; resampleToFixIsotropic = false; resampleResolution = 1.0; if (parsedArgs.count("resample-mask")) { resampleMask = us::any_cast(parsedArgs["resample-mask"]); } if (parsedArgs.count("same-space")) { ensureSameSpace = us::any_cast(parsedArgs["same-space"]); } if (parsedArgs.count("fixed-isotropic")) { resampleToFixIsotropic = true; resampleResolution = us::any_cast(parsedArgs["fixed-isotropic"]); } } void mitk::cl::GlobalImageFeaturesParameter::ParseGlobalFeatureParameter(std::map &parsedArgs) { // // Parse parameters that control how the input mask is adapted to the input image // defineGlobalMinimumIntensity = false; defineGlobalMaximumIntensity = false; defineGlobalNumberOfBins = false; encodeParameter = false; if (parsedArgs.count("minimum-intensity")) { defineGlobalMinimumIntensity = true; globalMinimumIntensity = us::any_cast(parsedArgs["minimum-intensity"]); } if (parsedArgs.count("maximum-intensity")) { defineGlobalMaximumIntensity = true; globalMaximumIntensity = us::any_cast(parsedArgs["maximum-intensity"]); } if (parsedArgs.count("bins")) { defineGlobalNumberOfBins = true; globalNumberOfBins = us::any_cast(parsedArgs["bins"]); } if (parsedArgs.count("encode-parameter-in-name")) { encodeParameter = true; } } diff --git a/Modules/CommandLine/include/mitkCommandLineParser.h b/Modules/CommandLine/include/mitkCommandLineParser.h index fac4b43cc3..5f2d19defa 100644 --- a/Modules/CommandLine/include/mitkCommandLineParser.h +++ b/Modules/CommandLine/include/mitkCommandLineParser.h @@ -1,392 +1,398 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ /*========================================================================= Library: CTK Copyright (c) Kitware Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.txt Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. =========================================================================*/ #ifndef __mitkCommandLineParser_h #define __mitkCommandLineParser_h #include #include #include #include #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 4251) #endif /** * * The MITK command line parser, based on the CTK command line parser. * * Use this class to add information about the command line arguments * your program understands and to easily parse them from a given list * of strings. * * This parser provides the following features: * *
    *
  • Add arguments by supplying a long name and/or a short name. * Arguments are validated using a regular expression. They can have * a default value and a help string.
  • *
  • Deprecated arguments.
  • *
  • Custom regular expressions for argument validation.
  • *
  • Set different argument name prefixes for native platform look and feel.
  • *
  • Create a help text for the command line arguments with support for * grouping arguments.
  • *
* * The main difference between the MITK command line parser and the CTK command line * parser is that the former does not depend on Qt. Apart from that an image type was * added and XML output improved for automatic GUI generation. * * std::out is used for output to keep dependencies to a minimum. */ class MITKCOMMANDLINE_EXPORT mitkCommandLineParser { public: enum Type { String = 0, Bool = 1, StringList = 2, Int = 3, Float = 4, - InputDirectory = 5, - InputFile = 6, - OutputDirectory = 7, - OutputFile = 8, - InputImage = 9 + Directory = 5, + File = 6, + Image = 7 + }; + + enum Channel + { + None = 0, + Input = 1, + Output = 2 }; typedef std::vector StringContainerType; mitkCommandLineParser(); ~mitkCommandLineParser(); /** * Parse a given list of command line arguments. * * This method parses a list of string elements considering the known arguments * added by calls to addArgument(). If any one of the argument * values does not match the corresponding regular expression, * ok is set to false and an empty map object is returned. * * The keys in the returned map object correspond to the long argument string, * if it is not empty. Otherwise, the short argument string is used as key. The * us::Any values can safely be converted to the type specified in the * addArgument() method call. * * @param arguments A StringContainerType containing command line arguments. * @param ok A pointer to a boolean variable. Will be set to true * if all regular expressions matched, false otherwise. * @return A map object mapping the long argument (if empty, the short one) * to a us::Any containing the value. */ std::map parseArguments(const StringContainerType &arguments, bool *ok = nullptr); /** * Convenient method allowing to parse a given list of command line arguments. * @see parseArguments(const StringContainerType &, bool*) */ std::map parseArguments(int argc, char **argv, bool *ok = nullptr); /** * Returns a detailed error description if a call to parseArguments() * failed. * * @return The error description, empty if no error occured. * @see parseArguments(const StringContainerType&, bool*) */ std::string errorString() const; /** * This method returns all unparsed arguments, i.e. all arguments * for which no long or short name has been registered via a call * to addArgument(). * * @see addArgument() * * @return A list containing unparsed arguments. */ const StringContainerType &unparsedArguments() const; /** * Checks if the given argument has been added via a call * to addArgument(). * * @see addArgument() * * @param argument The argument to be checked. * @return true if the argument was added, false * otherwise. */ bool argumentAdded(const std::string &argument) const; /** * Checks if the given argument has been parsed successfully by a previous * call to parseArguments(). * * @param argument The argument to be checked. * @return true if the argument was parsed, false * otherwise. */ bool argumentParsed(const std::string &argument) const; /** * Adds a command line argument. An argument can have a long name * (like --long-argument-name), a short name (like -l), or both. The type * of the argument can be specified by using the type parameter. * The following types are supported: * * * * * * * * *
Type# of parametersDefault regular exprExample
us::Any::String1.*--test-string StringParameter
us::Any::Bool0does not apply--enable-something
us::Any::StringList-1.*--test-list string1 string2
us::Any::Int1-?[0-9]+--test-int -5
* * The regular expressions are used to validate the parameters of command line * arguments. You can restrict the valid set of parameters by calling * setExactMatchRegularExpression() for your argument. * * Optionally, a help string and a default value can be provided for the argument. If * the us::Any type of the default value does not match type, an * exception is thrown. Arguments with default values are always returned by * parseArguments(). * * You can also declare an argument deprecated, by setting deprecated * to true. Alternatively you can add a deprecated argument by calling * addDeprecatedArgument(). * * If the long or short argument has already been added, or if both are empty strings, * the method call has no effect. * * @param longarg The long argument name. * @param shortarg The short argument name. * @param type The argument type (see the list above for supported types). * @param argLabel The label of this argument, when auto generated interface is used. * @param argHelp A help string describing the argument. * @param defaultValue A default value for the argument. * @param ignoreRest All arguments after the current one will be ignored. * @param deprecated Declares the argument deprecated. * * @see setExactMatchRegularExpression() * @see addDeprecatedArgument() * @throws std::logic_error If the us::Any type of defaultValue * does not match type, a std::logic_error is thrown. */ void addArgument(const std::string &longarg, const std::string &shortarg, Type type, const std::string &argLabel, const std::string &argHelp = std::string(), const us::Any &defaultValue = us::Any(), bool optional = true, bool ignoreRest = false, - bool deprecated = false); + bool deprecated = false, + mitkCommandLineParser::Channel channel = mitkCommandLineParser::Channel::None); /** * Adds a deprecated command line argument. If a deprecated argument is provided * on the command line, argHelp is displayed in the console and * processing continues with the next argument. * * Deprecated arguments are grouped separately at the end of the help text * returned by helpText(). * * @param longarg The long argument name. * @param shortarg The short argument name. * @param argHelp A help string describing alternatives to the deprecated argument. */ void addDeprecatedArgument(const std::string &longarg, const std::string &shortarg, const std::string &argLabel, const std::string &argHelp); /** * Returns the vector of current Command line Parameter * */ std::vector < std::map > getArgumentList(); /** * Sets a custom regular expression for validating argument parameters. The method * errorString() can be used the get the last error description. * * @param argument The previously added long or short argument name. * @param expression A regular expression which the arugment parameters must match. * @param exactMatchFailedMessage An error message explaining why the parameter did * not match. * * @return true if the argument was found and the regular expression was set, * false otherwise. * * @see errorString() */ bool setExactMatchRegularExpression(const std::string &argument, const std::string &expression, const std::string &exactMatchFailedMessage); /** * The field width for the argument names without the help text. * * @return The argument names field width in the help text. */ std::string::size_type fieldWidth() const; /** * Creates a help text containing properly formatted argument names and help strings * provided by calls to addArgument(). The arguments can be grouped by * using beginGroup() and endGroup(). * * @param charPad The padding character. * @return The formatted help text. */ std::string helpText() const; /** * Sets the argument prefix for long and short argument names. This can be used * to create native command line arguments without changing the calls to * addArgument(). For example on Unix-based systems, long argument * names start with "--" and short names with "-", while on Windows argument names * always start with "/". * * Note that all methods in mitkCommandLineParser which take an argument name * expect the name as it was supplied to addArgument. * * Example usage: * * \code * ctkCommandLineParser parser; * parser.setArgumentPrefix("--", "-"); * parser.addArgument("long-argument", "l", us::Any::String); * StringContainerType args; * args << "program name" << "--long-argument Hi"; * parser.parseArguments(args); * \endcode * * @param longPrefix The prefix for long argument names. * @param shortPrefix The prefix for short argument names. */ void setArgumentPrefix(const std::string &longPrefix, const std::string &shortPrefix); /** * Begins a new group for documenting arguments. All newly added arguments via * addArgument() will be put in the new group. You can close the * current group by calling endGroup() or be opening a new group. * * Note that groups cannot be nested and all arguments which do not belong to * a group will be listed at the top of the text created by helpText(). * * @param description The description of the group */ void beginGroup(const std::string &description); /** * Ends the current group. * * @see beginGroup(const std::string&) */ void endGroup(); /** * Can be used to teach the parser to stop parsing the arguments and return False when * an unknown argument is encountered. By default StrictMode is disabled. * * @see parseArguments(const StringContainerType &, bool*) */ void setStrictModeEnabled(bool strictMode); /** * Is used to generate an XML output for any commandline program. */ void generateXmlOutput(); /** * Is used to set the title of the auto generated interface. * * @param title The title of the app. */ void setTitle(std::string title); /** * Is used to set the contributor for the help view in the auto generated interface. * * @param contributor Contributor of the app. */ void setContributor(std::string contributor); /** * Is used to categorize the apps in the commandline module. * * @param category The category of the app. */ void setCategory(std::string category); /** * Is used as the help text in the auto generated interface. * * @param description A short description for the app. */ void setDescription(std::string description); /** * Is used to group several Parameters in one groupbox in the auto generated interface. * Default name is "Parameters", with the tooltip: "Groupbox containing parameters." * * To change the group of several arguments, call this method before the arguments are added. * * @param name The name of the groupbox. * @param tooltip The tooltip of the groupbox. */ void changeParameterGroup(std::string name, std::string tooltip); private: class ctkInternal; ctkInternal *Internal; std::string Title; std::string Contributor; std::string Category; std::string Description; std::string ParameterGroupName; std::string ParameterGroupDescription; }; #endif diff --git a/Modules/CommandLine/src/mitkCommandLineParser.cpp b/Modules/CommandLine/src/mitkCommandLineParser.cpp index d6b1ea79b6..728c97b36e 100644 --- a/Modules/CommandLine/src/mitkCommandLineParser.cpp +++ b/Modules/CommandLine/src/mitkCommandLineParser.cpp @@ -1,1050 +1,1052 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ /*========================================================================= Library: CTK Copyright (c) Kitware Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.txt Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. =========================================================================*/ // STL includes #include #include // MITK includes #include "mitkCommandLineParser.h" using namespace std; namespace { - // -------------------------------------------------------------------------- - class CommandLineParserArgumentDescription +// -------------------------------------------------------------------------- +class CommandLineParserArgumentDescription +{ +public: + CommandLineParserArgumentDescription(const string &longArg, + const string &longArgPrefix, + const string &shortArg, + const string &shortArgPrefix, + mitkCommandLineParser::Type type, + const string &argHelp, + const string &argLabel, + const us::Any &defaultValue, + bool ignoreRest, + bool deprecated, + bool optional, + mitkCommandLineParser::Channel channel, + string &argGroup, + string &groupDescription) + : LongArg(longArg), + LongArgPrefix(longArgPrefix), + ShortArg(shortArg), + ShortArgPrefix(shortArgPrefix), + ArgHelp(argHelp), + ArgLabel(argLabel), + ArgGroup(argGroup), + ArgGroupDescription(groupDescription), + IgnoreRest(ignoreRest), + NumberOfParametersToProcess(0), + Deprecated(deprecated), + Optional(optional), + Channel(channel), + DefaultValue(defaultValue), + Value(type), + ValueType(type) { - public: - CommandLineParserArgumentDescription(const string &longArg, - const string &longArgPrefix, - const string &shortArg, - const string &shortArgPrefix, - mitkCommandLineParser::Type type, - const string &argHelp, - const string &argLabel, - const us::Any &defaultValue, - bool ignoreRest, - bool deprecated, - bool optional, - string &argGroup, - string &groupDescription) - : LongArg(longArg), - LongArgPrefix(longArgPrefix), - ShortArg(shortArg), - ShortArgPrefix(shortArgPrefix), - ArgHelp(argHelp), - ArgLabel(argLabel), - ArgGroup(argGroup), - ArgGroupDescription(groupDescription), - IgnoreRest(ignoreRest), - NumberOfParametersToProcess(0), - Deprecated(deprecated), - Optional(optional), - DefaultValue(defaultValue), - Value(type), - ValueType(type) - { - Value = defaultValue; + Value = defaultValue; - switch (type) - { - case mitkCommandLineParser::String: - { - NumberOfParametersToProcess = 1; - } - break; - case mitkCommandLineParser::Bool: - { - NumberOfParametersToProcess = 0; - } - break; - case mitkCommandLineParser::StringList: - { - NumberOfParametersToProcess = -1; - } - break; - case mitkCommandLineParser::Int: - { - NumberOfParametersToProcess = 1; - } - break; - case mitkCommandLineParser::Float: - { - NumberOfParametersToProcess = 1; - } - break; - - case mitkCommandLineParser::OutputDirectory: - case mitkCommandLineParser::InputDirectory: - { - NumberOfParametersToProcess = 1; - } - break; - - case mitkCommandLineParser::OutputFile: - case mitkCommandLineParser::InputFile: - { - NumberOfParametersToProcess = 1; - } - break; - case mitkCommandLineParser::InputImage: - { - NumberOfParametersToProcess = 1; - } - break; - - default: - std::cout << "Type not supported: " << static_cast(type); - } - } - - ~CommandLineParserArgumentDescription() {} - bool addParameter(const string &value); - - string helpText(); - - string LongArg; - string LongArgPrefix; - string ShortArg; - string ShortArgPrefix; - string ArgHelp; - string ArgLabel; - string ArgGroup; - string ArgGroupDescription; - bool IgnoreRest; - int NumberOfParametersToProcess; - bool Deprecated; - bool Optional; - - us::Any DefaultValue; - us::Any Value; - mitkCommandLineParser::Type ValueType; - }; - - // -------------------------------------------------------------------------- - bool CommandLineParserArgumentDescription::addParameter(const string &value) - { - switch (ValueType) + switch (type) { - case mitkCommandLineParser::String: - { - Value = value; - } - break; - case mitkCommandLineParser::Bool: - { - if (value.compare("true") == 0) - Value = true; - else - Value = false; - } - break; - case mitkCommandLineParser::StringList: - { - try - { - mitkCommandLineParser::StringContainerType list = - us::any_cast(Value); - list.push_back(value); - Value = list; - } - catch (...) - { - mitkCommandLineParser::StringContainerType list; - list.push_back(value); - Value = list; - } - } - break; - case mitkCommandLineParser::Int: - { - stringstream ss(value); - int i; - ss >> i; - Value = i; - } - break; - case mitkCommandLineParser::Float: - { - stringstream ss(value); - float f; - ss >> f; - Value = f; - } - break; - - case mitkCommandLineParser::InputDirectory: - case mitkCommandLineParser::OutputDirectory: - { - Value = value; - } - break; - - case mitkCommandLineParser::InputFile: - case mitkCommandLineParser::InputImage: - case mitkCommandLineParser::OutputFile: - { - Value = value; - } - break; - - default: - return false; - } - - return true; - } - - // -------------------------------------------------------------------------- - string CommandLineParserArgumentDescription::helpText() - { - string text; - - string shortAndLongArg; - if (!this->ShortArg.empty()) + case mitkCommandLineParser::String: { - shortAndLongArg = " "; - shortAndLongArg += this->ShortArgPrefix; - shortAndLongArg += this->ShortArg; + NumberOfParametersToProcess = 1; } - - if (!this->LongArg.empty()) + break; + case mitkCommandLineParser::Bool: { - if (this->ShortArg.empty()) - shortAndLongArg.append(" "); - else - shortAndLongArg.append(", "); - - shortAndLongArg += this->LongArgPrefix; - shortAndLongArg += this->LongArg; + NumberOfParametersToProcess = 0; } - - text = text + shortAndLongArg + ", " + this->ArgHelp; - - if (this->Optional) - text += " (optional)"; - - if (!this->DefaultValue.Empty()) + break; + case mitkCommandLineParser::StringList: { - text = text + ", (default: " + this->DefaultValue.ToString() + ")"; + NumberOfParametersToProcess = -1; } - string value_type = "Unknown"; - switch (this->ValueType) - { - case 0: - { - value_type = "String"; break; - } - case 1: + case mitkCommandLineParser::Int: { - value_type = "Bool"; - break; + NumberOfParametersToProcess = 1; } - case 2: - { - value_type = "StringList"; break; - } - case 3: + case mitkCommandLineParser::Float: { - value_type = "Int"; - break; + NumberOfParametersToProcess = 1; } - case 4: - { - value_type = "Float"; break; - } - case 5: + + case mitkCommandLineParser::Directory: { - value_type = "InputDirectory"; - break; + NumberOfParametersToProcess = 1; } - case 6: - { - value_type = "InputFile"; break; - } - case 7: + + case mitkCommandLineParser::File: { - value_type = "OutputDirectory"; - break; + NumberOfParametersToProcess = 1; } - case 8: + break; + case mitkCommandLineParser::Image: { - value_type = "OutputFile"; + NumberOfParametersToProcess = 1; + } break; + + default: + std::cout << "Type not supported: " << static_cast(type); } - case 9: + } + + ~CommandLineParserArgumentDescription() {} + bool addParameter(const string &value); + + string helpText(); + + string LongArg; + string LongArgPrefix; + string ShortArg; + string ShortArgPrefix; + string ArgHelp; + string ArgLabel; + string ArgGroup; + string ArgGroupDescription; + bool IgnoreRest; + int NumberOfParametersToProcess; + bool Deprecated; + bool Optional; + mitkCommandLineParser::Channel Channel; + + us::Any DefaultValue; + us::Any Value; + mitkCommandLineParser::Type ValueType; +}; + +// -------------------------------------------------------------------------- +bool CommandLineParserArgumentDescription::addParameter(const string &value) +{ + switch (ValueType) + { + case mitkCommandLineParser::String: + { + Value = value; + } + break; + case mitkCommandLineParser::Bool: + { + if (value.compare("true") == 0) + Value = true; + else + Value = false; + } + break; + case mitkCommandLineParser::StringList: + { + try { - value_type = "InputImage"; + mitkCommandLineParser::StringContainerType list = + us::any_cast(Value); + list.push_back(value); + Value = list; } + catch (...) + { + mitkCommandLineParser::StringContainerType list; + list.push_back(value); + Value = list; } - text = text + ", Type: " + value_type; - text += "\n"; - return text; } + break; + case mitkCommandLineParser::Int: + { + stringstream ss(value); + int i; + ss >> i; + Value = i; + } + break; + case mitkCommandLineParser::Float: + { + stringstream ss(value); + float f; + ss >> f; + Value = f; + } + break; + + case mitkCommandLineParser::Directory: + case mitkCommandLineParser::Image: + case mitkCommandLineParser::File: + { + Value = value; + } + break; + + default: + return false; + } + + return true; +} + +// -------------------------------------------------------------------------- +string CommandLineParserArgumentDescription::helpText() +{ + string text; + + string shortAndLongArg; + if (!this->ShortArg.empty()) + { + shortAndLongArg = " "; + shortAndLongArg += this->ShortArgPrefix; + shortAndLongArg += this->ShortArg; + } + + if (!this->LongArg.empty()) + { + if (this->ShortArg.empty()) + shortAndLongArg.append(" "); + else + shortAndLongArg.append(", "); + + shortAndLongArg += this->LongArgPrefix; + shortAndLongArg += this->LongArg; + } + + text = text + shortAndLongArg + ", " + this->ArgHelp; + + if (this->Optional) + text += " (optional)"; + + if (!this->DefaultValue.Empty()) + { + text = text + ", (default: " + this->DefaultValue.ToString() + ")"; + } + string value_type = "Unknown"; + switch (this->ValueType) + { + case 0: + { + value_type = "String"; + break; + } + case 1: + { + value_type = "Bool"; + break; + } + case 2: + { + value_type = "StringList"; + break; + } + case 3: + { + value_type = "Int"; + break; + } + case 4: + { + value_type = "Float"; + break; + } + case 5: + { + value_type = "Directory"; + break; + } + case 6: + { + value_type = "File"; + break; + } + case 7: + { + value_type = "Image"; + } + } + text = text + ", Type: " + value_type; + if (this->Channel == mitkCommandLineParser::Input) + text = text + ", Channel: input"; + else if (this->Channel == mitkCommandLineParser::Output) + text = text + ", Channel: output"; + text += "\n"; + return text; +} } // -------------------------------------------------------------------------- // ctkCommandLineParser::ctkInternal class // -------------------------------------------------------------------------- class mitkCommandLineParser::ctkInternal { public: ctkInternal() : Debug(false), FieldWidth(0), StrictMode(false) {} ~ctkInternal() {} CommandLineParserArgumentDescription *argumentDescription(const string &argument); vector ArgumentDescriptionList; map ArgNameToArgumentDescriptionMap; map> GroupToArgumentDescriptionListMap; StringContainerType UnparsedArguments; StringContainerType ProcessedArguments; string ErrorString; bool Debug; string::size_type FieldWidth; string LongPrefix; string ShortPrefix; string CurrentGroup; string DisableQSettingsLongArg; string DisableQSettingsShortArg; bool StrictMode; }; // -------------------------------------------------------------------------- // ctkCommandLineParser::ctkInternal methods // -------------------------------------------------------------------------- CommandLineParserArgumentDescription *mitkCommandLineParser::ctkInternal::argumentDescription(const string &argument) { string unprefixedArg = argument; if (!LongPrefix.empty() && argument.compare(0, LongPrefix.size(), LongPrefix) == 0) { // Case when (ShortPrefix + UnPrefixedArgument) matches LongPrefix if (argument == LongPrefix && !ShortPrefix.empty() && argument.compare(0, ShortPrefix.size(), ShortPrefix) == 0) { unprefixedArg = argument.substr(ShortPrefix.size(), argument.size()); } else { unprefixedArg = argument.substr(LongPrefix.size(), argument.size()); } } else if (!ShortPrefix.empty() && argument.compare(0, ShortPrefix.size(), ShortPrefix) == 0) { unprefixedArg = argument.substr(ShortPrefix.size(), argument.size()); } else if (!LongPrefix.empty() && !ShortPrefix.empty()) { return nullptr; } if (ArgNameToArgumentDescriptionMap.count(unprefixedArg)) { return this->ArgNameToArgumentDescriptionMap[unprefixedArg]; } return nullptr; } // -------------------------------------------------------------------------- // ctkCommandLineParser methods // -------------------------------------------------------------------------- mitkCommandLineParser::mitkCommandLineParser() { this->Internal = new ctkInternal(); this->Category = string(); this->Title = string(); this->Contributor = string(); this->Description = string(); this->ParameterGroupName = "Parameters"; this->ParameterGroupDescription = "Parameters"; } // -------------------------------------------------------------------------- mitkCommandLineParser::~mitkCommandLineParser() { delete this->Internal; } // -------------------------------------------------------------------------- map mitkCommandLineParser::parseArguments(const StringContainerType &arguments, bool *ok) { // Reset this->Internal->UnparsedArguments.clear(); this->Internal->ProcessedArguments.clear(); this->Internal->ErrorString.clear(); // foreach (CommandLineParserArgumentDescription* desc, this->Internal->ArgumentDescriptionList) for (unsigned int i = 0; i < Internal->ArgumentDescriptionList.size(); i++) { CommandLineParserArgumentDescription *desc = Internal->ArgumentDescriptionList.at(i); desc->Value = us::Any(desc->ValueType); if (!desc->DefaultValue.Empty()) { desc->Value = desc->DefaultValue; } } bool error = false; bool ignoreRest = false; CommandLineParserArgumentDescription *currentArgDesc = nullptr; vector parsedArgDescriptions; for (unsigned int i = 1; i < arguments.size(); ++i) { string argument = arguments.at(i); if (this->Internal->Debug) { std::cout << "Processing" << argument; } if (!argument.compare("--version")) { std::cout << "Git commit hash: " << MITK_REVISION << std::endl; std::cout << "Git branch name: " << MITK_REVISION_NAME << std::endl; } if (!argument.compare("--xml") || !argument.compare("-xml") || !argument.compare("--XML") || !argument.compare("-XML")) { this->generateXmlOutput(); return map(); } // should argument be ignored ? if (ignoreRest) { if (this->Internal->Debug) { std::cout << " Skipping: IgnoreRest flag was been set"; } this->Internal->UnparsedArguments.push_back(argument); continue; } // Skip if the argument does not start with the defined prefix if (!(argument.compare(0, Internal->LongPrefix.size(), Internal->LongPrefix) == 0 || argument.compare(0, Internal->ShortPrefix.size(), Internal->ShortPrefix) == 0)) { if (this->Internal->StrictMode) { this->Internal->ErrorString = "Unknown argument "; this->Internal->ErrorString += argument; error = true; break; } if (this->Internal->Debug) { std::cout << " Skipping: It does not start with the defined prefix"; } this->Internal->UnparsedArguments.push_back(argument); continue; } // Skip if argument has already been parsed ... bool alreadyProcessed = false; for (auto alreadyHandledArgument : Internal->ProcessedArguments) if (argument.compare(alreadyHandledArgument) == 0) { alreadyProcessed = true; break; } if (alreadyProcessed) { if (this->Internal->StrictMode) { this->Internal->ErrorString = "Argument "; this->Internal->ErrorString += argument; this->Internal->ErrorString += " already processed !"; error = true; break; } if (this->Internal->Debug) { std::cout << " Skipping: Already processed !"; } continue; } // Retrieve corresponding argument description currentArgDesc = this->Internal->argumentDescription(argument); // Is there a corresponding argument description ? if (currentArgDesc) { // If the argument is deprecated, print the help text but continue processing if (currentArgDesc->Deprecated) { std::cout << "Deprecated argument " << argument << ": " << currentArgDesc->ArgHelp; } else { parsedArgDescriptions.push_back(currentArgDesc); } this->Internal->ProcessedArguments.push_back(currentArgDesc->ShortArg); this->Internal->ProcessedArguments.push_back(currentArgDesc->LongArg); int numberOfParametersToProcess = currentArgDesc->NumberOfParametersToProcess; ignoreRest = currentArgDesc->IgnoreRest; if (this->Internal->Debug && ignoreRest) { std::cout << " IgnoreRest flag is True"; } // Is the number of parameters associated with the argument being processed known ? if (numberOfParametersToProcess == 0) { currentArgDesc->addParameter("true"); } else if (numberOfParametersToProcess > 0) { string missingParameterError = "Argument %1 has %2 value(s) associated whereas exacly %3 are expected."; for (int j = 1; j <= numberOfParametersToProcess; ++j) { if (i + j >= arguments.size()) { // this->Internal->ErrorString = // missingParameterError.arg(argument).arg(j-1).arg(numberOfParametersToProcess); // if (this->Internal->Debug) { std::cout << this->Internal->ErrorString; } if (ok) { *ok = false; } return map(); } string parameter = arguments.at(i + j); if (this->Internal->Debug) { std::cout << " Processing parameter" << j << ", value:" << parameter; } if (this->argumentAdded(parameter)) { // this->Internal->ErrorString = // missingParameterError.arg(argument).arg(j-1).arg(numberOfParametersToProcess); // if (this->Internal->Debug) { std::cout << this->Internal->ErrorString; } if (ok) { *ok = false; } return map(); } if (!currentArgDesc->addParameter(parameter)) { // this->Internal->ErrorString = string( // "Value(s) associated with argument %1 are incorrect. %2"). // arg(argument).arg(currentArgDesc->ExactMatchFailedMessage); // if (this->Internal->Debug) { std::cout << this->Internal->ErrorString; } if (ok) { *ok = false; } return map(); } } // Update main loop increment i = i + numberOfParametersToProcess; } else if (numberOfParametersToProcess == -1) { if (this->Internal->Debug) { std::cout << " Proccessing StringList ..."; } int j = 1; while (j + i < arguments.size()) { if (this->argumentAdded(arguments.at(j + i))) { if (this->Internal->Debug) { std::cout << " No more parameter for" << argument; } break; } string parameter = arguments.at(j + i); if (parameter.compare(0, Internal->LongPrefix.size(), Internal->LongPrefix) == 0 || parameter.compare(0, Internal->ShortPrefix.size(), Internal->ShortPrefix) == 0) { j--; break; } if (this->Internal->Debug) { std::cout << " Processing parameter" << j << ", value:" << parameter; } if (!currentArgDesc->addParameter(parameter)) { // this->Internal->ErrorString = string( // "Value(s) associated with argument %1 are incorrect. %2"). // arg(argument).arg(currentArgDesc->ExactMatchFailedMessage); // if (this->Internal->Debug) { std::cout << this->Internal->ErrorString; } if (ok) { *ok = false; } return map(); } j++; } // Update main loop increment i = i + j; } } else { if (this->Internal->StrictMode) { this->Internal->ErrorString = "Unknown argument "; this->Internal->ErrorString += argument; error = true; break; } if (this->Internal->Debug) { std::cout << " Skipping: Unknown argument"; } this->Internal->UnparsedArguments.push_back(argument); } } if (ok) { *ok = !error; } map parsedArguments; int obligatoryArgs = 0; vector::iterator it; for (it = Internal->ArgumentDescriptionList.begin(); it != Internal->ArgumentDescriptionList.end(); ++it) { CommandLineParserArgumentDescription *desc = *it; if (!desc->Optional) obligatoryArgs++; } int parsedObligatoryArgs = 0; for (it = parsedArgDescriptions.begin(); it != parsedArgDescriptions.end(); ++it) { CommandLineParserArgumentDescription *desc = *it; string key; if (!desc->LongArg.empty()) { key = desc->LongArg; } else { key = desc->ShortArg; } if (!desc->Optional) parsedObligatoryArgs++; std::pair elem; elem.first = key; elem.second = desc->Value; parsedArguments.insert(elem); } if (obligatoryArgs > parsedObligatoryArgs) { parsedArguments.clear(); cout << helpText(); } return parsedArguments; } // ------------------------------------------------------------------------- map mitkCommandLineParser::parseArguments(int argc, char **argv, bool *ok) { std::cout << "Running Command Line Utility *" << Title << "*" << std::endl; StringContainerType arguments; // Create a StringContainerType of arguments for (int i = 0; i < argc; ++i) arguments.push_back(argv[i]); return this->parseArguments(arguments, ok); } // ------------------------------------------------------------------------- string mitkCommandLineParser::errorString() const { return this->Internal->ErrorString; } // ------------------------------------------------------------------------- const mitkCommandLineParser::StringContainerType &mitkCommandLineParser::unparsedArguments() const { return this->Internal->UnparsedArguments; } // -------------------------------------------------------------------------- void mitkCommandLineParser::addArgument(const string &longarg, const string &shortarg, Type type, const string &argLabel, const string &argHelp, const us::Any &defaultValue, bool optional, bool ignoreRest, - bool deprecated) + bool deprecated, + mitkCommandLineParser::Channel channel) { if (longarg.empty() && shortarg.empty()) { return; } /* Make sure it's not already added */ bool added = (this->Internal->ArgNameToArgumentDescriptionMap.count(longarg) != 0); if (added) { return; } added = (this->Internal->ArgNameToArgumentDescriptionMap.count(shortarg) != 0); if (added) { return; } auto argDesc = new CommandLineParserArgumentDescription(longarg, this->Internal->LongPrefix, shortarg, this->Internal->ShortPrefix, type, argHelp, argLabel, defaultValue, ignoreRest, deprecated, optional, + channel, ParameterGroupName, ParameterGroupDescription); std::string::size_type argWidth = 0; if (!longarg.empty()) { this->Internal->ArgNameToArgumentDescriptionMap[longarg] = argDesc; argWidth += longarg.size() + this->Internal->LongPrefix.size(); } if (!shortarg.empty()) { this->Internal->ArgNameToArgumentDescriptionMap[shortarg] = argDesc; argWidth += shortarg.size() + this->Internal->ShortPrefix.size() + 2; } argWidth += 5; // Set the field width for the arguments if (argWidth > this->Internal->FieldWidth) { this->Internal->FieldWidth = argWidth; } this->Internal->ArgumentDescriptionList.push_back(argDesc); this->Internal->GroupToArgumentDescriptionListMap[this->Internal->CurrentGroup].push_back(argDesc); } // -------------------------------------------------------------------------- void mitkCommandLineParser::addDeprecatedArgument(const string &longarg, const string &shortarg, const string &argLabel, const string &argHelp) { addArgument(longarg, shortarg, StringList, argLabel, argHelp, us::Any(), false, true, false); } // -------------------------------------------------------------------------- std::vector < std::map > mitkCommandLineParser::getArgumentList() { std::vector < std::map > parameterList; //for (CommandLineParserArgumentDescription* argument : this->Internal->ArgumentDescriptionList) for (std::size_t i = 0; i< this->Internal->ArgumentDescriptionList.size(); ++i) { CommandLineParserArgumentDescription* argument = this->Internal->ArgumentDescriptionList[i]; std::map tmpMap; //tmpMap["helptext"] = us::Any(argument->helpText); tmpMap["longarg"] = us::Any(argument->LongArg); tmpMap["longargprefix"] = us::Any(argument->LongArgPrefix); tmpMap["shortarg"] = us::Any(argument->ShortArg); tmpMap["shortargprefix"] = us::Any(argument->ShortArgPrefix); tmpMap["arghelp"] = us::Any(argument->ArgHelp); tmpMap["arglabel"] = us::Any(argument->ArgLabel); tmpMap["arggroup"] = us::Any(argument->ArgGroup); tmpMap["arggroupdescription"] = us::Any(argument->ArgGroupDescription); tmpMap["ignorerest"] = us::Any(argument->IgnoreRest); tmpMap["numberofparameterstoprocess"] = us::Any(argument->NumberOfParametersToProcess); tmpMap["deprecated"] = us::Any(argument->Deprecated); tmpMap["optional"] = us::Any(argument->Optional); tmpMap["defaultvalue"] = argument->DefaultValue; tmpMap["value"] = argument->Value; tmpMap["valuetype"] = us::Any(argument->ValueType); + tmpMap["channel"] = us::Any(argument->Channel); parameterList.push_back(tmpMap); } return parameterList; } // -------------------------------------------------------------------------- std::string::size_type mitkCommandLineParser::fieldWidth() const { return this->Internal->FieldWidth; } // -------------------------------------------------------------------------- void mitkCommandLineParser::beginGroup(const string &description) { this->Internal->CurrentGroup = description; } // -------------------------------------------------------------------------- void mitkCommandLineParser::endGroup() { this->Internal->CurrentGroup.clear(); } // -------------------------------------------------------------------------- string mitkCommandLineParser::helpText() const { string text; vector deprecatedArgs; text = "Command Line Utility *" + Title + "* in Category *" + Category + "*\n"; text += Description + "\n"; text += Contributor + "\n\n"; text += "Use --xml to generate an XML description parsable as a CTK Command Line Module Plugin.\n"; text += "Use --version to print MITK revision information.\n"; // Loop over grouped argument descriptions map>::iterator it; for (it = Internal->GroupToArgumentDescriptionListMap.begin(); it != Internal->GroupToArgumentDescriptionListMap.end(); ++it) { if (!(*it).first.empty()) { text = text + "\n" + (*it).first + "\n"; } vector::iterator it2; for (it2 = (*it).second.begin(); it2 != (*it).second.end(); ++it2) { CommandLineParserArgumentDescription *argDesc = *it2; if (argDesc->Deprecated) { deprecatedArgs.push_back(argDesc); } else { text += argDesc->helpText(); } } } if (!deprecatedArgs.empty()) { text += "\nDeprecated arguments:\n"; vector::iterator it2; for (it2 = deprecatedArgs.begin(); it2 != deprecatedArgs.end(); ++it2) { CommandLineParserArgumentDescription *argDesc = *it2; text += argDesc->helpText(); } } return text; } // -------------------------------------------------------------------------- bool mitkCommandLineParser::argumentAdded(const string &argument) const { return (this->Internal->ArgNameToArgumentDescriptionMap.count(argument) != 0); } // -------------------------------------------------------------------------- bool mitkCommandLineParser::argumentParsed(const string &argument) const { for (unsigned int i = 0; i < Internal->ProcessedArguments.size(); i++) if (argument.compare(Internal->ProcessedArguments.at(i)) == 0) return true; return false; } // -------------------------------------------------------------------------- void mitkCommandLineParser::setArgumentPrefix(const string &longPrefix, const string &shortPrefix) { this->Internal->LongPrefix = longPrefix; this->Internal->ShortPrefix = shortPrefix; } // -------------------------------------------------------------------------- void mitkCommandLineParser::setStrictModeEnabled(bool strictMode) { this->Internal->StrictMode = strictMode; } void mitkCommandLineParser::generateXmlOutput() { std::stringstream xml; xml << "" << endl; xml << "" << Category << "" << endl; xml << "" << Title << "" << endl; xml << "" << Description << "" << endl; xml << "" << Contributor << "" << endl; xml << "" << endl; std::vector::iterator it; std::string lastParameterGroup = ""; for (it = this->Internal->ArgumentDescriptionList.begin(); it != this->Internal->ArgumentDescriptionList.end(); it++) { std::string type; switch ((*it)->ValueType) { - case mitkCommandLineParser::String: - type = "string"; - break; + case mitkCommandLineParser::String: + type = "string"; + break; - case mitkCommandLineParser::Bool: - type = "boolean"; - break; + case mitkCommandLineParser::Bool: + type = "boolean"; + break; - case mitkCommandLineParser::StringList: - type = "string-vector"; - break; + case mitkCommandLineParser::StringList: + type = "string-vector"; + break; - case mitkCommandLineParser::Int: - type = "integer"; - break; + case mitkCommandLineParser::Int: + type = "integer"; + break; - case mitkCommandLineParser::Float: - type = "float"; - break; + case mitkCommandLineParser::Float: + type = "float"; + break; - case mitkCommandLineParser::OutputDirectory: - case mitkCommandLineParser::InputDirectory: - type = "directory"; - break; + case mitkCommandLineParser::Directory: + type = "directory"; + break; - case mitkCommandLineParser::InputImage: - type = "image"; - break; + case mitkCommandLineParser::Image: + type = "image"; + break; - case mitkCommandLineParser::OutputFile: - case mitkCommandLineParser::InputFile: - type = "file"; - break; + case mitkCommandLineParser::File: + type = "file"; + break; } if (lastParameterGroup.compare((*it)->ArgGroup)) { if (it != this->Internal->ArgumentDescriptionList.begin()) { xml << "" << endl; xml << "" << endl; } xml << "" << endl; xml << "" << (*it)->ArgGroupDescription << "" << endl; lastParameterGroup = (*it)->ArgGroup; } // Skip help item, as it's no use in GUI if ((*it)->ShortArg == "h") continue; + auto name = (*it)->LongArg; + if (name.empty()) + name = (*it)->ShortArg; + xml << "<" << type << ">" << endl; - xml << "" << (*it)->LongArg << "" << endl; + xml << "" << name << "" << endl; xml << "" << (*it)->ArgHelp << "" << endl; xml << "" << endl; if (!(*it)->DefaultValue.Empty()) xml << "" << (*it)->DefaultValue.ToString() << "" << endl; xml << "" << (*it)->LongArg << "" << endl; xml << "" << (*it)->ShortArg << "" << endl; - if ((*it)->ValueType == mitkCommandLineParser::InputDirectory || - (*it)->ValueType == mitkCommandLineParser::InputFile || (*it)->ValueType == mitkCommandLineParser::InputImage) + if (((*it)->ValueType == mitkCommandLineParser::File || + (*it)->ValueType == mitkCommandLineParser::Directory || + (*it)->ValueType == mitkCommandLineParser::Image) && + (*it)->Channel == mitkCommandLineParser::Channel::Input) { xml << "input" << endl; } - else if ((*it)->ValueType == mitkCommandLineParser::OutputDirectory || - (*it)->ValueType == mitkCommandLineParser::OutputFile) + else if (((*it)->ValueType == mitkCommandLineParser::File || + (*it)->ValueType == mitkCommandLineParser::Directory || + (*it)->ValueType == mitkCommandLineParser::Image) && + (*it)->Channel == mitkCommandLineParser::Channel::Output) { xml << "output" << endl; } + else if ((*it)->Channel == mitkCommandLineParser::Channel::Output || + (*it)->Channel == mitkCommandLineParser::Channel::Input) + { + std::cout << "Only the types Directory, File or Image may be flagged as Input or Output! Ignoring flag for parameter " + name << std::endl; + } xml << "" << endl; } xml << "" << endl; xml << "" << endl; cout << xml.str(); } void mitkCommandLineParser::setTitle(string title) { Title = title; } void mitkCommandLineParser::setContributor(string contributor) { Contributor = contributor; } void mitkCommandLineParser::setCategory(string category) { Category = category; } void mitkCommandLineParser::setDescription(string description) { Description = description; } void mitkCommandLineParser::changeParameterGroup(string name, string tooltip) { ParameterGroupName = name; ParameterGroupDescription = tooltip; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Connectomics/NetworkCreation.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Connectomics/NetworkCreation.cpp index 8c00a19f6f..b91aa3d514 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Connectomics/NetworkCreation.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Connectomics/NetworkCreation.cpp @@ -1,119 +1,119 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // std includes #include // CTK includes #include "mitkCommandLineParser.h" // MITK includes #include "mitkConnectomicsNetworkCreator.h" #include #include int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Network Creation"); parser.setCategory("Connectomics"); parser.setDescription(""); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "f", mitkCommandLineParser::InputFile, "Input Tractogram", "input tractogram (.fib)", us::Any(), false); - parser.addArgument("", "p", mitkCommandLineParser::InputFile, "Parcellation", "parcellation image", us::Any(), false); + parser.addArgument("", "f", mitkCommandLineParser::File, "Input Tractogram", "input tractogram (.fib)", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "p", mitkCommandLineParser::File, "Parcellation", "parcellation image", us::Any(), false, false, false, mitkCommandLineParser::Input); parser.addArgument("", "o", mitkCommandLineParser::String, "Output network", "where to save the output (.cnf, .mat)", us::Any(), false); parser.addArgument("noCenterOfMass", "", mitkCommandLineParser::Bool, "No center of mass", "Do not use center of mass for node positions"); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; //default values bool noCenterOfMass( false ); // parse command line arguments std::string fiberFilename = us::any_cast(parsedArgs["f"]); std::string parcellationFilename = us::any_cast(parsedArgs["p"]); std::string outputFilename = us::any_cast(parsedArgs["o"]); if (parsedArgs.count("noCenterOfMass")) noCenterOfMass = us::any_cast(parsedArgs["noCenterOfMass"]); try { // load fiber image std::vector fiberInfile = mitk::IOUtil::Load( fiberFilename); if( fiberInfile.empty() ) { std::string errorMessage = "Fiber Image at " + fiberFilename + " could not be read. Aborting."; MITK_ERROR << errorMessage; return EXIT_FAILURE; } mitk::BaseData* fiberBaseData = fiberInfile.at(0); mitk::FiberBundle* fiberBundle = dynamic_cast( fiberBaseData ); // load parcellation std::vector parcellationInFile = mitk::IOUtil::Load( parcellationFilename); if( parcellationInFile.empty() ) { std::string errorMessage = "Parcellation at " + parcellationFilename + " could not be read. Aborting."; MITK_ERROR << errorMessage; return EXIT_FAILURE; } mitk::BaseData* parcellationBaseData = parcellationInFile.at(0); mitk::Image* parcellationImage = dynamic_cast( parcellationBaseData ); // do creation mitk::ConnectomicsNetworkCreator::Pointer connectomicsNetworkCreator = mitk::ConnectomicsNetworkCreator::New(); connectomicsNetworkCreator->SetSegmentation( parcellationImage ); connectomicsNetworkCreator->SetFiberBundle( fiberBundle ); if( !noCenterOfMass ) { connectomicsNetworkCreator->CalculateCenterOfMass(); } connectomicsNetworkCreator->SetMappingStrategy(mitk::ConnectomicsNetworkCreator::MappingStrategy::EndElementPosition); connectomicsNetworkCreator->CreateNetworkFromFibersAndSegmentation(); mitk::ConnectomicsNetwork::Pointer network = connectomicsNetworkCreator->GetNetwork(); mitk::IOUtil::Save(network.GetPointer(), outputFilename ); return EXIT_SUCCESS; } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } std::cout << "DONE"; return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Connectomics/NetworkStatistics.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Connectomics/NetworkStatistics.cpp index a5a5ea7552..143d82fc06 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Connectomics/NetworkStatistics.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Connectomics/NetworkStatistics.cpp @@ -1,570 +1,570 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // std includes #include #include #include #include #include #include // boost includes #include // ITK includes #include // CTK includes #include "mitkCommandLineParser.h" // MITK includes #include #include #include #include #include int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Network Creation"); parser.setCategory("Connectomics"); parser.setDescription(""); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input network", "input connectomics network (.cnf)", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output file", "name of output file", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input network", "input connectomics network (.cnf)", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Output file", "name of output file", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.addArgument("noGlobalStatistics", "g", mitkCommandLineParser::Bool, "No global statistics", "Do not calculate global statistics"); parser.addArgument("createConnectivityMatriximage", "I", mitkCommandLineParser::Bool, "Write connectivity matrix image", "Write connectivity matrix image"); parser.addArgument("binaryConnectivity", "b", mitkCommandLineParser::Bool, "Binary connectivity", "Whether to create a binary connectivity matrix"); parser.addArgument("rescaleConnectivity", "r", mitkCommandLineParser::Bool, "Rescale connectivity", "Whether to rescale the connectivity matrix"); parser.addArgument("localStatistics", "L", mitkCommandLineParser::StringList, "Local statistics", "Provide a list of node labels for local statistics", us::Any()); parser.addArgument("regionList", "R", mitkCommandLineParser::StringList, "Region list", "A space separated list of regions. Each region has the format\n regionname;label1;label2;...;labelN", us::Any()); parser.addArgument("granularity", "gr", mitkCommandLineParser::Int, "Granularity", "How finely to test the density range and how many thresholds to consider",1); parser.addArgument("startDensity", "d", mitkCommandLineParser::Float, "Start Density", "Largest density for the range",1.0); parser.addArgument("thresholdStepSize", "t", mitkCommandLineParser::Int, "Step size threshold", "Distance of two adjacent thresholds",3); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; //default values bool noGlobalStatistics( false ); bool binaryConnectivity( false ); bool rescaleConnectivity( false ); bool createConnectivityMatriximage( false ); int granularity( 1 ); double startDensity( 1.0 ); int thresholdStepSize( 3 ); // parse command line arguments std::string networkName = us::any_cast(parsedArgs["i"]); std::string outName = us::any_cast(parsedArgs["o"]); mitkCommandLineParser::StringContainerType localLabels; if(parsedArgs.count("localStatistics")) { localLabels = us::any_cast(parsedArgs["localStatistics"]); } mitkCommandLineParser::StringContainerType unparsedRegions; std::map< std::string, std::vector > parsedRegions; std::map< std::string, std::vector >::iterator parsedRegionsIterator; if(parsedArgs.count("regionList")) { unparsedRegions = us::any_cast(parsedArgs["regionList"]); for(unsigned int index(0); index < unparsedRegions.size(); index++ ) { std::vector< std::string > tempRegionVector; boost::split(tempRegionVector, unparsedRegions.at(index), boost::is_any_of(";")); std::vector< std::string >::const_iterator begin = tempRegionVector.begin(); std::vector< std::string >::const_iterator last = tempRegionVector.begin() + tempRegionVector.size(); std::vector< std::string > insertRegionVector(begin + 1, last); if( parsedRegions.count( tempRegionVector.at(0) ) == 0 ) { parsedRegions.insert( std::pair< std::string, std::vector >( tempRegionVector.at(0), insertRegionVector) ); } else { MITK_ERROR << "Region already exists. Skipping second occurrence."; } } } if (parsedArgs.count("noGlobalStatistics")) noGlobalStatistics = us::any_cast(parsedArgs["noGlobalStatistics"]); if (parsedArgs.count("binaryConnectivity")) binaryConnectivity = us::any_cast(parsedArgs["binaryConnectivity"]); if (parsedArgs.count("rescaleConnectivity")) rescaleConnectivity = us::any_cast(parsedArgs["rescaleConnectivity"]); if (parsedArgs.count("createConnectivityMatriximage")) createConnectivityMatriximage = us::any_cast(parsedArgs["createConnectivityMatriximage"]); if (parsedArgs.count("granularity")) granularity = us::any_cast(parsedArgs["granularity"]); if (parsedArgs.count("startDensity")) startDensity = us::any_cast(parsedArgs["startDensity"]); if (parsedArgs.count("thresholdStepSize")) thresholdStepSize = us::any_cast(parsedArgs["thresholdStepSize"]); try { // load network std::vector networkFile = mitk::IOUtil::Load( networkName); if( networkFile.empty() ) { std::string errorMessage = "File at " + networkName + " could not be read. Aborting."; MITK_ERROR << errorMessage; return EXIT_FAILURE; } mitk::BaseData* networkBaseData = networkFile.at(0); mitk::ConnectomicsNetwork* network = dynamic_cast( networkBaseData ); if( !network ) { std::string errorMessage = "Read file at " + networkName + " could not be recognized as network. Aborting."; MITK_ERROR << errorMessage; return EXIT_FAILURE; } // streams std::stringstream globalHeaderStream; globalHeaderStream << "NumberOfVertices " << "NumberOfEdges " << "AverageDegree " << "ConnectionDensity " << "NumberOfConnectedComponents " << "AverageComponentSize " << "LargestComponentSize " << "RatioOfNodesInLargestComponent " << "HopPlotExponent " << "EffectiveHopDiameter " << "AverageClusteringCoefficientsC " << "AverageClusteringCoefficientsD " << "AverageClusteringCoefficientsE " << "AverageVertexBetweennessCentrality " << "AverageEdgeBetweennessCentrality " << "NumberOfIsolatedPoints " << "RatioOfIsolatedPoints " << "NumberOfEndPoints " << "RatioOfEndPoints " << "Diameter " << "Diameter90 " << "Radius " << "Radius90 " << "AverageEccentricity " << "AverageEccentricity90 " << "AveragePathLength " << "NumberOfCentralPoints " << "RatioOfCentralPoints " << "SpectralRadius " << "SecondLargestEigenValue " << "AdjacencyTrace " << "AdjacencyEnergy " << "LaplacianTrace " << "LaplacianEnergy " << "LaplacianSpectralGap " << "NormalizedLaplacianTrace " << "NormalizedLaplacianEnergy " << "NormalizedLaplacianNumberOf2s " << "NormalizedLaplacianNumberOf1s " << "NormalizedLaplacianNumberOf0s " << "NormalizedLaplacianLowerSlope " << "NormalizedLaplacianUpperSlope " << "SmallWorldness" << std::endl; std::stringstream localHeaderStream; std::stringstream regionalHeaderStream; std::stringstream globalDataStream; std::stringstream localDataStream; std::stringstream regionalDataStream; std::string globalOutName = outName + "_global.txt"; std::string localOutName = outName + "_local.txt"; std::string regionalOutName = outName + "_regional.txt"; bool firstRun( true ); // iterate over all three possible methods for(unsigned int method( 0 ); method < 3; method++) { // 0 - Random removal threshold // 1 - Largest density below threshold // 2 - Threshold based // iterate over possible targets for( int step = 0; step < granularity; ++step ) { double targetValue( 0.0 ); switch ( method ) { case mitk::ConnectomicsNetworkThresholder::RandomRemovalOfWeakest : case mitk::ConnectomicsNetworkThresholder::LargestLowerThanDensity : targetValue = startDensity * (1 - static_cast( step ) / ( granularity + 0.5 ) ); break; case mitk::ConnectomicsNetworkThresholder::ThresholdBased : targetValue = static_cast( thresholdStepSize * step ); break; default: MITK_ERROR << "Invalid thresholding method called, aborting."; return EXIT_FAILURE; break; } mitk::ConnectomicsNetworkThresholder::Pointer thresholder = mitk::ConnectomicsNetworkThresholder::New(); thresholder->SetNetwork( network ); thresholder->SetTargetThreshold( targetValue ); thresholder->SetTargetDensity( targetValue ); thresholder->SetThresholdingScheme( static_cast(method) ); mitk::ConnectomicsNetwork::Pointer thresholdedNetwork = thresholder->GetThresholdedNetwork(); mitk::ConnectomicsStatisticsCalculator::Pointer statisticsCalculator = mitk::ConnectomicsStatisticsCalculator::New(); statisticsCalculator->SetNetwork( thresholdedNetwork ); statisticsCalculator->Update(); // global statistics if( !noGlobalStatistics ) { globalDataStream << statisticsCalculator->GetNumberOfVertices() << " " << statisticsCalculator->GetNumberOfEdges() << " " << statisticsCalculator->GetAverageDegree() << " " << statisticsCalculator->GetConnectionDensity() << " " << statisticsCalculator->GetNumberOfConnectedComponents() << " " << statisticsCalculator->GetAverageComponentSize() << " " << statisticsCalculator->GetLargestComponentSize() << " " << statisticsCalculator->GetRatioOfNodesInLargestComponent() << " " << statisticsCalculator->GetHopPlotExponent() << " " << statisticsCalculator->GetEffectiveHopDiameter() << " " << statisticsCalculator->GetAverageClusteringCoefficientsC() << " " << statisticsCalculator->GetAverageClusteringCoefficientsD() << " " << statisticsCalculator->GetAverageClusteringCoefficientsE() << " " << statisticsCalculator->GetAverageVertexBetweennessCentrality() << " " << statisticsCalculator->GetAverageEdgeBetweennessCentrality() << " " << statisticsCalculator->GetNumberOfIsolatedPoints() << " " << statisticsCalculator->GetRatioOfIsolatedPoints() << " " << statisticsCalculator->GetNumberOfEndPoints() << " " << statisticsCalculator->GetRatioOfEndPoints() << " " << statisticsCalculator->GetDiameter() << " " << statisticsCalculator->GetDiameter90() << " " << statisticsCalculator->GetRadius() << " " << statisticsCalculator->GetRadius90() << " " << statisticsCalculator->GetAverageEccentricity() << " " << statisticsCalculator->GetAverageEccentricity90() << " " << statisticsCalculator->GetAveragePathLength() << " " << statisticsCalculator->GetNumberOfCentralPoints() << " " << statisticsCalculator->GetRatioOfCentralPoints() << " " << statisticsCalculator->GetSpectralRadius() << " " << statisticsCalculator->GetSecondLargestEigenValue() << " " << statisticsCalculator->GetAdjacencyTrace() << " " << statisticsCalculator->GetAdjacencyEnergy() << " " << statisticsCalculator->GetLaplacianTrace() << " " << statisticsCalculator->GetLaplacianEnergy() << " " << statisticsCalculator->GetLaplacianSpectralGap() << " " << statisticsCalculator->GetNormalizedLaplacianTrace() << " " << statisticsCalculator->GetNormalizedLaplacianEnergy() << " " << statisticsCalculator->GetNormalizedLaplacianNumberOf2s() << " " << statisticsCalculator->GetNormalizedLaplacianNumberOf1s() << " " << statisticsCalculator->GetNormalizedLaplacianNumberOf0s() << " " << statisticsCalculator->GetNormalizedLaplacianLowerSlope() << " " << statisticsCalculator->GetNormalizedLaplacianUpperSlope() << " " << statisticsCalculator->GetSmallWorldness() << std::endl; } // end global statistics //create connectivity matrix png if( createConnectivityMatriximage ) { std::string connectivity_png_postfix = "_connectivity"; if( binaryConnectivity ) { connectivity_png_postfix += "_binary"; } else if( rescaleConnectivity ) { connectivity_png_postfix += "_rescaled"; } connectivity_png_postfix += ".png"; /* File format * A png file depicting the binary connectivity matrix */ itk::ConnectomicsNetworkToConnectivityMatrixImageFilter::Pointer filter = itk::ConnectomicsNetworkToConnectivityMatrixImageFilter::New(); filter->SetInputNetwork( network ); filter->SetBinaryConnectivity( binaryConnectivity ); filter->SetRescaleConnectivity( rescaleConnectivity ); filter->Update(); typedef itk::ConnectomicsNetworkToConnectivityMatrixImageFilter::OutputImageType connectivityMatrixImageType; mitk::LocaleSwitch localeSwitch("C"); itk::ImageFileWriter< connectivityMatrixImageType >::Pointer connectivityWriter = itk::ImageFileWriter< connectivityMatrixImageType >::New(); connectivityWriter->SetInput( filter->GetOutput() ); connectivityWriter->SetFileName( outName + connectivity_png_postfix); connectivityWriter->Update(); std::cout << "Connectivity matrix image written."; } // end create connectivity matrix png /* * We can either calculate local indices for specific nodes, or specific regions */ // Create LabelToIndex translation std::map< std::string, int > labelToIdMap; std::vector< mitk::ConnectomicsNetwork::NetworkNode > nodeVector = thresholdedNetwork->GetVectorOfAllNodes(); for(std::size_t loop(0); loop < nodeVector.size(); loop++) { labelToIdMap.insert( std::pair< std::string, int>(nodeVector.at(loop).label, nodeVector.at(loop).id) ); } std::vector< int > degreeVector = thresholdedNetwork->GetDegreeOfNodes(); std::vector< double > ccVector = thresholdedNetwork->GetLocalClusteringCoefficients( ); std::vector< double > bcVector = thresholdedNetwork->GetNodeBetweennessVector( ); // calculate local indices { // only add to header for the first step of the first method if( firstRun ) { localHeaderStream << "Th_method " << "Th_target " << "density"; } double density = statisticsCalculator->GetConnectionDensity(); localDataStream << "\n" << method << " " << targetValue << " " << density; for(unsigned int loop(0); loop < localLabels.size(); loop++ ) { if( network->CheckForLabel(localLabels.at( loop )) ) { if( firstRun ) { localHeaderStream << " " << localLabels.at( loop ) << "_Degree " << localLabels.at( loop ) << "_CC " << localLabels.at( loop ) << "_BC"; } localDataStream << " " << degreeVector.at( labelToIdMap.find( localLabels.at( loop ) )->second ) << " " << ccVector.at( labelToIdMap.find( localLabels.at( loop ) )->second ) << " " << bcVector.at( labelToIdMap.find( localLabels.at( loop ) )->second ); } else { MITK_ERROR << "Illegal label. Label: \"" << localLabels.at( loop ) << "\" not found."; } } } // calculate regional indices { // only add to header for the first step of the first method if( firstRun ) { regionalHeaderStream << "Th_method " << "Th_target " << "density"; } double density = statisticsCalculator->GetConnectionDensity(); regionalDataStream << "\n" << method << " " << targetValue << " " << density; for( parsedRegionsIterator = parsedRegions.begin(); parsedRegionsIterator != parsedRegions.end(); parsedRegionsIterator++ ) { std::vector regionLabelsVector = parsedRegionsIterator->second; std::string regionName = parsedRegionsIterator->first; double sumDegree( 0 ); double sumCC( 0 ); double sumBC( 0 ); double count( 0 ); for( std::size_t loop(0); loop < regionLabelsVector.size(); loop++ ) { if( thresholdedNetwork->CheckForLabel(regionLabelsVector.at( loop )) ) { sumDegree = sumDegree + degreeVector.at( labelToIdMap.find( regionLabelsVector.at( loop ) )->second ); sumCC = sumCC + ccVector.at( labelToIdMap.find( regionLabelsVector.at( loop ) )->second ); sumBC = sumBC + bcVector.at( labelToIdMap.find( regionLabelsVector.at( loop ) )->second ); count = count + 1; } else { MITK_ERROR << "Illegal label. Label: \"" << regionLabelsVector.at( loop ) << "\" not found."; } } // only add to header for the first step of the first method if( firstRun ) { regionalHeaderStream << " " << regionName << "_LocalAverageDegree " << regionName << "_LocalAverageCC " << regionName << "_LocalAverageBC " << regionName << "_NumberOfNodes"; } regionalDataStream << " " << sumDegree / count << " " << sumCC / count << " " << sumBC / count << " " << count; // count number of connections and fibers between regions std::map< std::string, std::vector >::iterator loopRegionsIterator; for (loopRegionsIterator = parsedRegionsIterator; loopRegionsIterator != parsedRegions.end(); loopRegionsIterator++) { int numberConnections(0), possibleConnections(0); double summedFiberCount(0.0); std::vector loopLabelsVector = loopRegionsIterator->second; std::string loopName = loopRegionsIterator->first; for (std::size_t loop(0); loop < regionLabelsVector.size(); loop++) { if (thresholdedNetwork->CheckForLabel(regionLabelsVector.at(loop))) { for (std::size_t innerLoop(0); innerLoop < loopLabelsVector.size(); innerLoop++) { if (thresholdedNetwork->CheckForLabel(loopLabelsVector.at(loop))) { bool exists = thresholdedNetwork->EdgeExists( labelToIdMap.find(regionLabelsVector.at(loop))->second, labelToIdMap.find(loopLabelsVector.at(innerLoop))->second); possibleConnections++; if (exists) { numberConnections++; summedFiberCount += thresholdedNetwork->GetEdge( labelToIdMap.find(regionLabelsVector.at(loop))->second, labelToIdMap.find(loopLabelsVector.at(innerLoop))->second).fiber_count; } } else { MITK_ERROR << "Illegal label. Label: \"" << loopLabelsVector.at(loop) << "\" not found."; } } } else { MITK_ERROR << "Illegal label. Label: \"" << regionLabelsVector.at(loop) << "\" not found."; } } if (firstRun) { regionalHeaderStream << " " << regionName << "_" << loopName << "_Connections " << " " << regionName << "_" << loopName << "_possibleConnections " << " " << regionName << "_" << loopName << "_ConnectingFibers"; } regionalDataStream << " " << numberConnections << " " << possibleConnections << " " << summedFiberCount; } } } firstRun = false; } }// end calculate local averages if( !noGlobalStatistics ) { std::cout << "Writing to " << globalOutName; std::ofstream glocalOutFile( globalOutName.c_str(), ios::out ); if( ! glocalOutFile.is_open() ) { std::string errorMessage = "Could not open " + globalOutName + " for writing."; MITK_ERROR << errorMessage; return EXIT_FAILURE; } glocalOutFile << globalHeaderStream.str() << globalDataStream.str(); glocalOutFile.close(); } if( localLabels.size() > 0 ) { std::cout << "Writing to " << localOutName; std::ofstream localOutFile( localOutName.c_str(), ios::out ); if( ! localOutFile.is_open() ) { std::string errorMessage = "Could not open " + localOutName + " for writing."; MITK_ERROR << errorMessage; return EXIT_FAILURE; } localOutFile << localHeaderStream.str() << localDataStream.str(); localOutFile.close(); } if( parsedRegions.size() > 0 ) { std::cout << "Writing to " << regionalOutName; std::ofstream regionalOutFile( regionalOutName.c_str(), ios::out ); if( ! regionalOutFile.is_open() ) { std::string errorMessage = "Could not open " + regionalOutName + " for writing."; MITK_ERROR << errorMessage; return EXIT_FAILURE; } regionalOutFile << regionalHeaderStream.str() << regionalDataStream.str(); regionalOutFile.close(); } return EXIT_SUCCESS; } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } std::cout << "DONE"; return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/FiberProcessing/FiberClustering.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/FiberProcessing/FiberClustering.cpp index d6938ed7ee..ff1ef600ba 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/FiberProcessing/FiberClustering.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/FiberProcessing/FiberClustering.cpp @@ -1,273 +1,273 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include typedef itksys::SystemTools ist; mitk::FiberBundle::Pointer LoadFib(std::string filename) { std::vector fibInfile = mitk::IOUtil::Load(filename); if( fibInfile.empty() ) std::cout << "File " << filename << " could not be read!"; mitk::BaseData::Pointer baseData = fibInfile.at(0); return dynamic_cast(baseData.GetPointer()); } /*! \brief Spatially cluster fibers */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Fiber Clustering"); parser.setCategory("Fiber Processing"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input:", "input fiber bundle (.fib, .trk, .tck)", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputDirectory, "Output:", "output root", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input:", "input fiber bundle (.fib, .trk, .tck)", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::Directory, "Output:", "output root", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.addArgument("cluster_size", "", mitkCommandLineParser::Int, "Cluster size:", "", 10); parser.addArgument("fiber_points", "", mitkCommandLineParser::Int, "Fiber points:", "", 12); parser.addArgument("min_fibers", "", mitkCommandLineParser::Int, "Min. fibers per cluster:", "", 1); parser.addArgument("max_clusters", "", mitkCommandLineParser::Int, "Max. clusters:", ""); parser.addArgument("merge_clusters", "", mitkCommandLineParser::Float, "Merge clusters:", "Set to 0 to avoid merging and to -1 to use the original cluster size", -1.0); parser.addArgument("output_centroids", "", mitkCommandLineParser::Bool, "Output centroids:", ""); parser.addArgument("only_centroids", "", mitkCommandLineParser::Bool, "Output only centroids:", ""); parser.addArgument("merge_centroids", "", mitkCommandLineParser::Bool, "Merge centroids:", ""); parser.addArgument("metrics", "", mitkCommandLineParser::StringList, "Metrics:", "EU_MEAN (default), EU_STD, EU_MAX, ANAT, MAP, LENGTH"); parser.addArgument("metric_weights", "", mitkCommandLineParser::StringList, "Metric weights:", "add one float weight for each used metric"); - parser.addArgument("input_centroids", "", mitkCommandLineParser::String, "Input centroids:", ""); - parser.addArgument("scalar_map", "", mitkCommandLineParser::String, "Scalar map:", ""); - parser.addArgument("parcellation", "", mitkCommandLineParser::String, "Parcellation:", ""); + parser.addArgument("input_centroids", "", mitkCommandLineParser::String, "Input centroids:", "", us::Any(), true, false, false, mitkCommandLineParser::Input); + parser.addArgument("scalar_map", "", mitkCommandLineParser::String, "Scalar map:", "", us::Any(), true, false, false, mitkCommandLineParser::Input); + parser.addArgument("parcellation", "", mitkCommandLineParser::String, "Parcellation:", "", us::Any(), true, false, false, mitkCommandLineParser::Input); parser.addArgument("file_ending", "", mitkCommandLineParser::String, "File ending:", ""); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; std::string inFileName = us::any_cast(parsedArgs["i"]); std::string out_root = us::any_cast(parsedArgs["o"]); bool only_centroids = false; if (parsedArgs.count("only_centroids")) only_centroids = us::any_cast(parsedArgs["only_centroids"]); bool merge_centroids = false; if (parsedArgs.count("merge_centroids")) merge_centroids = us::any_cast(parsedArgs["merge_centroids"]); int cluster_size = 10; if (parsedArgs.count("cluster_size")) cluster_size = us::any_cast(parsedArgs["cluster_size"]); int fiber_points = 12; if (parsedArgs.count("fiber_points")) fiber_points = us::any_cast(parsedArgs["fiber_points"]); int min_fibers = 1; if (parsedArgs.count("min_fibers")) min_fibers = us::any_cast(parsedArgs["min_fibers"]); int max_clusters = 0; if (parsedArgs.count("max_clusters")) max_clusters = us::any_cast(parsedArgs["max_clusters"]); float merge_clusters = -1.0; if (parsedArgs.count("merge_clusters")) merge_clusters = us::any_cast(parsedArgs["merge_clusters"]); bool output_centroids = false; if (parsedArgs.count("output_centroids")) output_centroids = us::any_cast(parsedArgs["output_centroids"]); std::vector< std::string > metric_strings = {"EU_MEAN"}; if (parsedArgs.count("metrics")) metric_strings = us::any_cast(parsedArgs["metrics"]); std::vector< std::string > metric_weights = {"1.0"}; if (parsedArgs.count("metric_weights")) metric_weights = us::any_cast(parsedArgs["metric_weights"]); std::string input_centroids = ""; if (parsedArgs.count("input_centroids")) input_centroids = us::any_cast(parsedArgs["input_centroids"]); std::string scalar_map = ""; if (parsedArgs.count("scalar_map")) scalar_map = us::any_cast(parsedArgs["scalar_map"]); std::string parcellation = ""; if (parsedArgs.count("parcellation")) parcellation = us::any_cast(parsedArgs["parcellation"]); std::string file_ending = ".fib"; if (parsedArgs.count("file_ending")) file_ending = us::any_cast(parsedArgs["file_ending"]); if (metric_strings.size()!=metric_weights.size()) { MITK_INFO << "Each metric needs an associated metric weight!"; return EXIT_FAILURE; } try { typedef itk::Image< float, 3 > FloatImageType; typedef itk::Image< short, 3 > ShortImageType; mitk::FiberBundle::Pointer fib = LoadFib(inFileName); float max_d = 0; int i=1; std::vector< float > distances; while (max_d < fib->GetGeometry()->GetDiagonalLength()/2) { distances.push_back(cluster_size*i); max_d = cluster_size*i; ++i; } itk::TractClusteringFilter::Pointer clusterer = itk::TractClusteringFilter::New(); clusterer->SetDistances(distances); clusterer->SetTractogram(fib); if (input_centroids!="") { mitk::FiberBundle::Pointer in_centroids = LoadFib(input_centroids); clusterer->SetInCentroids(in_centroids); } std::vector< mitk::ClusteringMetric* > metrics; int mc = 0; for (auto m : metric_strings) { float w = boost::lexical_cast(metric_weights.at(mc)); MITK_INFO << "Metric: " << m << " (w=" << w << ")"; if (m=="EU_MEAN") metrics.push_back({new mitk::ClusteringMetricEuclideanMean()}); else if (m=="EU_STD") metrics.push_back({new mitk::ClusteringMetricEuclideanStd()}); else if (m=="EU_MAX") metrics.push_back({new mitk::ClusteringMetricEuclideanMax()}); else if (m=="ANGLES") metrics.push_back({new mitk::ClusteringMetricInnerAngles()}); else if (m=="LENGTH") metrics.push_back({new mitk::ClusteringMetricLength()}); else if (m=="MAP" && scalar_map!="") { mitk::Image::Pointer mitk_map = mitk::IOUtil::Load(scalar_map); if (mitk_map->GetDimension()==3) { FloatImageType::Pointer itk_map = FloatImageType::New(); mitk::CastToItkImage(mitk_map, itk_map); mitk::ClusteringMetricScalarMap* metric = new mitk::ClusteringMetricScalarMap(); metric->SetImages({itk_map}); metric->SetScale(distances.at(0)); metrics.push_back(metric); } } else if (m=="ANAT" && parcellation!="") { mitk::Image::Pointer mitk_map = mitk::IOUtil::Load(parcellation); if (mitk_map->GetDimension()==3) { ShortImageType::Pointer itk_map = ShortImageType::New(); mitk::CastToItkImage(mitk_map, itk_map); mitk::ClusteringMetricAnatomic* metric = new mitk::ClusteringMetricAnatomic(); metric->SetParcellations({itk_map}); metrics.push_back(metric); } } metrics.back()->SetScale(w); mc++; } if (metrics.empty()) { MITK_INFO << "No metric selected!"; return EXIT_FAILURE; } clusterer->SetMetrics(metrics); clusterer->SetMergeDuplicateThreshold(merge_clusters); clusterer->SetNumPoints(fiber_points); clusterer->SetMaxClusters(max_clusters); clusterer->SetMinClusterSize(min_fibers); clusterer->Update(); std::vector tracts = clusterer->GetOutTractograms(); std::vector centroids = clusterer->GetOutCentroids(); MITK_INFO << "Saving clusters"; std::streambuf *old = cout.rdbuf(); // <-- save std::stringstream ss; std::cout.rdbuf (ss.rdbuf()); // <-- redirect if (!only_centroids) for (unsigned int i=0; i(i) + file_ending); if (output_centroids && !merge_centroids) { for (unsigned int i=0; i(i) + file_ending); } else if (output_centroids) { mitk::FiberBundle::Pointer centroid = mitk::FiberBundle::New(); centroid = centroid->AddBundles(centroids); mitk::IOUtil::Save(centroid, out_root + ist::GetFilenameWithoutExtension(inFileName) + "_Centroids" + file_ending); } std::cout.rdbuf (old); // <-- restore } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/FiberProcessing/FiberDirectionExtraction.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/FiberProcessing/FiberDirectionExtraction.cpp index ade06953be..13c22b3a9e 100755 --- a/Modules/DiffusionImaging/DiffusionCmdApps/FiberProcessing/FiberDirectionExtraction.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/FiberProcessing/FiberDirectionExtraction.cpp @@ -1,183 +1,183 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include #include #include #include #include /*! \brief Extract principal fiber directions from a tractogram */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Fiber Direction Extraction"); parser.setCategory("Fiber Tracking and Processing Methods"); parser.setDescription("Extract principal fiber directions from a tractogram"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input:", "input tractogram (.fib/.trk)", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputDirectory, "Output:", "output root", us::Any(), false); - parser.addArgument("mask", "", mitkCommandLineParser::InputFile, "Mask:", "mask image"); + parser.addArgument("", "i", mitkCommandLineParser::String, "Input:", "input tractogram (.fib/.trk)", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::String, "Output:", "output root", us::Any(), false, false, false, mitkCommandLineParser::Output); + parser.addArgument("mask", "", mitkCommandLineParser::String, "Mask:", "mask image", us::Any(), false, false, false, mitkCommandLineParser::Input); parser.addArgument("athresh", "", mitkCommandLineParser::Float, "Angular threshold:", "angular threshold in degrees. closer fiber directions are regarded as one direction and clustered together.", 25, true); parser.addArgument("peakthresh", "", mitkCommandLineParser::Float, "Peak size threshold:", "peak size threshold relative to largest peak in voxel", 0.2, true); parser.addArgument("only_mask_geometry", "", mitkCommandLineParser::Bool, "Only mask geometry:", "don't use content of mask image, only use it's geometry", false); parser.addArgument("verbose", "", mitkCommandLineParser::Bool, "Verbose:", "output optional and intermediate calculation results"); parser.addArgument("numdirs", "", mitkCommandLineParser::Int, "Max. num. directions:", "maximum number of fibers per voxel", 3, true); parser.addArgument("normalization", "", mitkCommandLineParser::Int, "Normalization method:", "1=global maximum, 2=single vector, 3=voxel-wise maximum", 1); parser.addArgument("file_ending", "", mitkCommandLineParser::String, "Image type:", ".nrrd, .nii, .nii.gz (default)"); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; std::string fibFile = us::any_cast(parsedArgs["i"]); std::string maskImage(""); if (parsedArgs.count("mask")) maskImage = us::any_cast(parsedArgs["mask"]); float peakThreshold = 0.2; if (parsedArgs.count("peakthresh")) peakThreshold = us::any_cast(parsedArgs["peakthresh"]); float angularThreshold = 25; if (parsedArgs.count("athresh")) angularThreshold = us::any_cast(parsedArgs["athresh"]); std::string outRoot = us::any_cast(parsedArgs["o"]); bool verbose = false; if (parsedArgs.count("verbose")) verbose = us::any_cast(parsedArgs["verbose"]); bool only_mask_geometry = false; if (parsedArgs.count("only_mask_geometry")) only_mask_geometry = us::any_cast(parsedArgs["only_mask_geometry"]); int maxNumDirs = 3; if (parsedArgs.count("numdirs")) maxNumDirs = us::any_cast(parsedArgs["numdirs"]); int normalization = 1; if (parsedArgs.count("normalization")) normalization = us::any_cast(parsedArgs["normalization"]); std::string file_ending = ".nii.gz"; if (parsedArgs.count("file_ending")) file_ending = us::any_cast(parsedArgs["file_ending"]); try { typedef itk::Image ItkUcharImgType; // load fiber bundle mitk::FiberBundle::Pointer inputTractogram = mitk::IOUtil::Load(fibFile); // load/create mask image ItkUcharImgType::Pointer itkMaskImage = nullptr; if (maskImage.compare("")!=0) { std::cout << "Using mask image"; itkMaskImage = ItkUcharImgType::New(); mitk::Image::Pointer mitkMaskImage = mitk::IOUtil::Load(maskImage); mitk::CastToItkImage(mitkMaskImage, itkMaskImage); } // extract directions from fiber bundle itk::TractsToVectorImageFilter::Pointer fOdfFilter = itk::TractsToVectorImageFilter::New(); fOdfFilter->SetFiberBundle(inputTractogram); fOdfFilter->SetOnlyUseMaskGeometry(only_mask_geometry); fOdfFilter->SetMaskImage(itkMaskImage); fOdfFilter->SetAngularThreshold(cos(angularThreshold*itk::Math::pi/180)); switch (normalization) { case 1: fOdfFilter->SetNormalizationMethod(itk::TractsToVectorImageFilter::NormalizationMethods::GLOBAL_MAX); break; case 2: fOdfFilter->SetNormalizationMethod(itk::TractsToVectorImageFilter::NormalizationMethods::SINGLE_VEC_NORM); break; case 3: fOdfFilter->SetNormalizationMethod(itk::TractsToVectorImageFilter::NormalizationMethods::MAX_VEC_NORM); break; } fOdfFilter->SetSizeThreshold(peakThreshold); fOdfFilter->SetMaxNumDirections(maxNumDirs); fOdfFilter->Update(); mitk::LocaleSwitch localeSwitch("C"); { itk::TractsToVectorImageFilter::ItkDirectionImageType::Pointer itkImg = fOdfFilter->GetDirectionImage(); typedef itk::ImageFileWriter< itk::TractsToVectorImageFilter::ItkDirectionImageType > WriterType; WriterType::Pointer writer = WriterType::New(); std::string outfilename = outRoot; outfilename.append("_DIRECTIONS"); outfilename.append(file_ending); writer->SetFileName(outfilename.c_str()); writer->SetInput(itkImg); writer->Update(); } if (verbose) { // write num direction image ItkUcharImgType::Pointer numDirImage = fOdfFilter->GetNumDirectionsImage(); typedef itk::ImageFileWriter< ItkUcharImgType > WriterType; WriterType::Pointer writer = WriterType::New(); std::string outfilename = outRoot; outfilename.append("_NUM_DIRECTIONS"); outfilename.append(file_ending); writer->SetFileName(outfilename.c_str()); writer->SetInput(numDirImage); writer->Update(); } } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/FiberProcessing/FiberProcessing.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/FiberProcessing/FiberProcessing.cpp index 4249633d22..0e5cab1f50 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/FiberProcessing/FiberProcessing.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/FiberProcessing/FiberProcessing.cpp @@ -1,259 +1,259 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include mitk::FiberBundle::Pointer LoadFib(std::string filename) { std::vector fibInfile = mitk::IOUtil::Load(filename); if( fibInfile.empty() ) std::cout << "File " << filename << " could not be read!"; mitk::BaseData::Pointer baseData = fibInfile.at(0); return dynamic_cast(baseData.GetPointer()); } /*! \brief Modify input tractogram: fiber resampling, compression, pruning and transformation. */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Fiber Processing"); parser.setCategory("Fiber Tracking and Processing Methods"); parser.setDescription("Modify input tractogram: fiber resampling, compression, pruning and transformation."); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); parser.beginGroup("1. Mandatory arguments:"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input:", "Input fiber bundle (.fib, .trk, .tck)", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output:", "Output fiber bundle (.fib, .trk)", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input:", "Input fiber bundle (.fib, .trk, .tck)", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Output:", "Output fiber bundle (.fib, .trk)", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.endGroup(); parser.beginGroup("2. Resampling:"); parser.addArgument("spline_resampling", "", mitkCommandLineParser::Float, "Spline resampling:", "Resample fiber using splines with the given point distance (in mm)"); parser.addArgument("linear_resampling", "", mitkCommandLineParser::Float, "Linear resampling:", "Resample fiber linearly with the given point distance (in mm)"); parser.addArgument("num_resampling", "", mitkCommandLineParser::Int, "Num. fiber points resampling:", "Resample all fibers to the given number of points"); parser.addArgument("compress", "", mitkCommandLineParser::Float, "Compress:", "Compress fiber using the given error threshold (in mm)"); parser.endGroup(); parser.beginGroup("3. Filtering:"); parser.addArgument("min_length", "", mitkCommandLineParser::Float, "Minimum length:", "Minimum fiber length (in mm)"); parser.addArgument("max_length", "", mitkCommandLineParser::Float, "Maximum length:", "Maximum fiber length (in mm)"); parser.addArgument("max_angle", "", mitkCommandLineParser::Float, "Maximum angle:", "Maximum angular STDEV over 1cm (in degree)"); parser.addArgument("remove", "", mitkCommandLineParser::Bool, "Remove fibers exceeding curvature threshold:", "If false, only the high curvature parts are removed"); parser.addArgument("subsample", "", mitkCommandLineParser::Float, "Randomly select fraction of streamlines:", "Randomly select the specified fraction of streamlines from the input tractogram"); parser.addArgument("random_subsample", "", mitkCommandLineParser::Bool, "Randomly seed subsampling:", "Randomly seed subsampling. Else, use seed 0."); parser.endGroup(); parser.beginGroup("4. Transformation:"); parser.addArgument("mirror", "", mitkCommandLineParser::Int, "Invert coordinates:", "Invert fiber coordinates XYZ (e.g. 010 to invert y-coordinate of each fiber point)"); parser.addArgument("rotate_x", "", mitkCommandLineParser::Float, "Rotate x-axis:", "Rotate around x-axis (in deg)"); parser.addArgument("rotate_y", "", mitkCommandLineParser::Float, "Rotate y-axis:", "Rotate around y-axis (in deg)"); parser.addArgument("rotate_z", "", mitkCommandLineParser::Float, "Rotate z-axis:", "Rotate around z-axis (in deg)"); parser.addArgument("scale_x", "", mitkCommandLineParser::Float, "Scale x-axis:", "Scale in direction of x-axis"); parser.addArgument("scale_y", "", mitkCommandLineParser::Float, "Scale y-axis:", "Scale in direction of y-axis"); parser.addArgument("scale_z", "", mitkCommandLineParser::Float, "Scale z-axis", "Scale in direction of z-axis"); parser.addArgument("translate_x", "", mitkCommandLineParser::Float, "Translate x-axis:", "Translate in direction of x-axis (in mm)"); parser.addArgument("translate_y", "", mitkCommandLineParser::Float, "Translate y-axis:", "Translate in direction of y-axis (in mm)"); parser.addArgument("translate_z", "", mitkCommandLineParser::Float, "Translate z-axis:", "Translate in direction of z-axis (in mm)"); parser.endGroup(); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; bool remove = false; if (parsedArgs.count("remove")) remove = us::any_cast(parsedArgs["remove"]); bool random_subsample = false; if (parsedArgs.count("random_subsample")) random_subsample = us::any_cast(parsedArgs["random_subsample"]); float spline_resampling = -1; if (parsedArgs.count("spline_resampling")) spline_resampling = us::any_cast(parsedArgs["spline_resampling"]); float linear_resampling = -1; if (parsedArgs.count("linear_resampling")) linear_resampling = us::any_cast(parsedArgs["linear_resampling"]); int num_resampling = -1; if (parsedArgs.count("num_resampling")) num_resampling = us::any_cast(parsedArgs["num_resampling"]); float subsample = -1; if (parsedArgs.count("subsample")) subsample = us::any_cast(parsedArgs["subsample"]); float compress = -1; if (parsedArgs.count("compress")) compress = us::any_cast(parsedArgs["compress"]); float minFiberLength = -1; if (parsedArgs.count("min_length")) minFiberLength = us::any_cast(parsedArgs["min_length"]); float maxFiberLength = -1; if (parsedArgs.count("max_length")) maxFiberLength = us::any_cast(parsedArgs["max_length"]); float maxAngularDev = -1; if (parsedArgs.count("max_angle")) maxAngularDev = us::any_cast(parsedArgs["max_angle"]); int axis = 0; if (parsedArgs.count("mirror")) axis = us::any_cast(parsedArgs["mirror"]); float rotateX = 0; if (parsedArgs.count("rotate_x")) rotateX = us::any_cast(parsedArgs["rotate_x"]); float rotateY = 0; if (parsedArgs.count("rotate_y")) rotateY = us::any_cast(parsedArgs["rotate_y"]); float rotateZ = 0; if (parsedArgs.count("rotate_z")) rotateZ = us::any_cast(parsedArgs["rotate_z"]); float scaleX = 0; if (parsedArgs.count("scale_x")) scaleX = us::any_cast(parsedArgs["scale_x"]); float scaleY = 0; if (parsedArgs.count("scale_y")) scaleY = us::any_cast(parsedArgs["scale_y"]); float scaleZ = 0; if (parsedArgs.count("scale_z")) scaleZ = us::any_cast(parsedArgs["scale_z"]); float translateX = 0; if (parsedArgs.count("translate_x")) translateX = us::any_cast(parsedArgs["translate_x"]); float translateY = 0; if (parsedArgs.count("translate_y")) translateY = us::any_cast(parsedArgs["translate_y"]); float translateZ = 0; if (parsedArgs.count("translate_z")) translateZ = us::any_cast(parsedArgs["translate_z"]); std::string inFileName = us::any_cast(parsedArgs["i"]); std::string outFileName = us::any_cast(parsedArgs["o"]); try { mitk::FiberBundle::Pointer fib = LoadFib(inFileName); if (subsample>0) fib = fib->SubsampleFibers(subsample, random_subsample); if (maxAngularDev>0) { auto filter = itk::FiberCurvatureFilter::New(); filter->SetInputFiberBundle(fib); filter->SetAngularDeviation(maxAngularDev); filter->SetDistance(10); filter->SetRemoveFibers(remove); filter->Update(); fib = filter->GetOutputFiberBundle(); } if (minFiberLength>0) fib->RemoveShortFibers(minFiberLength); if (maxFiberLength>0) fib->RemoveLongFibers(maxFiberLength); if (spline_resampling>0) fib->ResampleSpline(spline_resampling); if (linear_resampling>0) fib->ResampleLinear(linear_resampling); if (num_resampling>0) fib->ResampleToNumPoints(num_resampling); if (compress>0) fib->Compress(compress); if (axis/100==1) fib->MirrorFibers(0); if ((axis%100)/10==1) fib->MirrorFibers(1); if (axis%10==1) fib->MirrorFibers(2); if (rotateX > 0 || rotateY > 0 || rotateZ > 0){ std::cout << "Rotate " << rotateX << " " << rotateY << " " << rotateZ; fib->RotateAroundAxis(rotateX, rotateY, rotateZ); } if (translateX > 0 || translateY > 0 || translateZ > 0){ fib->TranslateFibers(translateX, translateY, translateZ); } if (scaleX > 0 || scaleY > 0 || scaleZ > 0) fib->ScaleFibers(scaleX, scaleY, scaleZ); mitk::IOUtil::Save(fib.GetPointer(), outFileName ); } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/FiberProcessing/FitFibersToImage.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/FiberProcessing/FitFibersToImage.cpp index b841f73ee0..03d526e8cd 100755 --- a/Modules/DiffusionImaging/DiffusionCmdApps/FiberProcessing/FitFibersToImage.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/FiberProcessing/FitFibersToImage.cpp @@ -1,300 +1,300 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef itk::Point PointType4; typedef itk::Image< float, 4 > PeakImgType; /*! \brief Fits the tractogram to the input peak image by assigning a weight to each fiber (similar to https://doi.org/10.1016/j.neuroimage.2015.06.092). */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Fit Fibers To Image"); parser.setCategory("Fiber Tracking and Processing Methods"); parser.setDescription("Assigns a weight to each fiber in order to optimally explain the input peak image"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i1", mitkCommandLineParser::StringList, "Input tractograms:", "input tractograms (.fib, vtk ascii file format)", us::Any(), false); - parser.addArgument("", "i2", mitkCommandLineParser::InputFile, "Input image:", "input image", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputDirectory, "Output:", "output root", us::Any(), false); + parser.addArgument("", "i1", mitkCommandLineParser::StringList, "Input tractograms:", "input tractograms (files or folder)", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "i2", mitkCommandLineParser::String, "Input image:", "input image", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::String, "Output:", "output root", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.addArgument("max_iter", "", mitkCommandLineParser::Int, "Max. iterations:", "maximum number of optimizer iterations", 20); parser.addArgument("bundle_based", "", mitkCommandLineParser::Bool, "Bundle based fit:", "fit one weight per input tractogram/bundle, not for each fiber", false); parser.addArgument("min_g", "", mitkCommandLineParser::Float, "Min. g:", "lower termination threshold for gradient magnitude", 1e-5); parser.addArgument("lambda", "", mitkCommandLineParser::Float, "Lambda:", "modifier for regularization", 0.1); parser.addArgument("save_res", "", mitkCommandLineParser::Bool, "Save Residuals:", "save residual images", false); parser.addArgument("save_weights", "", mitkCommandLineParser::Bool, "Save Weights:", "save fiber weights in a separate text file", false); parser.addArgument("filter_outliers", "", mitkCommandLineParser::Bool, "Filter outliers:", "perform second optimization run with an upper weight bound based on the first weight estimation (99% quantile)", false); parser.addArgument("join_tracts", "", mitkCommandLineParser::Bool, "Join output tracts:", "outout tracts are merged into a single tractogram", false); parser.addArgument("regu", "", mitkCommandLineParser::String, "Regularization:", "MSM, Variance, VoxelVariance (default), Lasso, GroupLasso, GroupVariance, NONE"); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; mitkCommandLineParser::StringContainerType fib_files = us::any_cast(parsedArgs["i1"]); std::string input_image_name = us::any_cast(parsedArgs["i2"]); std::string outRoot = us::any_cast(parsedArgs["o"]); bool single_fib = true; if (parsedArgs.count("bundle_based")) single_fib = !us::any_cast(parsedArgs["bundle_based"]); bool save_residuals = false; if (parsedArgs.count("save_res")) save_residuals = us::any_cast(parsedArgs["save_res"]); bool save_weights = false; if (parsedArgs.count("save_weights")) save_weights = us::any_cast(parsedArgs["save_weights"]); std::string regu = "VoxelVariance"; if (parsedArgs.count("regu")) regu = us::any_cast(parsedArgs["regu"]); bool join_tracts = false; if (parsedArgs.count("join_tracts")) join_tracts = us::any_cast(parsedArgs["join_tracts"]); int max_iter = 20; if (parsedArgs.count("max_iter")) max_iter = us::any_cast(parsedArgs["max_iter"]); float g_tol = 1e-5; if (parsedArgs.count("min_g")) g_tol = us::any_cast(parsedArgs["min_g"]); float lambda = 0.1; if (parsedArgs.count("lambda")) lambda = us::any_cast(parsedArgs["lambda"]); bool filter_outliers = false; if (parsedArgs.count("filter_outliers")) filter_outliers = us::any_cast(parsedArgs["filter_outliers"]); try { MITK_INFO << "Loading data"; mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Peak Image", "Fiberbundles"}, {}); std::vector< std::string > fib_names; auto input_tracts = mitk::DiffusionDataIOHelper::load_fibs(fib_files, &fib_names); itk::FitFibersToImageFilter::Pointer fitter = itk::FitFibersToImageFilter::New(); mitk::BaseData::Pointer inputData = mitk::IOUtil::Load(input_image_name, &functor)[0].GetPointer(); mitk::Image::Pointer mitk_image = dynamic_cast(inputData.GetPointer()); mitk::PeakImage::Pointer mitk_peak_image = dynamic_cast(inputData.GetPointer()); if (mitk_peak_image.IsNotNull()) { typedef mitk::ImageToItk< mitk::PeakImage::ItkPeakImageType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(mitk_peak_image); caster->Update(); mitk::PeakImage::ItkPeakImageType::Pointer peak_image = caster->GetOutput(); fitter->SetPeakImage(peak_image); } else if (mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(mitk_image)) { fitter->SetDiffImage(mitk::DiffusionPropertyHelper::GetItkVectorImage(mitk_image)); mitk::TensorModel<>* model = new mitk::TensorModel<>(); model->SetBvalue(1000); model->SetDiffusivity1(0.0010); model->SetDiffusivity2(0.00015); model->SetDiffusivity3(0.00015); model->SetGradientList(mitk::DiffusionPropertyHelper::GetGradientContainer(mitk_image)); fitter->SetSignalModel(model); } else if (mitk_image->GetDimension()==3) { itk::FitFibersToImageFilter::DoubleImgType::Pointer scalar_image = itk::FitFibersToImageFilter::DoubleImgType::New(); mitk::CastToItkImage(mitk_image, scalar_image); fitter->SetScalarImage(scalar_image); } else { MITK_INFO << "Input image invalid. Valid options are peak image, 3D scalar image or raw diffusion-weighted image."; return EXIT_FAILURE; } fitter->SetTractograms(input_tracts); fitter->SetFitIndividualFibers(single_fib); fitter->SetMaxIterations(max_iter); fitter->SetGradientTolerance(g_tol); fitter->SetLambda(lambda); fitter->SetFilterOutliers(filter_outliers); if (regu=="MSM") fitter->SetRegularization(VnlCostFunction::REGU::MSM); else if (regu=="Variance") fitter->SetRegularization(VnlCostFunction::REGU::VARIANCE); else if (regu=="Lasso") fitter->SetRegularization(VnlCostFunction::REGU::LASSO); else if (regu=="VoxelVariance") fitter->SetRegularization(VnlCostFunction::REGU::VOXEL_VARIANCE); else if (regu=="GroupLasso") fitter->SetRegularization(VnlCostFunction::REGU::GROUP_LASSO); else if (regu=="GroupVariance") fitter->SetRegularization(VnlCostFunction::REGU::GROUP_VARIANCE); else if (regu=="NONE") fitter->SetRegularization(VnlCostFunction::REGU::NONE); fitter->Update(); mitk::LocaleSwitch localeSwitch("C"); if (save_residuals && mitk_peak_image.IsNotNull()) { itk::ImageFileWriter< PeakImgType >::Pointer writer = itk::ImageFileWriter< PeakImgType >::New(); writer->SetInput(fitter->GetFittedImage()); writer->SetFileName(outRoot + "_fitted.nii.gz"); writer->Update(); writer->SetInput(fitter->GetResidualImage()); writer->SetFileName(outRoot + "_residual.nii.gz"); writer->Update(); writer->SetInput(fitter->GetOverexplainedImage()); writer->SetFileName(outRoot + "_overexplained.nii.gz"); writer->Update(); writer->SetInput(fitter->GetUnderexplainedImage()); writer->SetFileName(outRoot + "_underexplained.nii.gz"); writer->Update(); } else if (save_residuals && mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(mitk_image)) { { mitk::Image::Pointer outImage = mitk::GrabItkImageMemory( fitter->GetFittedImageDiff().GetPointer() ); mitk::DiffusionPropertyHelper::CopyProperties(mitk_image, outImage, true); mitk::DiffusionPropertyHelper::InitializeImage( outImage ); mitk::IOUtil::Save(outImage, "application/vnd.mitk.nii.gz", outRoot + "_fitted_image.nii.gz"); } { mitk::Image::Pointer outImage = mitk::GrabItkImageMemory( fitter->GetResidualImageDiff().GetPointer() ); mitk::DiffusionPropertyHelper::CopyProperties(mitk_image, outImage, true); mitk::DiffusionPropertyHelper::InitializeImage( outImage ); mitk::IOUtil::Save(outImage, "application/vnd.mitk.nii.gz", outRoot + "_residual_image.nii.gz"); } { mitk::Image::Pointer outImage = mitk::GrabItkImageMemory( fitter->GetOverexplainedImageDiff().GetPointer() ); mitk::DiffusionPropertyHelper::CopyProperties(mitk_image, outImage, true); mitk::DiffusionPropertyHelper::InitializeImage( outImage ); mitk::IOUtil::Save(outImage, "application/vnd.mitk.nii.gz", outRoot + "_overexplained_image.nii.gz"); } { mitk::Image::Pointer outImage = mitk::GrabItkImageMemory( fitter->GetUnderexplainedImageDiff().GetPointer() ); mitk::DiffusionPropertyHelper::CopyProperties(mitk_image, outImage, true); mitk::DiffusionPropertyHelper::InitializeImage( outImage ); mitk::IOUtil::Save(outImage, "application/vnd.mitk.nii.gz", outRoot + "_underexplained_image.nii.gz"); } } else if (save_residuals) { itk::ImageFileWriter< itk::FitFibersToImageFilter::DoubleImgType >::Pointer writer = itk::ImageFileWriter< itk::FitFibersToImageFilter::DoubleImgType >::New(); writer->SetInput(fitter->GetFittedImageScalar()); writer->SetFileName(outRoot + "_fitted_image.nii.gz"); writer->Update(); writer->SetInput(fitter->GetResidualImageScalar()); writer->SetFileName(outRoot + "_residual_image.nii.gz"); writer->Update(); writer->SetInput(fitter->GetOverexplainedImageScalar()); writer->SetFileName(outRoot + "_overexplained_image.nii.gz"); writer->Update(); writer->SetInput(fitter->GetUnderexplainedImageScalar()); writer->SetFileName(outRoot + "_underexplained_image.nii.gz"); writer->Update(); } std::vector< mitk::FiberBundle::Pointer > output_tracts = fitter->GetTractograms(); if (!join_tracts) { for (unsigned int bundle=0; bundleGetNumFibers(); ++f) logfile << output_tracts.at(bundle)->GetFiberWeight(f) << "\n"; logfile.close(); } } } else { mitk::FiberBundle::Pointer out = mitk::FiberBundle::New(); out = out->AddBundles(output_tracts); out->ColorFibersByFiberWeights(false, true); mitk::IOUtil::Save(out, outRoot + "_fitted.fib"); if (save_weights) { ofstream logfile; logfile.open (outRoot + "_weights.txt"); for (unsigned int f=0; fGetNumFibers(); ++f) logfile << out->GetFiberWeight(f) << "\n"; logfile.close(); } } } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Fiberfox/Fiberfox.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Fiberfox/Fiberfox.cpp index 01b3af6749..7a49eeba83 100755 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Fiberfox/Fiberfox.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Fiberfox/Fiberfox.cpp @@ -1,263 +1,263 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include #include using namespace mitk; /*! * \brief Command line interface to Fiberfox. * Simulate a diffusion-weighted image from a tractogram using the specified parameter file. */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Fiberfox"); parser.setCategory("Diffusion Simulation Tools"); parser.setContributor("MIC"); parser.setDescription("Command line interface to Fiberfox." " Simulate a diffusion-weighted image from a tractogram using the specified parameter file."); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output root:", "output root", us::Any(), false); - parser.addArgument("", "i", mitkCommandLineParser::String, "Input:", "Input tractogram or diffusion-weighted image.", us::Any(), false); - parser.addArgument("parameters", "p", mitkCommandLineParser::InputFile, "Parameter file:", "fiberfox parameter file (.ffp)", us::Any(), false); - parser.addArgument("template", "t", mitkCommandLineParser::String, "Template image:", "Use parameters of the template diffusion-weighted image.", us::Any()); + parser.addArgument("", "o", mitkCommandLineParser::String, "Output root:", "output root", us::Any(), false, false, false, mitkCommandLineParser::Output); + parser.addArgument("", "i", mitkCommandLineParser::String, "Input:", "Input tractogram or diffusion-weighted image.", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("parameters", "p", mitkCommandLineParser::File, "Parameter file:", "fiberfox parameter file (.ffp)", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("template", "t", mitkCommandLineParser::String, "Template image:", "Use parameters of the template image.", us::Any(), true, false, false, mitkCommandLineParser::Input); parser.addArgument("verbose", "v", mitkCommandLineParser::Bool, "Output additional images:", "output volume fraction images etc.", us::Any()); parser.addArgument("dont_apply_direction_matrix", "", mitkCommandLineParser::Bool, "Don't apply direction matrix:", "Don't rotate gradients by image direction matrix.", us::Any()); parser.addArgument("fix_seed", "", mitkCommandLineParser::Bool, "Use fix random seed:", "Always use same sequence of random numbers.", us::Any()); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) { return EXIT_FAILURE; } std::string outName = us::any_cast(parsedArgs["o"]); std::string paramName = us::any_cast(parsedArgs["parameters"]); std::string input=""; if (parsedArgs.count("i")) input = us::any_cast(parsedArgs["i"]); bool fix_seed = false; if (parsedArgs.count("fix_seed")) fix_seed = us::any_cast(parsedArgs["fix_seed"]); bool verbose = false; if (parsedArgs.count("verbose")) verbose = us::any_cast(parsedArgs["verbose"]); bool apply_direction_matrix = true; if (parsedArgs.count("dont_apply_direction_matrix")) apply_direction_matrix = false; FiberfoxParameters parameters; parameters.LoadParameters(paramName, fix_seed); // Test if /path/dir is an existing directory: std::string file_extension = ""; if( itksys::SystemTools::FileIsDirectory( outName ) ) { while( *(--(outName.cend())) == '/') { outName.pop_back(); } outName = outName + '/'; parameters.m_Misc.m_OutputPath = outName; outName = outName + parameters.m_Misc.m_OutputPrefix; // using default m_OutputPrefix as initialized. } else { // outName is NOT an existing directory, so we need to remove all trailing slashes: while( *(--(outName.cend())) == '/') { outName.pop_back(); } // now split up the given outName into directory and (prefix of) filename: if( ! itksys::SystemTools::GetFilenamePath( outName ).empty() && itksys::SystemTools::FileIsDirectory(itksys::SystemTools::GetFilenamePath( outName ) ) ) { parameters.m_Misc.m_OutputPath = itksys::SystemTools::GetFilenamePath( outName ) + '/'; } else { parameters.m_Misc.m_OutputPath = itksys::SystemTools::GetCurrentWorkingDirectory() + '/'; } file_extension = itksys::SystemTools::GetFilenameExtension(outName); if( ! itksys::SystemTools::GetFilenameWithoutExtension( outName ).empty() ) { parameters.m_Misc.m_OutputPrefix = itksys::SystemTools::GetFilenameWithoutExtension( outName ); } else { parameters.m_Misc.m_OutputPrefix = "fiberfox"; } outName = parameters.m_Misc.m_OutputPath + parameters.m_Misc.m_OutputPrefix; } mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Diffusion Weighted Images", "Fiberbundles"}, {}); mitk::BaseData::Pointer inputData = mitk::IOUtil::Load(input, &functor)[0]; itk::TractsToDWIImageFilter< short >::Pointer tractsToDwiFilter = itk::TractsToDWIImageFilter< short >::New(); if ( dynamic_cast(inputData.GetPointer()) ) // simulate dataset from fibers { tractsToDwiFilter->SetFiberBundle(dynamic_cast(inputData.GetPointer())); if (parsedArgs.count("template")) { MITK_INFO << "Loading template image"; typedef itk::VectorImage< short, 3 > ItkDwiType; typedef itk::Image< short, 3 > ItkImageType; mitk::BaseData::Pointer templateData = mitk::IOUtil::Load(us::any_cast(parsedArgs["template"]), &functor)[0]; mitk::Image::Pointer template_image = dynamic_cast(templateData.GetPointer()); if (mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(template_image)) { ItkDwiType::Pointer itkVectorImagePointer = mitk::DiffusionPropertyHelper::GetItkVectorImage(template_image); parameters.m_SignalGen.m_ImageRegion = itkVectorImagePointer->GetLargestPossibleRegion(); parameters.m_SignalGen.m_ImageSpacing = itkVectorImagePointer->GetSpacing(); parameters.m_SignalGen.m_ImageOrigin = itkVectorImagePointer->GetOrigin(); parameters.m_SignalGen.m_ImageDirection = itkVectorImagePointer->GetDirection(); parameters.SetBvalue(mitk::DiffusionPropertyHelper::GetReferenceBValue(template_image)); parameters.SetGradienDirections(mitk::DiffusionPropertyHelper::GetOriginalGradientContainer(template_image)); } else { ItkImageType::Pointer itkImagePointer = ItkImageType::New(); mitk::CastToItkImage(template_image, itkImagePointer); parameters.m_SignalGen.m_ImageRegion = itkImagePointer->GetLargestPossibleRegion(); parameters.m_SignalGen.m_ImageSpacing = itkImagePointer->GetSpacing(); parameters.m_SignalGen.m_ImageOrigin = itkImagePointer->GetOrigin(); parameters.m_SignalGen.m_ImageDirection = itkImagePointer->GetDirection(); } } } else if ( dynamic_cast(inputData.GetPointer()) ) // add artifacts to existing image { typedef itk::VectorImage< short, 3 > ItkDwiType; mitk::Image::Pointer diffImg = dynamic_cast(inputData.GetPointer()); ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(diffImg, itkVectorImagePointer); parameters.m_SignalGen.m_SignalScale = 1; parameters.m_SignalGen.m_ImageRegion = itkVectorImagePointer->GetLargestPossibleRegion(); parameters.m_SignalGen.m_ImageSpacing = itkVectorImagePointer->GetSpacing(); parameters.m_SignalGen.m_ImageOrigin = itkVectorImagePointer->GetOrigin(); parameters.m_SignalGen.m_ImageDirection = itkVectorImagePointer->GetDirection(); parameters.SetBvalue(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); parameters.SetGradienDirections(mitk::DiffusionPropertyHelper::GetOriginalGradientContainer(diffImg)); tractsToDwiFilter->SetInputImage(itkVectorImagePointer); } if (verbose) { MITK_DEBUG << outName << ".ffp"; parameters.SaveParameters(outName+".ffp"); } if (apply_direction_matrix) { MITK_INFO << "Applying direction matrix to gradient directions."; parameters.ApplyDirectionMatrix(); } tractsToDwiFilter->SetParameters(parameters); tractsToDwiFilter->SetUseConstantRandSeed(fix_seed); tractsToDwiFilter->Update(); mitk::Image::Pointer image = mitk::GrabItkImageMemory(tractsToDwiFilter->GetOutput()); if (apply_direction_matrix) mitk::DiffusionPropertyHelper::SetGradientContainer(image, parameters.m_SignalGen.GetItkGradientContainer()); else mitk::DiffusionPropertyHelper::SetOriginalGradientContainer(image, parameters.m_SignalGen.GetItkGradientContainer()); mitk::DiffusionPropertyHelper::SetReferenceBValue(image, parameters.m_SignalGen.GetBvalue()); mitk::DiffusionPropertyHelper::InitializeImage(image); if (file_extension=="") mitk::IOUtil::Save(image, "DWI_NIFTI", outName+".nii.gz"); else if (file_extension==".nii" || file_extension==".nii.gz") mitk::IOUtil::Save(image, "DWI_NIFTI", outName+file_extension); else mitk::IOUtil::Save(image, outName+file_extension); if (verbose) { std::vector< itk::TractsToDWIImageFilter< short >::ItkDoubleImgType::Pointer > volumeFractions = tractsToDwiFilter->GetVolumeFractions(); for (unsigned int k=0; kInitializeByItk(volumeFractions.at(k).GetPointer()); image->SetVolume(volumeFractions.at(k)->GetBufferPointer()); mitk::IOUtil::Save(image, outName+"_Compartment"+boost::lexical_cast(k+1)+".nii.gz"); } if (tractsToDwiFilter->GetPhaseImage().IsNotNull()) { mitk::Image::Pointer image = mitk::Image::New(); itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer itkPhase = tractsToDwiFilter->GetPhaseImage(); image = mitk::GrabItkImageMemory( itkPhase.GetPointer() ); mitk::IOUtil::Save(image, outName+"_Phase.nii.gz"); } if (tractsToDwiFilter->GetKspaceImage().IsNotNull()) { mitk::Image::Pointer image = mitk::Image::New(); itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer itkImage = tractsToDwiFilter->GetKspaceImage(); image = mitk::GrabItkImageMemory( itkImage.GetPointer() ); mitk::IOUtil::Save(image, outName+"_kSpace.nii.gz"); } int c = 1; std::vector< itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer > output_real = tractsToDwiFilter->GetOutputImagesReal(); for (auto real : output_real) { mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(real.GetPointer()); image->SetVolume(real->GetBufferPointer()); mitk::IOUtil::Save(image, outName+"_Coil-"+boost::lexical_cast(c)+"-real.nii.gz"); ++c; } c = 1; std::vector< itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer > output_imag = tractsToDwiFilter->GetOutputImagesImag(); for (auto imag : output_imag) { mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(imag.GetPointer()); image->SetVolume(imag->GetBufferPointer()); mitk::IOUtil::Save(image, outName+"_Coil-"+boost::lexical_cast(c)+"-imag.nii.gz"); ++c; } } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/CopyGeometry.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/CopyGeometry.cpp index ab62956122..c38add595d 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/CopyGeometry.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/CopyGeometry.cpp @@ -1,114 +1,114 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include "mitkCommandLineParser.h" /*! \brief Copies transformation matrix of one image to another */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Copy Geometry"); parser.setCategory("Preprocessing Tools"); parser.setDescription("Copies transformation matrix of one image to another"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input:", "input image", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output:", "output image", us::Any(), false); - parser.addArgument("ref", "r", mitkCommandLineParser::InputFile, "Reference:", "reference image", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input:", "input image", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Output:", "output image", us::Any(), false, false, false, mitkCommandLineParser::Output); + parser.addArgument("ref", "r", mitkCommandLineParser::File, "Reference:", "reference image", us::Any(), false, false, false, mitkCommandLineParser::Input); parser.addArgument("alignCentroid", "a", mitkCommandLineParser::Bool, "align centroids", "align centroids", us::Any(), true); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; // mandatory arguments std::string imageName = us::any_cast(parsedArgs["i"]); std::string refImage = us::any_cast(parsedArgs["ref"]); std::string outImage = us::any_cast(parsedArgs["o"]); bool originOnly = false; // Show a help message if ( parsedArgs.count("alignCentroid") || parsedArgs.count("a")) { originOnly = true; } try { mitk::Image::Pointer source = mitk::IOUtil::Load(refImage); mitk::Image::Pointer target = mitk::IOUtil::Load(imageName); if (originOnly) { // Calculate correction to align centroids double c[3]; c[0] = source->GetGeometry()->GetOrigin()[0] + source->GetGeometry()->GetExtent(0)/2.0 - target->GetGeometry()->GetOrigin()[0] - target->GetGeometry()->GetExtent(0)/2.0; c[1] = source->GetGeometry()->GetOrigin()[1] + source->GetGeometry()->GetExtent(1)/2.0 - target->GetGeometry()->GetOrigin()[1] - target->GetGeometry()->GetExtent(1)/2.0; c[2] = source->GetGeometry()->GetOrigin()[2] + source->GetGeometry()->GetExtent(2)/2.0 - target->GetGeometry()->GetOrigin()[2] - target->GetGeometry()->GetExtent(2)/2.0; double newOrigin[3]; newOrigin[0] = target->GetGeometry()->GetOrigin()[0] +c[0]; newOrigin[1] = target->GetGeometry()->GetOrigin()[1] +c[1]; newOrigin[2] = target->GetGeometry()->GetOrigin()[2] +c[2]; target->GetGeometry()->SetOrigin(newOrigin); } else { mitk::BaseGeometry* s_geom = source->GetGeometry(); mitk::BaseGeometry* t_geom = target->GetGeometry(); t_geom->SetIndexToWorldTransform(s_geom->GetIndexToWorldTransform()); target->SetGeometry(t_geom); } mitk::IOUtil::Save(target, outImage); } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/DImp.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/DImp.cpp index 798a943a64..c4e529f8e7 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/DImp.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/DImp.cpp @@ -1,72 +1,72 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include "mitkCommandLineParser.h" #include #include int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("DIMP"); parser.setCategory("Preprocessing Tools"); parser.setDescription("TEMPORARY: Converts DICOM to other image types"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input:", "input image", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output:", "output image", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input:", "input image", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Output:", "output image", us::Any(), false, false, false, mitkCommandLineParser::Output); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; // mandatory arguments std::string imageName = us::any_cast(parsedArgs["i"]); std::string outImage = us::any_cast(parsedArgs["o"]); try { mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Diffusion Weighted Images"}, {}); mitk::Image::Pointer source = mitk::IOUtil::Load(imageName, &functor); std::string ext = itksys::SystemTools::GetFilenameExtension(outImage); if (ext==".nii" || ext==".nii.gz") mitk::IOUtil::Save(source, "DWI_NIFTI", outImage); else mitk::IOUtil::Save(source, outImage); } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/DReg.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/DReg.cpp index 53f43b7fa3..3fea48e3a3 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/DReg.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/DReg.cpp @@ -1,222 +1,222 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include #include #include #include #include #include #include #include #include typedef mitk::DiffusionPropertyHelper DPH; mitk::Image::Pointer apply_transform(mitk::Image::Pointer moving, mitk::Image::Pointer fixed_single, mitk::MAPRegistrationWrapper::Pointer reg, bool resample) { mitk::Image::Pointer registered_image; if (!resample) { registered_image = mitk::ImageMappingHelper::refineGeometry(moving, reg, true); } else { if (!mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(moving)) { registered_image = mitk::ImageMappingHelper::map(moving, reg, false, 0, fixed_single->GetGeometry(), false, 0, mitk::ImageMappingInterpolator::BSpline_3); } else { typedef itk::Image ITKDiffusionVolumeType; typedef itk::ComposeImageFilter < ITKDiffusionVolumeType > ComposeFilterType; auto composer = ComposeFilterType::New(); auto itkVectorImagePointer = mitk::DiffusionPropertyHelper::GetItkVectorImage(moving); for (unsigned int i=0; iGetVectorLength(); ++i) { itk::ExtractDwiChannelFilter< short >::Pointer filter = itk::ExtractDwiChannelFilter< short >::New(); filter->SetInput( itkVectorImagePointer); filter->SetChannelIndex(i); filter->Update(); mitk::Image::Pointer gradientVolume = mitk::Image::New(); gradientVolume->InitializeByItk( filter->GetOutput() ); gradientVolume->SetImportChannel( filter->GetOutput()->GetBufferPointer() ); mitk::Image::Pointer registered_mitk_image = mitk::ImageMappingHelper::map(gradientVolume, reg, false, 0, fixed_single->GetGeometry(), false, 0, mitk::ImageMappingInterpolator::BSpline_3); auto registered_itk_image = ITKDiffusionVolumeType::New(); mitk::CastToItkImage(registered_mitk_image, registered_itk_image); composer->SetInput(i, registered_itk_image); } composer->Update(); registered_image = mitk::GrabItkImageMemory( composer->GetOutput() ); mitk::DiffusionPropertyHelper::CopyProperties(moving, registered_image, true); typedef mitk::DiffusionImageCorrectionFilter CorrectionFilterType; CorrectionFilterType::Pointer corrector = CorrectionFilterType::New(); corrector->SetImage( registered_image ); corrector->CorrectDirections( mitk::MITKRegistrationHelper::getAffineMatrix(reg, false)->GetMatrix().GetVnlMatrix() ); } } return registered_image; } int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("DREG"); parser.setCategory("Preprocessing Tools"); parser.setDescription("TEMPORARY: Rigid registration of two images"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "f", mitkCommandLineParser::InputFile, "Fixed:", "fixed image", us::Any(), false); - parser.addArgument("", "m", mitkCommandLineParser::InputFile, "Moving:", "moving image", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output:", "output image", us::Any(), false); + parser.addArgument("", "f", mitkCommandLineParser::File, "Fixed:", "fixed image", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "m", mitkCommandLineParser::File, "Moving:", "moving image", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Output:", "output image", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.addArgument("resample", "", mitkCommandLineParser::Bool, "Resample:", "resample moving image", false); - parser.addArgument("coreg", "", mitkCommandLineParser::StringList, "", "additionally apply transform to these images", us::Any(), false); + parser.addArgument("coreg", "", mitkCommandLineParser::StringList, "", "additionally apply transform to these images", us::Any(), true, false, false, mitkCommandLineParser::Input); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; // mandatory arguments std::string f = us::any_cast(parsedArgs["f"]); std::string m = us::any_cast(parsedArgs["m"]); std::string o = us::any_cast(parsedArgs["o"]); bool resample = false; if (parsedArgs.count("resample")) resample = true; mitkCommandLineParser::StringContainerType coreg; if (parsedArgs.count("coreg")) coreg = us::any_cast(parsedArgs["coreg"]); try { typedef itk::Image< float, 3 > ItkFloatImageType; mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Diffusion Weighted Images"}, {}); mitk::Image::Pointer fixed = mitk::IOUtil::Load(f, &functor); mitk::Image::Pointer moving = mitk::IOUtil::Load(m, &functor); mitk::Image::Pointer fixed_single = fixed; mitk::Image::Pointer moving_single = moving; mitk::MultiModalRigidDefaultRegistrationAlgorithm< ItkFloatImageType >::Pointer algo = mitk::MultiModalRigidDefaultRegistrationAlgorithm< ItkFloatImageType >::New(); mitk::MITKAlgorithmHelper helper(algo); if (mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(fixed)) { DPH::ImageType::Pointer itkVectorImagePointer = DPH::ImageType::New(); mitk::CastToItkImage(fixed, itkVectorImagePointer); itk::ExtractDwiChannelFilter< short >::Pointer filter = itk::ExtractDwiChannelFilter< short >::New(); filter->SetInput( itkVectorImagePointer); filter->SetChannelIndex(0); filter->Update(); fixed_single = mitk::Image::New(); fixed_single->InitializeByItk( filter->GetOutput() ); fixed_single->SetImportChannel( filter->GetOutput()->GetBufferPointer() ); } if (mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(moving)) { DPH::ImageType::Pointer itkVectorImagePointer = DPH::ImageType::New(); mitk::CastToItkImage(moving, itkVectorImagePointer); itk::ExtractDwiChannelFilter< short >::Pointer filter = itk::ExtractDwiChannelFilter< short >::New(); filter->SetInput( itkVectorImagePointer); filter->SetChannelIndex(0); filter->Update(); moving_single = mitk::Image::New(); moving_single->InitializeByItk( filter->GetOutput() ); moving_single->SetImportChannel( filter->GetOutput()->GetBufferPointer() ); } helper.SetData(moving_single, fixed_single); mitk::MAPRegistrationWrapper::Pointer reg = helper.GetMITKRegistrationWrapper(); mitk::Image::Pointer registered_image = apply_transform(moving, fixed_single, reg, resample); if (mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(registered_image)) { mitk::DiffusionPropertyHelper::InitializeImage( registered_image ); std::string file_extension = itksys::SystemTools::GetFilenameExtension(o); if (file_extension==".nii" || file_extension==".nii.gz") mitk::IOUtil::Save(registered_image, "DWI_NIFTI", o); else mitk::IOUtil::Save(registered_image, o); } else mitk::IOUtil::Save(registered_image, o); std::string path = ist::GetFilenamePath(o) + "/"; std::vector< std::string > file_names; auto coreg_images = mitk::DiffusionDataIOHelper::load_mitk_images(coreg, &file_names); for (unsigned int i=0; i #include #include #include "mitkCommandLineParser.h" #include #include #include "mitkDiffusionDICOMFileReader.h" #include "mitkSortByImagePositionPatient.h" #include "mitkDICOMTagBasedSorter.h" #include "mitkDICOMSortByTag.h" #include "itkMergeDiffusionImagesFilter.h" #include static mitk::StringList& GetInputFilenames() { static mitk::StringList inputs; return inputs; } // FIXME slash at the end void SetInputFileNames( std::string input_directory ) { // I. Get all files in directory itksys::Directory input; input.Load( input_directory.c_str() ); // II. Push back files mitk::StringList inputlist;//, mergedlist; for( unsigned long idx=0; idxAddDistinguishingTag( mitk::DICOMTag(0x0028, 0x0010) ); // Number of Rows tagSorter->AddDistinguishingTag( mitk::DICOMTag(0x0028, 0x0011) ); // Number of Columns tagSorter->AddDistinguishingTag( mitk::DICOMTag(0x0028, 0x0030) ); // Pixel Spacing tagSorter->AddDistinguishingTag( mitk::DICOMTag(0x0018, 0x1164) ); // Imager Pixel Spacing tagSorter->AddDistinguishingTag( mitk::DICOMTag(0x0020, 0x0037) ); // Image Orientation (Patient) // TODO add tolerance parameter (l. 1572 of original code) // TODO handle as real vectors! cluster with configurable errors! tagSorter->AddDistinguishingTag( mitk::DICOMTag(0x0020, 0x000e) ); // Series Instance UID tagSorter->AddDistinguishingTag( mitk::DICOMTag(0x0018, 0x0050) ); // Slice Thickness tagSorter->AddDistinguishingTag( mitk::DICOMTag(0x0028, 0x0008) ); // Number of Frames //tagSorter->AddDistinguishingTag( mitk::DICOMTag(0x0020, 0x0052) ); // Frame of Reference UID // gdcmReader->AddSortingElement( tagSorter ); //mitk::DICOMFileReaderTestHelper::TestOutputsContainInputs( gdcmReader ); mitk::DICOMSortCriterion::ConstPointer sorting = mitk::SortByImagePositionPatient::New( // Image Position (Patient) //mitk::DICOMSortByTag::New( mitk::DICOMTag(0x0020, 0x0013), // instance number mitk::DICOMSortByTag::New( mitk::DICOMTag(0x0020, 0x0012), // aqcuisition number mitk::DICOMSortByTag::New( mitk::DICOMTag(0x0008, 0x0032), // aqcuisition time mitk::DICOMSortByTag::New( mitk::DICOMTag(0x0018, 0x1060), // trigger time mitk::DICOMSortByTag::New( mitk::DICOMTag(0x0008, 0x0018) // SOP instance UID (last resort, not really meaningful but decides clearly) ).GetPointer() ).GetPointer() ).GetPointer() ).GetPointer() // ).GetPointer() ).GetPointer(); tagSorter->SetSortCriterion( sorting ); // mosaic //gdcmReader->SetResolveMosaic( this->m_Controls->m_SplitMosaicCheckBox->isChecked() ); gdcmReader->AddSortingElement( tagSorter );*/ gdcmReader->SetInputFiles( input_files ); try { gdcmReader->AnalyzeInputFiles(); } catch( const itk::ExceptionObject &e) { MITK_ERROR << "Failed to analyze data. " << e.what(); } catch( const std::exception &se) { MITK_ERROR << "Std Exception " << se.what(); } gdcmReader->LoadImages(); mitk::Image::Pointer loaded_image = gdcmReader->GetOutput(0).GetMitkImage(); return loaded_image; } typedef short DiffusionPixelType; typedef itk::VectorImage DwiImageType; typedef DwiImageType::PixelType DwiPixelType; typedef DwiImageType::RegionType DwiRegionType; typedef std::vector< DwiImageType::Pointer > DwiImageContainerType; typedef mitk::Image DiffusionImageType; typedef mitk::DiffusionPropertyHelper::GradientDirectionsContainerType GradientContainerType; typedef std::vector< GradientContainerType::Pointer > GradientListContainerType; void SearchForInputInSubdirs( std::string root_directory, std::string subdir_prefix , std::vector& output_container) { // I. Get all dirs in directory itksys::Directory rootdir; rootdir.Load( root_directory.c_str() ); MITK_INFO("dicom.loader.setinputdirs.start") << "Prefix = " << subdir_prefix; for( unsigned int idx=0; idx parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) { return EXIT_FAILURE; } std::string inputDirectory = us::any_cast( parsedArgs["i"] ); MITK_INFO << "Loading data from directory: " << inputDirectory; // retrieve the prefix flag (if set) bool search_for_subdirs = false; std::string subdir_prefix; if( parsedArgs.count("dwprefix")) { subdir_prefix = us::any_cast( parsedArgs["dwprefix"] ); if (subdir_prefix != "") { MITK_INFO << "Prefix specified, will search for subdirs in the input directory!"; search_for_subdirs = true; } } // retrieve the output std::string outputFile = us::any_cast< std::string >( parsedArgs["o"] ); // if the executable is called with a single directory, just parse the given folder for files and read them into a diffusion image if( !search_for_subdirs ) { SetInputFileNames( inputDirectory ); MITK_INFO << "Got " << GetInputFilenames().size() << " input files."; mitk::Image::Pointer d_img = ReadInDICOMFiles( GetInputFilenames(), outputFile ); try { mitk::IOUtil::Save(d_img, outputFile.c_str()); } catch( const itk::ExceptionObject& e) { MITK_ERROR << "Failed to write out the output file. \n\t Reason : ITK Exception " << e.what(); } } // if the --dwprefix flag is set, then we have to look for the directories, load each of them separately and afterwards merge the images else { std::vector output_container; SearchForInputInSubdirs( inputDirectory, subdir_prefix, output_container ); // final output image mitk::Image::Pointer image = mitk::Image::New(); if( output_container.size() > 1 ) { DwiImageContainerType imageContainer; GradientListContainerType gradientListContainer; std::vector< double > bValueContainer; for ( std::vector< mitk::Image::Pointer >::iterator dwi = output_container.begin(); dwi != output_container.end(); ++dwi ) { mitk::DiffusionPropertyHelper::ImageType::Pointer itkVectorImagePointer = mitk::DiffusionPropertyHelper::ImageType::New(); mitk::CastToItkImage(*dwi, itkVectorImagePointer); imageContainer.push_back(itkVectorImagePointer); gradientListContainer.push_back( mitk::DiffusionPropertyHelper::GetGradientContainer(*dwi)); bValueContainer.push_back( mitk::DiffusionPropertyHelper::GetReferenceBValue(*dwi)); } typedef itk::MergeDiffusionImagesFilter FilterType; FilterType::Pointer filter = FilterType::New(); filter->SetImageVolumes(imageContainer); filter->SetGradientLists(gradientListContainer); filter->SetBValues(bValueContainer); filter->Update(); vnl_matrix_fixed< double, 3, 3 > mf; mf.set_identity(); image = mitk::GrabItkImageMemory( filter->GetOutput() ); mitk::DiffusionPropertyHelper::SetGradientContainer(image, filter->GetOutputGradients()); mitk::DiffusionPropertyHelper::SetReferenceBValue(image, filter->GetB_Value()); mitk::DiffusionPropertyHelper::SetMeasurementFrame(image, mf); mitk::DiffusionPropertyHelper::InitializeImage( image ); } // just output the image if there was only one folder found else { image = output_container.at(0); } MITK_INFO("dicom.import.writeout") << " [OutputFile] " << outputFile.c_str(); try { mitk::IOUtil::Save(image, outputFile.c_str()); } catch( const itk::ExceptionObject& e) { MITK_ERROR << "Failed to write out the output file. \n\t Reason : ITK Exception " << e.what(); } } return 1; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/DmriDenoising.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/DmriDenoising.cpp index 5eb61e3f6b..2f06f3dcdc 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/DmriDenoising.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/DmriDenoising.cpp @@ -1,234 +1,234 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include #include #include #include #include #include #include #include #include int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("DmriDenoising"); parser.setCategory("Preprocessing Tools"); parser.setDescription("dMRI denoising tool"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); parser.beginGroup("1. Mandatory arguments:"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input:", "input image", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output:", "output image", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input:", "input image", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Output:", "output image", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.addArgument("type", "", mitkCommandLineParser::Int, "Type:", "0 (TotalVariation), 1 (Gauss), 2 (NLM)", 0); parser.endGroup(); parser.beginGroup("2. Total variation parameters:"); parser.addArgument("tv_iterations", "", mitkCommandLineParser::Int, "Iterations:", "", 1); parser.addArgument("lambda", "", mitkCommandLineParser::Float, "Lambda:", "", 0.1); parser.endGroup(); parser.beginGroup("3. Gauss parameters:"); parser.addArgument("variance", "", mitkCommandLineParser::Float, "Variance:", "", 1.0); parser.endGroup(); parser.beginGroup("4. NLM parameters:"); parser.addArgument("nlm_iterations", "", mitkCommandLineParser::Int, "Iterations:", "", 4); parser.addArgument("sampling_radius", "", mitkCommandLineParser::Int, "Sampling radius:", "", 4); parser.addArgument("patch_radius", "", mitkCommandLineParser::Int, "Patch radius:", "", 1); parser.addArgument("num_patches", "", mitkCommandLineParser::Int, "Num. patches:", "", 10); parser.endGroup(); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; // mandatory arguments std::string imageName = us::any_cast(parsedArgs["i"]); std::string outImage = us::any_cast(parsedArgs["o"]); int type = 0; if (parsedArgs.count("type")) type = us::any_cast(parsedArgs["type"]); int tv_iterations = 1; if (parsedArgs.count("tv_iterations")) tv_iterations = us::any_cast(parsedArgs["tv_iterations"]); float lambda = 0.1; if (parsedArgs.count("lambda")) lambda = us::any_cast(parsedArgs["lambda"]); float variance = 1.0; if (parsedArgs.count("variance")) variance = us::any_cast(parsedArgs["variance"]); int nlm_iterations = 4; if (parsedArgs.count("nlm_iterations")) nlm_iterations = us::any_cast(parsedArgs["nlm_iterations"]); int sampling_radius = 4; if (parsedArgs.count("sampling_radius")) sampling_radius = us::any_cast(parsedArgs["sampling_radius"]); int patch_radius = 1; if (parsedArgs.count("patch_radius")) patch_radius = us::any_cast(parsedArgs["patch_radius"]); int num_patches = 10; if (parsedArgs.count("num_patches")) num_patches = us::any_cast(parsedArgs["num_patches"]); try { mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Diffusion Weighted Images"}, {}); mitk::Image::Pointer input_image = mitk::IOUtil::Load(imageName, &functor); typedef short DiffusionPixelType; typedef itk::VectorImage DwiImageType; typedef itk::Image DwiVolumeType; typedef itk::DiscreteGaussianImageFilter < DwiVolumeType, DwiVolumeType > GaussianFilterType; typedef itk::PatchBasedDenoisingImageFilter < DwiVolumeType, DwiVolumeType > NlmFilterType; typedef itk::VectorImageToImageFilter < DiffusionPixelType > ExtractFilterType; typedef itk::ComposeImageFilter < itk::Image > ComposeFilterType; if (!mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(input_image)) mitkThrow() << "Input is not a diffusion-weighted image!"; DwiImageType::Pointer itkVectorImagePointer = mitk::DiffusionPropertyHelper::GetItkVectorImage(input_image); mitk::Image::Pointer denoised_image = nullptr; switch (type) { case 0: { ComposeFilterType::Pointer composer = ComposeFilterType::New(); for (unsigned int i=0; iGetVectorLength(); ++i) { ExtractFilterType::Pointer extractor = ExtractFilterType::New(); extractor->SetInput( itkVectorImagePointer ); extractor->SetIndex( i ); extractor->Update(); DwiVolumeType::Pointer gradient_volume = extractor->GetOutput(); itk::TotalVariationDenoisingImageFilter< DwiVolumeType, DwiVolumeType >::Pointer filter = itk::TotalVariationDenoisingImageFilter< DwiVolumeType, DwiVolumeType >::New(); filter->SetInput(gradient_volume); filter->SetLambda(lambda); filter->SetNumberIterations(tv_iterations); filter->Update(); composer->SetInput(i, filter->GetOutput()); } composer->Update(); denoised_image = mitk::GrabItkImageMemory(composer->GetOutput()); break; } case 1: { ExtractFilterType::Pointer extractor = ExtractFilterType::New(); extractor->SetInput( itkVectorImagePointer ); ComposeFilterType::Pointer composer = ComposeFilterType::New(); for (unsigned int i = 0; i < itkVectorImagePointer->GetVectorLength(); ++i) { extractor->SetIndex(i); extractor->Update(); GaussianFilterType::Pointer filter = GaussianFilterType::New(); filter->SetVariance(variance); filter->SetInput(extractor->GetOutput()); filter->Update(); composer->SetInput(i, filter->GetOutput()); } composer->Update(); denoised_image = mitk::GrabItkImageMemory(composer->GetOutput()); break; } case 2: { typedef itk::Statistics::GaussianRandomSpatialNeighborSubsampler< NlmFilterType::PatchSampleType, DwiVolumeType::RegionType > SamplerType; // sampling the image to find similar patches SamplerType::Pointer sampler = SamplerType::New(); sampler->SetRadius( sampling_radius ); sampler->SetVariance( sampling_radius*sampling_radius ); sampler->SetNumberOfResultsRequested( num_patches ); MITK_INFO << "Starting NLM denoising"; ExtractFilterType::Pointer extractor = ExtractFilterType::New(); extractor->SetInput( itkVectorImagePointer ); ComposeFilterType::Pointer composer = ComposeFilterType::New(); for (unsigned int i = 0; i < itkVectorImagePointer->GetVectorLength(); ++i) { extractor->SetIndex(i); extractor->Update(); NlmFilterType::Pointer filter = NlmFilterType::New(); filter->SetInput(extractor->GetOutput()); filter->SetPatchRadius(patch_radius); filter->SetNoiseModel(NlmFilterType::RICIAN); filter->UseSmoothDiscPatchWeightsOn(); filter->UseFastTensorComputationsOn(); filter->SetNumberOfIterations(nlm_iterations); filter->SetSmoothingWeight( 1 ); filter->SetKernelBandwidthEstimation(true); filter->SetSampler( sampler ); filter->Update(); composer->SetInput(i, filter->GetOutput()); MITK_INFO << "Gradient " << i << " finished"; } composer->Update(); denoised_image = mitk::GrabItkImageMemory(composer->GetOutput()); break; } } mitk::DiffusionPropertyHelper::SetGradientContainer(denoised_image, mitk::DiffusionPropertyHelper::GetGradientContainer(input_image)); mitk::DiffusionPropertyHelper::SetReferenceBValue(denoised_image, mitk::DiffusionPropertyHelper::GetReferenceBValue(input_image)); mitk::DiffusionPropertyHelper::InitializeImage( denoised_image ); std::string ext = itksys::SystemTools::GetFilenameExtension(outImage); if (ext==".nii" || ext==".nii.gz") mitk::IOUtil::Save(denoised_image, "DWI_NIFTI", outImage); else mitk::IOUtil::Save(denoised_image, outImage); } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/FileFormatConverter.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/FileFormatConverter.cpp index bb61124467..d2c25aa45b 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/FileFormatConverter.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/FileFormatConverter.cpp @@ -1,80 +1,80 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include "mitkCommandLineParser.h" #include #include /*! \brief Load image and save as specified file type. */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Format Converter"); parser.setCategory("Preprocessing Tools"); parser.setDescription("Load image and save as specified file type."); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input:", "input file", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output:", "output file", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input:", "input file", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Output:", "output file", us::Any(), false, false, false, mitkCommandLineParser::Output); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; // mandatory arguments std::string inName = us::any_cast(parsedArgs["i"]); std::string outName = us::any_cast(parsedArgs["o"]); try { mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Diffusion Weighted Images"}, {}); std::vector baseData = mitk::IOUtil::Load(inName, &functor); if ( baseData.size()>0 && dynamic_cast(baseData[0].GetPointer()) ) { mitk::IOUtil::Save(dynamic_cast(baseData[0].GetPointer()), outName.c_str()); } else if ( baseData.size()>0 && dynamic_cast(baseData[0].GetPointer()) ) { mitk::IOUtil::Save(dynamic_cast(baseData[0].GetPointer()) ,outName.c_str()); } else std::cout << "File type currently not supported!"; } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/FlipPeaks.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/FlipPeaks.cpp index 1fd5d2dd0d..4a4007ce7e 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/FlipPeaks.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/FlipPeaks.cpp @@ -1,104 +1,104 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include /*! \brief Copies transformation matrix of one image to another */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Flip Peaks"); parser.setCategory("Preprocessing Tools"); parser.setDescription("Flips the peaks of the input peak image along the given dimensions."); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input", "input image", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output", "output image", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input", "input image", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Output", "output image", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.addArgument("", "x", mitkCommandLineParser::Bool, "Flip x", "flip along x-axis"); parser.addArgument("", "y", mitkCommandLineParser::Bool, "Flip y", "flip along y-axis"); parser.addArgument("", "z", mitkCommandLineParser::Bool, "Flip z", "flip along z-axis"); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; std::string imageName = us::any_cast(parsedArgs["i"]); std::string outImage = us::any_cast(parsedArgs["o"]); bool x = false; if (parsedArgs.count("x")) x = us::any_cast(parsedArgs["x"]); bool y = false; if (parsedArgs.count("y")) y = us::any_cast(parsedArgs["y"]); bool z = false; if (parsedArgs.count("z")) z = us::any_cast(parsedArgs["z"]); try { mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Peak Image"}, {}); mitk::PeakImage::Pointer image = mitk::IOUtil::Load(imageName, &functor); typedef mitk::ImageToItk< mitk::PeakImage::ItkPeakImageType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(image); caster->Update(); mitk::PeakImage::ItkPeakImageType::Pointer itkImg = caster->GetOutput(); itk::FlipPeaksFilter< float >::Pointer flipper = itk::FlipPeaksFilter< float >::New(); flipper->SetInput(itkImg); flipper->SetFlipX(x); flipper->SetFlipY(y); flipper->SetFlipZ(z); flipper->Update(); mitk::Image::Pointer resultImage = dynamic_cast(mitk::PeakImage::New().GetPointer()); mitk::CastToMitkImage(flipper->GetOutput(), resultImage); resultImage->SetVolume(flipper->GetOutput()->GetBufferPointer()); mitk::IOUtil::Save(resultImage, outImage); } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/HeadMotionCorrection.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/HeadMotionCorrection.cpp index fc7166f24e..7c1042178c 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/HeadMotionCorrection.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/HeadMotionCorrection.cpp @@ -1,78 +1,78 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include "mitkCommandLineParser.h" #include #include #include int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("HeadMotionCorrection"); parser.setCategory("Preprocessing Tools"); parser.setDescription("Simple affine head-motion correction tool"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input:", "input image", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output:", "output image", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input:", "input image", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Output:", "output image", us::Any(), false, false, false, mitkCommandLineParser::Output); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; // mandatory arguments std::string imageName = us::any_cast(parsedArgs["i"]); std::string outImage = us::any_cast(parsedArgs["o"]); try { mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Diffusion Weighted Images"}, {}); mitk::Image::Pointer in_image = mitk::IOUtil::Load(imageName, &functor); mitk::DWIHeadMotionCorrectionFilter::Pointer registerer = mitk::DWIHeadMotionCorrectionFilter::New(); registerer->SetInput(in_image); registerer->Update(); mitk::Image::Pointer out_image = registerer->GetCorrectedImage(); std::string ext = itksys::SystemTools::GetFilenameExtension(outImage); if (ext==".nii" || ext==".nii.gz") mitk::IOUtil::Save(out_image, "DWI_NIFTI", outImage); else mitk::IOUtil::Save(out_image, outImage); } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/ImageResampler.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/ImageResampler.cpp index 4b3c1ddb07..e1647b7e9e 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/ImageResampler.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/ImageResampler.cpp @@ -1,420 +1,420 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkCommandLineParser.h" #include #include #include #include #include #include #include #include // ITK #include #include #include "itkLinearInterpolateImageFunction.h" #include "itkWindowedSincInterpolateImageFunction.h" #include "itkNearestNeighborInterpolateImageFunction.h" #include "itkIdentityTransform.h" #include "itkResampleImageFilter.h" #include "itkResampleDwiImageFilter.h" typedef itk::Image InputImageType; typedef itk::Image BinaryImageType; static mitk::Image::Pointer TransformToReference(mitk::Image *reference, mitk::Image *moving, bool sincInterpol = false, bool nn = false) { // Convert to itk Images // Identify Transform typedef itk::IdentityTransform T_Transform; T_Transform::Pointer _pTransform = T_Transform::New(); _pTransform->SetIdentity(); typedef itk::WindowedSincInterpolateImageFunction< InputImageType, 3> WindowedSincInterpolatorType; WindowedSincInterpolatorType::Pointer sinc_interpolator = WindowedSincInterpolatorType::New(); typedef itk::LinearInterpolateImageFunction< InputImageType> LinearInterpolateImageFunctionType; LinearInterpolateImageFunctionType::Pointer lin_interpolator = LinearInterpolateImageFunctionType::New(); typedef itk::NearestNeighborInterpolateImageFunction< BinaryImageType> NearestNeighborInterpolateImageFunctionType; NearestNeighborInterpolateImageFunctionType::Pointer nn_interpolator = NearestNeighborInterpolateImageFunctionType::New(); if (!nn) { InputImageType::Pointer itkReference = InputImageType::New(); InputImageType::Pointer itkMoving = InputImageType::New(); mitk::CastToItkImage(reference,itkReference); mitk::CastToItkImage(moving,itkMoving); typedef itk::ResampleImageFilter ResampleFilterType; ResampleFilterType::Pointer resampler = ResampleFilterType::New(); resampler->SetInput(itkMoving); resampler->SetReferenceImage( itkReference ); resampler->UseReferenceImageOn(); resampler->SetTransform(_pTransform); if ( sincInterpol) resampler->SetInterpolator(sinc_interpolator); else resampler->SetInterpolator(lin_interpolator); resampler->Update(); // Convert back to mitk mitk::Image::Pointer result = mitk::Image::New(); result->InitializeByItk(resampler->GetOutput()); GrabItkImageMemory( resampler->GetOutput() , result ); return result; } BinaryImageType::Pointer itkReference = BinaryImageType::New(); BinaryImageType::Pointer itkMoving = BinaryImageType::New(); mitk::CastToItkImage(reference,itkReference); mitk::CastToItkImage(moving,itkMoving); typedef itk::ResampleImageFilter ResampleFilterType; ResampleFilterType::Pointer resampler = ResampleFilterType::New(); resampler->SetInput(itkMoving); resampler->SetReferenceImage( itkReference ); resampler->UseReferenceImageOn(); resampler->SetTransform(_pTransform); resampler->SetInterpolator(nn_interpolator); resampler->Update(); // Convert back to mitk mitk::Image::Pointer result = mitk::Image::New(); result->InitializeByItk(resampler->GetOutput()); GrabItkImageMemory( resampler->GetOutput() , result ); return result; } static std::vector &split(const std::string &s, char delim, std::vector &elems) { std::stringstream ss(s); std::string item; while (std::getline(ss, item, delim)) { elems.push_back(item); } return elems; } static std::vector split(const std::string &s, char delim) { std::vector < std::string > elems; return split(s, delim, elems); } static mitk::Image::Pointer ResampleBySpacing(mitk::Image *input, float *spacing, bool useLinInt = true, bool useNN = false) { if (!useNN) { InputImageType::Pointer itkImage = InputImageType::New(); CastToItkImage(input,itkImage); /** * 1) Resampling * */ // Identity transform. // We don't want any transform on our image except rescaling which is not // specified by a transform but by the input/output spacing as we will see // later. // So no transform will be specified. typedef itk::IdentityTransform T_Transform; // The resampler type itself. typedef itk::ResampleImageFilter T_ResampleFilter; // Prepare the resampler. // Instantiate the transform and specify it should be the id transform. T_Transform::Pointer _pTransform = T_Transform::New(); _pTransform->SetIdentity(); // Instantiate the resampler. Wire in the transform and the interpolator. T_ResampleFilter::Pointer _pResizeFilter = T_ResampleFilter::New(); // Specify the input. _pResizeFilter->SetInput(itkImage); _pResizeFilter->SetTransform(_pTransform); // Set the output origin. _pResizeFilter->SetOutputOrigin(itkImage->GetOrigin()); // Compute the size of the output. // The size (# of pixels) in the output is recomputed using // the ratio of the input and output sizes. InputImageType::SpacingType inputSpacing = itkImage->GetSpacing(); InputImageType::SpacingType outputSpacing; const InputImageType::RegionType& inputSize = itkImage->GetLargestPossibleRegion(); InputImageType::SizeType outputSize; typedef InputImageType::SizeType::SizeValueType SizeValueType; // Set the output spacing. outputSpacing[0] = spacing[0]; outputSpacing[1] = spacing[1]; outputSpacing[2] = spacing[2]; outputSize[0] = static_cast(inputSize.GetSize()[0] * inputSpacing[0] / outputSpacing[0] + .5); outputSize[1] = static_cast(inputSize.GetSize()[1] * inputSpacing[1] / outputSpacing[1] + .5); outputSize[2] = static_cast(inputSize.GetSize()[2] * inputSpacing[2] / outputSpacing[2] + .5); _pResizeFilter->SetOutputSpacing(outputSpacing); _pResizeFilter->SetSize(outputSize); typedef itk::LinearInterpolateImageFunction< InputImageType > LinearInterpolatorType; LinearInterpolatorType::Pointer lin_interpolator = LinearInterpolatorType::New(); typedef itk::WindowedSincInterpolateImageFunction< InputImageType, 4> WindowedSincInterpolatorType; WindowedSincInterpolatorType::Pointer sinc_interpolator = WindowedSincInterpolatorType::New(); if (useLinInt) _pResizeFilter->SetInterpolator(lin_interpolator); else _pResizeFilter->SetInterpolator(sinc_interpolator); _pResizeFilter->Update(); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(_pResizeFilter->GetOutput()); mitk::GrabItkImageMemory( _pResizeFilter->GetOutput(), image); return image; } BinaryImageType::Pointer itkImage = BinaryImageType::New(); CastToItkImage(input,itkImage); /** * 1) Resampling * */ // Identity transform. // We don't want any transform on our image except rescaling which is not // specified by a transform but by the input/output spacing as we will see // later. // So no transform will be specified. typedef itk::IdentityTransform T_Transform; // The resampler type itself. typedef itk::ResampleImageFilter T_ResampleFilter; // Prepare the resampler. // Instantiate the transform and specify it should be the id transform. T_Transform::Pointer _pTransform = T_Transform::New(); _pTransform->SetIdentity(); // Instantiate the resampler. Wire in the transform and the interpolator. T_ResampleFilter::Pointer _pResizeFilter = T_ResampleFilter::New(); // Specify the input. _pResizeFilter->SetInput(itkImage); _pResizeFilter->SetTransform(_pTransform); // Set the output origin. _pResizeFilter->SetOutputOrigin(itkImage->GetOrigin()); // Compute the size of the output. // The size (# of pixels) in the output is recomputed using // the ratio of the input and output sizes. BinaryImageType::SpacingType inputSpacing = itkImage->GetSpacing(); BinaryImageType::SpacingType outputSpacing; const BinaryImageType::RegionType& inputSize = itkImage->GetLargestPossibleRegion(); BinaryImageType::SizeType outputSize; typedef BinaryImageType::SizeType::SizeValueType SizeValueType; // Set the output spacing. outputSpacing[0] = spacing[0]; outputSpacing[1] = spacing[1]; outputSpacing[2] = spacing[2]; outputSize[0] = static_cast(inputSize.GetSize()[0] * inputSpacing[0] / outputSpacing[0] + .5); outputSize[1] = static_cast(inputSize.GetSize()[1] * inputSpacing[1] / outputSpacing[1] + .5); outputSize[2] = static_cast(inputSize.GetSize()[2] * inputSpacing[2] / outputSpacing[2] + .5); _pResizeFilter->SetOutputSpacing(outputSpacing); _pResizeFilter->SetSize(outputSize); typedef itk::NearestNeighborInterpolateImageFunction< BinaryImageType> NearestNeighborInterpolateImageType; NearestNeighborInterpolateImageType::Pointer nn_interpolator = NearestNeighborInterpolateImageType::New(); _pResizeFilter->SetInterpolator(nn_interpolator); _pResizeFilter->Update(); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(_pResizeFilter->GetOutput()); mitk::GrabItkImageMemory( _pResizeFilter->GetOutput(), image); return image; } static mitk::Image::Pointer ResampleDWIbySpacing(mitk::Image::Pointer input, float* spacing) { itk::Vector spacingVector; spacingVector[0] = spacing[0]; spacingVector[1] = spacing[1]; spacingVector[2] = spacing[2]; typedef itk::ResampleDwiImageFilter ResampleFilterType; mitk::DiffusionPropertyHelper::ImageType::Pointer itkVectorImagePointer = mitk::DiffusionPropertyHelper::ImageType::New(); mitk::CastToItkImage(input, itkVectorImagePointer); ResampleFilterType::Pointer resampler = ResampleFilterType::New(); resampler->SetInput( itkVectorImagePointer ); resampler->SetInterpolation(ResampleFilterType::Interpolate_Linear); resampler->SetNewSpacing(spacingVector); resampler->Update(); mitk::Image::Pointer output = mitk::GrabItkImageMemory( resampler->GetOutput() ); mitk::DiffusionPropertyHelper::SetGradientContainer(output, mitk::DiffusionPropertyHelper::GetGradientContainer(input)); mitk::DiffusionPropertyHelper::SetReferenceBValue(output, mitk::DiffusionPropertyHelper::GetReferenceBValue(input)); mitk::DiffusionPropertyHelper::InitializeImage( output ); return output; } int main( int argc, char* argv[] ) { mitkCommandLineParser parser; parser.setArgumentPrefix("--","-"); parser.setTitle("Image Resampler"); parser.setCategory("Preprocessing Tools"); parser.setContributor("MIC"); parser.setDescription("Resample an image to eigther a specific spacing or to a reference image."); // Add command line argument names parser.addArgument("help", "h",mitkCommandLineParser::Bool, "Show this help text"); - parser.addArgument("", "i", mitkCommandLineParser::InputImage, "Input:", "Input file",us::Any(),false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output:", "Output file",us::Any(),false); + parser.addArgument("", "i", mitkCommandLineParser::Image, "Input:", "Input file",us::Any(),false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Output:", "Output file",us::Any(),false, false, false, mitkCommandLineParser::Output); parser.addArgument("spacing", "s", mitkCommandLineParser::String, "Spacing:", "Resample provide x,y,z spacing in mm (e.g. -r 1,1,3), is not applied to tensor data",us::Any()); - parser.addArgument("reference", "r", mitkCommandLineParser::InputImage, "Reference:", "Resample using supplied reference image. Also cuts image to same dimensions",us::Any()); + parser.addArgument("reference", "r", mitkCommandLineParser::Image, "Reference:", "Resample using supplied reference image. Also cuts image to same dimensions",us::Any(), true, false, false, mitkCommandLineParser::Input); parser.addArgument("win-sinc", "w", mitkCommandLineParser::Bool, "Windowed-sinc interpolation:", "Use windowed-sinc interpolation (3) instead of linear interpolation ",us::Any()); parser.addArgument("nearest-neigh", "n", mitkCommandLineParser::Bool, "Nearest Neighbor:", "Use Nearest Neighbor interpolation instead of linear interpolation ",us::Any()); std::map parsedArgs = parser.parseArguments(argc, argv); // Handle special arguments bool useSpacing = false; bool useLinearInterpol = true; bool useNN= false; { if (parsedArgs.size() == 0) { return EXIT_FAILURE; } if (parsedArgs.count("sinc-int")) useLinearInterpol = false; if (parsedArgs.count("nearest-neigh")) useNN = true; // Show a help message if ( parsedArgs.count("help") || parsedArgs.count("h")) { std::cout << parser.helpText(); return EXIT_SUCCESS; } } std::string outputFile = us::any_cast(parsedArgs["i"]); std::string inputFile = us::any_cast(parsedArgs["o"]); std::vector spacings; float spacing[] = { 0.0f, 0.0f, 0.0f }; if (parsedArgs.count("spacing")) { std::string arg = us::any_cast(parsedArgs["spacing"]); if (arg != "") { spacings = split(arg ,','); spacing[0] = atoi(spacings.at(0).c_str()); spacing[1] = atoi(spacings.at(1).c_str()); spacing[2] = atoi(spacings.at(2).c_str()); useSpacing = true; } } std::string refImageFile = ""; if (parsedArgs.count("reference")) { refImageFile = us::any_cast(parsedArgs["reference"]); } if (refImageFile =="" && useSpacing == false) { MITK_ERROR << "No information how to resample is supplied. Use eigther --spacing or --reference !"; return EXIT_FAILURE; } mitk::Image::Pointer refImage; if (!useSpacing) refImage = mitk::IOUtil::Load(refImageFile); mitk::Image::Pointer inputDWI = mitk::IOUtil::Load(inputFile); if ( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(inputDWI.GetPointer())) { mitk::Image::Pointer outputImage; if (useSpacing) outputImage = ResampleDWIbySpacing(inputDWI, spacing); else { MITK_WARN << "Not supported yet, to resample a DWI please set a new spacing."; return EXIT_FAILURE; } mitk::IOUtil::Save(outputImage, outputFile.c_str()); return EXIT_SUCCESS; } mitk::Image::Pointer inputImage = mitk::IOUtil::Load(inputFile); mitk::Image::Pointer resultImage; if (useSpacing) resultImage = ResampleBySpacing(inputImage,spacing,useLinearInterpol,useNN); else resultImage = TransformToReference(refImage,inputImage,useLinearInterpol,useNN); mitk::IOUtil::Save(resultImage, outputFile); return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/PeakExtraction.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/PeakExtraction.cpp index 9eeee48272..a2d4e3ba2c 100755 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/PeakExtraction.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/PeakExtraction.cpp @@ -1,294 +1,294 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include #include #include template int StartPeakExtraction(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input image", "sh coefficient image", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputDirectory, "Output directory", "output root", us::Any(), false); - parser.addArgument("mask", "", mitkCommandLineParser::InputFile, "Mask", "mask image"); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input image", "sh coefficient image", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::Directory, "Output directory", "output root", us::Any(), false, false, false, mitkCommandLineParser::Output); + parser.addArgument("mask", "", mitkCommandLineParser::File, "Mask", "mask image", us::Any(), true, false, false, mitkCommandLineParser::Input); parser.addArgument("normalization", "", mitkCommandLineParser::Int, "Normalization", "0=no norm, 1=max norm, 2=single vec norm", 1, true); parser.addArgument("numpeaks", "", mitkCommandLineParser::Int, "Max. number of peaks", "maximum number of extracted peaks", 2, true); parser.addArgument("rel_peakthr", "", mitkCommandLineParser::Float, "Relative peak threshold", "peak threshold relative to largest peak", 0.4, true); parser.addArgument("abs_peakthr", "", mitkCommandLineParser::Float, "Absolute peak threshold", "absolute peak magnitude threshold", 0.03, true); parser.addArgument("angular_thr", "", mitkCommandLineParser::Float, "Angular threshold", "in degree", 15); parser.addArgument("shConvention", "", mitkCommandLineParser::String, "Use specified SH-basis", "use specified SH-basis (MRtrix, FSL)", std::string("MRtrix"), true); parser.addArgument("flipX", "", mitkCommandLineParser::Bool, "Flip X", "Flip peaks in x direction"); parser.addArgument("flipY", "", mitkCommandLineParser::Bool, "Flip Y", "Flip peaks in y direction"); parser.addArgument("flipZ", "", mitkCommandLineParser::Bool, "Flip Z", "Flip peaks in z direction"); parser.addArgument("scale_by_gfa", "", mitkCommandLineParser::Bool, "Scale by GFA", "Scale ODF values and peaks by GFA"); parser.setCategory("Preprocessing Tools"); parser.setTitle("Peak Extraction"); parser.setDescription(""); parser.setContributor("MIC"); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; // mandatory arguments std::string imageName = us::any_cast(parsedArgs["i"]); std::string outRoot = us::any_cast(parsedArgs["o"]); // optional arguments std::string maskImageName(""); if (parsedArgs.count("mask")) maskImageName = us::any_cast(parsedArgs["mask"]); int normalization = 1; if (parsedArgs.count("normalization")) normalization = us::any_cast(parsedArgs["normalization"]); int numPeaks = 2; if (parsedArgs.count("numpeaks")) numPeaks = us::any_cast(parsedArgs["numpeaks"]); float rel_peakthr = 0.4; if (parsedArgs.count("rel_peakthr")) rel_peakthr = us::any_cast(parsedArgs["rel_peakthr"]); float abs_peakthr = 0.03; if (parsedArgs.count("abs_peakthr")) abs_peakthr = us::any_cast(parsedArgs["abs_peakthr"]); float angular_thr = 15; if (parsedArgs.count("angular_thr")) angular_thr = us::any_cast(parsedArgs["angular_thr"]); angular_thr = cos((float)angular_thr*itk::Math::pi / 180); bool scale_by_gfa = false; if (parsedArgs.count("scale_by_gfa")) scale_by_gfa = us::any_cast(parsedArgs["scale_by_gfa"]); bool flipX = false; if (parsedArgs.count("flipX")) flipX = us::any_cast(parsedArgs["flipX"]); bool flipY = false; if (parsedArgs.count("flipY")) flipY = us::any_cast(parsedArgs["flipY"]); bool flipZ = false; if (parsedArgs.count("flipZ")) flipZ = us::any_cast(parsedArgs["flipZ"]); std::cout << "image: " << imageName; std::cout << "outroot: " << outRoot; if (!maskImageName.empty()) std::cout << "mask: " << maskImageName; else std::cout << "no mask image selected"; std::cout << "numpeaks: " << numPeaks; std::cout << "peakthres: " << rel_peakthr; std::cout << "abspeakthres: " << abs_peakthr; std::cout << "shOrder: " << shOrder; try { mitk::Image::Pointer image = mitk::IOUtil::Load(imageName); mitk::Image::Pointer mask = mitk::IOUtil::Load(maskImageName); typedef itk::Image ItkUcharImgType; typedef itk::OdfMaximaExtractionFilter< float, shOrder, 20242 > MaximaExtractionFilterType; typename MaximaExtractionFilterType::Pointer peak_extraction_filter = MaximaExtractionFilterType::New(); ItkUcharImgType::Pointer itkMaskImage = nullptr; if (mask.IsNotNull()) { try{ itkMaskImage = ItkUcharImgType::New(); mitk::CastToItkImage(mask, itkMaskImage); peak_extraction_filter->SetMaskImage(itkMaskImage); } catch(...) { } } if (parsedArgs.count("shConvention")) { std::string convention = us::any_cast(parsedArgs["shConvention"]).c_str(); if ( convention=="FSL" ) peak_extraction_filter->SetToolkit(MaximaExtractionFilterType::FSL); else peak_extraction_filter->SetToolkit(MaximaExtractionFilterType::MRTRIX); } else peak_extraction_filter->SetToolkit(MaximaExtractionFilterType::MRTRIX); try{ typedef mitk::ImageToItk< typename MaximaExtractionFilterType::CoefficientImageType > CasterType; typename CasterType::Pointer caster = CasterType::New(); caster->SetInput(image); caster->Update(); peak_extraction_filter->SetInput(caster->GetOutput()); } catch(...) { std::cout << "wrong image type"; return EXIT_FAILURE; } peak_extraction_filter->SetMaxNumPeaks(numPeaks); peak_extraction_filter->SetRelativePeakThreshold(rel_peakthr); peak_extraction_filter->SetAbsolutePeakThreshold(abs_peakthr); peak_extraction_filter->SetAngularThreshold(angular_thr); peak_extraction_filter->SetFlipX(flipX); peak_extraction_filter->SetFlipY(flipY); peak_extraction_filter->SetFlipZ(flipZ); peak_extraction_filter->SetScaleByGfa(scale_by_gfa); switch (normalization) { case 0: peak_extraction_filter->SetNormalizationMethod(MaximaExtractionFilterType::NO_NORM); break; case 1: peak_extraction_filter->SetNormalizationMethod(MaximaExtractionFilterType::MAX_VEC_NORM); break; case 2: peak_extraction_filter->SetNormalizationMethod(MaximaExtractionFilterType::SINGLE_VEC_NORM); break; } std::cout << "Starting extraction"; peak_extraction_filter->Update(); mitk::LocaleSwitch localeSwitch("C"); // write direction image { typename MaximaExtractionFilterType::PeakImageType::Pointer itkImg = peak_extraction_filter->GetPeakImage(); std::string outfilename = outRoot; outfilename.append("_PEAKS.nrrd"); typedef itk::ImageFileWriter< typename MaximaExtractionFilterType::PeakImageType > WriterType; typename WriterType::Pointer writer = WriterType::New(); writer->SetFileName(outfilename); writer->SetInput(itkImg); writer->Update(); } // write num directions image { ItkUcharImgType::Pointer numDirImage = peak_extraction_filter->GetNumDirectionsImage(); if (itkMaskImage.IsNotNull()) { numDirImage->SetDirection(itkMaskImage->GetDirection()); numDirImage->SetOrigin(itkMaskImage->GetOrigin()); } std::string outfilename = outRoot.c_str(); outfilename.append("_NUM_PEAKS.nrrd"); typedef itk::ImageFileWriter< ItkUcharImgType > WriterType; WriterType::Pointer writer = WriterType::New(); writer->SetFileName(outfilename); writer->SetInput(numDirImage); writer->Update(); } } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } /*! \brief Extract maxima in the input spherical harmonics image. */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input image", "sh coefficient image", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputDirectory, "Output directory", "output root", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input image", "sh coefficient image", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::Directory, "Output directory", "output root", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.addArgument("shOrder", "sh", mitkCommandLineParser::Int, "Spherical harmonics order", "spherical harmonics order"); - parser.addArgument("mask", "m", mitkCommandLineParser::InputFile, "Mask", "mask image"); + parser.addArgument("mask", "m", mitkCommandLineParser::File, "Mask", "mask image", us::Any(), true, false, false, mitkCommandLineParser::Input); parser.addArgument("normalization", "n", mitkCommandLineParser::Int, "Normalization", "0=no norm, 1=max norm, 2=single vec norm", 1, true); parser.addArgument("numpeaks", "p", mitkCommandLineParser::Int, "Max. number of peaks", "maximum number of extracted peaks", 2, true); parser.addArgument("peakthres", "r", mitkCommandLineParser::Float, "Peak threshold", "peak threshold relative to largest peak", 0.4, true); parser.addArgument("abspeakthres", "a", mitkCommandLineParser::Float, "Absolute peak threshold", "absolute peak threshold weighted with local GFA value", 0.06, true); parser.addArgument("shConvention", "s", mitkCommandLineParser::String, "Use specified SH-basis", "use specified SH-basis (MITK, FSL, MRtrix)", std::string("MITK"), true); parser.addArgument("noFlip", "f", mitkCommandLineParser::Bool, "No flip", "do not flip input image to match MITK coordinate convention"); parser.setCategory("Preprocessing Tools"); parser.setTitle("Peak Extraction"); parser.setDescription("Extract maxima in the input spherical harmonics image."); parser.setContributor("MIC"); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; int shOrder = -1; if (parsedArgs.count("shOrder")) shOrder = us::any_cast(parsedArgs["shOrder"]); switch (shOrder) { case 4: return StartPeakExtraction<4>(argc, argv); case 6: return StartPeakExtraction<6>(argc, argv); case 8: return StartPeakExtraction<8>(argc, argv); case 10: return StartPeakExtraction<10>(argc, argv); case 12: return StartPeakExtraction<12>(argc, argv); } return EXIT_FAILURE; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/Registration.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/Registration.cpp index b85ecc2da0..e575e2b974 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/Registration.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/Registration.cpp @@ -1,445 +1,445 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // CTK #include "mitkCommandLineParser.h" #include #include #include #include #include #include #include // ITK #include #include #include "itkLinearInterpolateImageFunction.h" #include "itkWindowedSincInterpolateImageFunction.h" #include "itkIdentityTransform.h" #include "itkResampleImageFilter.h" #include "itkNrrdImageIO.h" typedef std::vector FileListType; typedef itk::Image InputImageType; static mitk::Image::Pointer ExtractFirstTS(mitk::Image* image, std::string fileType) { if (fileType == ".dwi") return image; mitk::ImageTimeSelector::Pointer selector = mitk::ImageTimeSelector::New(); selector->SetInput(image); selector->SetTimeNr(0); selector->UpdateLargestPossibleRegion(); mitk::Image::Pointer img =selector->GetOutput()->Clone(); return img; } static std::vector &split(const std::string &s, char delim, std::vector &elems) { std::stringstream ss(s); std::string item; while (std::getline(ss, item, delim)) { elems.push_back(item); } return elems; } static std::vector split(const std::string &s, char delim) { std::vector < std::string > elems; return split(s, delim, elems); } /// Create list of all files in provided folder ending with same postfix static FileListType CreateFileList(std::string folder , std::string postfix) { itk::Directory::Pointer dir = itk::Directory::New(); FileListType fileList; if( dir->Load(folder.c_str() ) ) { int n = dir->GetNumberOfFiles(); for(int r=0;rGetFile( r ); if (filename == "." || filename == "..") continue; filename = folder + filename; if (!itksys::SystemTools::FileExists( filename.c_str())) continue; if (filename.length() <= postfix.length() ) continue; if (filename.substr(filename.length() -postfix.length() ) == postfix) fileList.push_back(filename); } } return fileList; } static std::string GetSavePath(std::string outputFolder, std::string fileName) { std::string fileType = itksys::SystemTools::GetFilenameExtension(fileName); std::string fileStem = itksys::SystemTools::GetFilenameWithoutExtension(fileName); std::string savePathAndFileName = outputFolder +fileStem + fileType; return savePathAndFileName; } static mitk::Image::Pointer ResampleBySpacing(mitk::Image *input, float *spacing) { InputImageType::Pointer itkImage = InputImageType::New(); CastToItkImage(input,itkImage); /** * 1) Resampling * */ // Identity transform. // We don't want any transform on our image except rescaling which is not // specified by a transform but by the input/output spacing as we will see // later. // So no transform will be specified. typedef itk::IdentityTransform T_Transform; // The resampler type itself. typedef itk::ResampleImageFilter T_ResampleFilter; // Prepare the resampler. // Instantiate the transform and specify it should be the id transform. T_Transform::Pointer _pTransform = T_Transform::New(); _pTransform->SetIdentity(); // Instantiate the resampler. Wire in the transform and the interpolator. T_ResampleFilter::Pointer _pResizeFilter = T_ResampleFilter::New(); _pResizeFilter->SetTransform(_pTransform); // Set the output origin. _pResizeFilter->SetOutputOrigin(itkImage->GetOrigin()); // Compute the size of the output. // The size (# of pixels) in the output is recomputed using // the ratio of the input and output sizes. InputImageType::SpacingType inputSpacing = itkImage->GetSpacing(); InputImageType::SpacingType outputSpacing; const InputImageType::RegionType& inputSize = itkImage->GetLargestPossibleRegion(); InputImageType::SizeType outputSize; typedef InputImageType::SizeType::SizeValueType SizeValueType; // Set the output spacing. outputSpacing[0] = spacing[0]; outputSpacing[1] = spacing[1]; outputSpacing[2] = spacing[2]; outputSize[0] = static_cast(inputSize.GetSize()[0] * inputSpacing[0] / outputSpacing[0] + .5); outputSize[1] = static_cast(inputSize.GetSize()[1] * inputSpacing[1] / outputSpacing[1] + .5); outputSize[2] = static_cast(inputSize.GetSize()[2] * inputSpacing[2] / outputSpacing[2] + .5); _pResizeFilter->SetOutputSpacing(outputSpacing); _pResizeFilter->SetSize(outputSize); typedef itk::Function::WelchWindowFunction<4> WelchWindowFunction; typedef itk::WindowedSincInterpolateImageFunction< InputImageType, 4,WelchWindowFunction> WindowedSincInterpolatorType; WindowedSincInterpolatorType::Pointer sinc_interpolator = WindowedSincInterpolatorType::New(); _pResizeFilter->SetInterpolator(sinc_interpolator); // Specify the input. _pResizeFilter->SetInput(itkImage); _pResizeFilter->Update(); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(_pResizeFilter->GetOutput()); mitk::GrabItkImageMemory( _pResizeFilter->GetOutput(), image); return image; } /// Build a derived file name from moving images e.g. xxx_T2.nrrd becomes xxx_GTV.nrrd static FileListType CreateDerivedFileList(std::string baseFN, std::string baseSuffix, std::vector derivedPatterns) { FileListType files; for (unsigned int i=0; i < derivedPatterns.size(); i++) { std::string derResourceSuffix = derivedPatterns.at(i); std::string derivedResourceFilename = baseFN.substr(0,baseFN.length() -baseSuffix.length()) + derResourceSuffix; MITK_INFO <<" Looking for file: " << derivedResourceFilename; if (!itksys::SystemTools::FileExists(derivedResourceFilename.c_str())) { MITK_INFO << "CreateDerivedFileList: File does not exit. Skipping entry."; continue; } files.push_back(derivedResourceFilename); } return files; } /// Copy derived resources from first time step. Append _reg tag, but leave data untouched. static void CopyResources(FileListType fileList, std::string outputPath) { for (unsigned int j=0; j < fileList.size(); j++) { std::string derivedResourceFilename = fileList.at(j); std::string fileType = itksys::SystemTools::GetFilenameExtension(derivedResourceFilename); std::string fileStem = itksys::SystemTools::GetFilenameWithoutExtension(derivedResourceFilename); std::string savePathAndFileName = outputPath +fileStem + "." + fileType; MITK_INFO << "Copy resource " << savePathAndFileName; mitk::Image::Pointer resImage = ExtractFirstTS(mitk::IOUtil::Load(derivedResourceFilename), fileType); mitk::IOUtil::Save(resImage, savePathAndFileName); } } int main( int argc, char* argv[] ) { mitkCommandLineParser parser; parser.setArgumentPrefix("--","-"); parser.setTitle("Folder Registration"); parser.setCategory("Preprocessing Tools"); parser.setDescription("For detail description see http://docs.mitk.org/nightly/DiffusionMiniApps.html"); parser.setContributor("MIC"); // Add command line argument names parser.addArgument("help", "h",mitkCommandLineParser::Bool, "Help", "Show this help text"); //parser.addArgument("usemask", "u", QVariant::Bool, "Use segmentations (derived resources) to exclude areas from registration metrics"); - parser.addArgument("", "i", mitkCommandLineParser::InputDirectory, "Input:", "Input folder",us::Any(),false); - parser.addArgument("", "o", mitkCommandLineParser::OutputDirectory, "Output:", "Output folder (ending with /)",us::Any(),false); + parser.addArgument("", "i", mitkCommandLineParser::Directory, "Input:", "Input folder",us::Any(),false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::Directory, "Output:", "Output folder (ending with /)",us::Any(),false, false, false, mitkCommandLineParser::Output); parser.addArgument("fixed", "f", mitkCommandLineParser::String, "Fixed images:", "Suffix for fixed image (if none is supplied first file matching moving pattern is chosen)",us::Any(),true); parser.addArgument("moving", "m", mitkCommandLineParser::String, "Moving images:", "Suffix for moving images",us::Any(),false); parser.addArgument("derived", "d", mitkCommandLineParser::String, "Derived resources:", "Derived resources suffixes (replaces suffix for moving images); comma separated",us::Any(),true); parser.addArgument("silent", "s", mitkCommandLineParser::Bool, "Silent:", "No xml progress output."); parser.addArgument("resample", "r", mitkCommandLineParser::String, "Resample (x,y,z)mm:", "Resample provide x,y,z spacing in mm (e.g. -r 1,1,3), is not applied to tensor data",us::Any()); parser.addArgument("binary", "b", mitkCommandLineParser::Bool, "Binary:", "Speficies that derived resource are binary (interpolation using nearest neighbor)",us::Any()); parser.addArgument("correct-origin", "c", mitkCommandLineParser::Bool, "Origin correction:", "Correct for large origin displacement. Use switch when you reveive: Joint PDF summed to zero ",us::Any()); parser.addArgument("sinc-int", "s", mitkCommandLineParser::Bool, "Windowed-sinc interpolation:", "Use windowed-sinc interpolation (3) instead of linear interpolation ",us::Any()); std::map parsedArgs = parser.parseArguments(argc, argv); // Handle special arguments bool silent = false; bool isBinary = false; bool alignOrigin = false; { if (parsedArgs.size() == 0) { return EXIT_FAILURE; } if (parsedArgs.count("silent")) silent = true; if (parsedArgs.count("binary")) isBinary = true; if (parsedArgs.count("correct-origin")) alignOrigin = true; // Show a help message if ( parsedArgs.count("help") || parsedArgs.count("h")) { std::cout << parser.helpText(); return EXIT_SUCCESS; } } std::string refPattern = ""; bool useFirstMoving = false; std::string movingImgPattern = us::any_cast(parsedArgs["moving"]); if (parsedArgs.count("fixed")) { refPattern = us::any_cast(parsedArgs["fixed"]); } else { useFirstMoving = true; refPattern = movingImgPattern; } std::string outputPath = us::any_cast(parsedArgs["o"]); std::string inputPath = us::any_cast(parsedArgs["i"]); //QString resampleReference = parsedArgs["resample"].toString(); //bool maskTumor = parsedArgs["usemask"].toBool(); // if derived sources pattern is provided, populate QStringList with possible filename postfixes std::vector derPatterns; if (parsedArgs.count("derived") || parsedArgs.count("d") ) { std::string arg = us::any_cast(parsedArgs["derived"]); derPatterns = split(arg ,','); } std::vector spacings; float spacing[] = { 0.0f, 0.0f, 0.0f }; bool doResampling = false; if (parsedArgs.count("resample") || parsedArgs.count("d") ) { std::string arg = us::any_cast(parsedArgs["resample"]); spacings = split(arg ,','); spacing[0] = atoi(spacings.at(0).c_str()); spacing[1] = atoi(spacings.at(1).c_str()); spacing[2] = atoi(spacings.at(2).c_str()); doResampling = true; } MITK_INFO << "Input Folder : " << inputPath; MITK_INFO << "Looking for reference image ..."; FileListType referenceFileList = CreateFileList(inputPath,refPattern); if ((!useFirstMoving && referenceFileList.size() != 1) || (useFirstMoving && referenceFileList.size() == 0)) { MITK_ERROR << "None or more than one possible reference images (" << refPattern <<") found. Exiting." << referenceFileList.size(); MITK_INFO << "Choose a fixed arguement that is unique in the given folder!"; return EXIT_FAILURE; } std::string referenceFileName = referenceFileList.at(0); MITK_INFO << "Loading Reference (fixed) image: " << referenceFileName; std::string fileType = itksys::SystemTools::GetFilenameExtension(referenceFileName); mitk::Image::Pointer refImage = ExtractFirstTS(mitk::IOUtil::Load(referenceFileName), fileType); mitk::Image::Pointer resampleReference = nullptr; if (doResampling) { refImage = ResampleBySpacing(refImage,spacing); resampleReference = refImage; } if (refImage.IsNull()) MITK_ERROR << "Loaded fixed image is nullptr"; // Copy reference image to destination std::string savePathAndFileName = GetSavePath(outputPath, referenceFileName); mitk::IOUtil::Save(refImage, savePathAndFileName); // Copy all derived resources also to output folder, adding _reg suffix referenceFileList = CreateDerivedFileList(referenceFileName, movingImgPattern,derPatterns); CopyResources(referenceFileList, outputPath); std::string derivedResourceFilename; mitk::Image::Pointer referenceMask = nullptr; // union of all segmentations if (!silent) { // XML Output to report progress std::cout << ""; std::cout << "Batched Registration"; std::cout << "Starting registration ... "; std::cout << ""; } // Now iterate over all files and register them to the reference image, // also register derived resources based on file patterns // ------------------------------------------------------------------------------ // Create File list FileListType movingImagesList = CreateFileList(inputPath, movingImgPattern); for (unsigned int i =0; i < movingImagesList.size(); i++) { std::string fileMorphName = movingImagesList.at(i); if (fileMorphName == referenceFileName) { // do not process reference image again continue; } MITK_INFO << "Processing image " << fileMorphName; // 1 Register morphological file to reference image if (!itksys::SystemTools::FileExists(fileMorphName.c_str())) { MITK_WARN << "File does not exit. Skipping entry."; continue; } // Origin of images is cancelled // TODO make this optional!! double transf[6]; double offset[3]; { std::string fileType = itksys::SystemTools::GetFilenameExtension(fileMorphName); mitk::Image::Pointer movingImage = ExtractFirstTS(mitk::IOUtil::Load(fileMorphName), fileType); if (movingImage.IsNull()) MITK_ERROR << "Loaded moving image is nullptr"; // Store transformation, apply it to morph file MITK_INFO << "----------Registering moving image to reference----------"; mitk::RegistrationWrapper::GetTransformation(refImage, movingImage, transf, offset, alignOrigin, referenceMask); mitk::RegistrationWrapper::ApplyTransformationToImage(movingImage, transf,offset, resampleReference); // , resampleImage savePathAndFileName = GetSavePath(outputPath, fileMorphName); if (fileType == ".dwi") fileType = "dwi"; { mitk::ImageReadAccessor readAccess(movingImage); if (readAccess.GetData() == nullptr) MITK_INFO <<"POST DATA is null"; } mitk::IOUtil::Save(movingImage, savePathAndFileName); } if (!silent) { std::cout << "."; } // Now parse all derived resource and apply the above calculated transformation to them // ------------------------------------------------------------------------------------ FileListType fList = CreateDerivedFileList(fileMorphName, movingImgPattern,derPatterns); if (fList.size() > 0) MITK_INFO << "----------DERIVED RESOURCES ---------"; for (unsigned int j=0; j < fList.size(); j++) { derivedResourceFilename = fList.at(j); MITK_INFO << "----Processing derived resorce " << derivedResourceFilename << " ..."; std::string fileType = itksys::SystemTools::GetFilenameExtension(derivedResourceFilename); mitk::Image::Pointer derivedMovingResource = ExtractFirstTS(mitk::IOUtil::Load(derivedResourceFilename), fileType); // Apply transformation to derived resource, treat derived resource as binary mitk::RegistrationWrapper::ApplyTransformationToImage(derivedMovingResource, transf,offset, resampleReference,isBinary); savePathAndFileName = GetSavePath(outputPath, derivedResourceFilename); mitk::IOUtil::Save(derivedMovingResource, savePathAndFileName); } } if (!silent) std::cout << ""; return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/RoundBvalues.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/RoundBvalues.cpp index 45a1fe3e43..3d90b43197 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/RoundBvalues.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/RoundBvalues.cpp @@ -1,106 +1,106 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("RoundBvalues"); parser.setCategory("Preprocessing Tools"); parser.setDescription("Round b-values"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input:", "input image", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output:", "output image", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input:", "input image", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Output:", "output image", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.addArgument("to_nearest", "", mitkCommandLineParser::Int, "To nearest:", "integer", 1000); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; // mandatory arguments std::string imageName = us::any_cast(parsedArgs["i"]); std::string outImage = us::any_cast(parsedArgs["o"]); int to_nearest = 1000; if (parsedArgs.count("to_nearest")) to_nearest = us::any_cast(parsedArgs["to_nearest"]); try { typedef mitk::DiffusionPropertyHelper PropHelper; mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Diffusion Weighted Images"}, {}); mitk::Image::Pointer in_image = mitk::IOUtil::Load(imageName, &functor); if (!PropHelper::IsDiffusionWeightedImage(in_image)) { mitkThrow() << "Input is not a diffusion weighted image: " << imageName; } typedef itk::DwiGradientLengthCorrectionFilter FilterType; auto itkVectorImagePointer = PropHelper::GetItkVectorImage(in_image); FilterType::Pointer filter = FilterType::New(); filter->SetRoundingValue(to_nearest); filter->SetReferenceBValue(PropHelper::GetReferenceBValue(in_image)); filter->SetReferenceGradientDirectionContainer(PropHelper::GetGradientContainer(in_image)); filter->Update(); mitk::Image::Pointer newImage = mitk::Image::New(); newImage->InitializeByItk( itkVectorImagePointer.GetPointer() ); newImage->SetImportVolume( itkVectorImagePointer->GetBufferPointer(), 0, 0, mitk::Image::CopyMemory); itkVectorImagePointer->GetPixelContainer()->ContainerManageMemoryOff(); PropHelper::CopyProperties(in_image, newImage, true); PropHelper::SetReferenceBValue(newImage, filter->GetNewBValue()); PropHelper::SetGradientContainer(newImage, filter->GetOutputGradientDirectionContainer()); PropHelper::InitializeImage(newImage); std::string ext = itksys::SystemTools::GetFilenameExtension(outImage); if (ext==".nii" || ext==".nii.gz") mitk::IOUtil::Save(newImage, "DWI_NIFTI", outImage); else mitk::IOUtil::Save(newImage, outImage); } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/ShToOdfImage.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/ShToOdfImage.cpp index 84d1d14aad..d5a96ca13b 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Misc/ShToOdfImage.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Misc/ShToOdfImage.cpp @@ -1,72 +1,72 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("ShToOdfImage"); parser.setCategory("Preprocessing Tools"); parser.setDescription("Calculate discrete ODF image from SH coefficient image"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input:", "input image", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output:", "output image", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input:", "input image", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Output:", "output image", us::Any(), false, false, false, mitkCommandLineParser::Output); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; // mandatory arguments std::string imageName = us::any_cast(parsedArgs["i"]); std::string outImage = us::any_cast(parsedArgs["o"]); try { mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"SH Image"}, {}); mitk::ShImage::Pointer source = mitk::IOUtil::Load(imageName, &functor); mitk::Image::Pointer mitkImage = dynamic_cast(source.GetPointer()); mitk::OdfImage::Pointer out_image = mitk::convert::GetOdfFromShImage(mitkImage); if (out_image.IsNotNull()) mitk::IOUtil::Save(out_image, outImage); } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Python/BrainExtraction.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Python/BrainExtraction.cpp index 5fd181b408..88dfa13aad 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Python/BrainExtraction.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Python/BrainExtraction.cpp @@ -1,179 +1,179 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include #include #include #include #include #include #include #include #include #include typedef mitk::DiffusionPropertyHelper DPH; typedef itksys::SystemTools ist; std::string GetPythonFile(std::string filename, std::string exec_dir) { std::string out = ""; for (auto dir : mitk::bet::relative_search_dirs) { if ( ist::FileExists( exec_dir + dir + filename) ) { out = exec_dir + dir + filename; return out; } if ( ist::FileExists( ist::GetCurrentWorkingDirectory() + dir + filename) ) { out = ist::GetCurrentWorkingDirectory() + dir + filename; return out; } } for (auto dir : mitk::bet::absolute_search_dirs) { if ( ist::FileExists( dir + filename) ) { out = dir + filename; return out; } } return out; } int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("BrainExtraction"); parser.setCategory("Preprocessing Tools"); parser.setDescription("Performs brain extraction using a deep learning model"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input:", "input image", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output:", "output root", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input:", "input image", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Output:", "output root", us::Any(), false, false, false, mitkCommandLineParser::Output); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; // mandatory arguments std::string i = us::any_cast(parsedArgs["i"]); std::string o = us::any_cast(parsedArgs["o"]); std::string exec_dir = ist::GetFilenamePath(argv[0]); mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Diffusion Weighted Images"}, {}); mitk::Image::Pointer mitk_image = mitk::IOUtil::Load(i, &functor); bool missing_file = false; std::string missing_file_string = ""; if ( GetPythonFile("run_mitk.py", exec_dir).empty() ) { missing_file_string += "Brain extraction script file missing: run_mitk.py\n\n"; missing_file = true; } if ( GetPythonFile("model_final.model", exec_dir).empty() ) { missing_file_string += "Brain extraction model file missing: model_final.model\n\n"; missing_file = true; } if ( GetPythonFile("basic_config_just_like_braintumor.py", exec_dir).empty() ) { missing_file_string += "Config file missing: basic_config_just_like_braintumor.py\n\n"; missing_file = true; } if (missing_file) { mitkThrow() << missing_file_string; } us::ModuleContext* context = us::GetModuleContext(); us::ServiceReference m_PythonServiceRef = context->GetServiceReference(); mitk::IPythonService* m_PythonService = dynamic_cast ( context->GetService(m_PythonServiceRef) ); mitk::IPythonService::ForceLoadModule(); m_PythonService->AddAbsoluteSearchDirs(mitk::bet::absolute_search_dirs); m_PythonService->AddRelativeSearchDirs(mitk::bet::relative_search_dirs); m_PythonService->Execute("paths=[]"); // set input files (model and config) m_PythonService->Execute("model_file=\""+GetPythonFile("model_final.model", exec_dir)+"\""); m_PythonService->Execute("config_file=\""+GetPythonFile("basic_config_just_like_braintumor.py", exec_dir)+"\""); // copy input image to python m_PythonService->CopyToPythonAsSimpleItkImage( mitk_image, "in_image"); // run segmentation script m_PythonService->ExecuteScript( GetPythonFile("run_mitk.py", exec_dir) ); // clean up after running script (better way than deleting individual variables?) if(m_PythonService->DoesVariableExist("in_image")) m_PythonService->Execute("del in_image"); // check for errors if(!m_PythonService->GetVariable("error_string").empty()) mitkThrow() << m_PythonService->GetVariable("error_string"); // get output images and add to datastorage std::string output_variables = m_PythonService->GetVariable("output_variables"); std::vector outputs; boost::split(outputs, output_variables, boost::is_any_of(",")); std::string output_types = m_PythonService->GetVariable("output_types"); std::vector types; boost::split(types, output_types, boost::is_any_of(",")); for (unsigned int i=0; iDoesVariableExist(outputs.at(i))) { mitk::Image::Pointer image = m_PythonService->CopySimpleItkImageFromPython(outputs.at(i)); if(types.at(i)=="input" && mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(mitk_image)) { mitk::DiffusionPropertyHelper::CopyProperties(mitk_image, image, true); mitk::DiffusionPropertyHelper::InitializeImage(image); } mitk::DataNode::Pointer corrected_node = mitk::DataNode::New(); corrected_node->SetData( image ); std::string name = o + "_"; name += outputs.at(i); if(types.at(i)=="input" && mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(mitk_image)) mitk::IOUtil::Save(image, "DWI_NIFTI", name+".nii.gz"); else mitk::IOUtil::Save(image, name+".nii.gz"); } } MITK_INFO << "Finished brain extraction"; return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/DiffusionIndices.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/DiffusionIndices.cpp index 34fe0a6308..5f937c5b70 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/DiffusionIndices.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/DiffusionIndices.cpp @@ -1,145 +1,145 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include #include /** * Calculate indices derived from Odf or tensor images */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Diffusion Indices"); parser.setCategory("Diffusion Related Measures"); parser.setDescription("Computes requested diffusion related measures"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input:", "input image (tensor, ODF or FSL/MRTrix SH-coefficient image)", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output:", "output image", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input:", "input image (tensor, ODF or FSL/MRTrix SH-coefficient image)", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Output:", "output image", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.addArgument("index", "idx", mitkCommandLineParser::String, "Index:", "index (fa, gfa, ra, ad, rd, ca, l2, l3, md)", us::Any(), false); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; std::string inFileName = us::any_cast(parsedArgs["i"]); std::string index = us::any_cast(parsedArgs["index"]); std::string outFileName = us::any_cast(parsedArgs["o"]); std::string ext = itksys::SystemTools::GetFilenameLastExtension(outFileName); if (ext.empty()) outFileName += ".nrrd"; try { mitk::LocaleSwitch localeSwitch("C"); // load input image std::vector infile = mitk::IOUtil::Load( inFileName ); if( (boost::algorithm::ends_with(inFileName, ".odf") || boost::algorithm::ends_with(inFileName, ".qbi")) && index=="gfa" ) { typedef itk::Vector OdfVectorType; typedef itk::Image ItkOdfImageType; mitk::OdfImage::Pointer mitkOdfImage = dynamic_cast(infile[0].GetPointer()); ItkOdfImageType::Pointer itk_odf = ItkOdfImageType::New(); mitk::CastToItkImage(mitkOdfImage, itk_odf); typedef itk::DiffusionOdfGeneralizedFaImageFilter GfaFilterType; GfaFilterType::Pointer gfaFilter = GfaFilterType::New(); gfaFilter->SetInput(itk_odf); gfaFilter->SetComputationMethod(GfaFilterType::GFA_STANDARD); gfaFilter->Update(); itk::ImageFileWriter< itk::Image >::Pointer fileWriter = itk::ImageFileWriter< itk::Image >::New(); fileWriter->SetInput(gfaFilter->GetOutput()); fileWriter->SetFileName(outFileName); fileWriter->Update(); } else if( boost::algorithm::ends_with(inFileName, ".dti") ) { typedef itk::Image< itk::DiffusionTensor3D, 3 > ItkTensorImage; mitk::TensorImage::Pointer mitkTensorImage = dynamic_cast(infile[0].GetPointer()); ItkTensorImage::Pointer itk_dti = ItkTensorImage::New(); mitk::CastToItkImage(mitkTensorImage, itk_dti); typedef itk::TensorDerivedMeasurementsFilter MeasurementsType; MeasurementsType::Pointer measurementsCalculator = MeasurementsType::New(); measurementsCalculator->SetInput(itk_dti.GetPointer() ); if(index=="fa") measurementsCalculator->SetMeasure(MeasurementsType::FA); else if(index=="ra") measurementsCalculator->SetMeasure(MeasurementsType::RA); else if(index=="ad") measurementsCalculator->SetMeasure(MeasurementsType::AD); else if(index=="rd") measurementsCalculator->SetMeasure(MeasurementsType::RD); else if(index=="ca") measurementsCalculator->SetMeasure(MeasurementsType::CA); else if(index=="l2") measurementsCalculator->SetMeasure(MeasurementsType::L2); else if(index=="l3") measurementsCalculator->SetMeasure(MeasurementsType::L3); else if(index=="md") measurementsCalculator->SetMeasure(MeasurementsType::MD); else { MITK_WARN << "No valid diffusion index for input image (tensor image) defined"; return EXIT_FAILURE; } measurementsCalculator->Update(); itk::ImageFileWriter< itk::Image >::Pointer fileWriter = itk::ImageFileWriter< itk::Image >::New(); fileWriter->SetInput(measurementsCalculator->GetOutput()); fileWriter->SetFileName(outFileName); fileWriter->Update(); } else std::cout << "Diffusion index " << index << " not supported for supplied file type."; } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/DiffusionKurtosisFit.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/DiffusionKurtosisFit.cpp index 171563b2b1..07724cc072 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/DiffusionKurtosisFit.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/DiffusionKurtosisFit.cpp @@ -1,254 +1,254 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkCommandLineParser.h" #include #include #include #include #include "mitkImage.h" #include #include #include #include "mitkIOUtil.h" #include #include //vnl_includes #include "vnl/vnl_math.h" #include "vnl/vnl_cost_function.h" #include "vnl/vnl_least_squares_function.h" #include "vnl/algo/vnl_lbfgsb.h" #include "vnl/algo/vnl_lbfgs.h" #include "vnl/algo/vnl_levenberg_marquardt.h" typedef mitk::DiffusionPropertyHelper DPH; #include #include #include #include #include #include #include DPH::ImageType::Pointer GetBlurredVectorImage( DPH::ImageType::Pointer vectorImage, double sigma) { typedef itk::DiscreteGaussianImageFilter< itk::Image, itk::Image > GaussianFilterType; typedef itk::VectorIndexSelectionCastImageFilter< DPH::ImageType, itk::Image > IndexSelectionType; IndexSelectionType::Pointer indexSelectionFilter = IndexSelectionType::New(); indexSelectionFilter->SetInput( vectorImage ); typedef itk::ComposeImageFilter< itk::Image, DPH::ImageType > ComposeFilterType; ComposeFilterType::Pointer vec_composer = ComposeFilterType::New(); for( unsigned int i=0; iGetVectorLength(); ++i) { GaussianFilterType::Pointer gaussian_filter = GaussianFilterType::New(); indexSelectionFilter->SetIndex( i ); gaussian_filter->SetInput( indexSelectionFilter->GetOutput() ); gaussian_filter->SetVariance( sigma ); vec_composer->SetInput(i, gaussian_filter->GetOutput() ); gaussian_filter->Update(); } try { vec_composer->Update(); } catch(const itk::ExceptionObject &e) { mitkThrow() << "[VectorImage.GaussianSmoothing] !! Failed with ITK Exception: " << e.what(); } DPH::ImageType::Pointer smoothed_vector = vec_composer->GetOutput(); /* itk::ImageFileWriter< DPH::ImageType >::Pointer writer = itk::ImageFileWriter< DPH::ImageType >::New(); writer->SetInput( smoothed_vector ); writer->SetFileName( "/tmp/itk_smoothed_vector.nrrd"); writer->Update();*/ return smoothed_vector; } void KurtosisMapComputation( mitk::Image::Pointer input, std::string output_prefix , std::string output_type, std::string maskPath, bool omitBZero, double lower, double upper ) { DPH::ImageType::Pointer vectorImage = DPH::ImageType::New(); mitk::CastToItkImage( input, vectorImage ); typedef itk::DiffusionKurtosisReconstructionImageFilter< short, double > KurtosisFilterType; KurtosisFilterType::Pointer kurtosis_filter = KurtosisFilterType::New(); kurtosis_filter->SetInput( GetBlurredVectorImage( vectorImage, 1.5 ) ); kurtosis_filter->SetReferenceBValue( DPH::GetReferenceBValue( input.GetPointer() ) ); kurtosis_filter->SetGradientDirections( DPH::GetGradientContainer( input.GetPointer() ) ); // kurtosis_filter->SetNumberOfThreads(1); kurtosis_filter->SetOmitUnweightedValue(omitBZero); kurtosis_filter->SetBoundariesForKurtosis(-lower,upper); // kurtosis_filter->SetInitialSolution(const vnl_vector& x0 ); if(maskPath != "") { mitk::Image::Pointer segmentation; segmentation = mitk::IOUtil::Load(maskPath); typedef itk::Image< short , 3> MaskImageType; MaskImageType::Pointer vectorSeg = MaskImageType::New() ; mitk::CastToItkImage( segmentation, vectorSeg ); kurtosis_filter->SetImageMask(vectorSeg) ; } try { kurtosis_filter->Update(); } catch( const itk::ExceptionObject& e) { mitkThrow() << "Kurtosis fit failed with an ITK Exception: " << e.what(); } mitk::Image::Pointer d_image = mitk::Image::New(); d_image->InitializeByItk( kurtosis_filter->GetOutput(0) ); d_image->SetVolume( kurtosis_filter->GetOutput(0)->GetBufferPointer() ); mitk::Image::Pointer k_image = mitk::Image::New(); k_image->InitializeByItk( kurtosis_filter->GetOutput(1) ); k_image->SetVolume( kurtosis_filter->GetOutput(1)->GetBufferPointer() ); std::string outputD_FileName = output_prefix + "_ADC_map." + output_type; std::string outputK_FileName = output_prefix + "_AKC_map." + output_type; try { mitk::IOUtil::Save( d_image, outputD_FileName ); mitk::IOUtil::Save( k_image, outputK_FileName ); } catch( const itk::ExceptionObject& e) { mitkThrow() << "Failed to save the KurtosisFit Results due to exception: " << e.what(); } } int main( int argc, char* argv[] ) { mitkCommandLineParser parser; parser.setTitle("Diffusion Kurtosis Fit"); parser.setCategory("Diffusion Related Measures"); parser.setContributor("MIC"); parser.setDescription("Fitting Kurtosis"); parser.setArgumentPrefix("--","-"); // mandatory arguments - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input: ", "input image (DWI)", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input: ", "input image (DWI)", us::Any(), false, false, false, mitkCommandLineParser::Input); parser.addArgument("", "o", mitkCommandLineParser::String, "Output Preifx: ", "Prefix for the output images, will append _f, _K, _D accordingly ", us::Any(), false); parser.addArgument("output_type", "", mitkCommandLineParser::String, "Output Type: ", "choose data type of output image, e.g. '.nii' or '.nrrd' ", us::Any(), false); // optional arguments - parser.addArgument("mask", "m", mitkCommandLineParser::InputFile, "Masking Image: ", "ROI (segmentation)", us::Any()); + parser.addArgument("mask", "m", mitkCommandLineParser::File, "Masking Image: ", "ROI (segmentation)", us::Any(), true, false, false, mitkCommandLineParser::Input); parser.addArgument("help", "h", mitkCommandLineParser::Bool, "Help", "Show this help text"); parser.addArgument("omitbzero", "om", mitkCommandLineParser::Bool, "Omit b0:", "Omit b0 value during fit (default = false)", us::Any()); parser.addArgument("lowerkbound", "kl", mitkCommandLineParser::Float, "lower Kbound:", "Set (unsigned) lower boundary for Kurtosis parameter (default = -1000)", us::Any()); parser.addArgument("upperkbound", "ku", mitkCommandLineParser::Float, "upper Kbound:", "Set upper boundary for Kurtosis parameter (default = 1000)", us::Any()); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0 || parsedArgs.count("help") || parsedArgs.count("h")){ std::cout << parser.helpText(); return EXIT_SUCCESS; } // mandatory arguments std::string inFileName = us::any_cast(parsedArgs["input"]); std::string out_prefix = us::any_cast(parsedArgs["output"]); std::string maskPath = ""; mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Diffusion Weighted Images"}, {}); mitk::Image::Pointer inputImage = mitk::IOUtil::Load(inFileName, &functor); bool omitBZero = false; double lower = -1000; double upper = 1000; std::string out_type = "nrrd"; if (parsedArgs.count("mask") || parsedArgs.count("m")) { maskPath = us::any_cast(parsedArgs["mask"]); } if (parsedArgs.count("output_type") || parsedArgs.count("ot")) { out_type = us::any_cast(parsedArgs["output_type"]); } if (parsedArgs.count("omitbzero") || parsedArgs.count("om")) { omitBZero = us::any_cast(parsedArgs["omitbzero"]); } if (parsedArgs.count("lowerkbound") || parsedArgs.count("kl")) { lower = us::any_cast(parsedArgs["lowerkbound"]); } if (parsedArgs.count("upperkbound") || parsedArgs.count("ku")) { upper = us::any_cast(parsedArgs["upperkbound"]); } if( !DPH::IsDiffusionWeightedImage( inputImage ) ) { MITK_ERROR("DiffusionIVIMFit.Input") << "No valid diffusion-weighted image provided, failed to load " << inFileName << " as DW Image. Aborting..."; return EXIT_FAILURE; } KurtosisMapComputation( inputImage, out_prefix , out_type, maskPath, omitBZero, lower, upper); } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/MultishellMethods.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/MultishellMethods.cpp index 7d9521171b..00656b47a8 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/MultishellMethods.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/MultishellMethods.cpp @@ -1,215 +1,215 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include #include #include #include #include #include #include #include #include int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Multishell Methods"); parser.setCategory("Preprocessing Tools"); parser.setDescription(""); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input:", "input file", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output:", "output file", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input:", "input file", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Output:", "output file", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.addArgument("adc", "D", mitkCommandLineParser::Bool, "ADC:", "ADC Average", us::Any(), false); parser.addArgument("akc", "K", mitkCommandLineParser::Bool, "Kurtosis fit:", "Kurtosis Fit", us::Any(), false); parser.addArgument("biexp", "B", mitkCommandLineParser::Bool, "BiExp fit:", "BiExp fit", us::Any(), false); parser.addArgument("targetbvalue", "b", mitkCommandLineParser::String, "b Value:", "target bValue (mean, min, max)", us::Any(), false); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; // mandatory arguments std::string inName = us::any_cast(parsedArgs["i"]); std::string outName = us::any_cast(parsedArgs["o"]); bool applyADC = us::any_cast(parsedArgs["adc"]); bool applyAKC = us::any_cast(parsedArgs["akc"]); bool applyBiExp = us::any_cast(parsedArgs["biexp"]); std::string targetType = us::any_cast(parsedArgs["targetbvalue"]); try { std::cout << "Loading " << inName; mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Diffusion Weighted Images"}, {}); mitk::Image::Pointer dwi = mitk::IOUtil::Load(inName, &functor); if ( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( dwi ) ) { typedef itk::RadialMultishellToSingleshellImageFilter FilterType; typedef itk::DwiGradientLengthCorrectionFilter CorrectionFilterType; CorrectionFilterType::Pointer roundfilter = CorrectionFilterType::New(); roundfilter->SetRoundingValue( 1000 ); roundfilter->SetReferenceBValue(mitk::DiffusionPropertyHelper::GetReferenceBValue( dwi )); roundfilter->SetReferenceGradientDirectionContainer(mitk::DiffusionPropertyHelper::GetGradientContainer(dwi)); roundfilter->Update(); mitk::DiffusionPropertyHelper::SetReferenceBValue(dwi, roundfilter->GetNewBValue()); mitk::DiffusionPropertyHelper::SetGradientContainer(dwi, roundfilter->GetOutputGradientDirectionContainer()); // filter input parameter const mitk::DiffusionPropertyHelper::BValueMapType &originalShellMap = mitk::DiffusionPropertyHelper::GetBValueMap(dwi); mitk::DiffusionPropertyHelper::ImageType::Pointer vectorImage = mitk::DiffusionPropertyHelper::ImageType::New(); mitk::CastToItkImage(dwi, vectorImage); const mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer gradientContainer = mitk::DiffusionPropertyHelper::GetGradientContainer(dwi); const unsigned int &bValue = mitk::DiffusionPropertyHelper::GetReferenceBValue( dwi ); // filter call vnl_vector bValueList(originalShellMap.size()-1); double targetBValue = bValueList.mean(); mitk::DiffusionPropertyHelper::BValueMapType::const_iterator it = originalShellMap.begin(); ++it; int i = 0 ; for(; it != originalShellMap.end(); ++it) bValueList.put(i++,it->first); if( targetType == "mean" ) targetBValue = bValueList.mean(); else if( targetType == "min" ) targetBValue = bValueList.min_value(); else if( targetType == "max" ) targetBValue = bValueList.max_value(); if(applyADC) { FilterType::Pointer filter = FilterType::New(); filter->SetInput(vectorImage); filter->SetOriginalGradientDirections(gradientContainer); filter->SetOriginalBValueMap(originalShellMap); filter->SetOriginalBValue(bValue); itk::ADCAverageFunctor::Pointer functor = itk::ADCAverageFunctor::New(); functor->setListOfBValues(bValueList); functor->setTargetBValue(targetBValue); filter->SetFunctor(functor); filter->Update(); // create new DWI image mitk::Image::Pointer outImage = mitk::GrabItkImageMemory( filter->GetOutput() ); mitk::DiffusionPropertyHelper::SetReferenceBValue(outImage, targetBValue); mitk::DiffusionPropertyHelper::SetGradientContainer(outImage, filter->GetTargetGradientDirections()); mitk::DiffusionPropertyHelper::InitializeImage( outImage ); mitk::IOUtil::Save(outImage, (outName + "_ADC.dwi").c_str()); } if(applyAKC) { FilterType::Pointer filter = FilterType::New(); filter->SetInput(vectorImage); filter->SetOriginalGradientDirections(gradientContainer); filter->SetOriginalBValueMap(originalShellMap); filter->SetOriginalBValue(bValue); itk::KurtosisFitFunctor::Pointer functor = itk::KurtosisFitFunctor::New(); functor->setListOfBValues(bValueList); functor->setTargetBValue(targetBValue); filter->SetFunctor(functor); filter->Update(); // create new DWI image mitk::Image::Pointer outImage = mitk::GrabItkImageMemory( filter->GetOutput() ); mitk::DiffusionPropertyHelper::SetReferenceBValue(outImage, targetBValue); mitk::DiffusionPropertyHelper::SetGradientContainer(outImage, filter->GetTargetGradientDirections()); mitk::DiffusionPropertyHelper::InitializeImage( outImage ); mitk::IOUtil::Save(outImage, (std::string(outName) + "_AKC.dwi").c_str()); } if(applyBiExp) { FilterType::Pointer filter = FilterType::New(); filter->SetInput(vectorImage); filter->SetOriginalGradientDirections(gradientContainer); filter->SetOriginalBValueMap(originalShellMap); filter->SetOriginalBValue(bValue); itk::BiExpFitFunctor::Pointer functor = itk::BiExpFitFunctor::New(); functor->setListOfBValues(bValueList); functor->setTargetBValue(targetBValue); filter->SetFunctor(functor); filter->Update(); // create new DWI image mitk::Image::Pointer outImage = mitk::GrabItkImageMemory( filter->GetOutput() ); mitk::DiffusionPropertyHelper::SetReferenceBValue(outImage, targetBValue); mitk::DiffusionPropertyHelper::SetGradientContainer(outImage, filter->GetTargetGradientDirections()); mitk::DiffusionPropertyHelper::InitializeImage( outImage ); mitk::IOUtil::Save(outImage, (std::string(outName) + "_BiExp.dwi").c_str()); } } } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/QballReconstruction.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/QballReconstruction.cpp index e98e4078b9..ba3f6a0936 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/QballReconstruction.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/QballReconstruction.cpp @@ -1,266 +1,266 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include "mitkImage.h" #include "itkAnalyticalDiffusionQballReconstructionImageFilter.h" #include #include "mitkCommandLineParser.h" #include #include #include #include #include #include #include #include #include #include template void TemplatedMultishellQBallReconstruction(float lambda, mitk::Image::Pointer dwi, bool output_sampled, int threshold, std::string outfilename) { typedef itk::DiffusionMultiShellQballReconstructionImageFilter FilterType; typename FilterType::Pointer filter = FilterType::New(); auto bMap = mitk::DiffusionPropertyHelper::GetBValueMap(dwi); auto it1 = bMap.rbegin(); auto it2 = bMap.rbegin(); ++it2; // Get average distance int avdistance = 0; for(; it2 != bMap.rend(); ++it1, ++it2) avdistance += static_cast(it1->first - it2->first); avdistance /= bMap.size()-1; // Check if all shells are using the same averae distance it1 = bMap.rbegin(); it2 = bMap.rbegin(); ++it2; for(; it2 != bMap.rend(); ++it1,++it2) { if(avdistance != static_cast(it1->first - it2->first)) { mitkThrow() << "Shells are not equidistant."; } } auto itkVectorImagePointer = mitk::DiffusionPropertyHelper::GetItkVectorImage(dwi); filter->SetBValueMap(bMap); filter->SetGradientImage(mitk::DiffusionPropertyHelper::GetGradientContainer(dwi), itkVectorImagePointer, mitk::DiffusionPropertyHelper::GetReferenceBValue(dwi)); filter->SetThreshold(static_cast(threshold)); filter->SetLambda(static_cast(lambda)); filter->Update(); mitk::OdfImage::Pointer image = mitk::OdfImage::New(); mitk::Image::Pointer coeffsImage = dynamic_cast(mitk::ShImage::New().GetPointer()); image->InitializeByItk( filter->GetOutput() ); image->SetVolume( filter->GetOutput()->GetBufferPointer() ); coeffsImage->InitializeByItk( filter->GetCoefficientImage().GetPointer() ); coeffsImage->SetVolume( filter->GetCoefficientImage()->GetBufferPointer() ); std::string coeffout = outfilename; coeffout += ".nii.gz"; mitk::IOUtil::Save(coeffsImage, "SH_IMAGE", coeffout); outfilename += ".odf"; if (output_sampled) mitk::IOUtil::Save(image, outfilename); } template void TemplatedCsaQBallReconstruction(float lambda, mitk::Image::Pointer dwi, bool output_sampled, int threshold, std::string outfilename) { typedef itk::AnalyticalDiffusionQballReconstructionImageFilter FilterType; auto itkVectorImagePointer = mitk::DiffusionPropertyHelper::GetItkVectorImage(dwi); FilterType::Pointer filter = FilterType::New(); filter->SetBValue(mitk::DiffusionPropertyHelper::GetReferenceBValue(dwi)); filter->SetGradientImage( mitk::DiffusionPropertyHelper::GetGradientContainer(dwi), itkVectorImagePointer ); filter->SetThreshold(static_cast(threshold)); filter->SetLambda(static_cast(lambda)); // filter->SetUseMrtrixBasis(mrTrix); filter->SetNormalizationMethod(FilterType::QBAR_SOLID_ANGLE); filter->Update(); mitk::OdfImage::Pointer image = mitk::OdfImage::New(); mitk::Image::Pointer coeffsImage = dynamic_cast(mitk::ShImage::New().GetPointer()); image->InitializeByItk( filter->GetOutput() ); image->SetVolume( filter->GetOutput()->GetBufferPointer() ); coeffsImage->InitializeByItk( filter->GetCoefficientImage().GetPointer() ); coeffsImage->SetVolume( filter->GetCoefficientImage()->GetBufferPointer() ); std::string coeffout = outfilename; coeffout += ".nii.gz"; mitk::IOUtil::Save(coeffsImage, "SH_IMAGE", coeffout); outfilename += ".odf"; if (output_sampled) mitk::IOUtil::Save(image, outfilename); } /** * Perform Q-ball reconstruction using a spherical harmonics basis */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input image", "input raw dwi (.dwi or .nii/.nii.gz)", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output image", "output image", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input image", "input raw dwi (.dwi or .nii/.nii.gz)", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Output image", "output image", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.addArgument("sh_order", "", mitkCommandLineParser::Int, "Spherical harmonics order", "spherical harmonics order", 4); parser.addArgument("b0_threshold", "", mitkCommandLineParser::Int, "b0 threshold", "baseline image intensity threshold", 0); parser.addArgument("round_bvalues", "", mitkCommandLineParser::Int, "Round b-values", "round to specified integer", 0); parser.addArgument("lambda", "", mitkCommandLineParser::Float, "Lambda", "ragularization factor lambda", 0.006); parser.addArgument("output_sampled", "", mitkCommandLineParser::Bool, "Output sampled ODFs", "output file containing the sampled ODFs"); parser.setCategory("Signal Modelling"); parser.setTitle("Qball Reconstruction"); parser.setDescription(""); parser.setContributor("MIC"); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; std::string inFileName = us::any_cast(parsedArgs["i"]); std::string outfilename = us::any_cast(parsedArgs["o"]); if (itksys::SystemTools::GetFilenamePath(outfilename).size()>0) outfilename = itksys::SystemTools::GetFilenamePath(outfilename)+"/"+itksys::SystemTools::GetFilenameWithoutExtension(outfilename); else outfilename = itksys::SystemTools::GetFilenameWithoutExtension(outfilename); int threshold = 0; if (parsedArgs.count("b0_threshold")) threshold = us::any_cast(parsedArgs["b0_threshold"]); int round_bvalues = 0; if (parsedArgs.count("round_bvalues")) round_bvalues = us::any_cast(parsedArgs["round_bvalues"]); int shOrder = 4; if (parsedArgs.count("sh_order")) shOrder = us::any_cast(parsedArgs["sh_order"]); float lambda = 0.006f; if (parsedArgs.count("lambda")) lambda = us::any_cast(parsedArgs["lambda"]); bool outCoeffs = false; if (parsedArgs.count("output_coeffs")) outCoeffs = us::any_cast(parsedArgs["output_coeffs"]); // bool mrTrix = false; // if (parsedArgs.count("mrtrix")) // mrTrix = us::any_cast(parsedArgs["mrtrix"]); try { mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Diffusion Weighted Images"}, {}); std::vector< mitk::BaseData::Pointer > infile = mitk::IOUtil::Load(inFileName, &functor); mitk::Image::Pointer dwi = dynamic_cast(infile.at(0).GetPointer()); if (round_bvalues>0) { MITK_INFO << "Rounding b-values"; typedef itk::DwiGradientLengthCorrectionFilter FilterType; FilterType::Pointer filter = FilterType::New(); filter->SetRoundingValue(round_bvalues); filter->SetReferenceBValue(static_cast(mitk::DiffusionPropertyHelper::GetReferenceBValue(dwi))); filter->SetReferenceGradientDirectionContainer(mitk::DiffusionPropertyHelper::GetGradientContainer(dwi)); filter->Update(); mitk::DiffusionPropertyHelper::SetReferenceBValue(dwi, static_cast(filter->GetNewBValue())); mitk::DiffusionPropertyHelper::CopyProperties(dwi, dwi, true); mitk::DiffusionPropertyHelper::SetGradientContainer(dwi, filter->GetOutputGradientDirectionContainer()); mitk::DiffusionPropertyHelper::InitializeImage(dwi); } auto bMap = mitk::DiffusionPropertyHelper::GetBValueMap(dwi); if(bMap.size()!=4 && bMap.size()!=2) mitkThrow() << "Only three equidistant shells or a single shell are supported. Found " << bMap.size(); MITK_INFO << "Averaging redundant gradients"; mitk::DiffusionPropertyHelper::AverageRedundantGradients(dwi, 0.001); MITK_INFO << "SH order: " << shOrder; MITK_INFO << "lambda: " << lambda; MITK_INFO << "B0 threshold: " << threshold; MITK_INFO << "Round bvalues: " << round_bvalues; switch ( shOrder ) { case 4: { if(bMap.size()==2) TemplatedCsaQBallReconstruction<4>(lambda, dwi, outCoeffs, threshold, outfilename); else if(bMap.size()==4) TemplatedMultishellQBallReconstruction<4>(lambda, dwi, outCoeffs, threshold, outfilename); break; } case 6: { if(bMap.size()==2) TemplatedCsaQBallReconstruction<6>(lambda, dwi, outCoeffs, threshold, outfilename); else if(bMap.size()==4) TemplatedMultishellQBallReconstruction<6>(lambda, dwi, outCoeffs, threshold, outfilename); break; } case 8: { if(bMap.size()==2) TemplatedCsaQBallReconstruction<8>(lambda, dwi, outCoeffs, threshold, outfilename); else if(bMap.size()==4) TemplatedMultishellQBallReconstruction<8>(lambda, dwi, outCoeffs, threshold, outfilename); break; } case 10: { if(bMap.size()==2) TemplatedCsaQBallReconstruction<10>(lambda, dwi, outCoeffs, threshold, outfilename); else if(bMap.size()==4) TemplatedMultishellQBallReconstruction<10>(lambda, dwi, outCoeffs, threshold, outfilename); break; } case 12: { if(bMap.size()==2) TemplatedCsaQBallReconstruction<12>(lambda, dwi, outCoeffs, threshold, outfilename); else if(bMap.size()==4) TemplatedMultishellQBallReconstruction<12>(lambda, dwi, outCoeffs, threshold, outfilename); break; } default: { mitkThrow() << "SH order not supported"; } } } catch ( itk::ExceptionObject &err) { std::cout << "Exception: " << err; } catch ( std::exception err) { std::cout << "Exception: " << err.what(); } catch ( ... ) { std::cout << "Exception!"; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/TensorDerivedMapsExtraction.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/TensorDerivedMapsExtraction.cpp index 6c41169468..cf9421d475 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/TensorDerivedMapsExtraction.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/TensorDerivedMapsExtraction.cpp @@ -1,180 +1,180 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include "mitkImage.h" #include #include "mitkITKImageImport.h" #include #include #include #include #include #include "itkTensorDerivedMeasurementsFilter.h" #include "itkDiffusionTensor3DReconstructionImageFilter.h" #include "mitkCommandLineParser.h" #include #include #include #include typedef short DiffusionPixelType; typedef double TTensorPixelType; static void ExtractMapsAndSave(mitk::TensorImage::Pointer tensorImage, std::string filename, std::string postfix = "") { mitk::Image* image = dynamic_cast (tensorImage.GetPointer()); typedef itk::DiffusionTensor3D< TTensorPixelType > TensorPixelType; typedef itk::Image< TensorPixelType, 3 > TensorImageType; TensorImageType::Pointer itkvol = TensorImageType::New(); mitk::CastToItkImage(image, itkvol); typedef itk::TensorDerivedMeasurementsFilter MeasurementsType; MeasurementsType::Pointer measurementsCalculator = MeasurementsType::New(); measurementsCalculator->SetInput(itkvol.GetPointer() ); mitk::Image::Pointer map = mitk::Image::New(); // FA measurementsCalculator->SetMeasure(MeasurementsType::FA); measurementsCalculator->Update(); map->InitializeByItk( measurementsCalculator->GetOutput() ); map->SetVolume( measurementsCalculator->GetOutput()->GetBufferPointer() ); mitk::IOUtil::Save(map, filename + "_FA" + postfix + ".nrrd"); // MD measurementsCalculator->SetMeasure(MeasurementsType::MD); measurementsCalculator->Update(); map->InitializeByItk( measurementsCalculator->GetOutput() ); map->SetVolume( measurementsCalculator->GetOutput()->GetBufferPointer() ); mitk::IOUtil::Save(map, filename + "_MD" + postfix + ".nrrd"); // AD measurementsCalculator->SetMeasure(MeasurementsType::AD); measurementsCalculator->Update(); map->InitializeByItk( measurementsCalculator->GetOutput() ); map->SetVolume( measurementsCalculator->GetOutput()->GetBufferPointer() ); mitk::IOUtil::Save(map, filename + "_AD" + postfix + ".nrrd"); // CA measurementsCalculator->SetMeasure(MeasurementsType::CA); measurementsCalculator->Update(); map->InitializeByItk( measurementsCalculator->GetOutput() ); map->SetVolume( measurementsCalculator->GetOutput()->GetBufferPointer() ); mitk::IOUtil::Save(map, filename + "_CA" + postfix + ".nrrd"); // RA measurementsCalculator->SetMeasure(MeasurementsType::RA); measurementsCalculator->Update(); map->InitializeByItk( measurementsCalculator->GetOutput() ); map->SetVolume( measurementsCalculator->GetOutput()->GetBufferPointer() ); mitk::IOUtil::Save(map, filename + "_RA" + postfix + ".nrrd"); // RD measurementsCalculator->SetMeasure(MeasurementsType::RD); measurementsCalculator->Update(); map->InitializeByItk( measurementsCalculator->GetOutput() ); map->SetVolume( measurementsCalculator->GetOutput()->GetBufferPointer() ); mitk::IOUtil::Save(map, filename + "_RD" + postfix + ".nrrd"); } int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setArgumentPrefix("--", "-"); parser.addArgument("help", "h", mitkCommandLineParser::String, "Help", "Show this help text"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input file", "input dwi file", us::Any(),false); - parser.addArgument("", "o", mitkCommandLineParser::OutputDirectory, "Output folder", "output folder and base name, e.g. /tmp/outPatient1 ", us::Any(),false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input file", "input dwi file", us::Any(),false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::Directory, "Output folder", "output folder and base name, e.g. /tmp/outPatient1 ", us::Any(),false, false, false, mitkCommandLineParser::Output); parser.setTitle("Tensor Derived Maps Extraction"); parser.setCategory("Diffusion Related Measures"); parser.setDescription(""); parser.setContributor("MIC"); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) { std::cout << parser.helpText(); return EXIT_SUCCESS; } std::string inputFile = us::any_cast(parsedArgs["i"]); std::string baseFileName = us::any_cast(parsedArgs["o"]); std::string dtiFileName = "_dti.dti"; mitk::Image::Pointer diffusionImage = mitk::IOUtil::Load(inputFile); if (diffusionImage.IsNull() || !mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(diffusionImage)) // does nullptr pointer check make sense after static cast ? { MITK_ERROR << "Invalid Input Image. Must be DWI. Aborting."; return -1; } typedef itk::DiffusionTensor3DReconstructionImageFilter< DiffusionPixelType, DiffusionPixelType, TTensorPixelType > TensorReconstructionImageFilterType; TensorReconstructionImageFilterType::Pointer tensorReconstructionFilter = TensorReconstructionImageFilterType::New(); mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer gradientContainerCopy = mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::New(); for( mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::ConstIterator it = mitk::DiffusionPropertyHelper::GetGradientContainer(diffusionImage)->Begin(); it != mitk::DiffusionPropertyHelper::GetGradientContainer(diffusionImage)->End(); it++) { gradientContainerCopy->push_back(it.Value()); } mitk::DiffusionPropertyHelper::ImageType::Pointer itkVectorImagePointer = mitk::DiffusionPropertyHelper::ImageType::New(); mitk::CastToItkImage(diffusionImage, itkVectorImagePointer); tensorReconstructionFilter->SetGradientImage( gradientContainerCopy, itkVectorImagePointer ); tensorReconstructionFilter->SetBValue( mitk::DiffusionPropertyHelper::GetReferenceBValue( diffusionImage ) ); tensorReconstructionFilter->SetThreshold(50); tensorReconstructionFilter->Update(); typedef itk::Image, 3> TensorImageType; TensorImageType::Pointer tensorImage = tensorReconstructionFilter->GetOutput(); tensorImage->SetDirection( itkVectorImagePointer->GetDirection() ); mitk::TensorImage::Pointer tensorImageMitk = mitk::TensorImage::New(); tensorImageMitk->InitializeByItk(tensorImage.GetPointer()); tensorImageMitk->SetVolume( tensorImage->GetBufferPointer() ); itk::NrrdImageIO::Pointer io = itk::NrrdImageIO::New(); io->SetFileType( itk::ImageIOBase::Binary ); io->UseCompressionOn(); mitk::LocaleSwitch localeSwitch("C"); itk::ImageFileWriter< itk::Image< itk::DiffusionTensor3D< double >, 3 > >::Pointer writer = itk::ImageFileWriter< itk::Image< itk::DiffusionTensor3D< double >, 3 > >::New(); writer->SetInput(tensorReconstructionFilter->GetOutput()); writer->SetFileName(baseFileName + dtiFileName); writer->SetImageIO(io); writer->UseCompressionOn(); writer->Update(); ExtractMapsAndSave(tensorImageMitk,baseFileName); return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/TensorReconstruction.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/TensorReconstruction.cpp index fa61ea0f3f..9d31cd18d2 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/TensorReconstruction.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Quantification/TensorReconstruction.cpp @@ -1,101 +1,101 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkImage.h" #include #include "mitkBaseData.h" #include #include #include #include #include #include "mitkCommandLineParser.h" #include #include #include /** * Convert files from one ending to the other */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input image", "input raw dwi", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output image", "output image", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input image", "input raw dwi", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Output image", "output image", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.addArgument("b0Threshold", "t", mitkCommandLineParser::Int, "b0 threshold", "baseline image intensity threshold", 0, true); parser.setCategory("Signal Modelling"); parser.setTitle("Tensor Reconstruction"); parser.setDescription(""); parser.setContributor("MIC"); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; std::string inFileName = us::any_cast(parsedArgs["i"]); std::string outfilename = us::any_cast(parsedArgs["o"]); outfilename = itksys::SystemTools::GetFilenamePath(outfilename)+"/"+itksys::SystemTools::GetFilenameWithoutExtension(outfilename); outfilename += ".dti"; int threshold = 0; if (parsedArgs.count("b0Threshold")) threshold = us::any_cast(parsedArgs["b0Threshold"]); try { mitk::Image::Pointer dwi = mitk::IOUtil::Load(inFileName); mitk::DiffusionPropertyHelper::ImageType::Pointer itkVectorImagePointer = mitk::DiffusionPropertyHelper::ImageType::New(); mitk::CastToItkImage(dwi, itkVectorImagePointer); typedef itk::DiffusionTensor3DReconstructionImageFilter< short, short, float > TensorReconstructionImageFilterType; TensorReconstructionImageFilterType::Pointer filter = TensorReconstructionImageFilterType::New(); filter->SetGradientImage( mitk::DiffusionPropertyHelper::GetGradientContainer(dwi), itkVectorImagePointer ); filter->SetBValue( mitk::DiffusionPropertyHelper::GetReferenceBValue( dwi )); filter->SetThreshold(threshold); filter->Update(); // Save tensor image itk::NrrdImageIO::Pointer io = itk::NrrdImageIO::New(); io->SetFileType( itk::ImageIOBase::Binary ); io->UseCompressionOn(); mitk::LocaleSwitch localeSwitch("C"); itk::ImageFileWriter< itk::Image< itk::DiffusionTensor3D< float >, 3 > >::Pointer writer = itk::ImageFileWriter< itk::Image< itk::DiffusionTensor3D< float >, 3 > >::New(); writer->SetInput(filter->GetOutput()); writer->SetFileName(outfilename); writer->SetImageIO(io); writer->UseCompressionOn(); writer->Update(); } catch ( itk::ExceptionObject &err) { std::cout << "Exception: " << err; } catch ( std::exception err) { std::cout << "Exception: " << err.what(); } catch ( ... ) { std::cout << "Exception!"; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Tractography/GlobalTractography.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Tractography/GlobalTractography.cpp index 330253f7c0..993677864a 100755 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Tractography/GlobalTractography.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Tractography/GlobalTractography.cpp @@ -1,133 +1,133 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include #include #include /*! \brief Perform global fiber tractography (Gibbs tractography) */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Gibbs Tracking"); parser.setCategory("Fiber Tracking and Processing Methods"); parser.setDescription("Perform global fiber tractography (Gibbs tractography)"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input:", "input image (tensor, ODF or SH-coefficient image)", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output:", "output tractogram", us::Any(), false); - parser.addArgument("parameters", "", mitkCommandLineParser::InputFile, "Parameters:", "parameter file (.gtp)", us::Any(), false); - parser.addArgument("mask", "", mitkCommandLineParser::InputFile, "Mask:", "binary mask image"); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input:", "input image (tensor, ODF or SH-coefficient image)", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Output:", "output tractogram", us::Any(), false, false, false, mitkCommandLineParser::Output); + parser.addArgument("parameters", "", mitkCommandLineParser::File, "Parameters:", "parameter file (.gtp)", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("mask", "", mitkCommandLineParser::File, "Mask:", "binary mask image", us::Any(), false, false, false, mitkCommandLineParser::Input); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; std::string inFileName = us::any_cast(parsedArgs["i"]); std::string paramFileName = us::any_cast(parsedArgs["parameters"]); std::string outFileName = us::any_cast(parsedArgs["o"]); try { // instantiate gibbs tracker typedef itk::Vector OdfVectorType; typedef itk::Image ItkOdfImageType; typedef itk::GibbsTrackingFilter GibbsTrackingFilterType; GibbsTrackingFilterType::Pointer gibbsTracker = GibbsTrackingFilterType::New(); // load input image mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"SH Image"}, {}); mitk::Image::Pointer mitkImage = mitk::IOUtil::Load(inFileName, &functor); // try to cast to Odf image if( dynamic_cast(mitkImage.GetPointer()) ) { mitk::OdfImage::Pointer mitkOdfImage = dynamic_cast(mitkImage.GetPointer()); ItkOdfImageType::Pointer itk_odf = ItkOdfImageType::New(); mitk::CastToItkImage(mitkOdfImage, itk_odf); gibbsTracker->SetOdfImage(itk_odf.GetPointer()); } else if( dynamic_cast(mitkImage.GetPointer()) ) { typedef itk::Image< itk::DiffusionTensor3D, 3 > ItkTensorImage; mitk::TensorImage::Pointer mitkTensorImage = dynamic_cast(mitkImage.GetPointer()); ItkTensorImage::Pointer itk_dti = ItkTensorImage::New(); mitk::CastToItkImage(mitkTensorImage, itk_dti); gibbsTracker->SetTensorImage(itk_dti); } else if ( dynamic_cast(mitkImage.GetPointer()) ) { mitk::Image::Pointer shImage = dynamic_cast(mitkImage.GetPointer()); gibbsTracker->SetOdfImage(mitk::convert::GetItkOdfFromShImage(shImage)); } else return EXIT_FAILURE; // global tracking if (parsedArgs.count("mask")) { typedef itk::Image MaskImgType; mitk::Image::Pointer mitkMaskImage = mitk::IOUtil::Load(us::any_cast(parsedArgs["mask"])); MaskImgType::Pointer itk_mask = MaskImgType::New(); mitk::CastToItkImage(mitkMaskImage, itk_mask); gibbsTracker->SetMaskImage(itk_mask); } gibbsTracker->SetDuplicateImage(false); gibbsTracker->SetLoadParameterFile( paramFileName ); // gibbsTracker->SetLutPath( "" ); gibbsTracker->Update(); mitk::FiberBundle::Pointer mitkFiberBundle = mitk::FiberBundle::New(gibbsTracker->GetFiberBundle()); mitkFiberBundle->SetReferenceGeometry(mitkImage->GetGeometry()); mitk::IOUtil::Save(mitkFiberBundle, outFileName ); } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Tractography/RfTraining.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Tractography/RfTraining.cpp index f7b942b649..300312e496 100755 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Tractography/RfTraining.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Tractography/RfTraining.cpp @@ -1,238 +1,238 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include /*! \brief Train random forest classifier for machine learning based streamline tractography */ int main(int argc, char* argv[]) { MITK_INFO << "RfTraining"; mitkCommandLineParser parser; parser.setTitle("Trains Random Forests for Machine Learning Based Tractography"); parser.setCategory("Fiber Tracking and Processing Methods"); parser.setDescription("Train random forest classifier for machine learning based streamline tractography"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); parser.beginGroup("1. Mandatory arguments:"); - parser.addArgument("", "i", mitkCommandLineParser::StringList, "DWIs:", "input diffusion-weighted images", us::Any(), false); - parser.addArgument("", "t", mitkCommandLineParser::StringList, "Tractograms:", "input training tractograms", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Forest:", "output random forest (HDF5)", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::StringList, "DWIs:", "input diffusion-weighted images", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "t", mitkCommandLineParser::StringList, "Tractograms:", "input training tractograms", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::File, "Forest:", "output random forest (HDF5)", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.endGroup(); parser.beginGroup("2. Additional input images:"); - parser.addArgument("masks", "", mitkCommandLineParser::StringList, "Masks:", "restrict training using a binary mask image", us::Any()); - parser.addArgument("wm_masks", "", mitkCommandLineParser::StringList, "WM-Masks:", "if no binary white matter mask is specified, the envelope of the input tractogram is used", us::Any()); - parser.addArgument("volume_modification_images", "", mitkCommandLineParser::StringList, "Volume modification images:", "specify a list of float images that modify the fiber density", us::Any()); - parser.addArgument("additional_feature_images", "", mitkCommandLineParser::StringList, "Additional feature images:", "specify a list of float images that hold additional features (float)", us::Any()); + parser.addArgument("masks", "", mitkCommandLineParser::StringList, "Masks:", "restrict training using a binary mask image", us::Any(), true, false, false, mitkCommandLineParser::Input); + parser.addArgument("wm_masks", "", mitkCommandLineParser::StringList, "WM-Masks:", "if no binary white matter mask is specified, the envelope of the input tractogram is used", us::Any(), true, false, false, mitkCommandLineParser::Input); + parser.addArgument("volume_modification_images", "", mitkCommandLineParser::StringList, "Volume modification images:", "specify a list of float images that modify the fiber density", us::Any(), true, false, false, mitkCommandLineParser::Input); + parser.addArgument("additional_feature_images", "", mitkCommandLineParser::StringList, "Additional feature images:", "specify a list of float images that hold additional features (float)", us::Any(), true, false, false, mitkCommandLineParser::Input); parser.endGroup(); parser.beginGroup("3. Forest parameters:"); parser.addArgument("num_trees", "", mitkCommandLineParser::Int, "Number of trees:", "number of trees", 30); parser.addArgument("max_tree_depth", "", mitkCommandLineParser::Int, "Max. tree depth:", "maximum tree depth", 25); parser.addArgument("sample_fraction", "", mitkCommandLineParser::Float, "Sample fraction:", "fraction of samples used per tree", 0.7); parser.endGroup(); parser.beginGroup("4. Feature parameters:"); parser.addArgument("use_sh_features", "", mitkCommandLineParser::Bool, "Use SH features:", "use SH features", false); parser.addArgument("sampling_distance", "", mitkCommandLineParser::Float, "Sampling distance:", "resampling parameter for the input tractogram in mm (determines number of white-matter samples)", us::Any()); parser.addArgument("max_wm_samples", "", mitkCommandLineParser::Int, "Max. num. WM samples:", "upper limit for the number of WM samples"); parser.addArgument("num_gm_samples", "", mitkCommandLineParser::Int, "Number of gray matter samples per voxel:", "Number of gray matter samples per voxel", us::Any()); parser.endGroup(); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; bool shfeatures = false; if (parsedArgs.count("use_sh_features")) shfeatures = us::any_cast(parsedArgs["use_sh_features"]); mitkCommandLineParser::StringContainerType imageFiles = us::any_cast(parsedArgs["i"]); mitkCommandLineParser::StringContainerType wmMaskFiles; if (parsedArgs.count("wm_masks")) wmMaskFiles = us::any_cast(parsedArgs["wm_masks"]); mitkCommandLineParser::StringContainerType volModFiles; if (parsedArgs.count("volume_modification_images")) volModFiles = us::any_cast(parsedArgs["volume_modification_images"]); mitkCommandLineParser::StringContainerType addFeatFiles; if (parsedArgs.count("additional_feature_images")) addFeatFiles = us::any_cast(parsedArgs["additional_feature_images"]); mitkCommandLineParser::StringContainerType maskFiles; if (parsedArgs.count("masks")) maskFiles = us::any_cast(parsedArgs["masks"]); std::string forestFile = us::any_cast(parsedArgs["o"]); mitkCommandLineParser::StringContainerType tractogramFiles; if (parsedArgs.count("t")) tractogramFiles = us::any_cast(parsedArgs["t"]); int num_trees = 30; if (parsedArgs.count("num_trees")) num_trees = us::any_cast(parsedArgs["num_trees"]); int gm_samples = -1; if (parsedArgs.count("num_gm_samples")) gm_samples = us::any_cast(parsedArgs["num_gm_samples"]); float sampling_distance = -1; if (parsedArgs.count("sampling_distance")) sampling_distance = us::any_cast(parsedArgs["sampling_distance"]); int max_tree_depth = 25; if (parsedArgs.count("max_tree_depth")) max_tree_depth = us::any_cast(parsedArgs["max_tree_depth"]); double sample_fraction = 0.7; if (parsedArgs.count("sample_fraction")) sample_fraction = us::any_cast(parsedArgs["sample_fraction"]); int maxWmSamples = -1; if (parsedArgs.count("max_wm_samples")) maxWmSamples = us::any_cast(parsedArgs["max_wm_samples"]); MITK_INFO << "loading diffusion-weighted images"; std::vector< mitk::Image::Pointer > rawData; mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Diffusion Weighted Images"}, {}); for (auto imgFile : imageFiles) { auto dwi = mitk::IOUtil::Load(imgFile, &functor); rawData.push_back(dwi); } typedef itk::Image ItkFloatImgType; typedef itk::Image ItkUcharImgType; MITK_INFO << "loading mask images"; std::vector< ItkUcharImgType::Pointer > maskImageVector; for (auto maskFile : maskFiles) { mitk::Image::Pointer img = mitk::IOUtil::Load(maskFile); ItkUcharImgType::Pointer mask = ItkUcharImgType::New(); mitk::CastToItkImage(img, mask); maskImageVector.push_back(mask); } MITK_INFO << "loading white matter mask images"; std::vector< ItkUcharImgType::Pointer > wmMaskImageVector; for (auto wmFile : wmMaskFiles) { mitk::Image::Pointer img = mitk::IOUtil::Load(wmFile); ItkUcharImgType::Pointer wmmask = ItkUcharImgType::New(); mitk::CastToItkImage(img, wmmask); wmMaskImageVector.push_back(wmmask); } MITK_INFO << "loading tractograms"; std::vector< mitk::FiberBundle::Pointer > tractograms; for (auto tractFile : tractogramFiles) { mitk::FiberBundle::Pointer fib = mitk::IOUtil::Load(tractFile); tractograms.push_back(fib); } MITK_INFO << "loading white volume modification images"; std::vector< ItkFloatImgType::Pointer > volumeModImages; for (auto file : volModFiles) { mitk::Image::Pointer img = mitk::IOUtil::Load(file); ItkFloatImgType::Pointer itkimg = ItkFloatImgType::New(); mitk::CastToItkImage(img, itkimg); volumeModImages.push_back(itkimg); } MITK_INFO << "loading additional feature images"; std::vector< std::vector< ItkFloatImgType::Pointer > > addFeatImages; for (std::size_t i=0; i()); int c = 0; for (auto file : addFeatFiles) { mitk::Image::Pointer img = mitk::IOUtil::Load(file); ItkFloatImgType::Pointer itkimg = ItkFloatImgType::New(); mitk::CastToItkImage(img, itkimg); addFeatImages.at(c%addFeatImages.size()).push_back(itkimg); c++; } mitk::TractographyForest::Pointer forest = nullptr; if (shfeatures) { mitk::TrackingHandlerRandomForest<6,28> forestHandler; forestHandler.SetDwis(rawData); forestHandler.SetMaskImages(maskImageVector); forestHandler.SetWhiteMatterImages(wmMaskImageVector); forestHandler.SetFiberVolumeModImages(volumeModImages); forestHandler.SetAdditionalFeatureImages(addFeatImages); forestHandler.SetTractograms(tractograms); forestHandler.SetNumTrees(num_trees); forestHandler.SetMaxTreeDepth(max_tree_depth); forestHandler.SetGrayMatterSamplesPerVoxel(gm_samples); forestHandler.SetSampleFraction(sample_fraction); forestHandler.SetFiberSamplingStep(sampling_distance); forestHandler.SetMaxNumWmSamples(maxWmSamples); forestHandler.StartTraining(); forest = forestHandler.GetForest(); } else { mitk::TrackingHandlerRandomForest<6,100> forestHandler; forestHandler.SetDwis(rawData); forestHandler.SetMaskImages(maskImageVector); forestHandler.SetWhiteMatterImages(wmMaskImageVector); forestHandler.SetFiberVolumeModImages(volumeModImages); forestHandler.SetAdditionalFeatureImages(addFeatImages); forestHandler.SetTractograms(tractograms); forestHandler.SetNumTrees(num_trees); forestHandler.SetMaxTreeDepth(max_tree_depth); forestHandler.SetGrayMatterSamplesPerVoxel(gm_samples); forestHandler.SetSampleFraction(sample_fraction); forestHandler.SetFiberSamplingStep(sampling_distance); forestHandler.SetMaxNumWmSamples(maxWmSamples); forestHandler.StartTraining(); forest = forestHandler.GetForest(); } mitk::IOUtil::Save(forest, forestFile); return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Tractography/StreamlineTractography.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Tractography/StreamlineTractography.cpp index 755e9b45c2..9a60014c19 100755 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Tractography/StreamlineTractography.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Tractography/StreamlineTractography.cpp @@ -1,568 +1,568 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include const int numOdfSamples = 200; typedef itk::Image< itk::Vector< float, numOdfSamples > , 3 > SampledShImageType; /*! \brief */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Streamline Tractography"); parser.setCategory("Fiber Tracking and Processing Methods"); parser.setDescription("Perform streamline tractography"); parser.setContributor("MIC"); // parameters fo all methods parser.setArgumentPrefix("--", "-"); parser.beginGroup("1. Mandatory arguments:"); - parser.addArgument("", "i", mitkCommandLineParser::StringList, "Input:", "input image (multiple possible for 'DetTensor' algorithm)", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputDirectory, "Output:", "output fiberbundle/probability map", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::StringList, "Input:", "input image (multiple possible for 'DetTensor' algorithm)", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::String, "Output:", "output fiberbundle/probability map", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.addArgument("algorithm", "", mitkCommandLineParser::String, "Algorithm:", "which algorithm to use (Peaks, DetTensor, ProbTensor, DetODF, ProbODF, DetRF, ProbRF)", us::Any(), false); parser.endGroup(); parser.beginGroup("2. Seeding:"); parser.addArgument("seeds", "", mitkCommandLineParser::Int, "Seeds per voxel:", "number of seed points per voxel", 1); - parser.addArgument("seed_image", "", mitkCommandLineParser::String, "Seed image:", "mask image defining seed voxels", us::Any()); + parser.addArgument("seed_image", "", mitkCommandLineParser::String, "Seed image:", "mask image defining seed voxels", us::Any(), true, false, false, mitkCommandLineParser::Input); parser.addArgument("trials_per_seed", "", mitkCommandLineParser::Int, "Max. trials per seed:", "try each seed N times until a valid streamline is obtained (only for probabilistic tractography)", 10); parser.addArgument("max_tracts", "", mitkCommandLineParser::Int, "Max. number of tracts:", "tractography is stopped if the reconstructed number of tracts is exceeded", -1); parser.endGroup(); parser.beginGroup("3. Tractography constraints:"); - parser.addArgument("tracking_mask", "", mitkCommandLineParser::String, "Mask image:", "streamlines leaving the mask will stop immediately", us::Any()); - parser.addArgument("stop_image", "", mitkCommandLineParser::String, "Stop ROI image:", "streamlines entering the mask will stop immediately", us::Any()); - parser.addArgument("exclusion_image", "", mitkCommandLineParser::String, "Exclusion ROI image:", "streamlines entering the mask will be discarded", us::Any()); + parser.addArgument("tracking_mask", "", mitkCommandLineParser::String, "Mask image:", "streamlines leaving the mask will stop immediately", us::Any(), true, false, false, mitkCommandLineParser::Input); + parser.addArgument("stop_image", "", mitkCommandLineParser::String, "Stop ROI image:", "streamlines entering the mask will stop immediately", us::Any(), true, false, false, mitkCommandLineParser::Input); + parser.addArgument("exclusion_image", "", mitkCommandLineParser::String, "Exclusion ROI image:", "streamlines entering the mask will be discarded", us::Any(), true, false, false, mitkCommandLineParser::Input); parser.addArgument("ep_constraint", "", mitkCommandLineParser::String, "Endpoint constraint:", "determines which fibers are accepted based on their endpoint location - options are NONE, EPS_IN_TARGET, EPS_IN_TARGET_LABELDIFF, EPS_IN_SEED_AND_TARGET, MIN_ONE_EP_IN_TARGET, ONE_EP_IN_TARGET and NO_EP_IN_TARGET", us::Any()); - parser.addArgument("target_image", "", mitkCommandLineParser::String, "Target ROI image:", "effact depends on the chosen endpoint constraint (option ep_constraint)", us::Any()); + parser.addArgument("target_image", "", mitkCommandLineParser::String, "Target ROI image:", "effact depends on the chosen endpoint constraint (option ep_constraint)", us::Any(), true, false, false, mitkCommandLineParser::Input); parser.endGroup(); parser.beginGroup("4. Streamline integration parameters:"); parser.addArgument("sharpen_odfs", "", mitkCommandLineParser::Bool, "SHarpen ODFs:", "if you are using dODF images as input, it is advisable to sharpen the ODFs (min-max normalize and raise to the power of 4). this is not necessary for CSD fODFs, since they are narurally much sharper."); parser.addArgument("cutoff", "", mitkCommandLineParser::Float, "Cutoff:", "set the FA, GFA or Peak amplitude cutoff for terminating tracks", 0.1); parser.addArgument("odf_cutoff", "", mitkCommandLineParser::Float, "ODF Cutoff:", "threshold on the ODF magnitude. this is useful in case of CSD fODF tractography.", 0.0); parser.addArgument("step_size", "", mitkCommandLineParser::Float, "Step size:", "step size (in voxels)", 0.5); parser.addArgument("min_tract_length", "", mitkCommandLineParser::Float, "Min. tract length:", "minimum fiber length (in mm)", 20); parser.addArgument("angular_threshold", "", mitkCommandLineParser::Float, "Angular threshold:", "angular threshold between two successive steps, (default: 90° * step_size, minimum 15°)"); parser.addArgument("loop_check", "", mitkCommandLineParser::Float, "Check for loops:", "threshold on angular stdev over the last 4 voxel lengths"); parser.endGroup(); parser.beginGroup("5. Tractography prior:"); - parser.addArgument("prior_image", "", mitkCommandLineParser::String, "Peak prior:", "tractography prior in thr for of a peak image", us::Any()); + parser.addArgument("prior_image", "", mitkCommandLineParser::String, "Peak prior:", "tractography prior in thr for of a peak image", us::Any(), true, false, false, mitkCommandLineParser::Input); parser.addArgument("prior_weight", "", mitkCommandLineParser::Float, "Prior weight", "weighting factor between prior and data.", 0.5); parser.addArgument("restrict_to_prior", "", mitkCommandLineParser::Bool, "Restrict to prior:", "restrict tractography to regions where the prior is valid."); parser.addArgument("new_directions_from_prior", "", mitkCommandLineParser::Bool, "New directios from prior:", "the prior can create directions where there are none in the data."); parser.endGroup(); parser.beginGroup("6. Neighborhood sampling:"); parser.addArgument("num_samples", "", mitkCommandLineParser::Int, "Num. neighborhood samples:", "number of neighborhood samples that are use to determine the next progression direction", 0); parser.addArgument("sampling_distance", "", mitkCommandLineParser::Float, "Sampling distance:", "distance of neighborhood sampling points (in voxels)", 0.25); parser.addArgument("use_stop_votes", "", mitkCommandLineParser::Bool, "Use stop votes:", "use stop votes"); parser.addArgument("use_only_forward_samples", "", mitkCommandLineParser::Bool, "Use only forward samples:", "use only forward samples"); parser.endGroup(); parser.beginGroup("7. Tensor tractography specific:"); parser.addArgument("tend_f", "", mitkCommandLineParser::Float, "Weight f", "weighting factor between first eigenvector (f=1 equals FACT tracking) and input vector dependent direction (f=0).", 1.0); parser.addArgument("tend_g", "", mitkCommandLineParser::Float, "Weight g", "weighting factor between input vector (g=0) and tensor deflection (g=1 equals TEND tracking)", 0.0); parser.endGroup(); parser.beginGroup("8. Random forest tractography specific:"); - parser.addArgument("forest", "", mitkCommandLineParser::String, "Forest:", "input random forest (HDF5 file)", us::Any()); + parser.addArgument("forest", "", mitkCommandLineParser::String, "Forest:", "input random forest (HDF5 file)", us::Any(), true, false, false, mitkCommandLineParser::Input); parser.addArgument("use_sh_features", "", mitkCommandLineParser::Bool, "Use SH features:", "use SH features"); parser.endGroup(); parser.beginGroup("9. Additional input:"); - parser.addArgument("additional_images", "", mitkCommandLineParser::StringList, "Additional images:", "specify a list of float images that hold additional information (FA, GFA, additional features for RF tractography)", us::Any()); + parser.addArgument("additional_images", "", mitkCommandLineParser::StringList, "Additional images:", "specify a list of float images that hold additional information (FA, GFA, additional features for RF tractography)", us::Any(), true, false, false, mitkCommandLineParser::Input); parser.endGroup(); parser.beginGroup("10. Misc:"); parser.addArgument("flip_x", "", mitkCommandLineParser::Bool, "Flip X:", "multiply x-coordinate of direction proposal by -1"); parser.addArgument("flip_y", "", mitkCommandLineParser::Bool, "Flip Y:", "multiply y-coordinate of direction proposal by -1"); parser.addArgument("flip_z", "", mitkCommandLineParser::Bool, "Flip Z:", "multiply z-coordinate of direction proposal by -1"); parser.addArgument("no_data_interpolation", "", mitkCommandLineParser::Bool, "Don't interpolate input data:", "don't interpolate input image values"); parser.addArgument("no_mask_interpolation", "", mitkCommandLineParser::Bool, "Don't interpolate masks:", "don't interpolate mask image values"); parser.addArgument("compress", "", mitkCommandLineParser::Float, "Compress:", "compress output fibers using the given error threshold (in mm)"); parser.addArgument("fix_seed", "", mitkCommandLineParser::Bool, "Fix Random Seed:", "always use the same random numbers"); parser.endGroup(); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; mitkCommandLineParser::StringContainerType input_files = us::any_cast(parsedArgs["i"]); std::string outFile = us::any_cast(parsedArgs["o"]); std::string algorithm = us::any_cast(parsedArgs["algorithm"]); std::string prior_image = ""; if (parsedArgs.count("prior_image")) prior_image = us::any_cast(parsedArgs["prior_image"]); float prior_weight = 0.5; if (parsedArgs.count("prior_weight")) prior_weight = us::any_cast(parsedArgs["prior_weight"]); bool fix_seed = false; if (parsedArgs.count("fix_seed")) fix_seed = us::any_cast(parsedArgs["fix_seed"]); bool restrict_to_prior = false; if (parsedArgs.count("restrict_to_prior")) restrict_to_prior = us::any_cast(parsedArgs["restrict_to_prior"]); bool new_directions_from_prior = false; if (parsedArgs.count("new_directions_from_prior")) new_directions_from_prior = us::any_cast(parsedArgs["new_directions_from_prior"]); bool sharpen_odfs = false; if (parsedArgs.count("sharpen_odfs")) sharpen_odfs = us::any_cast(parsedArgs["sharpen_odfs"]); bool interpolate = true; if (parsedArgs.count("no_data_interpolation")) interpolate = !us::any_cast(parsedArgs["no_data_interpolation"]); bool mask_interpolation = true; if (parsedArgs.count("no_mask_interpolation")) interpolate = !us::any_cast(parsedArgs["no_mask_interpolation"]); bool use_sh_features = false; if (parsedArgs.count("use_sh_features")) use_sh_features = us::any_cast(parsedArgs["use_sh_features"]); bool use_stop_votes = false; if (parsedArgs.count("use_stop_votes")) use_stop_votes = us::any_cast(parsedArgs["use_stop_votes"]); bool use_only_forward_samples = false; if (parsedArgs.count("use_only_forward_samples")) use_only_forward_samples = us::any_cast(parsedArgs["use_only_forward_samples"]); bool flip_x = false; if (parsedArgs.count("flip_x")) flip_x = us::any_cast(parsedArgs["flip_x"]); bool flip_y = false; if (parsedArgs.count("flip_y")) flip_y = us::any_cast(parsedArgs["flip_y"]); bool flip_z = false; if (parsedArgs.count("flip_z")) flip_z = us::any_cast(parsedArgs["flip_z"]); bool apply_image_rotation = false; if (parsedArgs.count("apply_image_rotation")) apply_image_rotation = us::any_cast(parsedArgs["apply_image_rotation"]); float compress = -1; if (parsedArgs.count("compress")) compress = us::any_cast(parsedArgs["compress"]); float min_tract_length = 20; if (parsedArgs.count("min_tract_length")) min_tract_length = us::any_cast(parsedArgs["min_tract_length"]); float loop_check = -1; if (parsedArgs.count("loop_check")) loop_check = us::any_cast(parsedArgs["loop_check"]); std::string forestFile; if (parsedArgs.count("forest")) forestFile = us::any_cast(parsedArgs["forest"]); std::string maskFile = ""; if (parsedArgs.count("tracking_mask")) maskFile = us::any_cast(parsedArgs["tracking_mask"]); std::string seedFile = ""; if (parsedArgs.count("seed_image")) seedFile = us::any_cast(parsedArgs["seed_image"]); std::string targetFile = ""; if (parsedArgs.count("target_image")) targetFile = us::any_cast(parsedArgs["target_image"]); std::string exclusionFile = ""; if (parsedArgs.count("exclusion_image")) exclusionFile = us::any_cast(parsedArgs["exclusion_image"]); std::string stopFile = ""; if (parsedArgs.count("stop_image")) stopFile = us::any_cast(parsedArgs["stop_image"]); std::string ep_constraint = "NONE"; if (parsedArgs.count("ep_constraint")) ep_constraint = us::any_cast(parsedArgs["ep_constraint"]); float cutoff = 0.1f; if (parsedArgs.count("cutoff")) cutoff = us::any_cast(parsedArgs["cutoff"]); float odf_cutoff = 0.0; if (parsedArgs.count("odf_cutoff")) odf_cutoff = us::any_cast(parsedArgs["odf_cutoff"]); float stepsize = -1; if (parsedArgs.count("step_size")) stepsize = us::any_cast(parsedArgs["step_size"]); float sampling_distance = -1; if (parsedArgs.count("sampling_distance")) sampling_distance = us::any_cast(parsedArgs["sampling_distance"]); unsigned int num_samples = 0; if (parsedArgs.count("num_samples")) num_samples = static_cast(us::any_cast(parsedArgs["num_samples"])); int num_seeds = 1; if (parsedArgs.count("seeds")) num_seeds = us::any_cast(parsedArgs["seeds"]); unsigned int trials_per_seed = 10; if (parsedArgs.count("trials_per_seed")) trials_per_seed = static_cast(us::any_cast(parsedArgs["trials_per_seed"])); float tend_f = 1; if (parsedArgs.count("tend_f")) tend_f = us::any_cast(parsedArgs["tend_f"]); float tend_g = 0; if (parsedArgs.count("tend_g")) tend_g = us::any_cast(parsedArgs["tend_g"]); float angular_threshold = -1; if (parsedArgs.count("angular_threshold")) angular_threshold = us::any_cast(parsedArgs["angular_threshold"]); int max_tracts = -1; if (parsedArgs.count("max_tracts")) max_tracts = us::any_cast(parsedArgs["max_tracts"]); std::string ext = itksys::SystemTools::GetFilenameExtension(outFile); if (ext != ".fib" && ext != ".trk") { MITK_INFO << "Output file format not supported. Use one of .fib, .trk, .nii, .nii.gz, .nrrd"; return EXIT_FAILURE; } // LOAD DATASETS mitkCommandLineParser::StringContainerType addFiles; if (parsedArgs.count("additional_images")) addFiles = us::any_cast(parsedArgs["additional_images"]); typedef itk::Image ItkFloatImgType; ItkFloatImgType::Pointer mask = nullptr; if (!maskFile.empty()) { MITK_INFO << "loading mask image"; mitk::Image::Pointer img = mitk::IOUtil::Load(maskFile); mask = ItkFloatImgType::New(); mitk::CastToItkImage(img, mask); } ItkFloatImgType::Pointer seed = nullptr; if (!seedFile.empty()) { MITK_INFO << "loading seed ROI image"; mitk::Image::Pointer img = mitk::IOUtil::Load(seedFile); seed = ItkFloatImgType::New(); mitk::CastToItkImage(img, seed); } ItkFloatImgType::Pointer stop = nullptr; if (!stopFile.empty()) { MITK_INFO << "loading stop ROI image"; mitk::Image::Pointer img = mitk::IOUtil::Load(stopFile); stop = ItkFloatImgType::New(); mitk::CastToItkImage(img, stop); } ItkFloatImgType::Pointer target = nullptr; if (!targetFile.empty()) { MITK_INFO << "loading target ROI image"; mitk::Image::Pointer img = mitk::IOUtil::Load(targetFile); target = ItkFloatImgType::New(); mitk::CastToItkImage(img, target); } ItkFloatImgType::Pointer exclusion = nullptr; if (!exclusionFile.empty()) { MITK_INFO << "loading exclusion ROI image"; mitk::Image::Pointer img = mitk::IOUtil::Load(exclusionFile); exclusion = ItkFloatImgType::New(); mitk::CastToItkImage(img, exclusion); } MITK_INFO << "loading additional images"; std::vector< std::vector< ItkFloatImgType::Pointer > > addImages; addImages.push_back(std::vector< ItkFloatImgType::Pointer >()); for (auto file : addFiles) { mitk::Image::Pointer img = mitk::IOUtil::Load(file); ItkFloatImgType::Pointer itkimg = ItkFloatImgType::New(); mitk::CastToItkImage(img, itkimg); addImages.at(0).push_back(itkimg); } // ////////////////////////////////////////////////////////////////// // omp_set_num_threads(1); typedef itk::StreamlineTrackingFilter TrackerType; TrackerType::Pointer tracker = TrackerType::New(); if (!prior_image.empty()) { mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Peak Image"}, {}); mitk::PeakImage::Pointer priorImage = mitk::IOUtil::Load(prior_image, &functor); if (priorImage.IsNull()) { MITK_INFO << "Only peak images are supported as prior at the moment!"; return EXIT_FAILURE; } mitk::TrackingDataHandler* priorhandler = new mitk::TrackingHandlerPeaks(); typedef mitk::ImageToItk< mitk::TrackingHandlerPeaks::PeakImgType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(priorImage); caster->Update(); mitk::TrackingHandlerPeaks::PeakImgType::Pointer itkImg = caster->GetOutput(); dynamic_cast(priorhandler)->SetPeakImage(itkImg); dynamic_cast(priorhandler)->SetPeakThreshold(0.0); dynamic_cast(priorhandler)->SetInterpolate(interpolate); dynamic_cast(priorhandler)->SetMode(mitk::TrackingDataHandler::MODE::DETERMINISTIC); tracker->SetTrackingPriorHandler(priorhandler); tracker->SetTrackingPriorWeight(prior_weight); tracker->SetTrackingPriorAsMask(restrict_to_prior); tracker->SetIntroduceDirectionsFromPrior(new_directions_from_prior); } mitk::TrackingDataHandler* handler; if (algorithm == "DetRF" || algorithm == "ProbRF") { mitk::TractographyForest::Pointer forest = mitk::IOUtil::Load(forestFile); if (forest.IsNull()) mitkThrow() << "Forest file " << forestFile << " could not be read."; mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Diffusion Weighted Images"}, {}); auto input = mitk::IOUtil::Load(input_files.at(0), &functor); if (use_sh_features) { handler = new mitk::TrackingHandlerRandomForest<6,28>(); dynamic_cast*>(handler)->SetForest(forest); dynamic_cast*>(handler)->AddDwi(input); dynamic_cast*>(handler)->SetAdditionalFeatureImages(addImages); } else { handler = new mitk::TrackingHandlerRandomForest<6,100>(); dynamic_cast*>(handler)->SetForest(forest); dynamic_cast*>(handler)->AddDwi(input); dynamic_cast*>(handler)->SetAdditionalFeatureImages(addImages); } if (algorithm == "ProbRF") handler->SetMode(mitk::TrackingDataHandler::MODE::PROBABILISTIC); } else if (algorithm == "Peaks") { handler = new mitk::TrackingHandlerPeaks(); MITK_INFO << "loading input peak image"; mitk::Image::Pointer mitkImage = mitk::IOUtil::Load(input_files.at(0)); mitk::TrackingHandlerPeaks::PeakImgType::Pointer itkImg = mitk::convert::GetItkPeakFromPeakImage(mitkImage); dynamic_cast(handler)->SetPeakImage(itkImg); dynamic_cast(handler)->SetApplyDirectionMatrix(apply_image_rotation); dynamic_cast(handler)->SetPeakThreshold(cutoff); } else if (algorithm == "DetTensor") { handler = new mitk::TrackingHandlerTensor(); MITK_INFO << "loading input tensor images"; std::vector< mitk::Image::Pointer > input_images; for (unsigned int i=0; i(input_files.at(i)); mitk::TensorImage::ItkTensorImageType::Pointer itkImg = mitk::convert::GetItkTensorFromTensorImage(mitkImage); dynamic_cast(handler)->AddTensorImage(itkImg.GetPointer()); } dynamic_cast(handler)->SetFaThreshold(cutoff); dynamic_cast(handler)->SetF(tend_f); dynamic_cast(handler)->SetG(tend_g); if (addImages.at(0).size()>0) dynamic_cast(handler)->SetFaImage(addImages.at(0).at(0)); } else if (algorithm == "DetODF" || algorithm == "ProbODF" || algorithm == "ProbTensor") { handler = new mitk::TrackingHandlerOdf(); mitk::OdfImage::ItkOdfImageType::Pointer itkImg = nullptr; if (algorithm == "ProbTensor") { MITK_INFO << "Converting Tensor to ODF image"; auto input = mitk::IOUtil::Load(input_files.at(0)); itkImg = mitk::convert::GetItkOdfFromTensorImage(input); sharpen_odfs = true; odf_cutoff = 0; dynamic_cast(handler)->SetIsOdfFromTensor(true); } else { mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"SH Image", "ODF Image"}, {}); auto input = mitk::IOUtil::Load(input_files.at(0), &functor)[0]; if (dynamic_cast(input.GetPointer())) { MITK_INFO << "Converting SH to ODF image"; mitk::Image::Pointer mitkImg = dynamic_cast(input.GetPointer()); itkImg = mitk::convert::GetItkOdfFromShImage(mitkImg); } else if (dynamic_cast(input.GetPointer())) { mitk::Image::Pointer mitkImg = dynamic_cast(input.GetPointer()); itkImg = mitk::convert::GetItkOdfFromOdfImage(mitkImg); } else mitkThrow() << ""; } dynamic_cast(handler)->SetOdfImage(itkImg); dynamic_cast(handler)->SetGfaThreshold(cutoff); dynamic_cast(handler)->SetOdfThreshold(odf_cutoff); dynamic_cast(handler)->SetSharpenOdfs(sharpen_odfs); if (algorithm == "ProbODF" || algorithm == "ProbTensor") dynamic_cast(handler)->SetMode(mitk::TrackingHandlerOdf::MODE::PROBABILISTIC); if (addImages.at(0).size()>0) dynamic_cast(handler)->SetGfaImage(addImages.at(0).at(0)); } else { MITK_INFO << "Unknown tractography algorithm (" + algorithm+"). Known types are Peaks, DetTensor, ProbTensor, DetODF, ProbODF, DetRF, ProbRF."; return EXIT_FAILURE; } handler->SetInterpolate(interpolate); handler->SetFlipX(flip_x); handler->SetFlipY(flip_y); handler->SetFlipZ(flip_z); if (ep_constraint=="NONE") tracker->SetEndpointConstraint(itk::StreamlineTrackingFilter::EndpointConstraints::NONE); else if (ep_constraint=="EPS_IN_TARGET") tracker->SetEndpointConstraint(itk::StreamlineTrackingFilter::EndpointConstraints::EPS_IN_TARGET); else if (ep_constraint=="EPS_IN_TARGET_LABELDIFF") tracker->SetEndpointConstraint(itk::StreamlineTrackingFilter::EndpointConstraints::EPS_IN_TARGET_LABELDIFF); else if (ep_constraint=="EPS_IN_SEED_AND_TARGET") tracker->SetEndpointConstraint(itk::StreamlineTrackingFilter::EndpointConstraints::EPS_IN_SEED_AND_TARGET); else if (ep_constraint=="MIN_ONE_EP_IN_TARGET") tracker->SetEndpointConstraint(itk::StreamlineTrackingFilter::EndpointConstraints::MIN_ONE_EP_IN_TARGET); else if (ep_constraint=="ONE_EP_IN_TARGET") tracker->SetEndpointConstraint(itk::StreamlineTrackingFilter::EndpointConstraints::ONE_EP_IN_TARGET); else if (ep_constraint=="NO_EP_IN_TARGET") tracker->SetEndpointConstraint(itk::StreamlineTrackingFilter::EndpointConstraints::NO_EP_IN_TARGET); MITK_INFO << "Tractography algorithm: " << algorithm; tracker->SetInterpolateMasks(mask_interpolation); tracker->SetNumberOfSamples(num_samples); tracker->SetAngularThreshold(angular_threshold); tracker->SetMaskImage(mask); tracker->SetSeedImage(seed); tracker->SetStoppingRegions(stop); tracker->SetTargetRegions(target); tracker->SetExclusionRegions(exclusion); tracker->SetSeedsPerVoxel(num_seeds); tracker->SetStepSize(stepsize); tracker->SetSamplingDistance(sampling_distance); tracker->SetUseStopVotes(use_stop_votes); tracker->SetOnlyForwardSamples(use_only_forward_samples); tracker->SetLoopCheck(loop_check); tracker->SetMaxNumTracts(max_tracts); tracker->SetTrialsPerSeed(trials_per_seed); tracker->SetTrackingHandler(handler); if (ext != ".fib" && ext != ".trk") tracker->SetUseOutputProbabilityMap(true); tracker->SetMinTractLength(min_tract_length); tracker->SetRandom(!fix_seed); tracker->Update(); if (ext == ".fib" || ext == ".trk") { vtkSmartPointer< vtkPolyData > poly = tracker->GetFiberPolyData(); mitk::FiberBundle::Pointer outFib = mitk::FiberBundle::New(poly); if (compress > 0) outFib->Compress(compress); mitk::IOUtil::Save(outFib, outFile); } else { TrackerType::ItkDoubleImgType::Pointer outImg = tracker->GetOutputProbabilityMap(); mitk::Image::Pointer img = mitk::Image::New(); img->InitializeByItk(outImg.GetPointer()); img->SetVolume(outImg->GetBufferPointer()); if (ext != ".nii" && ext != ".nii.gz" && ext != ".nrrd") outFile += ".nii.gz"; mitk::IOUtil::Save(img, outFile); } delete handler; return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/AnchorConstrainedPlausibility.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/AnchorConstrainedPlausibility.cpp index f7c2f10d2a..b96601833d 100755 --- a/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/AnchorConstrainedPlausibility.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/AnchorConstrainedPlausibility.cpp @@ -1,447 +1,447 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef itk::Point PointType4; typedef mitk::PeakImage::ItkPeakImageType PeakImgType; typedef itk::Image< unsigned char, 3 > ItkUcharImageType; /*! \brief Score input candidate tracts using ACP analysis */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Anchor Constrained Plausibility"); parser.setCategory("Fiber Tracking Evaluation"); parser.setDescription("Score input candidate tracts using ACP analysis"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "a", mitkCommandLineParser::InputFile, "Anchor tractogram:", "anchor tracts in one tractogram file", us::Any()); - parser.addArgument("", "p", mitkCommandLineParser::InputFile, "Input peaks:", "input peak image", us::Any(), false); - parser.addArgument("", "c", mitkCommandLineParser::StringList, "Candidates:", "Folder(s) or file list of candidate tracts", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputDirectory, "Output folder:", "output folder", us::Any(), false); + parser.addArgument("", "a", mitkCommandLineParser::File, "Anchor tractogram:", "anchor tracts in one tractogram file", us::Any(), true, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "p", mitkCommandLineParser::File, "Input peaks:", "input peak image", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "c", mitkCommandLineParser::StringList, "Candidates:", "Folder(s) or file list of candidate tracts", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::Directory, "Output folder:", "output folder", us::Any(), false, false, false, mitkCommandLineParser::Output); - parser.addArgument("reference_mask_folders", "", mitkCommandLineParser::StringList, "Reference Mask Folder(s):", "Folder(s) or file list containing reference tract masks for accuracy evaluation"); - parser.addArgument("reference_peaks_folders", "", mitkCommandLineParser::StringList, "Reference Peaks Folder(s):", "Folder(s) or file list containing reference peak images for accuracy evaluation"); + parser.addArgument("reference_mask_folders", "", mitkCommandLineParser::StringList, "Reference Mask Folder(s):", "Folder(s) or file list containing reference tract masks for accuracy evaluation", true, false, false, mitkCommandLineParser::Input); + parser.addArgument("reference_peaks_folders", "", mitkCommandLineParser::StringList, "Reference Peaks Folder(s):", "Folder(s) or file list containing reference peak images for accuracy evaluation", true, false, false, mitkCommandLineParser::Input); - parser.addArgument("mask", "", mitkCommandLineParser::InputFile, "Mask image:", "scoring is only performed inside the mask image"); + parser.addArgument("mask", "", mitkCommandLineParser::File, "Mask image:", "scoring is only performed inside the mask image", us::Any(), true, false, false, mitkCommandLineParser::Input); parser.addArgument("greedy_add", "", mitkCommandLineParser::Bool, "Greedy:", "if enabled, the candidate tracts are not jointly fitted to the residual image but one after the other employing a greedy scheme", false); parser.addArgument("lambda", "", mitkCommandLineParser::Float, "Lambda:", "modifier for regularization", 0.1); parser.addArgument("filter_outliers", "", mitkCommandLineParser::Bool, "Filter outliers:", "perform second optimization run with an upper weight bound based on the first weight estimation (99% quantile)", false); parser.addArgument("regu", "", mitkCommandLineParser::String, "Regularization:", "MSM, Variance, VoxelVariance, Lasso, GroupLasso, GroupVariance, NONE (default)"); parser.addArgument("use_num_streamlines", "", mitkCommandLineParser::Bool, "Use number of streamlines as score:", "Don't fit candidates, simply use number of streamlines per candidate as score", false); parser.addArgument("use_weights", "", mitkCommandLineParser::Bool, "Use input weights as score:", "Don't fit candidates, simply use first input streamline weight per candidate as score", false); parser.addArgument("filter_zero_weights", "", mitkCommandLineParser::Bool, "Filter zero-weights", "Remove streamlines with weight 0 from candidates", false); parser.addArgument("flipx", "", mitkCommandLineParser::Bool, "Flip x", "flip along x-axis", false); parser.addArgument("flipy", "", mitkCommandLineParser::Bool, "Flip y", "flip along y-axis", false); parser.addArgument("flipz", "", mitkCommandLineParser::Bool, "Flip z", "flip along z-axis", false); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; std::string peak_file_name = us::any_cast(parsedArgs["p"]); std::string out_folder = us::any_cast(parsedArgs["o"]); mitkCommandLineParser::StringContainerType candidate_tract_folders = us::any_cast(parsedArgs["c"]); if (!out_folder.empty() && out_folder.back() != '/') out_folder += "/"; bool greedy_add = false; if (parsedArgs.count("greedy_add")) greedy_add = us::any_cast(parsedArgs["greedy_add"]); float lambda = 0.1f; if (parsedArgs.count("lambda")) lambda = us::any_cast(parsedArgs["lambda"]); bool filter_outliers = false; if (parsedArgs.count("filter_outliers")) filter_outliers = us::any_cast(parsedArgs["filter_outliers"]); bool filter_zero_weights = false; if (parsedArgs.count("filter_zero_weights")) filter_zero_weights = us::any_cast(parsedArgs["filter_zero_weights"]); std::string mask_file = ""; if (parsedArgs.count("mask")) mask_file = us::any_cast(parsedArgs["mask"]); mitkCommandLineParser::StringContainerType reference_mask_files_folders; if (parsedArgs.count("reference_mask_folders")) reference_mask_files_folders = us::any_cast(parsedArgs["reference_mask_folders"]); mitkCommandLineParser::StringContainerType reference_peaks_files_folders; if (parsedArgs.count("reference_peaks_folders")) reference_peaks_files_folders = us::any_cast(parsedArgs["reference_peaks_folders"]); std::string regu = "NONE"; if (parsedArgs.count("regu")) regu = us::any_cast(parsedArgs["regu"]); bool use_weights = false; if (parsedArgs.count("use_weights")) use_weights = us::any_cast(parsedArgs["use_weights"]); bool use_num_streamlines = false; if (parsedArgs.count("use_num_streamlines")) use_num_streamlines = us::any_cast(parsedArgs["use_num_streamlines"]); bool flipx = false; if (parsedArgs.count("flipx")) flipx = us::any_cast(parsedArgs["flipx"]); bool flipy = false; if (parsedArgs.count("flipy")) flipy = us::any_cast(parsedArgs["flipy"]); bool flipz = false; if (parsedArgs.count("flipz")) flipz = us::any_cast(parsedArgs["flipz"]); try { itk::TimeProbe clock; clock.Start(); if (!ist::PathExists(out_folder)) { MITK_INFO << "Creating output directory"; ist::MakeDirectory(out_folder); } MITK_INFO << "Loading data"; // Load mask file. Fit is only performed inside the mask MITK_INFO << "Loading mask image"; auto mask = mitk::DiffusionDataIOHelper::load_itk_image(mask_file); // Load masks covering the true positives for evaluation purposes MITK_INFO << "Loading reference peaks and masks"; std::vector< std::string > anchor_mask_files; auto reference_masks = mitk::DiffusionDataIOHelper::load_itk_images(reference_mask_files_folders, &anchor_mask_files); auto reference_peaks = mitk::DiffusionDataIOHelper::load_itk_images(reference_peaks_files_folders); // Load peak image MITK_INFO << "Loading peak image"; auto peak_image = mitk::DiffusionDataIOHelper::load_itk_image(peak_file_name); // Load all candidate tracts MITK_INFO << "Loading candidate tracts"; std::vector< std::string > candidate_tract_files; auto input_candidates = mitk::DiffusionDataIOHelper::load_fibs(candidate_tract_folders, &candidate_tract_files); if (flipx || flipy || flipz) { itk::FlipPeaksFilter< float >::Pointer flipper = itk::FlipPeaksFilter< float >::New(); flipper->SetInput(peak_image); flipper->SetFlipX(flipx); flipper->SetFlipY(flipy); flipper->SetFlipZ(flipz); flipper->Update(); peak_image = flipper->GetOutput(); } mitk::LocaleSwitch localeSwitch("C"); itk::ImageFileWriter< PeakImgType >::Pointer peak_image_writer = itk::ImageFileWriter< PeakImgType >::New(); ofstream logfile; logfile.open (out_folder + "scores.txt"); double rmse = 0.0; int iteration = 0; std::string name = "NOANCHOR"; if (parsedArgs.count("a")) { // Load reference tractogram consisting of all known tracts std::string anchors_file = us::any_cast(parsedArgs["a"]); mitk::FiberBundle::Pointer anchor_tractogram = mitk::IOUtil::Load(anchors_file); if ( !(anchor_tractogram.IsNull() || anchor_tractogram->GetNumFibers()==0) ) { // Fit known tracts to peak image to obtain underexplained image MITK_INFO << "Fit anchor tracts"; itk::FitFibersToImageFilter::Pointer fitter = itk::FitFibersToImageFilter::New(); fitter->SetTractograms({anchor_tractogram}); fitter->SetLambda(static_cast(lambda)); fitter->SetFilterOutliers(filter_outliers); fitter->SetPeakImage(peak_image); fitter->SetVerbose(true); fitter->SetMaskImage(mask); fitter->SetRegularization(VnlCostFunction::REGU::NONE); fitter->Update(); rmse = fitter->GetRMSE(); vnl_vector rms_diff = fitter->GetRmsDiffPerBundle(); name = ist::GetFilenameWithoutExtension(anchors_file); mitk::FiberBundle::Pointer anchor_tracts = fitter->GetTractograms().at(0); anchor_tracts->SetFiberColors(255,255,255); mitk::IOUtil::Save(anchor_tracts, out_folder + boost::lexical_cast(static_cast(100000*rms_diff[0])) + "_" + name + ".fib"); logfile << name << " " << setprecision(5) << rms_diff[0] << "\n"; peak_image = fitter->GetUnderexplainedImage(); peak_image_writer->SetInput(peak_image); peak_image_writer->SetFileName(out_folder + "Residual_" + name + ".nii.gz"); peak_image_writer->Update(); } } if (use_weights || use_num_streamlines) { MITK_INFO << "Using tract weights as scores"; unsigned int c = 0; for (auto fib : input_candidates) { int mod = 1; float score = 0; if (use_weights) { score = fib->GetFiberWeight(0); mod = 100000; } else if (use_num_streamlines) score = fib->GetNumFibers(); fib->ColorFibersByOrientation(); std::string bundle_name = ist::GetFilenameWithoutExtension(candidate_tract_files.at(c)); std::streambuf *old = cout.rdbuf(); // <-- save std::stringstream ss; std::cout.rdbuf (ss.rdbuf()); // <-- redirect mitk::IOUtil::Save(fib, out_folder + boost::lexical_cast(static_cast(mod*score)) + "_" + bundle_name + ".fib"); unsigned int num_voxels = 0; { itk::TractDensityImageFilter< ItkUcharImageType >::Pointer masks_filter = itk::TractDensityImageFilter< ItkUcharImageType >::New(); masks_filter->SetInputImage(mask); masks_filter->SetBinaryOutput(true); masks_filter->SetFiberBundle(fib); masks_filter->SetUseImageGeometry(true); masks_filter->Update(); num_voxels = masks_filter->GetNumCoveredVoxels(); } float weight_sum = 0; for (unsigned int i=0; iGetNumFibers(); i++) weight_sum += fib->GetFiberWeight(i); std::cout.rdbuf (old); // <-- restore logfile << bundle_name << " " << setprecision(5) << score << " " << num_voxels << " " << fib->GetNumFibers() << " " << weight_sum << "\n"; ++c; } } else if (!greedy_add) { MITK_INFO << "Fit candidate tracts"; itk::FitFibersToImageFilter::Pointer fitter = itk::FitFibersToImageFilter::New(); fitter->SetLambda(static_cast(lambda)); fitter->SetFilterOutliers(filter_outliers); fitter->SetVerbose(true); fitter->SetPeakImage(peak_image); fitter->SetMaskImage(mask); fitter->SetTractograms(input_candidates); fitter->SetFitIndividualFibers(true); if (regu=="MSM") fitter->SetRegularization(VnlCostFunction::REGU::MSM); else if (regu=="Variance") fitter->SetRegularization(VnlCostFunction::REGU::VARIANCE); else if (regu=="Lasso") fitter->SetRegularization(VnlCostFunction::REGU::LASSO); else if (regu=="VoxelVariance") fitter->SetRegularization(VnlCostFunction::REGU::VOXEL_VARIANCE); else if (regu=="GroupLasso") fitter->SetRegularization(VnlCostFunction::REGU::GROUP_LASSO); else if (regu=="GroupVariance") fitter->SetRegularization(VnlCostFunction::REGU::GROUP_VARIANCE); else if (regu=="NONE") fitter->SetRegularization(VnlCostFunction::REGU::NONE); fitter->Update(); vnl_vector rms_diff = fitter->GetRmsDiffPerBundle(); unsigned int c = 0; for (auto fib : input_candidates) { std::string bundle_name = ist::GetFilenameWithoutExtension(candidate_tract_files.at(c)); std::streambuf *old = cout.rdbuf(); // <-- save std::stringstream ss; std::cout.rdbuf (ss.rdbuf()); // <-- redirect if (filter_zero_weights) fib = fib->FilterByWeights(0); mitk::IOUtil::Save(fib, out_folder + boost::lexical_cast((int)(100000*rms_diff[c])) + "_" + bundle_name + ".fib"); unsigned int num_voxels = 0; { itk::TractDensityImageFilter< ItkUcharImageType >::Pointer masks_filter = itk::TractDensityImageFilter< ItkUcharImageType >::New(); masks_filter->SetInputImage(mask); masks_filter->SetBinaryOutput(true); masks_filter->SetFiberBundle(fib); masks_filter->SetUseImageGeometry(true); masks_filter->Update(); num_voxels = masks_filter->GetNumCoveredVoxels(); } float weight_sum = 0; for (unsigned int i=0; iGetNumFibers(); i++) weight_sum += fib->GetFiberWeight(i); std::cout.rdbuf (old); // <-- restore logfile << bundle_name << " " << setprecision(5) << rms_diff[c] << " " << num_voxels << " " << fib->GetNumFibers() << " " << weight_sum << "\n"; ++c; } mitk::FiberBundle::Pointer out_fib = mitk::FiberBundle::New(); out_fib = out_fib->AddBundles(input_candidates); out_fib->ColorFibersByFiberWeights(false, true); mitk::IOUtil::Save(out_fib, out_folder + "AllCandidates.fib"); peak_image = fitter->GetUnderexplainedImage(); peak_image_writer->SetInput(peak_image); peak_image_writer->SetFileName(out_folder + "Residual_AllCandidates.nii.gz"); peak_image_writer->Update(); } else { MITK_INFO << "RMSE: " << setprecision(5) << rmse; // fitter->SetPeakImage(peak_image); // Iteratively add candidate bundles in a greedy manner while (!input_candidates.empty()) { double next_rmse = rmse; mitk::FiberBundle::Pointer best_candidate = nullptr; PeakImgType::Pointer best_candidate_peak_image = nullptr; for (unsigned int i=0; iSetLambda(static_cast(lambda)); fitter->SetFilterOutliers(filter_outliers); fitter->SetVerbose(false); fitter->SetPeakImage(peak_image); fitter->SetMaskImage(mask); // ****************************** fitter->SetTractograms({input_candidates.at(i)}); std::streambuf *old = cout.rdbuf(); // <-- save std::stringstream ss; std::cout.rdbuf (ss.rdbuf()); // <-- redirect fitter->Update(); std::cout.rdbuf (old); // <-- restore double candidate_rmse = fitter->GetRMSE(); if (candidate_rmseGetTractograms().at(0); best_candidate_peak_image = fitter->GetUnderexplainedImage(); } } if (best_candidate.IsNull()) break; // fitter->SetPeakImage(peak_image); peak_image = best_candidate_peak_image; unsigned int i=0; std::vector< mitk::FiberBundle::Pointer > remaining_candidates; std::vector< std::string > remaining_candidate_files; for (auto fib : input_candidates) { if (fib!=best_candidate) { remaining_candidates.push_back(fib); remaining_candidate_files.push_back(candidate_tract_files.at(i)); } else name = ist::GetFilenameWithoutExtension(candidate_tract_files.at(i)); ++i; } input_candidates = remaining_candidates; candidate_tract_files = remaining_candidate_files; iteration++; std::streambuf *old = cout.rdbuf(); // <-- save std::stringstream ss; std::cout.rdbuf (ss.rdbuf()); // <-- redirect // Save winning candidate if (filter_zero_weights) best_candidate = best_candidate->FilterByWeights(0); mitk::IOUtil::Save(best_candidate, out_folder + boost::lexical_cast(iteration) + "_" + name + ".fib"); peak_image_writer->SetInput(peak_image); peak_image_writer->SetFileName(out_folder + boost::lexical_cast(iteration) + "_" + name + ".nrrd"); peak_image_writer->Update(); std::cout.rdbuf (old); // <-- restore // logfile << name << " " << setprecision(5) << score << " " << num_voxels << " " << fib->GetNumFibers() << " " << weight_sum << "\n"; } } clock.Stop(); int h = static_cast(clock.GetTotal()/3600); int m = (static_cast(clock.GetTotal())%3600)/60; int s = static_cast(clock.GetTotal())%60; MITK_INFO << "Plausibility estimation took " << h << "h, " << m << "m and " << s << "s"; logfile.close(); } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/CalculateOverlap.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/CalculateOverlap.cpp index 9a39c8c821..b10d164f19 100755 --- a/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/CalculateOverlap.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/CalculateOverlap.cpp @@ -1,108 +1,108 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef itksys::SystemTools ist; typedef itk::Image ItkFloatImgType; typedef itk::Image ItkUIntImgType; /*! \brief */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Calculate Overlap"); parser.setCategory("Fiber Tracking Evaluation"); parser.setDescription(""); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("tractogram", "", mitkCommandLineParser::InputFile, "", "", us::Any(), false); - parser.addArgument("mask", "", mitkCommandLineParser::InputFile, "", "", us::Any(), false); - parser.addArgument("peaks", "", mitkCommandLineParser::InputFile, "", "", us::Any()); + parser.addArgument("tractogram", "", mitkCommandLineParser::File, "", "", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("mask", "", mitkCommandLineParser::File, "", "", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("peaks", "", mitkCommandLineParser::File, "", "", us::Any(), true, false, false, mitkCommandLineParser::Input); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; std::string input_tractogram = us::any_cast(parsedArgs["tractogram"]); std::string mask_file = us::any_cast(parsedArgs["mask"]); try { mitk::FiberBundle::Pointer fib = mitk::IOUtil::Load(input_tractogram); mitk::Image::Pointer mask = mitk::IOUtil::Load(mask_file); ItkFloatImgType::Pointer itk_mask; mitk::CastToItkImage(mask, itk_mask); mitk::PeakImage::ItkPeakImageType::Pointer peaks = nullptr; if (parsedArgs.count("peaks")) { mitk::Image::Pointer mitk_peaks = mitk::IOUtil::Load(us::any_cast(parsedArgs["peaks"])); typedef mitk::ImageToItk< mitk::PeakImage::ItkPeakImageType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(mitk_peaks); caster->Update(); peaks = caster->GetOutput(); float overlap = 0; float directional_overlap = 0; std::tie(directional_overlap, overlap) = fib->GetDirectionalOverlap(itk_mask, peaks); MITK_INFO << "Overlap<<" << overlap; MITK_INFO << "DirectionalOverlap<<" << directional_overlap; } else MITK_INFO << "Overlap<<" << fib->GetOverlap(itk_mask); } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/CheckEpsAndOverlap.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/CheckEpsAndOverlap.cpp index 586f6647a5..69dce78e8d 100755 --- a/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/CheckEpsAndOverlap.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/CheckEpsAndOverlap.cpp @@ -1,98 +1,98 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef itksys::SystemTools ist; typedef itk::Image ItkUcharImgType; typedef itk::Image ItkUIntImgType; /*! \brief */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Calculate Overlap"); parser.setCategory("Fiber Tracking Evaluation"); parser.setDescription(""); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("tractogram", "", mitkCommandLineParser::InputFile, "", "", us::Any(), false); - parser.addArgument("overlap_image", "", mitkCommandLineParser::InputFile, "", "", us::Any(), false); - parser.addArgument("ep_image", "", mitkCommandLineParser::InputFile, "", "", us::Any(), false); + parser.addArgument("tractogram", "", mitkCommandLineParser::String, "", "file", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("overlap_image", "", mitkCommandLineParser::String, "", "file", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("ep_image", "", mitkCommandLineParser::String, "", "file", us::Any(), false, false, false, mitkCommandLineParser::Input); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; std::string input_tractogram = us::any_cast(parsedArgs["tractogram"]); std::string mask_file = us::any_cast(parsedArgs["overlap_image"]); std::string mask_file2 = us::any_cast(parsedArgs["ep_image"]); try { mitk::FiberBundle::Pointer fib = mitk::IOUtil::Load(input_tractogram); mitk::Image::Pointer mask = mitk::IOUtil::Load(mask_file); mitk::Image::Pointer mask2 = mitk::IOUtil::Load(mask_file2); ItkUcharImgType::Pointer itk_mask; mitk::CastToItkImage(mask, itk_mask); ItkUcharImgType::Pointer itk_mask2; mitk::CastToItkImage(mask2, itk_mask2); float ol = fib->GetOverlap(itk_mask); float ep = fib->GetNumEpFractionInMask(itk_mask2, true); MITK_INFO << "Overlap<<" << ol; MITK_INFO << "EP-Fraction<<" << ep; } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/ExtractSimilarTracts.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/ExtractSimilarTracts.cpp index 945d3318b6..918e3cf8a4 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/ExtractSimilarTracts.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/ExtractSimilarTracts.cpp @@ -1,199 +1,199 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include typedef itk::Image ItkFloatImgType; /*! \brief Spatially cluster fibers */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Extract Similar Tracts"); parser.setCategory("Fiber Tracking Evaluation"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::InputFile, "Input:", "input fiber bundle (.fib, .trk, .tck)", us::Any(), false); - parser.addArgument("ref_tracts", "", mitkCommandLineParser::StringList, "Ref. Tracts:", "reference tracts (.fib, .trk, .tck)", us::Any(), false); - parser.addArgument("ref_masks", "", mitkCommandLineParser::StringList, "Ref. Masks:", "reference bundle masks", us::Any()); + parser.addArgument("", "i", mitkCommandLineParser::File, "Input:", "input fiber bundle (.fib, .trk, .tck)", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("ref_tracts", "", mitkCommandLineParser::StringList, "Ref. Tracts:", "reference tracts (.fib, .trk, .tck)", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("ref_masks", "", mitkCommandLineParser::StringList, "Ref. Masks:", "reference bundle masks", us::Any(), true, false, false, mitkCommandLineParser::Input); - parser.addArgument("", "o", mitkCommandLineParser::OutputDirectory, "Output:", "output root", us::Any(), false); + parser.addArgument("", "o", mitkCommandLineParser::Directory, "Output:", "output root", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.addArgument("distance", "", mitkCommandLineParser::Int, "Distance:", "", 10); parser.addArgument("metric", "", mitkCommandLineParser::String, "Metric:", "EU_MEAN (default), EU_STD, EU_MAX"); parser.addArgument("subsample", "", mitkCommandLineParser::Float, "Subsampling factor:", "Only use specified fraction of input fibers", 1.0); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; std::string in_fib = us::any_cast(parsedArgs["i"]); std::string out_root = us::any_cast(parsedArgs["o"]); mitkCommandLineParser::StringContainerType ref_bundle_files = us::any_cast(parsedArgs["ref_tracts"]); mitkCommandLineParser::StringContainerType ref_mask_files; if (parsedArgs.count("ref_masks")) ref_mask_files = us::any_cast(parsedArgs["ref_masks"]); if (ref_mask_files.size()>0 && ref_mask_files.size()!=ref_bundle_files.size()) { MITK_INFO << "If reference masks are used, there has to be one mask per reference tract."; return EXIT_FAILURE; } int distance = 10; if (parsedArgs.count("distance")) distance = us::any_cast(parsedArgs["distance"]); std::string metric = "EU_MEAN"; if (parsedArgs.count("metric")) metric = us::any_cast(parsedArgs["metric"]); float subsample = 1.0; if (parsedArgs.count("subsample")) subsample = us::any_cast(parsedArgs["subsample"]); try { mitk::FiberBundle::Pointer fib = mitk::IOUtil::Load(in_fib); std::srand(0); if (subsample<1.0f) fib = fib->SubsampleFibers(subsample, true); mitk::FiberBundle::Pointer resampled_fib = fib->GetDeepCopy(); resampled_fib->ResampleToNumPoints(12); auto ref_fibs = mitk::DiffusionDataIOHelper::load_fibs(ref_bundle_files); auto ref_masks = mitk::DiffusionDataIOHelper::load_itk_images(ref_mask_files); std::vector< float > distances; distances.push_back(distance); mitk::FiberBundle::Pointer extracted = mitk::FiberBundle::New(nullptr); unsigned int c = 0; for (auto ref_fib : ref_fibs) { MITK_INFO << "Extracting " << ist::GetFilenameName(ref_bundle_files.at(c)); std::streambuf *old = cout.rdbuf(); // <-- save std::stringstream ss; std::cout.rdbuf (ss.rdbuf()); // <-- redirect try { itk::TractClusteringFilter::Pointer segmenter = itk::TractClusteringFilter::New(); // calculate centroids from reference bundle { itk::TractClusteringFilter::Pointer clusterer = itk::TractClusteringFilter::New(); clusterer->SetDistances({10,20,30}); clusterer->SetTractogram(ref_fib); clusterer->SetMetrics({new mitk::ClusteringMetricEuclideanStd()}); clusterer->SetMergeDuplicateThreshold(0.0); clusterer->Update(); std::vector tracts = clusterer->GetOutCentroids(); ref_fib = mitk::FiberBundle::New(nullptr); ref_fib = ref_fib->AddBundles(tracts); mitk::IOUtil::Save(ref_fib, out_root + "centroids_" + ist::GetFilenameName(ref_bundle_files.at(c))); segmenter->SetInCentroids(ref_fib); } // segment tract if (cSetFilterMask(ref_masks.at(c)); segmenter->SetOverlapThreshold(0.8f); } segmenter->SetDistances(distances); segmenter->SetTractogram(resampled_fib); segmenter->SetMergeDuplicateThreshold(0.0); segmenter->SetDoResampling(false); if (metric=="EU_MEAN") segmenter->SetMetrics({new mitk::ClusteringMetricEuclideanMean()}); else if (metric=="EU_STD") segmenter->SetMetrics({new mitk::ClusteringMetricEuclideanStd()}); else if (metric=="EU_MAX") segmenter->SetMetrics({new mitk::ClusteringMetricEuclideanMax()}); segmenter->Update(); std::vector< std::vector< unsigned int > > clusters = segmenter->GetOutFiberIndices(); if (clusters.size()>0) { vtkSmartPointer weights = vtkSmartPointer::New(); mitk::FiberBundle::Pointer result = mitk::FiberBundle::New(nullptr); std::vector< mitk::FiberBundle::Pointer > result_fibs; for (unsigned int cluster_index=0; cluster_indexGeneratePolyDataByIds(clusters.at(cluster_index), weights))); result = result->AddBundles(result_fibs); extracted = extracted->AddBundle(result); mitk::IOUtil::Save(result, out_root + "extracted_" + ist::GetFilenameName(ref_bundle_files.at(c))); fib = mitk::FiberBundle::New(fib->GeneratePolyDataByIds(clusters.back(), weights)); resampled_fib = mitk::FiberBundle::New(resampled_fib->GeneratePolyDataByIds(clusters.back(), weights)); } } catch(itk::ExceptionObject& excpt) { MITK_INFO << "Exception while processing " << ist::GetFilenameName(ref_bundle_files.at(c)); MITK_INFO << excpt.GetDescription(); } catch(std::exception& excpt) { MITK_INFO << "Exception while processing " << ist::GetFilenameName(ref_bundle_files.at(c)); MITK_INFO << excpt.what(); } std::cout.rdbuf (old); // <-- restore if (fib->GetNumFibers()==0) break; ++c; } MITK_INFO << "Extracted streamlines: " << extracted->GetNumFibers(); mitk::IOUtil::Save(extracted, out_root + "extracted_streamlines.trk"); MITK_INFO << "Residual streamlines: " << fib->GetNumFibers(); mitk::IOUtil::Save(fib, out_root + "residual_streamlines.trk"); } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/GetOverlappingTracts.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/GetOverlappingTracts.cpp index 3469ad361c..23e41bf927 100755 --- a/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/GetOverlappingTracts.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/GetOverlappingTracts.cpp @@ -1,167 +1,167 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include "mitkCommandLineParser.h" #include #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include typedef itksys::SystemTools ist; typedef itk::Image ItkFloatImgType; /*! \brief Extract fibers from a tractogram using binary image ROIs */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Get Overlapping Tracts"); parser.setCategory("Fiber Tracking and Processing Methods"); parser.setContributor("MIC"); parser.setDescription("Find tracts that overlap with the reference masks or tracts"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::StringList, "Input:", "input tractograms (.fib/.trk/.tck/.dcm)", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputDirectory, "Output Folder:", "move input tracts that do/don't overlap here", us::Any(), false); - parser.addArgument("reference", "", mitkCommandLineParser::StringList, "Reference:", "reference tractograms or mask images", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::StringList, "Input:", "input tractograms (.fib/.trk/.tck/.dcm)", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::Directory, "Output Folder:", "move input tracts that do/don't overlap here", us::Any(), false, false, false, mitkCommandLineParser::Output); + parser.addArgument("reference", "", mitkCommandLineParser::StringList, "Reference:", "reference tractograms or mask images", us::Any(), false, false, false, mitkCommandLineParser::Input); parser.addArgument("overlap_fraction", "", mitkCommandLineParser::Float, "Overlap fraction:", "", 0.9); parser.addArgument("use_any_overlap", "", mitkCommandLineParser::Bool, "Use any overlap:", "Don't find maximum overlap but use first overlap larger threshold"); parser.addArgument("dont_save_tracts", "", mitkCommandLineParser::Bool, "Don't save tracts:", "if true, only text files documenting the overlaps are saved and no tract files are copied"); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; mitkCommandLineParser::StringContainerType input = us::any_cast(parsedArgs["i"]); mitkCommandLineParser::StringContainerType reference = us::any_cast(parsedArgs["reference"]); std::string out_folder = us::any_cast(parsedArgs["o"]); bool use_any_overlap = false; if (parsedArgs.count("use_any_overlap")) use_any_overlap = us::any_cast(parsedArgs["use_any_overlap"]); bool dont_save_tracts = false; if (parsedArgs.count("dont_save_tracts")) dont_save_tracts = us::any_cast(parsedArgs["dont_save_tracts"]); float overlap_threshold = 0.9; if (parsedArgs.count("overlap_fraction")) overlap_threshold = us::any_cast(parsedArgs["overlap_fraction"]); try { MITK_INFO << "Loading references"; std::vector< std::string > reference_names; auto masks = mitk::DiffusionDataIOHelper::load_itk_images(reference, &reference_names); auto reference_fibs = mitk::DiffusionDataIOHelper::load_fibs(reference, &reference_names); std::streambuf *old = cout.rdbuf(); // <-- save std::stringstream ss; std::cout.rdbuf (ss.rdbuf()); // <-- redirect itk::TractDensityImageFilter< ItkFloatImgType >::Pointer filter = itk::TractDensityImageFilter< ItkFloatImgType >::New(); filter->SetUpsamplingFactor(0.25); filter->SetBinaryOutput(true); for (auto fib : reference_fibs) { filter->SetFiberBundle(fib); filter->Update(); masks.push_back(filter->GetOutput()); } std::cout.rdbuf (old); // <-- restore MITK_INFO << "Loading input tractograms"; std::vector< std::string > input_names; auto input_fibs = mitk::DiffusionDataIOHelper::load_fibs(input, &input_names); MITK_INFO << "Finding overlaps"; ofstream logfile; logfile.open (out_folder + "Overlaps.txt"); ofstream logfile2; logfile2.open (out_folder + "AllOverlaps.txt"); boost::progress_display disp(input.size()); unsigned int c = 0; for (auto fib : input_fibs) { ++disp; std::streambuf *old = cout.rdbuf(); // <-- save std::stringstream ss; std::cout.rdbuf (ss.rdbuf()); // <-- redirect bool is_overlapping = false; float overlap = 0; float max_overlap = 0; std::string max_ref = "-"; int i = 0; std::string overlap_string = ist::GetFilenameWithoutExtension(input_names.at(c)); for (auto m : masks) { overlap = fib->GetOverlap(m); if (overlap>max_overlap) { max_overlap = overlap; max_ref = ist::GetFilenameWithoutExtension(reference_names.at(i)); } if (use_any_overlap && overlap>=overlap_threshold) break; overlap_string += " " + ist::GetFilenameWithoutExtension(reference_names.at(i)) + " " + boost::lexical_cast(overlap); ++i; } if (overlap>=overlap_threshold) is_overlapping = true; logfile << ist::GetFilenameWithoutExtension(input_names.at(c)) << " - " << max_ref << ": " << boost::lexical_cast(max_overlap) << "\n"; logfile2 << overlap_string << "\n"; if (!dont_save_tracts && is_overlapping) ist::CopyAFile(input_names.at(c), out_folder + ist::GetFilenameName(input_names.at(c))); std::cout.rdbuf (old); // <-- restore ++c; } logfile.close(); logfile2.close(); } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/MergeOverlappingTracts.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/MergeOverlappingTracts.cpp index 0f9fb0d226..ac0936a2be 100755 --- a/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/MergeOverlappingTracts.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/MergeOverlappingTracts.cpp @@ -1,214 +1,214 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef itk::Image ItkFloatImgType; typedef itk::Image ItkUIntImgType; /*! \brief */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Merge Overlapping Tracts"); parser.setCategory("Fiber Tracking Evaluation"); parser.setDescription(""); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); - parser.addArgument("", "i", mitkCommandLineParser::StringList, "Input:", "input tracts", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputDirectory, "Output Folder:", "output folder", us::Any(), false); + parser.addArgument("", "i", mitkCommandLineParser::StringList, "Input:", "input tracts", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::Directory, "Output Folder:", "output folder", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.addArgument("overlap", "", mitkCommandLineParser::Float, "Overlap threshold:", "Tracts with overlap larger than this threshold are merged", 0.8, false); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; mitkCommandLineParser::StringContainerType input_folder = us::any_cast(parsedArgs["i"]); std::string out_folder = us::any_cast(parsedArgs["o"]); float overlap = 0.8; if (parsedArgs.count("overlap")) overlap = us::any_cast(parsedArgs["overlap"]); try { if (!ist::PathExists(out_folder)) ist::MakeDirectory(out_folder); std::vector< mitk::FiberBundle::Pointer > fibs = mitk::DiffusionDataIOHelper::load_fibs(input_folder); std::streambuf *old = cout.rdbuf(); // <-- save std::stringstream ss; std::cout.rdbuf (ss.rdbuf()); // <-- redirect mitk::FiberBundle::Pointer combined = mitk::FiberBundle::New(); combined = combined->AddBundles(fibs); itk::TractsToFiberEndingsImageFilter< ItkFloatImgType >::Pointer endings = itk::TractsToFiberEndingsImageFilter< ItkFloatImgType >::New(); endings->SetFiberBundle(combined); endings->SetUpsamplingFactor(0.25); endings->Update(); ItkFloatImgType::Pointer ref_image = endings->GetOutput(); std::cout.rdbuf (old); // <-- restore for (int its = 0; its<3; its++) { std::streambuf *old = cout.rdbuf(); // <-- save std::stringstream ss; std::cout.rdbuf (ss.rdbuf()); // <-- redirect std::vector< ItkFloatImgType::Pointer > mask_images; for (auto fib : fibs) { itk::TractDensityImageFilter< ItkFloatImgType >::Pointer masks = itk::TractDensityImageFilter< ItkFloatImgType >::New(); masks->SetInputImage(ref_image); masks->SetBinaryOutput(true); masks->SetFiberBundle(fib); masks->SetUseImageGeometry(true); masks->Update(); mask_images.push_back(masks->GetOutput()); } int r=0; vnl_matrix< int > mat; mat.set_size(mask_images.size(), mask_images.size()); mat.fill(0); for (auto m1 : mask_images) { float max_overlap = overlap; int c = 0; for (auto m2 : mask_images) { if (c<=r) { ++c; continue; } itk::ImageRegionConstIterator it1(m1, m1->GetLargestPossibleRegion()); itk::ImageRegionConstIterator it2(m2, m2->GetLargestPossibleRegion()); unsigned int c1 = 0; unsigned int c2 = 0; unsigned int intersect = 0; while( !it1.IsAtEnd() ) { if( it1.Get()>0 && it2.Get()>0) ++intersect; if(it1.Get()>0) ++c1; if(it2.Get()>0) ++c2; ++it1; ++it2; } if ( (float)intersect/c1>max_overlap ) { max_overlap = (float)intersect/c1; mat.put(r,c, 1); } if ( (float)intersect/c2>max_overlap ) { max_overlap = (float)intersect/c2; mat.put(r,c, 1); } ++c; } ++r; } std::vector< mitk::FiberBundle::Pointer > out_fibs; std::vector< bool > used; for (unsigned int i=0; i0) { fib = fib->AddBundle(fibs.at(c)); used[c] = true; } } out_fibs.push_back(fib); } std::cout.rdbuf (old); // <-- restore MITK_INFO << fibs.size() << " --> " << out_fibs.size(); if (fibs.size()==out_fibs.size()) break; fibs = out_fibs; } int c = 0; for (auto fib : fibs) { std::streambuf *old = cout.rdbuf(); // <-- save std::stringstream ss; std::cout.rdbuf (ss.rdbuf()); // <-- redirect mitk::IOUtil::Save(fib, out_folder + "/bundle_" + boost::lexical_cast(c) + ".trk"); std::cout.rdbuf (old); // <-- restore ++c; } } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/PeaksAngularError.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/PeaksAngularError.cpp index 3865ddaf17..2261f368fc 100755 --- a/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/PeaksAngularError.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/TractographyEvaluation/PeaksAngularError.cpp @@ -1,190 +1,190 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include #include #include #include #include #include #include typedef itk::Image< unsigned char, 3 > ItkUcharImageType; /*! \brief Calculate angular error between two sets of directions stored in multiple 3D vector images where each pixel corresponds to a vector (itk::Image< itk::Vector< float, 3>, 3 >) */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setArgumentPrefix("--", "-"); - parser.addArgument("test", "", mitkCommandLineParser::StringList, "Test images", "test direction images", us::Any(), false); - parser.addArgument("reference", "", mitkCommandLineParser::StringList, "Reference images", "reference direction images", us::Any(), false); - parser.addArgument("", "o", mitkCommandLineParser::OutputDirectory, "Output folder", "output folder", us::Any(), false); - parser.addArgument("masks", "", mitkCommandLineParser::StringList, "Mask(s)", "mask image(s)"); + parser.addArgument("test", "", mitkCommandLineParser::StringList, "Test images", "test direction images", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("reference", "", mitkCommandLineParser::StringList, "Reference images", "reference direction images", us::Any(), false, false, false, mitkCommandLineParser::Input); + parser.addArgument("", "o", mitkCommandLineParser::Directory, "Output folder", "output folder", us::Any(), false, false, false, mitkCommandLineParser::Output); + parser.addArgument("masks", "", mitkCommandLineParser::StringList, "Mask(s)", "mask image(s)", us::Any(), true, false, false, mitkCommandLineParser::Input); parser.addArgument("verbose", "", mitkCommandLineParser::Bool, "Verbose", "output error images"); parser.addArgument("ignore_test", "", mitkCommandLineParser::Bool, "Ignore missing test", "don't increase error if no test directions are found"); parser.addArgument("ignore_ref", "", mitkCommandLineParser::Bool, "Ignore ignore missing ref", "don't increase error if no ref directions are found"); parser.setCategory("Fiber Tracking Evaluation"); parser.setTitle("Peaks Angular Error"); parser.setDescription("Calculate angular error between two sets of peak images (1-1 correspondence)"); parser.setContributor("MIC"); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; mitkCommandLineParser::StringContainerType testImages = us::any_cast(parsedArgs["test"]); mitkCommandLineParser::StringContainerType referenceImages = us::any_cast(parsedArgs["reference"]); mitkCommandLineParser::StringContainerType maskImages; if (parsedArgs.count("masks")) maskImages = us::any_cast(parsedArgs["masks"]); std::string outRoot = us::any_cast(parsedArgs["o"]); bool verbose = false; if (parsedArgs.count("verbose")) verbose = us::any_cast(parsedArgs["verbose"]); bool ignore_test = false; if (parsedArgs.count("ignore_test")) ignore_test = us::any_cast(parsedArgs["ignore_test"]); bool ignore_ref = false; if (parsedArgs.count("ignore_ref")) ignore_ref = us::any_cast(parsedArgs["ignore_ref"]); try { typedef itk::ComparePeakImagesFilter< float > EvaluationFilterType; std::vector test_names; auto test_images = mitk::DiffusionDataIOHelper::load_itk_images(testImages, &test_names); // load reference directions std::vector ref_names; auto ref_images = mitk::DiffusionDataIOHelper::load_itk_images(referenceImages, &ref_names); // load/create mask image auto itkMaskImages = mitk::DiffusionDataIOHelper::load_itk_images(maskImages); if (test_images.size()!=ref_images.size()) mitkThrow() << "Matching number of test and reference image required!"; for (unsigned int i=0; iSetTestImage(test_images.at(i)); evaluationFilter->SetReferenceImage(ref_images.at(i)); if (iSetMaskImage(itkMaskImages.at(i)); evaluationFilter->SetIgnoreMissingTestDirections(ignore_test); evaluationFilter->SetIgnoreMissingRefDirections(ignore_ref); evaluationFilter->Update(); std::string ref_name = ist::GetFilenameWithoutExtension(ref_names.at(i)); std::string test_name = ist::GetFilenameWithoutExtension(test_names.at(i)); if (verbose) { mitk::LocaleSwitch localeSwitch("C"); EvaluationFilterType::OutputImageType::Pointer angularErrorImage = evaluationFilter->GetOutput(0); EvaluationFilterType::OutputImageType::Pointer lengthErrorImage = evaluationFilter->GetOutput(1); typedef itk::ImageFileWriter< EvaluationFilterType::OutputImageType > WriterType; { WriterType::Pointer writer = WriterType::New(); std::string outfilename = outRoot; outfilename.append(ref_name + "_" + test_name + "_AngularError.nii.gz"); writer->SetFileName(outfilename.c_str()); writer->SetInput(angularErrorImage); writer->Update(); } { WriterType::Pointer writer = WriterType::New(); std::string outfilename = outRoot; outfilename.append(ref_name + "_" + test_name + "_LengthError.nii.gz"); writer->SetFileName(outfilename.c_str()); writer->SetInput(lengthErrorImage); writer->Update(); } } std::string logFile = outRoot; logFile.append("AngularErrors.csv"); bool add_header = true; if (ist::FileExists(logFile, true)) add_header = false; ofstream file; file.open (logFile.c_str(), std::fstream::app); std::string sens; if (add_header) sens.append("Test,Reference,Mean,Median,Maximum,Minimum,Stdev\n"); sens.append(test_name); sens.append(","); sens.append(ref_name); sens.append(","); sens.append(boost::lexical_cast(evaluationFilter->GetMeanAngularError())); sens.append(","); sens.append(boost::lexical_cast(evaluationFilter->GetMedianAngularError())); sens.append(","); sens.append(boost::lexical_cast(evaluationFilter->GetMaxAngularError())); sens.append(","); sens.append(boost::lexical_cast(evaluationFilter->GetMinAngularError())); sens.append(","); sens.append(boost::lexical_cast(std::sqrt(evaluationFilter->GetVarAngularError()))); sens.append("\n"); std::cout << sens; file << sens; file.close(); } } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; }